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Abstract

The natural phenomenon of waves bending around obstacles is diffraction. Spatial

characteristics of the diffraction pattern depends on the incident wave field, the shape, and

size of the aperture. The diffraction of a plane wave of light by a slit and a circular

aperture produce the sinc-squared and the Airy intensity patterns, respectively. On the

contrary, the diffraction of Laguerre-Gauss vortex (LGV) beams by simple apertures such

as a slit, circular apertures, and polygons show many unexpected features.

LGV beams have ρ`ei`φ transverse spatial dependence, where ρ is the distance from the

beam axis, φ the azimuthal angle, and ` is the index of orbital angular momentum that

corresponds to `~ of orbital angular momentum per photon. The LGV beams were

produced from Hermite-Gauss beams using an astigmatic mode converter. The LGV

beams were diffracted by a slit, circular apertures, and polygons. The far-field diffraction

pattern was recorded.

LGV beam of order ` when diffracted by a slit at the beam waist showed, `+ 1 fringes.

The diffraction performed along the direction of propagation, away from the waist, showed

a shear in the pattern, with maximum shear at Rayleigh range. As the slit was moved even

further away, the diffraction pattern evolved into two dominant peaks irrespective of `.

When LGV beams of order ` are diffracted by a circular aperture, the minima of the

diffracted field depend on the zeros of `+ 1 order Bessel functions. The center of the

diffraction pattern has a minimum for ` ≥ 1. When the beam axis and the aperture axis

are laterally separated, this central minimum splits into ` minima. The diffraction of LGV

beams by regular polygons created an optical lattice. The diffraction pattern by a regular



polygon of n sides has n−fold symmetry for both even and odd n, unlike the 2n−fold

symmetry for odd n, and n−fold for even n due to a plane wave. The center of the

diffraction pattern is bright for ` = n, and multiples of n. The diffraction pattern has a

repeating, nesting structure for ` > n. The experimental results are in good agreement

with the theoretical predictions.
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Chapter 1

Intoduction

The natural phenomenon of waves bending around obstacles is called diffraction. The

diffraction pattern depends on the geometry of the obstacle and the incident wave field.

Some obstacles, like apertures are present in most scientific light detecting devices, for

example, cameras have polygonal apertures, and circular apertures.

The interaction of light with apertures has been of interest at least for the last four

hundred years. Some of the earliest work was done by a Jesuit priest, Francesco Grimaldi

in the 1600s [1], who coined the term ‘diffraction’. He observerd that when light passes

through a hole it takes the form of a cone. If light took a rectilinear path then this

phenomenon could not be described. Isaac Newton built upon Grimaldi’s observations

when he encountered diffraction bands [2]. The diffraction patterns due to feathers were

first recorded by James Gregory [3], which acted as a diffraction grating. In 1803, Thomas

Young perfomed his famous double slit experiment [4] and around the same time

Augustin-Jean Fresnel studied the effects of diffraction [5] in great detail giving

experimental support to Christiaan Huygens’ wave theory [6].

The development of lasers and its applications in the 1960s and 1970s [7–9]

reinvigorated the interest in diffraction. The study of Hermite-Gauss (HG) laser beams

were conducted in detail through 1980s [10, 11]. Most laser beams used today for comercial

applications are HG laser beams. Though this is quickly changing in the

telecommunication sector [12].

The Hermite-Gauss and Laguerre-Gauss modes are beam solutions to the scalar
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Helmholtz equations in the paraxial limit [8, 9, 13]. An approach to solving these is briefly

discussed in the diffraction section. In the 1990s, methods to create the Laguerre-Gaussian

(LG) laser beams were invented [14–16]. These beams had orbital angular momentum in

addition to the spin angular momentum that each photon carries. The study of LG beams

had begun.

In early 2010s the study of the diffraction properties of the LG beams were underway

[17–22]. The LG beams have cylindrical symmetry. Laguerre-Gauss Vortex (LGV) beams

are a sub-catagory of the LG beams. The LGV beams when projected onto a screen look

like a ring or a donut. This led to their less formal but affectionate name of the donut

beams [23, 24].

In this study we describe the diffraction of these Laguerre-Gauss vortex laser beams by

apertures of different shapes. In the subsequent sections of this chapter we take a closer

look at some concepts in diffraction of light, and review the method used in the production

of Laguerre-Gauss vortex beams of various sizes.

1.1 Diffraction

To obtain a model for diffraction of light by an aperture in air, we assume the medium is

homogeneous and non-dispersive so that k is constant. We also assume the use of a

monochromatic scalar wave ψ(x)e−iωt with its spatial part satisfying Helmholtz equation

(
∇2 + k2

)
ψ = 0. (1.1)

Here k = 2π/λ is the wave number and ω is the angular frequency of light. For a wave

travelling in vaccuum, k = ω/c.
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The solution of the Helmholtz equation inside a volume is completely determined by

the value of ψ and its normal derivative on the boundary. There is a nice mathematical

approach to solving this by the use of Green’s theorem. Inspecting ψ0 = eikr/r as a

solution, this approach leads to the Kirchhoff integral. The details of Kirchhoff integral can

be found in Chapter 3 of [25] and Chapter 8 of [26].

Diffraction of light waves by such a model can be classified into two broad categories.

The Fresnel diffraction, and the Fraunhofer diffraction. The Fresnel or near-field

diffraction, as the name suggests, is used to describe the diffraction pattern produced by

waves that pass through an aperture or around an obstacle usually when viewed relatively

close to the obstacle. If d is the distance of the observation point from the obstacle, a the

size of the obstacle or aperture, and λ the wavelength of the wave that is incident on the

obstacle, then a region where
√
λd� a is called the Fresnel region.

The Fraunhofer diffraction, on the other hand, is known as the far-field diffraction. In

contrast to Fresnel diffraction, the diffraction pattern is observed far away from the

aperture. The condition here is
√
λd� a. In most laboratory situations placing an

observation screen or a camera far away can be an inconvenience, and in some situations

the intensity of light would have diminished so significantly that such observations cannot

be recorded with a high signal to noise ratio. This problem can be overcome by realizing

that the amplitude of the Fraunhofer diffraction pattern is given by the 2D Fourier

transform of the aperture function [25]. One of the many remarkable and useful properties

of a converging lens is its ability to perform a 2D Fourier transform. When the input is in

the front focal plane of the lens and the output is recorded at the back focal plane, the

phase curvature introduced due to the lens disappears, leaving an exact 2D Fourier

3



transform relation. Chapter 5 in [25] goes over this in detail. In our experiment the

aperture is in the front focal plane of a lens and the camera is in the back focal plane of the

same lens, thus recording a 2D Fourier transform or the Fraunhofer diffraction pattern of

the aperture. This arrangement is referred to as the ‘2f ’ arrangement.

1.2 Laguerre Gauss Beams

One of the beam solutions of the Maxwell’s wave equation is the Laguerre Gaussian beam

[8, 9, 13, 27], which in the cylindrical coordinates propagating along the z direction has the

form

u(ρ, φ, z) =
CLG
`p

w

(√
2ρ

w
eiφ

)|`|
L|`|p

(
2ρ2

w2

)

× exp

(
− ρ

2

w2

(
1− i z

zR

)
+ ikz − iNθ(z)

)
, (1.2)

where CLG
`p is a constant, L`p are the generalized Laguerre polynomials, ρ is the radial

distance of a point from the beam axis, k is the wave number, N = |`|+ 2p, zR = kw2
0/2 is

the Rayleigh range, w = w0[1 + z2/z2R]1/2 is the beam spot size with minimum value w0 at

the waist, and θ(z) = tan−1[z/zR] is Guoys phase of the beam.

The LG beam can be created in the laboratory. One of the first methods to create these

LG beams involved conversion of Hermite gauss beams to Laguerre Gauss beams [14, 23].

The same method is used for our experiments.

The process of creating LG beams starts with the creation of HG modes, with an open

laser cavity. In our case the laser cavity had one spherical mirror and a plane mirror was

used as the output mirror. Between the Brewster window and the output mirror there are

4



two thin crossed silk fibers. If the direction of propagation is along the z axis, then to

choose the HG modes, the fibers are moved in the x and y direction creating loss in

particular spots thus allowing only certain HG modes to oscillate. The choice of a plane

mirror as the output mirror of the laser cavity forces the waist of the laser beam on the

plane mirror. This set up is shown in Figure 1.1.

Figure 1.1: A schematic diagram showing the crossed fibers after the brewster’s window, but
before the output mirror, used to create various HG modes.

After the creation of the HG modes, these modes are focused to a waist using a lens L1

of focal length f1. These HG modes are converted to the LG modes, using a pair of

cylindrical lenses. These cylindrical lenses have been turned 45◦ about the axis and are

placed such that they are on either side of the focus of lens L1 symetrically. The spacing of

the cylindrical lens is
√

2f , where f is the focal length of the cylindrical lens. In a

cylindrical lens, one component of the input beam sees a lens and is focused to a waist and

expands again. Thus undergoing a Gouy’s phase change of π, whereas the other component

sees a glass plate. Thus creating an astigmatism. The second cylindrical lens is used for

phase matching by creating another astigmatism. This arrangement of the two cylindrical

lens is known as the π/2 mode converter or an astigmatic mode converter. The beam that

5



comes out of the mode converter is an LG beam. This set up is shown in Figure 1.2.

Figure 1.2: A schematic diagram of the experimental set up and the LGV modes produced
using the set up for ` = 1− 4.

The size of this LG beam can be controlled by adding lenses after the mode converter.

As seen in Figure 1.3, let w01 be the first waist before the lens, let the waist be a distance

d1 from the lens, w02 be the waist after the beam has passed through a lens of focal length

f , and is formed a distance d2 from the lens, then w02 and d2 can be calculated using the

matrix method of beam propagation for a gaussian beam. The final results of this

calculations are

w02 =
w01√

(z1/f)2 + (1− d1/f)2
, d2 =

(z21/f)− d1(1− d1/f)

(z1/f)2 + (1− d1/f)2
, (1.3)

where z1 = πw2
01/λ is the Rayleigh range before light passes through the lens. The beams

of interest in this study is the Laguerre Gauss Vortex (LGV) beam. The LGV beam is a
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LG beam with zero radial index. That is, in Equation 1.2, we substitute p = 0.

Figure 1.3: A schematic diagram of a single lens used to change the waist size from w01 to
w02.
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Chapter 2

Single Slit Diffraction

2.1 Introduction

Diffraction of LGV beams with simple apertures exhibit unexpected novel features. Most

experiments so far have focused on the role of azimuthal variation of phase, of the incident

beam, in the plane of the aperture [17, 19–21, 28, 29]. An integral part of LGV beams, the

effect of quadratic radial dependence of phase in the plane of the aperture, has not been

explored till now. The curvature of the incident phase front is caused by this quadratic

radial variation of the phase and adds another element that governs the diffraction pattern

of LGV beams. We find that in the waist region, quadratic radial variation of phase in the

plane of the diffracting slit causes a shear of the diffraction pattern even when the slit is

centered on the beam. Beyond this region, phase front curvature leads to significant

modifications of the diffraction pattern. We present a closed form analytical expression for

the diffracted field, valid for a centered slit whose aperture axis coincides with the beam

axis, which can account for the experimentally recorded diffraction profiles well for all slit

locations relative to the incident beam waist along the beam axis. We begin with an

analytic description of the new features expected in the Fraunhofer diffraction of an LGV

beam by a long slit. This is followed by a description of the experimental set-up to observe

these new features. This chapter ends with a discussion of the experimental results which

are in good agreement with the theoretical results.

Consider a two-dimensional aperture A in an opaque plane screen occupying the x′y′

plane illuminated by a field propagating in +z direction. Let Uin(x′, y′, z) be the incident

8



field in the plane of the aperture. Then the diffracted field in the far zone (Fraunhofer

diffraction) is proportional to the Fourier transform of the incident field distribution in the

plane of the aperture.

Figure 2.1: The geometry of the incoming light and the cartesian coordinates of the aperture
plane and the image plane.

This same field pattern will be obtained if the aperture is located in the front focal plane of

a lens of focal length f , and then the diffracted field is observerd in the back focal plane of

the lens [25]. This is called the 2f-geometry to observe Fraunhofer diffraction by an

aperture. In this case the diffracted field in the back focal plane of the lens is given by

Uf (x, y) =
ik

2πf

∫∫
A

dAUin(x′, y′, z)× exp

[
−ik
f

(xx′ + yy′)

]
, (2.1)

where k = 2π/λ is the wavenumber, λ is the wavelength of light, and z is the location of

the aperture along the beam axis and x, y are the transverse coordinates of a point in the

observation plane (back focal plane of the lens). Equation 2.1 expresses the fact that the

diffracted field is the Fourier transform of the incident field limited by the aperture.

If Uin is a plane wave, and the diffraction takes place at a single slit of width d and
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height b, then the diffracted field intensity is given by

I(x, y) = C

[
sin β

β

]2 [
sin δ

δ

]2
, (2.2)

where β = kbx/2f and δ = kdy/2f are dimensionless variables, which may be thought

of as scaled cartesian coordinates for the diffraction plane. Figure 2.2 shows the diffraction

pattern for a slit that is oriented vertically when illuminated by a plane wave.

Figure 2.2: Diffraction of a plane wave by a single slit

The field of LGV beams has ρ`ei`φ transverse spatial dependence, and the diffraction

pattern of LGV beams by a slit is different from that of the plane wave. This is explored in

detail in the subsequent sections.

2.2 Theory

We consider LGV beams as LG beams with zero radial index as described in chapter 1. For

an incident LGV beam the incident field in the plane of the aperture is of the form

Uin(x′, y′, z) = C`

(√
2ρ′

w
eiφ
′

)`

× e−
ρ′2
ww0

(
1−i (z−z0)

zR

)
+ik(z−z0)−i(`+1)θ(z)

, (2.3)

where ρ′ = (x′2 + y′2)1/2 is the radial distance of a point in the aperture A from the beam

axis, z0 is the location of the incident beam waist, zR = kw2
0/2 is the Rayleigh range,

w(z) = w0[1 + (z − z0)2/z2R]1/2 is the beam spot size with minimum value w0 at the waist,

and θ(z) = tan−1[(z − z0)/zR] is Guoys phase of the beam. In Equation 2.3 we have

expressed the radius of curvature of the incident beam R(z) in terms of w(z) as
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R(z) = [kzR/2(z − z0)]w2. The phase of the incident beam can also be written as

`φ′+ kρ′2/2R(z) + k(z− z0)− (`+ 1)θ(z), where the first term describes azimuthal variation

of the phase which results in the helical twist of the phase front and the second term

describes a quadratic radial variation of phase due to curvature of the phase front [8, 9].

Equation 2.3 is written for LGV beams with a positive topological charge `. It also

holds for LGV beams of negative topological charge if ` is taken as the magnitude of the

charge and exp(iφ′) is replaced by exp(−iφ′). The diffracted field in the Fraunhofer limit is

then given by

U `
f (x, y) = C ′`

∫∫
A

dA

(√
2ρ′

w
eiφ
′

)`

× exp

[
− ρ′2

ww0

exp[−iθ(z)]− ik

f
(xx′ + yy′)

]
, (2.4)

where the factors independent of the variables of integration including

exp[−i(`+ 1)θ(z) + ik(z − z0)], have been absorbed into the constant C ′` and(
1− i (z−z0)

zR

)
= exp[−iθ(z)].

For a rectangular slit of length b (−b/2 ≤ x ≤ b/2) and width d (−d/2 ≤ y ≤ d/2), this

integral can be cast in a more convenient form by introducing some new variables:

u =
x′exp(−iθ/2)

(ww0)1/2
; v =

y′exp(−iθ/2)

(ww0)1/2
;

u0 =
b exp(−iθ/2)

2(ww0)1/2
= µ exp(−iθ/2); v0 =

d exp(−iθ/2)

2(ww0)1/2
= ν exp(−iθ/2);

κx =
kx(ww0)

1/2exp(iθ/2)

f
; κy =

ky(ww0)
1/2exp(iθ/2)

f
. (2.5)

Then the diffraction integral becomes

Uf (x, y) = C ′`(ww0)

[
i exp(−iθ/2)

(
2w0

w

)1/2
]`
×
[
∂

∂κx
+ i

∂

∂κy

]`
fu(κx)fv(κy), (2.6)
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where

fu(κx) =

∫ u0

−u0
du exp(−u2 − iκxu),

=
π1/2

2
exp(−κ2x/4)[erf(u0 + iκx/2) + erf(u0 − iκx/2)]; (2.7)

fv(κy) =

∫ v0

−v0
dv exp(−v2 − iκyv)

=
π1/2

2
exp(−κ2y/4)[erf(v0 + iκy/2) + erf(v0 − iκy/2)]. (2.8)

Here, erf(ξ) is the error function with complex argument ξ [30]. The diffracted field was

evaluated by integrating Equation 2.4 numerically to obtain the theoretical diffraction

patterns, which were later compared with the experimentally obtained patterns.

By considering the expression for the diffracted field in some simple but realistic limits,

some insight into the diffraction pattern can be gained. Let’s consider a long thin slit of

length b large compared to the beam spot size (b� w, w0) and width d small compared to

the beam spot size w0, we can evaluate the diffraction integrals in Equatoins 2.7 and 2.8 for

LGV beams as

fu ≈
∫ ∞
−∞

du exp(−u2 − iκxu) = π1/2exp(−κ2x/4)

= π1/2exp(−β2/4v20), β =
kbx

2f

′
(2.9)

fv ≈ 2v0
sin δ

δ
, δ =

kdy

2f
, (2.10)

where v0 is given by Equation 2.5. β and δ are real dimensionless variables, which may be

thought of as scaled Cartesian coordinates for the diffraction plane. Substituting these
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results in Equation 2.6,

Uf (x, y) = C ′`(ww0)

(
i exp(−iθ/2)

(
2w0

w

)1/2
)`

×
(

∂

∂κx
+ i

∂

∂κy

)` [
π1/2 exp(

−κ2x
4
× 2v0

sin δ

δ
)

]
. (2.11)

Now expanding the diffrential operator using the identity

∂n

∂κnx
exp

(
−κ2x

4

)
= exp

(
−κ2x

4

)
1

2n

[
exp

(
κ2x
4

)
∂n

∂(κx/2)n
exp

(
−κ2x

4

)]
, (2.12)

and using the definition of Hermite polynomial of order n in the above equation

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

, (2.13)

we can rewrite Equation 2.12 as

∂n

∂κnx
exp

(
−κ2x

4

)
= exp

(
−κ2x

4

)(
−1

2

)n
Hn(κx/2). (2.14)

Using Equations 2.9-2.14 we can now write the diffracted field for a long and thin slit as

Uf (x, y) = C ′′` exp

(
−κ

2
x

4

) ∑̀
m=0

`!

m!(`−m)!

×
(
−1

2

)m
Hm(κx/2)(iv0)

`−m ∂`−m

∂δ`−m

(
sin δ

δ

)
, (2.15)

where all non-essential factors have been absorbed into C ′′` .

Expressing κx in terms of β and v0 from Equations 2.5 and 2.9 we can now write

κx = β
v0

. We know that the intensity distribution I` ∝ |Uf |2. Using the Uf (x, y) found in

Equation 2.15, we can write the intensity distributions for the first few ` values as follows.
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First we note that for ` = 0, we have

I0 = I00 exp(−2β2w2
0/d

2)

(
sin δ

δ

)2

. (2.16)

In order to express the other I`, let us define F0 = exp(−2β2w2
0/d

2)
(
sin δ
δ

)2
. Then,

I0 = I00F0. For simplicity of writing, let us define f` as the `th order derivatives of sinc(δ)

with respect to δ. Recalling ν from Equation 2.5, we can express

I1 = I10F0

[
(2ν2f1 cos θ)2 + (β − ν2f1 sin θ)2

]
, (2.17)

I2 = I20F0

[
(β2 − 2ν2 cos θ − 4βν2f1 sin θ − 4ν4f2 cos 2θ)2

+ (2ν2 sin θ − 4βν2f1 cos θ + 4ν4f2 sin 2θ)2
]
, (2.18)

I3 = I30F0

[{
(β3 − 6βν2 cos θ)− 6ν2f1(β

2 sin θ − 2ν2 sin 2θ)

−12βν4f2 cos 2θ + 8ν6f3 sin 3θ
}2

+
{

6βν2 sin θ − 6ν2f1(β
2 cos θ − 2ν2 cos 2θ)

+ 12βν4f2 sin 2θ + 8ν6f3 cos 3θ
}2]

, (2.19)

I4 = I40F0

[{
β4 − 12β2ν2 cos θ + 12ν4 cos 2θ − 8ν2f1(β

3 sin θ − 6βν2 sin 2θ)

−24ν4f2(β
2 cos 2θ − 2ν2 cos 3θ) + 32ν6βf3 sin 3θ + 16ν8f4 cos 4θ

}2
+
{

(12β2ν2 sin θ − 12ν4 sin 2θ)− 8ν2f1(β
3 cos θ − 6βν2 cos 2θ)

+ 24ν4f2(β
2 sin 2θ − 2ν2 sin 3θ) + 32βν6f3 cos 3θ − 16ν8f4 sin 4θ

}2]
. (2.20)

As done before all non-essential factors have been absorbed into the constants I`0. The
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functions fl(δ) for ` = 0− 4 are given by

f0(δ) =
sin δ

δ
,

f1(δ) =
1

f0

∂f0
∂δ

=
1

δ
[δ cot δ − 1],

f2(δ) =
1

f0

∂2f0
∂δ2

=
1

δ2
[2− δ2 − 2δ cot δ],

f3(δ) =
1

f0

∂3f0
∂δ3

=
1

δ3
[−6 + 3δ2 + δ(6− δ2) cot δ],

f4(δ) =
1

f0

∂4f0
∂δ4

=
1

δ4
[24− 12δ2 + δ4 − 4δ(6− δ2) cot δ]. (2.21)

The theoretical results in the expressions 2.17-2.20 were computed for a long slit

illuminated with LGV beams of orders ` = 1− 4. Let us define the normalized slit distance

as ζ = (z − z0)/zR from the beam waist. Figure 2.3 shows these computed results scaled in

terms of the variable β (horizontal) and δ (vertical). For these plots an infinitely long slit

of width d = 50µm was used under the illumination of an LGV beam of wavelength

λ = 0.6328µm, with a waist size w0 = 198µm. The focal length in the 2f arrangement was

f = 10cm.

In all cases, the incident beam is centered on the slit. When the slit is at the waist of

the incident beam (ζ = 0), the incident phase front is planar (no curvature), the diffraction

pattern is symmetric about the y axis and has, `+ 1 fringes. As the slit is moved away

from the incident beam waist along the beam propagation direction, the diffraction pattern

was no longer symmetric about the beam axis and developed a shear relative to the pattern

obtained when the slit was at the waist. The shear reached a maximum at ζ = 1 and

decreases as ζ increases beyond 1. While the splitting of the diffraction pattern is a direct

result of the azimuthal variation of the phase, the shear of the diffraction pattern is a

15



Figure 2.3: Fraunhofer diffraction pattern of a long horizontal slit of width d = 50µm
illuminated by LGV beams of wavelength λ = 0.6328µm, for different locations of the slit
relative to the waist of the incident beam, which made a waist size w0 = 198µm. This is a
greyscale image with white representing brightness.
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consequence of the quadratic radial phase variation across the slit, the effect of which

depends on the incident phase front curvature which varies with the propagation away

from the waist.

The shear of the diffraction pattern is accompanied by another qualitative change,

which become more significant for higher values of `. The diffraction pattern for all ` 6= 0

shows two dominant fringes located at β ≈ ±(|`|d2/2w2
0)

1/2 and δ ≈ 0. For example the

diffraction pattern for an odd order beam, say ` = 3 beam at the waist has a dark center

and four off-center fringes symmetrically about the center (Figure 2.3). At the waist the

two inner fringes are brighter than the two outer fringes but as ζ increases, the inner

fringes gradually fade out leaving a diffraction pattern dominated by the two outer fringes

far from the waist. For an even order say ` = 4 there are five peaks when at the waist, the

central fringe is the brightest but as ζ increases the central and the two outer fringes

gradually fade away, once again leaving a diffraction pattern with two prominent fringes.

An experiment to observe these novel features in the Fraunhofer diffraction of LGV beams

was carried out and is described in the next section.

2.3 Experiment

Figure 2.4 shows a side view of the experimental setup. The generation of LGV beams was

described in chapter 1. The LGV beam emerging from the mode converter was focused by

a 40 cm focal length lens, L1 to form a waist with an approximate spot size of 198µm. A

slit was placed along the beam propagation direction, such that the LGV beam was

normally incident on the slit. The slit was always centered on the beam and long enough to

capture the entire beam along its length. Light diffracted by the slit was collected by a lens
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L2 placed one focal length behind the slit, such that the slit was in its front focal plane.

The CCD used to record the patterns was located one focal length behind the lens, so as to

be in the back focal plane of the lens. Thus the slit, the lens L2, and the CCD were in the

2f -geometry. The diffraction pattern recorded by the CCD is the Fourier transform of the

incident field limited by the aperture or the Fraunhofer diffraction pattern [25], and is

given by Equation 2.1. As the slit location relative to the incident LGV beam waist was

varied, the configuration of the slit, lens L2 and the CCD remained in 2f -geometry. These

three objects were always moved as a single unit, with no relative change of distance

between them. Thus the pattern recorded by the CCD was always the Fourier transform of

the slit illuminated by the incident LGV beam.

Figure 2.4: A side view of the experimental set-up. Lens L1 forms a waist of the incident
beam at z = z0. The slit, lens L2 and the CCD camera are in 2f -geometry. The apparatus
enclosed by the dashed box is translated along the beam axis near the waist, with no relative
change in distance of the constituents.

2.4 Results and Conclusions

The diffraction patterns when a horizontal slit is placed at the waist z − z0 = 0 is shown in

Figure 2.5. The patterns in the left column are the CCD images. A quantitative

comparison of the experimental and theoretical results is shown in the panels to the right

of the experimentally recorded profiles. The dots represent the experimental intensity

values extracted by scanning a CCD image through its center. To locate the image center,
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experimentally recorded image profiles were exported to Mathematica. A spline smoothing

transformation was applied to the image data before locating the image center using

FindMaximum and FindMinimum with an approximate starting point, to search for local

maxima (bright center) or minima (dark center). The diffraction of the fundamental beam

(` = 0) when the slit is located at the beam waist, was used to find a scale factor to convert

pixel size into actual length. It was found that 180 pixels ≈ 1 mm. Super-imposed on these

experimentally extracted data, are the theoretical curves computed from Equations

2.17-2.20 which were found indistinguishable from those computed from Equations 2.4. For

theoretical calculations, we used w0 = 198µm, λ = 633 nm, f = 10.0 cm, slit width was

d = 50µm and length 3 mm, which was large compared to beam waist. To compare

theoretical and experimentally recorded intensity profiles, we scaled the theoretical

intensity at one maximum to match the corresponding experimental intensity. No other

fitting parameters were used.

The incident phase front has no radial phase variation in the plane of the slit at the

waist. For ` = 0 we see the familiar sinc square intensity pattern with a maximum at the

center. For ` = 1 the diffraction pattern splits into two intensity maxima with a minimum

(zero) at the center. For ` = 2 the pattern has three peaks with a maximum at the center.

In general for LGV beam of topological charge `, the diffraction pattern consists of `+ 1

maxima, which are located symmetrically about the beam axis. For odd `, there is a null

(zero) at the center and for even ` there is a maximum at the center. These results at the

waist agree with those reported in [17]. It can be seen that in all cases experimental data

follow the theoretical curves well.
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Figure 2.5: A comparision of the experimentally recorded diffraction pattern (dots) with the
theoretical predictions (continuous line) for a slit at the incident beam waist z−z0 = 0. The
horizontal axis in the graph is the distance from the center in mm, and the vertical axis in
the graph represents relative intensity.
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Figure 2.6: A comparision of the experimentally recorded diffraction pattern (dots) with the
theoretical predictions (continuous line) for a slit at ζ = (z − z0)/zR = −1. The horizontal
axis in the graph is the distance from the center in mm, and the vertical axis in the graph
represents relative intensity.
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Figure 2.7: A comparision of the experimentally recorded diffraction pattern (dots) with the
theoretical predictions (continuous line) for a slit at ζ = (z − z0)/zR = 1. The horizontal
axis in the graph is the distance from the center in mm, and the vertical axis in the graph
represents relative intensity.

The effect of quadratic variation of phase with radial distance from the center or,

equivalently, phase front curvature, was explored by placing the slit at different locations

before and after the waist of the incident LGV beam. As the beam is propagating in the
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+z-direction, phase front curvature R(z) is positive (diverging beam) for ζ > 0 and

negative (converging beam) for ζ < 0.

Figure 2.6 shows the diffraction patterns when the slit is placed one Rayleigh range

before the waist (ζ = −1) so that the beam incident on the slit is a converging beam. It

was found that the diffraction pattern was sheared. Figure 2.7 shows the diffraction

patterns when the slit is placed one Rayleigh range after the waist (ζ = 1) such that the

incident beam is a diverging beam. In this case the shear is opposite to that seen in Figure

2.6. Thus the direction of shear depends on the sign of curvature R(z), i.e. whether the

beam is converging or diverging.

The shear of the diffraction pattern was quantified in terms of the angle (positive in the

counterclockwise sense) that a line from the center of the diffraction pattern to the

dominant off-center diffraction peak makes with the horizontal.

Variation of this angle with ζ is shown in Figure 2.8, where the dots represent the

experimental values and the continuous curve is derived from Equations 2.17-2.20. For slit

positions before the waist (ζ < 0), where the beam has a converging phase front (negative

curvature), the angle of shear is negative for positive values of `, and positive for negative

values of `. As the waist is approached, the angle of shear decreases in magnitude to zero

at the waist. For slit positions after the waist (ζ > 0), where the beam has a diverging

phase front (positive curvature), the angle of shear becomes positive for positive values of

`, and negative for negative values of `. For all values of `, the maximum magnitude of

shear is attained near ζ ≈ ±1, where the curvature has its maximum value. The shear

varies rapidly in the waist region where it depends on ` and the sign of ` as well. At beam

waist and far from it (ζ � 1), the radius of curvature is zero and small respectively, thus
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the shear becomes negligible.

Figure 2.8: Variation of the angle of shear (in degrees along the vertical axes) as a function
of the normalized slit displacement ζ = (z − z0)/zR from the waist.

On investigating the regions away from the waist we find that, as we move away from

the waist region |ζ| > 0, the phase front curvature changes, thus causing a change in the

diffraction patterns as well. It is observed that the relative peak intensities change. For

example, for ` = 3, the dominant diffraction peaks start out to be the two inner peaks

when the slit is at the waist. As |ζ| increases, the intensity of the dominant inner peaks

decreases until |ζ| = 1, beyond which the outer peaks become the dominant as seen in

Figure 2.3. For |ζ| > 1, the inner peaks essentially fade away.

The dashed curve in Figure 2.8 for ` = 3 shows the angle of shear for the inner peaks

when they are the dominant peaks and the solid curve shows the angle of shear for the
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outer peaks when they are the dominant peaks. The shear of the diffraction pattern

changes slightly with distance from the center of the pattern. The sense of shear changes

with the sign of `. We can summarize this behavior by saying that as the slit position

varies from (−1 ≤ ζ ≤ 1), the diffraction pattern shears in a counter-clockwise sense for

positive values of ` and in a clockwise sense for negative values of `. As the slit position is

beyond the rayleigh range, that is |ζ| > 1 the amount of shear reduces, but the sense of

shear remains the same, this is seen in Figure 2.8.

As the slit is moved farther away from the waist (ζ � 1), the diffraction pattern evolves

into a pattern dominated by two peaks irrespective of `. The peaks are located equidistant

from the center and their location depends on the topological charge ` through

β ≈ ±(|`|d2/2w2
0)

1/2 and δ ≈ 0. The effect of topological charge is revealed in `-dependent

positions of the peak. For odd values of ` there is null at the center while for even values

there is a weak maximum at the center but with intensity much weaker than the dominant

off-center peaks. Thus in Figure 2.9 this peak is invisible. It is important to note that if

the quadratic phase variation is neglected, the diffraction pattern reverts to being similar

to that seen when the slit is located in the waist region.

In conclusion, the effect of the quadratic radial variation of phase (phase front

curvature) on the far field diffraction of Laguerre Gauss vortex beams by a thin slit have

been studied. It is found that without the quadratic radial phase variation (planar phase

front), the central diffraction maximum consists of `+ 1 fringes, which are symmetrically

located about the center of the pattern. When the incident phase front radius of curvature

R(z) is nonzero, the diffraction pattern is sheared relative to the pattern produced by a

planar phase front. The angle of shear depends on the sign of the radius of curvature R(z)
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Figure 2.9: Evolution of the diffraction pattern from a three-peak pattern (corresponding to
` = 2) for the slit at the waist (ζ = 0), to a two dominant peak pattern for the slit far from
the waist (ζ = 5).

and the sign of the topological charge `. The radius of curvature depends on the position of

the slit. The same diffraction pattern can be obtained for two different combinations of

signs of ` and R(z). For example, the diffraction pattern for +` at z = +zR and −` at

z = −zR are the same. Thus knowing the waist position is important in determining the

magnitude and sign of the topological charge by studying the Fraunhofer diffraction

pattern of the beam. The number of fringe N in the diffraction pattern gives |`| = N − 1,

the amount of shear gives the Radius of curvature R(z), and the sense of shear gives the

sign of `.

For slit positions far from the waist, the diffraction pattern evolves into a symmetric

pattern with two dominant fringes for all LGV beams independent of `. Experimental

results are in good agreement with the theoretical predictions. It is clear that in order to

understand the diffraction of LGV beams we must take into account, not only their
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azimuthal phase variation but also the quadratic radial phase variation due to the

curvature of the phase front.
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Chapter 3

Circular Aperture Diffraction

3.1 Introduction

Diffraction of the Laguerre Gaussian vortex (LGV) beams by a thin slit exhibits many

unexpected features which lead to diffraction patterns that are very different form the

sinc-squared pattern as seen in chapter 2. Most optical instruments however, have circular

apertures. These apertures are usually aligned such that the aperture axis coincides with

the incoming beam axis. One everyday example of devices that have apertures and have to

be so aligned is a camera. But there are some applications where the aperture, grating or

mirror is deliberately misaligned to capture a portion of the beam that may not be along

the beam axis. For example, in Multiple-Mirror Telescopes (MMT) the misalignment of

mirrors and apertures is used for aberration sensing and high resolution image

reconstruction [31].

When a circular aperture is illuminated by the LGV beams carrying orbital angular

momentum, the diffraction patterns can be described in terms of Bessel functions of order

that depends on the angular momentum index of the incident LGV beam, and the ratio of

the aperture size to the beam spot size. The diffraction of Laguerre-Gauss vortex (LGV)

beams by a circular aperture, when the beam axis coincides with the aperture axis shows

many unexpected new features. When the beam axis does not coincide with the aperture

axis, many of these features begin to dissipate.

In this chapter an analytical description of the diffraction of LGV beams at a circular

aperture is presented, which are compared to the experimentally recorded diffraction
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patterns. The effects of phase front curvature on the diffraction pattern are studied. The

far field diffraction of LGV beams incident on a laterally misaligned circular aperture is

investigated. Evolution of the diffraction pattern and the vortex structure are studied for

various beam axis displacements relative to the aperture axis.

Consider a field Uin(x′, y′, z) propagating in the +z direction illuminating a

two-dimensional aperture A in the x′ − y′ plane. The diffracted field in the far zone, the

Fraunhofer diffraction, is proportional to the Fourier transform of the incident field

distribution in the plane of the aperture. By using the 2f -geometry, explained in chapter 1,

we observe the Fraunhofer diffraction by an aperture [25]. The diffracted field in the back

focal plane of the lens is given by

Uf (x, y) =
ik

2πf

∫∫
A

dAUin(x′, y′, z)× exp

[
−ik
f

(xx′ + yy′)

]
, (3.1)

where k = 2π/λ is the wavenumber, λ is the wavelength of light, z is the location of the

aperture measured from the position of the beam waist, and x, y are the transverse

coordinates of a point in the back focal plane of the lens, the observation plane.

If Uin is a plane wave incident on a circular aperture the resultant diffracted field

intenstity results in the Airy pattern [32] given by

I(θ) = I0

(
2J1(ka sin θ)

ka sin θ

)2

, (3.2)

where I0 is the maximum intensity at the center of the diffraction pattern, J1 is the Bessel

function of the first kind of order one, θ is the angle of observation, k = 2π/λ, and a is the

radius of the aperture.

29



Figure 3.1: Diffraction of a plane wave by a circular aperture results in the airy pattern.
The inlaid image is the experimentally recorded pattern, the central portion is overexposed
to bring out the details in the outer rings, the graph is the theoretically predicted intensity
from the center of the diffraction pattern to the outer edge following the line.

3.2 Theory

For an incident Laguerre-Gauss Vortex (LGV) beam (radial index, p = 0) the incident field

can be written in the cylindrical coordinates as

Uin(ρ′, φ′, z) = const×

(√
2ρ′

w(z)
eiφ

)`

× exp

[
− ρ′2

w(z)w0

(
1− i z

zR

)
+ ikz − i(`+ 1)θ(z)

]
, (3.3)

where ρ′ =
√
x′2 + y′2 is the distance from the beam axis, zR = πw2

0/λ the Rayleigh range,

w(z) ≡ w0

√
1 + z2/z2R has a minimum value of w0 at the waist. The waist is at z = 0, the

position of the aperture is z, and θ(z) = tan−1(z/zR) is the Guoy’s phase of the beam. The

primed coordinates are for the aperture plane, and the non-primed coordiantes are for the

observation plane. In this expression, L`p is the associated Laguerre polynomial, when

p = 0, L`0(x) = 1, for each `.
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3.2.1 Centered Beam

Let us look at the case of a beam centered on the aperture. Equation 3.1 gives the

diffracted field. Cylindrical coordinates with z as the direction of propogation is the

natural coordinate system to use with an LGV beam. The expression (xx′ + yy′) in these

coordinates becomes ρρ′ cosφ cosφ′ + ρρ′ sinφ sinφ′.

For a circular aperture of radius a, the diffracted field can be written as,

Uf (ρ, φ, z) = const

a∫
0

2π∫
0

ρ′dρ′dφ′Uin(ρ′, φ′, z)

× exp

[
−ik
f

(ρρ′ cosφ cosφ′ + ρρ′ sinφ sinφ′)

]
. (3.4)

Here the term exp[ikz − i(`+ 1)θ(z)] has been absorbed into the constant. Using a

substitution of s =
√

2ρ′/w and realizing that cos(φ− φ′) = cosφ cosφ′ + sinφ sinφ′, the

diffracted field in the observation plane can be written as

Uf (ρ, φ, z) = const× 2πei`φ

√
2a/w∫
0

dss`+1e
− s

2

2

(
1−i z

zR

)

× 1

2π

2π∫
0

dφ′exp

[
−i`(φ− φ′)− ikw√

2f
ρs cos(φ− φ′)

]
. (3.5)

Using two properties of Bessel functions we can evaluate the integral over φ′.

Jn(x) =
1

2πin

∫ 2π

0

eix cosφ
′
einφ

′
dφ′ and J−m(x) = (−1)mJm(x). (3.6)

Thus, the integral over φ′ is J`(kwρs/
√

2f), the `th order Bessel function of the first kind.

Changing the variables of the resulting integral by introducing u = sw/
√

2a, so that the
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integral now is from u = 0 to u = 1 we can rewrite the diffracted field as,

Uf (ρ, φ) = const× 2π

(√
2a

w

)`+1

ei`φ(−i)`
1∫

0

duu`+1e
−a

2u2

w2

(
1−i z

zR

)
J`

(
kρau

f

)
. (3.7)

In general, Equation 3.7 must be evaluated numerically. For a special case where

θ(z = 0) = 0, which corresponds to incident beam waist at the aperture, the integral can be

evaluated as an infinite series of Bessel functions [30]. On the otherhand, if the spot size w

is large compared to the aperture size a, then the u2 term in the exponent is small over the

aperture. Thus for a postition far from the input waist, we may ignore the quadratic

variation of the incident phase as well as the gaussian envelope over the aperture. This

simplifies the above equation to

Uf (ρ, φ) ≈ const×
1∫

0

duu`+1exp

[
− a2

w(0)w0

e−iθ(0)
]
J`

(
kρau

f

)
,

= const× exp

[
− a2

w(0)w0

e−iθ(0)
]J`+1

(
kaρ
f

)
(
kaρ
f

)
 . (3.8)

Small argument expansion of the Bessel function is

J`(z) =
(z

2

)` ∞∑
m=0

(−1)m

m!(`+m)!

(z
2

)2m
,

=
1

`!

(z
2

)`
− 1

(`+ 1)!

(z
2

)`+2

. (3.9)

Using Equation 3.9 we obtain

J`+1

(
kaρ
f

)
(
kaρ
f

) ≈ 1

2`+1(`+ 1)!

(
kaρ

f

)`
. (3.10)

It may be seen that, as ρ→ 0, Uf → 0. Hence the center of the diffraction pattern is

always dark for all ` 6= 0.
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3.2.2 Misaligned Aperture

To study the effects of lateral misalignment we first look at a beam that has its axis of

propagation parallel to the axis of the aperture, but is separated by a distance ρ0 as shown

in the Figure 3.2. Using the ratio ρ0/a we can compare the distance of separation of the

axes to the radius of the beam, where ρ0/a = 0 implies that both the axes coincide, and

ρ0/a = 1 implies that both the axes are a radius a away from each other.

Figure 3.2: The aperture is the black circle and the beam is the red circle. The left most
image shows, the aperture and the beam, when viewed along the propagation direction. The
center image shows how the beam axis and the aperture axis are separated by ρ0.

Equation 3.1 gives the diffracted field. When diffracted by a circular aperture, the

diffraction integral can be rewritten as

U `
f =

ik

2πf

∫ a

0

ρ′dρ′
∫ 2π

0

U `
ine
−ikρρ′cos(φ−φ′)/fdφ′. (3.11)

For an LGV beam in the waist plane and the incident light centered at (x0, y0), and

s = sign(`) the field is given by

U `
in(x, y) = C`

[
(x′ − x0)

w
+ is

(y′ − y0)
w

]|`|
× e−[(x′−x0)2+(y′−y0)2]/w2

. (3.12)

In Cylindrical coordinates the incident light is centered at (ρ0, φ0). Here ρ0 is the distance

between the aperture axis and the axis of propagation of the incident beam. The field in
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cylindrical coordinates is given by

U `
in(ρ, φ) = Cl

|`|∑
r=0

|`|!
r!(|`| − r)!

(
−ρ0
w

eisφ0
)|`|−r (

ρ′

w
eisφ

′
)r

× e−[ρ′2+ρ20−2ρ′ρ0cos(φ′−φ0)]/w2

. (3.13)

The diffraction integral now becomes

U `
f (ρ, φ) =

ik

2πf

∫ a

0

ρ′dρ′
∫ 2π

0

C`

|`|∑
r=0

|`|!
r!(|`| − r)!

(
−ρ0
w

eisφ0
)|`|−r (

ρ′

w
eisφ

′
)r

× e−[ρ′2+ρ20−2ρ′ρ0cos(φ′−φ0)]/w2 × e−ikρρ′ cos(φ−φ′)/fdφ′. (3.14)

We simplify the above integral by changing the order of the integral and the summation,

and taking all the quantities that do not depend on the variables of integration out of the

integral. It leads to

U `
f (ρ, φ) =

ik

2πf
C`e

−( ρ0w )
2
|`|∑
r=0

|`|!
r!(|`| − r)!

(
−ρ0
w

eisφ0
)|`|−r ∫ a

0

ρ′dρ′
(
ρ′

w

)r
e
−
(
ρ′
w

)2

×
∫ 2π

0

dφ′eirsφ
′ × e

2ρ′ρ0
w2 cos(φ′−φ0) × e−i

kρρ′
f

cos(φ−φ′). (3.15)

Let us work on the φ′ integral in more detail. Multiplying and deviding the entire exponent

with a, the φ′ integral now has the form

∫ 2π

0

dφ′ × exp

[
irsφ′ − iρ′

a

(
kaρ

f
cos(φ− φ′) +

2ia2ρ0
w2a

cos(φ′ − φ0)

)]
. (3.16)

Using cos(A−B) = cosA cosB + sinA sinB we can write the exponent as

irsφ′− iρ
′

a

[
cosφ′

(
kaρ

f
cosφ+

2ia2ρ0
w2a

cosφ0

)
+ sinφ′

(
kaρ

f
sinφ+

2ia2ρ0
w2a

sinφ0

)]
. (3.17)
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Define,

ξ cos γ =
kaρ

f
cosφ+

2ia2ρ0
w2a

cosφ0,

ξ sin γ =
kaρ

f
sinφ+

2ia2ρ0
w2a

sinφ0. (3.18)

Then we have,

ξeiγ = ξ cos γ + iξ sin γ, and

ξeiγ =
kaρ

f
eiφ +

2ia2ρ0
w2a

eiφ0 . (3.19)

Let us also define A = kaρ
f

, B = 2ρ0a
w2 , where the maximum value of ρ′ is a, and ε = φ0 − φ.

Equation 3.19 can be rewritten as

ξeiγ = Aeiφ + iBei(φ+ε)

= eiφ
(
A+ iBeiε

)
= eiφ(A+ i(B cos ε+ iB sin ε))

= eiφ(A−B sin ε+ iB cos ε). (3.20)

Thus ξ = (A−Bsinε+ iBcosε), and γ = φ. The diffraction integral can now be rewritten

as

U `
f (ρ, φ) =

ikCl
2πf

e−ρ
2
0/w

2

|`|∑
r=0

|`|!
r!(|`| − r)!

(
−ρ0
w

eisφ0
)|`|−r

ur (3.21)

where,

ur =

∫ a

0

ρ′dρ′
(
ρ′

w

)r
e−ρ

′2/w2

∫ 2π

0

dφ′eirsφ
′−i ρ

′
a
ξcos(φ′−γ). (3.22)
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Using the substitution θ = φ′ − γ, the φ′ integral becomes

eirsγ
∫ 2π−γ

−γ
dθeirsθe

−iρ′ξ
a

cos θ. (3.23)

This integral can be evaluated using the following properties of Bessel functions:

Jn(x) =
1

2πin

∫ 2π

0

eix cosφ
′
einφ

′
dφ′ and J−m(x) = (−1)mJm(x). (3.24)

Equation 3.22 gives

ur =

∫ a

0

ρ′dρ′
(
ρ′

w

)r
e−ρ

′2/w2

[
2πei(γs+

πs
2
)rJr

(
ρ′ξ

a

)]
. (3.25)

Now the ρ′ integral can be solved by doing the substitution q = ρ′ξ
a

, which gives dρ′ = a
ξ
dq

and integrating by parts.

Thus the solution for off-axis illumination is obtained as

U `
f (ρ, φ) =

ika2Cl
2πf

e
−(ρ20+a

2)

w2

|`|∑
r=0

|`|!
r!(|`| − r)!

(
−ρ0
w

eisφ0
)|`|−r ( a

w
ξeiγe

−iπs
2

)r
×

[
Jr+1(ξ)

ξr+1
+

2a2

w2

Jr+2(ξ)

ξr+2
+

(
2a2

w2

)2
Jr+3(ξ)

ξr+3
+ · · ·

]
. (3.26)

3.3 Experiment

The method used to produce the Laguerre-Gauss (LG) modes is the same as in chapter 2.

Here is a brief description of the procedure. A He:Ne laser equipped with two intra cavity

orthogonal fibers intersecting the beam axis, produced Hermite-Gauss (HG) beams. The

translation of these fibers can produce some low order HG modes. These HG modes were

transformed into LG modes by using an astigmatic mode converter [14]. The detailed

description of the experimental set up to generate Laguerre-Gauss Vortex (LGV) beams is
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discussed in Chapter 1 Section 1.2.

Figure 3.3: A side view of the experimental setup. The LG beam was focused with lens L1

at the aperture, which lies in the front focal plane of lens L2, the image plane of the CCD
camera lies in the back focal plane. The apparatus in the dashed box is rigidly translated
along the beam axis to the desired location.

The LGV beam from the mode converter is focused using a lens L1 to obtain a desired

beam spot size w at the waist. The diffracted light is collected by lens L2 placed one focal

length f2 behind the aperture and was recorded by a CCD camera located one focal length

behind the lens. As the aperture is located in the front focal plane of the lens and the CCD

camera is placed in the back focal plane, the image captured by the camera is the Fourier

transform of the incident field, this is called the 2f -geometry.

Figure 3.4: The radius w of the LGV beam of order `.

At the waist of the LGV beam a circular aperture a of 500µm was placed, such that the

LGV beams were normaly incident on the aperture. The aperture was centered on the

beam. In order to study how the diffraction pattern varied as aperture size a changed with

respect to beam waist size w, an ability to have control of the ratio a/w was required. The

focal length of lens L1 and its position were chosen to obtain various waist sizes. This gave
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us a control over the ratio a/w. The exact method used to find the waist size is described

in Chapter 1. Using different waist sizes for the same diffracting aperture, a decade of a/w

ratios from 0.2 to 2, was obtained. For each ` the LGV beam size was taken to be

√
`+ 1w0 [33]. It was found that 180 pixels ≈ 1 mm.

To study the effect of missalignment, the waist size was kept the same as the aperture

size, that is a/w = 1. We first look at a beam that has its axis of propagation parallel to

the axis of the aperture, and ρ0 is the distance between the aperture axis and the beam

axis, as shown in the Figure 3.2. Using ρ0/a we can express this distance in a convenient

ratio, where ρ0/a = 0 implies that both the axis coincide, and ρ0/a = 1 implies that both

the axes are a radius a away from each other.

The central region of the ` = 4 beam was overexposed to see the minima better.

3.4 Results and conclusions

3.4.1 Centered incident beam

The diffraction of LGV beams from a circular aperture produced concentric rings centered

on the beam axis. This pattern has a circular symmetry. As an example, the diffraction

pattern of ` = 1 at a/w = 0.2 is shown in Figure 3.5. The intensity of the centeral ring of

the diffraction pattern was much larger than the intensity of the outer rings. To see the

fainter outer rings clearly the camera was deliberately overexposed. The camera’s sensor

around the central ring was saturated, which is seen as a plateau in the experimental graph.

The experimental intensity values of the diffraction pattern were extracted by taking

the center of the central dark spot as the origin and scanning in the radial direction, as
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shown by the line in Figure 3.5. To find the center of the diffraction pattern the images

were imported into Mathematica. A smoothing transformation was applied to the image

data before using an algorithm with an initial value of position to find the local minima

around that position. The dots are the intensity values extracted from the image obtained

from the CCD, by scanning from the center along the radial direction of the diffraction

pattern. The continuous line in the 2D plot is the theoretical curve computed from

Equation 3.7. To match the theoretical and experimentally recorded intensity profiles, one

of the theoretically calculated intensities was scaled to match the corresponding

experimental intensity. No other fitting parameters were used. The procedure is similar to

the one used in the previous chapter for a single slit diffraction.

Figure 3.5: Diffraction at a 500µm aperture, for ` = 1 LGV beam, with a/w = 0.2. The Blue
line is the numerically calculated pattern, the black dots are the experimental data scanned
from the inset picture, the original image, the red line shows the direction of the pixel wide
scan to obtain the experimental data.
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When the aperture size is larger than the beam size, i.e, a/w larger than 1, the central

ring was very bright and the outer rings were very faint. In Figure 3.6 the image on the left

is the experimentally recorded diffraction pattern for a/w = 1.2 when ` = 3 LGV beam is

diffracted by a 500µm aperture. Here we can see the intensity difference between the

central ring and the faint outer rings. A single pixel wide scan in the radial direction shows

small irregular bumps where the rings should for the first few outer rings. As we go further

away from the center, a single pixel wide scan on these outer rings looks like noise as every

pixel in the ring region does not capture the light. Nonetheless the rings were visible when

viewing the entire image, as oposed to a single row, but were faint. To increase the

visibility of these rings, a new image was created by importing the experimental image as a

matrix into Mathematica and taking the logarithm of the experimentally recorded

Intensity values. Doing this, made the fainter rings brighter than before. Note this was

done to increase the visibility of the rings and not to measure the intensity values.

Figure 3.6 shows a recorded diffraction pattern versus the new image created by taking the

logarithm of the original experimental image. The overlay plot on the right hand side is the

transverse profile of the numerically calculated diffraction pattern.

In a few cases, for example when a/w = 1.2 and ` = 2, as shown in Figure 3.7, a

predicted minima was within the experimentally recorded bright ring plateau. This could

not be resolved by the camera, as the central ring intensity was very large.

The diffraction patterns for ` 6= 0 are different from the Airy diffraction pattern. We

observe that the position of the zeros of the diffraction pattern depend on the angular

momentum of the incident field. The minima of the diffraction of LGV beam of order `

depends on `+ 1 order Bessel function as predicted by the calculations. Further it was
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Figure 3.6: Diffraction at a 500µm aperture, for ` = 3 LGV beam, with a/w = 1.2. The left is
the experimentally recorded image, the right is the image created by taking the logarithm of
the recorded image, the line is the transverse profile of the numerically calculated diffraction
pattern

Figure 3.7: Diffraction at a 500µm aperture, for ` = 2 LGV beam, with a/w = 1.2. The
green line is the transverse profile of the numerically calculated diffraction pattern. The
predicted minima is within the experimentally recorded bright ring plateau. The central
ring intensity was too large and minima could not be resolved.
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found that the diffraction patterns do not depend on the sign of the topological charge.

J−`(x) = (−1)`J`(x), the intensity pattern as expected from Equation 3.8 will remain the

same for ±`.

Plotting the radial position of the minima or zeros of the diffraction pattern as a

function of a/w we observe that, the radial position of each zero with respect to the beam

axis increases, as a/w increases. This effect is more pronounced for the first few zeros. This

can be seen in the Figure 3.8, where ` = 0 and ` = 3 cases are shown. The overlayed plot is

the transverse diffraction pattern for ` = 3 for a/w = 0.2. This is done to clarify what the

y-axis is, on the graphs.

As the order of the LGV beams increases, there are two features that are observed. As

` increases, the position of the zeros from the beam axis increases, and the rate of change

of the position of the zeros with respect to a/w from the beam axis decreases. This can be

seen in Figure 3.8. For ` = 0 the first minimum shows an increase in the minimum’s

position as a/w increases, but the first minimum in the ` = 3 graph shows a less

pronounced increase.

Figure 3.8: The positon of the zeros of the diffraction pattern are plotted as a function of
a/w for ` = 0, 3 the blue line is the transverse diffraction pattern for ` = 3 for a/w = 0.2 to
clarify the y-axis on the graphs.
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Figure 3.9: At a/w = 0.2 the diffraction patterns at the waist and at the Rayleigh range
overlap completely, as the a/w ratio increases the patterns start to deviate as seen at a/w = 1

To study the effect of curvature of the phase front of the incident beam on the

diffraction pattern, we placed the aperture a distance equal to one Rayleigh range away

from the waist, that is at z = zR and z = −zR from the waist position. Comparing the

diffraction pattern here, with the diffraction pattern at the waist, we observe that the

minima occur at the same positions, but the intensity is non zero. The difference in

intensities between the second maximum and the first minimum is smaller at the Rayleigh

range than at the waist. As the radius of the aperture becomes larger compared to w, this

effect becomes more pronounced as seen for a/w = 1, and at lower values of a/w, the

minima of the diffraction pattern is close to zero, as seen for a/w = 0.2, in Figure 3.9. We

also observe that this effect becomes less pronounced as the order of LGV beams increases,

as can be seen when comparing the ` = 1 pattern with the ` = 4 pattern at the Rayleigh
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range. The red line is the diffraction pattern at the Rayleigh range, and the blue line at the

waist.

3.4.2 Misaligned aperture diffraction

The effect of misalignment of the aperture is studied. The diffraction patterns of the ` = 1

order LGV beam with various ρ0/a ratios are seen in Figure 3.10. The experimentally

recorded images are on the top row, and the theoretically calculated intensity patterns are

on the bottom row. Here, we see that the central minimum moves away from center of the

diffraction pattern as the beam axis moves away from the aperture axis. There is only one

minimum for ` = 1.

Figure 3.10: Diffraction pattern for ` = 1 LGV beam when the beam axis is displaced.
The top row shows the experimentally recorded patterns, and the bottom row shows the
theoretically calculated patterns.

For ` = 2 as seen in Figure 3.11, there are two minima and they move away from the

center of the diffraction pattern as ρ0/a increases. In addition to that, we notice an

important property that was not noticeable with just the diffraction patterns of ` = 1. The

number of minima when we move away from ρ0/a = 0 equals the order of the LGV beam.
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Figure 3.11: Diffraction pattern for ` = 2 LGV beam when the beam axis is displaced. Two
minima are visible when the ratio ρ0/a > 0 The top row shows the experimentally recorded
patterns, and the bottom row shows the theoretically calculated patterns.

Figure 3.12: Diffraction pattern for ` = 3 LGV beam when the beam axis is displaced. Three
minima are visible when the ratio ρ0/a > 0 The top row shows the experimentally recorded
patterns, and the bottom row shows the theoretically calculated patterns.
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Figure 3.13: Diffraction pattern for ` = 4 LGV beam when the beam axis is displaced. Four
minima are visible when the ratio ρ0/a > 0 The top row shows the experimentally recorded
patterns, and the bottom row shows the theoretically calculated patterns.

This pattern continues in the diffraction pattern of ` = 3 and ` = 4 as can be seen in

Figures 3.12 and 3.13, respectively.

In the theoretical calculations of ` = 4, the difference between the minima and the

maxima intensities was too small to resolve the sucessive minima positions well. Thus, the

theoretical image for ` = 4 is a logarithm of the theoretical intensity values, to show the

position of the minima with higher resolution.

The minima move away from the center in a straight line as the ratio ρ0/a increases.

The first minimum moves less when compared to the second, which moves less compared to

the third and the fourth moves the fastest. Figure 3.14 shows the plots of distance the

minima moved from the center on the y axis, versus the ρ0/a ratio which signifies how far

away the beam axis is from the aperture axis. The y axis scale is not the same for each of

the plots. The theoretical line is a spline curve fitting for the minima positions of the

diffraction pattern obtained for various values of ρ0/a. The dots and squares represent the

experimental minima obtained from the images. In this study, the diffraction of the LGV
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beam was studied at the waist of the beam, to observe the effect of misalignment.

Figure 3.14: Plots of minima position vs ρ0/a

In conclusion, the diffraction of LGV beams by a circular aperture has been studied.

The minima of the diffraction of LGV beams of order ` depend on the `+ 1 order Bessel

functions. The diffraction pattern does not depend on the sign of the topological charge.

As the radius of the aperture becomes large compared with the waist spot size, the

distance of the zeros from the beam axis increases. It is found that, as the order of the

LGV beam increases, the rate of change of the position of the zeros with respect to a/w

from the beam axis decreases. The curvature of the beam also affects the diffraction

pattern. The effect becomes more pronounced for larger a/w and lower `.

The effects of misalignment, when the beam axis parallel to the aperture axis but

laterally displaced, for a circular aperture was also studied. The number of minina seen
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when ρ0 > 0 is the order of the LGV beam. As the separation between the beam axis and

the aperture axis increases, the separation of the minima increases as well.
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Chapter 4

Polygonal Aperture Diffraction

4.1 Introduction

Diffraction of plane waves by polygons was studied in 1980s [34, 35]. Diffraction of

Laguerre Gaussian vortex (LGV) beams by polygons had not been studied until recently

[20, 21, 36]. There was an attempt at studying the diffraction of a circular aperture by

LGV beams, but a 11 sided iris was used in the experiment [21], which resulted in a

diffraction pattern that of a 11 sided polygon instead. The diffraction of LGV beams by a

triangular aperture resulted in a triangular optical lattice [20, 36].

The diffraction of the fundamental gaussian beam by regular polygon of n sides,

referred to as a regular n−gon, has a 2n−fold symmetry for odd n, and an n−fold

symmetry for even n. This symmetry is not expected in the the diffraction of LGV beams

as the phase varies across the aperture. In Figure 4.1, the picture on the left shows the

diffraction pattern of a plane wave when incident on a triangular aperture, and the picture

on the right shows the diffraction pattern of an LGV beam of order ` = 1 when diffracted

by a triangle.

Figure 4.1: Diffraction patterns due to a triangular aperture. The picture on the left is when
a plane wave is diffracted, and the picture on the right shows the diffraction pattern of an
LGV beam of order ` = 1.
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In this study we describe new features in the far field diffraction pattern of LGV beams,

when they are diffracted by regular polygons. These features depend on the orbital angular

momentum index ` of the beam, the number of sides n of the polygon, and location of the

aperture relative to the waist of the incident beam. We describe experiments, which reveal

these new features and study their evolution as angular momentum index ` of the beam

and the location of the aperture relative to the waist of the incident beam are varied along

the direction of propagation.

4.2 Theory

The Fraunhofer diffraction is given by the fourier transform

Uf (x, y) =
ik

2πf

∫∫
A

dAUin(x′, y′, z)e−
ik
f
(xx′+yy′). (4.1)

Here the input beam Uin(ρ′, φ′, z) is an LGV beam of order `. In the cylindrical

coordinates,

Uin(ρ′, φ′, z) = C`

(√
2ρ′eiφ

′

w

)`

exp

[
− ρ′2

ww0

e−iθ(z) + ik(z − z0)− i(`+ 1)θ(z)

]
, (4.2)

where the primed quantities are in the aperture plane, and the unprimed quantities are in

the observation plane. C` is a consant. z0 is the position of the waist,

θ(z) = tan−1((z − zo)/zR), and zR is the Rayleigh range.

C` along with exp[ik(z − z0)− i(`+ 1)θ(z)] can be absorbed into C ′` as they do not

depend on ρ′ or φ′ , thus

Uin(ρ′, φ′, z) = C ′`

(√
2ρ′eiφ

′

w

)`

exp

[
− ρ′2

ww0

e−iθ(z)
]
. (4.3)
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For LGV beam diffraction the above diffraction integral in cylindrical coordiantes is

U `
f (ρ, φ) = C ′`

∫∫
A

dA

(√
2ρ′eiφ

′

w

)`

× exp

[
−ik
f
ρρ′ cos(φ− φ′)− ρ′2

ww0

e−iθ(z)
]
. (4.4)

Figure 4.2: The left polygon shows the coordinate system and the parameters R, h, and
the variable φ used in the calculations. The figure on the right shows a slice of a isosceles
triangle created with the edge of the polygon and the two segments of length R from the
center of the polygon to its vertices.

To find the area of integration A for the n sided regular polygon, let the angle

subtended by the line segment connecting two adjacent vertices and the center be

φk =
2π

n
k, where k = 0, 1, 2, · · · (n− 1) and ρmax(φ

′) =
h

cos(φ′ − φk+ 1
2
)

=
R cos(π/n)

cos(φ′ − φk+ 1
2
)

is

the length of the segment connecting the center to the edge of the polygon, it has a

maximum value of R, and a minimum value of h.

The integral U `
f (ρ, φ) can be written as summation of the integrals over the isosceles

triangles created by the edge of the polygon and the two segments R from the center of the

polygon as shown in Figure 4.2. Thus,

U `
f (ρ, φ) = C ′`

n−1∑
k=0

∫ φk+1

φk

dφ′ei`φ
′
∫ ρmax(φ′)

0

ρ′dρ′

(√
2ρ′

w

)`

× exp

[
−ik
f
ρρ′ cos(φ− φ′)− ρ′2

ww0

e−iθ(z)
]
. (4.5)

To evaluate this integral we will need a series of substitutions. We begin with a
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substitution ψ = φ′ − φk+ 1
2

so that φ′ = ψ + φk+ 1
2
. When φ′ = φk, ψ = φk − φk+ 1

2
. The

angle between φk and φk+1 is 2π
n

, thus the angle between φk and φk+ 1
2

is π
n
. The limits now

vary from −π
n

to π
n
.

Using the substitution and the new limits the integral can be written as,

U `
f (ρ, φ) = C ′`

n−1∑
k=0

∫ π/n

−π/n
dψei`ψe

i`φ
k+1

2

∫ ρmax(φ′)

0

ρ′`+1dρ′

(√
2

w

)`

× exp

[
−ik
f
ρρ′ cos(ψ + φk+ 1

2
− φ)− ρ′2

ww0

e−iθ(z)
]
. (4.6)

Next, we make the substitution A =
e−iθ

ww0

and B =
kρ

f
cos
(
ψ + φk+ 1

2
− φ
)

. The

integral can be simplified to

U `
f (ρ, φ) = C ′`

n−1∑
k=0

∫ π/n

−π/n
dψei`ψe

i`φ
k+1

2 e−
B2

4A

∫ ρmax(φ′)

0

ρ′`+1dρ′

(√
2

w

)`

× exp

[
−A

(
ρ′ +

iB

2A

)2
]
. (4.7)

Now to evaluate the ρ′ part of the integral, write U `
f (ρ, φ) as

U `
f (ρ, φ) = C ′`

n−1∑
k=0

(√
2

w

)` ∫ π/n

−π/n
dψei`ψe

i`φ
k+1

2 e−
B2

4A × I(ρ, φ, ψ), (4.8)

where,

I(ρ, φ, ψ) =

∫ ρmax(φ′)

0

ρ′`+1dρ′exp

[
−A

(
ρ′ +

iB

2A

)2
]
. (4.9)

I(ρ, φ, ψ) can be rewritten by making the substitution X =
√
A

(
ρ′ +

iB

2A

)
and using the

binomial expansion (x+ y)n =
∑n

k=0C
n
k x

kyn−k. This changes the limits of integration to
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X0 =
iB

2
√
A

and Xmax =

√
Ah

cosψ
+

iB

2
√
A

. The integral now has the form

I(ρ, φ, ψ) =
1√
A

`+1∑
m=0

C`+1
m

(
−iB

2

)`+1−m(
1

A

)`+1−m(
1√
A

)m ∫ Xmax

X0

Xme−X
2

dX. (4.10)

Using this expression for I(ρ, φ, ψ) and absorbing the constants into C ′` we obtain,

U `
f (ρ, φ) = C ′`

n−1∑
k=0

(√
2

w

)`

e
i`φ

k+1
2

(
1√
A

) `+1∑
m=0

C`+1
m

(
−i√
A

)`+1−m ∫ π/n

−π/n
dψei`ψGIm, (4.11)

where,

GIm =

∫ Xmax

X0

Xme−X
2

dX. (4.12)

To evaluate GIm, we use the following Gaussian integrals:

∫
x2r+1ϕ(x)dx = −ϕ(x)

r∑
j=0

(2r)!!

(2j)!!
x2j + c, (4.13)

∫
x2r+2ϕ(x)dx = −ϕ(x)

r∑
j=0

(2r + 1)!!

(2j + 1)!!
x2j+1 + (2r + 1)!!Φ(x) + c. (4.14)

Here, ϕ(x) =
e−

x2

2

√
2π

, the cumulative distribution Φ(x) = 1
2

(
1 + erf

(
x√
2

))
, and c is the

constant of integration in these indefinite integrals [30].

We can now write ϕ(
√

2X) =
e−X

2

√
2π

and evaluate GIm. If m = 2r + 1, then

GIodd =

[
−e
−X2

2r+1

r∑
j=0

2j
(2r)!!

(2j)!!
X2j

]Xmax
X0

, (4.15)
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and if m = 2r + 2, then

GIeven =

[
−e
−X2

2r+1

r∑
j=0

2j
(2r + 1)!!

(2j + 1)!!
X2j+1 +

√
2π(2r + 1)!!Φ(

√
2X)

]Xmax
X0

, (4.16)

where Φ(
√

2X) = 1
2
(1 + erf(X)). Knowing the expression for GIm, we now have a suitable

expression for the numerical evaluation of the diffracted field, U `
f (ρ, φ).

When recalculating the indefinite form of the integral GIm symbolically in Mathematica

it resulted in an expression involving the upper incomplete Gamma function,

∫
Xme−X

2

dX = −1

2
Xm+1(X2)−

m+1
2 Γ

(
m+ 1

2
, X2

)
+ c. (4.17)

The uppper incomplete Gamma function is an integral, but Mathematica does not

evaluate this integral, instead it uses a precalculated table, thus considerably speeding up

the numerical evaluation of the diffracted field; this speedup in most noticeable for higher

order LGV beams.

4.3 Experiment

To study the diffraction of LGV beams by polygons we needed polygons that were of

various sizes ranging form 50µm to about 400µm. The first attempt was made by using

razor blades as edges of the polygons. This method was viable for lower order polygons,

like triangles (n = 3), sqaures (n = 4) and pentagons (n = 5), but creating symmetric

polygons of higher orders using razor blades became increasingly difficult.

There was a need to create polygonal apertures of various sizes. Using electron beam

lithography these polygons were etched onto a glass plate that was coated with a thin layer

of chromium, creating polygons inscribed inside a circle of diameter 50µm to 400µm. This
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Figure 4.3: A triangular aperture made with razor blades.

glass plate was designed by Dr. Rob Sleezer and was fabricated by Advance Reproductions,

an e-beam lithography company in Andover, MA.

The LGV beams produced using the method described in Chapter 1 was used in this

experiment. Here is a summary of the method. The He:Ne laser cavity was used to produce

HG beams. A maximum order of 4 was produced by introducing cross fibers that created a

loss in the cavity. The HG modes were passed through an astigmatic mode converter, and

LGV beams were produced. With a maximum order HG04 mode, an LGV beam of order

` = 4 could be produced using this method. We also needed higher order LGV beams.

Figure 4.4: Blazed fork grating used to create ` = 10 LGV beam.
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To create higher order LGV beams, a reflective phase only spatial light modulator

(SLM) was used. Collimated HG00 mode from a He:Ne laser was incident on the SLM.

Having a blazed fork gratting pattern similar to that shown in Figure 4.4 on the SLM, the

HG00 mode was converted to an LGV beam. These modes were created with the help of

Sean Nomoto, who is well versed with the use of an SLM. The pattern shown in Figure 4.4

was used to create an LGV beam of order ` = 10.

Figure 4.5: A schematic diagram of the setup used to covert HG00 to LGV beams and study
the diffraction of the LGV beams once created. A collimator is used to collimate the incident
HG00 mode. Lens L1 is used to create a waist. The aperture, lens L2 and the CCD camera
are in a 2f arrangement to study the far-field diffraction of LGV beams.

A schematic diagram of the experimental set up is shown in Figure 4.5. As the fork

pattern can create both ±` LGV beams, a blazed fork grating was used to redirect most of

the intensity towards +` LGV beams.

The LGV beams produced in the SLM were then passed though lens L1 to create a

waist. Changing the lens L1 with lens of different focal lengths, and varying its position we

can create waists of different sizes. Lens with focal lengths from 35 cm to 75 cm were used
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to create waists from 150µm to 400µm. As we used a collimated incident beam, the

position of the waist produced with these different lens were close to the focal lengths of

the lens, but a CCD camera was used to find the position of these waists experimentally.

The aperture, and the CCD camera were a distance f from lens L2 of focal length f , in

a 2− f arrangement, as described in Chapter 1. These three elements, the aperture, the

lens L2, and the CCD camera constitute the detector block. The detector block was moved

as a single unit, without changing the distance between the elements, to any position along

the beam axis where the diffraction due to the aperture was studied.

The beam spot size w is the radius of a circle on the maximum intensity area of the

LGV beam as shown in Figure 4.6.

Figure 4.6: The radius w of the LGV beam of order `, where w0 is the size of the fundamental
mode.

Figure 4.7 shows how the aperture size is varied with respect to the waist size. The top

row shows a/w = 1 for a triangle, square and a pentagon. The radius of the circle in which

the polygon is inscribed is a, and the waist radius is w. The bottom row shows how the

ratio a/w is changed by keeping the same aperture size, but by varying the beam size.

As the apertures were on a glass plate coated with a thin layer of chrome, this caused a

light bleed through the glass plate in the plane of the aperture, when the beam spot size

was larger than the aperture. This resulted in the input beam passing through the glass

plate and being seen in the diffraction image superimposed on the diffraction pattern. As a
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Figure 4.7: Top row shows triangle, square, and pentagon with a/w = 1. The bottom row
shows a square with a/w = 2, 1.25, 1, 0.8

result of which the diffraction pattern could not be discerned. It is for this reason we

stayed with a/w ≥ 1 in this study.

The polygonal apertures with n = 3− 11 were placed at the waist of the LGV beam

and diffraction for ` = 1− 12 were observed.

4.4 Results and discussions

We look at the smaller order polygons first before moving on to the higher order polygons.

Figure 4.8 shows the diffraction pattern produced by an equilateral triangle for LGV beams

of order ` = 1− 6. The first major difference to note is that this being an odd n−polygon

the diffraction pattern shows n−fold symmetry when diffracted by LGV beams, that is the

diffraction pattern is triangular shape, though rotated by 30◦ which is half of the angle

between the edges. This is unlike the 2n−fold symmetry we see when a plane wave is

diffracted by an odd n−polygon.

The number of maxima on the edge of the diffracted pattern is `+ 1. The center of the

diffracted pattern is dark except for the multiple of 3 order LGV beam. An examination of
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Figure 4.8: Diffraction images of various ` order LGV beams by a triangular aperture.
The top row shows the experimentally obtained patterns, and the bottom row shows the
theoretically calculated pattern. The experimental pattern are colored, and the theoretical
patterns are black and white.

the phase over the edges is essential in understanding this phenomenon. The phase of the

LGV beam varies over 6π for a ` = 3 LGV beam. When a ` = 3 LGV beam is incident on

an equilateral triangle, there is a phase change of 2π over each edge. Any three equidistant

points over the edges of the triangle, i.e one point on each edge and all three can make an

equilateral triangle when connected, have the same phase, causing the diffracted light to

constructively interfere in the center of the diffraction pattern. This can be seen for ` = 6

as well, and indeed for all multiples of 3.

Next, we look at the diffraction pattern of ` = 4 for a triangle. The outer edges have 5

maxima along the edge, but on the inside of this triangular ring of maxima, we can see the

pattern of ` = 1. This is true for all ` > n. In the diffraction patterns of ` = 5 and ` = 6 we

can see the patterns of ` = 2, and ` = 3 inside the first maxima edge boundary. The

diffraction pattern is distinct for all ` ≤ n. For ` > n the diffraction pattern has a

repeating structure. The diffraction patterns are analogues to the Matryoshka dolls, a
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Russian nesting doll, where a bigger doll, has multiple smaller dolls within it.

Figure 4.9: Diffraction patterns for a square (4−gon) for ` = 1 − 8. The top row shows
the experimentally obtained patterns, and just below them is the theoretically calculated
pattern. The experimental pattern are colored, and the theoretical patterns are black and
white.

This nesting diffraction pattern is not unique to triangles, but is exhibited in all

polygons. The nesting starts to appear when the order of the LGV beam ` > n. This can

be seen in Figure 4.9 for a square.

The diffraction pattern for a pentagon is seen in the top half of Figure 4.10. The bottom

half of Figure 4.10, shows the central bright spot in the diffraction patterns when ` = n.

The diffraction of LGV beams by polygons creates an optical lattice. This lattice is

more prominent for lower order polygons. As we reach n ≥ 5 the lattice slowly starts

becoming concentric rings, similar to the pattern of a circular aperture which has been

described in chapter 3. LGV beam diffraction of lower order polygons could be used to
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create optical traps.

Figure 4.10: The top half shows the experimental(in color), and the theoretical pat-
terns(black and white) of an LGV beam of orders ` = 1− 5 when diffracted by a pentagon.
The bottom half shows the central bright sopt in the diffraction patterns when ` = n.

When the aperture is not placed at the waist, there is a quadratic variation of the phase

of the LGV beam. This causes a shear in the diffraction pattern when diffracted with

polygons, similar to the shear caused when the LGV beams were diffracted with a slit as

seen in chapter 2. Figure 4.11 shows the diffraction pattern and the shear that is

experienced when a triangle and a square is diffracted by LGV beams at positions away

from the waist along the beam propagation direction at Rayleigh range z = ±zR, and half

Rayleigh range z = ±0.5zR. Maximum phasefront curvature of the beam occurs at the

Rayleigh range, and we observe the maximum shear in the diffraction pattern at Rayleigh
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Figure 4.11: Experimental(color) and theoretical(black and white) shear patterns observed
in the diffraction of LGV beam of order ` = 1 by a triangular aperture on the top row, and
by a square aperture in the bottom row as z varies.

range. Figure 4.12 shows the shear in the diffraction patterns of LGV beam of order ` = 1

by a triangular aperture. In these images we can see the shear in the bright spots of the

diffraction pattern at the Rayleigh range z = zR, when compared to the pattern at the

waist z = 0.

Shear patterns observed in the diffraction of LGV beam of order ` = 2 by a triangular

aperture on the top row, and by a square aperture in the bottom row as z varies are shown

in Figure 4.13. The amount of shear is larger for ` = 2 than that for ` = 1. This effect is

more prominent for larger ` as seen in Figure 4.14, where the diffraction patterns of LGV

beams of order ` = 1− 4 when diffracted by a square is shown at the waist, one Rayleigh

range after the waist, and one Rayleigh range before the waist.

In conclusion, Diffraction of LGV beams by a regular polygon results in a diffraction
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Figure 4.12: Experimental(color, top row) and theoretical(black and white, bottom row)
shear patterns observed in the diffraction of LGV beam of order ` = 1 by a triangular
aperture as z varies.

Figure 4.13: Experimental(color) and theoretical(black and white) shear patterns observed
in the diffraction of LGV beam of order ` = 2 by a triangular aperture on the top row, and
by a square aperture in the bottom row as z varies.
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Figure 4.14: Experimental shear patterns observed in the diffraction of LGV beam of order
` = 1− 4 by a square aperture as z varies.

intensity pattern that is different from that made by the diffraction of a plane wave by

regular polygons. The diffraction pattern of odd n−polygon has n−fold symmetry, unlike

the 2n−fold symmetry seen when diffracted by a plane wave. The center is bright when `

is a multiple of n. The diffraction pattern is distinct for all ` ≤ n. For ` > n the diffraction

patterns has a repeating structure, similar to the russian Matryoshka nesting dolls. The

shear in the diffraction pattern when the polygonal aperture is not at the waist is due to

the curvature of the phasefront. The shear is more for higher `.
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Chapter 5

Conclusion

Diffraction plays an important role when there is an interaction of light and matter. The

LGV beams carrying orbital angular momentum, have great potential for applications in

many optical and telecommunication devices [12, 37]. The knowledge of the interaction of

LGV beams with simple apertures will help advance the understanding of LGV beams and

the creation of such devices. The diffraction of Laguerre Gauss Vortex (LGV) beam shows

many novel features, that depend on the orbital angular momentum carried by the beam,

the position of the aperture in the beam, and the ratio of the size of the aperture to the

beam size. Obviously many of these features were not observed in the diffraction of plane

waves and Hermite-Gaussian beams. We summarize the conclusions of this study, and give

pointers to further research for understanding the optics of LGV beams.

5.1 Summary

The study began with the diffraction of LGV beams by a slit. It was found that for a

planar phase front, i.e the aperture at the waist of the beam, the central diffraction

maximum consists of `+ 1 fringes, which are symmetrically located about the center of the

pattern. Along the direction of propagation, at positions other than the waist, the phase

front of the beam is curved. The angle of shear in the diffraction pattern depends on the

sign of the radius of curvature R(z) and the sign of the topological charge `. The amount

of shear in the diffraction pattern depends on the position of the aperture, with maximum

shear at Rayleigh range. The sense of shear gives the sign of `. It was also found that as
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the slit is moved farther away from the waist (ζ � 1), the diffraction pattern evolves into a

pattern dominated by two peaks irrespective of `.

The diffraction of the LGV beam by a circular aperture showed some new properties.

The minima of the diffraction of LGV beams of order ` depends on the zeros of `+ 1 order

Bessel functions. The center of the diffraction pattern has a minimum for ` ≥ 1. Being

circularly symmetric, the diffraction pattern does not depend on the sign of the topological

charge. As the radius of the aperture becomes large compared with the waist spot size, the

distance of the zeros of the diffraction pattern, from the beam axis increases. As the order

of the LGV beam increases, the rate of change of the position of the zeros with respect to

a/w from the beam axis decreases. The curvature of the beam also affects the diffraction

pattern. The effect becomes more pronounced for larger a/w, and for lower `. When the

beam axis and the aperture axis are laterally separated, the central minimum of the

diffraction pattern splits into a number of minina equal to the order of the LGV beam

used. As the separation between the beam axis and the aperture axis increases, the

separation of the minima increases as well.

The diffraction of LGV beams due to symmetric polygons leads to optical lattices. The

diffraction pattern of odd n−polygon has n−fold symmetry, unlike the 2n−fold symmetry

seen, when diffracted by a plane wave. The center is bright when ` is a multiple of n. The

diffraction pattern is distinct for all ` ≤ n. For ` > n the diffraction patterns has a

repeating structure, similar to the russian Matryoshka nesting dolls.
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5.2 Future Work

We have seen the effects of lateral misalignment of a circular aperture in Chapter 3. The

effect of an angular misalignment, i.e a tilt must still be explored. For tilts θ ≤ 15◦ there

does not appear to be a significant difference in the diffraction pattern, but this needs

further investigation and modeling.

Figure 5.1: Diffraction pattern of LGV beams due to a circular aperture tilted at θ = 15◦

As we saw in Chapter 4, diffraction of LGV beams by a polygon results in optical

lattices, it is worthwhile to study the diffraction of periodic arrangement of apertures. This

could result in nested periodic lattices or it may turn out to be highly dependent on

symmetry of the arrangement of the apertures. This periodic arrangement can be done in

two fundamental ways. The first way would be a periodic arrangement of apertures of

similar sizes without overlap, for example a square on the vertices of a larger square, or

larger triangle. Further study is required for the diffraction by overlapping apertures,

either partially or completely nested, like the Sierpinski triangles [38].

Diffraction of LGV beams by soft apertures, apertures that do not have a well defined

boundary but the transmission co-efficient of the edge gradually changes from 1 to 0 could

be very useful in studying the effect of atmospheric turbulence with dust particles on LGV

beams, as LGV beams are now under investigation to develop a better method for line of

sight data transmission [39, 40]. This will need a closer look at the diffraction integral, as
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the boundary conditions now are different and the transmission is no longer a step at the

aperture boundary.

Diffraction of sub-wavelength apertures by beams carrying orbital angular momentum

is worth investigating, not only because of the potential applications in telecommunication,

but would also for discovering potentially new fundamental light matter interactions. It is

proposed that the transmission through a slit array in an optically thick metal film is due

to the excitation of ‘coupled’ modes on both the entrance and exit surfaces of the film and

excitation of wave guide resonances within the slits themselves [41]. It would be interesting

to see how the presence of orbital angular momentum affects these metal film array of

apertures.

Intra-cavity generation of hight power LGV beams has been achieved, by the use of

Q-plates but with very low effecieny [42], A pump beam of 100W of the fundamental HG

mode was used to create 1W of LG beam. Creating high efficiency and high power

intra-cavity LGV beams has not yet been achieved. Almost all methods used till date are

lossy, or create a beam which is the superposition of ±` [43]. Creating miniature laser

cavities that can create LG beams in a solid state material would be of interest in the

telecommunication industry, as LGV beams are being studied as a replacement for

gaussian beams in fibers [37]. Analogous to the nanolasers, where resonance in surface

plasmons was used to create laser beams, it would be interesting to explore the idea of

using surface plasmons for intra-cavity generation LGV beams [44, 45].

The orbital angular momentum in LGV beams can transfer angular momentum to an

object, and can thus create a torque, this torque can be used in the study of single atom

thick materials [46]. There are still many unexplored avenues in the study of LGV beams,

68



and its diffraction properties, which no doubt will continue to attract researchers for many

years to come.
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Appendix A

List of Publications

1. A. Ambuj, Hsiao harng Shiau, Michael Lucini, Reeta Vyas, and Surendra Singh.

Effect of quadratic radial variation of phase on single slit diffraction of laguerre-gauss

vortex beams. Journal of Modern Optics, 59(14):1232-1242, 2012.

2. A. Ambuj, R. Vyas, and S. Singh. Diffraction of orbital angular momentum carrying

optical beams by a circular aperture. Optics Letters, 39(19):5475-5478, Oct 2014.
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