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Abstract

Strongly correlated oxides exhibit a rich spectrum of closely competing orders near the localized-

itinerant Mott insulator transition leaving their ground states ripe with instabilities susceptible to

small perturbations such as lattice distortions, variation in stoichiometry, magnetic and electric

fields, etc. As the field of interfacial engineering has matured, these underlying instabilities in the

electronic structure of correlated oxides continue to be leveraged to manipulate existing phases

or search for emergent ones. The central theme is matching materials across the interface with

disparate physical, chemical, electronic, or magnetic structure to harness interfacial reconstructions

in the strongly coupled charge, spin, orbital, and lattice degrees of freedom. In this dissertation,

we apply the above paradigm to cuprate-manganite and cuprate-titanate interfaces.

We examine ultrathin YBa2Cu3O7/La2/3Ca1/3MnO3 multilayers, where interfacial charge re-

construction modulates the distribution of charge carriers within the superconducting planes and

thereby act as dials to tune through the cuprate doping phase diagram. The ultrathin nature of the

cuprate layers allows the reconstructed states to be resolved free of a bulk admixture. The de-

pleted carriers are observed to directly enter the CuO2 planes. With increasing LCMO thickness,

magnetic correlations are introduced, and coupling between interfacial Cu and Mn develops.

The reconstructions in spin and electronic degrees of freedom found in cuprate-manganite het-

erostructures are expected to completely mask all other competing interactions. To this end, SrTiO3

is incorporated as a spacer material in cuprate-titanate multilayers to reveal the role of dimension-

ality, interlayer coupling, and broken translational symmetry. At the unit cell limit, a decrease in

carrier concentration is found that directly correlates with underdoping from lost charge reservoir

layers at the interface, while increased STO layer thickness is found to augment the carrier concen-



tration with the charge reservoir layers but has no effect on the doping within the superconducting

planes. Also spectroscopic evidence for charge transfer across the interface between Cu and Ti is

shown to support a recent theoretical prediction of pre-doping at the cuprate-titanate interface in

response to a polar discontinuity at the interface.
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Chapter 1

Introduction

This chapter serves as an introduction into the field of transition metal oxide heterostructures. It

begins with a review of the models which underly the basic physics of oxide materials from the sim-

plistic ionic conventions of interacting charged, hard spheres to the Hubbard model of strongly cor-

related electrons. A review of the materials studied in this dissertation (SrTiO3, La2/3Ca1/3MnO3,

and YBa2Cu3O7) and their properties is included, as well. At the end, the field of correlated in-

terfaces are discussed with an emphasis on the tools available to manipulate existing phases and

search for emergent ones.

1.1 Correlated Oxides

1.1.1 Structural Themes in Transition Metal Oxides

Coordination Geometry

In transition metal oxides (TMOs), variations in structure originate in the underlying bonding

interactions between metal and oxygen that stipulate the coordination geometry between them

in the solid. TMOs are routinely thought to follow ionic structural conventions stemming from

the large electronegativity of oxygen. In this regard, the arrangement of oxygen ligands around

metal ions, which serves as a basis for the resulting structures, depends largely on the geometry

of efficiently packing hard spheres with nonequivalent radii in agreement with Pauling’s Rules.

However, this naive model often fails, and consideration must be given to other factors such as

partial-covalency, dispersive interactions, crystal field effects, etc.
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For a strictly ionic model, bonding is modeled as electrostatic attraction between oppositely

charged, incompressible spheres. Interatomic distances are approximated by the sum of ionic

radii. Typically, the radii are extracted from empirical data through assumptions on the size of the

anion. Values of ionic radii can be found in tables based on calculations by Shannon and Prewitt

[1]. In TMOs, these often serve as a rough predictive tools, although caution must be exercised

in their application. Ionic radii are sensitive to a number of factors competing factors: (1) Ionic

radii depend sensitively on the oxidation state, decreasing with the loss of electrons. (2) Cation

size tends to increase, when a rise in anion coordination naturally creates extra distance reducing

short range repulsion. Anion radii have been shown to vary with coordination as well. (3) Partial

covalency effectively shortens metal-oxygen bonds. (4) Crystal field effects can distort ligand

geometry (e.g. Jahn-Teller effect). Modern tabulations of ionic radii attempt to incorporate many

of these factors and more, however a universally applicable protocol has not been developed.

Given suitable radii, predictions on the kinds of coordination polyhedra likely to develop in a

solid can be made. The simple procedure, termed the radius-ratio rules, is summarized in Figure

1.1. The polyhedron with the maximal coordination will form subject to maintaining cation-anion

contact. This condition places limits on the ratio of cation radius (Rc) to anion radius (Ra) supported

for a given polyhedron. As cation size decreases relative to the anion, the coordination drops down

at the limiting ratios defined in the table. The lower limit in a given coordination is based on the

geometrical requirements for perfect packing, i.e., anions just “kiss” each other while continuing

to make contact with the cation. Below this ratio, anions impinge on each other or lose contact

with the cation leading to a change in coordination. For common oxidation states of 3d transition

metals, ionic radii range from 50 to 90 pm. Assuming an oxygen radius of 126 pm, octahedral

coordination is expected and often observed.

However, lower coordinations and distorted octahedra are common as well. There are several
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Figure 1.1: Coordination polyhedra with corresponding radius-ratios. The radius-ratio is
defined as the ionic radius of the cation (Rc) divided by the ionic radius of anion (Ra). As cation
size decreases, the coordination of anions around the cation must change to prevent anion-anion
contact. This leads to ranges of radius-ratios over which different coordination polyhedra are
stable. Coordination numbers and associated polyhedra are shown. Metal ions (blue) are displayed
in different geometries with oxygen ions (red).

reason for this that show ions are in fact not hard spheres. Instead, observed distances stem from

an equilibrium state of opposing forces. For instance, covalency leads to consolidation in the

sharing of orbitals between different bonds that both strengthens and necessarily shortens them.

Additionally, electron pair repulsion adds geometrical constraints to covalent bonds. In this way,

partial covalency tends to lower coordination and distort octahedral symmetry. Another distortion

significant to the subject matter of this dissertation is the Jahn-Teller effect, in which two opposing

bonds are lengthened. This distortion stems from crystal field effects, and only occurs in select

electron configurations (e.g., d4 high-spin and d9). These configurations are found in the materials

used for this study, Mn3+ in La2/3Ca1/3MnO3 and Cu2+ in YBa2Cu3O7, respectively.
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The Perovskite Family

TMOs display a diversity of complex crystal structures derived from the abundance of stable coor-

dination geometries and the various means by which polyhedra can be linked to form metal-oxygen

networks in the solid. One of the most common coordinations, octahedral, supports a number of

technologically relevant oxide families, which are often characterized by the different possible

connections between octahedra (see Figure 1.2). For the scope of this writing, we will only need to

focus on one of the structurally simpler classes of corner-sharing ternary oxides, the perovskites.

The perovskite family inherited their name from the mineral calcium titanate CaTiO3, which

in turn is named after the Russian mineralogist L. A. Perovski. Any TMO adopting the same

crystal structure as calcium titanate (see Figure 1.2(d) for ideal perovskite structure) belongs to

this group. Perovskites are represented by the general chemical formula AMO3, where A and M

are cations. The A-site is 12-fold coordinated by oxygen neighbors, and the M-site sits inside

the MO6 octahedra, which form a corner-sharing network running throughout the crystal. Third

row transition metals commonly inhabit the B-site, while the A-site, in keeping with the higher

coordination, typically hosts larger cations (e.g., ionized alkaline earth and rare-earths elements).

The true beauty of the perovskites rest in the their ability to incorporate chemical and structural

variations that necessitate distortions away from the ideal cubic lattice. In terms of ionic radii, the

realization of a perfect cubic structure stipulates that rA + rO =
√

2(rM + rO), where rA, rM, and

rO stand for the A, M, and O ions of the perovskite crystal. Clearly, perfect matching cannot be

expected across the entirety of possible A and M cation pairs. The degree of distortion can be

quantified in terms of the tolerance factor t.

t =
rA + rO√

2(rM + rO)
(1.1)

4



(a)

(b) (c)

(d)

Figure 1.2: Octahedral linkage and ideal perovskite structure. (a) Binary oxides ReO3 and
a large number of ternaries such as the ABO3 perovskites form corner-shared networks. This
linking provides the greatest distance between cations increasing stability. (b) Monoxides typically
configure into rock-salt structures, which demonstrate edge-sharing networks of octahedra. (c)
M2O3 3d oxides commonly take on the corundum structure, where octahedra form face-sharing
networks. The close proximity of cations facilitates metal-metal bonding in some cases. (d) Ideal
perovskite structure.

For t = 1, the ideal cubic structure is realized. Below 1, usually a series of cooperative tilts and ro-

tations amongst the MO6 octahedra distort the structure filling in the extra space between the A-site

and oxygen ions. These octahedral rotations both lower the symmetry of the crystal structure and

reduce the M-O-M bond angle from 180◦, which negatively impacts hybridization between O 2p

and M 3d orbitals. The crystal symmetry is lowered in order from cubic (Pm3m) to rhombohedral

(R3) to orthorhombic (Pbnm) to monoclinic (P21/n).

The adaptability of the perovskite structures to these deformations allow for: (1) the accom-

modation of a wide range of A and M cation pairs, (2) the possibility of mixtures of more than two

types of cations, (3) ordered defects appearing within the perovskite structure, and (4) the mani-

festation of technologically important structural phase transitions (e.g. ferroelectricity). Several of

these properties are essential to the electronic structure of the materials which are the subject of

this dissertation and will be discussed more fully further on.
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Cohesive Energy

While geometric considerations provide a useful guide to predicting the atomic arrangement of

crystals, understanding the stability of these structures requires further examination. At first glance,

it is not obvious that solid TMOs should form. The creation of both an ionized transition metal,

Mx+, and O2− are highly endothermic reactions. However, ionic solids contain positive and nega-

tive ions coupled by strong electrostatic interactions. This Coulomb energy provides the dominant

contribution to the cohesive energy compensating for the energy required to form metal and oxygen

ions.

To calculate the Coulomb contribution to the lattice energy (i.e., the potential energy of the

crystal with all atoms at rest), we need to sum over the electrostatic interactions between all ions

in the solid. The interaction between two ions i and j with charges Qi and Q j, respectively is given

by equation 1.2.

U(ri j) =
QiQ j

4πε0ri j
(1.2)

The sign of the interaction depends on the product of Qi and Q j, therefore non-convergence of the

sum becomes problematic, unless the counting has been arranged carefully. This has led to the

sum being defined in terms of Madelung potentials. For simple cubic structures, the Madelung

Potential is given by equation 1.3,

UMadelung =
1
2 ∑

i, j
U(ri j) = α

NAQiQ j

4πε0R
(1.3)

where R is the nearest-neighbor cation-anion separation, NA is Avogadro’s number, and α is the

Madelung constant. The Madelung constant is specific to a given crystal structure and does not

depend on ion size or charge. Often the Madelung potential cannot be evaluated analytically except

6



for cases of high symmetry, instead numerical techniques typically based on Ewald summations are

required. In general, Madelung energy increases in magnitude with packing efficiency in crystals,

and this explains the preference to form structures with higher cation-anion coordination, which

was an underlying assumption of the radius-ratio rules.

A cursory glance at equation 1.2 suggests that a full accounting of the lattice energy requires the

introduction of additional terms. The Coulomb summation, taken by itself, compresses the crys-

tal volume to the smallest possible value. This tendency is overcome by the repulsive interaction

between electron orbitals of two impinging ions. The repulsive interaction is often parametrized

with an exponential dependence, the Born-Mayer potential. At this point, the lattice energy can be

accurately evaluated for most ionic crystals. As the Coulomb term becomes less dominant though,

knowledge of dispersive interactions and partial covalency will be essential to properly model the

lattice energy. It is possible to approximate them with Lennard-Jones and Morse potentials, re-

spectively. However, a true understanding of covalent bonding necessitates a quantum mechanical

interpretation. In this respect, physicist have developed a number of numerical tools based on tight-

binding methods, and electron correlations can be included as well with modern density functional

theory.

1.1.2 Electronic Structure

Ionic Potentials

TMOs lack conformity to any single picture of electronic behavior. An interpretation of their

properties entails taking both a local view, focusing on the electronic states of individual ions,

and a delocalized approach, considering the extended states formed by hybridization throughout

their metal-oxygen networks. Conceptually, it is simplest to begin with the local view and then

7



progressively advance into the extended one. This will be the course of discussion for this section.

At the end, both of these perspectives will be needed to explain one of the unconventional electronic

states found in many oxides, the Mott insulator.

As stated earlier, oxides routinely follow ionic conventions. In this scenario, the 3d states do

not hybridize and instead remain localized near the cation. Effectively, the cation only experiences

an electrostatic field due to the other ionic charges in the solid. If only the monopole term is

included, then the previously discussed Madelung potential defines the energy landscape between

different electron excitations in oxides. These onsite potentials are exceeding large — on the order

of tens of electron volts. Hence, the energy barrier to excite an electron between different atoms

renders the highly ionic oxides insulating in nature, where the band gap is set by the charge transfer

energy between electronic states on different ions.

0

Free Ions -40 Madelung
Potential

Dielectric
Constant

Overlap

(a) (b) (c) (d)

-30

-20

-10

10

} M 3d

O 2p

Eg

3dn/3dn+1

3dn-1/3dn

2p6/2p5

En
er

gy
 (e

V
)

Figure 1.3: Ionic model of hypothetical MO electronic structure. (a) The energy levels of M
and O free ions. (b) The shift in levels induced by the Madelung potential of the lattice. (c) In-
cluding the polarizability of the medium. (d) Broadening of levels due to hybridization. (Adapted
from the NiO energy level diagram in reference [3].)
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The energy level digram for a hypothetical transition metal monoxide MO (see Figure 1.3)

helps illustrate these concepts [2]. Here, only the two most energetically favorable excitations are

considered:

O2−(2p6)+Mν+(3dn)→ O−(2p5)+M(ν−1)+(3dn+1), (1.4)

Mν+(3dn)+Mν+(3dn)→M(ν+1)+(3dn−1)+M(ν−1)+(3dn+1). (1.5)

Equation 1.4 represents the removal of an electron from 2p6 and the placement of the same electron

on a distant 3dn site. Equation 1.5 shows the removal of an electron from 3dn and the placement

of the same electron on a 3dn site far away in the crystal. (Transitions from possible defect levels

have been ignored for simplicity.) To calculate the energetics of these transitions, first the free

ion energies must be considered. The free ion energies can easily be obtained through tables of

ionization energies and electron affinities. In Figure 1.3(a), the free ion energies have been plotted

in a relative manner. The 2p6 state has been offset by placing the energy of 2p5 plus a free electron

at zero. This is expressed as 2p6/2p5. In the same manner, the 3dn−1 and 3dn levels have been

offset by 3dn and 3dn+1, respectively. As mentioned, the ionization energies of a metal ion and

the second electron affinity of oxygen are highly endothermic, and ionic crystals would simply fall

apart, if not for the strong Coulomb attraction between the ions. Consequently, the energy levels

of O2− and the two different M ionizations are reduced and raised, respectively, by the Madelung

potential. The resulting ionic version of the MO electronic structure is displayed in Figure 1.3(b).

While insightful, this naive model requires requires modifications to better reflect the real physical

situation. First, the transitions take place in the solid and are reduced by the dielectric constant

of the medium (see Figure 1.3(c)). Also broadening of the electronic levels will occur with the

formation of energy bands due to orbital overlap as shown in Figure 1.3(d). The completed energy

level diagram reveals that the conduction and valence bands are of 3d orbital character, and the

9



band gap is derived from the second process (equation 1.5), in which an electron-hole pair is

formed in the separated 3d band. Here, the O 2p band appears below the lower 3d band. The

relative positions of these bands depends on the ionization energy of the metal ion. For higher

ionization energies (found in the late transition metals), the O 2p band would be expected to appear

between the separated 3d bands. This distinction underlies an important classification scheme in

the physics of Mott insulators and will be discussed in more detail later on.

Crystal Field Theory

Up to now, the five 3d orbitals of the transition metals have been presented as degenerate, however

this model is only valid in the case of a spherical symmetric potential. In other words, to lift the

degeneracy higher-order terms of the electrostatic field must be included. This is the subject of

crystal field theory in which the degeneracy of atomic orbitals is broken by a lowering in the sym-

metry of the local charge distribution. In this framework, the potential experienced by a transition

metal ion stems from negative point charges, which represent the nearest neighbor oxygen anions.

The exact nature of the orbital splitting depends crucially on the interaction between the spatially

anisotropic 3d orbitals with the local charge symmetry.

The most commonly considered case is octahedral symmetry Oh (see Figure 1.4(a)). In this

potential, the d orbitals are spit into two sets: the triply degenerate t2g orbitals (dx,y, dx,z, and dy,z)

whose nodal planes face the O 2p orbitals and the doubly degenerate eg (dx2−y2 and dz2−r2) with

lobes pointing directly at the oxygen orbitals. The electrostatic repulsion from the O 2p electrons

raises the energy of the eg states with respect to t2g. The energy separation between them is crystal

field splitting, known as 10Dq.

Often transition metal ions have only partially filled 3d levels. In this case, the electrons present

will fill the lowest lying energy levels first, and clearly occupation of the t2g orbitals should be
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10Dq

Figure 1.4: Crystal field splitting in octahedral symmetry. (a) The degeneracy of the five 3d
orbitals is lifted in the oxo-ligand field. The orbitals split into an eg doublet and a t2g triplet below
the eg levels by the amount 10Dq. (b) Electronic configuration for the low and high spin cases of
a 3d4 ion.

preferred. However, an interesting situation arises beyond the d3 electron configuration. Here,

the addition of an extra electron (i.e., a d4 configuration) demands a choice between placing an

electron in the same t2g orbital as another electron or an unoccupied eg orbital (see Figure 1.4(b)).

The outcome depends on the relative sizes of the crystal field splitting and the Coulomb energy

cost to place two electrons on the same orbital, the pairing energy. Two electrons occupying

same orbital are required to have opposite spins according to Pauli’s rule, and this necessitates

a symmetric spatial wave function. Typically, the exchange constant, JH (in reference to Hund’s

rules), is positive for two electrons on the same atom, and this situation would result in a Coulomb

penalty. With these distinctions in mind, the system can take on two possible configurations, low

or high spin. If the total pairing energy is less than the crystal field splitting (low spin state), then

electrons will doubly occupy the lower energy t2g orbitals first. In the reversed situation (high spin

state), the electrons will first singly occupy all d orbitals starting with the lower energy orbitals
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and then the higher energy eg states. When more than one electron must choose between the high

or low spin state, an intermediate case may result (e.g. trivalent cobalt).

Now that a procedure has been established to find the total spin quantum number S, an applica-

tion of Hund’s second and third rules should give the other angular momentum quantum numbers

L and J. Here, L corresponds to the total orbital angular momentum, and J = L+S. However, it

is well known that the predicted values of the effective magnetic moment given by 2µB
√

J(J+1)

do not agree with experiment for 3d transition metal ions placed in crystal fields. The crystal field

interaction quenches the angular orbital momentum (L = 0), and hence µe f f = 2µB
√

S(S+1).

So far, consideration has been given only to the case of perfect octahedral coordination, which

is a high symmetry crystal field with remaining degeneracies in the 3d orbitals. In lower symmetry

anion distributions, the degeneracy of the orbitals can alomst be completely lifted. The removal

of degeneracy through symmetry lowering is a common effect for a specific set of transition metal

ions (e.g., Mn3+), which are referred to as Jahn-Teller active. These ions possess electron config-

urations, where the spontaneous distortion of octahedron leads to a lower energy ground state. In

Mn3+ ions (3d4), the splitting of the two eg orbitals allows for a reduction in the electronic energy

eg

t2g

3dx2- y2

3dz2- r2

3dxy

3dxz 3dyz,

Figure 1.5: Jahn-Teller Effect. Elastic deformation of octahedra removes most of the remaining
degeneracy in the eg and t2g states that leads to a lower energy electron configuration. The case of
Mn3+ is shown. The singly occupied eg level is now at lower energy, and the increase in 3dxy state
is exactly balanced by the decreases in 3dxz and 3dyz.
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(see Figure 1.5). Of course, this energy savings is balanced by the increase in elastic energy due

to the deformation of the octahedra. If the lone eg electron were not present such as in a Mn4+ ion

(3d3), then the energetics of the system would not favor a distortion.

Hybridization

The 3d orbitals of the first transition series, especially the later elements, have highly contracted

and core-like spatial distributions. In this regard, hybridization between them and oxygen 2p or-

bitals is minimal which justifies the use of the ionic model outlined above. However, a finite degree

of overlap prevails, and the resulting covalent bonding allows electrons to hop or resonate between

different ions. In an MO6 octahedra, symmetry determines the mixing between metal and oxygen

orbitals, which requires the construction of symmetry adapted linear combinations of oxygen or-

bitals. (For a more detailed discussion see reference [3].) In short, the eg orbitals hybridize with

eg (σ*)

t2g (𝜋*)
3d

2p

eg (σ)

t2g (𝜋)

Molecular
Orbitals

Metal
Orbitals

Ligand
Orbitals

(a) (b)
eg (σ)

t2g (𝜋)

Figure 1.6: Formation of molecular orbitals in MO6 octahedra. (a) Bonding combinations
(in-phase) between the metal 3dz2−r2 and oxygen 2p orbitals. The eg orbitals only form σ bonds
(3dx2−y2 not shown). Also bonding combinations (in-phase) between the metal 3dxz and oxygen
2p orbitals. The t2g orbitals only form π bonds (other t2g orbitals not shown). (b) Molecular orbital
diagram for an MO6 complex with octahedral symmetry. The atomic orbitals of the transition
metal and oxygen ions hybridize to form molecular orbitals.
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O 2p orbitals forming σ bonds, where the lobes point along the metal-oxygen bond direction (see

Figure 1.6(a)). The t2g states form π type bonds with the lobes pointing in a perpendicular direc-

tion. The covalent bonding between orbitals can be in-phase or out of phase depending on the sign

of the wavefunction. This results in bonding (denoted σ or π) and anitbonding (σ∗ or π∗) states,

respectively, with the latter occurring at a higher energy.

For a lone MO6 octahedron, these hybridized states are considered molecular orbitals of the

combined nuclei (see Figure 1.6(b)). In molecular orbital theory, the new states are expressed

through a linear combination of the atomic orbitals (LCAO) and take the form

|ψn〉= cn
i |φi〉 , (1.6)

where |φi〉 represent an appropriate basis of valence atomic orbitals, and the Einstein summation

convention has been used. The eigenvalues εn and the coefficients cn
i are obtained by solving the

Schrödinger equation

(Hi j− εnSi j)cn
i = 0. (1.7)

H and S are the Hamiltonian and the overlap matrix, respectively, expressed in the atomic orbital

basis. Since the atomic orbitals states of the metal and oxygen ions are not orthogonal, S will

contain off-diagonal elements.

For partially ionic systems, the molecular orbitals can be treated as perturbations of the atomic

orbitals due to the large energy separation between the M 3d and O 2p states, i.e. that is the amount

of intermixing between atomic orbitals varies inversely with energy separation, but directly with

the amount of overlap. Thus, the bonding states contain a greater degree of O 2p character, and the

anitbonding states are assigned to the M 3d orbitals. Due to the preferential formation of stronger

σ bonds in the eg states versus weaker π bonding in the t2g orbitals, the eg orbitals feel a stronger
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perturbation, and the crystal field splitting is enhanced.

In the solid, MO6 octahedra link together forming a metal-oxygen network, in which the bond-

ing and antibonding states delocalize throughout the periodic framework forming dispersive bands

in place of σ, π, σ∗, and π∗ molecular orbitals. The bandwidth W is directly proportional to the

transfer integral tpd = 〈φM|H |φO〉, which gives a measurement of the ease with which an electron

can be transferred from a metal to an oxygen site. Small transfer integrals lead to narrow bands

(large effective masses). In this way, the TMO bands reflect the atomic orbital character of the 3d

transition metal states which make them up. These contracted (small radial extension compared to

lattice spacing) and anisotropic orbitals typically yield narrow bands with complicated structures.

Also, the interaction between metal sites occurs indirectly via hybridization with oxygen further

narrowing the bands. Thus tight-binding models constructed from atomic Wannier orbitals are the

best first approximations.

Mott Insulators

In band theory, insulators are differentiated from metals through the filling level of the highest

occupied band. Each band in the Brillouin zone contains twice (spin degeneracy) as many elec-

tronic states, as there are primitive unit cells in the lattice. When the valence electron count is

even, an integer number of bands are filled up to a band gap, and the fermi level sits in-between

the conduction and the valence band. The vanishing density of states at the Fermi level results

in an insulator. For an odd count the highest occupied band is only partially field, and density of

states at the Fermi level is non-zero resulting in a metallic system. Under this paradigm, making

an assignment of metal or insulator to any given material appears to be a trivial task of counting

valence electrons. However, in 1937 it was realized that this model failed to correctly predict the

ground state of many transition metal monoxides. The deviation from conventional band theory
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stems from a violation of its underlying assumptions: electrons are independent interacting with

only a static periodic potential. The narrow bands and low conduction electrons concentrations

typical of TMOs diminish electron-electron screening strengthening electron correlations.

Incorporating electron correlations into the formalism remains a complex and continuously

evolving field within condensed matter physics. Although a key simplification can be drawn from

the ionic model. In the earlier MO energy level diagram, the band gap corresponded to the energy

needed to excite a d-electron from one metal site to another (dn + dn→ dn−1 + dn+1). Including

only on-site electron repulsion U , the Hubbard Hamiltonian can be written as

H =−t ∑
〈i j〉

c†
iσc jσ +U ∑

i

(
ni↑−1/2

)(
ni↓−1/2

)
−µN, (1.8)
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Figure 1.7: Mott Insulator. (a) Transition from localized to itinerant behavior in the Hubbard
model. Lower and upper Hubbard bands (LHB and UHB) cross, when the band width W exceeds
the electronic repulsion U resulting in a partially filled band. (b) Energy level diagrams (schematic)
for a Mott-Hubbard insulator (U < ∆). Top: LHB and UHB separated by U yielding an insulating
state. Bottom: BC-MIT resulting in one partially filled band. (c) Energy level diagrams (schematic)
for a Charge-Transfer Insulator (∆ <U). Top: The O 2p band sits in-between the Hubbard bands.
The system is insulating due to the charge gap ∆. Bottom: The oxygen band and UHB overlap
yielding a metallic state. Adapted from references [4, 5]
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where c†
iσ (ciσ) is the creation (annihilation) operator for a single-band electron at site i with spin

σ, and the number operator niσ = c†
iσciσ. The first term captures the hopping between nearest

neighbor sites, while the second represents the Coulomb price U for double occupation of a single

site. The band filling is controlled by the electron density n = N/L, where N is the total number

of electrons and L is the number of lattice sites. In a non-degenerate band, the n = 0 and n = 2

fillings correspond to Bloch-Wilson insulators as expected from traditional band theory. At half-

filling (n = 1), the electron correlation strength U/t drives the system from localized to itinerant

(see Figure 1.7(a)). In the limiting cases, the Hubbard model is exactly solvable. For U/t� 1, the

problem reduces to a free Fermi-gas. For U � t, there is minimal coupling between lattice sites.

Double occupation of a lattice site will require energy t +U , while single occupation only requires

t. In this limit, the electrons will be localized with each site singly occupied.

At some intermediate state of U/t, the ground state of the Hubbard model should undergo

a metal-insulator transition (MIT). Consider a system with a controllable lattice constant, where

every site is singly occupied in an antiferromagnetic ground state. An additional electron can only

be accommodated at the N/2 lattice sites with opposite spin by the Puali exclusion principle. The

N/2 sites, which accept the extra electron, form the upper Hubbard band centered at t +U , while

the remaining N/2 sites form the lower Hubbard band centered at t. The bandwidth W = 2zt

(z is the number of nearest neighbors) is adjusted by the lattice spacing. At U/W ∼ 1, the gap

will disappear, and the system crosses over from localized to itinerant behavior. This transition

is referred to as a bandwidth control (BC)-MIT. A second type of MIT is possible, when the

electron filling n takes a non-integer value. Consider an antiferromagnetic parent compound near

the n = 1 filling level as before. Removing an electron from a lattice site (carrier-doping), frees up

a low energy excitation that allows electrons to propagate through the lattice without paying the

interaction energy U . This is known as a filling controlled (FC)-MIT. For a thorough review see
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Figure 1.8: ZSA diagram. In the ZSA classification scheme, charge-transfer and Mott-Hubbard
insulators are separated out by the relative strength of the interactions U/t and ∆/t. When the
hopping integral, t, is relatively strong (e.g., U < ∆ and U/t � 1), the bandwidth, W , bridges the
gap, and metallization occurs.

references [4, 5].

Until now, only transitions between the lower and upper Hubbard band have been considered,

however these are not always the lowest energy excitations in the system. This distinction depends

on the relative sizes of U and the charge-transfer energy ∆ which is the energy required to trans-

fer an O 2p electron to a metal site (3p6 +3dn→ 2p5 +3dn+1 ≡ 3dn+1L). Thus, Mott insulators

are broken into two categories: Mott-Hubbard and charge-transfer. In Mott-Hubbard insulators

(∆ > U), the band gap forms between the lower and upper Hubbard bands (see Figure 1.7(b)), as

discussed earlier. For charge-transfer insulators (∆ <U), the fully occupied broad O 2p band sits

in-between the lower and upper Hubbard bands (see Figure 1.7(c)). A convenient way to sum-

marize the two different Mott insulators and their relationships’ to the parameters of the Hubbard

model is the Zaanen-Sawatzky-Allen (ZSA) diagram [6]. As mentioned before, the light and heavy

transition metal compounds differ by the distance between the levels of their metal 3d and oxygen

2p orbitals. As the nuclear charge increases, the chemical potential of the d electrons moves lower
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and closer to the p orbitals. Thus charge-transfer types are typical of the late transition metals

(e.g., Ni and Cu). For small values of ∆ the charge gap closes (see Figure 1.7(c)). In contrast to the

Mott-Hubbard types, the oxygen p band strongly hybridizes with the 3d band at the Fermi level.

The formal valence of oxygen deviates from O2−, as 2p electrons move to d sites creating ligand

holes, which is known as self doping. Since the ground state consists of itinerant 2p holes as well,

the wavefunction is best described by a configuration interaction Ψ = αΨ(dn)+βΨ(dn+1L).

1.2 Closed Shell Oxide Insulators: SrTiO3

1.2.1 Crystal Structure

Under standard ambient conditions, SrTiO3 (STO) crystallizes in the ideal cubic perovskite struc-

ture, space group Pm3m. The lattice parameter, a = 3.905 Å, closely matches in-plane parameters

for La2/3Ca1/3MnO3 and YBa2Cu3O7 producing low epitaxial strain ε =
asubstrate−a f ilm

a f ilm
of ∼ 1 %

in heterostructures, where a f ilm means the original unstrained parameter of the film material. The

coordination geometry consists of tetravalent Ti ions sixfold coordinated by O2− ions forming a

corner-shared network of TiO6 octahedra. Sr2+ ions, each coordinated by 12 O2− ions, fill the re-

maining empty space in the lattice efficiently resulting in an ideal cubic structure (tolerance factor

t = 1) . Bonding, in STO, is mostly ionic in character with strong partially covalency between O

2p and Ti 3d states [7].

Upon cooling, STO undergoes a series of thermodynamic phase transitions [8, 9]. Between 110

- 65 K, the lattice symmetry lowers to tetragonal (space group I/4mcm), as neighboring octahedra

rotate against each other continuously with temperature T . Near 55 K an order-disorder transition

on the Sr site sets in lowering the symmetry further to orthorhombic. A possible low temperature

and low symmetry phase may exists below 10K. Further deviations from the ideal cubic structure
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can occur upon cation doping or large fluctuations in oxygen stoichiometry.

1.2.2 Electronic Structure

The electronic properties of STO are representative of d0 TMOs. In the ionic limit, Ti atoms in STO

lack 3d electrons meaning correlations are largely insignificant. The closed shell configuration

naturally leads to a conventional band theory approach, and indeed STO is a strong band insulator

with a gap of 3.2 eV [10, 11, 12]. The valence band is composed of mostly O 2p states, while

the bottom of the conduction band is formed by empty Ti 3d orbitals. The octahedral environment

divides the 3d states into t2g and eg as expected. In general, cations, occupying the A-site, only

indirectly affect the electronic structure through ionic radius variations that modify the M-O-M

bond angles influencing the bandwidth W .

Conductivity in STO can be manipulated through extrinsic doping of the A- and B-sites or

intrinsic defect formation, typically oxygen vacancies. A-site substitution (e.g., Nb5+ and La3+)

and oxygen vacancies result in n-type conductivity, in which electronic states are filled at the

bottom of the conduction band. For carrier densities between 1019 and 1021, a superconductor

transition occurs for Nb-doped STO and non-stoichimetric SrTiO3−x [13, 14]. B-site doping with

Sc3+ introduces holes into the valence band, and p-type conductivity has been observed [15].

1.3 Colossal Magnetoresistive Manganites: La2/3Ca1/3MnO3

1.3.1 Crystal Structure

The mixed valence manganites, for this work specifically the La1−xCaxMnO3 series, adopt the

perovskite crystallographic structure. The parent compound LaMnO3 crystallizes in the highly

distorted O′-type orthorhombic structure (space group Pbnm) with a = 5.54 Å, b = 5.75 Å, and
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c = 7.70 Å, where the Mn-O-Mn bond angle decreases to 155◦. While the misfitting La cations

necessitate the buckling of the MnO6 octahedra network corresponding to a cooperative rotation

which lowers the symmetry to orthorhombic, the Jahn-Teller active Mn3+ ions facilitate further

distortions in the octahedra that create a pattern of long and short Mn-O bonds in the ab-plane

(orbital ordering) [16]. With A-site substitution of Ca for La, both the tolerance factor and Mn

valence increase. La2/3Ca1/3MnO3, the material used in this dissertation, sits on the orthorhombic

side (space group Pbnm), near the edge of the O-type orthorhombic to rhombohedral (space group

R3c) transition (t < 0.92) [17, 18]. This distinction is critical, since cooperative-long-range Jahn-

Teller distortions are not supported by rhombohedral symmetry (i.e., the rhombohedral crystal

field does not split the eg oribtals). Only localized Jahn-Teller distortions have been observed

for samples within the rhombohedral phase (Sr-doped manganites). The lattice constants, for the

orthorhombic phase, can be given in terms of the pseudo-cubic perovskite constant ap = 3.876

Å with a≈ b≈
√

2ap,c = 2ap. The end member of the series CaMnO3 forms with orthorhombic

symmetry as well, although the Mn4+ ion lacks the occupational degeneracy required for Jahn-

Teller activity.

1.3.2 Electronic Structure

End Members (La,Ca)MnO3

Much of the essential physics of the mixed valence manganites can be obtained from the local

picture, where the interaction between formally 3d4 and 3d3 electronic configurations of the two

distinct Mn ions host of a rich diversity of phenomena. Although, it is instructive to first consider

both unique configurations separately, which can be facilitated through a discussion of the end

members of the series, LaMnO3 and CaMnO3. As discussed earlier, manganese ions generally
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favor the high spin state, when the d orbitals are split by a crystal field of oxygen ligands. For

LaMnO3, this gives t3↑2ge↑g, where the lone electron in the eg orbital is unstable against Jahn-Teller

distortion (see Figure 1.5). A strong static, cooperative Jahn-Teller distortion distorts the lattice,

which results in orbital ordering as mentioned previously. In CaMnO3 with a t3↑2g configuration,

such a distortion does not change the center of gravity of the t2g levels and consequently is not

present. In terms of hybridization, the overlap between the t2g and O 2p orbitals is relatively small

resulting in poor π-hybridization, while the eg orbitals overlap directly forming a σ∗ anitbonding

band. In this regard, the t3↑2g core can be viewed as a local spin (S = 3/2).

Both end members display vanishing density of states near the Fermi level, but the exact na-

ture of the gap remains controversial [19, 20, 21]. The early and late transition metals are often

categorically classified as Mott-Hubbard or charge transfer insulators, respectively, however the

intermediate manganites are a borderline case with U ' ∆. For LaMnO3, conflicting reports have

been given on the relative size these two interactions leading to further confusion. Also band struc-

ture calculations have suggested that neither model may apply. Instead, the Fermi level falls in the

gap between the two Jahn-Teller split eg bands yielding a Bloch-Wilson insulator from conven-

tional band theory. This controversy extends to CaMnO3, as well. Core level spectroscopies have

shown that the lowest-energy excitations in CaMnO3 involve dn
i + dn

j → dn
i L+ dn+1

j transitions

[23], while first principle calculations suggest that the Mn d-band is exchange split with occu-

pied majority and unoccupied minority t2g states separated by a gap only traversable by spin-flip

transitions [24].

Magnetic ordering in the end members is determined by the sign of the superexchange interac-

tion. In TMOs, direct exchange is typically unimportant due to the small amount of orbital overlap

between distant magnetic orbitals, instead the exchange interaction occurs indirectly through an

intermediary oxygen ion. This long-range exchange interaction is termed superexchange. Similar
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to direct exchange, superexchange is an electrostatic interaction that arises due to the kinetic en-

ergy advantage of delocalized electrons. Since the interaction occurs through an intermediary, the

process is accurately described by second-order perturbation theory. A general result of second-

order perturbation theory is that the perturbation energy is the square of the transition probability

amplitude (matrix element) divided by the energy difference between the ground and excited state.

For the case of two transition metal ions each with a single unpaired electron in the same non-

degenerate orbital, this results in the exchange integral J ∼ −t2/U . Therefore, the excited states

decreases the energy by realizing an antiferromagnetic coupling. Ferromagnetic coupling is possi-

ble, when electron transfer is from a half-filled to an empty orbital or from a filled to a half-filled

orbital. Together the above guidelines constitute the Goodenough-Kanamori (GK) rules for su-

perexchange [25, 26].

An application of the GK rules to the t3↑2g electron configuration of CaMnO3 yields a G-type

antiferromagnet, where both the inter- and intra-plane coupling are antiferromagnetic. CaMnO3

does, in fact, take this magnetic ground state. LaMnO3, on the other hand, assumes an A-type anti-

ferromagnetic ground state, in which the ab-plane (out of plane) exchange Jab (Jc) is ferromagnetic

(antiferromagnetic) with the total moment vanishing [27]. The anisotropy in the magnetic ground

state originates from the orbital ordering frozen into the system by the Jahn-Teller distortion of the

octahedra. In the absence of Jahn-Teller splitting, the quarter-filled eg orbitals would dominate ex-

change, and a ferromagnetic ground state is expected. The orbital polarization dramatically lessens

the eg states contribution to Jc, and the sign of exchange switches to antiferromagnetic [28].

Mixed Valency and Double Exchange

With A-site subsitution in the La1−xCaxMnO3 series, the Mn ion exhibits mixed valency (i.e, a

portion x of the Mn ions are tetravalent and 1− x are trivalent). The result is a heterogeneity
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Figure 1.9: La1−xCaxMnO3 phase diagram and mechanism of double exchange. (a) The
phase diagram of La1−xCaxMnO3 adapted from reference [29]. A rhombohedral to orthorhombic
structural transition occurs at ∼800 K regardless of the Ca doping content. A static Jahn-Teller
distortion lowers the symmetry further for low levels of Ca doping. The magnetic and electronic
grounds state are given for the entire range. (b) The double exchange mechanism between two Mn
sites facilitated by an intermediary oxygen ion. The itinerant eg electron only hops to an empty site,
where the t3↑2g core is in parallel alignment (i.e. spin-flip transitions are energetically unfavorable).

of ground states over the full doping range (see Figure 1.8(a)) [30, 31, 32, 33]. At temperature

above ∼800 K, the lattice is rhombohedral over the entire doping series. Below, an orthorhombic

distortion develops with additional Jahn-Teller activity at higher concentrations of Mn3+. Near

the parent compound LaMnO3 canted antiferromagnetism develops as a result of nanoscale phase

separation[33]. Charge ordering ground states can be found on both sides of the ferromagnetic

metal phase. Here, interatomic Coulomb interactions localize the potentially mobile eg electrons

on Mn sites forming a regular lattice. Charge ordering occurs at rational fractions of x, when the

Coulomb interactions become comparable to the bandwidth. Towards the high end of Ca doping

(x > 0.5), various forms of antiferromagnetism develop.

Of primary interest is the ferromagnetic metal phase occurring over the narrow window from

0.17 ≤ x ≤ 0.5 with the highest Curie temperature (∼260 K) at a rational doping of x = 3/8.
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To explain the ferromagnetic metal ground state, Zener considered exchange between Mn3+ and

Mn4+, where the simultaneous transfer of an electron from Mn3+ to oxygen and from oxygen to

the nearest neighbor Mn4+ takes place (see Figure 1.8(b)) [34]. This transfer is known as double

exchange, and unlike superexchange is always ferromagnetic and requires the transfer of real, not

virtual, electrons. The hopping to an empty neighboring site proceeds without spin-flipping. There

will be a strong on-site exchange between the itinerant eg electron and the t3↑2g core which will result

in the parallel alignment of spins. Ferromagnetic alignment maintains the high spin state on each

site. Clearly, there is a direct correlation between conductivity and ferromagnetism. Extended

parallel spin alignment allows the eg electron to hop throughout the lattice. This kinetic energy

savings achieves a corresponding increase in electron bandwidth.

Colossal Magnetoresistance

Near the Curie temperature, an exceedingly large magnetoresistive effect occurs, i.e., the resistance

changes by orders of magnitude in response to an external magnetic field. This can be explained, in

part, as a consequence of double exchange, which must be further generalized from the description

above to include general spin directions [35]. Here the transfer integral becomes t = t0 cos(θ/2),

where θ is the angle between the two spin directions, and the term cos(θ/2) comes from the spin

wavefunction. Since, the hopping probability is proportional to |cos(θ/2)|, an external magnetic

field will align spins between neighboring ions increasing the electron bandwidth and subsequently

the conductivity. This effect will be strongest near Tc, where the spins are not completely aligned.

However, recent theoretical works have shown that double exchange alone is not enough to explain

the magnitude of the magnetoresistive effect [36], instead an electron-phonon coupling term must

be included. The coupling occurs as a result of the Jahn-Teller distorted Mn3+ octahedra, where

polarons (electrons which move through the lattice essentially dragging large lattice distortions)
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are formed in the paramagnetic insulating phase above the Curie Temperature. These polarons

are magnetic and frozen into the lattice, until the transition to the ferromagnetic state unbinds

them. Despite these efforts, the magnetic transport behavior of the manganites still remains an

open question. Other competing models incorporate percolative transport through ferromagnetic

domains in an electronically phase separated medium to explain the dramatic change in resisitance

[37].

1.4 High-TC Cuprates: YBa2Cu3O7−δ

1.4.1 Crystal Structure

Quickened by the promise of room temperature superconductivity there has been a rapid prolif-

eration in the number of structures belonging to the class of High-TC cuprates, which began in

1986 with the discovery of transition temperatures around 30 K in the La-Ba-Cu-O system [38].

These structures can be divided roughly into three main families: La2−xAxCuO4 (A = Ca, Sr, Ba),

LnBa2Cu3O7−δ (Ln = rare-earth element), and Bi2(Ca, Sr)n+1CunO2n+4 [39]. Compounds con-

taining Tl and Hg might warrant a separate classification but share many similarities with the Bi

cuprates. All cuprates retain the categorical feature of quasi-2D CuO2 superconducting planes,

while the cation structure, in which the superconducting planes are embedded, varies significantly

amongst the families. The CuO2 planes form a corner connected square lattice composed from

distorted CuO6 octahedra, CuO5 pyramids, or simply CuO2 square planes depending on the spe-

cific material. When apical oxygen ions are present (i.e., a higher coordination than square pla-

nar), the out of plane Cu-O bonds stretch deforming the coordination complex in response to the

Jahn-Teller activity of the degenerate e3
g electron configuration of divalent Cu, which provides

quasi-two-dimensionality. The square lattice naturally imposes tetragonal symmetry on most of
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the cuprates, however some cuprates crystallize with a slight orthorhombic distortion, which is of-

ten the result of varying the dopant concentration. For a thorough review of the structural aspects

of the cuprates see reference [40], as the remainder will focus on YBa2Cu3O7−δ

YBa2Cu3O7 (YBCO) crystallizes in an oxygen deficient perovskite structure, where tripling

along the c-axis occurs due to the Ba-Y-Ba ordering of the A-site (see Figure 1.9(a)). The lattice

is orthorhombic (space group Pmmm) with lattice parameters a = 3.828 Å, b = 3.888 Å, and

c = 11.65 Å. Two main structural units are readily apparent: the layered CuO2 planes and the

CuO3 chains comprising the infinite layer (IL) and charger reservoir (CR) blocks, respectively.

The electronically and structurally distinct Cu sites of these two blocks are a unique feature of the

LnBa2Cu3O7−δ family.

The CR blocks function as the source of holes for the superconducting planes, and the ad-

justable coordination of the Cu(1) site in the chains facilitates this role. For superconducting

YBa2Cu3O7, the Cu(1) site’s geometry is square planar forming chains along the b-axis, whereas

in non-superconducting YBa2Cu3O6 the coordination is linear. The oxygen doping x is continuos

through the series YBa2Cu3O6+x. At x = 0.4, a tetragonal to orthorhombic transition accompanies

the formation of square planar complexes through the addition of oxygen at the O(1) site in the

chains. For intermediate doping levels, the O(1) vacancies can form superstructures with every

second (third) site empty Ortho II (Ortho III) phase.

The IL blocks are formed from CuO5 pyramids. Throughout the continuous doping range, the

Cu(2) site of the superconducting planes remains in this square-pyramidal coordination. The apical

oxygen bond length is distorted by the removal of orbital degeneracy, as described previously. This

leads to a quasi-2D planar structure, the CuO2 planes. YBCO is a bilayer material with two planes

per unit cell separated only by a Y cation layer. It is worth noting that within a family the number

of CuO2 planes per unit cell directly correlates with TC [41, 42]. Upon doping, the orthorhombic

27



transition deforms the square symmetry of the CuO2 planes, whereby the planar oxygen network

buckles, shifting the oxygen ions towards the center of the bilayer. The apical oxygen distance has

been found to be a function of doping as well, decreasing at higher oxygen concentrations.
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Figure 1.10: YBa2Cu3O7 crystal structure and cuprate phase diagram. (a) Conventional
YBa2Cu3O7 unit cell. (b) The parent compounds of the High-Tc cuprates are Mott insulators,
which display antiferromagnetic correlations above the TN and an antiferromagnetic ground state
below. Upon hole doping the antiferromagnetic order is weakened, and subsequently replaced by
superconductivity. The superconducting dome extends over the approximate range 0.05≤ ρ≤ 0.3.
On the overdoped side, the system is metallic and can be described by Fermi-liquid theory. The
normal state remains enigmatic: characterized by a large region of non-Fermi-liquid behavior with
anomalous transport properties and a pseudogap phase at low doping with signs of suppressed
charge and spin excitations. The similarities between the cuprate normal state and heavy-fermion
metals has evoked the idea of a hidden quantum critical point (QCP) beneath the superconducting
dome. Adapted from reference [69].

1.4.2 Carrier Doping in YBa2Cu3O7−δ and the Generic Cuprate Phase Diagram

The formal oxidation states, disregarding covalency, in the insulating parent compound YBa2Cu3O6

are Y3+, Ba2+ O2−, Cu2+ for the square planar Cu(2) site, and Cu1+ for the linearly coordinated

Cu(1) site. Upon the introduction of holes into the system, a superconducting ground sate can be

obtained. This can be accomplished through doping the A-site with divalent Ca, which is analo-

gous to the common practice of cation doping in other cuprate compounds, e.g., Sr2+ in La2CuO4.
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However, for the case of YBCO varying the oxygen concentration in the CR blocks, as described

above, has proven to be the most attractive method. At low dopant concentrations, the excess holes

mainly form on the Cu(1) site transforming Cu1+ into Cu2+. At higher levels, the oxidation states

of both Cu sites remains divalent, as the formation of Cu3+ requires a ∼10 eV Coulomb penalty.

Instead, the remaining holes are associated with the oxygen sites (i.e., a charge transfer scenario) in

the CR and IL blocks with 0.6 holes per chain unit and 0.2 holes per CuO2 plane in the YBa2Cu3O7

conventional unit cell [43, 44, 45, 46]. At full oxygenation, YBCO is only slightly overdoped with

a transition temperature of 89 K versus 93 K for optimal doping. To advance further into the

overdoped region, simultaneous Ca and O doping must be used [47].

All cuprates share a universal phase diagram as a function of hole doping within the supercon-

ducting planes (see Figure 1.9(b)). Here, the hole doping ρ is given in terms of the number of holes

near a neighboring Cu site in the CuO2 plane. Despite the odd number of electrons per unit cell, the

parent compounds (e.g., YBa2Cu3O6) are insulators. The deviation from conventional band theory

is due to the strong electron correlations that drive this class of materials into the Mott insulator

phase with long-range antiferromagnetic ordering. The Nèel temperature TN ' 300− 500 K is

governed by weak interlayer coupling between planes, while the in-plane superexchange J ' 1500

K is incredibly strong.

In YBa2Cu3O6, the situation is further complicated by the multiples planes and Cu sites per

unit cell. This requires the introduction of two extra exchange parameters: intrabilayer coupling J⊥

between Cu(2) ions in adjacent planes and a much weaker coupling J⊥1 between bilayers through

a O-Cu(1)-O bridge. Neutron scattering experiments have obtained the following values: J ' 150

meV, J⊥ ' 10 meV, and J⊥1 ' 0.04 meV [49, 50]. Together the exchange parameters define the

2D spin 1/2 square lattice Heisenberg Hamiltonian that models the spin excitation spectrum in

YBCO [48]. There is small amount of anisotropic exchange, as well, which must be included to
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full understand experimental results [51, 50]. Below TN , the moments arrange themselves in anti-

ferromagnetic order both in-plane and between the Cu-Y-Cu bilayer. Due to anisotropic exchange

the moments are not fixed within the plane. There are no moments on the Cu(1) sites in the chains.

At 15 K, a second transition takes place. A magnetic moment develops on the Cu(1) site that medi-

ates ferromagnetic coupling between adjacent bilayers, while antiferromagnetic coupling remains

within the plane and in individual bilayers [50].

Upon hole doping long-range antiferromagnetic order is lost, though short-range antiferromag-

netic fluctuations remain. Just beyond the antiferromagnetic region, the superconducting dome

begins. The dome-shape (i.e., transition temperatures initially increase with doping inside the un-

derdoped region, reaching a material specific maximum value at optimal doping, and then decrease

to zero upon overdoping) is generic to all cuprates. For YBCO, two superconducting plateaus at

60 and 90 K are often observed. The first plateau, at 60 K, is associated with the formation of

chain superstructures and local oxygen vacancies, while the latter plateau reflects the limited dop-

ing ability of oxygen incorporation within the chains. A maximum does occur near the x = 0.93,

after which Tc begins decreasing within the limited overdoped region. As mentioned earlier, with

Ca doping the overdoped region can be accessed fully.

Above the underdoped side of the dome sits the enigmatic pseudogap phase. Unlike conven-

tional superconductors, in which the energy gap in the density of states at the Fermi level vanishes

near Tc, for cuprates the pseudogap persists until the temperature T ∗ [52, 53]. Both T ∗ and the

pseudogap increase with underdoping. The origin of the pseudogap remains unresolved [54]. One

view suggests that the energy gap above Tc stems from preformed Cooper pairs which lack the

phase coherence to form a macroscopic quantum state [55, 56]. For this case, the pseudo gap

is merely the remnant of the superconducting gap. Alternatively, in the competition scenario the

pseudogap is unrelated to superconductivity, instead a competing order or fluctuation, the details
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of which vary with the specific model (e.g., spin density waves or antiferromagnetic correlation), is

introduced [57, 58, 59, 60, 61]. Direct evidence for two unique energy gaps has come from angle-

resolved photoemission spectroscopy (ARPES) that has found disparate behavior in the nodal and

anti-nodal gaps along Fermi arcs in momentum space [62, 63, 64, 65].

The normal state above optimal Tc is known as the “strange-metal” or non-Fermi-liquid region.

The transport properties display anomalous behavior: a linear T -dependence of the in-plane resis-

tivity and a quadratic dependence of the Hall angle [66]. This V-shaped region is bound on the

underdoped side by the pseudogap phase and on the overdoped side by a metallic phase which

displays increasingly Fermi-Liquid behavior (e.g., ρ∼ T 2) with continual advancement in doping

[67, 68]. The distinction between these three regions is somewhat loose, instead the boundaries are

defined by crossover temperatures such as T ∗, as a clear phase transition remains to be identified.

In addition, the non-Fermi-liquid behavior near optimal doping in the cuprate phase diagram has

led to the popular notion of a quantum critical point corresponding to a zero-temperature quantum

phase transition, which is masked by the superconducting dome [69].

1.4.3 Electronic Structure

Central to the discussion of the cuprates is the electronic structure of the ubiquitous CuO2 planes

from which the physics of high-Tc superconductivity is widely accepted to originate. Reflecting

the mixture of localized and itinerant behavior in the cuprates, it is simplest to start with the local

picture of the copper 3d and oxygen 2p levels and their hybridization in the superconducting

planes and then build towards a band model. In the parent compounds, Cu is divalent with a 3d9

electron configuration, and subsequently presents with strong Jahn-Teller activity in response to

a degenerate crystal field splitting. The distortion from an ideal octahedral environment lifts this

degeneracy in the eg orbitals yielding a single hole in the dx2−y2 orbital (see Figure 1.10(a)). The
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Figure 1.11: Electronic structure of the CuO2 planes. (a) Splitting of the Cu 3d and O 2p
levels in a square pyramidal crystal field. Covalent bonding leads to broad σ bonding and anti-
bonding bands. Adapted from reference [70]. (b) Three-band p-d model showing the bonding
(B), nonbonding (NB), and anti-bonding bands. The anti-bonding band is divided into the lower-
Hubbard and upper-Hubbard subbands due to the large onsite repulsion U . The B and NB bands
appear in-between the subbands, as ∆ <U . (c) The bonding band is exchange split into triplet (T)
and singlet (ZRS) states by the interaction of the doped oxygen 2p hole and the hole in the Cu
dx2−y2 orbital. Adapted from reference [71].

atomic 2p oxygen levels are split by the crystal field, as well, into three levels: π||, π⊥, and σ.

The limited orbital overlap with Cu orbitals results in weak hybridization with π-type states and

subsequently narrow π-bands. Alternatively, direct hybridization occurs between the oxygen σ

states, formed from the px and py orbitals of the in-plane oxygen network, and the dx2−y2 copper

orbitals. This strong covalent bonding gives rise to broad σ and σ∗ bands.

Based on the electronic structure sketched in Figure 1.10(a), the cuprates are expected to be

metallic with a half-filled antibonding pdσ band. In agreement, band theory calculations predict

a metallic state without magnetic correlations [72]. However, an insulating gap of ∼1.5 eV has

been observed in optical spectra [73]. Instead, the cuprates fit into the class of Mott insulators with

each Cu site hosting a localized hole. Virtual hopping between nearest neighbors leads to a kinetic

energy savings and by the rules of superexchange (half-filled to half-filled) an antiferromagnetic
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ground state.

The strongly correlated behavior exhibited by the parent compounds naturally led to an early

interpretation in terms of the Hubbard model (see equation 1.8), where in the hole notation com-

pletely filled shells (e.g., Cu3d10 and O2p6) are treated as the vacuum states in Hilbert space [74].

In the strong coupling limit U � t, the lower subband can be accounted for by perturbation theory

allowing for a reduction of the two-subband model to the one-subband t-J Hamiltonian

H =−t ∑
〈i j〉

c†
iσc jσ + J ∑

〈i j〉

(
SiS j−

1
4

nin j

)
, (1.9)

where Si = c†
iασαβciβ are the spin operators at site i for S= 1/2, and σαβ are the Pauli spin matrices.

The exchange constant is given by the usual form J ∼ t2/U . As will be shown, the one-band t− J

model is an accurate description of the low energy physics of the cuprates.

To incorporate hybridization with the planar oxygen network, the more complicated three-band

p-d Hamiltonian is frequently used [75], however this model can be simplified to yield an effective

one-band model. The oxygen bonding and non-bonding bands appear between the split Hubbard

subbands (see Figure 1.10(b)), as the charge transfer energy ∆ is smaller than the onsite repulsion

U , and the cuprates are in fact charge-transfer insulators after the Zaanen-Sawatzky-Allen scheme

[6]. In this case, doped holes will reside on the oxygen 2p orbitals. There is a strong exchange

interaction between the spin of this doped hole on oxygen and the spin of the hole on Cu,

JCu−O = t2
pd

(
1
∆
+

1
U−∆

)
. (1.10)

The strength of this interaction is due to the large degree of hybridization which is maximized

when the hole sits in a state made up of a symmetry adopted linear combination of the four O pσx,y
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orbitals. The oxygen bonding band splits due to the large exchange JCu−O into triplet and singlet

bands separated by 3.5 eV (see Figure 1.10(c)) [76, 77]. The singlet formed by the two hole state

on Cu and O is popularly known as the Zhang-Rice singlet after its discoverers. It should be noted

that the hopping of a singlet hole on oxygen from site j to i necessarily implies the hopping of a

Cu hole from site i to j. In light of this, the problem can be reduced to the single-band t−J model

with ∆ playing the role of U and a hopping integral t = t2
pd/∆.

1.5 Correlated Interfaces

1.5.1 Interfacial Engineering

As detailed in this chapter, transition metal oxides exhibit a broad spectrum of practical phenom-

ena such as ferroelectricity, colossal magnetoresistance, high temperature superconductivity, and

metal to insulator transitions, whose functionalization continues to experience a concerted effort

across the broad scientific community. In the bulk, strongly competing orders leave their grounds

states susceptible to the influences of lattice distortions and variations in stoichiometry making

them excellent candidates for breakthroughs from the field of heterostructure engineering. When

matching two oxides at the interface, disparate character in the physical, chemical, electronic,

or magnetic structure between them offers another route to exploit susceptibilities and tune the

strongly coupled charge, spin, orbital, and lattice degrees of freedom. That is correlated inter-

faces can naturally leverage underlying instabilities to the ends of manipulating existing electronic

phases and searching for emergent ones.

Roughly the interfacial toolbox can be divided into five classifications [78]. (1) The simplest

and most commonly used tool is epitaxial strain. Strain results from a mismatch between the
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atomic arrangement at the two meeting faces of oxide heterostructures and is given by

ε =
asubstrate−a f ilm

a f ilm
, (1.11)

where a f ilm is the undistorted length of the bulk material. Here, it is assumed that the film dis-

torts to match the lattice constant asubstrate of the much larger (in the direction perpendicular to the

plane) and stable substrate. The distortions introduced into the lattice have a direct effect on the

electronic structure by modulating the hybridization between atomic orbitals. (2) Charge transfer

has become a preferred route to unconventional doping at oxide interfaces. A prime examples

is a prominent superlattice composed of a Mott and band insulator LaTiO3 and SrTiO3, respec-

tively [79]. In the bulk, the two materials exhibit distinct Ti valencies, however in the superlattice

charges redistribute across the layers inducing a metallic state. (3) Symmetry breaking is an ob-

vious effect of the abrupt interruption of periodicity at the interface and comes in many flavors

from translation symmetry invalidating Bloch’s theorem to inversion symmetry to time reversal

symmetry. The simultaneous breaking of inversion and time reversal symmetry has recently fueled

theoretical investigation into magnetoelectric coupling in oxide heterostructures [80]. (4) If polar

materials are included in the heterostructure, conflicting boundary conditions at the interface often

leads to electrostatic coupling between the constituent layers. (5) Frustration between compet-

ing interactions are routinely found in magnetic interfaces, where the spin degrees of freedom are

mismatched across the interface. These situations are often engineered to produce large exchange

biases between ferromagnets and antiferromagnets.
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1.5.2 The Ultrathin Limit

While in typical heterostructures individual layers retain their bulk-like properties away from the

interface, the constituent layers of an ultrathin superlattice extend up to only a few unit cells. In this

case, the lines are blurred between distinct materials coupled at the interface and a new artificial

phase of matter. For instance, stacking single unit cells of alternating perovskites along the crystal-

lographic [111] direction yields the equivalent of a single-phase double perovskite A2BB′O6 with

rock salt ordering of the B-site. In this context, artificial layered materials should be viewed as new

compounds with their own set of properties bearing a strong resemblance to naturally occurring

layered oxides. A key difference remains though. Artificial structures allow access to a region

of compounds which are thermodynamically unstable in the bulk. While their growth remains a

challenge at the forefront of materials research, the prospects of realizing new functionalities will

continue to push the science of material synthesis forward.
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Chapter 2

Experimental Techniques

This chapter introduces the experimental techniques used throughout the dissertation to study cor-

related interfaces in oxide heterostructures. The characterization of buried multilayer interfaces

represent a demanding task requiring advanced techniques to uncover the physical mechanisms at

work. To overcome this obstacle, x-ray absorption spectroscopy is utilized to probe the electronic

structure of oxide multilayers. The chapter starts with a review of theory behind and implementa-

tion of x-ray absorption spectroscopy. In the last half of the chapter the ultrathin film deposition

technique, laser molecular beam epitaxy (MBE), is discussed. Laser MBE is a leading method in

the production of atomically sharp oxide interfaces, and a description of the process and underlying

mechanisms involved is included.

2.1 X-ray Absorption Spectroscopy

X-ray absorption spectroscopy (XAS) involves excitations from the inner atomic electron states

unassociated with chemical bonding to a valence or continuum states and is therefore a core level

spectroscopy. These transitions are allowed under the electric dipole interaction and have strong

absorption cross sections. Several excitations are possible (e.g., s→ p, p→ d, and d→ f ). In this

dissertation, our focus will be on 2p→ 3d transitions, as the materials under investigation contain

partially filled 3d levels. This is historically referred to as the L absorption edge (see Figure 2.1),

and depending on the specific element involved transitions fall into an energy range from 350 eV to

950 eV. Element specificity is an innate feature of XAS and in general all core-level spectroscopies.
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Figure 2.1: Core states and corresponding edge names. Historical edge names (right) for
various core level excitations (left). The K edge for 3d transition metals occurs between 5− 11
KeV. The L edge is split into three different transitions. The L3 and L2 edges occur between
400−1000 eV with only a few eV between them.

For instance, each 3d transition metal’s L absorption edge will occur at a unique binding energy

E0, which increases moving across the series. This can be understood in terms of the increasing

electrostatic potential, generated by the positively charge atomic nucleus, that scales directly with

the atomic number Z.

X-ray absorption spectra can be roughly divided into three regions based on the relative ener-

gies of the incident photon E and the binding energy of the core electron excited. (1) The pre-edge

(E < E0) is typically flat and therefore useful to correct backgrounds. For 1s XAS, the pre-edge

may contain relatively weak peaks corresponding to quadruple-allowed (∆ = ±2) dipole forbid-

den transitions, e.g., 1s→ 3d. (2) The x-ray absorption near-edge structure (XANES) extends

typically up to 50 eV above the absorption edge. In the XANES region, the photoelectrons have

only a small amount of kinetic energy (E −E0) and experience strong multiple scattering from

inner and outer coordination shells. The XANES spectra is sensitive to the coordination number

and oxidation state of the absorbing atom and is useful in “finger printing” analysis of materials.
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(3) The extended x-ray absorption fine structure begins at approximately 50 eV and finishes up to

1000 eV above the edge. These photoelectrons possess a high-level of kinetic energy, and only

single scattering events by nearest neighbors need to be accounted for. EXAFS is a powerful tech-

nique for resolving quantitative aspects of the nearest neighbor structure. For soft x-ray absorption

spectroscopy (E < 1000 eV), which is the focus of this dissertation, the EXAFS regions are either

inaccessible or interrupted by other closely spaced edges found within this narrow energy window.

2.1.1 One-Electron Picture

Neglecting electron-electron correlations, XAS spectra can be simply explained in terms of the

materials band structure. Consider the density of states (DOS) for an insulating material with a

valence shell consisting of 3d electron states (see Figure 2.2(a)). The Fermi-level demarcates the

unoccupied and occupied DOS separated by a band gap, while the tightly bound 2p-core level is

buried deep below the Fermi-level. The core levels do not participate in bonding, and their contri-

butions to the DOS are represented by delta functions. The spin orbit interaction splits the 2p level

into a multiplet of (2s+1)(2l +1) = (2(1/2)+1)(2(1)+1) = 6 states with a level degeneracy of

(2 j+1). This gives two fine structure levels labeled by the total angular momentum j = 3/2,1/2.

The 2p3/2 level has twice as many states, and the delta function is twice as high in response. The

separation between adjacent levels in a multiplet is given by E( j)−E( j−1) = jζ, where ζ is the

spin orbit coupling constant. The spin-orbit splitting is proportional to Z4 and can be rather large

for the 2p level in the 3d transition metal series.

In XAS, excitations from the occupied core DOS into the unoccupied DOS are made. The

spectrum obtained from this process will be a convolution of the core DOS and the unoccupied

valence DOS. Since the core DOS consists of two delta functions, 2p XAS essentially maps the

unoccupied DOS twice across the L edge, which splits into two separate regions knowns as the L3
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Figure 2.2: One-electron and configuration pictures of x-ray absorption spectroscopy. (a)
In the one-electron picture, core level excitations map out the unoccupied DOS, as the core levels
are represented by delta functions separated by a multiple of the spin orbit coupling constant. (b)
Configuration Picture. The ground state belongs to the 3dn configuration. There are several states
belonging to the final 2p53dn+1 configuration. The selection rules only allow for transitions to a
minority of possible final states. A small number of excited states lie close to the ground state but
each transition to their own unique spectrum of final states. In this way, XAS becomes a sensitive
probe of the initial state of the system. Adapted from reference [81].

and L2 edges. The L3 edge will have twice the intensity, and a shift of 3/2 times the spin orbit

coupling constant is introduced.

2.1.2 Configuration Picture

Unfortunately, the simplistic picture of one-electron theory fails to reproduce XAS spectra, as there

is strong overlap between the core hole and valence electron wavefunctions. The most prominent

features in XAS spectra originate from the formation of excitons, a bound state between the 2p

core hole and the extra electron excited into the valence level. That is, the exciton represents the

end result of the XAS process. In this point of view, the absorption of light transforms the many-

electron ground state of the system into a final state configuration representing the exciton, e.g.,

(Ψi = 3dn→Ψ f = 2p53dn+1)
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For a given electron configuration, the number of corresponding possible final states can be-

come quite large. In 2p XAS, the final electron configuration will be 2p53dn+1. For n = 9, the

number of final states remains small coming from only the 2p core hole multiplet: 2 levels with a

total degeneracy of 6 states. In general, the total degeneracy is given by 6× 10!
(10−n+1)!(n+1)! . The

2p-core hole contributes a factor of 6, and the multiplets of the 3dn+1 configuration are accounted

for by the combination
( 10

n+1

)
. Similar to before, a level of a multiplet can be labelled by the total

angular momentum J. Electron-electron interactions introduce another complication, as well. The

degree of electron repulsion varies with the exact combination of occupied orbitals, which further

spreads these final states out across the energy range. For a thorough review of multiplet theory

as it relates to XAS, see reference [82]. Given a complex multiplet structure extended over an

absorption edge, the prominent and well-defined peaks, often found in XAS spectra, appear to be

at odds with expectations. This is resolved through the incorporation of dipole selection rules.

Using symmetry arguments, a set of selection rules can be derived that constrain the transitions

between initial and final states. In time-dependent perturbation theory, the transition probability W

from the initial state Ψi to the final state Ψ f is given by Fermi’s golden rule

Wi→ f =
2π

~
| 〈Ψ f |T |Ψi〉 |2δ(E f −Ei−~ω), (2.1)

where the delta function ensures energy conservation. A transition occurs, only if the final state

energy E f equals the sum of the initial state and x-ray energies Ei and ~ω, respectively. The

transition operator T represents a one-photon transition. Taking only the dipole term from the

Taylor expansion, the transition operator reduces to T = êq ·~r, where êq is the unit vector of the

photon electric field, and ~r is the position vector. The dipole operator is odd under parity. This

constrains transitions to be between states of different parity, otherwise the integral 〈Ψ f |T |Ψi〉
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will be odd and therefore vanishing. From this simple argument, the following selection rules can

be found:

∆l =±1 (2.2)

∆ml = 0,±1

∆ j = 0,±1

∆ms = 0

∆L = 0,±1

∆S = 0

∆J = 0,±1

It should be noted that the dipole operator does not work on the spin component of the wavefunc-

tion. While there are many final state belonging to the 2p53dn+1 configuration, the selection rules

limit and define the ones which are accessible based on the initial state (see Figure 2.2(b)). In this

way, XAS becomes a sensitive probe of the system’s electronic ground state.

2.1.3 Polarization Dependence

In polarization dependent XAS, the orientation of the electric field vector can be used to tailor

restrictions on the allowed final states. Consider, the simple case of an excitation from a s to a p

orbital in the one-electron picture. The p level is split into three different orbitals: px, py, and pz.

From symmetry arguments, z-polarized light can only excite an electron from a s to a pz orbital.

The same is true for x- and y-polarized light. Now, imagine that the pz orbital is preferentially

unoccupied in the ground state. In the one-electron picture, XAS probes the unoccupied DOS in
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accordance with the exclusion principle, and the intensity of absorption will become dependent

on the orientation of the electric field vector, i.e., a dichroism will be present. In general, the

use of linearly polarized light to probe the orbital occupation of the initial state is called x-ray

linear dichroism (XLD). For 2p XAS, the situation becomes slightly more complicated, as the

symmetries of the five d orbitals do not lend themselves to a simple interpretation in terms of

cartesian coordinates. However, the guiding principle is the same. The choice of electric field

vectors restricts the final states available, and a difference in intensity between polarizations reflects

imbalance in orbital occupation for the ground state.

Often anisotropy exists in the spin component of the ground state, as well. At first, it may not

seem obvious how XAS detects imbalances in spin-up and spin-down electrons, since the dipole

transition operator does not act on spin space. The answer is spin-orbit coupling which provides

the link between spin moments and the dipole matrix elements. This can be understood within the

“two step model” of Stör and Wu [83]. In the first step, consider only the excitation probability

of the initial state. In the basis of the total angular momentum operator, each spin becomes af-

filiated with particular orbital states, which will then be acted upon by the dipole operator. The

excitation probabilities for orbital states vary strongly with photon polarization and can be de-

termined through the electric dipole matrix elements. This leads to an imbalance in the number

of spin-up and spin-down electrons excited for a specified photon polarization. For instance, if

right-circularly polarized light is used to transition electrons from the p3/2 level, statistically more

spin-up electrons will be excited than spin-down. The effect is exactly opposite for left-circularly

polarized light. For the p1/2 level, the orbital and spin affiliations will not be the same as in the p3/2

case, and the imbalance in spin-up and spin-down electrons flips for the right- and left-circularly

polarized light with different weightings as well. In the second step, the preferred spin orientation

of the excited electrons becomes a probe of spin imbalance in the final states. By the exclusion
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principle, an imbalance in spin within the unoccupied DOS will lead to a difference in absorp-

tion intensity between right- and left-circularly polarized light. This is referred to x-ray magnetic

circular dichroism (XMCD).

2.1.4 Experimental Setup

XLD and XMCD measurements, described in the following chapters, were performed at the 4-ID-

C beam line of the Advanced Photon Source, Argonne National Laboratory. The x-ray source is

a unique fully electromagnetic undulator capable of delivering vertical, horizontal, and right- and

left-circular polarizations of light from 500− 2800 eV. The availability of multiple polarizations

allows the sample surface to be kept at a fixed incidence with respect to the x-ray beam path

avoiding geometrical artifacts in dichroism experiments. The monochromator is a spherical grating

which offers a resolution of ∼ 0.1 eV at a photon energy of 1000 eV. In the soft x-ray regime, the

shallow penetration depth makes the transmission method of obtaining spectra inapplicable for

most samples. Instead, the spectra were measured in fluorescence (TFY) and electron (TEY) yield

modes. The photons emitted in florescence have a mean free path similar to the incident photons

and are considered to be bulk-sensitive. While the ejected electrons in electron yield interact

strongly with the sample before reaching the surface and have a shallow probing depth which

is exponentially cut off from the surface. The combination of the two methods has been used

for depth profiling and to access the electronic structure of buried multi-layer interfaces. Energy

alignments were carried out by measuring a standard simultaneously in the diagnostic section of

the beamline. Each spectrum was normalized to the beam intensity monitored by a gold mesh set

in front of the samples. The endstation consists of a liquid He flow cryostat capable of reaching

temperatures down to 10 K and a 7 Tesla superconducting magnet. In order to avoid spurious

signals, XMCD spectra were recorded in both positive and negative magnetic fields. Additional
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details on the 4-ID-C can be found in reference [84]

2.2 Laser Molecular Beam Epitaxy

Laser MBE refers to a thin film and multilayer synthesis combination technique involving a physi-

cal vapor deposition process, known as pulsed laser deposition (PLD), and in situ surface monitor-

ing via high-pressure reflection high-energy electron diffraction (HP RHEED). Laser MBE can be

a misnomer, as the plasma plume may contain a variety of species including ions, electrons, neutral

atoms, and in the case of strong interaction with ambient oxygen molecular binary oxides. In the

first subsection, the focus will be the deposition process, followed by a subsection on RHEED. At

the end, a brief review of the deposition conditions for YBa2Cu3O7, La2/3Ca1/3MnO3, and SrTiO3

will be given.

2.2.1 Pulsed Laser Deposition

Laser-assisted film growth began in 1965 shortly after the development of the laser. The first films

were semiconductors and dielectrics with ablation carried out by a ruby laser, however the tech-

nique yielded films inferior in quality to those produced by competing methods. This changed in

1987, when Dijkkamp and Venkatesan demonstrated superior growth of a high temperate super-

conductor YBa2Cu3O7 compared to other thin film processing methods at the time. Afterwards

PLD became one of the dominant techniques in the deposition of thin films and multilayers of

complex oxides ceramics. In the early nineties, PLD benefitted from achievements in pulsed lasers

with higher repetition rates and shorter pulse intervals. The most recent advancement, in situ sur-

face monitoring with HP RHEED, has engendered PLD with unit cell precision bringing it to the

forefront of modern materials research. For a thorough review on the development and theory of

PLD, see reference [85].
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Ablation and Plume Propagation

The PLD process begins with the ablation of target material by a high-fluence laser beam in the

range of 1−4 J/cm2. The target typically consists of a stoichiometric form of the material intended

to be synthesized. At the earliest stage of laser-solid interaction, faster electronic excitations (∼ 10

fs) absorb the incoming photon stream. Within ∼ 100 ps, this energy is converted to thermal and

chemical energy resulting in practically instantaneous removal of target material from the surface

[86]. Rapid heating rates (1011 K/s) and increasing gas pressures of 10-500 atm are observed at the

target surface [85]. The evaporated particles quickly equilibrate within a few collisions and ionize

forming a dense plasma plume above the target surface. For long pulse durations ∼ 10 ns, found

in the KrF (248 nm) excimer laser of this dissertation, the remainder of the laser pulse is absorbed
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Figure 2.3: Laser MBE experimental setup. (Left) Schematic of PLD system [87]. Laser
light enters the chamber and strikes the queued target in the carousal. PLD systems are typically
capable of holding multiple targets in a computer controlled carousal facilitating the synthesis of
complex multilayers. The plasma plume is ejected from the surface of the target and interacts with
the ambient gas, before being deposited on the substrate. The substate temperature is continuously
controlled and monitored. Also a HP-RHEED system is illustrated, where electrons exit a small
orifice into the chamber and scatter off of the growing multilayer. The scattered electrons collect
on a phosphorous screen, which allows for analysis of the electron diffraction pattern. (Right)
Photograph of the Neocera Laser MBE system used for sample fabrication in this dissertation [88].

46



by the plasma shielding the target and increasing the temperature and pressure within the plume.

The resulting high pressure ejects the plasma from the target surface.

The plume propagates from target to substrate within 10-100 µs depending on the target to

substrate distance and pressure within the chamber. In this time span, the plasma interacts strongly

with the background gas (mainly oxygen). It is understood that a certain degree of thermalization

of the species in the plume is required to obtain films of desired stoichiometry and morphology.

Reducing the kinetic energy of ablated particles is necessary to avoid sputtering of the growing film

and defect creation. Often this goal is achieved by simply varying the background gas pressure.

However, O2 pressure is an important thermodynamic variable that must be adjusted to maintain

the stability of the chemical phase of the growing film, as well. In this case, sometimes the optimal

solution is to adjust the target substrate distance or the fluence of the incident laser beam. However,

there is a material dependent minimal threshold, below which ablation cannot occur [85].

Atomistic Processes

At this stage, species within the plume begin absorbing onto random sites at the substrate surface,

and the growing film evolves. Thin film growth is a complex subject involving multiple competing

mechanisms that are material and technique dependent. Therefore, the goal will be to give a

generalized overview with some PLD specifics. Most notably, PLD naturally imposes a pulsed

flux. In the short run during plasma substrate interaction, film formation is driven by a series of

kinetic processes and in the long run between the succession of impinging plumes by thermal ones.

(Note, only a brief review of film growth will be give here. For a more thorough discussion, see

reference [89].)

After absorption, deposited species (adatoms) on the substrate surface are mobile with a dif-

fusivity D determined by the substrate temperature Ts. They remain mobile until finding an ener-
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getically favorable site. In the absence of defects, this means diffusing to a site of higher atomic

coordination such as incorporation into step edges or island formation, where initially two adatoms

met. Of course this is a dynamical process, and there is finite probability that adatoms will escape

from a step edge, island, or even the surface of the film (desorption). As the new layer forms,

the probability of nucleation on top of an existing island increases as a function of the layer’s

expanding coverage. These adatoms will also diffuse to higher coordination sites which requires

transferring down to the lower level by a mechanism referred to as interlayer mass transport [90].

Transfer over the step edge is regulated by the Ehrlich-Schwoebel (ES) barrier [91, 92]. For large

ES values, voids within the growing layer will remained unfilled, and 3D island growth will occur.

PLD differs from other physical vapor deposition processes in two main ways. First, the flux

is inherently pulsed, as opposed to a constant flux which allows for a steady state of adatoms to be

reached on the substrate surface. Instead, the average flux F = Np/τ must be considered, where Np

is the amount of adatoms deposited per pulse and τ is the time between pulses. Second, the energy

of the species within the plume can vary broadly and are on the order of a few eV in high vacuum,

while other methods typically involve particles with energies in the fractions of eV. In the case of

the latter, a similar spread in energy can be obtained in PLD given strong interaction between the

plume and the background gas.

Step-Flow and LBL Growth

Vicinal surfaces must incorporate natural terraces from the miscut in the substrate which serve as

important nucleation sites in crystal growth. The average spacing between terraces is given by

L' a/α, where α is the miscut angle and a is the lattice spacing. In the regime of low deposition

flux F and high diffusivity, the probability of migrating into terraces overtakes island formation.

This results in terraces continually expanding across the surface referred to as step-flow. If the
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ES barrier is negligible, then larger terraces will tend to out grow smaller ones resulting in step-

bunching. For moderate values of ES step-flow growth stabilizes. When the time between pulses

exceeds the lifetime of a diffusing adatom on a terrace, the condition for step-flow growth becomes

F < 2NpD/L2 [93].

While step-flow results in smooth, uniform layers, there are no periodic changes in the the

surface that can be tracked in situ to determine layer thickness and completeness. Instead, an ideal

layer-by-layer (LBL) growth is required. This necessitates island formation to be initially favored

over incorporation into the step edge. In this case, the number of islands rises rapidly and falls

offs sharply after coverage reaches only a few percent, when adatoms are more likely to find an

island than another adatom [94]. As a result, the number of nucleation sites saturates in PLD after

the first pulse. The islands are separated by a characteristic spacing λ which is determined by the

diffusivity and flux. To avoid step flow, the condition λ < L must be satisfied. The additional

pulses deposit material that initially leads to island expansion called ripening. Later, nucleation

on top of an existing islands becomes unavoidable. The result is a two layer growth front which

is unfavorable to LBL growth. Increasing diffusion to promote interlayer mass transfer has the

undesirable effect of leading to a step-flow growth.

One possible solution is interval deposition, in which enough material for exactly one layer is

deposited as quickly as possible followed by an extended annealing time. The reasoning for this

lies in the surface changes that occur between pulses. In the early stage of layer growth, adatoms

migrate to islands from the initial surface versus interlayer mass transfer. This will lead to a fractal

pattern of islands on the surface [94]. Between pulses, thermal processes will smoothen island

contours reducing the step edge density. Reduced step edge density at a fixed coverage clearly

hinders interlayer mass transport. To avoid this, the time between pulses should be reduced to

interrupt thermal smoothening processes. Also the high supersaturation associated with PLD, will
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lead to an increase in nucleation resulting in a large number of smaller islands.

2.2.2 Reflection High-Energy Electron Diffraction

RHEED is an in situ electron diffraction technique used to characterized the surface of crystalline

materials especially throughout thin film growth. Due to the grazing incidence geometry, only

scattering from the surface will contribute to the diffraction pattern, which distinguishes RHEED

from bulk-sensitive electron diffraction techniques. Until recently, the ultrahigh vacuum require-

ment of the electron guns utilized in RHEED kept them from application in PLD. Development of

differential pumping systems have removed this hurdle, and HP RHEED represent a growing trend

for in situ characterization of oxide thin films and multilayers.

All diffraction techniques begin with a “suitable” beam of radiation, whose characteristic wave-

length λ fixes the amount of reciprocal space that can be sampled. This can be expressed mathe-

matically as a limit on the scattering vector Qmax = 4π/λ. In order to properly resolve distances

on the order of neighboring atoms, approximately 1 Å, then the diffraction experiment must be

capable of reaching far enough out into reciprocal space. To facilitate this, the incident electrons

are accelerated to energies E ∼ 25 keV, which gives a de Broglie wavelength λ = h√
2m0E = .078 Å,

where m0 is the electron’s rest mass [96].

The electron beam in RHEED strikes the sample at grazing incidence, which coupled with the

shallow penetration depth of electrons in matter implies that only the surface atoms participate in

forward scattering. Considering an ideally flat surface, the diffraction problem reduces to that of a

two dimensional (2D) lattice. In this case, reciprocal space will consist of an array of parallel and

infinite rods that yields a 2D reciprocal lattice of points retaining the translational and rotational

symmetries of the real space lattice, when cut by a plane perpendicular to the rods’ axes. The

infinite structure in the third dimension results from the Fourier transform relationship between
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Figure 2.4: Edwald sphere construction and electron scattering geometry in RHEED. (a)
Schematic of Edwald sphere with a reciprocal lattice of an infinite rods. In elastic scattering, the
condition for diffraction reduces to the intersection of the reciprocal lattice with a sphere of radius
|~ki|. For a 2D lattice with infinite extension in the third dimension, the diffraction conditions will
be met along a series of circles called Laue Zones. (b) Schematic of RHEED geometry. The
forward scattered electron beam off a crystalline substrate will produce a diffraction image on a
distant phosphorous screen, whose form can be determined from the Edwald sphere construction
shown in part (a). Adapted from reference [95].

real and reciprocal space and the loss in translational symmetry in the third dimension of real

space. For a square lattice in real space with lattice constant a, the reciprocal lattice is also a

square lattice with constant 2π/a, where an infinite rod extends normal to the plane from each

reciprocal lattice point.

Ignoring multiple-scattering events the so-called kinematic approximation, the condition for

diffraction can be simply stated in terms of momentum transferred to the scattered electron as

~Q =~ki−~ks = ~G, (2.3)

where~ki and~ks are the incident and scattered electron wave vectors, and ~G is a reciprocal lattice

vector. Limiting the discussion to elastic scattering (i.e., |~ki| = |~ks|), the locus of all possible

orientations of the incident and scattered wave vectors construct an Edwald sphere in reciprocal
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space with a radius of |~ki| (see Figure 2.4(a)). When the surface of the Edwald sphere intersects a

reciprocal rod, the diffraction condition is met for the corresponding reciprocal lattice vector. The

Edwald sphere is centered by convention, such that the specular reflection meets the diffraction

condition for the (00) rod. In practice, the incident beam falls along a high-symmetry direction of

the lattice. In this case, the plane containing the set of (0n) rods (n is an integer) cuts a circle into

the Edwald’s sphere, known as the zeroth Laue zone. The (0n) rods, which intersect this circle,

fulfill the diffraction condition. In a similar way, higher order Laue zones can be constructed.

The forward scattered beam impinges on a circular 2D phosphorous screen, which typically

subtends a large enough solid angle to include multiple Laue zones from the zeroth order up (see

Figure 2.4(b)). The total number of Laue zones depends upon the specific limits placed on the

scattering geometry by chamber design. The detector is further limited by the lack of energy reso-

lution, subsequently elastic and inelastic scattering contribute to RHEED images. Also, electrons

strongly interact with matter leading to strong multiple scattering requiring the use of dynami-

cal scattering theory. Consequently, the RHEED images necessarily includes deviations from the

simple kinematic theory outlined such as Kikuchi lines and modulations in reflections’ intensities.

These added complications require modeling to extract quantitative information.

RHEED is most often applied towards real time monitoring of thin film growth. For instance,

increase surface disorder is detectable as streaking of the reflection spots in RHEED images. Here,

disorder reduces the crystalline correlation length leading to a finite thickness of the reciprocal

space rods. Three dimensional island formation can be detected from transmission patterns ap-

pearing in the RHEED image. Both developments are unfavorable to LBL growth and require

close monitoring. Also, RHEED can measure the timed dependent intensity of the specular spot.

Oscillations in the specular intensity correspond to the completion of new layers on the surface of

the substrate. In LBL growth, the forming new layer interferes destructively with the under layer.
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At exactly half coverage an oscillation will reach a minimum, and then rise to the original intensity,

as the new layer is completed. Often the original intensity is not met with accumulating layers, as

surface disorder increases dampening oscillations. Sometimes, this can be corrected with a dwell

time between layers, which allows for thermal smoothening processes.

2.2.3 Deposition Conditions: YBa2Cu3O7, La2/3Ca1/3MnO3, and SrTiO3

The synthesis of YBa2Cu3O7/La2/3Ca1/3MnO3 and YBa2Cu3O7/SrTiO3 multilayers was largely

dictated by the P(O2)-T phase diagram of YBa2Cu3Oy (see Figure 2.5). On the phase diagram nar-

row regions, which are conductive to epitaxial growth, have been identified for various deposition

techniques. Typically high quality film formation takes place near thermodynamic stability lines,

and the films as-grown are oxygen deficient (YBa2Cu3O6). This requires a post-growth annealing

in 300−760 Torr of O2 to fully oxidize YBa2Cu3O7 films.

Multilayers were deposited on SrTiO3 substrates (5 mm x 5 mm x 0.5 mm) by interval PLD in

a LBL fashion. Fabrication was carried out in a recently developed PLD system featuring infrared

laser substrate heating and in situ monitoring via HP RHEED. Stoichiometric targets of the con-

stituent materials were sequentially ablated by a KrF excimer laser. In the case of YBa2Cu3O7,

the optimal conditions for 2D growth were found to be a low laser frequency of 6− 8 Hz with a

dwell time between the epitaxial deposition of each individual unit cell, which allowed for ther-

mal smoothening processes. For LCMO, interval deposition with a laser frequency of 15−25 Hz

proved to be the most favorable conditions for a LBL growth. Furthermore, interval deposition

allowed for a mutually compatible growth regime for YBCO and LCMO to be achieved, which is

discussed thoroughly in the adjacent chapter. SrTiO3 deposition required a low frequency growth

3 HZ with a dwell time between consecutive layers. RHEED specular intensity oscillations were

observed for all layers, allowing for unit cell control during the construction of these multilay-
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Figure 2.5: YBa2Cu3O7 P(O2)-T phase diagram. Regions favorable to high-quality epitaxial
growth are marked for various deposition techniques. Adapted from reference [97].

ers. The substrate temperature was continuously monitored and held at 750◦ C, and an oxygen

partial pressure P(O2) = 250 mTorr O2 was maintained inside the chamber throughout the de-

position. Immediately after deposition, the samples were annealed at 550◦ C, and the chamber

was back-filled with oxygen to 500 Torr. These annealing conditions were maintained for 1 h.

The structurally and electronic qualities of the multilayers, produced under these conditions, are

shown in the subsequent chapters through a combination of characterization techniques, e.g., x-ray

diffraction, transmission electron microscopy, and transport measurements.
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Chapter 3

Enhanced Spin and Electronic Reconstructions at the Cuprate-Manganite Interface

In this chapter, we examine the results from our search for a mutually compatible growth regime

in cuprate-manganite heterostructures. Enhancements in the spin and electronic reconstructions at

the cuprate-manganite interface are observed. Polarized x-ray spectroscopy measurements taken

at the Cu L edge reveal up to a five-fold increase in the magnetic dichroism as compared to past

experimental results. The strong dichroic signal allows us to successfully apply the magneto-

optical sum rules that reveal an uncompensated Cu moment, mspin = 0.3079 µB/Cu, induced in the

CuO2 plane. Furthermore an increase in the degree of interlayer charge transfer up to 0.25e (where

e is charge of an electron) per copper ion is observed leading to a profound reconstruction in the

orbital scheme for these interfacial copper ions. It is inferred that these enhancements are related

to an increase in TMI observed for manganite layers grown with rapidly modulated flux.

3.1 Introduction

The confluence of multiple competing order parameters stemming from the rich spectrum of

ground states accessible in artificial transition metal oxide multilayers facilitates the exploration of

unique quantum states and phenomena at the interface. A quintessential example is the junction

between the high-Tc cuprate YBa2Cu3O7 (YBCO) and the colossal magnetoresistance manganite

La2/3Ca1/3MnO3 (LCMO), for which the exact nature of the electronic and magnetic structure at

and near the interface remains actively debated. On one hand, proximity effects (PE) are excepted

to play a dominate role in determining properties [98], and indeed prior extensive measurements
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of YBCO/LCMO heterostructures have revealed suppressions in the critical temperature and free

carrier response operating over a length scale far exceeding the anticipated superconductive (SC)

condensate penetration depth ξF [99, 100]. One possible explanation for the observed long range

PE is a triplet pairing component of the SC condensate due to the presence of magnetic inhomo-

geneity near the interface [101].

Through the combined utilization of polarized neutron reflectivity and X-ray magnetic circu-

lar dichroism (XMCD), a definitive picture of the microscopic magnetic profile in YBCO/LCMO

multilayers was obtained which coincided with the aforementioned theoretical predictions includ-

ing an induced net moment in the SC layer at the interface with an antiferromagnetic coupling to

the ferromagnetic (FM) layer [102, 103, 104]. However, subsequent X-ray linear dichroism (XLD)

measurements established the role of orbital reconstruction in which a strong covalent Cu-O-Mn

bond at the interface promotes charge transfer between layers and a rearrangement of the Cu dz2−r2

occupation[105]. The sign of the magnetic interaction between Cu and Mn is simply determined

by the Goodenough-Kanamori rules, while charge transfer across the interface offers an alternative

explanation to the previously seen long range PE [100, 106]. Despite these advancements, recent

theoretical and experimental results have reproduced the magnetic dichroic signal on Cu but failed

to account for the orbital reconstruction [107, 108]. Furthermore, recently evidence for a triplet

SC component in YBCO/LCMO heterostructures has been emerging [109].

In this chapter, we report on a resonant x-ray absorption spectroscopy (XAS) study of the

electronic and magnetic profile of the cuprate-manganite interface in a representative [YBCO (9

u.c.)/LCMO (26 u.c.)]×3 superlattice (SL). Circularly polarized X-rays are used to acquire element

sensitive information about the magnetic structure of the interface, while linear polarizations probe

the electronic structure. Temperature dependent dc transport measurements explore the electronic

and magnetic qualities of the films. We conclude that both spin and electronic reconstructions are
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present and markedly enhanced. Furthermore, these enhancements are linked to the structural and

chemical properties of the manganite-cuprate layers obtained by rapidly modulated flux. Also, the

sum rules are applied for the first time (to the best of the author’s knowledge) to this interface,

and an uncompensated moment which closely matches recent local spin density approximation

(LSDA+U) calculations is found [107].

3.2 Results and Discussion

3.2.1 Mutually Compatible Growth Regime

A mutually compatible growth regime (i.e., temperature and pressure) for YBCO and LCMO was

achieved through interval deposition, in which material is deposited by high frequency pulses fol-

lowed by an extended dwell time between the deposition of each unit cell (u.c.) [110]. Undamped

RHEED specular intensity oscillations (not shown) were observed for both YBCO and LCMO

layers over a large number of cycles allowing for a layer-by-layer growth with u.c. control. Figure

3.1(b) shows the post growth RHEED image for the SL along the (001) direction. The presence of

unbroken crystal truncation rods up to the second order combined with well defined specular (00)

and off specular Bragg reflections testifies to the quality of the 2-D growth.

To determine the structural properties of the SL, we performed X-ray scattering at beamline 5-

BM-D of the Advanced Photon Source (APS) at Argonne National Laboratory. Figure 3.1 shows

the specular X-ray diffraction along the (00L) crystal truncation rod as a function of the magnitude

of the out-of-plane momentum transfer vector, Qz. As seen in Figure 3.1(a), the SL shows all

expected Bragg reflections for c-axis oriented layers and Kiessig fringes testifying to the quality

of the film and sharpness of the interfaces. Based on the position of the YBCO (005) reflection,

the average c-axis lattice constant for the YBCO layers in the SL is 11.70 Å, which agrees with
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Figure 3.1: Structural Characterization. (a) X-ray reflectivity data (dots) and error bar (solid
line) for a [YBCO (9 u.c.)/LCMO (26 u.c.)]×10 SL SrTiO3. (b) The after growth RHEED image
for the same SL on a SrTiO3 substrate. White triangular markers indicate the weak half-order
signal which is attributed to the Pbnm crystal symmetry of the capping LCMO layer. (c) A high
angle annular dark field scanning transmission electron microscopy image of the YBCO/LCMO
interfacial region. Labels indicate different layers.

the reported bulk value for optimal stoichiometry [111]. Furthermore, in an effort to investigate

the structural quality of the interfacial region, high angle annular dark field (HAADF) scanning

transmission electron microscopy (STEM) measurements were made. In Figure 3.1(c), an HAADF

STEM image for the YBCO/LCMO film is shown which exhibits a defect free and atomically sharp

interfacial region.

In order to establish the electronic qualities of the samples, we investigated the dc transport

properties of single layer YBCO and LCMO films and the SL. Figure 3.2 shows resistivity versus

temperature for single layers of YBCO (left axis) and LCMO (right axis). As seen for the YBCO

film, the superconducting transition Tc takes place at 93 K attesting to the proper optimally doped

stoichiometry. In the case of the LCMO sample, the metal-to-insulator transition takes place at

TMI = 212 K (inflection point). Note, the previously reported values of TMI for LCMO films grown

under similar conditions (e.g., substrate, thickness etc.) but without the use of interval deposition
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are typically <170 K [108]. In a conventional growth to achieve an elevated TMI as in our films,

significantly increased fabrication temperatures would be required which is a detrimental constraint

on cuprate growth [112]. The stabilization of material phases outside of regions of thermodynamic

stability is a hallmark of interval deposition, and the electronic and magnetic properties of LCMO

are known to depend sensitively on stoichiometry and the presence of defects [31, 113]. Together,

these help explain the origin of the enhancements seen in the spectroscopy data below. In addition,

the temperature dependent resistance for the SL is plotted on the bottom left axis of Figure 3.2. A

suppression in the critical temperature Tc = 56.7 K is observed and is most likely the result of hole

depletion through interlayer charge transfer as corroborated by the XAS data below.
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3.2.2 Enhanced Electronic and Spin Reconstructions

Next we explored the electronic and magnetic structure with XLD and XMCD resonant soft X-ray

spectroscopies. The experiments were carried out at the 4-ID-C beamline of the Advanced Photon

Source in Argonne National Laboratory. In the XLD studies at the Cu L edge, we investigated the

orbital occupation by measuring the difference in absorption for polarizations in the ab-plane and

along the c-axis, while the XMCD experiments at the Cu and Mn L edges obtained information

regarding element specific magnetic moments by measuring the differences in the absorption of

right and left circular polarizations. Spectra were recorded at an incident angle of 15 degrees out

of plane simultaneously in both fluorescence yield (FY) and total electron yield (TEY) acquisition

modes.

The linear polarization-dependent Cu L3 absorption spectra of the SL is presented in Figure

3.3(a). First we consider the bulk sensitive FY data set which shows the strong XLD expected

for the Cu2+ (3d9) state of cuprates [44, 114]. Note, the in-plane signal stems from formally

divalent Cu within the CuO2 sheets. Several important features can be identified in the spectrum

of which the excitonic line near 931 eV is the most prominent and corresponds to transitions from

the Cu 2p core levels into the unoccupied bands of mainly Cu dx2−y2 orbital character (2p63d9 →

2p53d10). A clear shoulder is observed on the high energy side of the white line. The shoulder

is ascribed to transitions coupled with Cu ligand hole states (2p63d9L → 2p53d10L) and is the

well-known signature of the Zhang-Rice state [76]. Another important feature of the FY spectrum

is connected to the c-axis polarization, where the maximum of the absorption peak is shifted by 0.3

eV to higher energy; the larger number of ligand hole states in the chains transfer spectral weight

from the excitonic line to the high energy shoulder. Since the dz2−r2 orbital of the CuO2 planes is

occupied, the out of plane polarization mainly probes unoccupied states from monovalent Cu in
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the chains of dz2−y2 orbital character.

In the TEY data, distinct transformations in polarization dependence and lineshape manifest in

the spectra indicating charge transfer across the interface leading to a reconstruction in the orbital

scheme for interfacial Cu ions. As indicated in Fig. 3(a), the position of the Cu white line is shifted

by 0.5 eV to lower energy in the TEY spectrum, which exceeds the value (0.4 eV) reported in the

prior study. This substantial chemical shift is the mark of interfacial charge transfer. Through

a comparison to Cu1+ and Cu2+ reference materials, an approximate calculation yields a charge

transfer amplitude of 0.25e per copper ion [115]. Furthermore, the shoulder at high energy is not

observed in the TEY data confirming the depletion of holes from the YBCO region of the interface.

While the evolution in the amplitude of the high energy shoulder is a common feature of YBCO

XAS doping profiles, the shift in the white line is unexpected [44]. Previously, this has been

attributed to the reconstruction of the dz2−r2 orbital through the formation of a covalent bond with

Mn through apical oxygen across the interface [105, 116]. Confirming this picture, the large linear
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dichroism of the bulk is no longer present, and the absorption along the c-axis now even surpasses

that of the the in-plane for the TEY spectrum.

Finally, we turn our attention to magnetism on Cu and Mn. Figure 3(b) shows the XMCD

spectra at both the Mn and Cu L edges acquired in TEY mode. As anticipated for a FM system,

the strong magnetic dichroism reaches a maximum value of 37.4 % at the Mn L3 edge. On the Cu

L edge, however, only a moderate magnetic signal is present, which indicates an uncompensated

magnetic moment on Cu near the interface. From the sign of the XMCD on both Mn and Cu edges,

an antiparallel alignment of Cu and Mn moments coupled across the interface can be deduced. The

magnitude of the dichroism (6.9 %) a the Cu L3 edge is up to a factor five larger than the previously

reported values providing additional evidence for the high quality of the interface [104]. The

measurements at the Cu L-edge were repeated at 100 mT without loss in the magnitude of the

magnetic dichroism.

So far, only qualitative assessments of the induced moment on Cu at the interface have been

reported [103, 104]. Few experimental techniques combine a sensitivity to buried multilayers

interfaces and element specific measurements of magnetic moments. While the magnitude of the

moments cannot be read directly from XMCD spectra, through an application of the sum rules

both the orbital and spin components can be obtained for a specific element [117, 118]. According

to the XMCD sum rules, the orbital and spin parts can be calculated as follows:

morbital =−
4q
3r

(10−n3d) (3.1)

mspin =
−6p−4q

r
(10−n3d), (3.2)

where morbital and mspin are the orbital and spin magnetic moments given in µB/atom, respectively.

The integrals p, q, and r are indicated in Figure 3.4, and n3d is the 3d electron occupation number.
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Equation 3.2 has been simplified by ignoring the quantity 〈Tz〉
/
〈Sz〉, where T and S are the dipole

and spin operators, respectively. The omission of these terms has been shown to introduce small

(a few %) and offsetting errors [119]. The lack of orbital polarization found in XLD for interfacial

Cu lends further support to the use of this approximation. The orbital component, as expected,

is quenched by the crystal field with morbital = −0.02451 µB/Cu, while mspin = −0.30791 µb/Cu,

which agrees with current theoretical calculations [107].

3.3 Conclusion

In summary, our resonant soft X-ray spectroscopy study of the cuprate-manganite interface has

confirmed the presence of both spin and orbital reconstructions. We observed increases in the

dichroic signal and the chemical shift at the Cu L edge signaling an enhancement in the induced

moment on Cu and the degree of interlayer charge transfer, respectively. Sum rules calculations

find a spin moment of 0.3079 µB/Cu. Furthermore, an increase in TMI has been observed for

manganite layers grown with interval deposition, which is fundamentally related to its magnetic
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and electronic properties.
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Chapter 4

Interfacial Controlled Carrier Doping of a High-Temperature Superconductor

In this chapter, we examine an experimental exercise to direct the phase diagram of a high-Tc

cuprate using interfacial electron-doping by means of a heterojunction with a colossal magnetore-

sistive manganite. Initially, the heterojunction between YBa2Cu3O7 and La2/3Ca1/3MnO3 behaves

in a parallel manner to that of chemical control, i.e., the carrier density is regulated by the inter-

face. The introduction of manganite layers into the heterostructure triggers a thickness dependent

suppression in the superconducting transition temperature. Analysis of the polarized x-ray ab-

sorption spectrums on Mn and Cu reveals a flow of electronic charge across the interface, where

the depleted electrons directly enter the CuO2 planes unbalancing the standard carrier distribution

between infinite layers and charge reservoir blocks, despite this the heterojunction conforms with

the conventional YBa2Cu3O7−δ phase diagram. Until a breakdown in the charge transfer process,

defined by the spatial limit of charge reconstruction, blocks access to the electron-doped super-

conducting phase. As electron flow abates, the average Mn valence declines to the as-grown value

(Mn3.33+) facilitating the development of spin and orbital reconstructions at the interface.

4.1 Introduction

The discovery of an interface based method for manipulating a material’s phase diagram would

be elementary to not only tailoring the material’s electronic attributes but to also creating systems

that have no bulk counterparts. One possible inroad into this problem has emerged in the field of

ultra-thin superlattices (consisting of individual layers approaching 1 unit cell (u.c.) of thickness),
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where near interface reconstructions are capable of stabilizing electronic phases previously only

accessible through chemical doping of parent compounds. Oxide heterostructures have displayed a

particularly strong susceptibility to interlayer charge redistribution derived from incompatibilities

in electronic boundary conditions making them ideal candidates to explore this hypothesis [79,

120, 121, 122, 123]. Moreover, the inherent electron correlations give rise to rich phase diagrams

with pronounced coupling amongst lattice, spin, charge, and orbital degrees of freedom leading to

emergent phases and functionalities at heterojunctions [124, 125].

The promise of fostering these type of unrealized electronic states has sparked interest into a

system composed of a high-Tc superconductor YBa2Cu3O7 (YBCO) and a colossal magnetore-

sistive manganite La2/3Ca1/3MnO3 (LCMO). Early research hinged on antagonism amidst super-

conductivity and ferromagnetism, where the singlet structure of Cooper pairs must be reconciled

with the parallel alignment imposed by the ferromagnet’s exchange interaction [98, 126, 101].

Indeed several studies have associated depressed critical temperatures and magnetization in YB-

CO/LCMO superlattices with long range proximity effects [99, 127, 128, 109, 129, 100, 130], yet

the macroscopic validity of this interpretation remains unclear. Of greater interest to this study

are the overshadowing impacts of charge, spin, and orbital reconstruction present at the interface

[104, 105, 103, 131, 132]. In particular, x-ray spectroscopies have established that electron transfer

from Mn to Cu ions takes place through a covalent bond at the interface. Additionally, tunneling

and electron energy loss spectroscopies have set an upper limit on the region of electronic alteration

at approximately 1 nm (slightly less than 1 YBCO unit cell u.c.). Despite this progress, conflict-

ing views remain about the direction of charge flow and the electronic profile of the reconstructed

region. To this end, ultrathin SLs which are true interface materials unclouded by the admixture

of bulk-like properties would allow for a clearer analysis of these reconstructed states and possibly

the revelation of emergent phases, e.g., electron-doped superconductivity in a formally hole-doped
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cuprate.

We begin by investigating the consequences of charge reconstruction for interfacial states,

specifically the implications of electron doing on CuO2 planes in a formally hole doped super-

conductor. As shown schematically in Figure 1(b), we fabricated superlattices (SL) consisting of

[YBCO (2 u.c.)/LCMO (N u.c.)]m with N = 1,2,3 and m = 20,15,9, respectively on SrTiO3 sub-

strates. Through x-ray spectroscopy and diffraction, depleted electrons are established to directly

enter the CuO2 upsetting the conventional balance of charge throughout the u.c. Electron trans-

fer into the conducting planes behaves as a dial to tune through the copper oxide phase diagram

without the need for chemical substitution or oxygen reduction. Commensurate with the obser-

vation of charge transfer, the LCMO layers advance into a canted AFM state. However, electron

transfer ceases before electron-doped superconductivity is reached. Upon further increasing the

manganite layer thickness the transferral of electrons to YBCO rapidly diminishes, as the average

Mn valence decreases to Mn3.33+ (the expected value for the chosen A-site ratio). This breakdown

in electron transfer was explored in a series of YBCO/LCMO SLs with N = 5,10,15,20,30 and

m= 7,6,5,4,3, respectively. The cessation in charge transfer coincides with previous limits placed

on the area of electronic alteration. The shift in Mn valence draws the system into the ferromag-

netic region of the LCMO phase diagram, and magnetic dichroism at the Mn L edge scales with the

reduction in valence. The Mn magnetic signal is found to be strongly field dependent suggesting

electronic phase-separated phenomena. Orbital and spin reconstructions on interfacial Cu develop

alongside the rise in Mn 3d count, as evidenced by linear and magnetic dichroic signals at the Cu

L edge.
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4.2 Results and Discussion

4.2.1 Evolution of Tc with N

Figure1(a) shows the temperature dependent resistivity for the N = 1,2,3 SLs in which varying

the LCMO thickness obtains a clear superconductor-insulator (S-I) transition. The samples were

measured in van der Pauw geometry, and the in-plane resistivity ρab was calculated with a parallel

resistor model.

ρab = RS× tY BCO (4.1)

Measurements of the Mn valence (see below) indicate that the LCMO layers are inside the AFM-

insulator section of the phase diagram [30]. In this case, the current will be shunted to the YBCO

layers, and the resistivity is only a function of the total YBCO thickness tY BCO [133]. As shown

in Figure1(a), Tc plummets considerably from 50 to 12.5 K, when N increases by the smallest

possible margin from 1 to 2. Here Tc is taken to be the temperature at which the sheet resistance

falls to zero. Both samples exhibit the well-known non-Fermi liquid linear T-dependence [134],

and the temperature T0, at which ρab deviates from linearity, shifts higher for N = 2 (see Figure B.1

for linear plot). At N = 3 the superconducting phase remains unrealized down 2 K, and the sample

displays insulating behavior in its place. The degradation in normal state transport properties and

following S-I transition is consistent with reduced carrier doping in YBa2Cu3O7−δ [135].

However, an accounting of the carrier concentration within the SLs is required to properly es-

tablish the origins of suppressed superconductivity with N. In the undoped compound YBa2Cu3O6

the two inequivalent Cu sites, Cu(1)O3 chains and Cu(2)O2 planes, would be in a 3d10 and 3d9

configuration, respectively, and the O sites would be in a 2p6 configuration for a strictly ionic

model. Upon oxygen doping to YBa2Cu3O7, previous experiments and theoretical calculations
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Figure 4.1: Electronic transport measurements and superlattice schematics. (a) Four point
probe electrical transport measurements of superlattices with N = 1,2,3. A transition from super-
conductor to insulator takes place at N = 3. (b) Block schematics of superlattices studied. Films
are composed of alternating layers: YBa2Cu3O7 layers (blue blocks) and La2/3Ca1/3MnO3 layers
(orange blocks). All films were grown on SrTiO3 substrates (gray blocks). We label the films
on the basis of La2/3Ca1/3MnO3 thickness as N = 1,2,3 u.c. with a constant YBa2Cu3O7 layer
thickness of 2 u.c. This give superlattices with the structure [YBCO (2 u.c.)/LCMO (N u.c.)]m
(N = 1,2,3 u.c. and m = 20,15,9). (c) Crystal structure of the N = 3 superlattice. Note the two
inequivalent copper sites: Cu(1) in the CuO3 chains and Cu(2) in the CuO2 planes. CuO layers are
absent from both top and bottom interfaces.

on the electronic structure determined that the 3d count of the Cu(1) atoms decreases by one, and

the remaining holes will form on the O sites (i.e. a charge-transfer model) with approximately

0.6 holes per chain unit and 0.2 holes per plane unit [43, 44, 45, 46]. The holes are introduced

into the electronic structure by oxygen doping within the CuO layers of the chains. In ultrathin
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heterostructures, missing CuO layers at the interface will have a dramatic impact on Tc and must

be considered first in an analysis of Tc reduction.

4.2.2 Structure

The structure of the interface plays an integral role in determining the properties of ultrathin su-

perlattices. In YBCO/LCMO heterostructures, the formation of a covalent bond between Cu and

Mn at the interface has been proposed as the origin of reconstructions in orbital, charge, and spin

degrees of freedom [104]. In fact, the goal of the current study is to leverage this unique bonding

to facilitate interfacial charge transfer and manipulate the YBCO phase diagram. Furthermore, the

covalent bond with Cu in the CuO2 planes requires the removal of the CuO layers at the interface

that leads to serious consequences in terms of carrier doping in the YBCO layers. When the YBCO

layer thickness is limited to 2 u.c., the loss of chains at both top and bottom interfaces hypothet-

ically cuts hole doping within the layer in half and should reduce Tc down to 56 K. Therefore an

understanding of the interfacial structure is a prerequisite for interpreting results.

The termination of the interfaces remains a contentious theme of current research. Some trans-

mission electron microscopy (TEM) studies have concluded that the bottom interface terminates

without the loss of CuO layers [138], while others others reported missing chain layers at both bot-

tom and top interfaces [139]. Originally, this disagreement was thought to stem from the growth

technique (pulsed laser deposition versus sputtering) employed, however recent experiments have

removed this possibility [140]. For the top interface, there is agreement that the CuO layers are

missing which gives a La/CaO—CuO2 interface.

To resolve these issues within this study, high-angle x-ray diffraction and reciprocal space

mapping was carried out at beamline 33-BM-C of Argonne National Labs (see Figure 1.7). Spec-

ular x-ray reflectivity along the (00L) crystal truncation rod combined with a series of simulations

70



K

L

KL−map through (0 1 3)
(YLMO_31_Y8_1, scan 73)

0.96 0.98 1 1.02 1.04 1.06
2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

H

L

HL−map through (1 0 3)
(YLMO_31_Y8_1, scan 72)

0.96 0.98 1 1.02 1.04 1.06

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5
(b)

H (r.l.u. SrTiO3)
L 

(r.
l.u

. S
rT

iO
3)

0.96 1.00 1.04
2.8

3.0

3.2

3.4

(c)

K (r.l.u. SrTiO3)

L 
(r.

l.u
. S

rT
iO

3)

0.96 1.00 1.04
2.8

3.0

3.2

3.4

(d)

Y
B

C
O

 (0
06

)
ST

O
 (0

02
)

Y
B

C
O

 (0
07

)

Y
B

C
O

 (0
05

)

Y
B

C
O

 (0
04

)

Y
B

C
O

 (0
03

)
ST

O
 (0

01
)

Y
B

C
O

 (0
08

)

Y
B

C
O

 (0
09

)
ST

O
 (0

03
)

Y
B

C
O

 (0
01

0)

Experimental
Simulation S0C
Simulation A1C
Simulation S2C

(a)

ST
O

 (0
03

)

Y
B

C
O

 (0
09

)

Experimental
Simulation S0C

10-5
 

10-3
 

10-1
 

101
 

103
 

105
 

107
 

109

In
te

ns
ity

 (a
.u

.)

3.103.053.002.952.90
L (r.l.u. SrTiO3)

10-18  
 10-14  
 10-10  
 10-6  
 10-2  
 102  
 106  
 1010  
 

In
te

ns
ity

 (a
.u

.)

3.02.52.01.51.0
L (r.l.u. SrTiO3)

CuO2

Y

CuO2

Y
CuO2

BaO
CuO
BaO
CuO2

La/CaO BaO
MnO2

La/CaOBaO

La/CaOBaO

1.0 1.5 2.0 2.5 3.0

L (r.l.u. SrTiO3)

10-18

10-14

10-12

10-6

In
te

ns
ity

 (a
.u

.)

10-2

102

106

1010

L (r.l.u. SrTiO3)
2.90 2.95 3.00 3.05 3.10

In
te

ns
ity

 (a
.u

.)

10-5

10-3

10-1

101

103

105

107

109

Figure 4.2: Structural analysis of the [YBCO (2 u.c.)/LCMO(1 u.c.)]x20 SL. (a) Specular x-ray
reflectivity along the (00L) crystal truncation rod (black curve). Simulations of the reflectivity data
for symmetric interfaces with CuO layers missing at top and bottom interfaces (S0C), asymmetric
interfaces with CuO missing at one interface (A1C), and symmetric with CuO present at top and
bottom interfaces (S2C). Simulations displaced vertically for clarity. Inset: Block schematic of
S0C model. (b) Specular x-ray reflectivity around the STO (003) and simulation S0C. (c) Recip-
rocal space map around STO (103) (d) Reciprocal space map around STO (013).

picked out a unique interfacial stacking and allows for the determination of c-axis structural pa-

rameters. The experimental diffraction pattern for the N = 1 samples is displayed in Figure 1.7(a)
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alongside three simulations, which are displaced vertically for clarity. The experimental pattern

includes the expected Bragg peaks from a c-axis oriented thin film and additional reflections be-

tween the Bragg peaks corresponding to the super-period of the heterostructure. The simulated

patterns were constructed with the reflectivity fitting program GenX [141]. Custom atomic mod-

els can be directly inputted to simulate the diffraction spectra. The atomic arrangement of the

models are based on the principles of chemical matching for layer stacking in ABO3 perovskites

(for more details see the accompanying chapter on YBa2Cu3O7/SrTiO3). Although this gives six

possible stacking configurations, we only considered the possibilities supported by the previous

TEM experiments. Three models were tested: symmetric interfaces with chains missing at top and

bottom interfaces (S0C), asymmetric interfaces with chains missing at one interface (A1C), and

symmetric with chains present at top and bottom interfaces (S2C). Only the S0C model was able

to match the experimental pattern. Differences between the simulation and experimental pattern

are due to interfacial roughness and modulations in the super-period, which were not accounted

for within the S0C model (shown schematically as an inset to Figure 1.7(a)). While mixing of

La/CaO and BaO at the interfaces was taken into consideration, the possibility of patches, where

interfacial chains are present, was not accounted for in the S0C model. Given the conflicting TEM

data, these patches might exist. A magnified view around the STO (003) rod is shown in Figure

1.7(b). The YBCO (009) peak is visible, and Keissig fringes are present within the pattern. Based

on the fringes and location of superlattice reflections, there are exactly 20 repeats in the SL with

a period Λ = 22.9841 Angstroms. The location of the YBCO (009) rod gives a c-axis parameter

c = 11.5571 Angstroms. In the bulk, the c-axis parameter of YBCO evolves as a function of dop-

ing and correlates closely with Tc [142]. The value of the c obtained for the SL is shorter than

expected — even compared to over-doped samples.

The accommodation of misfit strain can be rule out as a possible source of the unusually short
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lattice constant. In heteroexpitaxy, the growing film locks into atomic registry with the substrate,

which generates epitaxial strain. The degree of strain depends upon the mismatch between in-

plane lattice parameters. STO has a cubic lattice with c = 3.9045 Angstroms, while YBCO has

an orthorhombic lattice with in-plane parameters a = 3.8227 and b = 3.8872 Angstroms. Epitaxy

will result in the YBCO lattice undergoing tensile strain. In Figures 1.7(c, d), reciprocal space

maps around the STO (103) and (013) rods, respectively, show that the n = 1 SL is relaxed. In both

figures, the YBCO (108)/(018), (109)/(019), and (1010)/(0110) rods do not line up with their re-

spective substrate peaks, hence the heterostructures have relaxed to their bulk in-plane parameters.

4.2.3 Charge Transfer from LCMO

X-ray diffraction experiments along with modeling have established that the chain layers are not

present at both top and bottom interfaces in the SLs. Hence the two YBCO u.c. share only one

set of chains (see Figure 1.1(c)), which cuts their doping level in half (one hole per u.c.). This

hypothetically limits Tc,max to approximately 55 K and is the starting point for further calculations

[142]. In our model, the holes within the YBCO u.c. are filled in through interfacial electron

transfer. Assuming a maximum valence shift to Mn4+ (shown experimentally below) and given

the constraint of epitaxy (u.c. matching at the interface), the manganite layers provide −0.67e×N

per two YBCO u.c. For N = 3, the translocated electrons exactly cancel the remaining holes, and

the system should be rendered insulating. In the N = 1,2 SLs transition temperatures fall within

the outlined range (55 - 0 K), however predicting the exact behavior of these intermediate cases

presents formidable challenges: (1) The incomplete YBCO layers contain an unknown rearrange-

ment of carriers. (2) While diffraction experiments favor a MnO2—BaO-CuO2 termination, the

probable existence of SrO—CuO patches provide an unaccounted for reservoir of holes. (3) The

carrier concentration within the CuO2 planes depends sensitively on the distribution of transferred
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Figure 4.3: Mn valence and magnetism. (a) Circularly polarized average for superlattices with
dependence on N at the Mn L3 edge. The valence state of Mn is fixed close to 4+ rather than the
expected 3.33+. For comparison, a 150 uc LCMO reference film with a nominal valence of 3.33+

is shown. (b) X-ray magnetic circular dichroism measurements of superlattices with dependence
on magnetic field. Strong field dependence points to a canted AFM state.

electrons. For these reasons, x-ray absorption spectroscopy (XAS) was utilized to measure and

track the charge flow out of the manganite layers and into the cuprate layers.

To uncover the origin of the transferred charge, Mn L edge XAS spectra were recorded with left

circularly (I−) and right circularly polarized (I+) light at 15 K. The polarization averaged absorp-

tion spectra for the SL are compared with that recorded on a 150 uc thick La2/3Ca1/3MnO3 film

(Mn3.33+) in Figure 3(a). The chemical shift to higher photon energy and the pronounced doublet

feature, found in the SLs, are typical of a CaMnO3 spectra, which indicates that the Mn ions have
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increased valency to +4 from +3.33 by transferring electrons to the YBCO layers [19]. The similar

Mn oxidation state for each heterostructure also implies that the net amount of electron transfer

through the interface is −0.67e per Mn ion. Furthermore, all SLs show a weak x-ray magnetic

circular dichroism (XMCD) signal (Fig. 3b) in a 5 Tesla magnetic field, which is reprsentative of

an AFM state. The disappearance of the XMCD signal with the reduction of magnetic field to 0.1

Tesla affirms that the manganite layers are not ferromagnetic, which agrees with the phase diagram

of bulk La1−xCaxMnO3. Near x = 1 (i.e. Mn valency close +4) the system is antiferromagnetic

[31]. The small XMCD signal in high field stems from spin canting.

4.2.4 Modification of the Electronic Structure within the YBCO Layers

Modifications to the cuprate electronic structure, in this case due to incorporation of depleted

electrons, can be monitored by probing changes in the unoccupied density of states. Here we have

utilized XAS, which is also sensitive to the orbital occupation and symmetry at the different Cu

sites. The polarized Cu L3 edge x-ray absorption spectra are reported in Figure 1.2(a, b) for both

ab-plane and c-axis. Spectra were acquired in both bulk sensitive total fluorescence yield (TFY)

and surface sensitive total electron yield (TEY) mode. Due to the ultrathin nature of the YBCO

layers, there is no significant difference between the two sets of data, and only the TFY data will

be shown here. The asymmetric ligand environment around Cu(2) leads to a preferentially empty

3dx2−y2 orbital and hence a strong x-ray linear dichroism (see Figure B.2). Here, the signal has been

normalized to edge max for ease of comparison. The absorption signal with electric field vector

(E) parallel to the ab-plane (Iab) mainly probes state associated with the Cu(2) 3dx2−y2 orbital,

while E parallel to c-axis (Ic) detects states with Cu(1) 3dz2−y2 orbital character. [143]. Iab consists

of a sharp peak (the so called white line) stemming from Cu(2) 3d9→ Cu(2) 2p3d10 transitions at

about 931.2 eV and a shoulder on the high-energy side at 932.53 eV, designated Zhang-Rice (ZR),

75



931.3

931.2

931.1

931.0

930.9

930.8

0.4

0.3

0.2

0.1

43210

(c)

(d)

931.3

931.2

931.1

931.0

930.9

930.8

0 1 2 3 4

0.4

0.3

0.2

0.1

along a-b
along c

along a-b
along c

1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0
934932930928

 N=1
 N=2
 N=3

 

 N=1
 N=2
 N=3

Photon energy (eV) NLCMO (u.c.)

N
or

m
al

iz
ed

 a
bs

or
pt

io
n 

(a
.u

.)

n h
 li

ga
nd

 h
ol

e 
w

ei
gh

t 
C

u 
L 3

 p
ea

k 
po

si
tio

n(a)

(b)

Polar. along a-b

Polar. along c

1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

928 930 932 934

N=1
N=2
N=3

N=1
N=2
N=3

0.0

Figure 4.4: Cu electronic structure and ligand weight analysis. (a) and (b) X-ray Linear
Dichroism (XLD) measurements at the Cu L3 edge at 15 K with the electric-field vector E‖ab and
E‖c, respectively. Arrows indicate the progression of the ZR and satellite peak as a function of
LCMO thickness. The relative strength of the ZR and satellite peak measure the concentration
of holes on neighboring oxygen sites. (c), Main peak energy shift with dependence on N taken
from graphs (a) and (b). (d) Ligand hole weight plotted as a function of LCMO layer thickness
for both polarizations. The ligand hole weight was calculated from XLD spectra as described in
supplement.

from Cu(2) 3d9L→ Cu(2) 2p3d10L transitions, where L denotes a 2p hole on neighboring oxygen

sites. For Ic, the lower-energy contribution at about 931 eV is associated with mainly Cu(1) 3d9

→ Cu(1) 2p3d10 transitions, and the high energy satellite peak arises due to Cu(1) 3d9L→ Cu(1)

2p3d10L transitions [44].

The intensity of Cu spectral lines are directly related to the number of unoccupied states in-

volved providing a measure of hole occupancy in Cu 3d orbitals. Throughout the SL series, the

dominant contribution to the unoccupied density of states remains transitions from Cu(2) of 3dx2−y2

orbital character (WL). However, a portion of this spectral weight is redistributed to the ZR shoul-
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der. As discussed above, the dopant holes in the CuO2 planes form on oxygen sites, and the 3d

count on planar Cu(2) sites stays fixed. XAS studies clearly show that the peak position of the

Cu(2) main absorption line does not shift with doping (see Figure 1.2(c)) [44, 144]. Due to cov-

alancy between Cu d and O p orbitals, the hole on a neighboring oxygen site will interact strongly

with the localized hole in the Cu(2) 3dx2−y2 orbital leading to the ZR line (see the introduction

for a further description of the ZR state). The total spectral weight of the WL and ZR peaks is

approximately constant throughout the SL series, and these two peaks only trade intensity as a

function of N (see Figure B.2 for plots with post edge normalization). A similar scenario occurs

in XAS studies on the effects of oxygen doping in YBCO [44]. This offers an explanation for the

diminishing relative intensity of the ZR peak with increasing LCMO layer thickness seen in Figure

1.2(a). For increasing N, fewer holes are present on oxygen sites to interact with the holes on Cu

sites, and subsequently these transitions contribute to the WL instead. The situation at the Cu(1)

sites in the chains (see Figure 1.2(b)) is analogous, except the 3d count increases with a reduction

in hole content. Unlike planar Cu(2), dopant holes form on Cu(1) sites as well as neighboring oxy-

gen sites in the chains. Therefore, the total spectral weight (main peak and shoulder) is reduced as

a function of N.

To quantify the degree of charge transfer and modification in electronic structure, the ligand

hole weight nh (i.e., the proportion of Cu L3 edge spectral weight corresponding to ligand hole

final states) has been calculated from the XAS spectra [145, 146]. (Fitting details can be found

in Appendix A.) The ligand hole weight is plotted as a function of N in Figure 2(d) for both

orientations of E. Since the polarization dependence naturally distinguishes between the two Cu

sites, nh esitmates the hole density within the CuO2 planes (CuO3 chains) for polarization parallel

to the ab-plane (c-axis). For the ab-plane, nh begins well below the value expected for optimally

doped YBCO and quickly approaches zero with N, while in the chains nh begins near the value
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found in optimally doped YBCO and is still not fully depressed at N = 3 [44]. (See Appendix

A for ligand weight analysis of YBa2Cu3O7−δ.) From the nh data sets, we infer that electron

transfer takes place first in the CuO2 planes — then in the chains — and develops as a function of

LCMO layer thickness. This behavior reflects the incomplete structure of the YBCO u.c. at the

interface, where CuO layers are only present in the middle of each YBCO block (see Figure 1.1(c)).

Thereby, a component of depth sensitivity is coincidentally acquired. These findings suggest that

the distribution of depleted electrons peaks near the interface and penetrates deeper with increasing

N.

4.2.5 Phase Diagram

The charge profile, which emerges from the nh data set, directly contrasts with expectations based

on chemical doping and interface based field effect methods. In XAS studies of gated YBCO

thin films, the injected holes entered the CuO2 planes, as in oxygen doping, indirectly through the

chain units, and the majority of these holes remained within the chains themselves offering a profile

consistent with chemical control [149]. Only ionic liquid based field effect devices, where carrier

concentrations changes up to 8× 1014 cm2 can be induced, have successfully altered the carrier

density within the planes to the point of reaching the insulating phase [150]. In our samples, the

distribution of depleted electrons peaks within the CuO2 planes and unbalances the conventional

doping ratio between the CuO3 chains and the conducting planes. This distinct arrangement is

attributed to the atomic configuration of the interface that allows direct coupling through a Cu-O-

Mn bond [105].

In this regard, cuprate-manganite heterojunctions offer the opportunity to explore the super-

conductor phase in the 123 family outside of the ordinary carrier alignment. While all cuprates

contain the fundamental CuO2 planes, the origins of significant variation amongst optimal transi-
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Figure 4.5: Progression of superlattices on the bulk YBCO phase diagram. Block schematics
show the amount of charge transferred as a function of LCMO layer thickness: −0.67e×N per
two YBCO u.c. Points on the phase diagram calculated from a combination of transport data and
ligand weight analysis as described in the supplemental. (Inset) XMCD measurements of the Cu
L3 edge recorded at 15 K in a 5 Tesla magnetic field.

tion temperatures across the diverse cuprate families remains a poorly understood topic. Material

dependent alterations within the electronic structure of the layers perpendicular to the planes have

been proposed to play an important role [147]. To test this proposition, the position of the SLs on

the YBCO phase diagram have been plotted in Figure 1.4 [148]. The Tc information was taken from

the transport data, while the level of hole doping within the CuO2 planes resulted from calculations

based on the in-plane nh (see Appendix A). The SLs fit well into the bulk YBCO phase diagram
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and demonstrate the modification in carrier density with LCMO layer thickness. As supporting

evidence, the XMCD data at the Cu L edge in a 5 Tesla field has been insetted into Figure 1.4. The

size of the XMCD signal scales as a function of N. Weak ferromagnetism in the cuprates stems

from the Dzyaloshinskii-Moriya (DM) interaction [151]. For the highly underdoped cuprates (the

case for N = 3), long range AFM order is expected, and the DM interaction simply cants the mo-

ments along the c-axis. However for the doped cuprates (N = 1 and 2), only short range AFM order

survives. A picture of emerging AFM order is inferred commensurate with further advancement

into the underdoped region of the phase diagram. In light of the agreement between the experi-

mental data sets and the conventional bulk phase diagram, we find that the electronic structure of

the conducting planes remains the single most important factor in determining the superconducting

properties of the cuprates.

4.2.6 Electron-Doped YBCO

The phase diagram in Figure 1.4 fails to take into account the full cuprate symmetry (electron-

doped superconductors). Upon increasing N, the trend suggests that the electron-doped region

will be accessible. However further samples, which were manufactured up to N = 30, remained

outside of the superconducting state as measured by DC transport (not shown). Given the previous

results, the electron transfer should be sufficient to push the system through the electron-doped

superconducting phase. Hence, a breakdown in the above paradigm should occur shortly after

N = 3.

The breakdown in charger transfer was investigated with XAS at the Mn L edge for the N =

5,10,15,20,30 samples. The polarization averaged spectra were taken in TEY mode at 15 K. A

shift in the Mn L3 maximum to lower energy occurs with increasing N, and the doublet feature

disappears (see Figure 1.5(a)). In Figure 1.5(b), the L3 edge maximum is tracked as a function
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of N. The location of the edge correlates strongly with the Mn valence state [19]. The respective

energies of Mn4+ and Mn3.3+ are labeled by arrows on the graph. The dashed line is simply a guide

to the eye. This series of chemical shifts towards lower energy denotes a decline in the average Mn

valence. While a charge profile perpendicular to the interface cannot be obtained directly from the

spatially averaged XAS data set, the accumulation of layers farther from the interface which fail to

donate charge to the CuO2 planes of YBCO is expected given the limited range of charge transfer.

In spite of conflicting reports, recent experimental and theoretical studies have set an upper limit

on the region of electronic alteration to within the first 2 or 3 u.c. [121, 66, 152]. Accordingly,
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Figure 4.6: Mn valence and magnetism in thicker heterostructures. (a) Mn L3 edge XAS for
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electron transfer into adjacent YBCO layers ceases.

4.2.7 Developing Spin and Orbital Reconstructions

As will be shown, the reduction in Mn valence impacts the magnetic structure of the SLs, as well.

In Figure 1.5(c), a strong magnetic dichroism develops at the Mn L edge with increasing N. The

modulus of the difference spectra’s minima are plotted as a function of N for external fields, 5.0 and

0.1 Tesla (see Figure 1.5(d)). The dashed guides are tapered based on data from a 150 u.c. thick

LMCO single layer. A strong field dependence persists across all the SLs, but peaks at N = 15.

The correlation between increases in both the Mn 3d count and magnetic signal stems from the

mixture of Mn3+ and Mn4+ ions that actuates the mechanism of double exchange leading to a

ferromagnetic ground state within the manganite layers. The field dependence suggest that LCMO

layers are phase-separated, where regions of ferromagnetic metal are inter-dispersed with charge-

ordered domains. Below the Curie temperature, the phase separation diminishes with increases in

magnetization, i.e., the ferromagnetic metallic phase percolates in reaction to an applied magnetic

field [37, 136, 137].

At the interface, spin reconstructions on neighboring Cu sites evolve beside ferromagnetism

on Mn. The spin reconstructions can be seen in Figures 1.6(a, b), where the Cu L3 XMCD signal

has been plotted for applied fields of 5.0 and 0.1 Tesla, respectively. For N = 30, the magnitude

of the dichroic signal is larger at low field, while for the other SLs the signals either switch sign

or disappear below the noise floor with a reduction in field. The sign of the dichroism carriers

information about the relative alignment of spins (up or down). For example, the N = 30 sample

displays a positive (negative) Cu (Mn) dichroism, and an antiferromagnetic alignment between Cu

and Mn spins at the interface can be inferred. In this case, the small magnitude of the Cu signal

suggest that the Cu spins cant in the opposite direction. In a previous article, an antiferromagnetic

82



X
M

C
D

 (%
)

(a)

(b)

Energy (eV)

0.1 T

5.0 T

926 930 934

2

1

0

-1

-2

-3

3.0
2.5
2.0
1.5
1.0
0.5
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coupling, in accordance with superexchange, between adjacent Mn and Cu ions was shown as well,

and the magnitude of Cu spin reconstructions scaled with the Mn XMCD signal [104]. The low

field data reflects the coupling between Cu and Mn spins, where the Cu signal is proportional to

magnitude of the Mn dichroism. The high field data contains a second contribution from inner Cu

layers, whose spins cant in the direction of the field due to the aforementioned DM interaction.

Except for the N = 30 sample, the asymmetric exchange interaction eclipses the signal from the

interfacial Cu reconstructions in the 5.0 Tesla field. Furthermore, the increasing thickness of the

capping layer has a dynamical effect on the constitution of the TEY signal. TEY has a shallow

probing depth and thereby becomes interface sensitive with large N.

The orbital reconstruction cannot be observed from the data presented. XLD measurements
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were made and demonstrated the expected orbital reconstruction (not shown). However, the evo-

lution in the XLD signal with N is still the subject of continuing research that has yet to be carried

through to fruition.

4.3 Conclusion

The modification of YBCO’s electronic structure by interfacial charge transfer from LCMO was

explored through a combination of DC transport and x-ray spectroscopy experiments. A defini-

tive perspective of the reconstructed electronic states are obtained from the ultrathin SLs, where

spurious signals from u.c. deeper in the layer, found in thicker SLs, do not contribute. The de-

pleted carriers were confirmed to directly enter the CuO2 planes leading to an imbalance in the

standard carrier arrangement found in a typical YBCO u.c. However, the carrier concentration

within the planes and the superconducting transition temperatures from the SLs still followed the

conventional YBa2Cu3O7−δ phase diagram. These findings reinforce the popular conception that

the electronic structure of the conducting planes is the central factor in high-Tc superconductivity.

Furthermore, the loss of both superconductivity and ferromagnetism at the interface in YBCO/L-

CMO stemmed from charge transfer. Competition between the singlet structure of cooper pairs

and parallel spin alignment within a ferromagnet was not found to be directly relevant.

While ultrathin SLs provide a framework to map out emergent phases, a breakdown in the

charge transfer process interrupted this experiment short of achieving electron-doped supercon-

ductivity in YBCO. A systematic decrease in the Mn valence after N = 3 is observed by XAS. The

rise in Mn 3d count coincides with previous limits placed on the area of electronic alteration which

suggest that the discrepancy between the chemical potentials of YBCO and LCMO at the interface

was negated with charge transfer near N = 3. The exact charge profile in the manganite layers of

thicker SLs (e.g., N = 15,20,30) could not be obtained from the inherently spatially averaged data
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set and remains an open area of research.

As the Mn valence decreased, magnetic correlations emerged within the heterostructures. With

a combination of Mn3+ and Mn4+ ions present, double exchange between the different Mn species

yielded a ferromagnetic ground state in the LCMO layers. In turn, coupling between adjacent Mn

and Cu ions near the interface triggered reconstructions in the Cu spins. As previously reported,

the magnitude of spin reconstructions scaled with the magnetic signal from Mn and the coupling

was antiferromagnetic. A second contribution to the Cu XMCD signal was found that masks

detection of the reconstructed spins in large magnetic fields. The extra signal originated from

asymmetric exchange between Cu atoms, which were not directly adjacent to the interface. Also,

the magnetization within LCMO was found to be strongly field dependent, which is consistent with

phase-separated phenomena. The impact of phase separation in LCMO on interfacial Cu ions is

unknown and requires further investigation.
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Chapter 5

Interface Driven Modifications in Cuprate-Titanate Heterostructures

In this chapter, we explore the interfacial structure and electronic properties of YBa2Cu3O7/SrTiO3

superlattices. The initial research into cuprate heterostructures focused on garnering a greater

understanding of the paring mechanism behind high Tc superconductivity. Central to this work was

the degree of coupling between planes and dimensionality. Therefore, we begin with a brief review

of the proposed models, which underly the mechanism of high Tc, and then proceed to review the

literature over past heterostructure research. Current research interests have shifted to the role of

the interface in affecting both the overall structure of the unit cell and electronic properties of the

crucial CuO2 planes. In this context, our research into YBa2Cu3O7/SrTiO3 superlattices uncovers

dramatic changes within the electronic structure that stem from the unique atomic configuration at

the interface.

5.1 Introduction

The essence of high-temperature superconductivity (HTSC) in the hole-doped cuprates arises from

the properties of the copper oxide (CuO2) plane, which is the unifying structural element across

the diverse cuprate families. Band structure calculations have shown that the pdσ-band, consisting

of d(x2-y2) states of Cu2+ and pσ(x, y) states of O2−, is the primary contribution to the density

of states near the Fermi surface [154, 72], and most leading HTSC theories only consider the t-

J Hamiltonian describing the CuO2 plane [155]. Furthermore, experiments on quasi 2D copper

oxides have confirmed these states to be the lowest energy excitations [71]. Reflecting this univer-
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sality, the cuprates follow an empirical rule for the superconducting transition temperature, Tc, as

a function of the hole doping, ρ, within the CuO2 plane.

Tc/Tc,max = 1−82.6(p− .16)2 (5.1)

However, equation 1.1 also reveals an underlying flaw in the above paradigm. Naively assum-

ing the CuO2 planes throughout the cuprates are electronically isomorphic, there exists irrecon-

cilable variations in the material dependent Tc,max (i.e. the Tc at optimal doping). This disparate

behavior presents in two notable ways. Given a fixed number of CuO2 layers, n, the optimal Tc de-

pends strongly on the material’s family. For instance, Tc,max is roughly 40 K in the La2−xSrxCuO4

series, while single-layer HgBa2CuO4 reaches ∼94 K. Second, Tc,max correlates with an increase

in n within a homologous series. Clearly, the ideal array of independent 2D planes is erroneous.

Instead, more realistic models incorporate elements perpendicular to the planes as well, how-

ever the work in this area diverges substantially. The earliest models conjectured that the entire

pairing mechanism stemmed from interlayer tunneling between weakly coupled planes [42]. How-

ever, Tc,max decreases or oscillates within a family after n' 4, and interlayer Josephson coupling in

single-layer cuprates is too weak to account for the pair condensation energy [156]. Current inter-

layer theories argue that tunneling merely enhances pairing and is not the sole mechanism [157],

which is supported by the n dependency of the Josephson plasmon mode in mercurial cuprates

[158]. The mainstream view is that the electronic structure of the CuO2 plane differs in each ma-

terial. Specifically, the level of disorder within the planes could vary. Another approach relates

the copper-apical bond distance to alterations in Tc, which in turn alters the structure of the Fermi

surface [159, 160, 161]. Other strategies attempt to incorporate the charge reservoir layers (CRLs)

as a means of influencing the pairing mechanism [147].
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Engineered heterostructures offer a unique opportunity to address the open hypotheses from

above. Previous work focused on YBa2Cu3O7/PrBa2Cu3O7 (YBCO/PBCO) multilayers, where Tc

is suppressed as the thickness of the YBCO layers decreases or the thickness of the PBCO layers

increases [162]. For all YBCO layer thicknesses, down to 1 unit cell (u.c.), Tc saturates above

a non-zero value. To explain the observed behavior, an assortment of models were advanced.

For example, the two-dimensionality inherently present in YBCO and the multilayers led many re-

searcher to focus on explanations in terms of a Kosterlitz-Thouless (KT) transition [163, 164, 165].

According to the Mermin-Wagner Theorem, continuous symmetries cannot be broken at finite tem-

peratures in systems with short range forces and limited to one or two dimensions. However, quasi

long range ordering of topological excitations, vortex-antivortex pairs, can occur below a finite

temperature, TKT . Above TKT , the disassociation of bound vortex-antivortex pairs leads to a phase

slip, which causes a finite voltage drop across the sample. Others appealed to a breakdown in the

aforementioned interlayer tunneling, where weaker coupling between planes in the heterostruc-

tures suppresses Tc [166, 167]. However, each of these scenarios treat the heterostructures as

ideal YBCO layers embedded in an innocuous PBCO matrix, which simply creates a semicon-

ducting barrier. Instead, several studies have considered the interaction between the YBCO layers

and PBCO layers at the interface. The incorporation of Pr is detrimental to transition temperatures

within the LnBa2Cu3O7−σ family, and interlayer charge transfer and hole filling may suppress Tc in

YBCO/PBCO multilayers [168, 169]. Furthermore, the incorporation of misfit strain causes struc-

tural changes with negative impacts on superconductivity e.g. disorder, changes in bond lengths,

and doping deficiencies [170, 171].

In this work, we investigate Tc suppression in ultrathin YBa2Cu3O7/SrTiO3 (YBCO/STO) su-

perlattices (SLs). Two series of samples were synthesized: [YBCOm/STO1] with m = 1, 2, 4 u.c.

and [YBCO2/STOn] with n = 1, 2, 3, 4 u.c. These series will be referred to as the m-series and
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n-series in the following discussions. Recent, transmission electron microscopy (TEM) studies

on YBCO/STO SLs attributed the loss of superconductivity to missing chains at the interface and

disorder within the CuO2 planes [173]. While the loss of CRLs and disorder qualitatively explains

Tc suppression with decreasing YBCO thickness, those studies were incapable of addressing the

ramifications of structural modifications on the local electronic structure. Furthermore, the behav-

ior with increasing STO thickness is not accounted for within this framework. Our analysis will

resolve these open questions and place the dialogue on a quantitative footing. A combination of

Hall angle and x-ray linear dichroism (XLD) measurements successfully establish and track the

degree of disorder and modulations in the carrier concentration both within the CuO2 planes and

the CRLs (chains). For the m-series, a systematic reduction in doping throughout the unit cell and

an increase in disorder are observed; these alterations in the electronic structure are connected to

the unique configuration of the interface. While a wholly different mode of Tc suppression occurs

for the n-series. In this case, the doping within the CuO2 planes (as measured by XAS) and level

of disorder remain constant. However, the Hall angle measurements suggest a decrease in carrier

concentration which must be unrelated to doping within the CuO2 planes. This paradox is resolved

by examining the electronic properties of the CRLs. The chapter concludes with an investigation

of the previously theoretical proposition of pre-doping at the YBCO/STO interface.

5.2 Results and Disucssion

5.2.1 Structure

The properties of ultrathin SLs are inherently linked to the structure of the interface. Specifically,

the termination at the interface can lead to profound changes in doping. The YBCO u.c. is com-

posed of both infinite layers (ILs) i.e. CuO2 planes and CRLs (Cu-O chains) (see Fig. 1.1(a)). As
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Figure 5.1: Block schematics of possible YBCO/STO stacking configurations. (a) YBa2Cu3O7
unit cell with annotations differentiating ILs and CRLs. (b) TiO2—BaO interface with SrO and
BaO intermixing. (c) SrO—CuO interface with TiO2 and CuO intermixing. (d) 2 u.c. of YBCO in
a YBCO/STO superlattice for the case of asymmetric interfaces.

described in the previous chapters, oxygen doping of the CRLs supplies the charge carriers that

dope the ILs and induce superconductivity. When approaching the unit cell limit, missing CRLs at

the interface are expected to have dramatic effects on Tc.

Based on the principles of chemical matching, A and B perovskite type alterations across the in-

terface are expected. This leads to six possible stacking configurations and four unique interfaces:

SrO—CuO, SrO—CuO2, TiO2—BaO, and TiO2—Y. However, previously published results only

support two possible configurations (see Figures 1.1(b, c)) [172, 173]. All studies have concluded

that the TiO2—BaO interface is either the only one present or simply the most probable with a

minority of SrO—CuO patches. In Figures 1.1(b, c), the interfaces are presented with mixed ter-

minations, which reflects the underlying qualities of the substrate and the realities of film growth.

SrO and BaO mix readily at the interface, since both ions share a 2+ charge state and similar oxy-

gen coordination, while CuOx and TiO2 mixing requires variations in oxygen content to preserve
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the proper Cu charge state. Given a majority of TiO2—BaO interfaces, the chains can be presen-

t/missing as shown in the top/bottom interface of Figure 1.1(d). The presence of chains necessitates

an extra BaO layer in this case.

Structural analysis of the SLs through high-angle x-ray diffraction and reciprocal space map-

ping was carried out at beamline 33-BM-C of Argonne National Labs (see Figure 1.2). Specular x-

ray reflectivity along the (00L) crystal truncation rod combined with a series of simulations picked

out a unique interfacial stacking and allowed for the determination of c-axis structural parameters.

In Figure 1.2(a), the experimental specular diffraction pattern of the n = 1 sample is graphed along

with three simulations, which are displaced vertically for clarity. The experimental pattern displays

the expected Bragg peaks (labeled) for a c-axis oriented film. Also, reflections stemming from the

super-period appear between the Bragg peaks. The simulated patterns were produced using the

reflectivity fitting program GenX [141]. The GenX software allows users to create atomic models

to fit reflectivity spectrums. Three distinct atomic models were built and tested: symmetric with

chains missing at the top and bottom interfaces (S0C), asymmetric with chains missing at one in-

terface (A1C), and symmetric with chains present at the top and bottom interfaces (S2C). Only the

S2C simulation was able to reproduce the experimental pattern. Differences between the simula-

tion and experimental pattern are due to interfacial roughness and modulations in the super-period,

which were not accounted for within the S0C model (shown schematically as an inset to Figure

1.2(a)). A magnified view around the STO (003) rod is shown in Figure 1.2(b). The YBCO (009)

peak and two superlattice reflections are visible as well. Keissig fringes are present within the

pattern. Based on the fringes and location of superlattice reflections, there are exactly 20 repeats in

the SL with a period Λ = 22.7801 Angstroms. The location of the YBCO (009) rod gives a c-axis

parameter c = 11.6552 Angstroms. In the bulk, the c-axis parameter of YBCO evolves as a func-

tion of doping and correlates closely with Tc [174]. The value of c obtained for the SL is slightly
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smaller than expected in over-doped samples, however the role of epitaxial strain still needs to be

considered.

In heteroexpitaxy, the growing film locks into atomic registry with the substrate, which gen-

erates epitaxial strain. The degree of strain depends upon the mismatch between in-plane lattice

parameters. STO has a cubic lattice with c = 3.9045 Angstroms, while YBCO has an orthorhom-

bic lattice with in-plane parameters a = 3.8227 and b = 3.8872 Angstroms. Epitaxy will result in

the YBCO lattice undergoing tensile strain. In Figures 1.2(c, d), reciprocal space maps around the

STO (103) and (013) rods, respectively, show that the n = 1 SL is coherently strained. In both fig-

ures, the YBCO (108)/(018), (109)/(019), and (1010)/(0110) rods are in line with their respective

substrate peaks. The (109) and (019) rods overlap with the substrate reflections. Furthermore, the

reduced YBCO c-axis parameter may be the result of accommodating epitaxial strain. Typically,

a unit cell undergoing in-plane tensile strain will be compressed out of plane to conserve constant

volume.

5.2.2 Electronic Transport

The temperature dependence of the resistivity is presented in Figures 1.3(a, b) for the two series of

YBCO/STO SLs. The sheet resistance, RS, was measured in van der Pauw geometry, and a parallel

resistor model was used to calculate the in-plane resistivity, ρab, according to equation 1.2,

ρab = RS× tY BCO. (5.2)

STO is an oxide semiconductor with a band gap of 3.2 eV; the resistivity of the STO layers within

the SLs exceed the YBCO layers by several orders of magnitude. The current is shunted to the

YBCO layers, and the resistivity remains a function of the combined thickness, tY BCO, of all YBCO
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layers in the SL. Here, we have assumed identical resistors in parallel. In fact, the large resistance

of thick STO layers caused significant problems during sample characterization e.g. charging

effects. Therefore, we limit the focus to samples with n not exceeding 4 u.c., where all samples

could be fully characterized.

In both series, Tc varies with m or n. For the m-series, a superconductor to insulator transition

occurs, when the YBCO layer thickness decreases to 1 u.c (see Figure 1.3(a)). However, the m

= 1 sample displays metallic behavior down to 107 K before upturning. This observation runs

contrary to the model of missing chains at the interface. For 1 u.c. of YBCO, the lack of chains

at both top and bottom interfaces should result in an antiferromagnetic insulator. This leads to

two possibilities. The prevalence of SrO—CuO patches is high enough to slightly dope the CuO2
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planes. Second, the incomplete copper oxide unit cell requires an interface-induced pre-doping,

where hole carriers distribute across the CuO2, TiO2, and SrO planes to resolve a polar discontinu-

ity [175]. The issue of interface pre-doping will be addressed further in the spectroscopy section.

For now, we will continue to examine the trend of diminishing superconductivity with decreasing

YBCO thickness and increasing STO thickness. As seen in Figure 1.3(b), Tc is suppressed within

the n-series as the STO thickness increases. Above n = 4 (not shown), superconducting transitions

are not observed, and the SLs become increasingly insulating with n.

To elucidate the origin of Tc suppression within the series, we have performed Hall transport

measurements (see Figures 1.3(c, d)). For all samples, a strong T2 dependence prevails in the

normal state transport data except at the lowest temperatures (80 - 100 K), where the data flattens

out. The divergence from linearity at low temperatures is a widespread feature of the cuprates and

grows stronger with decreasing transition temperatures.

Both the m- and n-series’ Hall data contain trends that clarify the role of disorder and carrier

doping. Before discussing these issues, we will elaborate on the type of information, which can

be extracted, and the current interpretation of the unusual T2 dependence of the Hall angle. While

the anomalous temperature dependence of the normal state transport properties of high-Tc super-

conductors continues to perplex the community i.e. the linear T-dependence of both the in-plane

resistivity and Hall number and their deviation from linearity upon doping, substitution, etc.[176],

a phenomenological model has been developed based on the universal T2-dependence of the Hall

angle.

cot(θH) =
ρab

RHB
= αT 2 +C (5.3)

Equation 1.3 provides a quantitative measure of two distinct mechanisms of Tc suppression: (1) a

reduction in carrier density as measured by the slope, α and (2) a reduction in carrier mobility as
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measured by the intercept, C. These assignments are best explained in terms of the test systems,

which formed the basis for their development. In the YBa2Cu3O7−δ series, C remains constant and

α varies [177]. The results of altering δ are twofold: it controls both the carrier concentration and

the exchange interaction, J. While for Cu-site doped YBa2Cu3−xAxO7, C increases systematically

with doping and α remains constant [66]. The degradation of superconductivity in the Cu-site

doped system is brought about by increased impurity scattering, which hinders carrier mobility

and is pair breaking. It is worth noting that in PrxY1−xBa2Cu3O7 both α and C vary with Pr

doping [178]. The variation in C with Pr doping implies that the increased disorder couples to the

electronic states in the CuO2 planes. Furthermore, the change in α helped confirmed the concept

of hole filling within the series.

As mentioned earlier, the normal state properties of high Tc continue to be the subject of on-

going research, however it is instructive to consider the possible theoretical models. Theoretical

endeavors into this field have taken two main courses. Either the conventional Fermi liquid theory

is abandoned, or the typical Fermi scattering rates are significantly modified to reproduce the cor-

rect temperature dependence. Here we present two of the leading models, one from each approach.

Anderson was the first to successfully capture the T2-dependence within a theoretical frame-

work [35]. For the normal state, the Luttinger-liquid model predicts the existence of two distinct

quasiparticle excitations, holons and spinons, that naturally leads to two separate relaxation times

in the electronic transport. The longitudinal conductivity σxx is proportional to the transport scat-

tering time τtr ∼ 1/T , whereas the Hall conductivity σxy is proportional to the multiple of the

transport scattering time and the transverse (Hall) scattering time τH ∼ 1/T 2.

cot(θH) =
1

ωcτH
=

1
ωc

(
T 2

Ws
+

1
τimp

)
(5.4)
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The Hall angle (see equation 1.4) is now a function of the spinon bandwidth Ws∼ J and an additive

impurity term 1/τimp according to Matthiessen’s rule. C from the phenomenological model can be

related to the impurity scattering rate, while αB = k2
Bφ0n/W 2

s with n the two dimensional carrier

density, φ0 the flux quantum, and kB the Boltzmann constant.

Despite the successes of the Luttinger-liquid model, a clear consensus has not been reached.

Other models have attempted to explain the T2-dependence within the conventional Fermi-liquid

theory. The cold-spot model of Ioffe and Millis starts from the ansatz in equation 1.5 with τFL the

Fermi-liquid scattering time and T0 an adjustable parameter,

Γ(θ,T ) = Γ0θ
2 +

1
τFL

= Γ0θ
2 +

T 2

T0
+

1
τimp

(5.5)
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where Γ the scattering rate is assumed to have a strong angular dependence [179]. This unusual

angular dependence stems from small regions near the Brillouin zone diagonal with significantly

longer lifetimes than elsewhere on the Fermi surface. Numerical calculations show that the cold-

spot model successfully fits experimental Hall angle data for different doping levels [180]. How-

ever, the cold-spot model strongly violates Matthiessen’s rule, when impurity scattering is intro-

duced.

Now we return to the Hall angle data for the YBCO/STO SLs, where in Figure 1.4 the phe-

nomenological model has been applied. For the m-series (see Figures 1.4(a, b)), both α and C are

evolving as a function of the YBCO layer thickness. The strong correlation between the simulta-

neous rise in C and the residual resistivity ρ0 with decreasing m indicates that increased scattering

contributes to the suppression of Tc, while the reduction in α signifies a decline in carrier concen-

tration. Given the loss of chains at the interface, the decrease in carrier concentration is expected.

The consequences of the missing CRLs should rapidly increase as the number of complete YBCO

layers dwindles. Upon approaching the 1 u.c. limit, no chain segments should be present, and the

layer is in fact only a partial YBCO unit cell (mainly CuO2 planes). Therefore, the CuO2 planes

within these ultrathin YBCO/STO SLs are under-doped as demonstrated by the transport data. Fur-

thermore, the increased scattering can naturally be attributed to both: the incomplete YBCO unit

cell and the rise in interfacial scattering.

In the n-series’ Hall angle data (see Figures 1.4(c, d)), a different set of trends emerge from

the application of the phenomenological model. C and ρ0 fluctuate but remain flat as a function

of n. Hence, disorder is an unlikely candidate for Tc suppression within the series. A shallow

downswing in α is present, however the absolute change with n is smaller than seen in the m-

series. Furthermore, a connection between an increase in STO layer thickness and a decrease in

carrier concentration has not been presented.
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Figure 5.5: X-ray Linear Dichroism at the Cu L3-Edge normalized to spectrum max. Spectra
were aligned by simultaneously measuring a reference sample in the diagnostic section of the
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plane). n-series data: (c) Polarization in ab-plane. (d) Polarization in c-axis (70◦ out of plane).

5.2.3 X-ray Absorption Spectroscopy

A deeper understanding of the electronic structure is required to confirm the assessment of Tc

suppression within the m-series and properly interpret the Hall data in the n-series. To this end,

linear polarized x-ray absorption spectroscopy (XAS) at the Cu L edge was used to measure the

evolution in hole content throughout the YBCO u.c (see Figure 1.5). The Cu atoms within the

planes are decorated by ligands in a square pyramidal geometry. This non-isotropic environment

leads to a splitting in the eg states, where the hole preferentially occupies the dx2−y2 orbital. In

accordance, a strong dichroism is observed, however the spectra in figure 1.5 are normalized to

peak max for clarity. Linear polarized light allows for the differentiation between two inequivalent

Cu sites. Whe the electric field vector (E) is parallel to the ab-plane, the in plane absorption signal
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(Iab) picks out states of 3dx2−y2 orbital character from Cu(2) in the CuO2 planes. While E parallel

to the c-axis detects (Ic) detects unoccupied states with 3dz2−y2 orbital character from Cu(1) in the

CuO chains [143]. The Cu L3-edge in YBCO is made up of several peaks, but here we focus on

the two strongest features: the white line (WL) and the Zhang-Rice peak (ZR). For Iab, the WL

is assigned to Cu(2) 3d9 → Cu(2) 2p3d10 transitions near 931.2 eV with a shoulder on the high-

energy side at 932.53 eV designated ZR from Cu(2) 3d9L→ Cu(2) 2p3d10L transitions, where L

denotes a hole on neighboring oxygen sites. For Ic, the lower-energy contribution at about 931 eV

is associated with mainly Cu(1) 3d9 → Cu(1) 2p3d10 transitions. The high energy satellite peak

arises due to Cu(1) 3d9L → Cu(1) 2p3d10L transitions [44]. In the m-series, the intensity of the

ZR (Iab) and the satellite peak (Ic) diminish as m approaches 1, while for the n-series there is no

change in the ab-plane polarization with n. However, the satellite peak decreases in intensity, as

the STO layer thickness increases.

The peaks associated with the ligand hole are doping dependent features that can be used to

track the hole content within the planes and CRLs. As described in the previous chapter, the ligand

hole weight nh provides a measure of the hole doping ρ within the CuO2 plane,

nh =
AZR

AWL +AZR
(5.6)

whereAWL/AZR is the area under the WL/ZR peak. In Figure 1.6, the hole doping through the m

and n-series is plotted on the bulk YBCO phase diagram. The doping within the m-series (red

circles) decreases with Tc and moves through the YBCO phase diagram, however the trend (red

arrow) is shifted with respect to the bulk curve. The shift in Tc is expected in accordance with

increased disorder within the m-series. For the n-series (blue diamonds), the doping fluctuates

around ρ = 0.095, as Tc decreases for increasing n. The observation of constant doping contradicts
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the Hall angle data, where a reduction in the carrier concentration was seen. The discrepancy

between the Hall angle and XAS data can be resolved by considering the chain contribution to the

Hall conductivity [181]. In the XAS data, the reduction in c-axis ligand weight for the n-series

(see Figure 1.5 (d)) signifies a reduction in hole concentration within the CRLs and subsequently

decreased chain conductivity. Therefore, the chain contribution to the Hall angle data explains the

variation in α.

To address the question of pre-doping at the TiO2—BaO interface, XAS measurements were

taken at the Ti L2,3 absorption edges for the n-series data (see Figure 1.7 (a)). The spectra were

recorded in TEY mode and aligned by the absorption edge energy, E0. E0 was determined by

taking the derivative of the XAS spectrum. XAS measurements were made for the m-series data

at the Ti L edge (not shown) as well and are similar in line shape to the n = 1 sample. In SrTiO3,
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Ti is in octahedral coordination with a 4+ valence state, and the L edge involves 3d0 → 2p3d1

transitions. The four main peaks originate from the spin-orbit splitting of the Ti 2p level and

the crystal-field splitting of the five degenerate d-orbitals into t2g and eg states for each spin-orbit

component [183]. Reference samples Ti3+ (LaTiO3) and Ti4+ (SrTiO3) are plotted in Figure 1.7

(b) along with the n = 1 sample for comparison. The n = 1 sample resembles the SrTiO3 standard,

however the spectrum is shifted by 0.6 eV. Shifts of this magnitude are typical in carrier doped

samples of SrTiO3 [184]. Furthermore, the t2g peak at the L3 edge is split into two separate peaks

separated by 0.6 eV. The smaller peak is not fully resolved and appears as a shoulder on the low

energy side. The position of the shoulder matches the t2g maximum of the reference.

The energy shift in the SLs Ti L-edge spectra provides direct evidence for interfacial doping.
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Figure 5.7: X-ray absorption spectroscopy at the Ti L-Edge with edge jump continuum
normalized to unity. (a) Spectra for the n-series. Black vertical lines indicate energy shift and
location of peak centers from fits. (b) Ti3+ (LaTiO3) , Ti4+ (SrTiO3), and the n = 1 SL spectra
displaced vertically for clarity. LaTiO3 and SrTiO3 spectra taken from Ref. [81, 182], respectively.
Black vertical lines indicate energy shift. The n = 1 samples has been normalized for clarity.
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In the pre-doping scenario, holes are doped into the interface which maintain charge neutrality

[175]. These holes are distributed to the CuO2 planes and the interfacial SrO and TiO2 layers. For

the n = 1 sample, the energy shift of 0.6 eV gives a rough estimate of 0.3e per Ti ion, where we

have assumed 0.76e/eV. The low energy shoulder, which coincides with bulk SrTiO3, makes up

35 % of the t2g spectral weight, and the interfacial doping estimate has been reduced accordingly.

Furthermore, the electronic reconstruction appears to be confined to the interfacial layers. The

XAS signal is cumulative and therefore should evolve with the thickness of the STO layers, if the

electronic reconstruction arises from interfacial Ti. In the n = 4 sample, the maximum of the t2g

peak has shifted closer to the reference, and the splitting is less pronounced.

5.3 Conclusion

Disorder and a reduction in carrier density were shown to be the root of Tc suppression with

decreasing YBCO thickness. Calculations based on Hall angle and XLD measurements provide

a quantitative measure of disorder and the hole content within the CuO2 planes. A systematic

decreases in carrier concentration is observed on approaching the u.c. limit, where the loss of

CRLs at the interface dramatically impacts the charge distribution of the YBCO layers. However,

the introduction of disorder is required to completely explain the loss of superconductivity.

For one YBCO u.c., CRLs are expected to be completely absent in the heterostructure. Unex-

pectedly, the m = 1 samples does not display a full reduction in hole doping. Theoretical calcula-

tions have suggested that a pre-doping of the interface with holes might be required to resolve a

potential polarity mismatch. Ti L-edge spectroscopy lends credence to this scenario. A shift in the

t2g peak is observed which is consistent with past reports of doped STO samples. The t2g peaks

displays a splitting as well. This spectral feature has not been observed before to the best of our

knowledge. The origin of the splitting may be unique to this specific interfacial arrangement or
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could stem from a combination of two different Ti sites. The evolution in spectral features with

STO thickness indicates that the electronic reconstruction is confined to the interface.

The origin of Tc suppression for increasing STO spacer thickness remains ambiguous. Hall

angle data insinuates a relationship between variations in carrier concentration and a loss of su-

perconductivity. However, XAS data reveals that the hole content is constant as a function of n.

This discrepancy stems from alterations in chain conductivity that influences the Hall angle data.

XAS provides direct evidence for the modification in the local electron structure of the chains. It

is unclear why the thickness of the STO layer impacts the hole content within the CRLs. Perhaps,

the answer will require a further investigation of the pre-doping scenario. However, a clear link

between the modified CRLs and Tc suppression has been established within this study. As stated

in the introduction, the diversity in Tc throughout the cuprate families has sparked investigations

into the extended structure of the u.c., where the CRLs have been shown to exert control over

Tc. Our findings offer further support to this point of view. Another possibility is to consider the

role of dimensionality and the breakdown in interlayer coupling, however these arguments remain

speculative and require further experimentation for confirmation.
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Chapter 6

Summary and Future Prospects

6.1 Conclusion

We began by developing a layer-by-layer growth within a mutually compatible growth regime

for YBa2Cu3O7 (YBCO) and La2/3Ca1/3MnO3 (LCMO). The selection of deposition conditions

(i.e., temperature and ambient O2 pressure) are constrained by narrow optimal growth windows

on the YBCO P(O2)-T phase diagram, despite this interval deposition has been used to stabilize

2D LCMO films with the proper cation stoichiometry. Multilayers grown with interval deposition

displayed marked increases in the strength of magnetic dichroic signal and degree of chemical

shifts at the Cu L edge signaling an enhancement in the electronic and spin reconstructions at the

interface. Sum rules calculation applied to the XMCD spectra for the first time find that the orbital

moment is quenched, and the spin component is 0.3079 µB/Cu.

We start with establishing a mutually compatible growth regime, in which interval deposition

is used to achieve a layer-by-layer growth mode with optimal stoichiometry and sharp interfaces.

The multilayers demonstrate a marked enhancement in electronic and spin reconstructions, as com-

pared to previous experimental results. An application of the sum rules shows that the orbital

moment is quenched and an uncompensated spin is present on Cu at the interface.

The modification of YBCO’s electronic structure through interfacial charge reconstruction was

further exploited in ultrathin YBCO/LCMO multilayers. The u.c thick YBCO layers provide an

opportunity to view the development of spin and electronic reconstructions without the admixture

of bulk-like signals. The depleted carriers were confirmed to directly enter the CuO2 planes, in
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this way the phase diagram of YBCO could be mapped out in a search for emergent phases. How-

ever, the charge transfer process breaks down, and the Mn oxidation returns to the formal valence

with increasing layer thickness. With a return to formal Mn valency, magnetic correlations emerge

within the heterostructure, and coupling between Mn and Cu ions near the interface triggers recon-

structions in the Cu spin degree of freedom.

The strong coupling between spin and electronic degrees of freedom in YBCO/LCMO het-

erostructures at the interface are expected to completely mask all other competing interactions

which leaves open the role of weaker players such as reduced dimensionality, broken translational

symmetry, interlayer coupling, etc. in the electronic structure of the interface. To this end, SrTiO3

(STO) was inserted as a spacer material in ultrathin YBCO/STO multilayers. Upon approaching

the unit cell limit, a decrease in carrier concentration is observed, and found to correlate with

missing charge reservoir layers at the interface. The incomplete YBCO unit cells are confirmed to

be underdoped, as expected. While disorder plays a smaller role, its introduction is necessary to

explain the degree of Tc suppression observed.

6.2 Future Work

With the conclusion of this work, a clearer picture of the reconstructions present at the YBCO/L-

CMO interface has formed, especially in terms of charge and spin. However, there is still a great

deal of work to be done in understanding the evolution in the orbital degree freedom in ultrathin

multilayers. A deeper understanding will require further experimental and theoretical investiga-

tion. Furthermore compared to the wealth of information available at the interface, very little is

known about the electronic and magnetic structure perpendicular to the interface. TEM and scan-

ning probe techniques have been helpful in understanding the charge profile but deliver no insight

into the magnetic and orbital profile. While neutron scattering studies are helpful in the former
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case, the orbital degree of freedom, once again, remains poorly understood. Currently, we are

working on a soft x-ray resonant scattering project which will hopefully shed light onto this prob-

lem. However, this task requires a clearer understanding of the interfacial structure which is one

of the goals of this dissertation to provide.

In the case of YBCO/STO multilayers, this work may have opened more questions, than it

sought and can answer. There is strong evidence for charge transfer between Ti and Cu at the

interface, however more research will be required to confirm the pre-doping scenario proposed

theoretically. The origin of peak splitting in the Ti L edge spectroscopy is ambiguous. It may

be the result of the unique interfacial configuration or a combination of two Ti sites. Another

open question is the suppression in critical temperature with STO layer thickness. Hole doping

within the plane remains unaffected by the STO layer, however the hole concentration of within

the chains is not. It is generally believed that the cation structure, in which the CuO2 planes

are embedded, augment the electronic structure of the superconducting planes. In this sense, the

observed suppression in Tc can be understood, however a consensus on the underlying mechanisms

involved remains elusive.



References

[1] R. D. Shannon and C. T. Prewitt. Acta Crystallographica B, 25:925, 1969.

[2] F. J. Morin. Bell System Technical Journal, 37:1047, 19ˇ58.

[3] P. A. Cox. Transition Metal Oxides, Oxford: Clarendon Press, 1992.

[4] D. Feng and J. Guojun. Introduction to Condensed Matter Physics, Singapore: World Scien-
tific, 2005.

[5] M. Imada, A. Fujimori, and Y. Tokura. Review of Modern Physics, 70:1039, 1998.

[6] J. Zaanen, G. A. Sawatzky, and J. W. Allen. Physical Review Letters, 55:418, 1985.

[7] R. D. Leapman, L. A. Grunes, and P. Fejes. Physical Review B, 26:614, 1982.

[8] F. W. Lytle. Journal of Applied Physics, 35:2212, 1964.

[9] Lixin Cao, E. Sozontov, and J. Zegenhagen, Physica Status Solidi, 181:387, 2000.

[10] L. F. Mattheiss. Physical Review B, 6:4718, 1972.

[11] T. F. Soules, E. J. Kelly, D. M. Vaught, and J. W. Richardson. Physical Review B, 6:1519,
1972.

[12] P. Pertosa and F. M. Michel-Calendini. Physical Review B, 17:2011, 1972.

[13] J. F. Schooley, W. R. Hosler, and M. L. Cohen. Physical Review Letters, 12:474, 1964.

[14] E. R. Pfeiffer and J. F. Schooley. Physical Review Letters, 29A:589 1969.

[15] W. Gong, H. Yun, Y. B. Ning, J. E. Greedan, W. R. Datars, and C. V. Stager. Journal of Solid
State Chemistry, 90:320, 1991.

[16] A. Urushibara, Y. Moritomo, T. Arima, and Y. Tokura. Physical Review B, 51:14103, 1995.

[17] J. Mira, J. Rivas, L. E. Hueso, F. Rivadulla, M. A. Lopez Quintela, M. A. Rodriquez, and C.
A. Ramos. Physical Review B, 65:024418, 2001.

[18] P. G. Radaelli, M. Marezio, H. Y. Hwang, and S-W. Cheong. Journal of Solid State Chemistry,
122: 444, 1996.

[19] M. Abbate, F. M. F. de Groot, J. C. Fuggle, A. Fujimori, O. Strebel, F. Lopez, M. Domke,
G. Kaindl, G. A. Sawatzky, M. Takano, Y. Takeda, H. Eisaki, S. Uchida. Physical Review B,
46:4511, 1992.

[20] A. Chainani, M. Matthew, and D. D. Sarma. Physical Review B, 47:15397, 1993.

[21] T. Saitoh, A. E. Bocquet, T. Mizokawa, H. Namatame, A. Fujimori, Y. Abbate, Y. Takeda,
and M. Takano. Physical Review B, 51:13942, 1995.

108
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Idzerda, M. Kläser, G. Müller-Vogt, and Th. Wolf. Physical Review Letters, 80:5192, 1998.

[145] C. Aruta, G. Ghiringhelli, C. Dallera, F. Fracassi, P. G. Medaglia, A. Tebano, N. B. Brookes,
L. Braicovich, and G. Balestrino. Physical Review B, 78:205120, 2008.



[146] N. Merrien, F. Studer, G. Poullain, C. Michel, A. M. Flank, P. Lagarde, and A. Fontaine.
Journal of Solid State Chemistry, 105:112, 1993.

[147] S. Raghu, R. Thomale, and T. H. Geballe. Physical Review B, 86: 094506, 2012.

[148] J. Chang. Nature Physics, 8:871, 2012.

[149] M. Salluzzo, G. Ghiringhelli, J. C. Cezar, N. B. Brookes, G. M. De Lucca, F. Fracassi, and
R. Vaglio. Physical Review Letters, 100:056810, 2008.

[150] X. Leng, J. G.-Barriocanal, S. Bose, Y. Lee, and A. M. Goldman. Physical Review Letters,
107:027001, 2011.

[151] G. M. De Luca, G. Ghiringelli, M. Moretti Sala, S. Di Matteo, M. W. Haverkort, H. Berger,
V. Bisogni, J. C. Cezar, N. B. Brookes, and M. Salluzzo. Physical Review B, 82:214504,
2010.

[152] The lack of spatial resolution in XAS leaves the distribution of charge within the thicker
LCMO layers uncertain.

[153] M. Grioni, J. B. Goedkoop, R. Schoorl, F. M. F. de Groot, J. C. Fuggle, F. Schäfers, E. E.
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Appendix A

Ligand Weight Analysis

XAS measurements probe the unoccupied density states, and peak intensities are directly related

to the number of unoccupied states involved. The dominant contribution to the unoccupied density

of states in YBCO remains transitions from Cu(2) of 3dx2−y2 orbital character (WL), however a

portion of this spectral weight is redistributed to the ZR shoulder, which is a doping dependent

features [44]. Dopant holes form on neighboring oxygen sites instead of Cu in the planes, since

the creation of Cu3+ requires paying an 8 eV coulomb penalty (charge-transfer model). Due to

covalancy between Cu d and O p orbitals, the hole on a neighboring oxygen site will interact

strongly with the localized hole in the Cu(2) 3dx2−y2 orbital leading to the ZR line. Subsequently

the ZR peak makes up a greater proportion of the area under the L3 edge at higher oxygen (hole)

concentrations. The total spectral weight of the WL and ZR peaks is approximately constant

providing a means of normalization. Hence we can successfully track changes in hole-content

within the CuO2 planes and in an analogous way for the CuO3 chains.

The first step was to develop a reliable measurement method of the Zhang-Rice contribution to

the L edge absorption spectra. The area under the L3 edge includes contributions from mainly the

WL and ZR as shown in Figure 1.8(a). Two smaller peaks need to be considered as well. The peaks

near 934.0 and 936.5 eV stem from monovalent Cu(1) in the chains, and the former is present in

most monovalent Cu compounds [153]. All four peaks were fitted with Voigt functions. Before

fitting the data, the post edge was normalized to unity, and then the edge jump was subtracted using

an arcsin function. The first derivate of the spectra was used to identify E0. The ligand hole weight
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Figure A.1: Ligand Weight Analysis. (a) Cu L3 edge ab-plane polarized XAS (black curve) for
the N = 1 superlattice. Post edge normalized to unity, and the edge-jump has been removed. Peaks
were fitted with Voigt functions (dashed curve). The sum of the fit is graphed in blue. (b) Ligand
hole weight and Tc for YBa2Cu3O7 single crystals from reference [44]. (c) Hole-doping versus
ligand hole weight for single crystals.

nh was calculated according to equation 1.2, where AWL and AZR represent the areas under the

nh =
AZR

AWL +AZR
(A.1)

WL and ZR peaks, respectively. While nh alone provides a relative measure to judge hole density

[145], further analysis establishes a metric for hole doping.

The ligand hole weight was converted into a metric of ab-plane hole content by applying the

above analysis to suitable reference samples. As shown in figure 1.8(b), nh has been calculated

for the series of single crystals in reference [44]. There is a strong relationship between both the



in-plane and c-axis ligand hole weight and Tc (see Figure 1.8(b)). From Tc, the CuO2 plane doping

content of the single crystals has been computed using a YBa2Cu3Ox specific variation on equation

1.3 [142].

Tc/Tc,max = 1−82.6(p−0.16)2 (A.2)

In Figure 1.8(c), the ab-plane hole-doping has been plotted against nh, and their relationship is well

approximated to first order by a linear fit, where p' nh/2.



Appendix B

Supplemental Figures
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Figure B.1: Electronic transport measurements with linear plots. Four point probe electrical
transport measurements of superlattices with N = 1,2. T0 shifts from 202 to 132 K as N increases
from 1 to 2. Changes in normal state transport properties are consistent with decreased carrier
concentration.
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Figure B.2: Cu XLD with post edge normalization. Cu L3 edge XLD for the N = 1,2,3
superlattices. The post edge has been normalized unity. The c-axis spectra were extrapolated
using: I(θ) = I(0◦)cos2(θ)+ I(90◦)sin2(θ).


