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Abstract 

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical 

to infrared wavelength plasmonic applications. Most fabrication technique processes, especially 

those using noble metals, requires an adhesion layer.  Previously proposed theoretical work to 

support experimental measurement often neglect the effect of the adhesion layers. The first finding 

of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. 

Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, 

absorption, and extinction cross-section with numerical simulations using a finite difference time 

domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive layer significantly 

shifts the plasmon resonance relative to one without adhesion material. In addition, the adhesive 

layer also introduces stronger damping and decay time. Next, I investigate the plasmonic properties 

and effects of dielectric environment of black phosphorene (BP), a newly discovered anisotropic 

2D material.  Results suggest that the surface plasmon properties of a black phosphorene 

nanoribbon could be exploited to probe the efficiency of edge plasmonic enhanced absorption. 

Furthermore, the enhanced absorption of periodic BP nanoribbons is affected strongly by high 

density free carriers in BP nanoribbon geometries from mid-infrared to high infrared regime.  Also 

when adding a thin dielectric shielding layer, such as hexagonal boron nitride, in addition to 

preserving the edge mode plasmonic nature of BP, it also allows for an unprecedented control of 

the absorption resonance energy. Finally, I also show monolayer graphene surface plasmon 

hybridization with hyperbolic phonon polarization local density of state of hyperbolic ferroelectric 

LiNbO3. The results show that the dispersion mode hybridization process is significantly regulated 

by a electrostatic gated single graphene and double graphene layer in addition to the ferroelectric 

layer size. The spontaneous emission (SE) rate the hyperbolic band contribution of LiNbO3 with 



  

 
 

graphene integrated system elucidated enhancement and inhibit spontaneous emission. Specially, 

the SE rate between in hybrid system is always smaller than that of the bulk in the hyperbolic band 

region with higher chemical potential.  
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Chapter 1 
 
Introduction  

Since the past few decades, studies of plasmonics has become one of the most important 

flourishing optical-science in light matter interactions in both the classical and quantum fields [1]. 

Plasmon are quantized modes of collectively excited charge density oscillations typically 

occurring in charged electron gases in solids in the presence of long range coulomb interactions 

[2]. Commonly, the study of plasmons is attributed with the excitation of resonant oscillations of 

charges using light and/or beam of electrons in metallic materials [3]. Most recently, with the 

discovery of new materials and detection mechanisms plasmon phenomena study has expanded 

into heavily doped semiconductors and semimetals. Depending on the quantized oscillation 

behavior of charges, plasmons process have two classifications of electromagnetic (EM) field 

properties [4,5]. In the first case, when external electric fields of the electromagnetic radiation 

shined on a metallic surface and a dielectric caused polarization by displacing electrons from the 

equilibrium position to the excited mode around positively charged ions. The excited electrons 

behave as a free electron gas. The interaction between the excited electrons produces surface waves 

confined to the metal-dielectric interfaces. The bounded surface waves are vibrating with a well-

defined frequency and propagate perpendicular to the propagation vector. These types of 

oscillations are called propagating surface plasmon polaritons (PSPPs) [4,5].    

Contrary to propagating surface plasmon polaritons (PSPPs), when metallic material structures 

scaled to a few nanometers and or few micrometers curved geometries, the external light creates a 

free electron cloud of conduction electrons. Due to the curvature of the metallic structure, the 

particle of the metal induces a balancing force on the electron cloud. The electrons in such cases 

undergo damped harmonics oscillation. The mode of vibration is resonant in nature and is confined 
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within nanostructures into sub-wavelength volumes braking the diffraction limit of light. Hence, 

referred to as localized surface plasmon resonances (LSPRs) [5]. At the resonance frequency, the 

amplitude of the electric field of the oscillating charges will be much larger than away from the 

resonance point. Moreover, the strength of the electric field local localized near the surface of the 

nanostructure is highly enhanced and can be several orders of magnitude higher than that of the 

incident field [6]. The enhanced field strength rapidly falls off with distance from the surface of 

the material decay. In LSPRs’ mode the resonant frequency and the confined EM field depend on 

the composition of the material, shape and size [7]. In addition, confined plasmon EM waves can 

be more localized EM fields and further enhanced by bringing two (dimer) nanostructure or 

ensemble of nanoparticles, within extremely small gaps (> 0.5 nm) [8, 9]. The strong enhancement 

EM field is due to constructive interference between the dipole or higher moments charge 

oscillation on neighboring nanoparticles. Moreover, dielectric environments, especially metallic 

adhesion layers, contributes a unique role in properties of plasmon, and has been studied in this 

thesis.  

 

In the past, decayed, experimental fabrications method such as e-beam lithography and 

measurement using dark field microscopy elaborated noble metals plasmon. Despite immense 

progress, noble metal films and nanostructures plasmonic nature experience large losses due to 

small carrier mobilities, and very low dynamic tunability. These characteristics limited their 

plasmonics application in optical and near infrared electromagnetic spectrum. Such limitations 

have led to the search for other better plasmonic materials [10, 11], transition metal nitrides, 

hyperbolic natural and artificial materials, and 2D materials, mainly graphene [12], doped 

transition metal dichalcogenides [13], and most recently black phosphorus (BP) [14]. Both SPPs 
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and LSPPS generated in these materials feature low-loss, extremely sub-wavelength confined and 

longer propagation length. The plasmon electromagnetic produced can be dynamically tuned by 

chemical potential affecting the charge density and by the number of atomic layers.  

 

Besides light and electron beam, another most exciting merit of plasmons property is the ability of 

highly strong light-matter interactions with quantum emitters such as a molecule (dots) to generate 

LSPs and confined surface plasmon polaritons (SPPs) through a near field interaction. Emission 

process of radiation due to local density of states of plasmonic modes is explained by Purcell factor 

also referred to as spontaneous emission (SE) rate [15,16]. According to the Purcell factor, the SE 

rate can be an efficiently controlled system providing a strongly confined mode and higher density 

of mode. In such context, material that supports strong confinement of surface plasmon polaritons 

and/or hyperbolic materials that support phonon polaritonic modes ensures efficient coupling at a 

given electromagnetic scale [17,18]. Hybrid surface plasmon phonon modes are coupled modes of 

two or more structure with plasmonic modes orignated in one material and phononic modes in the 

other. Controlling the hybrid electromagnetic waves bring an extra degree of freedom and might 

be used for new applications that couldn't be attained by ordinary metamaterials. Hence, there is a 

great deal of interest to modulate efficiency of the SE rate enhancement of quantum emitters. This 

is essential in a class of material whose optical properties can be regulated in a mid-infrared and 

terahertz (THz) range minimizing loss effect. In this thesis, I use a novel strategy in order to 

actively control SE rate in THz 2D graphene and hyperbolic layer hybrid systems without altering 

the geometrical surroundings. 

 

This dissertation is divided into six chapters.  
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Chapter two gives an introduction of the theoretical background and concepts for understanding 

the Fresnel equation between polaritonics and plasmon supporting 2D material, including surface 

plasmon polaritons (SPPs), confined surface plasmons hyperbolic metamaterial dispersion, and 

point dipole spontaneous emission. Chapter three covers the finite element methods for computing 

adhesive integrated gold nanodisk of various sizes, ranging from 80 nm - 200 nm in diameter. The 

result is that FEM is extended to calculate the confined surface plasmon damping and decaying 

properties has also been introduced. Chapter four discusses surface plasmon properties of newly 

discovered 2D anisotropic black phosphorene, and absorption properties of periodic nanoribbon 

enhanced BP and dielectric protected BP ribbon by defining the optical conductivity from the 

Drude model. The underlying physical mechanisms that enhance the absorption of BP ribbon in 

different directions of nanoribbons has been extensively addressed. In Chapter five, mechanisms 

of surface plasmon and hyperbolic photon polariton hybridization in lower terahertz range is 

studied. The numerical result of SE rate due to a point using a graphene 2D conducting sheet with 

hyperbolic material is discussed. The SE rate in between hybrid systems which can give a roadmap 

for designing of modulated emission in THz spectral. Finally, chapter six presents the overall 

conclusions of this thesis work and proposes potential research directions in continuation of this 

work.   
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Chapter 2 

This chapter establishes the theoretical foundation required to analyze the electromagnetic 

interaction near a planar interface of planar interface of two and more layers. Maxwell’s equations, 

and the electromagnetic boundary conditions needed to analyze the field produced in different 

layers are defined. The differential Maxwell’s equation eigen solution are set based on interfaces 

two of uniaxial layers. The dispersion modes of the uniaxial layer explained form the momentum 

vector complex solutions. We derive the formulas for calculating the Fresnel coefficients between 

two anisotropic interface and isotropic conducting sheet in between. This was also expanded in 

multilayer system following transfer matrix approach and summed up for absorption, reflection 

and transmission value.  In the subsequent section quantum dipole emitter radiation source, treated 

a classical electromagnetic phenomenon is addressed for a system consists of 2D material.  First, 

the dyadic Green’s tensor for the electric field is derived in Cartesian coordinate for each interface 

two-layered planar interface and anisotropic 2D material.  This is followed by the calculation of 

an integral form the EM field for the possibility of controlling the SE rate of 2D layer conducting 

sheet driven by a point dipole radiation source. The introduced theoretical model of SE rate is 

finally summarized for dipole emitter polarization-dependent excitation.  

 
2.1 Theoretical Formulation 

In this subsection we present a unified theoretical perspective of practical approaches to achieve 

light mater interaction and response properties nanoparticles, semi-infinite buck medium and 2D 

materials. We first consider the nature of light across an interface formed between a 2D sheet a 

two semi-infinite uniaxial dielectrics medium, with dielectric permittivity of 𝜀̃  and 𝜀̃ , as shown 

schematically in figure 2.1a and 2.1b. We regard 2D material (such as graphene, black 
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phosphorene) thickness of few atomic layers commonly is less than 1nm. In order to understand 

the interaction of light in such system we implement the Maxwell’s EM equations [1] given as 

∇ ∙ 𝐷 = 𝜌        (2.1.a) 

∇ ∙ 𝐵 = 0       (2.1.b) 

∇ × �⃗� = −
⃗
       (2.1.c) 

∇ × 𝐻 = 𝐽 +
⃗
      (2.1.d) 

In the equations, B is the magnetic induction, E is the electric field, H is the magnetic field (𝐵 =

𝜇 𝐻), D denotes the electric displacement, ( 𝐷 = 𝜀 𝜺�⃗�), 𝑗 the current density, and 𝜌  is the charge 

density, 𝜀  and 𝜺 is the permittivity of free space and relative permittivity of any form of medium. 

The electric and magnetic field salsifies the tangential and perpendicular components of Maxwell’s 

boundary between two adjacent layers written as  

𝑛 ∙ (𝐷 −  𝐷 ) = 0      (2.2.a) 

𝑛 ∙ (𝐵 −  𝐵 ) = 0      (2.2.b) 

𝑛 × (�⃗� − �⃗� ) = 0      (2.2.c) 

𝑛 × (𝐻 − 𝐻 ) = 𝐽       (2.2.d) 

We focus on anisotropic media, the dielectric tensor of permittivity in three cartesian directions 

represented as 

𝜺 =

𝜀 0 0
0 𝜀 0

0 0 𝜀
     (1.3) 

Where, 𝜀  𝜀 , and 𝜀  are. Since, the momentum space (�⃗�) and the dielectric constant define the 

dispersion nature EM wave we represent Maxwell’s Eqs. (2.1a-d) as 
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�⃗� × �⃗� = −𝜇 𝜔𝐻      (2.4.a) 

�⃗� × 𝐻 = 𝜔𝐷                  (2.4.b) 

Combining the above two equation we get curl form of wave equation 

      �⃗� × �⃗� × �⃗� = −𝜇 𝜔 𝜀 𝜺�⃗�                              (2.5) 

To gain good understanding of Eq. (2.5), we chose a plane EM wave of electric field amplitude 

and propagation vector represented in cartesian coordinate as  

𝐄(𝑟) = (𝐸 𝑥 + 𝐸 𝑦 + 𝐸 �̂�)𝑒   (2.6) 

The unit coordinate vectors 𝑥, 𝑦 and �̂� represent the three cartesian directions, the respective 

component of wavevector are represented by  𝑘 , 𝑘 , and 𝑘  𝐸 , 𝐸  and 𝐸  are amplitudes of 

electric field and c is the speed of light. The displacement vector assumes the form 𝐷 = 𝜺�⃗� =

𝜀 (𝜀 𝐸 𝑥 + 𝜀 𝐸 𝑦 + 𝜀 𝐸 �̂�). From Eq. (2.5) and (2.6), the solution is a wave equation which 

is represented the dielectric tensor component 

�⃗� × �⃗� × �⃗� = −𝑘 (𝜀 𝐸 𝑥 + 𝜀 𝐸 𝑦 + 𝜀 𝐸 �̂�)     (2.7) 

where 𝑘 = 𝜔 𝑐⁄  is the vacuum wavenumber interms of the angular frequency. The solution to Eq. 

(2.7) is a matrix form given by  

𝜀 𝑘 −𝑘 − 𝑘 𝑘 𝑘 𝑘 𝑘

𝑘 𝑘 𝜀 𝑘 −𝑘 − 𝑘 𝑘 𝑘

𝑘 𝑘 𝑘 𝑘 𝜀 𝑘 −𝑘 − 𝑘

𝐸
𝐸

𝐸
= 0,  (2.8) 

Where the magnitude of the propagation vector 𝑘 = 𝑘 + 𝑘 + 𝑘  .  

2.1. 1 Dispersion nature in hyperbolic medium 

To see the difference in the optical response of the different medium, we solve for the eigen 

solutions of the vectorwave of the electromagnetic fields in Eq. (2.8) by taking the determinant 

of the matrix and obtain the following,   



  

9 
 

+ − 𝑘 (𝑘 + 𝑘 + 𝑘 − 𝜀 𝑘 ) = 0,     (2.9) 

From the eigen solutions of the vector-wave, Eq (2.9), we obtain two roots, ordinary eigenmodes 

and extra-ordinary modes [2]. The ordinary eigenmode dispersion relation of the modes is given 

by  

− 𝑘 = 0       (2.10) 

and the extra-ordinary eigenmodes dispersion relation is solved as  

+ − 𝑘 = 0,       (2.11) 

Based on the dielectric permittivity specially the part the solution in Eq. (2.10) and Eq. (2.11) we 

can easily classify different types of media and the result can be depicted by the isofrequency 

contour generated by the different components of wave vector [3,4].  If 𝜀 > 0 and 𝜀 > 0 then 

the medium is classified as dielectric,  𝜀 = 𝜀 ≠ 𝜀 , the medium is considered as uniaxial with 

an ellipsoid isofrequency and when 𝜀 =  𝜀 = 𝜀  it is isotropic with spherical isofrequency. 

When 𝜀  𝜀 < 0 the isofrequency surface opens into an open hyperboloid and the medium 

behave as effective anisotropic metal.  If 𝜀 < 0 and 𝜀 > 0 then the medium is called a type I 

hyperbolic and when 𝜀 > 0 and 𝜀 < 0 then the medium is called a type II hyperbolic with 

isofrequency contour opening. This means hyperbolic medium which can be in generally defined 

by the property 𝜀 ,𝜀 < 0 operates like a metal in one direction and a dielectric (insulator) in 

the other.  
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Figure 2.1 the spherical isofrequency surfaces for propagating waves in a medium with 
isotropic dielectric (𝜀 =𝜀 =𝜀 ) (a). Anisotropic media ellipsoidal isofrequency (𝜀 = 𝜀 ≠

𝜀 ) (b). A uniaxial hyperbolic medium with one positive and two negative components of the 
dielectric permittivity tensor (𝜀 = 𝜀  >  0, 𝜀 <  0, Type I) (c). A uniaxial hyperbolic 
medium with one negative and two positive components of the dielectric permittivity tensor 
(𝜀 = 𝜀 < 0, 𝜀  >  0, Type II) (d).  
 
2.2 Light in two hyperbolic media 

 
To investigate the properties such as propagation, dispersion, Fresnel coefficient of 

electromagnetic wave in different medium. We can now directly establish the magnetic field and 

the electric field relation in hyperbolic medium from the curl Eq.  (2.7). Component by components 

by taking the left and right side of the electric field can be expresses in terms of the dielectric 

function and can be simplified to 

𝑘 𝐻 − 𝑘 𝐻 = −𝜺𝟎𝜺𝒙𝒙,𝒋𝐸      (2.12.a) 

𝑘 𝐻 − 𝑘 𝐻 = −𝜺𝟎𝜺𝒚𝒚,𝒋𝐸     (2.12.b) 

𝑘 𝐻 − 𝑘 𝐻 = −𝜺𝟎𝜺𝒛𝒛,𝒋𝐸     (2.12.c) 

Now since we established the connection of electric and magnetic field in any medium (j), we 

considered two hyperbolic media labeled as 1and 2, and that includes a two-dimensional (2D) thin 

layer represented in figure 2.2a and 2.2b.  In the schematic setting the anisotropic mediums lies in 

the 𝑥 − 𝑦 plane. The first medium above 𝑧 =  0 and the second hyperbolic bellow 𝑧 =  0 and the 

two 2D material at 𝑧 =  0. We also assume the anisotropic mediums are non-magnetooptical 
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(𝜇 = 𝜇 = 1 ) for simplicity. In the above electromagnetic waves are expressed as linear 

superposition of TE and TM waves, based on direction choice we will describe in the next two 

sections.   

 

 

Figure 2.2 shows the electromagnetic field direction of TE (s) polarization (a) and TM polarization 
in top hyperbolic material (𝑧  >   0), bottom hyperbolic material (𝑧 <  0) and a 2D material 
characterized by an anisotropic conductivity (σ) included at 𝑧 =  0 for the system in under 
consideration.  
 

2.2.1 TM-polarized light reflection  

Here we assume 𝑥 − 𝑧 being plane of incidence as shown in figure (2.a) as such the incidence 

propagation vector in the first medium,  𝒌𝟏𝑰, and the incident TM mode magnetic field, 𝐇𝐈,  with 

an amplitude of 𝐻  is represented as   

𝒌𝟏𝑰 = 𝑘 𝑥 + 𝑘 �̂�                    (2.13) 

𝐇𝐈 = 𝐻 𝑦𝑒 ( ̂ ),      (2.14) 

The electric field associated with the magnetic field from Eq. (2.12) is 

(𝑘 𝑥 + 𝑘 �̂�) × 𝐇𝐈 = −𝜺𝟎𝜺�⃗�𝐈 = −𝜺𝟎𝜺𝒙𝒙,𝟏𝐸 𝑥 − 𝜺𝒛𝒛,𝟏𝐸 �̂� (2.15) 
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Where 𝐸  and 𝐸  the incident field electric field amplitude in the x and z direction. Similarly, the 

reflected magnetic field, 𝐇𝐑,  which propagating back with a momentum vector 𝒌𝟏𝑹 = 𝑘 𝑥 −

𝑘 �̂� from the 2D interface at 𝑧 =  0 with an amplitude of, 𝐻 , is 

𝐇𝐑 = 𝐻 𝑦𝑒 ( ̂ ),      (2.16) 

Similarly, the electric field reflected will be 

(𝑘 𝑥 − 𝑘 �̂�) × 𝐇𝐑 = −𝜺𝟎𝜺�⃗�𝐑 = −𝜺𝟎𝜺𝒙𝒙,𝟏𝐸 𝑥−𝜺𝟎𝜺𝒛𝒛,𝟏𝐸 �̂�, (2.17) 

The transmitted magnetic in the second medium below 𝑧 = 0 with a propagation 

𝒌𝟐 = 𝑘 𝑥 + 𝑘 �̂� is 

𝐇𝐓 = 𝐻 𝑦𝑒 ( ̂ ),      (2.18) 

With the corresponding electric field  

(𝑘 𝑥 + 𝑘 �̂�)  × 𝐇𝐓 = −𝜺𝒙𝒙,𝟐𝐸 𝑥−𝜺𝟎𝜺𝒛𝒛,𝟐𝐸 �̂�                        (2.19) 

At 𝑧 =  0, the normal component of the electric field satisfies continuity boundary condition 

Maxwell’s Eqs. (2.2), that is 

𝑛 × 𝐄𝟏 − 𝐄𝟐 = 0       (2.20) 

Where 𝐄𝟏 is the total electric field in the first hyperbolic medium, 𝐄𝟏 = 𝐄𝐈 + 𝐄𝐑, and 𝐄𝐓 is the 

electric field in the second medium 𝐄𝟐 = 𝐄𝐓. The normal unit vector point in the z direction, 𝑛 =

 �̂�, thus, the equation of the electric can be written as,  

�̂� × 𝐄𝐈 + 𝐄𝐑 − 𝐄𝐓 = 0,      (2.21) 

The normal vector cross product with the electric field from Eq. (2.15), Eq.  (2.17) and Eq. (2.19) 

leads to the following results  

�̂� ×
𝝎𝜺𝟎𝜺𝒛𝒛,𝟏

�̂� +
𝝎𝜺𝟎𝜺𝒙𝒙,𝟏

𝑥 𝐻 𝑒 = 𝑦
𝝎𝜺𝟎𝜺𝒙𝒙,𝟏

𝐻 𝑒                (2.22.a) 
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�̂� ×
𝝎𝜺𝟎𝜺𝒛𝒛,𝟏

�̂� −
𝜺𝟎𝝎𝜺𝒙𝒙,𝟏

𝑥 𝐻 𝑒 = 𝑦
𝝎𝜺𝟎𝜺𝒙𝒙,𝟏

𝐻 𝑒               (2.22.b) 

�̂� ×
𝝎𝜺𝟎𝜺𝒛𝒛,𝟐

�̂� +
𝝎𝜺𝟎𝜺𝒙𝒙,𝟐

𝑥 𝐻 𝑒 = 𝑦
𝝎𝜺𝟎𝜺𝒙𝒙,𝟐

𝐻 𝑒               (2.22.c) 

The time dependent exponential factor, 𝑒 , is a common denominator for the EM field in both 

medium and excluded in the expression as it is not affected by the boundary conditions. Which we 

will do in other part of derivations in the dissertation when it is convenient.   By combining the 

above three equations in to Eq. (2.21), after few algebras leads to a reduced equation form of,  

𝜺𝒙𝒙,𝟏
𝐻 −

𝜺𝒙𝒙,𝟏
𝐻 −

𝜺𝒙𝒙,𝟐
𝐻 = 0,     (2.23) 

In the tangential direction, 𝑥 − 𝑦 plane, the components of the magnetic field and the electric field 

induces a surface currents in the 2D conducting sheet. The boundary condition of Eq (2.2d) related 

by Ohm’s law, 𝑛 × 𝐇𝟏 − 𝐇𝟐 = �⃗�𝒇 = 𝜎𝐄𝐭. Where the electric field 𝐄𝐭 is the tangential field at 

the interface of the two media. The solution of the boundary condition can be achieved depending 

on the nature of 𝜎.  We chose 2D material without static magnetic bias (Hall effect) of an 

anisotropic conductivity represent by a matric tensor form, 

𝜎 =  
𝜎 0
0 𝜎       (2.24) 

Few good examples of realistic 2D material that follows similar conductivity model are; graphene, 

𝜎 = 𝜎 , which is isotropic 2D material and black phosphorene, 𝜎 ≠ 𝜎 , anisotropic 2D 

material. Monolayer (one-atom-thick) or a few layers systems, which are scaled as two-

dimensional material, are characterized by a two-dimensional sheet conductivity than volume 

conductivity. However, there relationship connecting this conductivity can be obtained as 

follows. 
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Since we only surface current density, 𝐽 = 𝐽 𝑥 + 𝐽 𝑦, in 𝑥 − 𝑦 plane is due to the excitation of 

electron on the surface by the external electric field. The volume current density, 𝐽 , is related with 

the surface current by the expressed 𝐽 = 𝐽 (𝑥, 𝑦)𝛿(𝑧). This also applies to the volume, (𝜌 ), and 

surface charge density (𝜌 ), i.e. 𝜌 = 𝜌 (𝑥, 𝑦)𝛿(𝑧). In case of incident light with a wavelength 

extremely larger than the thickness, 𝑡, of the conducting sheet the electric field is approximately 

constant with the 2D layer [5].  Therefore, 2D current density traversing a line element across 

the thickness 𝑡 is ∫ 𝐽 𝑑𝑧 = ∫ 𝐽 (𝑥, 𝑦)𝛿(𝑧)𝑑𝑧 = ∫ 𝜎𝐸(𝑧)𝑑𝑧 ≈ 𝜎𝑡𝑬(𝒓). Such that equivalent 

representation of to a 2D sheet conductivity   and the 3D conductive in general are connected 

by the thickness, in a simple form 𝜎 =  𝜎 𝑡 [6].  

We can use the above assertion to implement it in Maxwell’s boundary condition, hence Eq. 

(2.2d) becomes  

𝑛 × 𝐇𝟏 − 𝐇𝟐 = 𝐉𝐟 = 𝜎 𝑥(�⃗�𝐈) + 𝜎 𝑦(�⃗�𝐈) + 𝜎 𝑥(�⃗�𝐑) + 𝜎 𝑦(�⃗�𝐑)  (2.25) 

Where 𝐇𝟏 = 𝐇𝐈 + 𝐇𝐑 and the directional surface current and the respective conductivity of the 

2D layer is 𝐽 = 𝜎 𝐸 and 𝐽 = 𝜎 𝐸 . Since there is no 𝑦 component electric field 𝐽 = 0.   The 

expression of the right side of Eq. (2.25) leads to   

�̂� × 𝐇𝐈 = (�̂� × 𝑦)𝐻 𝑒 ( ) =  −𝑥𝐻 𝑒 ( ), (2.26.a) 

�̂� × 𝐇𝐑 = (�̂� × 𝑦)𝐻 𝑒 ( ) =  −𝑥𝐻 𝑒 ( ),  (2.26.b) 

�̂� × 𝐇𝐓 = (�̂� × 𝑦)𝐻 𝑒 ( ) =  −𝑥𝐻 𝑒 ( ) (2.26.c) 

Combining Eqs. (2.26a-d) and (2.25) after some algebraic manipulation we arrive to 

𝐻 + 𝐻 − 𝐻 =
𝝎𝜺𝟎𝜺𝒙𝒙,𝟏

[𝐻 − 𝐻 ]         (2.27) 

Using Eq. (2.27) in Eq. (2.23) we get the final equation of Fresnel reflection coefficient (𝑟 ) of 

two-dimensional material included between two semi-infinite hyperbolic layers as, 
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𝑟 = =
𝜺𝒙𝒙,𝟐 𝜺𝒙𝒙,𝟏 𝝎𝜺𝟎

𝜺𝒙𝒙,𝟐 𝜺𝒙𝒙,𝟏 𝝎𝜺𝟎

     (2.28) 

2.2.3 TE polarized mode 

Similarly, the Fresnel coefficient in the case for TE polarization can be obtained defining the 

electric field wave propagating parallel to the interface in the two medium is given by 

𝐄𝐈 = 𝐸 𝑦𝑒 ( )      (29.a) 

𝐄𝐑 = 𝐸 𝑦𝑒 ( )      (29.b) 

𝐄𝐓 = 𝐸 𝑦𝑒 ( )      (29.c) 

The magnetic field in the 𝑦  direction is zero hence the corresponding to the above field the 

magnetic fields are,  

𝐇𝐈 = (𝐻 𝑥 +  𝐻 �̂�)𝑒 ( )     (30.a) 

𝐇𝐑 = (𝐻 𝑥 + 𝐻 �̂�)𝑒 (   )    (30.b) 

𝐇𝐓 = (𝐻 𝑥 +  𝐻 �̂�)𝑒 ( )    (30.c) 

 

We use the Maxwell’s Eq. (2.4.a) the only electric field that survive are attained as follows.  

𝐾 × 𝐸 𝑦𝑒 ( ) = −𝛚𝝁𝟎(𝐻 𝑥 +  𝐻 �̂�)𝑒 ( )  (2.31) 

This gives us, 

−𝛚𝝁𝟎(𝐻 𝑥 + 𝐻 �̂�) = 𝑘 𝐸 �̂� + 𝑘 𝐸 𝑥    (2.32) 

Splitting perpendicular and parallel components of the magnetic field in each medium we get  

  𝐻 =
𝛚𝝁𝟎

                  (2.33.a) 

 𝐻 = −
𝛚𝝁𝟎

                      (2.33.b) 

  𝐻 =
𝛚𝝁𝟎

                     (2,33.c) 
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And the perpendicular component of H is  

  𝐻 = −
𝛚𝝁𝟎

                  (2.34.a) 

  𝐻 =
𝛚𝝁𝟎

                  (2.34.b) 

  𝐻 = −
𝛚𝝁𝟎

                 (2.34.c) 

At the boundary 𝑧 =  0 the perpendicular component of the magnetic field is continuing. The 

parallel compote of the electric field is continuing and matching the solutions for z < 0 and z > 0 

using these boundary conditions of continuity, the normal component magnetic field (𝝁𝟏𝐻 =

𝝁𝟐𝐻 ) we get 

𝛚𝝁𝟎
+

𝛚𝝁𝟎
=

𝛚𝝁𝟎
             (2.35) 

The same result also can be achieved from the electric field tangent component for TE mode we 

have the following from the first boundary condition Eq. (2.2a) 

  𝐸 + 𝐸 = 𝐸        (2.36) 

And from the second boundary condition which is tangent to the electric field the x compote of 

the magnetic field   

𝐻 + 𝐻 − 𝐻 = ω𝜇 𝜎 [𝐸 + 𝐸 ]     (2.37) 

Combining Eq. (2.36) and Eq. (2.37) after taking the electric field amplitude ratio of reflected and 

incident field we arrive to the reflection coefficient given by 

        𝑘 𝐸 − 𝑘 𝐸 − 𝑘 [𝐸 + 𝐸 ] = ω𝜇 𝜎 [𝐸 + 𝐸 ]           (2.38) 

         𝑟 = =
𝛚𝝁𝟎

𝛚𝝁𝟎
      (2.39) 

In the case where there is no 2D material between the two hyperbolic interface we can set the 

conductivity to be zero (𝜎 = 0). The expression in Eq. (2.28) and Eq. (2.39) recovers a well-known 



  

17 
 

reflection and transmission coefficient between two hyperbolic mediums. Doing so the modified 

Fresnel reflection coefficients becomes,  

𝑟 =
𝜺𝒙𝒙,𝟐 𝜺𝒙𝒙,𝟏

𝜺𝒙𝒙,𝟐 𝜺𝒙𝒙,𝟏
        (2.40) 

And  

𝑟 =         (2.41) 

It is important to notice that the reflection coefficient also gives indirect information field that 

are confined at the interface, surface confined plasmons. For example, a light shined for two 

media with dielectric constant 𝜀  and 𝜀  (dielectric and gold) the surface plasmon propagating, 

𝑘 , at the interface can be obtained from poles of the imaginary part of this reflection coefficient 

𝑟 . Straightforward calculations by setting 𝑘 = 𝑘 = 𝑘  result in the dispersion equations 

for TM mode [7], 

𝑘 = 𝜔/𝑐 𝜀 𝜀 /(𝜀 + 𝜀 )      (2.42) 

 
2.3 Transfer matrix approach in layered medium  

Having provided the general theory of light mater interaction in hyperbolic medium, we now 

consider a scenario where two 2D material layers which are separated by a dielectric slab of 

hyperbolic layer with a thickness of t displayed model figure 2.3.   
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Figure 2.3. Schematic illustration of the system for Fresnel coefficient calculation. First 2D 
conducting sheets characterized by surface conductivity 𝜎   at 𝑧 =  0, second conducting sheet 
of conductivity 𝜎  at 𝑧 =  𝑡, separated by anisotropic hyperbolic slab of thickness t, the top and 
bottom semi-infinite of optical constant 𝜀  and 𝜀 , respectively.  
 
 
The three mediums are labeled as 1, 2 and 3. Medium 1 above 2D conducting represented by 

dielectric constant, 𝜀 , above 𝑧 >  𝑡, first 2D material given by conductivity 𝜎  (placed at 𝑧 =  𝑡), 

the hyperbolic layer film (0 <  𝑧 <  𝑡) region medium 2 sandwiched between the top 2D material 

and bottom 2D material with conductivity 𝜎  (placed at 𝑧 =  0), the bottom region bellows the 

second 2D material as medium 3 semi-infinite dielectric,𝜀 , material acting as substrate. In Order 

to determine the total Fresnel transmission and reflection coefficient of a such multilayer hybrid 

system it is essential to get the propagation vector of light in intermediate layers. While, the electric 

or magnetic fields can be related to inside the medium is between the two conducting sheets can 

be connected by propagation matrix.  Based on the two conditions and with the knowledge of 

dielectric permittivity of each layer, we will employ well-known formalism, the transfer matrix 

(𝑀 ) [8], for multilayer slabs to relate the reflection and transmission coefficients from each 

interface j between layers j and j + 1 (outermost semi-infinite layers to lower most semi-infinite 

layer). Therefore, we can easily calculate the optical response, total reflection, total transmission 

and total absorption 2D material material including multilayer system.  Since the Fresnel 
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reflection coefficient would be different for s- and p-polarized excitation of incident light for 

anisotropic medium the transfer matrix elements are also different. Explicitly, for s- polarization 

and p-polarization state of a three-layer system transfer matrix is written as 𝑀
( , )

= 𝑀
( , )

∙

𝑀
( , ) and the matrix elements are given by 

𝑀
( , )

=  ( , )

𝑒
( , )

𝑟
( , )

𝑒
( , )

𝑟
( , )

𝑒
( , )

𝑒
( , )     (2.43) 

𝑀
( , )

=  ( , )

1 𝑟
( , )

𝑟
( , )

1
      (2.44) 

𝑀( , ) = ( , )

𝑒
( , )

𝑟
( , )

𝑒
( , )

𝑟
( , )

𝑒
( , )

𝑒
( , ) ∙ ( , )

1 𝑟
( , )

𝑟
( , )

1
 (2.45) 

Where 𝑡
( , ) and 𝑟

( , ) represents the Fresnel transmission and reflection of medium 1 and 2 

respectively; 𝑡
( , ) and 𝑟

( , ) represents the Fresnel transmission and reflection of medium 2 

and 3, respectively; and 𝑘( , ) is the propagation vector in medium 2. The superscript s and p 

stands for s-polarization and for p-polarization direction of light, respectively. The total 

reflection coefficient in the such multilayer system is calculated the final product of matrix 

element of Eq. (2.45) 

 𝑟( , )
=

( , )
 

( , )
 
        (2.46) 

The simplified for of the above equation yields the well-known solution  
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𝑟
( , )

=
( , ) ( , ) ( , )

 
( , ) ( , ) ( , )       (2.47) 

The total transmission coefficient is obtained from Eq. (2.47) matrix element,  

𝑡
( , )

= ( , )        (2.48) 

From the simplified for of equation (above), we get  

𝑡
( , )

=
( , ) ( , ) ( , )

 
( , ) ( , ) ( , )       (2.49) 

This theoretical approach thus allows us to calculate the another relevant quantities total    

reflectance (𝑅
( , )) and the transmittance, (𝑇

( , )), from the multilayer system that includes 2d 

material at each interface, 𝑅( , )
= |𝑟

( , )
|  and 𝑇( , )

= |𝑡
( , )

| , respectively. The absorbance 

can also be evaluated directly from 𝐴( , )
= 1 − 𝑅

( , )
− 𝑇

( , ).  

2.4 Green function formalism point dipole for spontaneous emission 

 

The Fresnel coefficients from the transfer matrix obtained have significant theoretical input to 

study interaction of point dipole emitters in 2D material, hyperbolic material and semi-conductor 

metallic materials. In this section, we will develop a theoretical model for the spontaneous 

emission (SE) rate implementing well-developed technique; the Green’s tensor formalism [9]. This 

method has been implicated to study point dipole, finite-size, two-dimensional array or three 

dimensional nano-emitters embedded in metal-dielectric multilayer system.  Taking these points 
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in mind, we will derive SE rate due to a point dipole placed in vacuum above a 2D conducting 

sheet on a dielectric substrate. Then, we carry out a straightforward extension of this analysis to 

calculate the decay rate of an emitter in a system of consisting more than one 2D conducting layer 

and a thin film of hyperbolic layer; identical to previous section multilayer system.   

First, the Maxwell’s curl equations Eq. (2.1b) and Eq. (2.1d) are described of electric and magnetic 

field in the presence of source currents, 𝐉𝐟, are modified as  

∇ × 𝐄(𝑟, 𝜔) = 𝑖𝜔𝜇 𝐇(𝑟, 𝜔)      (2.50) 

∇ × 𝐇(𝑟, 𝜔) = 𝑖𝜔𝜇 𝜇𝜀 𝜺𝐄(𝑟, 𝜔) + 𝐉𝐟(𝑟, 𝜔)     (2.51) 

Combining Eq (2.50) and Eq. (2.51) leads to complete electromagnetic wave equation including a 

source current density as 

∇ × ∇ × 𝐄(𝑟, 𝜔) = −𝜇 𝜇𝜀 𝜺
𝑬( ⃗, )

−𝜇 𝜇
𝐉𝐟( ⃗, )

   (2.52) 

The electric field produced by the current source in any medium can be given through the Green's 

function which is also a solution to Eq. (2.52). The electric field in terms of the Green’s function 

and the current source related by 

 
𝐄(𝑟, 𝜔) = 𝑖𝜔𝜇 𝜇𝜀 𝜺 ∫ 𝑑𝑟 𝐆(𝑟, 𝑟 , 𝜔) ∙ 𝐉𝐟(𝑟, 𝑟 , 𝜔)   (2.53) 

Where, G(𝑟, 𝑟 , 𝜔) is the Green’s function, the vector 𝒓 denotes the location of the point source of 

frequency ω and 𝒓𝟎  is point of observation. From the current density of homogeneous wave Eq. 

(2.51) and combining Eq. (2.53), we obtain a solution of Maxwell’s equation in the form,  

∇ × ∇ × 𝐆(𝒓, 𝑟 , 𝝎) − 𝑘 𝜺𝐆(𝑟, 𝑟 , 𝜔) = 𝐈𝛿(𝒓, 𝑟 , )    (2.54) 

where 𝐈 is 3 by 3 is the unit dyadic matrix tensor and 𝛿 is Dirac delta function. Solving for all the 

matrix components of the green tensor leads to the equation for the primary field emitted by the 

oscillating dipole and for the field produced by surrounding medium characteristics to a given the 
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point source orientation. In order to address Eq. (2.53) using the Green’s function Eq. (2.54) we 

considered a point dipole situated between two planar interfaces speared by a 2D conducting layer, 

figure 2.4a-b.  According to the schematics given, figure 2.4a, the dipole is positioned at a 

distance 𝑧 =  𝑑 above the 2D layer in medium 1. We focus for now on figure 2.4a regard both 

medium 1 and medium 2 as semi-infinite layer, infinitely large in the z direction. The interfaces of 

the layers are configured parallel to the 𝑥 − 𝑦 plane. 

 

Figure 2.4, Schematic representation of the geometry considered for SE rate calculation. An 
emitter of dipole moment P at z =d (a) from a 2D conducting sheet (z =0) inside a dielectric 
medium, and (b) from a 2D conducting sheet (z =0) inside a dielectric medium a second 2D layer 
and hyperbolic medium of thickness t. 
 

The electric current density of the electric dipole with electric dipole moment �⃗�   placed at 𝑟 is 

𝑗𝑒(𝑟)  =  −𝑖𝜔𝑃 𝛿(𝑟 − 𝑟 )      (2.55) 

The dipole considered in this study is nonmagnetic. The electric dipole moment in the respective 

x, y and z direction is denoted as �⃗�   = P 𝑥 + P 𝑦 + P �̂�. P , P , and P  are the electric dipole 

moment components in the x, y and z direction, respectively.  The total electric fields resulting 

from a point dipole source with current moment is above the interface medium is the superposition 

of field radiated by a point dipole, 𝐄 ,  and the electric field reflected from the first interface in the 
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same region where the dipole is embedded, 𝐄 , 𝐄𝐓 = 𝐄𝐈 + 𝐄𝐑 . This electric field in the upper half-

space (z > 0) includes the sum of the primary Greens function in the dipole region and the reflected 

Greens function from the first 2D interface as 

𝐄 (𝑟, 𝑟 , 𝜔) = 𝜔 𝜇 𝜇 [𝐆 (𝑟, 𝑟 , 𝜔)  + 𝐆 (𝑟, 𝑟 , 𝜔)] ∙ 𝐏   (2.56) 

The first term is the field directly radiated by the dipole to the observation point through free space 

Green's function,𝐆  contribution. Which is given by  

𝐄 = 𝜔 𝜇 𝜇 [𝐆 (𝑟, 𝑟 , 𝜔)] ∙ 𝐏       (2.57) 

The free space Green’s function that satisfies as a solution to Eq. (2.54) is a spherical wave 

equation [1] of the form, 

𝐆 (𝑟, 𝑟 ) =
± | ⃗ ⃗ |

| ⃗ ⃗ |
,        (2.58) 

Where + (-) denotes a spherical wave propagating outward (towards) of a point source. The second 

term in Eq. (2.56) represents the field radiated after reflection from the interface and the reflected 

(scattered) Green's function, 𝐆 , to the observation point.  In multilayer system GR also accounts 

for the multiple reflections and transmissions taking place at the interfaces. Moreover, for (z < 0) 

the transmitted field, 𝐄 , bellow the interface, inside the medium 2, is also represented in terms of 

the transmitted Green's function, 𝐆 , as 

𝐄 (𝑟, 𝑟 , 𝜔) = 𝜔 𝜇 𝜇 𝐆 (𝑟, 𝑟 , 𝜔) ∙ P⃗     (2.59) 

Both the reflected and transmitted Green’s function can be obtained from 𝐆 . The explicit form of 

dyadic Green’s function as a solution of Eq. (2.54) is  

𝐆(𝒓, 𝑟 ) = (I + ∇∇)𝐆 (𝑟, 𝑟 ),      (2.60) 

Now, we can calculate the amount of power radiated, 𝑊, at position 𝒓 from the various electric 

field contribution, once the it is calculated from 𝐆.  According to Poynting theorem, the time–
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averaged radiated power by a dipole with a harmonic time dependence source is represented in 

terms of the electric field and the source current density [10]  

𝑊 = − ∰ 𝑅𝑒{�⃗�𝒆
∗ ∙ 𝐄𝐓} 𝑑𝑉      (2.61) 

where V encloses the source and  𝐉𝐟 represents the source density current. Introducing the value of 

the current density Eq. (2.55) in to Eq. (2.61), the power evaluated at position 𝑟  is   

𝑊 = 𝐼𝑚{P⃗∗ ∙ 𝐄𝐓(𝑟 )}      (2.62) 

When the optical emitter is only in free space, the radiated power, 𝑊 , is  

𝑊 =  𝐼𝑚{P⃗∗ ∙ 𝐄𝐈(𝑟 )},       (2.63) 

Substituting Eq. (2.57) in Eq. (2. 63) we get the expression of the power radiated by the incident 
field in free space  

𝑊 =  𝐼𝑚{P⃗∗ ∙ [𝐆 (𝑟, 𝑟 , 𝜔)] ∙ P⃗},    (2.64) 

 
Thus, SE can be calculated by taking the power radiative ratio of the point dipole in dielectric 

surrounding with that of the power radiated in a vacuum space.  This SE defined by the power 

ratio is also analogous to the Purcell effect [11] and given as  

 

Г

Г
= = 1 +

Г ℏ
𝐼𝑚{P⃗∗ ∙ E⃗ }                 (2.65) 

 
Where, Г is the SE rate for the excitation lying in the vicinity of a neighborhood dielectric, 𝛤  is 

the SE rate of the dipole emitter in a free space, 𝛤 = 4𝜔 |𝑃| /3ℏ𝑐 , and ℏ the reduced Planck 

constant.  Since the most essential element in Eq. (2.60) is the full expression of the reflected 

electric field that can evaluated from dyadic Green’s function.  To do so, we regard the Green’s 

function as a superposition of two s and p polarization mode and an expanded as a summation of 

plane waves. According to the Weyl’s identity [9, 12] plane wave expanded form of Green’s 

function into an angular spectrum  
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𝐆 (𝑟, 𝑟 , 𝜔) =  ∬
{𝐌  𝐌 } [ ( ) ( ) ( )]

𝑑𝑘 𝑑𝑘   (2.66) 

Where the quantities 𝐌  and 𝐌  are given by the wavevector and the reflection coefficients of for 

each polarization between the between the two dielectric mediums. It is essential to notice that the 

effect of 2D conducting sheet contribution is included in the wave vector dependent reflection 

coefficient.  The form of 𝐌  and 𝐌  can be found is  

𝐌 =  
( , )

( )

𝑘 −𝑘 𝑘 0

−𝑘 𝑘 𝑘 0

0 0 0

    (2.67) 

 

𝐌 =  
( , )

( )

⎣
⎢
⎢
⎡

𝑘 𝑘 −𝑘 𝑘 𝑘 𝑘 (𝑘 + 𝑘 )

−𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 (𝑘 + 𝑘 )

−𝑘 (𝑘 + 𝑘 ) 𝑘 (𝑘 + 𝑘 ) −
( )

⎦
⎥
⎥
⎤

 (2.68) 

Similarly, the green functions in the transmitted medium or in the ferroelectric layer can also be 

expressed in terms of the transmission Fresnel coefficients of the 𝑡  and 𝑡  polarization as follow 

𝐌 =  
( , )

( )

𝑘 −𝑘 𝑘 0

−𝑘 𝑘 𝑘 0

0 0 0

    (2.69) 

 

𝐌 =  
( , )

( )

⎣
⎢
⎢
⎡

𝑘 𝑘 −𝑘 𝑘 𝑘 𝑘 (𝑘 + 𝑘 )/𝑘

−𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 (𝑘 + 𝑘 )/𝑘

−𝑘 (𝑘 + 𝑘 ) 𝑘 (𝑘 + 𝑘 ) −
( )

⎦
⎥
⎥
⎤

   (2.70) 

Where, (𝑟( , )and  𝑡( , )) are the total Fresnel reflection and transmission coefficients for the fields 

of incoming s- and p-polarization plane wave, respectively.  

The convenient way to evaluate the integral of the Green's matrix function Eq. (2.65) is to 

transform the coordinates from cartesian to cylindrical coordinate. Hence, the spontaneous 
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emission rate can be obtained as an integral over the parallel wave vector, 𝑘 , and azimuthal angle 

of polar coordinate, 𝜑, covering the 𝑥 − 𝑦 plane. We define  𝑘 = 𝑘 𝑐𝑜𝑠𝜑, 𝑘 = 𝑘 𝑠𝑖𝑛𝜑, 𝜑 is 

the angle between 𝑘  and x axis,   𝑑𝑘 𝑑𝑘 = 𝑑𝑘 𝑘 𝑑𝜌, where 𝑘 = 𝑘 + 𝑘  is the 

wavevector parallel to the interface between the dipole medium and the semi finite layers.  In this 

case the reflected Green’s tenors form of s and p is summarized as  follows,  

𝐆 (𝑟, 𝑟 , 𝜔) =  
𝑖

8𝜋
𝑘 𝑑𝑘 𝑒 ( ) ( ) ( ) 

                                                                 

𝑘 0 0

0 𝑘 0

0 0 −2𝑘

−  
1 0 0
0 1 0
0 0 0

                  (2.71) 

 

For example, in Eq. (2.71), the component 𝐆 , (𝑟, 𝑟 , 𝜔) and 𝐆 , (𝑟, 𝑟 , 𝜔) denotes the x-

component of the reflected. In the case where the measurement it is taking place away from the 

dipole source the integral leads to Bessel's function or spherical harmonics solution as conducted 

using Sommer field approach. The main simple approach to solve the above integral is in the 

angular direction is to simply it in such a way that the dipole emitter in our set to be above the 

origin of the 𝑥 −  𝑦 plane, 𝑟 = (0,0, 𝑧 = 𝑑). For instance, the s polarization component of the 

reflected Greens can be given as 

 

G (𝑟, 𝑟 , 𝜔) =  − ∫ ∫ 𝑒 𝑒 𝑠𝑖𝑛 𝜑   (2.72) 

 

The integral expressions in Eq. (2.71), Eq. (2.72) and Eq. (2.64) we get the final expression of the 

reflected field as 
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𝐄 = 𝜔 𝜇 𝜇 ∫ 𝑘 𝑑𝑘 𝑒

𝑘 0 0

0 𝑘 0

0 0 −2𝑘

−

                                                                                           
1 0 0
0 1 0
0 0 0

P   (2.73) 

  

This equation of the reflected field gives the SE rate for any dipole emitter orientation. We can 

split based on the dipole orientation to gain a simplified model equation. For the normalized SE 

rate, we consider to orientation; a dipole oriented perpendicular, 
Г

Г
, (oriented in the 𝑧 direction), 

and parallel, 
Г||

Г
 , (oriented along 𝑥 − 𝑦 plane) with respect the interface medium. Substituting Eq 

(2.73) in Eq. (2.64) we achieve a simplified separate equation. Hence, the SE rate can be written 

as, 

Г

Г
 = 1 +  𝑅𝑒 ∫ ,       (2.74) 

Г||

Г
 = 1 +  𝑅𝑒 ∫ 𝑒 𝑘 𝑟 𝑒 − 𝑘 𝑟     (2.75) 

 
It is essential to notice that in Eq. (2.74) and (2.74) the first term is normalized dipole in medium 

1, with a unit value. The second integral term the includes the possible contributions originate from 

f propagation wave vector when 𝑘  is real and evanescent field radiated when 𝑘  imaginary 

value.  Further importance of Eq. (2.74) and Eq. (2.75) is their direct applicability for several 

multilayer systems, even though, we showed for a system of dielectric-2D layer-dielectric system.  

To use the equation in multilayer system, see figure 2.4b; first, we determine the fields across 

various interface of each multilayer from the Green’s tensor.  This gives the different electric and 

magnetic field in each intermedia layer since it is only the decided by the location of the source of 

electromagnetic field. Then the fields at each interface can be connected by the boundary condition 



  

28 
 

to evaluate reflection coefficient and transmission coefficient. Then straightforward employ the 

transfer matrix to obtain the total reflection and transmission coefficient of the system. Finally 

substitute it in Eq. (2.74) and Eq. (2.75).   Based on the schematics in figure 2.4b, the reflection 

coefficient for s- and p- polarization radiation we have showed in the previous section. Therefore, 

to evaluate the normalized SE rate of a double 2D conducting sheet and hyperbolic medium we 

only need to replace 𝑟  and 𝑟  by 𝑟  and 𝑟 , respectively.   
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Chapter 3 
 

Material used in this chapter is compiled from Debu et al. previously published work [65]. 
 
Abstract 

The adhesion layer used in nanofabrication process of metallic nanostructures affects the surface 

plasmon modes. We characterize the localized surface plasmon resonances (SPR) of gold 

nanodisks of various diameters and heights while varying the Ti adhesion layers thickness. 

Scattering, absorption, and extinction coefficient calculations show a significant dependence of 

the SPR on the size of nanostructures and the adhesion layer thickness. Comparisons of peak 

resonance wavelengths of different Ti adhesion layer thicknesses indicate a significant red shift 

and a reduction in amplitude as the Ti thickness increases. A comparison of spectral broadening 

of the plasmon mode indicates a linear increase with Ti thickness and percentage. In addition, the 

decay time of the plasmon mode decreased significantly as the adhesion layer size increases. These 

observations aid in understanding size dependent adhesion layer effects and optimized fabrication 

of single nanoplasmonic structures. 

3.1 Introduction 

When an electromagnetic wave is incident on a metal nanostructure, it induces collective coherent 

oscillations of conduction electrons on the surface of the metal, called surface plasmon resonances 

(SPRs). To support surface plasmons, the metal must have a dielectric constant with a negative 

real part and a small, positive imaginary part [1]. Materials that support SPRs in the visible and 

near infrared range of electromagnetic spectrum include copper, gold, and silver [2–4]. The surface 

plasmon resonance and the electric field enhancement have shown strong dependence on 

nanoparticle size [5–8], shape [6- 9], gap between dimers [7, 10–12], electromagnetic frequency 
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range [13, 14], and types of materials [15]. The surface plasmon modes show the decaying process 

that emerges from different sources that include radiative damping [16-17], nonradiative damping 

[16-18], surface scattering [19-22], and chemical interface/environment [23-24]. 

Fabrication of nanostructures made of noble metals using electron beam lithography on a glass 

substrate requires an adhesion layer such as Ti [26-29], Cr [25-29], or their oxide forms [30-32].  

Significant effort has been made to understand the effects of adhesion layers on plasmon resonance 

as a source of chemical interface damping with an emphasis on periodic [32-33] or thin film 

structures [34].  Measurements of reflectance for gold split-ring periodic structures have indicated 

a red-shift in the resonance frequency due to the thin Ti adhesion layer [32].  Comparison of surface 

Raman resonance of periodic gold nano-cylinders with and without various adhesion layers (Ti, 

Cr, TiO2, ITO, Cr2O3 and MPTMS) at a constant thickness indicates a reduction of the amplitude 

in the extinction spectra and in Surface Raman enhancement when adding these adhesion layers 

[35]. Analysis of the Au – Ti single nanorod demonstrated a drastic decrease in field enhancement 

and an increase of decaying time (dephasing time) in comparison with a pure gold nanorod [36]. 

The presence of a Ti adhesion layer has been shown change nonlinearly the line broadening, and 

peak wavelength as a function of Ti% and also reduce the acoustic vibration damping time in Au 

nanodisks using single-particle transient extinction spectroscopy [37].  

 

There are few studies that investigate adhesion layer damping of plasmon resonances in single 

nanoparticles from a simulation perspective. In this paper, we use a finite element simulation 

method to demonstrate surface plasmon damping changes due to thickness and percentage change 

of Ti adhesion layer on single Au nanodisks of various sizes.  Results from this work expand on 

previously explanations of layer interfaces altering resonance positions and broadening spectra. 
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We also use the results to model the dependence of the plasmon linewidth as a function of adhesion 

layer thickness and percentage in order to quantitatively describe dephasing time.  

 

3.2 Finite element method 

1. Method 

Finite element method (FEM) [38, 39] simulations were conducted to solve the wave vector form 

of the time-dependent harmonics electric field [40]:  

 

∇ × ∇ × 𝑬 − 𝑘 𝜀 𝑬 = 0,      (3.1) 

 

Where 𝑬 =  𝐸 𝑥 +  𝐸 𝑦 + 𝐸 �̂� is the electric field, 𝑘 = 2𝜋/𝜆 is the incident electric field 

propagation wave vector of wavelength λ, and 𝜀  and 𝜇  are relative permittivity and permeability, 

respectively. In the simulation, near-field and far-field results of a gold nanodisk with a thin 

titanium adhesion layer of the same diameter surrounded by an effective medium are determined. 

For the far field, the normalized scattering efficiency, Qscat is obtained by integrating the time 

averaged power flow on a surface far from the nanoparticles as [41, 42] 

𝑆 = Re{𝑬 × 𝑯∗ }      (3.2) 

 

𝑄 =
∬ 𝑨

| |
       (3.3) 

 

Where Escat and Hscat are the scattered electric field and magnetic field, respectively. 𝑄  is the 

normalized scattering efficiency, 𝑟 is the radius of the nanodisk, A is an arbitrary boundary 

surrounding the gold nanodisk, |I0|= 1/2cԑ0ԑrE0
2 is the intensity of the incident wave E0, and c is 
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the speed of light. The normalized absorption efficiency, Qscat, is determined from the fraction of 

integrated resistive heating over the nanodisk volume V divided by the incident power density: 

𝑄 =
| |

∬ Re(𝑱 ∙ 𝑬∗ + 𝑖𝜔𝑩𝒕 ∙ 𝐻∗ )𝑑𝑽    (3.4) 

where Jtot is the total electrical current density. Inside the integral, the first part of the sum 

represents resistive loss (Joule heating) and the second part represents the magnetic loss. The 

summation of Qscat, and Qabs, is defined as the extinction efficiency, Qext = Qabs + Qscat.   

To investigate the adhesion layer, we considered gold nanodisks with diameter D ranging from 75 

− 200 nm. The thickness of the gold nanodisk, tAu, varied from 10 – 15 nm, which is below the 

skin depth in the optical and infrared region. We also modeled some disks to have a Ti adhesion 

layer with a thickness, tTi, ranging from 1 – 5 nm. As data for the dielectric constants as a function 

of wavelength are not available for all wavelengths of light used in this paper, interpolated 

dielectric constants of gold and titanium obtained from [43, 44] were used.  The incident light 

amplitude was set to 1 V/m, polarized in the x-direction, and propagating parallel to the axis of the 

nanodisk placed in the x-y plane. Fabricated nanostructure usually includes base substrates such as 

glass. The top half part of the simulation is considered air and the bottom half space is considered 

glass. The surrounding dielectric environment is treated by effective relative dielectric constant 

[45], ԑeff ≈ (ԑair + ԑglass)/2 = 1.25. Qscat from the far field is evaluated on an imaginary spherical 

surface at a distance larger than half of the wavelength of the incident field enclosing the 

nanostructures. A perfectly matched layer (PML) surface of thickness 250 nm enclosing the 

imaginary surface was used as an outer boundary to avoid any backscattering.  

3.2 Results and discussions  

Next, to understand more the effect of the Ti adhesion layer the smallest nanodisk (75 nm) based 

figure 3.1, the results are plotted in figure 2, is considered. A fixed diameter of 75 nm was used, 
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with tTi changing from 0 − 5 nm with an increment of 1 nm. The total thickness, ttot, varies from 

15 to 20 nm as tTi increases since ttot = tAu + tTi.  The disks in 2(a) indicate what ideal nanofabricated 

structures looks like.  

 

Fig. 3.1. Spectrum for various tTi when tAu= 15 nm D = 75 nm.  (a) Calculated scattering spectra. 
Calculated (b) absorption spectra and (c) extinction spectra for the same parameters as in (a) [65]. 
  

The peak position of the Qscat spectra in 3.2(a) does not change, but it does slightly broaden and 

the amplitude decreased as tTi increases. Comparing the amplitude of the spectra, the absorption 

Qabs is the dominant source for the extinction.  For some structures, the amplitude of the efficiency 

reaches values that are larger than one. This is possible since the plasmonic nanodisks draw in 

light from an area significantly larger than their surface area [46]. This effect occurs due to a strong 

resonant interaction between the collective oscillations of electrons in the nanostructure and the 

incident light. These results demonstrate that the surface plasmon resonance wavelength, as well 

as the extent of the plasmon enhancement, is highly dependent on the size and shape of the 

structure [47-50]. Increasing tTi blue shifts Qabs and Qext by about 50 nm, a trend not shared by the 

Qscat resonance figure 3.2(a). This difference arises because scattering integrates the far field signal 

that predominantly originates from the surface of the Au while absorption measures the near field 

contribution that comes from both from Au and Ti [51]. This can be explained by the effective 
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medium determined by the real and imaginary part of the dielectric constant of Au and Ti. At 

resonant wavelength when tTi = 0 nm and tAu = 15 nm, ԑAu = -11.26 + 1.33i and ԑTi = -5.06+ 12.52i. 

Approximate regarding Au and Ti nanodisk effective medium by the volume aspect ratio. ԑTi+Au = 

ԑTi tTi + ԑAu tAu/(tTi +  tAu).  The significant increase in effective dielectric constant as shown in 

figure 2(b-c) results in the resonance shift of the absorption and extinction efficiency.  

 

 

Fig. 3.2. (a) Peak resonance wavelength for scattering, absorption and extinction spectra for D = 
75 nm disk with tAu = 15 nm as a function of tTi. Effective (b) real and (c) imaginary dielectric 
calculated from the volume fraction of Au and Ti [65]. 

 
In addition, increasing tTi results in significant broadening of the spectra as well as a decrease in 

the amplitudes. These results are useful in understanding the role of the absorptive adhesion layer 

on the impact on the surface plasmonic response of noble metals, thus allowing for easy optical 

tunability. 
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Fig. 3.3. Comparison of the peak amplitude of spectra for various disk diameters with tAu = 15 nm. 
Maximum (a) absorption coefficient, (b) scattering coefficient and (c) extinction coefficient as a 
function of tTi. (d-f) are similar results from above but include more values for D [65]. 

 

The graph in figure 3.3 shows the maximum values of Qabs, Qscat and Qext for four diameters (75, 

100, 140, and 200 nm) as a function of tTi. These results indicate that the Qscat peak value, which 

is a measure of the enhancement factor [52], decreases independently of the size as tTi increases. 

Such a reduction of the near-field amplitude has been reported; the presence of a Ti or Cr adhesion 

layer results in a reduced fluorescence signal enhancement [30] and dark-field scattering 

measurements [36]. Qabs peak amplitude shows strong decrement for the same tTi as the diameter 

changes. Small Au nanodisks have larger amplitude peak values than the bigger Au nanodisks. 

This trend is the opposite in the maximum amplitude of the Qscat spectra. Result from amplitude 

of 𝑄  shows similar trend as Qabs. In particular, the peak value is strongly affected for tTi up to 

2 nm. Results for each diameter in this study are included in the interpolated color plot figure 3.3 
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(d), (e) and (f).  The values obtained in figure 3.3 (d), (e) and (f) are generally consistent with the 

four selected diameter figure 3.3 (a), (b) and (c), indicating that, in addition to peak broadening, 

the plasmonic scattering, absorption, and extinction peak amplitude response is also highly 

influenced by the thickness of Ti adhesive layer. 

 

The peak resonance wavelength (λmax) from the simulated Qscat spectra for Au nanodisks of D = 

75, 100, 140, 160, and 200 nm and tTi ranging from 0 to 5 nm are illustrated in figure 3.4 (a). For 

a nanodisk with a tAu = 15 nm and a fixed tTi, the resonance peak blue-shifts as D decreases as 

shown in figure 3.4(a). As tTi increases, for D = 75 nm and D = 100 nm the peak resonance dropped 

by ~ 50 nm. But for D = 140 nm, 160 nm, and 200 nm, the peak position was not altered 

independently of the Ti layer. Thus, as the particles become smaller, the effect of the Ti layer 

becomes more pronounced on the peak resonance. 

 

Fig. 3.4. The comparison of peak resonance mode and linewidth of gold nanodisks as a function 
of tTi. (a) The comparison of the peak resonance of five diameters obtained from extinction 
efficiency spectra. (b) FWHM calculated from the 𝑄  spectra as a function of tTi.  Linewidths 
of the gold nanodisks are extracted by fitting Gaussian functions to the scattering spectra [65]. 
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3.3.1 Spectral broadening   

In order to characterize the profiles of the spectra, we now consider the plasmon resonance width, 

an important parameter in fully characterizing the behavior of an oscillatory system at the 

resonance position. The plasmon resonance width is the full width at half maximum (FWHM) 

of the spectrum. The shape of the peaks of the spectrum unveils the plasmon mode damping 

characteristics. Larger damping is manifested as a broad Lorentzian peak that follows the 

Lorentz-Drude profile of the dielectric constant. The exact information on plasmon broadening 

is obtained by fitting a Gaussian profile from the Qscat spectra [53-55]. This width is plotted 

versus tTi for various diameters in figure 3.4(b); the width increases linearly as tTi increases. A 

simple empirical model fits a linear equation obtained from the graph, Δλres = Δλ0 + mtTi, where 

Δλres is the change in the FWHM for a given nanodisk diameter, Δλ0 is the FWHM without Ti, and 

𝑚 is the proportionality constant. The major result from the fitting is that m is almost constant at 

m = ~10.2, independent of D.  Narrower linewidth is obtained without the adhesion layer and 

broader width when there is an adhesion layer.  The FWHM is as small as 80 nm for nanodisks 

with diameters of ~ 85 nm, and 140 nm for a nanodisk with D = 200 nm with no adhesion layer. 

This shows the FWHM increases with the D, for each tTi. Overall, these results show that the Ti 

adhesion layer greatly affects the surface plasmon resonance bandwidths of nanostructures.  Thus, 

the Ti adhesion layer can significantly broaden the surface plasmon resonance bandwidth due to 

the additional absorption in the Ti layer. 
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Fig. 3.5. Calculated broadening and damping parameters of nanodisks with tAu = 15 nm as a 
function of  tTi for all considered diameters.  (a)  quantum efficiency (yield), (b) quality factor, and 
(c) plasmon modes dephasing (decay) time [65]. 
 

The quantum efficiency (η), which is defined as the ratio of Qscat to Qext at their respective 

resonance wavelengths, increases with increasing diameters for each tTi as shown in figure 3.5 (a). 

Without a Ti layer, the efficiency is ~ 0.217 for D = 75 nm and 0.635 when D = 200 nm. This 

increase of the quantum efficiency is due to increases in the absorption efficiency for the larger 

size resulting from the increases of the imaginary part of the dielectric constant of Au since the 

larger D results in a larger resonance wavelength. According to [56-60], studies of multiple 

nanoparticles showed that 𝜂 depends on geometrical parameters such as aspect ratios and sizes of 

gold nanoparticles. The result of η for tTi = 0 ranges from 0.2 – 0.65. This matches well with other 

results for Au nanostructures [56-60]. The major impact is that adding 5 nm of Ti decreases 𝜂 by 

~0.1 for all diameters. This is due to the imaginary part of the dielectric of Ti causing additional 

absorption. 

3.3.2 Plasmon spectra quality factor and dephasing time 

Another parameter that is commonly used to quantify the damping of surface plasmon 

resonance is the quality factor, or Q-factor. The quality factor is defined as the energy E stored 
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in an oscillator, divided by the energy dissipated per solid-angle radian of the integration space. 

In terms of the peak wavelength’s resonance energy, Eres, and the energy of full-width of the 

plasmon peak at half its maximum amplitude, Γ, the quality factor is given as (Q = Eres/Γ). 

Besides determining the number of oscillations until the oscillation is damped Q further 

elaborates, indirectly, the effect of an adhesion layer on the field enhancement. Figure 3.5(b) 

shows the quality factor as a function of the tTi for five selected diameters Q decreases by ~3 when 

the tTi increases from 0 to 5 nm. 

So far, the qualitative approach implemented to analyze the decay mechanism has relied on 

characteristics without explanation of specific details of the physics behind the possible decay 

dynamics and sources. Several factors contribute to plasmon dephasing; it can reasonably be 

assumed that each term of the line broadening effects is independent and hence the aggregate 

impacts are quantified by writing the plasmon linewidth Γ as a sum of several plasmon damping 

terms contributions as [24, 61-62] 

Γ =  𝛾 + Γ + Γ + Γ      (3.5) 
 

where 𝛾𝑏, Γ𝑟𝑎𝑑, and Γ𝑒−𝑠𝑢𝑟𝑓, Γ𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 correspond to bulk damping, radiation damping, damping due 

to electron surface scattering, and damping due to interfacial effects, respectively. The bulk 

damping term γb originates from electron scattering in the metal and is characteristic of the 

material. It is well described by the complex dielectric function of the metal and is therefore 

frequency dependent. The second term in Eq. 3.5 describes the energy loss mechanism due to the 

coupling of the plasmon oscillation to the radiation field, also known as radiation damping. The 

Γe-surf shows significant dependence on the size of the Au nanodisks. As smaller sized nanodisks 

become shorter than the electron mean free path, the predominant damping contribution comes 

from electron surface scattering. The last term in Eq (3.5), 𝛤 , is solely dependent on the 
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surrounding environment of the dielectric metal. In our case this is the Ti adhesion layer 

contributing in the form of chemical interface damping which leads to a dephasing time T2, which 

includes all the possible parameters of surface plasmon resonance damping sources.  The effect of 

the dielectric substrate, in this study the effective medium (air+quartz), is negligible when the 

permittivity doesn’t have a loss factor.   Finite-difference time-domain (FDTD) calculations and 

experimental values of linewidth for gold nanorods on quartz in [62] showed consistent results; 

interface damping due to charge interactions between the gold nanorods and quartz is ruled out as 

an additional contribution to the plasmon linewidth, in agreement with the results from the quasi-

static model. T2 is the period in which the plasmon amplitude has decayed to 1/e times its 

maximum value. From the individual Au nanodisk homogeneous linewidth (Γ) obtained from 

the spectra, the dephasing time is obtained using the relation T2 = 2ћ/Γ [63-64]. According to 

figure 3.5(c), there are two important outcomes to be noticed. First, for a fixed diameter the 

dephasing time decreases as tTi gets larger. The smaller Au nanodisks show significantly larger 

changes in comparison to the larger Au nanodisks. In addition, as D gets above 140 nm, the 

dephasing time for tTi up to 2 nm shows nearly equal values. The second result is that for the 

same tTi the value of T2 for larger nanodisks is greater than that of small nanodisks. This is a 

good indication of how the Ti adhesion layer affects the oscillations, increasing the absorption 

of the enhanced plasmon field as well as the field that did not get attenuated in the Au disk.  

In order to gain more insight into the effects of the adhesion layer, we followed a second approach 

wherein we gradually increase the percentage of titanium, Ti%, from 0% to 33%, while the total 

thickness is fixed, ttot = tAu + tTi = 15 nm.  According to Figure 6(a), λmax gradually shifts to a longer 

wavelength when the Ti% increases from 0% to 33% while such consistency has not been observed 

in case of a fixed Au thickness, Figure 3.2(a). This indicates the resonance wavelength varies with 
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the thickness of the Au for nanodisks.  Calculations show that plasmon resonance linewidth 

broadens as the Ti% increases, as illustrated in Figure 3.6(b); these results are similar to those in 

Figure 2(b). 

 

Fig. 3.6. Calculated peak plasmon resonance wavelength (a) and the full width at half maxima 
(FWHM) (b) of nanodisks as a function of Ti% for four selected diameters, 75 nm, 100 nm, 150 
nm and 200 nm [65]. 

 

 

Fig. 7. Calculated dephasing time of nanodisks of diameter of 75 nm (a) and 200 nm (b) as a 
function of Ti% [65]. 

  

Figure 3.7 shows the dephasing time of Au nanodisks of diameter 75 nm and 200 nm for the 

two cases. In the first case, which is indicated in blue for both figures, the thickness of gold was 

kept constant at tAu = 15 nm. The Ti thickness was increased from 1 – 5 nm, thereby varying 

the percentage from 5% to 25%. In both conditions, the dephasing time decreases up to ~ 40% 
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with the increase of Ti%. These results illustrate the addition of Ti layer facilitates the decaying 

of the SPRs mode faster as a chemical interface damping source.  

3.4 Conclusions  

Surface plasmon resonances of individual Au nanodisks were investigated as a function of tTi from 

a simulation perspective. Results from our techniques characterize the values 𝜂, Q, and T2 as a 

function of tTi allowing one to control these parameters by adjusting tTi. We observed a strong 

dependence of the surface plasmon resonance on the size of the particles. Strong spectral 

broadening and reduced field enhancement when using titanium adhesion layers were observed as 

well. The broadening reveals that there is a linear relation with the thickness or percentage of the 

adhesion layer. Field enhancement evaluated from the quality factor deteriorates as Ti% increases. 

The imaginary component of permittivity for Ti contributes more significantly to the loss factor 

than that of Au. The spectral decaying mode that is related to the dephasing time decreases 

significantly with tTi. These are due to charge interactions between the Ti layer and Au nanodisk 

electron screening process, which creates chemical interface damping. The results in this work 

provide a useful tool for optimizing a nanofabrication process that includes adhesion layers on a 

dielectric substrate with controlled size and shape. 

 
References 

1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and 
sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).  

 
2. E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver 
nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol,” 
J. Phys. Chem. B 105(45), 11159–11168 (2001).  
3. K. T. Yong, Y. Sahoo, M. T. Swihart, P.N. Prasad, “Synthesis and plasmonic properties of 
silver and gold nanoshells on polystyrene cores of different size and of gold–silver core–shell 
nanostructures,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 290(1), 89–
105 (2006). 



  

43 
 

4. J. E. Millstone, S. J. Hurst, G.S. Métraux, J. I. Cutler, C. A. Mirkin, Colloidal gold and silver 
triangular nanoprisms, Small, 5 (6), 646–664 (2009). 

 
5. P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” 
Science 308(5728), 1607–1609 (2005). 

 
6. H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” 
Opt. Express 16(12), 9144–9154 (2008). 

 
7. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient 
nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared 
pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).  

 
8. J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. 
Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12(8), 3915–3919 (2012). 

 
9. C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. 
Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phy. Rev. Lett. 88(7), 
77402 (2002).  

 
10. D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical 
coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 
(2004). 

 
11. P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the 
mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 
94(1), 17402 (2005).  

 
12. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. 
Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. 
Photonics 2(4), 230–233 (2008).  

 
13. J. Rivas, M. Kuttge, P. Bolivar, H. Kurz, and J. S´anchez-Gil, “Propagation of surface 
plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).  

 
14. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface 
plasmons,” Science 308(5722), 670–672 (2005).  
15. F. Wang and Y. Shen, “General properties of local plasmons in metal nanostructures,” Phys. 
Rev. Lett. 97(20), 206806 (2006). 

 
16. A. Wokaun, J. Gordon, and P. Liao, “Radiation damping in surface-enhanced Raman 
scattering,” Phys. Rev. Lett. 48, 957–960 (1982).  



  

44 
 

17. N. I. Grigorchuk, “Radiative damping of surface plasmon resonance in spheroidal metallic 
nanoparticle embedded in a dielectric medium,” J. Opt. Soc. Am. B 29(12), 3404-3411 (2012). 

 
18. K. Kolwas and A. Derkachova, “Damping rates of surface plasmons for particles of size from 
nano- to micrometers; reduction of the nonradiative decay,” J. Quant. Spectrocs. Radiat. 
Transfer 114, 45–55 (2013).  

 
19. R. Carmina Monreal, S. Peter Apell, and T. Antosiewicz, “Surface scattering contribution to 
the plasmon width in embedded Ag nanospheres,” Opt. Express 22(21), 24994-25004 (2014).  

 
20. K. Fuchs, “The conductivity of thin metallic films according to the electron theory of 
metals,” Proc. Cambridge Philos. Soc. 34, 100–108 (1938).  

 
21.  P. Apell, R. Monreal, and F. Flores, “Effective Relaxation-Time in Small Spheres: Diffuse 
Surface Scattering,” Solid State Commun.  52(12), 971– 973 (1984).   

 
22. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon 
resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178 
(1993).  

 
23. C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Trager, “Chemical 
interface damping of surface plasmon excitation in metal nanoparticles: A study by persistent 
spectral hole burning,” Appl. Phys. B 76, 869–875 (2003). 

 
24. P. Zijlstra, P. M. R. Paulo, K. Yu, and M. Orrit, “Chemical interface damping in single gold 
nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. 51, 
8352-8355 (2012).  

 
25. B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization 
in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98, 153116 
(2011). 

 
26. B. Lahiri, R. Dylewicz, R. M. D. L. Rue, and N. P. Johnson, “Impact of titanium adhesion 
layers on the response of arrays of metallic split-ring resonators (SRRs),” Opt. Express 18(11), 
11202–11208 (2010). 

 
27. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, 
“Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 
1107–1115 (2009). 

 
28. S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of sub-
lithography-limited structures via nanomasking technique for plasmonic enhancement 
applications,” IEEE Trans. Nanotechnol. 14, 790–793 (2015).  



  

45 
 

29. S. J. Bauman, D. T. Debu, and J. B. Herzog, “Plasmonic structures fabricated via 
nanomasking sub-10 nm lithography technique”, Proc. SPIE 9556, 95560M (2015). 

 
30. H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. 
Xu, and S. Blair “Crucial role of the adhesion layer on the plasmonic fluorescence 
enhancement,” ACS Nano 3, 2043–2048 (2009). 

 
31. X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in 
bow-tie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).  

 
32. C. Jeppesen, N. A. Mortensen, and A. Kristensen, “The effect of Ti and ITO adhesion layers 
on gold split-ring resonators,” Appl. Phys. Lett. 97(26), 263103 (2010). 

 
33. Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of 
plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 
405301 (2015). 

 
34.  P. Jahanshahi, M. Ghomeishi and F. R. M. Adikan, “Adhesive layer effect on gold-silica thin 
film interfaces for surface plasmon resonance modeling,” 2012 IEEE 3rd International 
Conference on Photonics, Penang, 2012, pp. 89-92. 
 
35.    Colas Florent, Barchiesi D., Kessentini S., Toury T., De La Chapelle M. Lamy, 
“Comparison of adhesion layers of gold on silicate glasses for SERS detection,” Journal Of 
Optics, 17(11), 1-7 (2015). 

 
36. T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, 

and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as 
a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012). 

 
37. W. Chang, F. Wen, D. Chakraborty, M. Su, Y. Zhang, et al. “Tuning the acoustic frequency 
of a gold nanodisk through its adhesion layer” Nat. Commun.,6, 7022 (2015). 

 
38.  J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York, 
2002). 
39.  K. L. Wustholz, A. I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. 
Natan, G. C. Schatz, and R. P. Van Duyna, “Structure-Activity Relationships in Gold 
Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. 
Soc. 132(31), 10903-10910(2010).  

 
40.  COMSOL, “COMSOL Multiphysics version 4.4,” (COMSOL RF, 2014).  

 
41.  C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small 
Particles (Wiley, New York, 1983). 



  

46 
 

42.  V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic 
nanoantennas: fundamentals and their use in controlling the radiative properties of 
nanoemitters,” Chem. Rev.111, 3888–3912 (2011). 

 
43. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–
4379 (1972).  

 
44. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985). 

 
45.  D. Barchiesi, S. Kessentini, N. Guillot, M. L. de la Chapelle, and T. Grosges, “Localized 
surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of 
uncertainties,” Opt. Express 21(2), 2245–2262 (2013). 

 
46. R. K. Harrison and A. Ben-Yakar, “Point-by-point near-field optical energy deposition 
around plasmonic nanospheres in absorbing media,” J. Opt. Soc. Am. A 8(32), 1523-1535 
(2015). 

 
47. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 
1995). 

 
48. M. J. Feldstein, C. D. Keating, Y. H. Liau, M. J. Natan, and N. F. Scherer, “Electronic 
relaxation dynamics in coupled metal particle,” J. Am. Chem. Soc. 119, 6638-6646 (1997). 

 
49. Grant, A. M. Schwartzberg, T. J. Norman and J. Z. Zhang, “Ultrafast electronic relaxation 
and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates,” J. Am. 
Chem. Soc. 125, 549–553 (2003). 

 
50. J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes 
in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).  

 
51. T. Okamoto, “Near-field spectral analysis of metallic beads,” Topics Appl. Phys. 81, 97–123 
(2001). 
52. B. J. Messinger, K. U. Vonraben, R. K. Chang, and W. P. Barber, “Local-Fields at the 
Surface of Noble-Metal Microspheres,” Phys. Rev. B 24, 649– 657 (1981). 

 
53. D.u Zhu, A. Tang, H. Ye, M. Wang, C. Yang  and F. Teng , ‘’Tunable near-infrared localized 
surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and 
oxygen exposure time,’’ J. Mater. Chem. C, 3, 6686-6691 (2015). 

 
54. R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. 
Berggren, ‘’High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm 
Aluminum Nanostructures,’’ Nano Letters 16 (7), 4149-4157 (2016).  



  

47 
 

55. B. S. Dennis, D. A. Czaplewski, M. I. Haftel, D. Lopez, G. Blumberg, and V. Aksyuk, 
"Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens," Opt. 
Express 23(15), 21899-21908 (2015). 

 
56. J. Balbus, R. Denison, K. Florini, and S. Walsh, “Getting Nanotechnology Right the First 
Time,” Issues in Science and Technology 65-71 (2005).  

 
57.  I. El-Sayed, X. Huang, and M. El-Sayed “Selective laser photo-thermal therapy of epithelial 
carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–35 
(2006).  

 
58. J. M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate 
cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179(2), 748–753 (2008). 

 
59. C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. 
Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene 
expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006). 

 
60. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency 
relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and 
medium refractive,” J. Phys. Chem. B 109, 20331–20338 (2005).  

 
61. G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 
111(6), 3858–3887 (2011)  

 
62. A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. 
Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of 
electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013). 

 
63. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface 
plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. 
Chem. B 103 8410–26 (1999). 

 
64.M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. 
Arbouet, C. Girard, and M. Y. Han, “Surface Plasmon Damping Quantified with an Electron 
Nanoprobe,” Sci. Rep. 3, 1312 (2013).  
 

65.D. T. Debu, P. Ghosh, D. French, and J. B. Herzog, "Surface plasmon damping effects due to 
Ti adhesion layer in individual gold nanodisks", Optical Materials Express, 7(1), 73-84 (2016). 
 

 

 

 



48 

Chapter 4 Tuning Infrared Plasmon Resonance of Black Phosphorene 

Material used in this chapter is compiled from Debu et al. previously published work [64]. 

Abstract 

We report on the tunable edge-plasmon-enhanced absorption of phosphorene nanoribbons 

supported on a dielectric substrate. Monolayer anisotropic black phosphorous (phosphorene) 

nanoribbons are explored for light trapping and absorption enhancement on different dielectric 

substrates. We show that these phosphorene ribbons support infrared surface plasmons with high 

spatial confinement. The peak position and bandwidth of the calculated phosphorene absorption 

spectra are tunable with low loss over a wide wavelength range via the surrounding dielectric 

environment of the periodic nanoribbons. Simulation results show strong edge plasmon modes and 

enhanced absorption as well as a red-shift of the peak resonance wavelength. The periodic Fabry-

Perot grating model was used to analytically evaluate the absorption resonance arising from the 

edge of the ribbons for comparison with the simulation. The results show promise for the 

promotion of phosphorene plasmons for both fundamental studies and potential applications in the 

infrared spectral range.  

4.1 Introduction 

Studies of the light-matter interaction have been conducted for many materials, commonly 

focusing on noble metal films and nanostructures. Noble metals (gold, silver, etc.) support strong 

surface plasmon confinement. Surface plasmons are collective wave modes of conduction band 

electron oscillations at the interface between two materials; the waves are coherent with an incident 

oscillating electromagnetic field [1-4]. Strong locally confined fields can lead to enhanced light 
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absorption and Raman scattering.  The response of plasmonic metals is predominantly limited to 

the spectral range from ultraviolet to near-infrared (NIR). Beyond this spectral range, plasmons 

generate weak field confinement, have narrow spectral resonance due to large negative permittivity 

[5], and exhibit very limited tunability due to high losses [4-6]. 

As an alternative, two-dimensional (2D) materials such as graphene have demonstrated low 

attenuation of surface plasmon resonance, which is attributed to a unique band structure and high 

carrier mobility [7,8]. Graphene plasmons typically occur for the spectral range spanning mid-IR 

to low terahertz [8, 9]. This has been achieved experimentally through a wide range of tuning 

mechanisms – higher doping levels, reduced structure dimensions, and gate modulation [9-12]. 

Fabricating graphene requires a substrate and a dielectric environment, which causes the plasmon-

phonon modes to split into two hybrid modes. The dielectric environment surrounding graphene 

plasmonic structures can also cause weak dispersion and short lifetimes. The coupling between 

phonons and the plasmon damping effect hinder the utilization of graphene for enhanced light 

absorption in the low terahertz to mid-IR range [12-14].  

Very recently, black phosphorus (BP), a layered semiconductor with a two-dimensional 

“puckered” hexagonal structure in each monolayer (known as phosphorene), has gained attention 

in the scientific community as a potential candidate to study surface plasmon polaritons [15-20]. 

Theoretical and simulation results have revealed that properties of black phosphorous surface 

plasmons include polarization dependence when exposed to an electromagnetic field [21, 22], 

dependence on the size of the monolayer [23], a quantized magnetic field indicated by discretized 

anisotropic magneto-excitons [24], and damping point defects and potential for long-range 

disorder [25]. These features are attributed to its high mobility and highly tunable, layer-

dependent, direct bandgap (0.3 eV in bulk to 2 eV in a monolayer) [26-28], as well as its highly 
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anisotropic in-plane electronic and optical properties [28]. In addition, these desirable properties 

make BP suitable for other optical material applications such as hyperspectral imaging, thermal 

imaging, photodetectors in silicon photonics, and terahertz transistors [29-32].  To date, these opto-

electronic properties have been limited to fewer applications due to the instability of BP in ambient 

conditions [33-37]. 

In this paper, we explore BP as an alternative 2D material to address the challenges faced by metals 

and graphene for surface plasmon resonance responses to incident light in the mid- to far-infrared 

spectral range. First, we focus on a theoretical analysis of the dispersion relation and the 

confinement strength of surface plasmon modes excited by a linearly-polarized plane wave on an 

infinite phosphorene sheet, taking the surrounding dielectric media into account. Next, we expand 

the theoretical work to periodic monolayer BP nanoribbons using finite element simulations. We 

select a design that can be easily realized in experiments and use numerical simulations to describe 

the tunable resonance and enhanced absorption of the plasmonic modes for capping layers and 

substrates of different dielectric values.  Further, a theoretical periodic grating model is 

implemented to determine the wavelength of the resonant absorption peak by calculating the phase 

of the reflected wave at the edge of the nanoribbon. We also extend the numerical simulation to 

study BP nanoribbons enhancing absorption in different directions based on the optical 

conductivity change and ribbon width. Finally, we study mechanisms of preserving phosphorene 

from oxidation effects while maintaining edge plasmon enhanced absorption. Although phonon-

related damping pathways for BP plasmons remain unknown, this work highlights several 

attractive features of tunable mid- to far-infrared BP plasmons. 
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4.2 Monolayer Black Phosphorene Conductivity Model 

Anisotropic, angular frequency (𝜔) dependent, dynamical, 2D surface local conductivity of BP 

can be described by the semi-classical Drude model expression [21]. 

𝜎 =
ℏ

(ℏ )
      (4.1)  

Here, 𝑗 denotes the position along the arm-chair direction (𝑥) and zigzag direction (𝑦). 𝐷 =

𝜋𝑁𝑒 𝑚   is the Drude weight, which is dependent on the electron charge, e, anisotropic effective 

electron mass, 𝑚 , and electron density, 𝑁.  𝜂 = 1 𝜏⁄  is the scattering rate (𝜏 is the carrier relaxation 

time, related to finite damping). The anisotropic effective mass for monolayer or bulk BP gives 

rise to anisotropic conductivity. Along a plane near the 𝛤-point in the BP band diagram, the 

effective electron mass along the 𝑥- and 𝑦-directions are 𝑚 = ℏ
∆

+ 𝜂  and 𝑚 =

ℏ 2𝑣⁄  [21, 38]. Values of the conduction band parameters for monolayers include the following: 

𝜂 = ℏ 0.4𝑚⁄ , 𝑣 = ℏ 1.4𝑚⁄ , ∆ = 2 eV, and 𝛾 = 4 𝑎 𝜋⁄  eVm, where 𝑎 = 0.223 nm and 𝜋 𝑎⁄  

is the width of the Brillouin Zone in the 𝑥-direction [21, 38]. These are chosen such that they yield 

the known conduction band effective masses 𝑚 ≈ 0.15𝑚  and 𝑚 ≈ 0.7𝑚  of monolayer BP. 

It is worth mentioning that the band parameters are highly sensitive to the number of BP layers; 

any small change explicitly affects anisotropic effective masses [38]. We choose the electron 

carrier density to be from 𝑁 = 10  to 5 × 10  cm , and a scattering rate of 𝜂 = 10 meV that 

accounts for the finite damping [21]. These N values are within the range reported in ab initio 

studies, giving this scattering rate [39, 40]. Monolayer phosphorene is an ultra-thin film with a 

thickness of 𝑡 ≈ 0.7 nm [27]. Although the monolayer thickness extracted from bulk black 

phosphorus is 0.5 nm [39], we choose a slightly larger value consistent with the measured height 
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of most samples [18] because this is the one most likely to be realized in experiments and the one 

that will determine observed plasmonic effects. We can introduce a phosphorene layer with 

volumetric anisotropic permittivity [41] converting the 2D surface conductivity into a 3D 

conductivity using the relation 𝜎 = 𝑡 𝜎  [42]. Hence, the 3D complex anisotropic dielectric 

function for monolayer BP from Eq. (1) is  

𝜀 = 𝜀 +       (42)  

where 𝜀 = 5.65 is the relative permittivity for monolayer BP [43]. This approach has been 

previously used in the investigation of surface plasmons in BP [23] and graphene 2D films and 

nanoribbons [44]. 

4.3 Plasmon dispersion model equation 

The theoretical dispersion calculation of the plasmonic wave for the transverse magnetic (TM) and 

transverse electric (TE) modes in a continuous BP monolayer was performed following the method 

outlined by Ju et al. and Grigorenko et al. [45, 46]. A BP layer is situated in the x-y plane, 

sandwiched between semi-infinite dielectric materials of relative permittivity 𝜀  (above) and 𝜀  

(below). Accordingly, calculations for TM mode and TE mode, propagating perpendicular to the 

interface between the dielectric medium, are 

   𝜀 /𝑘  +   𝜀 /𝑘  =  −𝑖𝜎 /𝜀 𝜔       (4.3a)  

   𝑘  +   𝑘 =  𝑖𝜎 𝜇 𝜔             (4.3b)  

where 𝜀  is the vacuum permittivity, 𝜇  is the vacuum permeability, 𝑘 =  𝑘 , − 𝜀 𝑘  and 

𝑘 =  𝑘 , − 𝜀 𝑘  are wave vectors above and below the BP layer and 𝑘  is the vacuum wave 
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vector. A rough measure of the plasmon mode confinement comes from the real part of Eq. (4.3a) 

and (4.3b). This can be attained when 𝑘 , ≫ 𝜀 𝑘  and 𝑘 , ≫ 𝜀 𝑘  , leading to  𝑘 =

𝑖(𝜀 +  𝜀 )𝜀 𝜔/𝜎   for the TM mode and 𝑘 =  𝑖𝜎 𝜇 𝜔/2 for the TE mode. Accordingly, the 

surface plasmon confinement factor, 𝑛 , for the infinite BP sheet is related to the free-space 

wave vector by 𝑛 = 𝑘 𝑘⁄ . The real part of 𝑛  is directly related to the degree of 

confinement, and the imaginary component corresponds to the propagation length. Fig. 4.1(a) plots 

analytical results of TM mode light dispersion for four selected dielectric substrates with n1 taken 

to be air. The confinement strength indicates a directly proportional effect of the dielectric constant 

of the materials surrounding the infinite BP layer. The plasmon confinement strength is on the 

order of a hundred over the IR range, being comparable to that of graphene [47], while the value 

for noble metals is close to one. It can be noted that TE mode confinement is barely possible, as 

the imaginary part of the conductivity, 𝜎 , in Eq. (4.3b) is positive over the infrared range of the 

spectrum, corresponding to high loss. It is worth noting that the surface plasmon dispersion can be 

controlled by the optical conductivity of phosphorene via 𝑁. Doing so enables switching between 

surface plasmon modes that are strongly IR-supported and those that are not. 

An alternate way to realize strong coupling and extreme field confinement with localized plasmons 

is by decreasing a BP sheet to finite nanoscale in-plane dimensions [23]. Finite size BP can add 

exotic edge states and lateral confinement in the main band gap [48]. For ideal edges and sub 10 

nm scale structures, these would need to be addressed to take into account the quantum effects on 

the plasmonic resonance. However, atomic resolution scanning tunneling spectroscopy of 

exfoliated black phosphorus reveals only a trivial modification of the band gap at the sample edges 

[49]. In addition, monolayer black phosphorus nanoribbon widths below a few nanometers are 

required to significantly modify the band gap [48, 49]. In this study we focus on properties of 
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plasmonic responses for periodic nanoribbons with a minimum width of 100 nm and minimum 

gap of 25 nm. Due to this geometry, the spectral range of the plasmonic resonances studied here 

is substantially greater than the Fermi wavelength of BP nanoribbons [48]. Because of the 

aforementioned conditions, the quantum effects can be neglected. From here forward, we focus on 

properties of plasmonic responses for such reduced periodic arrays of BP ribbons. We have 

investigated these using a classical model with optical constants of infinite 2D monolayers of black 

phosphorus, Eq. (4.1) and Eq. (4.2). 

A 3D schematic view of the structure designed for the study of localized surface plasmon 

polaritons (LSPPs) supported by BP is depicted in Fig. 4.1(b), with a corresponding 2D cross-

sectional view shown in Fig. 4.1(c). The arrays of monolayer BP nanoribbons are periodically 

arranged in the x-y plane (z = 0).  To confine the enhanced light, an optically thick gold reflector 

surface was added to the bottom of the model.  In the z-direction, nanoribbons are separated from 

this reflector surface by a dielectric spacer with refractive index 𝑛 = √𝜀 , (z < 0). A top dielectric 

medium with refractive index 𝑛 = √𝜀 , (z > 0), covers the BP nanoribbon arrays. Data from 

Palick et al. for wavelength-dependent optical constants of gold were applied to the simulation 

[50]. 

4.4 Simulation method: 

Two-dimensional FEM simulations [51] were performed to calculate electromagnetic field 

distributions and absorption spectra on nanoribbon cross-sections that assume infinite length in the 

y-direction. The 2D simulations can accurately approximate calculations of 3D structures so long 

as the length of the ribbon is large enough compared to the propagation and coupling length of the 

surface plasmon wavelengths.  Periodic boundary conditions were applied along the left and right 

edges of the model (along the x-direction). Perfectly matched layers (PMLs) were added above 
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and below this structure to eliminate the back scattering of electromagnetic waves from the model 

boundaries. A plane wave polarized in the x-direction illuminates the ribbons from above, normal 

to the substrate surface, in the TM case for the periodic structure. The top boundary was set as the 

input port and the bottom as the output. A non-uniform mesh was adopted, and the minimum mesh 

size inside the BP layer equals 0.01 nm, gradually increasing to 50 nm outside the dielectric region. 

 

The electric field intensity distributions obtained from a finite element electromagnetic simulation 

[51] are shown in Fig. 4.1(d – f) for the simulated illumination via plane wave at downward normal 

incidence for three different wavelengths. The width (𝑤) of the BP ribbon was set to 150 nm, the 

period (𝑃) to 250 nm, and the gap (𝑔) between each ribbon was 𝑔 = 𝑃 − 𝑤 = 100 nm. The ribbon 

width and period were selected so that the tunable range for wavelength went through the far-IR 

region of the electromagnetic spectrum. The ribbon was modeled to be surrounded by air (𝑛 =

1.0) on the top surface and a dielectric substrate (𝑛 = 1.71) of thickness 5 µm beneath. The 

dielectric substrate was made greater than 𝜆/2 to avoid any coupling effects of the local fields near 

the BP ribbon and the gold surface. The field distribution reveals that the surface plasmon is highly 

confined at the edges of the nanoribbon and the confinement strength of the localized field is highly 

dependent on the excitation wavelength.  
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Figure 4. 1. Simulation of the electromagnetic response of illuminated BP. (a) Plot of the real part 
of the SPP modes supported by a BP infinite sheet for four different dielectric media as measured 
by its vacuum wave vector. (b) 3D schematic of periodically patterned phosphorene nanoribbons 
on a dielectric layer (light blue) atop a gold reflective surface. Period, P, and ribbon length, w, are 
labeled. (c) Cross-sectional view of (b) with the BP, Au, two dielectric layers, n1 and n2, and light 
propagation and polarization directions, E and k, labeled. (d) – (f) Calculated distributions of the 
electric field enhancement, which is defined as the ratio of the local electric field amplitude, 𝐸 , 
to that of the incident light, 𝐸 . The modeled parameters include 𝑤 = 150 nm, P = 250 nm,  𝑛 =  
1.0, and 𝑛 =  1.71, N = 1013 cm-2, at λ = (d) 31.1, (e) 27.5, and (f) 20.1 µm.  

 

Strong field enhancement and localization of plasmon modes in the two-dimensional structure 

leads to enhanced spectral absorption depending on the shape and the selection of appropriate 

surrounding dielectric material [52]. Fig. 4.2(a) displays simulated normal-incidence absorption 

spectra of the BP nanoribbons for 𝑤 = 150 nm and  𝑃 = 250 nm. Here, the top medium was set to 

the refractive index, 𝑛 , of air, and the absorptive substrate was swept from 𝑛  = 1.0 to 3.32. Some 

of the selected indices of refraction, 𝑛 , values chosen match materials such as Al2O3 (1.71) [53], 

KBr (1.43) [54], PMMA (polymethyl methacrylate, 1.45 [55]), PS (polystyrene, 1.50) [55], and Si 
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(3.32) [50]. Fig. 4.2(b) is a plot of the resonant wavelengths (those with absorption peaks) versus 

the 𝑛  values at which they occur, and Fig. 4.2(c) shows the absorption values at these peaks. 

   

Figure 4.2. Calculated results showing the effects of varying 𝑛  on the absorption spectrum with 
𝑛  held constant. (a) Simulated normal-incidence TM mode electric field absorption spectra for 
BP nanoribbons surrounded by air (n1 = 1.0) and different substrate materials with refractive 
indices, 𝑛 , and a BP electron density of N = 1013 cm-2. (b) Absorption peak resonant wavelength 
of the fundamental mode (𝑚 = 1) with respect to the refractive index of the substrate dielectric 
layer (𝑛 ). The red dots are from the finite-element method (FEM) simulations, and the blue dotes 
are calculated from the theoretical model described in Eq. (4). (c) Peak absorption amplitude as a 
function of 𝑛 . 

As 𝑛  is increased, the absorption peak position shifts to higher infrared wavelengths, Fig. 4.2(b), 

and broadens; and the amplitude generally decreases, as plotted in Fig. 4.2(c), indicating increased 

damping. Following grating theory, the peak absorption wavelengths, matching the resonant 

conditions of periodic BP nanoribbon, can be obtained from Eq. (4.4) under irradiation of light at 

normal incidence, 

𝜆 = 𝜋𝑐
( )

.         (4.4)  
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Here, 𝜆  is the resonance wavelength of the BP plasmons, 𝑐 is the speed of light, 𝑃 is the period, 

𝜀  is free space permittivity, e is the charge of a single electron, and m is a positive integer (m = 1, 

2, 3, …) representing the order of the dispersion of the mode confinement diffraction.  The 

resonance wavelengths of the analytical solution, Eq. (4.4), obtained via the periodic grating 

approach, do not consider the near-field interaction between the BP ribbons when the period is 

much smaller than the surface plasmon resonance wavelength, and disregards nonlocal effects.  

Due to coupling of plasmon waves between nearby BP nanoribbons and multiple anomalous 

reflections between the two edges of the ribbon, the reflected plasmon waves can form an 

interference process that incorporates a phase factor other than 𝜋.  The surface plasmon at the 

resonance point undergoes constructive interference with the reflected wave between the edge, 

satisfying 2𝑤𝑅𝑒(𝑘 ) + 2𝜙 = 2𝑚𝜋  [56, 57]. Here, 𝑤 is the ribbon width, 𝜙 is the reflection 

phase at the edge, and m is an integer for the peak resonance order. The value of 𝜙 can be obtained 

analytically by fitting the simulated data of a given ribbon surrounded by an arbitrary dielectric 

medium using Eq. (4.5),  

𝜙 𝜋⁄ = 𝑚 −  
( )

 .                        (4.5)  

Fig. 4.2(b) and (c) illustrate the absorption resonance wavelength for different values of n2 

obtained both via simulation and theoretical calculation via Eq (4.5). It is found that primary mode 

red shift linearly as the dielectric constant increases of the resonance wavelength consistent result 

in both theory and simulation. To further elucidate the effect of the surrounding dielectric, Fig. 

4.3(a) and (b) show calculated and simulated absorption spectra for a range of 𝑛  from 1 to 1.71 

for fixed 𝑛  = 1.71. The first-order phase factor was calculated using Eq. (4.5) for ranges between 

0.41π and 0.46π, depending on the dielectric environment. Although similar situations are 
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observed, the spectral broadening and resonance wavelength shifts are much weaker compared to 

the case of changing 𝑛 .  The absorption peak wavelengths are only for dipolar modes and stay 

between 27% to 41% with the change of the top dielectric environment, Fig. 4.3(c).  

The resonance properties in the absorption spectra intensity and line width are also influenced by 

the optical loss in the BP ribbons, which is mainly characterized by the real part of the conductivity.  

 

Figure 4.3. Calculated results showing the effects of varying 𝑛  on the absorption spectrum with 
𝑛  held constant. (a) Simulated normal-incidence TM mode electric field absorption spectra for 
BP nanoribbons surrounded by different materials with refractive indices, n1, on a substrate with 
𝑛  = 1.7 (Al2O3) and a BP electron density of N = 1013 cm-2. (b) Absorption peak resonant 
wavelength of the fundamental mode (𝑚 = 1) with respect to the refractive index of the 
surrounding dielectric layer (𝑛 ). The red dots are from the FEM simulations, and the blue dotes 
are calculated from the theoretical model described in Eq. (4). (c) Peak absorption amplitude as a 
function of 𝑛 . 

 

4.5 Phosphorene supported absorption enhancement  

The theoretical model predictions of enhanced infrared absorption and plasmonic resonance 

depend on the effective mass and density of carriers in the BP ribbons. The wavelength of the 
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plasmon resonance in phosphorene nanoribbons scales proportionally with 𝑁 / , the same as in 

conventional semiconductors but contrary to graphene nanoribbons, which show a proportionality 

of 𝑁 /  [45]. According to Eq. (4.5), decreasing the anisotropic effective mass, which is 

dependent on the BP layer thickness, results in a blueshift and strong plasmon localization, while 

increasing the electron carrier density causes a redshift. The electron (carrier) density, related to 

the carrier mobility, is controlled by the chosen type of dielectric interface, [58, 59] the 

introduction of doping, or gated-modulation [21]. To understand the tunability of the plasmon 

resonance and therefore the absorption wavelength in BP ribbons, it is instructive to inspect the 

significance of altering the conductivity and the ribbon geometry. 

The armchair and zigzag directions of phosphorene are shown in Fig. 4.4(a) and (b), respectively. 

We would like to achieve higher absorption enhancement for light polarized in each direction. 

Here, optical constants of n1 = 1.0 and n2 = 1.71 and a reflective gold layer, as in Fig. 4.1(b), were 

considered. According to Eq. (4.5), one can tune the absorption spectra by changing the number 

density and the width of BP ribbons. To better quantitatively understand this tunability, absorption 

simulation results were obtained for the situation where the number density N = 5×1012, 7.5×1012, 

and 2.5×1013 cm-2, and the period was constant at P = 250 nm over a range of w from 100 nm to 

225 nm. Fig. 4.4(c) and (d) show plots of absorption spectra for light polarized in the armchair and 

zigzag directions, respectively, for the simulated range of w values for N = 2.5×1013 cm-2. The 

results for N = 5×1012 and 7.5×1012 cm-2 are provided in supplementary Fig. S (C. 5.)  

The peak absorption wavelength position is highly sensitive to w due to the resonance condition 

of the localized surface plasmons, and it is also affected by the ribbon spacing, g(w) = P – w, due 

to strongly coupled resonances between neighboring ribbons.  With a constant period of 250 nm, 

the gap between ribbons becomes small for large w, increasing the strength of the coupling effect. 
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Shown in Fig.4. 4(c), the absorption is minimal for light polarized in the armchair direction when 

w is small (and the gap is large) – due to weak plasmon localization and less field confinement at 

the edges. As w increases, so does the absorption, up to 0.83 for w = 225 nm, corresponding also 

to the smallest spacing value (g = 25 nm), since the coupling between neighboring ribbons 

increases. For the larger widths, the absorption peak also redshifts as w increases due to both width-

dependent plasmon resonances and gap-dependent coupling between ribbons. In the zigzag 

direction, Fig. 4.4(d), the resonant wavelength redshifts from ~25 μm to 47 μm over the range w 

= 100 – 225 nm. In both the armchair and zigzag orientations, the peak shift shows that the ribbon 

width and spacing play important roles in tuning the BP ribbon plasmon resonance. The difference 

in the peak position and amplitude for the same values of w between zigzag and armchair directions 

is due to each atomic orientation having different anisotropic masses, which leads to different 

imaginary parts of the dielectric function; see Eq. (4.1) and (4.2).   
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Figure. 4.4. Comparison of the optical response of light polarized in the (a) armchair and (b) zigzag 
directions. Simulated absorption spectra for normal-incidence TM mode light polarized along the 
(c) armchair and (d) zigzag directions for different w. Here, n2 = 1.71, n1 = 1.0, N = 2.5x1013 cm-2, 
P = 250 nm, and w is swept from 100 to 225 nm. 

The absorption strength in the zigzag direction increases from 0.14 to 0.48 for number density N 

= 2.5×1013 cm-2, compared to the absorption peak value of 0.13 reported by Liu and Aydin for 

N = 1013 cm-2 [23].  When one compares the peak wavelengths between N = 1013 cm-2 (Fig. 2) and 

N = 2.5×1013 cm-2 (Fig. 4.4) for w = 150, both armchair and zigzag directions show a blueshift of 

the absorption peak with increased carrier concentration, consistent with the prediction of Eq. 

(4.5). For carrier number density below N = 1013 cm-2 (see supplementary information), a width-

dependent-dominant absorption is observed in the armchair direction and a weak resonance in the 

zigzag direction.  Therefore, changing the electron number density, N, by using different 

substrates, doping the BP, or gating introduces a mechanism for tuning and amplifying the 

plasmonic resonance in BP. 
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4.6 Dielectric encapsulated periodic black phosphorene ribbon 

Black phosphorus is highly reactive with oxygen; upon exposure to the environment, it degrades 

in a matter of minutes or hours [21, 31-37]. Also, exposure to moisture causes significant distortion 

of its structure, causing the formation of porous regions that eventually decompose [31-37]. 

Encapsulation of BP with a thin dielectric sheet is essential for stability [58, 59]. Therefore, we 

investigate how the dielectric sheet affects the edge plasmon modes in BP. Numerical simulations 

have been performed to demonstrate the electromagnetic response of phosphorene nanoribbons 

capped with two materials: a lossless dielectric, Al2O3, and a hyperbolic metamaterial hexagonal 

boron nitride (hBN) with optical constants obtained from [60]. 

First, encapsulation via Al2O3 was studied, with the results shown in Fig. 4.5. Fig. 4.5(a) shows 

the geometry of the model. For consistency with earlier discussions, we kept P = 250 nm, w = 150 

nm, n1 = 1.0, and n2 = 1.71, the refractive index of Al2O3. Fig. 4.5(b) shows the absorption spectra, 

corresponding to infrared plasmons, with the BP ribbon positioned at different distances (d) inside 

the substrate in the armchair direction. The peak wavelength shifts by approximately 1.5 μm as d 

increases from 0 to 10 nm inside the substrate, shown in detail in Fig. 4.5(c). The range of d is 

important to maintain the absorption amplitude so that it does not lead to a large change in the 

optical path length within the dielectric, potentially creating a standing wave. The small shift in 

wavelength and consistent peak absorption amplitude from Fig. 5 verify that dielectric layer 

encapsulation helps to conserve the main plasmon resonance properties. These small fine-tuned 

plasmon wavelength shifts due to a thin capping layer have interesting implications for light-matter 

interactions with regard to BP plasmon infrared nanoresonators, potentially for highly sensitive 

sensors. 
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Figure 4.5. Results for simulated patterned BP nanoribbons encapsulated by a dielectric buffered 
layer at different depths, d.  (a) 2D cross-sectional schematic (b) Simulated absorption spectra 
for d = 0 – 10 nm and (c) resonance peak position as a function of d. Here, P = 250 nm, w = 150 
nm, n1 = 1.0, N = 1013 cm-2, and n2 = 1.71 (Al2O3). 

Next, we simulated hBN, anisotropic hyperbolic material, as an overlayered sheet for preserving 

the surface of the BP ribbons from degradation. hBN provides a superior protection layer for BP, 

mainly because it provides high mechanical strength, high thermal stability and chemical inertness 

[59, 61]. In addition, the layer numbers (thickness) of hBN can be precisely controlled from 

monolayer to multilayer during the fabrication process through mechanical exfoliation or 

chemical vapor deposition methods [62]. Fig. 4.6(a) and (b) depict the simulation design for BP 

ribbons encapsulated with hBN layers of different thickness, d. The armchair and zigzag 

directions are depicted again in Fig. 4.6(c) and (d), respectively. The simulated total absorption 

spectrum with d swept from 0 to 10 nm for TM polarized light in the zigzag and armchair directions 

are shown in Fig. 4.6(e) and (f), respectively.  

The case of extremely small gaps between ribbons (w = 225 nm) was studied for N = 2.5x1013 cm-

2. As shown in Fig. 4.6(e) and (f), the resonant wavelength shifts from 29 μm to 39 μm for armchair 

polarization, and 47 μm to 56 μm for zigzag. The gradual peak redshift is significantly larger than 

that of BP embedded in Al2O3. The absorption intensity is maintained between 80% and 90% in 

the armchair direction. The zigzag peak absorption drops gradually from 42% to 29% as the 

thickness of hBN increases, less than half of the values for armchair peak absorption. The 
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presence of the hBN results in a strong localization of the field at the hBN/BP/dielectric 

interface in armchair direction and weak localization for zigzag. This is mainly due to the full 

electrical contact and strong interactions in the hybrid interaction that can arise between the 

ribbon plasmons and a thickness dependent phonon polariton mode that can arise in the hBN [63]. 

In addition, a noticeable broadening of the absorption peaks occurs for both polarization directions 

with the introduction of hBN on the BP ribbons.  

  

Figure. 4.6 (a) 3D and (b) 2D schematics of the simulated BP ribbons covered by a protective 
layer of hBN film of thickness d. (c) Armchair and (d) zigzag polarization directions as shown in 
Fig. 5. Simulated normal-incidence TM mode electric field absorption spectra for different 
thicknesses of hBN encapsulating BP for (e) armchair and (f) zigzag directions. Here, w = 225 nm, 
P = 250 nm, n1 = 1.0, n2 = 1.71, and N = 2.5x1013 cm-2. 

 

4.7 Conclusion  

In summary, we have investigated propagating surface plasmon properties of black 

phosphorus sheet- and edge-confined plasmons in surrounding dielectric structures for 

enhanced tunable absorption. Theoretical schemes of the plasmonic dispersion showed 



  

66 
 

dependence on BP anisotropy, light polarization direction, and dielectric material. In 

particular, the confinement factor of SPPs has a strong effect, a factor of hundreds, on isolated 

BP and that increases as the refractive index of the surrounding media increases. Scaling of 

BP into the nanoribbon size leads to the formation of edge plasmons that trigger enhanced 

absorption. Simulation results of the spectral position and the absorption peaks can be adjusted 

both by the anisotropic nature of BP as well as by parameters such as the refractive index, 

ribbon size, ribbon spacing, and electron density; and the results have validated the theoretical 

prediction. Additionally, simulations of plasmon enhanced absorption behavior encapsulated 

the BP ribbon with either a protection nanolayer of lossless dielectric material or the 

metamaterial hBN to address the possibility of degradation through oxidation. The result 

shows further mechanisms of tuning resonance modes in infrared wavelengths due 

to hybridization of BP ribbon edge plasmon and the hyperbolic modes of hBN. The research 

achievements reveal a promising future for black phosphorene as a plasmonic material with 

properties that can give a viable platform to plasmon modulated optoelectronic devices across 

the infrared region of the spectrum. 
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Chapter 5  

Hybrid hyperbolic surface plasmon phonon polariton for spontaneous emission 

Abstract 

We use theoretical models to study low THz electromagnetic wave propagation in ferroelectric 

and graphene/ferroelectric hybrid structures. Ferroelectric LiNbO3 can be considered a natural 

hyperbolic material that supports both type I and type II Reststrahlen hyperbolicity phonon 

polariton dispersion. Isolated graphene, which supports surface plasmons in both the mid-infrared 

and terahertz ranges, strongly couples with ferroelectric hyperbolic phonon-polaritons, forming 

tunable hybrid plasmon–phonon-polaritons (HSPPs). Through variation of the chemical potential 

of graphene and the thickness of the ferroelectric layer, the supported HSPPs modes were 

investigated. Results include bands with considerably flat dispersions as well as linear and hybrid 

dispersions crossing beyond the longitudinal and transverse phonon frequency range of LiNbO3. 

Comparative analysis of Purcell radiation presented for a point dipole (quantum emitter) 

positioned at different locations between ferroelectric and graphene-integrated ferroelectric layers 

reveals that this system can support strong spontaneous emission that can be modulated with the 

graphene chemical potential. Changing the chemical potential through selective voltage biasing 

demonstrates a substantial increase or decrease in the decay rate for spontaneous emission. Further 

analysis of the emission phenomenon shows a dependence on factors such as the relative radiating 

source position and the thickness of the ferroelectric film. Such characteristics make graphene-

ferroelectric materials very promising candidates to modify the light-matter interaction at low THz 

ranges for thermovoltaic devices and waveguiding modulators. 
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5.1 Introduction: 

The discovery of graphene two dimensional (2D) materials [1,2] has drawn immense scientific 

attention both experimentally and theoretically for advanced electrical or optoelectronic 

application [3,4]. Particularly an external electric field strongly interacts exciting electrons 

collective vibrate, surface propagating plasmons (SPPs) [5,6,7,8]. The surface oscillating electrons 

are extremely confined   with a relatively low level of losses much better-quality properties 

plasmon than traditional noble metals and that operates mostly optical wavelength, infrared 

operating plasmonic materials [9,10,11,12,13,14,15].  Mainly at longer wavelength conventional 

metals such as Au, Ag and Al behaves nearly as perfect electrical and above near infrared 

wavelength suffers loss [16]. So, for above infrared studies phononic materials which supporting 

propagating and localized surface phonon polaritons (PSPPs and LSPPs, respectively) widely used 

[17].  But in longer operation wavelength materials are limited in very narrow spectrum, typically 

bounded between the longitudinal and transversal phonon modes hence lucks flexibility. Since 

graphene plasmon can be controlled several mechanisms such as optimization of geometry [18], 

number of layers [18], dynamically tuning by means of chemical doping or gate voltage from 

infrared to THz range [18] and mechanical strain [19,20,21], magnetic bias [22,23].   

With this insight high quality heterostructures that support propagating phonon modes or 

hyperbolic phonon-polaritons (HPPs) consists of graphene are regarded to have great potential for 

plasmonic applications. Both theoretical prediction and experimental extensive investigation of 

graphene plasmon and surface phonons polariton (SPPs), in widely availability of mid-IR optical 

materials, most notably silicon carbide (SiC), [24,25,26,27,28,29,30], SiO2[26,31,], HfO2 [26], 

SiNx [32] offered bigger picture of the hybridization mechanism that lead to formation of localized 



  

73 
 

Surface-Plasmon-Phonon-polarions (SPPPs).  Other candidates, thin III-V group semiconductor 

epilayers such as (heterostrucure of GaAs /AlAs GaAs) [33] results stronger graphene-induced 

optical phonon quenching than that of thin metal films. of coupling of graphene proposed giving 

rise to novel metamaterials which make use of easy gate tunability of the electron density on 

graphene.  

In Piezoelectric materials (ZnO and AlN) plasmons can be switched electrically, resonance can be 

controled by electrostatic gating with low damping of surface-phonon frequency, in midinfrared 

frequency range [AIN and ZnO [34].  In addition, material that have type I and type II hyperbolicity 

of so called, reststrahlen bands, supports propagating HPPs [35] hybridization with graphene SPPs 

has been also gained attention [36,37,38]. In particular, several experiments conducted to 

demonstrate the polar van der Waals crystal, hBN, natural two types of hyperbolic responses (two 

type restrahelen band) [35] exhibits both low losses and long-lived midinfrared hybridized HSPPs 

[36,37,38]. These studies flourished coupled hybrid modes propagating over relatively long 

distances, [36,37,38] as well as highly confined three-dimensional [36,37,38,39,40]. Beside such 

progress at hand studies on interaction of graphene plasmon using hyperbolic material is seldom 

reported in the low terahertz regime (< 20THz) as most of the natural hyperbolic materials are 

limited between infrared and near optical frequency range which they show hyperbolic property. 

In fact, emergence of artificially-engineered THz metamaterial enables the manipulation of the 

electromagnetic properties. These structures require toying with multiple geometry at nanoscale 

demanding fabrications precision that physically introduce internal interfaces.  

With this insight lithium niobate (LiNbO3) is a polar ferroelectric material that supports 

subdiffraction confinement of light-waves in two Reststrahlen band within the low terahertz 

regime (0-15 THz).  Experimental advances in recent years and fabrication technique of graphene 
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on substrate ferroelectric LiNbO3 [41,42,43,44,45] [46] and other ferroelectric materials 

[47,48,49,50,51] recently, have drawn considerable attention.   Graphene/ferroelectric interfaces play 

a crucial role in the performance of graphene-based electronic devices; electrically programmable 

nonvolatile memory and field effect-transistors [52,53]. Due to long phonon lifetimes 

(picoseconds), low loss, high quality factors, high non-linearity and thermal phase transition, 

graphene/ferroelectric interfaces are highly suitable for several THz applications 

[54,55,56,57,58,59]. Graphene plasmon hybridization with ferroelectric that supports surface 

phonon polariton terahertz range leads to the extreme confining quality waveguides compared with 

conventional dielectric [60].  Absorption spectra of graphene-LiNbO3 hybrid systems shows 

number of graphene layer dependence, [61], high attenuation and planar tunable waveguides with 

ultra-low loss in THz region [62]. Visible to mid-wave infrared range propagation of TM surface 

plasmon polaritons of graphene is controllable by different polarization levels and polarization 

direction of ferroelectric domain of LiNbO3 [63,64]. Based on these progresses, expanding the 

studies of the actively tunable HSPPs modes of graphene and nanolayer ferroelectric films using 

light is substantial interest.  

In this work, we demonstrate that combining optical parameters of graphene and the optical 

phonon resonances response of ferroelectric nanolayer LiNbO3 introduces several bands rich 

features of HSPPs modes.  The dispersion modes of the hybrid structure result frequencies outside 

the hyperbolic band range in low THz energy of the ferroelectric.   One effective way to get insight 

the light matter interaction process in graphene, hybrid hyperbolic material is quantitative analysis 

of spontaneous emission (SE) rate or Purcell factor (PF) [65,66,67,68,69,70,71,72]. We explore 

characteristics of tunable SE in low THz spectra based on gate voltage modulation of graphene, 

dipole location, and ferroelectric layer size achieved from single quantum (dipole) emitter. 
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Figure 5.1.   3D and corresponding 2D schematics of three different structural configurations as 
studied   in this work.  (a)  and (d) air/LiNbO3/substrate, air/graphene/LiNbO3/substrate (b) and 
(e), and air/graphene/LiNbO3/graphene/substrate (c) and (f). The coordinate axes are shown in 
(a), with incident radiation shown polarized in the x-direction and propagating in the z-direction. 
The circuit configurations shown in (b) and (c) represent AC voltage sources. 
 

5.2 Optical conductivity of graphene: 

The local limit 2D complex conductivity of graphene sheet, within the random phase 

approximation is given as [74] 

𝜎(𝜔, 𝜏, 𝜇, 𝑇) = 𝑖
ℏ ( )

+ 2 ln 𝑒 ⁄ + 1 + 𝑖
ℏ

ln
| | ℏ

| | ℏ( )
,   (5.1) 

Here, the first and second terms are the intraband and interband contributions, respectively, 𝜔 is 

the angular frequency, 𝑘  is Boltzmann constant, T is the temperature, e is the electron charge,  𝜏 

is a finite relaxation time, and  𝜇  is the chemical potential. The chemical potential  can be 

modulated by external voltage biasing [75], and the relation between the gate voltage (𝑉 ) and the 
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chemical potential is  𝜇 = ℏ𝑣 𝜋|𝛼 (𝑉 − 𝑉 )|, where 𝑉  is the voltage from natural doping at 

the Fermi level and  𝛼  ≈  9 × 1016 m−2V −1, estimated from a parallel-plate capacitor model [75].  

We assume constant temperature, T = 300 K, and constant  𝜏 =10-13 s which are also within the 

range of experimentally attained values [9].  

5.3 Low terahertz anisotropic hyperbolic optical media 

We choose LiNbO3 as the ferroelectric layer because it has uniaxial anisotropic properties in low 

THz range. The dielectric tensor is uniaxial and have opposite signs which are essential several 

applications. The dispersion relations for optical iso-frequency surfaces for the momentum vector 

and permittivity   are, 𝑘 /𝜀  + 𝑘 /𝜀  +  𝑘 /𝜀  =  𝜔 /𝑐   and 𝑘 /𝜀  +  𝑘 /𝜀  +

 𝑘 /𝜀  =  𝜔 /𝑐  for TM- and TE-polarized waves, respectively. Where 𝜀  =  𝜀  =  𝜀|| ≠

 𝜀  =  𝜀 . Here, 𝑘 , 𝑘 ,  and 𝑘  are the 𝑥, 𝑦 and 𝑧 components of the wave vector, respectively, 

𝜔 is the wave frequency, and 𝑐 is the speed of light.  LiNbO3 supports spherical or elliptic iso-

frequency in the TE-polarization, and it shows hyperbolicity in the TM case. Using in-plane (𝜔 ,  

and  𝜔 , )  and out-of-plane (𝜔 ,|| and  𝜔 ,||) transversal and longitudinal phonon vibrations, 

the dielectric constant of LiNbO3 in the THz range can be described by a Lorentz oscillator model 

as [76,77] 

𝜀 =  𝜀 , −
( , , ) ,

,
,                                                         (5.2) 

where 𝑢  stand for = ⊥ or || . At room temperature, the dielectric parameters are 𝜀 ,||= 19.5, 𝜀 ,||= 

41.5, 𝛾|| = 17.0 cm−1, 𝜔 ,|| = 153.5 cm−1, 𝜀 , = 10.0, 𝜀 , = 26.0, 𝛾  = 28.0 cm−1, 𝜔 ,  = 253.5 

cm−1, Lyddane-Sachs-Teller relation, (𝜔 , = 𝜔 , 𝜀 , /𝜀 ,  ),  𝜔 ,|| = 224.2 cm−1 and 𝜔 ,  
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= 408.8 cm−1. Depending on the sign of the real part of the relative permittivity in a given direction, 

LiNbO3 can have one of the two terahertz hyperbolicity bands [76]. For type I hyperbolic bands, 

𝜔 ,|| = 253.5 cm-1 and  𝜔 ,||= 408.8 cm−1; for type II hyperbolic bands, 𝜔 ,|| = 153.5 cm−1 and 

𝜔 ,|| = 224.2 cm−1.   

5.3.1 Surface plasmon and hyperbolic phonon polariton dispersion  

The first objective of this work was to numerically the characteristics of HPPs of LiNbO3, SPPs 

of graphene and the combined effects on these dispersion modes in the THz range. The dispersion 

modes for graphene integrated layered material can be determined from the Fresnel’s total 

reflection coefficient [78]. The reflection coefficient of TE-polarized and TM-polarized waves 

propagating in the normal direction from the air side in each layered structure (as differentiated in 

Fig. 1) can be generally expressed as (see chap. 2.3), 

                                                             𝑟 =  ,                                                    (5.3) 

                                                              𝑟 =  ,                                                   (5.4) 

where the subscripts 1, 2, and 3 correspond to the air, ferroelectric material, and substrate, 

respectively. Graphene is treated as a 2D conducting sheet in the reflection coefficient calculation 

while solving Maxwell’s equation with appropriate boundary conditions [79]. The reflection 

coefficient 𝑟 , and 𝑟 ,  (for figure 2.2b) is given by (see chap. 2.2), 

                                                   𝑟 =  
,

,                                                     (5.5) 
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                                                   𝑟 =  
,

,

,                      (5.6) 

                                                    𝑟 =  ,                                                               (5.7) 

                                                   𝑟 =  ,                                                                (5.8) 

where 𝑘 = 𝜀 𝑘 − 𝑘 , 𝑘 = 𝜀 𝑘 − ,

,||
𝑘 , 𝑘 = 𝜀 𝑘 − 𝑘  , 𝑘 = 𝑘 , 𝑘 =

𝜀 𝑘 − 𝑘 , and 𝑘 = 𝑘 are propagation vector in perpendicular direction at each medium, 𝑘 , 

is the tangential component of the wavevector along the propagation direction (x-direction) that 

gives general dispersion modes. 𝜇  and 𝜀  are permeability and permittivity in vacuum, 

respectively. The Fresnel coefficients for figure a is evaluated by setting  𝜎 = 𝜎 = 0  in and for 

figure b 𝜎 = 0.   

5.3.2 Purcell factor 

There are significant effects of the surface plasmon-phonon modulated light-matter interaction of 

graphene in the hyperbolic material on the lifetime of SE processes of quantum emitters in the 

THz range.  The competing SE rate (Purcell spectra) [80,81,82] in the presence of a dipole emitter 

oriented in the z-direction (perpendicular, 𝑷 = 𝑝 �̂�) above a semi-infinite plane (the three 

schematics in Figure 1) normalized by the emission of dipoles in free-space is (see chap. 2.4) 

                                                    = 1 +  𝑅𝑒 ∫ ,                                     (9) 
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 where 𝛤 =
| |

ℏ
  is the spontaneous emission rate of a dipole in free-space, 𝑘 =  𝜀 𝑘 − 𝑘 , 

and 𝑟   is the TM- polarized total reflection coefficient of a give layered medium.   

The choice on perpendicular orientation in this work is mainly for parallel oriented dipole leads to 

SE rate into SPs of a single emitter gives half the corresponding value to the same perpendicular 

emitter direction to the [81,83]. Figure 5.1 depicts the schematics of three structure configurations 

to study HPPs of ferroelectric and SE rates of a thin slab on substrate (c) structure. A graphene on 

the surface of the ferroelectric slab and (d) ferroelectric sandwiched between two graphene layers 

(e). The graphene layers are connected in such a way that an external voltage source can be used 

to modulate its optical properties.  

5.4 Surface plasmon and hyperbolic Phonon polariton dispersion 

5.4.1 Graphene surface plasmon chemical potential 

First, we investigate independently the optical response of an infinite graphene sheet in air and 

in a thin slab of LiNbO3 on substrate in low terahertz frequencies. In figure 5.2 (a, b) we plot the 

propagation vector and wavenumber of highly doped freely suspended graphene for chemical 

potentials 𝜇  = 0.1 eV and 𝜇  = 0.3 eV, obtained from the false color map of the imaginary part of 

the Fresnel reflection coefficient (Im (𝑟 )) for a TM-mode incident field using Eq (5.5). In freely 

suspended graphene the surrounding dielectric permittivity is set one. The bright false color are 

indicators of the surface confined electromagnetic waves created due to the incident light coupling 

with the electrons known as surface plasmon polaritons (SPPs). Increment of the chemical 

potential shift the narrow bright region to lower 𝑘  due to energy loss of the incident light and 

smaller propagation loss.  The confinement of SPPs towards lower 𝑘 , is verified in both 

experimental and theoretical works [84,85,86,87].  
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Figure. 5.2. (a) and (b) TM-polarized illumination-induced surface plasmon dispersion strength 
color maps from the imaginary part of the reflection coefficient for two selected Fermi-energies of 
free-standing graphene. (c) and (f) dispersion hyperbolic-phonon-polariton of 50 nm and 200 nm 
thickness of the LiNbO3 slab on a substrate of the type I and II hyperbolic band ranges (white 
dashed lines). 
 

In graphene, higher chemical potential increases both the real and imaginary parts of the 

conductivity of graphene, thereby reducing the confinement surface modes far from small 

wavelengths. Graphene can also support surface plasmons for TE-polarized fields for specific 

frequency intervals [88,89,90]. Loosely bound propagating TE SPPs can be achieved when the 

imaginary part of the conductivity has a negative sign, Im(σ) < 0, [91], which is further away from 

the THz range [89] of our focus. Thus, we are interested in the effects of TM SPPs in the 

hybridization process.   
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5.4.2 Ferroelectric LiNbO3 hyperbolic layer phonon polariton   

To understand the behavior of phonon-polariton modes of thin LiNbO3 on the top of dielectric 

substrate (𝜀  = 2.5) without graphene, a color map (Im (𝑟 )) of Eq. (5.3) is calculated by combining 

Eq (5.6) and Eq (5.7) while  𝜎 = 0. Figure 5.2(c and d) depicts results of two different LiNbO3 

thicknesses, t = 50 and 200 nm. The dispersion consists of two distinguishable (enclosed by dashed 

white lines) highly quantized dispersive local density of states often referred to as hyperbolic-

phonon-polaritons (HPPs), analogous to studies in hBN and Bi2Se2 [92]. These modes are standing 

waves propagating inside the ferroelectric. The HPP modes are bounded inside the hyperbolic band 

region (type I and type II). From figure 5.2(a) the HPP modes monotonically increase for small 𝑘  

and become flat at large 𝑘  at higher frequency in the type II region, while in the type I energy 

band, large  𝑘  exist towards lower bound frequencies. The opposite HPP modes result in negative 

group velocity in type II and positive group velocity in type I, implying opposite natured results in 

anomalous reflections as measured experimentally in other hyperbolic metamaterials [93].  

Compared with that of most conventional natural hyperbolic media, the dispersion bands in 

LiNbO3 are towards positive bands at higher frequency.  However, artificially using two or more 

different material combinations can be achieved as it is shown in [94]. It is important to emphasize 

that the number of quantized HPP modes gradually increases in hyperbolic material with t figure 

5.2(d). After a few hundreds of nm of t, the number of dispersion modes rises to that of semi-

infinite bulk hyperbolic LiNbO3, a limit which is not shown here. 
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5.5 Hybrid graphene ferroelectric LiNbO3 system 

5.5.1 Hyperbolic ferroelectric layer single graphene hybridized modes 

Next, the heterostructure structure graphene/ferroelectric/substrate system figure 5.1(b) for TM 

incident light is investigated. The dispersion properties of for three chemical potentials, 𝜇  = 0.1 

eV, 0.3 eV, and 0.6 eV, and ferroelectric layer, t = 50 nm and 200 nm, calculated using Eq (5.3) 

are given in figure 5.3. The first observation due to addition of graphene is the presence of strong 

dispersion above the type I, between the two bands, and below type II energy range of the 

ferroelectric LiNbO3. These dispersion modes are not purely graphene SPPs or ferroelectric HPPs, 

but rather a combination effect regarded as hybridized surface plasmon phonon–polaritons 

(HSPPPs) modes.  For low chemical potential 𝜇  = 0.1 eV, figure 5.3 (a, and d), these modes 

appear just above type I hyperbolicity. Increasing the Fermi energy to 𝜇  = 0.6 eV leads to 

increasing HSPPPs modes further away from type I band with high energy while the momentum 

shifts to lower 𝑘 .  The shift in momentum towards the light cone indicates that the chemical 

potential results in weakly confined HSPPPs. This is different from graphene SPPs, where the 

dispersion follows 𝜔 ∝ 𝑘 , as in figure 5.2(a, b). HSPP modes in the region above the upper 

limit of type I exhibit nearly linear dispersion and indicate neither pure graphene effect. Most 

importantly, as the t increases for the same chemical potential, HSPPPs modes above the type 

I band region stay the same as a further illustration of graphene-dominated hybridization. Inside 

the type I band, for low chemical potential, the HPPs modes are observed while pushed further 

to higher 𝑘  with more negative slope. In addition, increasing the chemical potential also leads 

to a significant decrease in the phonon density of states.  
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Figure 5.3. TM-polarized illuminated surface plasmon dispersion strength color map of the 
imaginary part of the reflection coefficient for three selected chemical potential for 
air/graphene/LiNbO3/substrate. The thickness of the ferroelectric is 50 nm for (a – c), 200 nm for 
(d – f). TM- polarized field direction 2D schematic of the structure is shown in (c).  
 
Above the lower limit of type II band, HPP modes become strongly dependent on the graphene 

SPPs hybridization. Near the lower 𝑘  the dispersion shows HPPs. But as the momentum 

increases, the dispersion that crossed above the type II band reverse towards inside the type II 

energy. The movement is due to the momentum strength of HPPs and the SPPs at lower 

frequency are strong towards small 𝑘 . The shift of the HSPPs above type II bands weakens for 

large t. In the case of frequencies below the lower limit of the type II region, independent of 

size of the ferroelectric, additional dispersion modes are observed for 𝜇  = 0.1 eV at lower 𝑘  

and frequencies.  These weak nonlinear dispersion curves attain flat values of higher 𝑘  in the 

lower limit of type II band. Since none of these modes were observed in ferroelectric/substrate 

system, only graphene SPPs can lead to their formation. This is further elaborated by the rise 

of chemical potential. Higher chemical potential pushes these modes to lower 𝑘 , merging with 

the light cone for 𝜇  = 0.6 eV, as in figure 5.3.  
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5.5.2 Hyperbolic ferroelectric layer double graphene hybridized modes 

5.5.2.1 Identical double graphene hybrid HSPPs  

An additional system we considered for the hybridization process of HSPPs is the placement of 

a surface plasmon source on either side of the ferroelectric LiNbO3, the structure shown in figure 

5.1(c). Figure 4.4(a – i) displays the results of a thin LiNbO3 layer sandwiched between two 

graphene layers for equal chemical potential; we consider them as symmetric sources.  For 𝜇 = 

𝜇 = 0.1 eV, the hybridized modes both appear outside the two-band reststrahlen with longer 

wavevectors.  The HSPPs modes in the type II band are pushed outside it is upper limit for thin 

ferroelectric slab extending in to type I band. When the ferroelectric film thickness increases, the 

number of phononic modes moves towards the type II band region. 

  
Figure 5.4. TM polarized illuminated surface plasmon dispersion strength color map of the 
imaginary part of the reflection coefficient for three selected Fermi-energies of free 
air/graphene/LiNbO3/graphene/substrate. The thickness of the ferroelectric is 50 nm for (a) (b) 
and (c), 100 nm for (d) (e) and (f), 200 nm for (g) (h) and (i) and 𝜇 =   𝜇 . 
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To efficiently excite the HSPPs to higher resonance and minimize the loss, we increased the 

chemical potential of the two graphene layers to  𝜇 = 𝜇 = 0.3 eV and  𝜇 = 𝜇 = 0.6 eV.  The 

effect of the chemical potential becomes prominent above the upper limit of type II for chemical 

potential 0.3 eV, and for 0.6 eV the wavevectors are pushed to larger wavelengths, close to the 

light cone.  For films less than 50 nm, the hybrid modes are dominated by the graphene surface 

plasmon. It is important to notice that for 0.6 eV, separate weak and strong HSPP modes are 

obtained, contrary to the case of two-graphene separated by a vacuum or dielectric crystal where 

the graphene surface plasmon modes merge together at higher energies. However, such claims are 

noticeable for equal chemical potential and t = 100 nm.  Compared to single graphene system 

nearly above type I band linear dispersion is exhibited for larger t and larger chemical potential. 

In the intermediate condition, graphene-like nonlinear HSPP dispersion can exist. This analysis 

indicates that linear and nonlinear frequency and momentum dependent excited HSPPs can be 

controlled through the applied voltage. The dielectric function of the hyperbolic material and its 

size strongly affects the dispersion mode below the upper limit of the type I region.  In general, 

unlike for single-layer graphene, double-layer graphene systems show strong hybridization effects. 

This represents a significant advantage over graphene/ferroelectric/substrate systems where the 

hybridization process needs a large chemical potential. The above analysis also shows the 

possibility to cause mixed modes, as is seen in the case of the highly influenced dispersion. 

5.5.2.2 Dissimilar graphene ferroelectric HSPPs 

Since we are interested in producing delicate HSPPs modes, we need a significantly high gate 

difference. Therefore, the ferroelectric enclosed between two graphene systems and gated by 

dissimilar chemical potential is calculated, with the results shown in figure 5.4(a – d).  In these 

systems, to control the hybridization process we focus on the chemical potential of one of the top 



  

86 
 

graphene monolayers while keeping the other fixed. First, we consider a chemical potential  𝜇 ,  

= 0.1 eV for the graphene at the top of the ferroelectric and 𝜇  = 0.6 eV for the bottom graphene 

layer with a constant thickness, t = 50 nm. In the region above the type I hyperbolic band there 

exist two distinct HSPP dispersion bands because high chemical potential leads to higher 𝑘 . The 

first HSPP curve which is close to the light cone comes from the bottom graphene while the second 

curve with higher momentum is from the graphene on the top of ferroelectric. Increasing the 

chemical potential of the top graphene to 𝜇  = 0.3 eV pushes the second dispersion mode close to 

the light cone. Gate modulation of hybrid modes between two dissimilar graphene layers shows 

that formation of symmetric and antisymmetric electric fields between two graphene sheets 

separated by a vacuum [95,96,97], dielectric between the two graphene [98], and hyperbolic slab 

[40], are a result of phase difference.  

 
Figure 5.5. TM polarization illuminated surface plasmon dispersion strength color map of the 
imaginary part of the reflection coefficient for different Fermi-energies for the top and lower 
parts of a graphene free air/graphene/LiNbO3/graphene/substrate. The thicknesses of the 
ferroelectric are (a – b) 50 nm and (c – d) 100 nm. (e) 2D schematics of ferroelectric layer 
sandwiched between dissimilar graphene ( 𝜇  ≠  𝜇 ). 
 



  

87 
 

When the two graphene sheets are gated with identical chemical potentials, the dispersion modes 

merge together as shown in figure 5.4(c).  At higher frequencies, through selective asymmetric 

chemical potential, it is also possible to obtain single HSPPs, as shown in figure 5.5 (c – d), for 

large 𝑘  as reported by [40, 99]. In addition, for ferroelectric thickness t = 100 nm, the HSPPs 

mode converge, creating weak coupling of the momentum. The larger the separation of the two 

graphene sheets, the weaker the interaction, hence the graphene’s acting as identical graphene even 

with different chemical potential. The effect of the dispersion for large wavevectors comes from 

the top graphene as evidenced in the figure 5.3 and figure 5.4 when the chemical potential is 0.3 

eV. In the region below the upper limit of the type I hyperbolicity,  𝜇   = 0.1 eV for t = 50 nm and 

100 nm, strong HSPP modes are found for higher frequency and low 𝑘  and shift to lower 

frequency as the 𝑘  increases. The HSPP modes here cross into the type I range for lower 𝑘  and 

higher frequencies and return for larger 𝑘  towards the lower limit of the type II band and stay flat. 

It is also noticeable that at lower frequencies, additional surface modes are below the minimum 

wavenumber of the type II band. These dispersion modes don’t cross the lower frequency range of 

the type II and stay flat for higher 𝑘  when 𝜇  = 0.6 eV for t = 50 nm and 100 nm from Figure 5.  

As in a symmetric graphene system, above type I hyperbolic region one can find several HSPP 

modes for the same momentum, kx, for t = 50 nm. Such cases are less observed for t = 200 nm and 

even larger t values. An additional effect observed is when we have two graphene sheets, the linear 

dispersion behavior observed in a specific energy range is not seen, compared to single graphene. 

The variation of the top graphene and bottom graphene chemical potential offers a great means to 

break the symmetric nature of the hybridization behavior for thin ferroelectric films, as opposed 

to the thick case where the total effect appears as if the chemical potential was symmetric. 
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5.6 Spontaneous emission (Purcell factor) in 2D and hyperbolic hybrid material 

5.6.1 SE rate in hyperbolic ferroelectric layer single graphene  

In this section, we consider the problem of the SPPs and HPPs mixing in SE. Plasmon modulated 

local density of state of hyperbolic material lead so temporal modulation of near and far field 

emission of radiation.  The strength of SE rate related to the available hybrid mode and local 

density of states.  We validated SE rate modulation numerically from Eq. (5.9) by impressed dipole 

comparing results from thin ferroelectric layer and graphene gated ferroelectric layer.  

 
Figure 5.6. Rate of spontaneous emission of different dipole distances modulated with different 
Fermi energies.  The results show the SE as a function of distance of point dipole located in the 
air medium and frequency for air/graphene/LiNbO3/substrate (2D schematics, f) when 𝝁 = 0.0 
the system reduces to air/LiNbO3/substrate (2D schematics, e).  (a) d = 10 nm (b) d =100 nm for 
ferroelectric thickness of 50 nm.   (c) d = 10 nm (b) d = 100 nm for ferroelectric thickness of 200 
nm. 2D schematics of dipole orientation and location without graphene (e) and with graphene (f), 
respectively  
 
In figure 5.6 we plot the SE emitter positioned on the z axis at a distance d in the air medium 

oriented in the z direction (2D schematics e and f) obtained from Eq (5.9). The green line with 
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the legend 𝜇  = 0.0 (without graphene), indicates the HPPS response for the point dipole evaluated 

from Eq (5.9) of LiNbO3 thin layer on a substrate. SE resonant peak spectral enhancements were 

in the order of 107 and 106, respectively for t = 50 nm and 200 nm for d = 10 nm, as shown in 

figure 5.6(a and c). The peak resonances can be traced back to the HPPs in figure 5.2 (c-d).  The 

location of the peak position of the spontaneous emission is near the upper limit frequency of the 

type I and type II regions. Also, the sharp dip in the SE in the two Restrahallan band corresponds 

to the location where the perpendicular permittivity is ε⊥ ~ 0. Increasing the emitter separation to 

d = 100 nm causes the emission spectrum to be lowered by nearly a factor of 100 and narrows the 

spectrum width, as shown in figure 5.6(b and d).  The emission rate also rapidly decreases with 

the increasing thickness of LiNbO3 from 50 nm to 200 nm and is independent of the dipole 

position. However, these decay rate process variations will not change with LiNbO3 thickness after 

a few 100 nm, which is not shown here. In the case of graphene inclusion graphene on the top 

ferroelectric, the SE rate decreases inside the two-band region due to the temporal modulation 

of the local density of states as discussed in the dispersion mode of adding graphene.  For a 

dipole close to the graphene, d = 10 nm the SE rate is dominated by graphene outside HPPs. 

Significance of the graphene property is observed from gradual shifts to higher energy with the 

chemical potential in the type II band disappear due to graphene plasmon dominance (red arrow) 

in figure 5.6 (a-d). Above the Type I band region the chemical potential contributes by increasing 

the emission rate due to HSPPs modes (blue arrow).  However, the strength of the SE becomes 

weaker as the chemical potential gets higher.  As the dipole is positioned farther away, d = 100 

nm, a lower spontaneous emission rate is calculated, largely because the evanescent waves with 

penetration depths below the dipole distance no longer contribute to the emitter interaction while 

the peak emission is also stronger. The shift produced by hybridization in the SE peaks is distinctly 



  

90 
 

separated for the margin of chemical potential selected; the energy SE rate also can reach to the 

upper limit of the type II band.  The major difference for the dipole located at 100 nm with the 

ferroelectric size is that the spontaneous emission peak shift values are more drastic for t = 50 nm 

than t = 200 nm. The height of this peak decreases as d increase and its position is dependent both 

on d and chemical potential as in Figure 6(b, and d). For a dipole near the graphene, d = 10 nm, 

the SE rate can decrease by a factor of 10 when the chemical potential of the graphene increases 

to 0.6 eV in the type II band and by a factor of 100 times in the type I region for both ferroelectric 

t = 50 nm and 200 nm figure 5.6(a and c).  On the contrary, SE rate in thin ferroelectric remains 

high at low frequencies where both hyperbolic and mainly surface modes are supported.  There is 

a clear trained showing that SE rate can increased from 102 to 103, for dipole far from the hybrid 

system and when the dipole is nearer, above the Type I band.  

5.6.2 SE rate in hyperbolic ferroelectric layer in double graphene  

 
Figure 5.7. Rate of SE of different dipole distance modulated with different Fermi energy.  The 
result shows the Purcell factor as a function of distance of dipole located in the air medium and 
frequency for air/graphene/LiNbO3/graphene/substrate identical graphene (a) 𝜇 =   𝜇 ,  (a) d = 
10 nm, t = 50 nm (b) d = 100 nm for t = 50 nm (c) d = 10 nm, t = 200 nm and (d) d = 100 nm, t = 
200 nm respectively. (e) identical graphene ( 𝜇 =   𝜇 ) sandwiched ferroelectric layer point dipole 
location.  
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When a graphene is introduced on the top and bottom of LiNbO3 figure 5.7 (e), SE rate effectively 

changes. We use identically gated graphene for SE calculation. When 𝜇 = 𝜇  = 0.1 eV, small 

peaks are observed in the Type II band and the peaks in Type I band vanishes. The peaks show 

similar trained when there is single graphene and without graphene for d = 10 nm for t = 50 nm 

and t = 200 nm. The nature of this peaks is from HPPs than HSPPS since weak hybrid mode exists 

in this band, figure 5.4 and 5.5. As the chemical potential of both graphene increases to 0.6 eV 

HSPPs mode contribution dominates by flattening the SE rate in Type II band. Distinct resonance 

SE peak shift in Type II band are more noticeable in double graphene system figure 5.7 (c and d) 

than single graphene figure 5.6(c and d) when the dipole is located far from the top graphene, d = 

100 nm. In both single graphene modulated or double graphene modulated ferroelectric the SE 

rate bellow Type II band is dominated by the properties of graphene. Furthermore, HSPPs modes 

play opposite roles from those of the SPPs for SE, i.e. suppressing the SE in the hyperbolic regions 

and enhancing outside the hyperbolic region.   

5.7 Conclusion: 

In conclusion, we studied heterostructure composed of graphene and ferroelectric film hybrid 

dispersion modes and SE process in THz range. Comparative analysis of SPPs waves formed in 

graphene affects the local density of state of the HPPs bands of the ferroelectric film. HSPPs 

supported can extend beyond the two RS band abounded of the ferroelectric. Lower frequency and 

large wavevector SPPs mode of graphene couples with the lower band HPPs mode causing the 

crossing of LiNbO3 lower bound band and increases the group velocity for actively tuned higher 

chemical potential. This HSPPs mode formed in the lower-frequency region do not extend to large 

wave vectors. In addition, the HSPPs modes further modulated by the number of graphene in the 

hybrid system. Increasing the number of graphene from single to double layers allows more HSPPs 
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inside the effective hyperbolic regions which is performed simultaneous tuning both graphene.  

Numerically calculated SE rate of the hyperbolic band contribution of LiNbO3 compared with that 

of the graphene integrated hyperbolic material elucidated both enhancement and reduction are 

achieved.  The HSPPs modes provide a strong enhancement of SE compared to outside the 

hyperbolic band of the pure ferroelectric layer. There is also a ferroelectric film thickness that can 

maximize hybridization of HSPPs, especially for small distance radiation source, and thus SE rate. 

In addition, doubling the graphene layer result in higher modification of SE rate.  Therefore, hybrid 

mode modulation of light matter interactions of 2D material plus ultrathin film of hyperbolic 

ferroelectric material could lead to potential applications in the area of near field radiation, 

thermovoltaic devices and in THz waveguiding.   
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Chapter 6 

Summary and Future Direction 

In this dissertation’s first section, we described adhesion layer contribution on plasmonic gold 

nanodisk, one of the promising structures and materials for an application such as nanoantenna, 

nanosensing devices from optical range to near midinfrared. Considering Ti adhesion to gain a 

general understanding in plasmon response to the effect of noble metals assuming that other 

adhesion layers tend to show similar optical properties. We analyzed both quantitatively and 

qualitatively from theoretical standing point light absorption, scattering, and extinction 

contribution of adhesion material. Spectra of optical responses of single gold nanodisk showed 

substantial damping of confined plasmon due to Ti. The result concluded gives way to overcome 

confined plasmon deterioration and provides a useful tool applicable to similar materials and small 

nanostructure that requires adhesion layer during the fabrication process.  Hence, expanding this 

numerical work to explore other adhesion layers; Cr, Cr2O3, TiO2 and Indium Tin Oxide (ITO), 

coupling and losses of the confined surface plasmon spectra in a single nanoparticle is one of future 

prospects. In addition, we look forward to more understanding of the physical mechanism 

adhesion material contribution in single nanoparticle plasmonic deriving analytical solutions.  

This will be done solving Maxwell’s equation by implementing the quasi-static dipolar 

approximation method.  This will be supported by both experimental and computational results 

from several literatures summarized as a review chapter and is another direction we hope to 

address as progress in plasmonics.  

 

The second part of the disseration is devoted to the study of light-matter interactions mediated by 

anisotropic 2D material illuminated by a plane wave. We presented a newly discovered anisotropic 
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2D material, black phosphorene, plasmonic properties and effects of dielectric environments.  Our 

results suggest that the surface plasmon properties of black phosphorene of ribbons of different 

geometrical parameters from mid-infrared to high infrared regimes could be exploited to probe the 

efficiency of plasmonic enhanced absorption. Furthermore, localized surface plasmon and 

enhanced absorption of periodic BP nanoribbons are affected strongly by free carrier density.  

Introduction of shielding thin dielectric, such as hexagonal boron nitride beside preserving the 

edge mode plasmonic nature of BP, allows for an unprecedented control of the resonance energy. 

One of the prominent properties of 2D materials is that their optical properties differ based on the 

number of sub atomic layers. This means the light matter interaction will be different from 

monolayer to bilayer, etc. Further progress we look forward to addressing on anisotropic plasmonic 

responses of 2D BP for patterned nanoscale structure (rectangle, disk, etc), ribbon, based on layer 

dependence. In addition, significant leaps in fabrication of BP with several types of van der Waals 

(vdW) structure from single layer to multilayer has been achieved in the lab in the past few years. 

We see this as a great potential area of research possibility in hybridization of surface plasmon 

from two distinct 2D materials (e.g. BP and graphene) for modulated terahertz metamaterial 

applications.   

At last, we extend the impact of prominent 2D material graphene in combination with hyperbolic 

heterostructures. The core this part of the thesis deals with the study of hybridization of surface 

plasmon with hyperbolic phonon polariton modes and implications of the electrostatic gating in 

low THz.   Using the theory of transfer matrix, we show that the monolayer graphene surface 

plasmon hybridization with hyperbolic phonon polarization local density of state of natural 

hyperbolic material, ferroelectric LiNbO3.  The results achieved elaborate hybridization processes 

significantly regulated by the electrostatic gated top (single) graphene and top and bottom (double) 
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graphene layer. By comparing the SE of the hyperbolic band contribution of hyperbolic material 

with that of the graphene integrated hyperbolic material, elucidated flexible enhancement as well 

as inhibition of spontaneous emission. Regulating emission of radiation and controlling has been 

an excellent concept for super Plank radiation (heat transfer beyond Plank radiation limit). A 

process that requires bringing two objects of temperature, 𝑇  in one end, and 𝑇  in the other end 

(𝑇 ≠ 𝑇 ), separation of a few nanometers closer. Such condition leads to EM radiation from 

coupling of surface hybrid evanescence field and propagation field.   Theoretically based on the 

solution of Maxwell equations via the fluctuation-dissipation theorem, actively controlling 

radiative heat flux, optimized photon tunneling probability from higher temperature end to lower 

temperature applying external voltage is a main future work we will address for hybrid graphene 

ferroelectric systems. 
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Appendix: 

A. Optical constant of gold and Ti  

 
 
 
 
 
 
 
 
 
 

Figure A. S1. Complex dielectric constants of gold and titanium, (a) real and (b) 
imaginary. (c) Shows calculated skin depth as a function of wavelength for both gold and 
titanium. 

 
The computational method requires the optical properties of the material; specifically, it requires 

wavelength dependent dielectric constants of the materials. Figure A (S1 a) is plotted for the real 

part of the dielectric constant 𝜀  for both titanium and gold. In wavelength range ~ 200 nm to ~ 

600 nm, Au has slightly higher values relative to Ti, while below 600 nm the real part for Ti 

remains almost constant while the Au dropped significantly to large negative values. In the case 

of the imaginary component 𝜀  as showed in figure A (S1 b), below 400 nm the Au has larger 

dielectric constant than Ti, while above 400 nm Ti gets larger than Au.  The skin depth, which 

explains penetration of the electromagnetic field inside metals, is calculated for the optical to mid-

infrared regimes and shown in figure A (S1 c). The skin depth of Au ranges from 7 – 23 nm while 

for the Ti the range is from 13 – 24 nm. The amplitude of Au skin depth drastically increases up 

to wavelengths of 500 nm and drops significantly until 750 nm, and then remains nearly constant 

after 750 nm. In case of Ti skin depth decreases from 200 nm to 400 nm and increases continuously 

from 400 nm to higher infrared. 
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B.1. Spectrum of Gold nanodisk with adhesive layer 

To illustrate more the shift of resonance mode, we introduce Figure B (S2) that presents the 

inherent optical interaction efficiencies based on nanodisk size. The specific focus of the examples 

shown in figures B (S2 a–c) is to demonstrate the changing plasmonic behavior of calculated 

absorption scattering and extinction spectra for all the diameters (D = 75, 100, 120, 140 150, 160, 

175 180 and 200 nm) for adhesion layer thickness of 5 nm. The spectral profile broadens as the 

size increases for all diameters. A large shift of the dipole peak and a much more complex spectrum 

occur when the particle radius is increased further.    The absorption and the extinction show similar 

variations, with a small secondary peak, contribution from higher order modes. This concept can 

be verified by calculating the surface charge distribution.  

 

 
Figure B. S2. Comparison of the spectra of composite disks of titanium adhesion layer thickness 
(tTi) = 5 nm and the gold layer thickness (tAu = 15 nm) as a function of wavelength. (a)  Calculated 
absorbed spectra (b) scattering spectra, and (c) extinction spectra. The Au and Ti nanodisks had 
values for the diameter of 75, 100, 120, 140, 150, 160, 180 and 200 nm.  
 

B.2 Surface charge distribution 

To do so we implemented simple integral forms of Gauss’s law of electrostatic of dielectric 

medium and visualize computationally the surface charge density as follows. The total charge 

incudes in a nanoparticle in a dielectric medium is  
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Ф =  
ԑ

=  ∯ 𝐧 ∙ 𝐄dS = ∯(𝐱 ∙ E + 𝐲 ∙ E + 𝐳 ∙ E )dS                       (B.2.1) 

where Ф  is the electric flux through the nanodisk surface S, ε0 is the permittivity of vacuum, 

𝐧 = (𝐱, 𝐲, 𝐳) is the outward normal unit vector of the metal surface and E = (Ex, Ey, Ez) is the 

local confined electric field. The total the surface charge density for metallic structure is located 

around the outer surface given by:  

   Q =  ∯ ρ dS                 (B.2.2) 

From Eq. (B.2.1) and (B.2.2) the surface charge distribution of the nanodisk is  

    ρ  ε ε (e ∙ E + e ∙ E + e ∙ E )                (B.2.3) 

Primarily the quadrupole moment, becoming very distinct in its amplitude as the diameter grow. 

The main features of the scattering, absorption, and extinction spectra explained in terms of 

resonant excitation of the dipolar-like, 1st higher, and 2nd higher can be shown based on surfaces 

charge density in plasmonic structure.  FEM simulated using Eq (B.2.3) strong localized surface 

charge density for plane wave normal incident excited D = 200 nm nanodisk is plotted to verify 

that the modes are formed due to coupling of the strong dipole plasmon resonances of the 

nanodisks, figure B (S3 e and f) calculated at resonance wavelengths 990 nm. The weak 

quadrupole nature (resembles higher order) modes near 440 nm becomes apparent from both 

surface charge density profiles strong localized figure B (S3 a and b). We also included Figure 

B(S3 c and d) intermediate wavelength 600 nm the transition from higher mode to dipolar mode.  
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Figure B. S3. Surface charge distribution normalized by (10^-11) and field enhancement of 
nanodisk D = 200 nm without adhesion Ti layer side and top view; at wavelength of 440 nm (a 
and b), 600 nm (c and d), and resonant wavelength of 980 nm (e and f), respectively.  
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C. 1 Optical conductivity and dielectric constant BP  

 

Figure C. S1. Optical conductivity and dielectric constant of BP for  N = 1013 cm-2 the calculated 
from Drude model. 

 

Figure C. S2. Plot of the real part of the SPP modes supported by a BP infinite sheet for four 
different dielectric media as measured by its vacuum wave vector. 
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C. 2 Electric field distribution BP ribbon 

 

Figure C. S3.  Electric field distribution at different direction for 𝑛  = 1.0, n2 = 2.5 of normal-
incidence TM mode fundamental mode and higher mode for BP nanoribbons N = 1013 cm-2 
width of ribbon 150 nm and period 250 nm.  

 

C. 3. Zigzag-direction Ribbon absorption 

 

Figure C. S4. Simulated absorption spectra for normal-incidence TM mode light polarized 
zigzag directions for different w =150 nm, P = 250 nm, and for N = 1013 cm-2 .   
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C. 4. FWHM of BP Ribbon broadening  

 

Figure C. S5.  Calculated results showing the effects of varying 𝑛  on the absorption spectrum 
broadening with 𝑛  held constant of normal-incidence TM mode. FWHM of fundamental mode 
(𝑚 = 1) for BP nanoribbons (a) surrounded by air (n1 = 1.0 and different substrate materials with 
refractive indices, 𝑛 , and a BP electron density of N = 1013 cm-2 with respect to the refractive 
index of the substrate dielectric layer (𝑛 )(b).  
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C. 5. BP different ribbon width and number density 

 

Figure C. S6. Comparison of the optical response of light polarized in the (a) armchair and (b) 
zigzag directions. (c) - (f) Simulated absorption spectra for normal-incidence TM mode light 
polarized along the armchair and zigzag directions for different w: (c) armchair and (d) zigzag for 
N = 5x1012 cm-2, (e) armchair and (f) zigzag for N = 7.5x1012 cm-2 .  Here, n2 = 1.71, n1 = 1.0, P = 
250 nm, and w is swept from 100 to 225 nm.  

 

D.1. Dielectric permittivity tensor components of LiNbO3. 

 

 

 

 

Figure D. S1. (a) Real parts and (b) imaginary part of the dielectric permittivity tensor components 
of LiNbO3. The red dotted line represents the vertical component, while the blue dash-dotted line 
is the parallel component. The Type I and II bands region are indicated by shaded area [4,5].  

 

Type II  
Type I  
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D.2. Optical conductivity of graphene: 

 

 

 

 

 

Figure. D S2. Optical conductivity of graphene sheet from 0.1 eV – 0.6 eV chemical potential real 
part(a) and imaginary part (b) from Eq (1) showing interband transition gate tunable in THz. Both 
real and imaginary part value increases with chemical potential vial applied voltage. The intraband 
contributes more in the higher infrared and higher THz range [6, 7].  
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