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ABSTRACT

Gas Electron Multiplier (GEM) is a gaseous detector used in particle detection and is

known for its high rate capability. Ever since its invention in 1997, GEM was applied in

many areas and recently has been proposed to be installed in the CMS high η regions for

upgrade at LHC, CERN. A complete understanding of the working and gain behavior does

not exist. GEM gain is influenced by charging up and this has been variedly interpreted

in literature lacking consensus. I have attempted in this work through simulations and

measurements to achieve a better understanding of single GEM gain and how it is affected by

various factors. Specific experimental methods which evolved with subsequent measurements

were employed to systematically study the charging up effect. Information from simulations

was applied to characterize measurements thereby enabling the development of a model for

charging up. Conductivity mechanism of the dielectric used in GEM was analyzed and the

resistivity measured. Gain free of charging up effects was measured and this is appropriate

for comparison with simulations.
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1 Information presented in this thesis is based on the work that is being published [1].
Overlap of material is hence possible and citation has not been provided at any instance.
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1 INTRODUCTION

Gas Electron Multiplier (GEM) is a detector employed in High Energy Physics for particle

detection and has been invented in 1997 by Fabio Sauli at CERN [2]. GEM operation is

based on avalanche multiplication in a gas medium effectively achieving amplification of the

originally ionized charges. GEMs belong to a class of detectors namely MicroPattern Gas

Detectors. These are the newer generation of detectors.

Objective — This work was devoted to understand the gain of a CERN standard single

GEM through simulation and experiments. Penning effect has been included to make the

simulations accurate. GEM simulations have been performed in the parameter space with a

special emphasis on obtaining the penning parameter by fitting with the experimental data.

Experimental measurements have been taken for this purpose. Influence of charging up on

gain was studied through systematic measurements. Polyimide conductivity mechanism was

experimentally studied in detail.

1.1 Topology of the research work

The research work was performed at CERN as a part of the collaboration ‘GEMs for CMS,’

constituted to propose the installation of GEMs for the high eta upgrade of Compact Muon

Solenoid (CMS) experiment, which in turn is one of the major experiments at the Large

Hadron Collider (LHC) located at the European Center for Nuclear Research (CERN). A

brief description of each element of the hierarchal structure has been provided below to

provide the context and topology of the research work that was performed. This work is

limited to a single GEM which is the basic version of a GEM. GEMs that were proposed for

CMS application are three stage versions of a single GEM, termed as ‘triple-GEMs.’

CERN CERN is among the best laboratories of the world engaged in scientific research of

highest order. Work at CERN is directly or indirectly related to fundamental physics and

1



constant efforts are directed to unravel the mysteries of nature by creating conditions where

the building blocks of nature and their interactions can be observed. It houses the biggest

particle accelerator LHC.

LHC LHC is the world’s largest particle accelerator located at CERN. It was designed

to operate at a center of mass energy of 14 TeV and a luminosity of 1034 cm−2.s−1. It is

a 27 km long circular tunnel passing through the Swiss and French borders and is located

underground at an average depth of 100 m. Nuclei are accelerated over a series of steps

through electric fields in order to reach speeds close to the speed of light. Directional control

over the nucleons is obtained by applying magnetic fields generated by dipole magnets located

along the tunnel. Opposing particle beams are accelerated to prepare them for collision at

specific points called as the interaction points. At these locations where particle collisions

occur, the incident particles are shattered giving rise to a myriad of subatomic particles.

Since microscopes cannot be used to observe such particles whose sizes are well below the

wavelength of light, specific detectors are designed for this purpose. Below is a list of such

detector experiments.

• A Toroidal LHC Apparatus (ATLAS)

• Compact Muon Solenoid (CMS)

• A Large Ion Collider Experiment (ALICE)

• Large Hadron Collider beauty (LHCb)

• TOTal Elastic and diffractive cross section Measurement

• Large Hadron Collider forward (LHCf)

CMS Compact Muon Solenoid is one of the two general purpose detectors at CERN (the

other being ATLAS) with ‘discovery of Higgs boson’ being one of the principal objectives

2



Figure 1.1: Left: Schematic of the LHC [3], Right: Schematic of CMS [4]

that can help understand the electroweak symmetry breaking. Incidentally, the discovery

of a particle with properties similar to a Higgs boson was recently confirmed by CERN. A

solid iron code magnet is used to supply the magnetic field which is of the order 4T. In

order to have a comprehensive evidence for the discovery of Higgs particle, the results from

CMS are expected to be consistent with the results from ATLAS. CMS has various detectors

arranged in layers similar to cylindrical onion structure with each layer having a different

functionality. The inner regions of the detector under the influence of the magnetic field are

used to track charged particles. Layers in between form the calorimeter to detect photons and

hadrons. Outermost layers are designed for the detection of muons, particles which escape

detection and decay in the prior regions. CMS is a hermetic detector meaning that it can

detect particles leaving in every direction except the ones that travel inside the beam pipe.

For a more comprehensive understanding of CMS refer to the technical design report [5].

Gas Electron Multipliers for CMS As a part of CMS is ’GEMs for CMS’, a research

collaboration which has proposed GEM detectors to be installed in specific regions of the

CMS experiment which are prone to high particle rates. The proposal comes in view of the

high rate capability and radiation resistance of GEMs. My research work at CERN was

performed as a part of this collaboration.

3



1.2 Context of the project in relation to CMS

LHC will stop operating for the the long shutdown (LS2) in the year 2013 for maintenance

and up-gradation. Prior to the shutdown LHC operates with a beam energy of 4 TeV, post

shutdown it will eventually operate with a beam energy of 7 TeV. During this shutdown it has

been proposed that the high pseudo-rapidity (η) regions of the CMS should be instrumented

with triple GEMs. Pseudo-rapidity has been defined according to eq 1.1. Where θ the angle

made by the momentum vector of the high energy particle with the beam axis.

η = −ln
[
tan

(
θ

2

)]
(1.1)

Currently the regions of CMS with |η| > 1.6 are vacant in spite of the original proposal to

instrument them with Resistive Plate Chambers (RPC). Post LS2 the conditions are expected

to be hostile for the detectors due to a higher luminosity especially in the high η region.

Figure 1.2: Left: Transverse view of the CMS muon trigger and tracking sections. Right:CMS
Endcap YE1 disk with high η region (nose) [5]

Fig 1.3 shows the regions of the CMS end caps where the GEM detectors will be installed.

Presently the muon detection in CMS is achieved through Cathode Strip Chambers (CSC)

4



Figure 1.3: CMS endcap structures for the GE1/1 chamber (left) which is mounted on the
YE1 nose and GE2/1 chamber (right) which will be mounted behind the YE1 [5]

and Resistive Plate Chambers (RPC) as seen in fig 1.2. Drift Tubes (DT) are used in the low

eta regions where the neutron background is extremely small. While RPCs are designed to

operate under rates of the order 100 kHz/cm2, CSCs are employed in the regions with higher

rates. However, CSCs are bound to be deteriorate over time due to the intense operating

rates expected. This will pose a problem to the fundamental design philosophy of CMS which

is to have a redundant muon system especially in the regions 1.6 < |η| < 2.4

In view of the magnitude of GEM’s usage it is imperative to develop a complete under-

standing of the physics of GEM gain and operation. This understanding can be developed

through simulations and experiments which directly offer insights into the physical processes

at work.

1.3 Gas detectors

GEMs belong to the class of detectors called gas detectors which work on the principle of

avalanche multiplication in gas medium under the influence of electric fields.

When a high energy particle enters a gas medium, it deposits energy through interaction

with the atoms and molecules of the gas. The Bethe Bloch equation describes the process

of energy loss of an incoming charged high energy particle which occurs due to the particle’s

5



Figure 1.4: Charge creation and multiplication inside a GEM detector. The amplification
stage lies between drift and induction gaps.

electromagnetic interaction with the gas atoms [6]. If an Xray photon of energy E is used

as the incident ionizing radiation for a gas medium with work function W , the number of

charge pairs created is given by the following eq 1.2. This process is subject to statistical

fluctuations and hence has a Poissonian distribution with the mean and variance described

in eq 1.2.

µ(n) =
Eγ
Wgas

; σ(n) =
√
F.µ(n) (1.2)

Where ‘F’ is the fano factor, which arises because the nature of ionizations is not purely

statistical [7]. Individual cases of charge creation cannot be treated independently because

of the existence of energy levels. The existence of Fano factor improves the energy resolution

of a particle detector. Fano factor for Ar is ∼ 0.2.

The number of primary charges created is too small to be detected by the electronics. An

amplification stage (see fig 1.4) is introduced to achieve charge multiplication. The factor

by which the initial number of charges are multiplied is termed as gain ‘G.’ These charges

eventually drift towards the readout plane and the signal is read by the electronics.

The increase in the number of electrons brought by the amplification depends on the
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Townsend coefficient (α) and is proportional to the initial number of electrons and the in-

cremental distance as shown in eq 1.3.

dN = Nαdx (1.3)

To estimate the final number of electrons, the above equation is integrated over the entire

path where the field concentration is high.

N = N0 exp
∫
αdx (1.4)

For a more comprehensive theoretical treatment of gas detectors consult [8].

The following paragraphs provide a brief description of the evolution of the gas detectors.

1.3.1 Proportional Counter (PC)

Proportional counter consists of an anode wire with a high voltage supply surrounded by a

cathode cylinder. Electrons created from the ionizations drift towards the anode under the

influence of electric fields. Near the regions close to the wire, high fields cause a Townsend

avalanche giving rise to a signal. This signal energy will be proportional to the energy of

incident ionizing radiation when the detector is operated in the proportional region as shown

in fig 1.5 When the voltage of anode wire is appropriately chosen it works in a proportional

region. For low voltages, there is no amplification. For higher voltages, the space charge effect

becomes dominant. Production of electron ion pairs causes the accumulation of slow moving

ions to form a positive ion cloud. This distorts the electric field and results in a deviation

from proportionality. Even higher voltages result in a discharge like phenomenon which is

independent of the incident radiation’s energy. This region is called the Geiger-Muller region.
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Figure 1.5: Left: Schematic of a PC; Right: Operating regions of gaseous detectors [9]

1.3.2 Multi Wire Proportional Chamber (MWPC)

These detectors are proportional counters with position sensing capability. MWPC was

invented by Georges Charpak and collaborators in 1968 [10]. The electric fields close to the

wire are extremely high and cause avalanche breakdown when a charge ventures.

Anode wires are parallel resulting in a field configuration as shown. All anode wires

are maintained at a same potential and are sandwiched between cathode planes. Charges

created by the ionization particle, drift along the field lines to move closer to the anode wires.

Avalanche generation occurs at regions very close to the wire. The position of the incident

particle can be identified by locating the wire on which the signal has been induced. Signal will

be highest on the wire which is nearest to the position of the ionizing radiation. The spacing

between the wires affects the position resolution. There exists a capacitive coupling between

the wires which induces a negative signal. The positive ions created from the avalanche

generation move towards the anode wires compensating the signal from capacitive coupling.
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Figure 1.6: Left: Schematic of a MWPC; Right: Cathode plane segmentation for better
position sensing [9]

1.3.3 Drift Chamber (DC)

A drift chamber is a modification of MWPC with an enhanced spatial resolution. Charge

created by incoming ionization takes a finite amount of time to drift towards the anode wire

and induce the signal through an avalanche. This transit time of the charge is dependent

on its initial position. Using this timing information, the position can be evaluated. The

wire anode spacing is higher than in a MWPC. They have achievable position resolutions of

∼ 100 µm

1.3.4 Micro Strip Gas Chambers

MSGCs were a development of wire chambers to overcome the limitation on wire gap through

microelectronics fabrication techniques. Strips of metal deposited on a substrate act as the

anode. The cathode plane is located around 60 µm from the anode strips. This enables

the positive ions to reach the cathode much faster thereby avoiding the formation of charge

clouds which lead to a space charge effect thereby enhancing rate capability. Strip gaps of

around 200 µm can be created which result in a finer resolution.
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Figure 1.7: Ionization track in a drift chamber[11]

Problems with MSGCs have been identified due to discharge-induced damages of the

detector. High voltage working conditions and high rates of operation cause discharges which

completely render the anode strips unusable. Example of this can be seen in the fig 1.8.

Figure 1.8: Discharge induced damage on a strip of MSGC [12]
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1.3.5 Micro Pattern Gas Detectors (MPGD)

Development of MPGDs was a solution for most of the aforementioned problems. Em-

ployment of microelectronics in the fabrication of detectors has given rise to a number of

possibilities in the designs which were not practical before. Thin anode strips vulnerable

to discharges are replaced by thicker metal structures which can resist discharges better.

They also have a higher rate capability and better reduction of photon feedback. Usage

of polyimide and glass substrates, employment of photo-lithographic techniques to etch the

substrates and employment of printed circuit boards have contributed to the development of

MPGDs. Listed below are some of the current technologies of MPGD-

Figure 1.9: Current technologies of MPGDs [12]

Single GEM Single GEM is a planar dielectric clad in metal with holes etched through

the metals and the dielectric. It is an amplification structure which is independent of the

readout. Detailed study of the GEM structure and working will be dealt along this thesis.

Multiple layers of GEM can give rise to further amplification. The dielectric used is a

polyimide with a thickness of the order 50 µm. Copper layer of 5 µm thickness is deposited on

either surface. Through photo-lithography and etching techniques holes are etched through
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the layers of the GEM. Due to limitations of chemical etching techniques and the size of the

holes to be etched, a uniform cylindrical hole cannot be achieved.

Triple GEM Triple GEM has three single GEMs cascaded to give rise to an enhanced

amplification. This is the common model used for practical applications. A separate HV

divider circuit enables the voltage distribution to the GEM metals of various stages.

NS2 This is a self stretching technology developed in the CERN lab by Rui Oliveria [13].

In NS2 technique the usage of a frame and gluing are avoided. Foil is fabricated with a

pattern of holes on the edges. These holes can directly be placed into the detector unit

fitting into the alignment pins. Stretching is then performed mechanically. NS2 triple GEM

with 30 mm× 30 mm dimensions has been tested in the RD-51 laboratory.
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2 GEM WORKING

2.1 Structure of a single GEM

GEM comprises a thin sheet of dielectric material with metal coating on either side. This

structure has an array of staggered hexagonal holes through the two metals and the dielec-

tric fabricated via an etching technique [2]. Limitations in the etching procedures and the

geometric constraints result in a bi-conical hole. Fig 2.1 gives a view of GEM.

Figure 2.1: Left: Microscopic image of a GEM, Right: Cross sectional view showing the metal
layers and polyimide. The field lines are shown to represent the concentration of electric field
inside the hole and near the metal edges [14]. The biconical shape of GEM hole can also be
seen.

Figure 2.2: Schematic of a single GEM [14]
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Fig 2.2 describes the schematic of a GEM under operation. The topmost plane is the drift

plane which is maintained at a potential VD. GEM is located below the drift plane where VT

and VB are the potentials at which the top and bottom metals are maintained respectively.

Readout is performed by metal strips on a printed circuit board which is located below

the GEM (see fig 1.4). The gaps above and below GEM plane are drift and induction gaps

respectively. Current on the drift plane is ID, top metal is IT, bottom metal is IB and readout

plane is IS (signal current). For all measurements performed in the context of this thesis,

only the signal current has been measured.

Parameter Value
Area (cm2) 10x10
Metal thickness (µm) 5
Polyimide thickness (µm) 50
Out-dia (µm) 70
Inner-dia (µm) 50
Pitch (µm) 140
Drift gap (mm) 3
Induction gap (mm) 2

Table 2.1: Specifications of a CERN standard single GEM

2.2 Operational Parameters

Listed below are some of the parameters of the GEM and other terms frequently used through-

out the thesis.

• Top metal— The metal layer of a GEM to which lower potential is applied and is closer

to the drift plane.

• Bottom metal— The metal layer of a GEM to which higher potential is applied and is

closer to the induction plane.

• Metal thickness— Thickness of the metal surfaces of the GEM.

• GEM hole— Hole from top metal to bottom metal through the dielectric.
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• Out-dia— Diameter of the GEM hole at the entrance and exit hole on the metal surface.

• Inner-dia— Diameter of the GEM hole halfway between entrance and exit holes at the

waist region of the bi-conical section.

• Pitch— Pitch is the distance between the centers of adjacent GEM holes.

• Drift plane, field and gap— Drift plane is the topmost plane of a GEM detector which

is a metal sheet with the lowest potential and acts as a cathode in order to provide the

drift field across itself and the top metal of a GEM. The region enclosed between the

drift plane and top metal is the drift space where the primary charges are produced in

an ionizing track caused by the incident ionizing radiation.

• Induction plane, field and gap— Induction plane is the bottommost plane of a GEM

detector which is a metal plane with the highest potential and acts as the anode in order

to attract the electrons created as a result of avalanche near the GEM hole. Induction

plane is usually maintained at ground potential. The region enclosed between bottom

metal and induction plane is the induction gap.

• Total gain— The total number of electrons created in a GEM per incident primary

charge inclusive of the charges lost by various means.

• Effective gain or gain— The net charges reaching the anode plane in a GEM per incident

primary charge exclusive of losses.

• Optical transparency— Ratio of the total area of holes to the area of metal in a GEM

metal. This ratio determines the degree of ease with which a normally incident electron

can freely pass through the GEM under the absence of any applied fields.

• Primary charge— Charge generated due to ionization caused by the incident radiation.

• Secondary charge— Charge that results from the avalanche multiplication of the pri-

mary charge under the influence of the applied electric field.
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2.3 Electric field

Electric field is applied in a GEM detector for (a) drifting the charges steadily towards the

anode, and (b) supplying charges with energy to cause further ionizations to lead to avalanche

multiplication.

Drift field (ED)- Electric field created in the drift space which causes the primary charges

to move towards the GEM. This field depends on the potential difference between GEM top

metal and the drift plane, and the drift gap.

Amplification field- Inside the GEM hole, the electric field is between 50 and 100 times

the drift field depending on the latter and the applied voltage across the GEM metals. As

a result the field is large enough to cause a rapid gain in the electron energy leading to

avalanche multiplication. This field is dependent on the voltage difference between the top

and bottom GEM metals, and the thickness of the dielectric.

Induction field (EI)- Electric field created in the induction gap which causes the charges

created in the avalanche to move towards anode plane. This field depends on the potential

difference between the anode ground and GEM bottom metal, and the induction gap.

2.4 Gas mixture

GEM works in a gas medium where the electrons accelerating under the influence of electric

field ionize the gas atoms to further create charges forming an avalanche. The standard

operational gas mixture for the GEM is Ar− CO2 mixed in a 70/30 ratio. Although this

is the dominant composition used for this work, various percentages of the standard gases

have been used in our studies. In a purely Ar based medium, avalanche multiplication can

often occur beyond limits. This generates a massive number of charges that rain down the

detector causing sparks. Such sparks can permanently damage the detector and are hence
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undesired. CO2 functions as a quencher gas in this medium. Due to the electro-negativity

of CO2, it attracts the electrons which get attached to the CO2 molecule. This effectively

keeps a check on the size of the avalanche. CO2 also gives rise to penning effect which will

be discussed in a greater detail in section 3.2.

2.5 Avalanche multiplication and amplification

Primary charge drifts towards the GEM top metal under the influence of the drift field.

When the primary charge gains energy rapidly under the influence of the electric fields inside

a GEM hole, its interaction with the gas medium results in an occasional ionization when the

electron attains an energy higher than the ionization potential of the gas mixture. A charge

that is created by a primary charge which is also under the influence of electric field gain

energy as it moves. Similar to a primary charge, it can further create ionizations depending

on its energy. This process continues like a chain reaction as long as the electrons have

energies above the ionization threshold supplied by the electric field. The multiplication of

the number of charges from the initial charge is termed as avalanche multiplication.
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3 THEORY

3.1 Avalanche statistics

Ionizing radiation generates a certain number of primary electrons in the drift gap of the

GEM. This number will be multiplied by the amplification factor G to get the final number of

charges reaching the anode. Due to the statistical nature of the electron multiplication process

the gain has a probability distribution with a mean and variance. Avalanche size is the total

number of electrons generated from the initial charges due to avalanche multiplication. Let us

consider a single electron that gives rise to n electrons due to avalanche multiplication. The

electron can undergo any kind of multiplication giving rise to the final number of electrons.

It may undergo a very large multiplication or not multiply at all. Since the number n is

variable, the most probable outcome will be none and the higher avalanche sizes will be

progressively less probable. The probability to have a certain final number of electrons will

be a normalized exponential distribution with a mean G as shown in eq 3.1.

G(n) =
1

G
e

−n
G (3.1)

Consider the case of 2 electrons to begin with. They undergo avalanche multiplication to

give rise to n electrons eventually. The contribution from each of the two electrons can be

varied. Considering that the first electron gives rise to an avalanche of size x, the second

electron contribution will be n− x. x is an arbitrary number that can be anything between

0 and n. This can be represented through the following equation.

G(n) =
∫ n

0
P (x)× P (n− x)dx (3.2)
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P (x) and P (n − x) are the contributions of the first and second electrons, respectively, to

the avalanche. The values can be substituted and solved in the following manner.

G(n) =
∫ n

0

1

G
e

−x
G

1

G
e

−(n−x)
G dx

G2(n) =
n

G2
e

−n
G (3.3)

In a similar manner the probability distribution for the avalanche size with 3 initial electrons

can be calculated as shown in eq 3.4

G3(n) =
n2

G3
e

−n
G (3.4)

Extrapolating this result to an arbitrary number of primary charges r, we get the following

distribution.

Gr(n) =
nr−1

Gr
e

−n
G (3.5)

The polynomial term dominates the behavior of the curve near n = 0 and causes a

steep rise with higher powers. The exponential term dominates in the higher values of n

suppressing the rise caused by polynomial and eventually brings down to zero. The resulting

distributions are gamma functions. When r in eq 3.5 assumes higher values, the function

takes a Gaussian distribution according to the central limit theorem [15].

3.2 Penning effect

In a gas mixture where an ionizing radiation is incident, the input energy can be utilized in

both ionizations and excitations depending on the interaction cross sections. Ordinarily the

energy from excitations is lost in the form of a radiative or non-radiative transfer. However,

if the excited state of one gas atom is higher than the ionization potential of another gas

present in the mixture, an excited state in the former gas atom, with some probability,

can give rise to an ionization in the latter. This kind of a transfer is called as a ‘Penning
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transfer’ named after Frans Michel Penning [16]. In relation to gas detectors, which work on

the principle of avalanche multiplication inside the gas medium, the penning effect enhances

the multiplication from the usual amount by converting the otherwise lost excitations into

ionizations which release a free electron. This results in an increased gas gain.

The electronic configuration of ground state and excited states of Ar are listed below in

the increasing order of energy.

• Ground state — 1s2 2s2 2p6 3s2 3p6

• 1st excited — 1s2 2s2 2p6 3s2 3p5 4s (< 11.83 eV)

• 2nd excited — 1s2 2s2 2p6 3s2 3p5 4p (13 eV)

• 3rd excited — 1s2 2s2 2p6 3s2 3p5 3d (13.85 eV)

The ionization energy of CO2 (13.77 eV) lies between the 2nd and 3rd excited states of Ar.

The excited atom Ar∗ with an electron in the 3d state causes a penning transfer resulting in

the ionization of a CO2 atom by collision. Excited atom Ar∗ is highly reactive and behaves

similar to an alkali metal due to a single electron present in the outermost shell [17].

Figure 3.1: Excitation levels of Ar atom in comparison with the ionization potential of CO2

Ar∗ + CO2 → Ar + CO+
2 + e− (3.6)
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There are multiple ways in which such a transfer is possible-

Direct transfer The outermost e− in the Ar∗ undergoes a radiative transfer releasing a

photon. This photon is absorbed by the CO2 which gets ionized releasing an electron.

Indirect transfer This process is akin to the Auger emission process. An electron tunnels

from the CO2 and kicks out the electron from the outer shell of Ar∗.

Due to the inclusion of Penning effect, the Townsend coefficient is redefined according to

eq 3.7

αeff = α
(

1 + r
νexc

νion

)
(3.7)

A study on penning transfers in various gas mixtures can be found in [17].

3.3 X-ray

In the real operation of detector, high energy particles such as muons are a source of ionizing

radiation while the measurements in the lab are performed using X-rays as source. Under-

standing the X-ray production mechanism is essential to study the effects it has on the pulse

height spectrum, which will be discussed in section 5.2.

The X-ray tube has a copper target and gives rise to X-ray photons Kα and Kβ with

respective energies of 8.0 keV and 8.9 keV. The mechanism behind the X-ray generation is

depicted in the fig 3.2.

A thermally heated tungsten filament at the cathode emits electrons. A copper target

acts as anode setting up an electric field in which the electrons accelerate. The voltage in

the X-ray tube can be externally adjusted and a setting of 10 kV will impart 10 keV energy

to the electron with which it hits the target. This causes the electrons in the K shell of

Cu to get excited and de-excited emitting radiation in the process (see fig 3.3). When the

de-excitation happens from L shell it is called Kα and from M shell it is called Kβ.

The movement of electrons close to the nuclei causes them to loose energy in the form
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Figure 3.2: Schematic for Xray generation [18]

Figure 3.3: Electron transitions betweens shells of a Cu atom causing Xray generation [19]

of undesired radiation and this is termed as Bremsstrahlung literally meaning ‘breaking

radiation’.

When the X-rays interact with the gas medium of Ar and CO2 they are absorbed by

the Ar atoms where every photon transfers the entire energy to a single electron. Photo

absorption can cause excitations or ionizations. Ionizations contribute to the photo peak of

the Pulse Height Spectrum. The cross section of Argon is at 3.21 eV while it has excitation

levels from K shell at 3.19 eV and 3.2 eV. Hence these transitions during the de-excitation

result in radiations that are lost without contributing to the gain. This contributes to an

escape peak in the pulse height spectrum.
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4 SIMULATION OF GAS GAIN

Monte-Carlo simulations with computer programs and other software packages were per-

formed to understand the performance of a GEM in its parameter space. Although experi-

mental data for GEM has been available, a complete physical understanding of the working

was not achieved. Through electron microscopic tracking, this understanding is more com-

plete due to the inclusion of penning transfer.

4.1 Software

ANSYS R© ANSYS [20] is a commercially available finite element method (FEM) software

that is used to design the geometry and create maps of electric field. Through scripting a

model of GEM was constructed and a unit cell which is a basic repetitive structure. Param-

eters for the ANSYS model are the same as the CERN standard single GEM. The unit cell

also includes drift and induction gaps where charge transport occurs. Second order tetrahe-

dral elements with parabolic faces were used for the calculations. The resulting electric field

maps are stored in .lis files. These maps contain the electric field information at every point

inside the defined GEM geometry.

Magboltz Magboltz [21] is a program which employs Monte-Carlo technique to solve the

electron transport equations in a gas medium. It contains the interaction cross sections for

various gases. Since GEM works in a gas medium, the avalanche generation due to charges

moving in the gas depends on the interactions the electrons have with the gas atoms.

Garfield++ Garfield++ [22] is a program developed to simulate particle detectors. In

the present context, a gas medium is used although it can also be applied to semiconductor

media. The program is interfaced to ANSYS for field maps and Magboltz for calculating

the electron transport parameters. Interface with Heed can help realize the charged tracks

created by an incident ionizing particle. The newer version encapsulates electron transport
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with penning transfer taken into account.

4.2 Simulation method

GEM geometric model has been constructed using ANSYS. The standard settings for the

simulation have been listed in table 4.1. The specifications of the GEM are chosen according

to CERN standard 10 cm× 10 cm single GEM as listed in table 2.1. Depending on the aim

of the simulation, one or more parameters will be varied to observe their dependence on the

behavior. The operational gas mixture is Ar− CO2 with the standard ratio of 70/30.

Parameter Value
Drift field (V.cm−1) 2000
Induction field (V.cm−1) 3000
∆VGEM (V) 300-500

Table 4.1: Parameter settings for simulation

The ANSYS simulation generates electric field maps that are store in the files PRN-

SOL.lis, ELIST.lis, MPLIST.lis, NLIST.lis. These will be read by the Garfield++ script

which interfaces it with Magboltz.

Each simulation is performed for a single electron entering the drift space from a random

location along the top plane. The electron will be subsequently tracked at every step by the

program. Ionizations produced in the process will be stacked and dealt sequentially after

completely tracking the initial electron upto the end of Induction gap.

Occasionally the simulation generates avalanches of extremely large sizes. These consume

immense memory to process, thereby leading to the job crash. In order to avoid this, limit

has been placed on the avalanche size through a modification in the script and the source

code.
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4.3 Gas gain of standard GEM

Gain is defined as the average number of electrons reaching the anode per primary electron.

For the simulation purpose, the number of electrons reaching 50 µm below the bottom metal

plane of the GEM has been considered for computing gain. Gain varies with almost every

parameter involved in the operation of a GEM. These include electric field, gas mixture,

GEM-geometry, metal thickness etc. Simulations have been performed to identify the ideal

range of parameters in the region of operation. This main idea was to simulate the gain to

match the experimental data.

4.4 Effect of gem hole diameter

GEM gain dependence on hole diameter has been experimentally studied by Sebastian et al.

in [14]. It has been found that the gain is low for higher values of diameter and increases with

decreasing hole diameter. Optimal value was reportedly reached for the value of hole diameter

close to the thickness of polyimide. For lower values of hole diameter, the gain lay on a plateau

region indicating a stable operating region. This has been cited as a guaranteeing factor for

GEM performance in spite of the inconsistencies in the hole diameter due to manufacturing

limitations.

In order to understand the variation of GEM gain with the hole diameter through sim-

ulation, the ratio of outer to inner diameter has been kept a constant at 1.4. The effect

of diameter on gain can be seen from the plot 4.2. GEM outer diameter was varied with

ED = 1kV.cm−1, EI = 3kV.cm−1, VGEM = 400V and rP = 0.6 at constant settings.

It can be observed that the gain has an optimal value around the region of 50 − 60 µm

and decreases upon increasing or decreasing the diameter any further. Both the total and

effective gains show a similar behavior. The electric field lines leave the top metal with high

potential and land on the bottom metal with lower potential. The concentration of field

lines is highest when there is no opening or GEM hole and steadily decreases with increasing
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Figure 4.1: Measured gain dependence on
GEM hole dia [14].

Figure 4.2: Simulated gain dependence on
GEM hole dia [1].

hole diameter. Due to this, the amplification and hence gain reduces with increasing hole

diameter. This explains the region beyond 60 µm in the plot.

Another factor that affects gain is the optical transparency which decreases with decreas-

ing diameter. With decreasing optical transparency, the likelihood of primary electrons being

lost to the top GEM metal increases. This effectively reduces both the total and effective

gains. With a smaller hole diameter the space available for electron to freely diffuse is re-

duced. This enhances losses to the polyimide due to diffusion and reduces the effective gain

in the process.

The simulated gain dependence is explained by a trade-off between the aforementioned

phenomenon. Lower diameter regions have dominant primary losses and losses to PMD

surface while higher diameters suffer from a lowered amplification. Optimal region exists in

between the two regions.

The simulation results in this regard are not in complete agreement with measured values

from [14], and this can be investigated experimentally by testing newly ordered GEMs with

variable diameters.
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4.5 Losses of primary and secondary charges

Charge is lost to a GEM through many processes. Losses can be both for primary and

secondary charges. The following are the possibly encountered losses-

Top metal Electrons lost to the top metal are usually primary electrons. This is because

the avalanche process begins after the primary electrons ventures into the GEM hole and is

dominant near the bottom GEM hole towards the exit. As discussed in section 4.4, optical

transparency influences the losses to the top metal. In addition, increase in drift field also

increases losses.

Bottom metal Losses in the bottom GEM metal are due to the attraction of the generated

charges by the metal. These are secondary losses and can be reduced by increasing the

induction field.

GEM hole Losses inside the GEM hole occur due to the electrons that diffuse in the gas

inside GEM hole causing them to be stuck to the PMD surface. Due to high electron affinity

of PMD the electrons cannot diffuse back into the gas medium once stuck to the PMD surface.

Losses inside the GEM hole and their effects are discussed in the chapter on charging up.

Attachment Attachment losses occur due to the electro-negativity of CO2. These losses

can occur in all regions where gas is present namely drift gap, GEM hole and induction gap.

4.6 Effect of Drift and Induction field

Effect of drift and induction fields have been simulated by S.Dildick and the results are seen

in fig 4.3.

Drift field Drift field is needed to drift the primary electrons generated in the drift gap

towards the top GEM metal. The field inside the GEM hole will be responsible for further
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Figure 4.3: Plot of gain as a function of the ED at EI = 5 kV.cm−1 (left) and as a function
of EI at ED = 1 kV.cm−1 (right) for various rP values [23].

attracting the electron into the hole. Hence a strong drift field is desirable to attract the

electrons towards the GEM, yet very high fields can cause the field lines to land on the metal

instead of inside the hole. This decreases the gain.

Induction field Induction field is set in order to attract the electrons generated in the

avalanche towards the readout plane. As the induction field is increased the electrons that

would otherwise be lost to the lower metal will be attracted away and this improves the gain.

4.7 Estimation of Penning Parameter

Penning transfer mechanism has been described in the section 3.2. Estimation of penning

parameter can be made by comparing an experimentally measured gain curve with simulated

gain curves in which penning transfer probability has been left as a free parameter. A gain

curve is a plot of gain as a function of the voltage difference across the top and bottom

metals of a GEM. This dependence is exponential in nature. Fig 4.7 (left) is an example

of an experimentally measured gain curve. Due to the limited availability of experimental

data, I performed subsequent measurements for comparison with simulations which enabled
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the estimation of penning parameter. These experiments will be described in chapter 6.

Gain curve from experimental data was compared with the simulated gain curves while

parameterizing the penning transfer probability (rP). A χ2 fit was performed for various rP

values and the true value was estimated by finding the minima of χ2. Where χ2 has been

defined as follows-

χ2 = Σ

(
Gmeasured − g.Gcalculated

σ2
measured + σ2

calculated

)2

(4.1)

Where, Gmeasured is the measured gain, and Gcalculated is the calculated gain found through

simulation. A gain scaling factor g has been introduced to account for the scaling that often

needs to be done when dealing with experimental data. A more complete treatment will

include a gain offset factor go which is added to the calculated gain after scaling with g.

χ2 = Σ

(
Gmeasured − g.Gcalculated − go

σ2
measured + σ2

calculated

)2

(4.2)

Experimental data initially used was obtained from the work of Gabriele [24] presented

in his PhD thesis. The gain curve and the χ2 fit are shown below.

Figure 4.4: Gain curve for Ar− CO2 70/30 mixture measured (left) [24]; and simulated
(right) [23]

In the simulated gain curves, the free parameter was the penning parameter and a gain

scaling parameter without the introduction of any offset. As a result the simulated gain
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curve with rP = 0.5 agrees closely with the data. Although rP = 0.7 appears to be similar,

the difference can be observed in the lower voltages where the correlation is non existent.

Without the introduction of penning parameter however there is no correlation with the data

as can be seen from the black curve for rP = 0. One can also observe that the steepness of

the simulated gain curve increases directly with the penning transfer probability.

For accurate estimation of Penning parameter, measurements have been performed for

gas mixtures Ar− CO2 70/30 (Experiment-B) and 90/10 (Experiment-C) that decoupled

the charging up effects. The resulting gain curve from those measurements has been termed

‘real gain’ due to the appropriateness of its comparison with simulated gain. Through the

χ2 fit one can observe the degree of correlation the simulated data has with the measured

data. The χ2 fit showing a minima as the optimum penning parameter can be seen in

fig 4.5 and fig 4.6. The gain scaling parameter which is a ratio of experimental gain and the

calculated gain has been estimated and plotted alongside the χ2 fits. The scaling parameter

has an expected linear behavior. The values computed are also in agreement with the recent

findings in literature. Note that rP = 0.7 is higher than the previous estimate (rP = 0.5) for

the 70/30 mixture. Table 4.2 lists the estimated values of Penning parameter.

Gas mixture rP

Ar− CO2 − 70/30 0.70
Ar− CO2 − 90/10 0.45

Table 4.2: Estimated values of Penning transfer parameter rP for Ar− CO2 mixtures.
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Figure 4.5: Left: χ2 as a function of rP for Ar− CO2 70/30 mixture, Right: Gain scaling
parameter as a function of rP

Figure 4.6: Left: χ2 as a function of rP for Ar− CO2 90/10 mixture, Right: Gain scaling
parameter as a function of rP
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5 EXPERIMENTAL TECHNIQUE AND GAIN CALIBRATION

Experimental setup, methods and techniques employed for this research work including

the gain measurement and calibration procedures have been discussed in this section. The

normalization procedures employed in the lab, and those that were specifically conceived for

the charging-up measurements are separately described.

5.1 Setup

In order to measure the GEM gain there are two phases involved - calibration and mea-

surement. Calibration is a voltage measurement through which the normalization factor is

obtained. The normalization factor is then multiplied with a measured current to obtain

gain. Some aspects of the setup are common to both stages of measurement.

GEM is mounted on a ‘Timing GEM chamber’ as shown in the fig 5.1. The chamber has

Figure 5.1: GEM foil being mounted on a timing GEM chamber

inlet and outlet for the circulation of gas mixture. The ratio of each gas in the mixture is

controlled through a potentiometer based system. Gas flow rate is set to 6 l/hr. The pressure

inside the chamber is maintained at 760 Torr. The chamber has a kapton window to allow the

incidence of Xrays and to be able to withstand pressure differences with respect to external
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conditions. X-ray photons of 8 keV are incident as ionizing radiation from the PANalytical

Xray machine as shown in Fig 5.2 (left). The readout strips located below the GEM plane

are shorted and maintained at ground potential. High voltage is applied across the GEM

top and bottom electrodes and to the drift plane. Fig 5.3 depicts the experimental setup for

both the measurement phases.

Figure 5.2: Left: Collimator positioned normal to the GEM surface. Right: GEM mounted
inside a Faraday cage [25].

Parameter Gain calibration Gain measurement
Voltage (V) 520 200− 520
IXray (mA) 0.6 1.6
VXray (kV) 10 10
Collimator dia (mm) 2 1
Absorber Cu (68 µm) -
Temperature (K) 300 -
Absorber Cu(68 µm) -

Table 5.1: Settings used in gain calibration and measurement
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Figure 5.3: Flow chart depicting the setup for Gain calibration (left) and Gain measurement
(right)

5.1.1 Gain calibration

In order to make a voltage measurement of the signal, a resistance of 1 MΩ is connected across

the readout and the ground. Since the signal across this resistor is weak, a pre-amplification

stage is set initially. The signal then is carried to the amplifier ORTEC 450 for a second

stage amplification. Amplifier output is then fed to the linear fan-in/fan-out Lecroy-428F

which generates multiple copies of the signal to be analyzed through various channels as

seen in fig 5.3 (left). Through a Multi Channel Analyzer - Amptek 8000A, the pulse height

spectrum of the signal is obtained and recorded on a computer through an interfacing software

ADMCA (available for download from Amptek software downloads page [26]). Signal can

be visualized through a CRO. Signal is also fed into a discriminator Lecroy-821, with a set

threshold value. The discriminator output is a digital pulse which is a high for the signals

crossing the threshold and a low for the rest. By feeding this output to a scaler N145, a

count of the number of signals in a given time (usually set to 30s) is recorded.

The MCA and the scaler are subject to a condition called pile-up. Pile-up refers to the

overlap of consecutive signals which are not treated as different by the electronics since
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the time difference between consecutive signals is comparable to the response time of the

electronics. Presence of pile-up can distort the MCA spectrum or cause a smaller number of

signal counts to be measured.

Method GEM is left under the circulation of gas mixture for one hour. During the same

period it is also kept under 500 V on a high voltage supply. This voltage is chosen to be

lower for higher percentages of Ar to avoid discharges. Xray machine is turned on and the

standard settings of current and voltage for a calibration are set while the shutter is still kept

closed. When the Xray photons are incident on the GEM it gives rise to a voltage signal that

can be observed on a CRO. If the signal is not visible or appears noisy, proper grounding is

ensured to eliminate the noise. A pulse height spectrum is then obtained by using the MCA.

A clean signal has a prominent photo-peak, a clear escape peak, a noise pedestal each of

which are well separated from one another. Poor spectra are a result of pile up which occurs

due to excessive input signal, contrarily they can also signify a complete lack of signal.

Starting from around 360 V, the counts of number of pulses of signal are recorded using

the scaler over a period of 30 s. The measurement is repeated thrice for better accuracy of

the estimate. Counts are recorded for various settings through increments of voltage. Since

a finite number of photons are incident on the GEM, the same number of pulses are obtained

at the output. For lower voltages across the GEM, the amplification or gain is lower. This is

coupled with large losses, as a result all the incident photons do not translate to the counts of

the pulses measured. A plateau of the voltage counts is obtained after a sufficient voltage is

applied across the GEM. Increasing voltages beyond the plateau region will result in sparks

due to discharges and hence are avoided.

A voltage is chosen in the region of operation for the calibration measurement. Counts are

obtained with and without absorber for a low current 0.6 mA on Xray, and with absorber for

a high current 1.6 mA. Through these measurements, the counts at high current are obtained

without absorber. This will determine the normalization factor for the current measurement

which is performed on a high Xray current without absorber. The absorber used in these
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measurements is usually a copper tape with 68 µm thickness. Two layers of the tape are

used for the setting with absorber. 1

5.1.2 Gain measurement

A current measurement is performed by measuring the current at the anode of a GEM directly

without any intermediate amplification. The schematic is shown in fig 5.3 (right). Keithley

-6517 measured the anode current and the values are fed into computer through a GRIB

interface. A lab-view interface (developed by Matteo Alfonsi) reads and records the current

values from the GRIB. Through the lab-view interface the sampling rate of the current can

be adjusted. The values of current versus time are recorded on a text file which is later

analyzed through root scripts.

An important difference in current measurement lies in the rate of incidence of Xray photons.

Due to extremely low currents and the lack of amplification at the output stage, it is essential

to increase the strength of input signal in order to have a higher current. In addition there

is no risk of a pileup as the measurement pertains only to the total charge collected at the

anode. This increased incident flux is achieved by one of the following methods:

• Increasing the current on Xray

• Using a bigger collimator

Method Once the connections have been made according to the flowchart shown in fig 5.3

(right), the Xray is incident on the GEM and the current is recorded on a text file with a

sampling time of 2s. An arbitrary voltage well below the plateau is chosen as a starting value

for the measurement. Currents are then recorded for voltages increasing in steps of 20V upto

the region of discharge. Typical range of voltages for measurements are 300V− 520V. From

1The above mentioned method is the standard calibration technique practiced in the re-
search group. Changes have been implemented for specific measurements in order to compute
the normalization, these will be discussed in later sections.
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these measurements one obtains the current vs voltage data which when normalized yields

the gain curve.

5.2 Xray machine

The theory of Xray generation has been discussed in section 3.3. The pulse height spectrum

obtained for the standard gas mixture was analyzed in detail by performing fits for the lines

as shown in fig 5.4. Since a Cu − Kα Xray photon is the ionizing particle being detected,

Figure 5.4: Fit to MCA spectrum revealing the presence of lines corresponding to various
elements. Relative line normalizations and energies were set from the X-ray booklet [27] and
Bremsstrahlung was obtained from G.Castellano [28].

there are standard lines that are expected. These include the photo peak, the escape peak,

Bremsstrahlung radiation and the pile up resulting from signals spaced closely in time. How-

ever, the fit performed revealed the presence of other lines in the spectra which were usually

not expected. A detailed analysis of the Xray tube’s constituents and a correspondence with

the Xray manufacturer ’PANalytical’ provided insights into the functioning of the Xray tube.

The schematic diagram shown in fig 3.2 will serve as a reference to the understanding. Cath-
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ode tungsten filament when heated emits electrons. These electrons in turn hit the copper

anode to give rise to Xray photons. Increasing the current on X-ray cathode increases the

photon intensity proportionately due to greater number of incident electrons on the copper

target. It has been warned by the manufacturing company that a consistent usage of high

current on X-ray can be a means of depositing sufficiently large amounts of tungsten (used

to make the cathode filament) on the inner walls of the X-ray tube including the anode [29].

Since the process of Xray generation is extremely inefficient, most of the electrons deposit

the energy to the copper anode causing it to heat up. Since the copper is placed on a Ag sub-

strate, the intense heat causes the silver to diffuse into the copper bringing it to the forefront.

This occurs in spite of ample cooling provided by water running constantly in the background

of the substrate. Presence of silver in the anode produces Xray photons corresponding to

silver.

The tube structure in addition also contains Iron which gives rise to Fe lines in the

spectrum. All the additional components give rise to their respective spectral lines in varied

quantities in addition to the Kα as can be seen in the fit to MCA.

The dependence of X-ray output intensity on Current has been measured in order to cali-

brate the machine for various settings that have been used for different sets of measurements.

These can be observed in the fig 5.5 (left).

5.3 Normalization: Laboratory technique

Gain is an estimate of the number of charges reaching the anode of a GEM per incident

primary electron. The measured quantities are the output current, the spectra from Multi

Channel Analyzer (MCA) and the counts of Xray photons.

For basic estimation of normalization factor, the MCA spectrum is not considered. Input

charge can be estimated from the counts of Xray for high current on Xray computed according

to the method described in section 5.1.1. The number of primary electrons (Nprimary) created

per incident photon depends on the photon energy and the work function of the given gas
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mixture.

Nprimary = Eγ ×
(

%Ar

WAr

+
%CO2

WCO2

)
(5.1)

Where Eγ = 8.03 keV is the energy of the incident Xray photons, %Ar and %CO2 are the

percentages of the gases in the mixture, WAr and WCO2 are the work functions of the gases.

Estimation of gain includes output current, number of primaries and the electron charge.

5.4 Normalization: Charging-up measurements

There are two settings for which the current measurements have been performed for charging-

up measurements as a part of ‘experiment – C’ described in section 6.3. Table 5.2 summarizes

them in comparison with the calibration settings. The MCA counts enable the calibration

Parameter Calibration – C Measurement – C.1 Measurement – C.2
Voltage (V) 520 200− 300 300− 460
IXray (mA) 0.6 9 4
VXray (kV) 20 20 20
Collimator dia (mm) 2 8.8 8.8
Absorber Ni Ni Ni

Table 5.2: Comparison of measurement and calibration settings for experiment – C performed
with a low photon rate per GEM hole.

of gain through normalization. This procedure involves various steps.

X-ray scaling In order to avoid pile-up while measuring the MCA spectra, a lower photon

rate is chosen when compared to the current measurement. Normalization also comprises the

estimation of counts for the settings of current measurement by scaling. To obtain this scaling

factor, X-ray counts have been measured for various settings of IXray and the rates are plotted

as shown in the fig 5.5(left). The photon counts are measured by the scaler N-145. For high

currents(4 mA and 9 mA) used on X-ray, the counts are not in the linear region of operation

presumably because of a pile up. This outcome was in spite of using a sufficient absorber
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Figure 5.5: Left: Dependence of photon rate on the applied cathode current of the X-ray
tube. Right: Comparison of spectra with(red) and without(orange) X-ray irradiation

material to avoid pile up. Counts for lower currents on X-ray however show a linearity.

Extrapolation of the linear region is used as a basis for estimating the correct photon rate

for the high currents on X-ray. The factors 19.41 and 8.45 are respectively obtained for

the number of times the counts for settings A and B are higher than the MCA setting at

a given collimator size. In addition, a smaller collimator of 2 mm diameter has been used

for MCA measurement as against 8.8 mm dia for current measurement. This introduces a

multiplicative factor equal to the ratio of areas of the two collimators since the photon flux

is proportional to the area.

Noise The counts from the MCA spectrum include both signal and noise while the latter is

predominant in the initial channels. In order to isolate noise from the signal, spectra is taken

without incident X-ray. A comparison of both counts is seen in the fig 5.5(right). It can be

inferred that the noise counts(pertinent to the lower bins) are smaller with the application

of X-ray. This can be explained by a possible loss of counts due to the overlap of noise with

the signal counts. Noise counts in the signal have been observed to be a factor 0.41 times

lower than in the pure noise spectrum in the three major channels. Noise was scaled by this
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value and subtracted from the signal. In addition, a lower channel with energy 551 eV that

contributed to some counts was suppressed.

MCA The number of primary electrons created per incident photon is estimated by an-

alyzing the MCA spectrum. By fitting the photo and escape peaks, energies of individual

channels are calibrated. Number of electrons contributed by individual channel is obtained

from equation 5.2. ∑
i

(
Ni

ΣNi

× Ei
W

)
∼ 280 (5.2)

Where Ni is the number of counts and Ei is the energy corresponding to ith channel of MCA.

W is the work function of Ar/CO2 − 70/30% mixture as obtained from fig 5.6. A weighted

sum of the number of electrons from each channel is computed to obtain a value of 280

electrons per photon.

Figure 5.6: Penning corrected work function for Ar− CO2 mixtures computed by Heinrich
Schindler using Magboltz[12]
.

The total number of counts measured in the MCA spectrum after noise subtraction is

1.7 MHz over a period of 78 s. This number forms a basis for the estimation of counts at the

gain measurement settings.
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Dark current Laboratory measurements are performed using X-ray source, photons en-

tering the drift gap cause primary ionizations. These electrons under the influence of drift

field enter the GEM holes undergoing avalanche multiplication before being read out at the

anode. There however exists a finite probability that the photons interact with the gas in

the induction gap causing further ionizations. These ionizations cause a dark current which

persists even during the complete absence of amplification. Taking into account the attenu-

ation coefficients and densities of the materials, the optical transparency and the dimensions

of the GEM including the drift and induction gaps, dark current is estimated. X-ray scaling

which was performed at 520 V has counts dominated due to interactions in drift. Using the

previous ratio, the interactions in the induction gap can be estimated for both settings at

which current measurements have been performed. Comparison of scaling and dark currents

can be seen in table 5.3

Parameter Measurement – C.1 Measurement – C.2
X-ray scaling factor 19.41 8.45
Dark current(nA) −0.17 −0.07

Table 5.3: Comparison of scaling parameters and dark currents for the two measurement
settings used in experiment – C

5.5 Gain stability

Measurements are performed in order to test the long term gain stability of the detectors.

Using a high current(1.6 mA) on Xray and an applied voltage chosen from the plateau region,

gain is recorded continuously for a period of 1 hr. Another method implemented in this regard

is the measurement of rate capability. This is done by recording continuously the pulse height

spectra at specific intervals over a large period of time . The photo peaks are subsequently

computed for each spectrum and are arranged in time. This reveals the change of gain over

time since the photo-peak channel is a depiction of the detector gain.
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6 CHARGING-UP STUDIES

It has been observed in previous studies that the gain of a GEM varies over time in spite

of uniformly maintained ambient and applied conditions. This variation has been attributed

to either the charge deposition inside GEM holes or the polarization of ions constituting the

polymer PMD [30]. Both aspects have been dealt with in this study.

Figure 6.1: Gain variation seen as due to charging up [30]

The exact physics behind this was poorly understood and varied reports of the same are

found in literature. Tamagawa et al. [31], claim that cylindrical geometry of the GEM hole

results in a stable gain behavior over time. A biconical hole structure such as in standard

CERN single GEMs on the other hand results in a rapid increase followed by a relatively

stable gain as observed by J.Benlloch et al., [32]. In most of the reports, an initial increase

in gain was followed by a stable phase.

Studies in this chapter were performed with the aim of systematically analyzing these

effects which are termed as charging-up effects. A model was also developed for the same.

Three sets of experiments (listed below) were performed and each result led to an improvisa-

tion of technique for the successive measurement. Experiment – A was done in collaboration

with Laura Franconi and Dr.Renju Thomas. Experiment – B was done in collaboration with
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Özkan Şahin and Yalçın Kalkan.

• Experiment – A (Oct 2011)

• Experiment – B (Nov 2011)

• Experiment – C (Dec 2011)

6.1 Experiment – A

During the October-2011, measurements of gain for various gas mixtures were performed.

This included Ar− CO2 : 70/30; 50/50; 80/20; 90/10. The original aim was to compare

the measured gain curves for different gas mixtures with the simulated gains to compute the

penning parameter for these mixtures. Observations of certain effects led to the conduction

of a systematic study to understand charging up in GEMs.

6.1.1 Setup

Experimental set-up used for this measurement is the standard one described in section 5.1

Method For every gas mixture chosen, gain calibration was performed as described in

section 5.1. After the GEM was mounted and kept under the voltage supply, X rays were

irradiated on the same spatial region of the GEM for all measurement voltages for a given gas

mixture. A starting voltage for measurement was qualitatively chosen around 100 V below

the plateau region of count. During the October-2011, measurements of gain the various gas

mixtures were performed. This included Ar− CO2 : 70/30; 50/50; 80/20; 90/10.

6.1.2 Observation

Fig. 6.2 shows the gain curves for the measured current pertaining to the gas mixtures chosen.

All curves exhibit a behavior of scaling or offset of the gain values for voltages above and
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below the starting voltage of measurement. This can be markedly observed in 90/10 mixture

where the Vstart was 300 V.

Figure 6.2: Gain curves for various gas mixtures

The current measured by the Keithley-6257 showed oscillations with a period of ∼ 19 as

seen in the fig. 6.3. A Fourier analysis was performed on the current to verify the oscillation

frequency. A spike can be observed in the Fourier spectrum at ∼ 0.05 Hz which was due to

oscillations.

Figure 6.3: Left: Oscillations exhibited by the current, Right: Fourier transform of the
measured current

The current showed a decrease of 15 − 30% for lower gains. For higher gains increases
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upto 5% were found although majority remained fairly uniform for the higher gains as seen

in fig. 6.4. Observation of measured currents for individual voltages showed that current

decreased over time for voltages below Vstart while currents increased slightly or remained

constant for values higher than Vstart.

Figure 6.4: Current vs time for Ar− CO2 80/20 mixture measured at 340 V(left) and
360 V(right)

6.1.3 Analysis

Electronic noise and Keithley pico-ammeter settings were likely candidates for the cause of

oscillations in the current. Electronic noise is not usually in the sub-hertz range. Keithley

device manual did not provide any reference on possible oscillations. The source remains un-

known although similar measurements performed later did not give rise to these oscillations.

Marked change in the trend of the measured current can be attributed to the choice of

Vstart as the initial measurement setting. In addition, the same spatial point on the GEM

foil was being irradiated for all voltage settings. Due to this a cumulative effect of the

previous measurements would be observed on a given measurement. A possible hypothesis

was that the GEM was charged-up in the process of measuring higher gains and the fields

are significantly altered for subsequent measurements for voltage settings below Vstart. The

process of charging up will be explained in detail in the section 6.2.2.
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Due to the effects observed, the data obtained was rendered unfit for further analysis and

hence another set of measurements were performed as described in the next section.

6.2 Experiment – B

In the November-2011, gain measurements were performed for gas mixtures Ar− CO2 : 70/30

and 90/10.

Method In order to decouple the effects of various settings, gain measurements at every

voltage were performed on a separately irradiated spatial point on the GEM foil. This was

achieved by changing the position of the X ray collimator along the plane parallel to the

GEM foil. For each setting, voltages and electric fields are applied across the GEM and left

for 5 minutes before Xrays are irradiated. Current is continuously and monitored through the

labview interface. The amplified signal present only during the presence of Xray is recorded

for a period of 30 minutes for each setting to have sufficient time to observe the changes in

the gain due to charging up. Table 6.1 describes the settings used in the measurement.

Parameter Value
Collimator dia(mm) 1
Xray current(mA) 1.6
Xray voltage(kV) 10

Table 6.1: Settings for the current measurement to estimate gain (experiment – B)

6.2.1 Observation

The measured current exhibited a certain trend. For lower voltages, the anode current

initially increased over time and reached a maximum. This was then followed by a much

slower drop in the current. As the voltages were increased to higher values, the rise occurred

faster. Beyond a certain applied voltage only drop in the measured current was observed

while no increase was seen. This has been interpreted as a possibly sharp rise that occurred
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within the current sampling time effectively rendering it unobservable. After sufficiently long

time the signal did not show any signs of stability although much less steeper.

6.2.2 Charge-up model

A model was constructed in order to understand the reasons behind the observed rise and

drop in the gain, and the dependence on the voltage applied and the irradiation. To construct

such a model it is essential to understand the behavior of losses.

The electrons passing through a GEM hole and getting amplified act under the influence

of drift and diffusion. Drift occurs due to the applied electric field, while the diffusion occurs

independent of the presence of any field. Diffusion of the charges in the gas medium is

responsible for the losses inside the GEM hole. Through simulations one can get a picture

of the pattern of these losses and their voltage dependence. When charge gets deposited

on the PMD surface inside the hole, it does not move along the surface even under the

influence of voltage and tends to stay owing to the high resistivity of the GEM. It also does

not get diffused back into the gas owing to the high electron affinity of PMD. Details of the

conductivity process will be discussed in detail in section. 6.4. Presence of sufficient number

of charges causes a noticeable effect on the net electric field inside the GEM hole. Depending

on the location and amount of charge accumulated it can either cause an increase or decrease

in the amplification.

Losses A portion of the generated electrons are lost to the PMD and this can be estimated

from simulations. Fig. 6.5 gives an estimate of the percentage of the effectively generated

electrons that are lost on PMD as a function of voltage. It can be observed that the fraction

is lower for higher gains and this can also be noticed in the effect it has on gain.

In order to get an estimate of the rate of charging up a typically measured current for a

setting can be chosen. For Ar− CO2 − 70/30 mixture, anode current of 2 nA was measured

at 460 V. A collimator of 1 mm diameter was used to irradiate Xrays. This corresponds to a
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Figure 6.5: Percentage of effectively generated electrons lost to PMD as a function of applied
voltage for Ar− CO2 − 70/30 mixture

circular area encompassing ∼ 45 GEM holes that are irradiated. At this rate, each GEM hole

is accruing charge at the rate of ∼ 6 × 107 e− per second. If this rate continues uniformly,

the GEM holes will soon have sufficient charge to render amplification impossible. Hence the

rate of losses must decrease over time.

Low gain For measurements with low gains one observes an increase in the gain followed

by a decrease. This can be explained by analyzing the loss deposition patter as shown in

fig 6.6.

Majority of the deposition occurs at the waist of the GEM hole or the region mid-way

between the entrance and exit holes. Accumulation of these charges distorts the field causing

a lensing effect that focuses the charges. In addition it also aids in reduction of losses to PMD

that occur due to diffusion. This results from the repulsion electrons face while approaching

the inner hole. As a result of these effects, the GEM gain increases. This accounts for the

observed increases seen in the low gain regions.
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Figure 6.6: Left: E-field due to e−s on PMD opposing the incoming electron loss at 300 V;
Right: Histogram of loss distribution on PMD along the axis at 300 V.

High gain In the high gain regions, a sharp decrease in current is observed. In addition,

currents measured in a low gain region decrease after the initial increase reaches a maxima.

These observations can be accounted for by analyzing the loss distribution over PMD for

higher gains as shown in fig 6.7

Loss pattern distribution reveals that the bulk of charge deposition occurs near the bottom

GEM hole. Amount of charge at the bottom GEM hole is around 20 times higher than the

charge near the waist. This causes an effective electric field that opposes the electric field

responsible for amplification and gain. The avalanche generation is most likely to occur close

to the bottom GEM hole where the presence of metal rims cause sharp electric fields. Charge

deposition in the lower half of the GEM hole will push the charges away from the surface

effectively reducing the possibility of electrons to get closer to the bottom hole and thereby

generating avalanches. The entire process effectively results in a reduction of gain that can

be observed for higher gains.

Absence of gain increase in higher voltages For higher voltages, the charge deposition

occurs rapidly due to a high gain. In this process the first region of gain increase is extremely
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Figure 6.7: Left: Large accumulation of e−s on PMD at 460 V causing an opposing electric
field; Right: Histogram of loss distribution on PMD along the axis at 460 V.

short lived and hence the second region (gain decrease) quickly takes over within the current

sampling time of the measuring device. This renders the region of increase unobservable at

the measured rate of charging up.

6.3 Experiment – C

In order to verify the functionality of the model presented above, it was essential to measure

an initial increase in the gain even at higher voltages. To achieve this the charging up process

had to be slowed down either by observing the current in finer time steps or by reducing

the incident photon rate. Both the techniques were implemented and measurements were

performed.

Reduction of incident rate reduces the number of charges accumulating in a single GEM

hole over time and hence the pattern of charge-up making it possible to observe the initial

rise in the current. But this proportionately reduces the measured current taking it from

nano range to pico range. Currents of this order compete immensely with noise and do not

provide reliable information. To circumvent this problem a bigger collimator for Xray was
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used while keeping the incident rate low.

6.3.1 Setup

Main changes in the set-up in comparison with the previous measurements are described

in this section. Incident photon rate was reduced by the introduction of a Ni filter. This

also eliminated to a large extent the Cu Kβ line from the spectrum. A larger collimator of

8.8 mm diameter was used to compensate for the reduced rate per GEM hole by enhancing

the overall flux to maintain a significant measured current. Details of the settings employed

in this measurement can be seen in table 5.2.

Settings in the lab-view interface for the time intervals between consecutively recorded

measurements were adjusted. The time interval was reduced from 2 s to 0.1 s.

6.3.2 Observation

Fig. 6.8 shows a comparison of the gain behavior over time for the high and low incident

photon rates per GEM hole at a high voltage. This illustrates clearly that the initial rise in

gain can be observed even for a high voltage effectively supporting the charge-up model.

Figure 6.8: Comparison of the current vs time curve at 500 V for incident photon rates which
are high (left) and low (right)
Currents plotted are negative hence an increase corresponds to going down.
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The gain measurements for this setting were performed in two sets each with a different

incident photon rate. The details of these settings are listed in table 5.4.

6.3.3 Real GEM gain

Gain measured on previous instances is very likely a value affected by charging up. However,

by slowing down the charging up process and measuring the gain at the initial instant, GEM

gain has been measured before any charging up influences affect it as seen in fig 6.11. This

has been termed as ’Real gain’ and is ideal for simulations which do not take charging up

effects into consideration.

It has been found through simulation that a higher penning parameter results in a steeper

gain curve. From fig 4.7 it can be observed that the simulated gain curves get increasingly

steeper with the increase in rP. In the gain curves measured previously, the values are very

likely affected by charging up as was seen with earlier measurements. In accordance to the

charging up model developed the following occurs- The gain measured at lower voltages is

likely to be higher due to the initial rise in gain that would have occurred by the instance of

measurement. Gain measured at higher voltages tends to be lower since there is a decrease in

gain would have occurred by the instance of measurement due to the gain drop seen in higher

voltages. As a result of this occurrence, the resulting gain curve will be less steeper than a

real gain curve. Due to the perceived increase in the steepness of the gain curve an increase

in penning parameter is expected. This can be seen in the increase in penning parameter

estimated using the original gain curve(rP = 0.5) and through the real gain curve(rP = 0.7).
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(a) ∆VGEM = 200 V (b) ∆VGEM = 220 V

(c) ∆VGEM = 240 V (d) ∆VGEM = 260 V

(e) ∆VGEM = 280 V (f) ∆VGEM = 300 V

Figure 6.9: Gain variation over time at different voltages pertinent to December low rate
measurement C.1 for Ar− CO2 − 70/30%
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(a) ∆VGEM = 300 V (b) ∆VGEM = 340 V

(c) ∆VGEM = 380 V (d) ∆VGEM = 420 V

(e) ∆VGEM = 460 V

Figure 6.10: Gain variation over time at different voltages pertinent to December low rate
measurement C.2 for Ar− CO2 − 70/30%

55



Figure 6.11: GEM gain free of charge-up effects for a Ar− CO2 − 70/30%.

6.4 Conductivity of Polyimide

In order to fully understand the charge-up process in the GEM, an understanding of the

conduction mechanism through the polyimide foil used in a GEM is essential. During the

normal operation of a GEM amplification generates charge carriers both electrons and ions

some of which are deposited on the inner surface of the GEM holes. The amount of time taken

by these carriers to reach the electrodes depends on the mobility in the medium in addition

to the applied field. The chemical structure and properties of PMD as available through

literature serves as a vital resource in building our understanding. GEM resistance was

measured and its variation over time offers further insights into the conductivity mechanism.

6.4.1 PMD chemistry

Polyimide used in CERN standard GEMs is manufactured by the company Kaneka Texas

Corporation under the name Apical R© grade 200NP polyimide film. The specific variety of

polyimide used in GEMs is PMDA-ODA.
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The chemical structure and synthesis of Polyimide, poly-4,4-oxidiphenylene-pyromellitimide

is shown in the fig 6.12.

Figure 6.12: Chemical synthesis of polyimide [33]

Polyimides are synthesized from reactions between dianhydrides and diamines. The two

ingredients used in this preparation are pyromellitic dianhydride also called PMDA and

4,4-oxydianiline also called ODA. PMDA has carbonyl groups which are electro-positive and

hence attract electrons. ODA group has nitrogen that supplies electron. This reaction results

in an intermediate compound namely polyamic acid. This group has carboxyl radicals making

it acidic. Being an acid, it supplies protons in the process.

However when adequate heat is supplied, the ring is restructured while a water molecule

escapes in the process. Depending on the temperature and its evenness in the baking process,

residual polyamic acid and water can be found in the final polyimide synthesized. The

presence of these compounds aids electrical conductivity. Charge transfer complex(CTC)
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interactions between dianhydride and diamine groups results in a strong inter chain attraction

which gives strength and rigidity to polyimides.

6.4.2 Literature

Charge deposition on the polyimide surfaces exposed in the GEM hole causes the alteration

of electric field applied. This as discussed in the earlier sections causes the gain to vary. It

is hence essential to understand the time required to evacuate the deposited charges and the

mechanism through which it happens. The transit times depend on the mobility of polyimide.

Charge carriers drift in a medium with a carrier mobility which is defined as the ratio of the

applied electric field to the drift velocity acquired shown through the eq 6.1.

vd = µE (6.1)

PMD mobility is extremely vulnerable to changes in humidity, temperature, applied elec-

tric field etc. The value of mobility remains a constant at lower electric fields and depends

directly on electric field at higher values. There is a large variation in the values cited in

literature. Aragoneses et al., report a mean mobility value of 2.06 × 10−13 cm2V−1s−1 for

electrons and 2.37 × 10−13 cm2V−1s−1 for holes at an applied field of E = 193 kV.cm−1 for

Kapton R© type HN at 22−25oC and 40−50% RH (relative humidity) [34]. Sessler et al., have

reported a value of 4×10−12 cm2V−1s−1 and 10−9 cm2V−1s−1 at 50oC and 200oC respectively

[36]. Ziari et al., report a value of 0.9−1.2×10−12 cm2V−1s−1 and 2.5−2.6×10−12 cm2V−1s−1

at E = 80− 160 kV.cm−1 and 35− 40%RH [37].

Polyimide conductivity is affected by radiation dosage. Ries et al., have measured an

increase in Kapton R© conductivity from 4 ± 3 × 10−17 Ω−1cm−1 for an applied radiation of

electrons at the rate of 1.0 MeV(dose rate of 5 × 104 Gyh−1) over a period of 0.5 h [38].

The sample was subject to a cumulative dosage of 9.5 × 107Gy and has been found to

revert to the original un-irradiated conductivity after a period of three months. Increase in
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conductivity has been attributed to the production of radicals due to the structural changes in

the polymer resulting from the radiation interaction. Electron paramagnetic resonance(EPR)

spectra revealed the presence of ketone , phenyl and phenoxyl radicals. Cases of non reversal

of conductivity after radiation have also been reported. In the measurements made on GEM,

the radiation doses are comparatively lesser and hence the radiation effects on conductivity

were found to be negligible [30].

6.4.3 Experimental setup

Measurement of the resistivity of polyimide is performed by applying a high voltage across

the GEM electrodes and measuring the current. At a given voltage, the current is expected

to change over time.

Initial setup The experimental setup commonly used in the research group to test freshly

prepared GEM foils’ functioning under HV is seen in fig. 6.13. Virgin GEM foil is tested

Figure 6.13: High voltage testing of a GEM foil

inside the clean room. Top and bottom electrodes of the GEM are connected to a HV supply
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and the current is measured for different voltages applied. A high resistance (100 MΩ) is

connected to protect the voltage supply in the event of short circuit. This method enables

us to identify GEMs with possible leakages of currents greater than nano-Amperes due to

manufacturing defects. Current variations of the order pico-Amperes cannot be reliably

measured with this setup due to the following problems-

• Sensitivity of resistivity to humidity

• Lack of a Faraday cage to protect the circuit from external noise.

High resistance measurement setup Through this technique it was attempted to com-

pensate for the above mentioned effects. GEM foil was placed inside the timing GEM chamber

under circulation of a 100% CO2 for three weeks. This ensured that the foil was devoid of

humidity. The foil was previously unused for one month since a gain measurement performed

in December2012. The chamber was mounted inside a Faraday as shown in the fig. 5.2 ear-

lier. Connections were made according to the description in the Keithley manual for the

electro-meter 6517 as shown in the fig. 6.14. Both the electrodes of GEM were connected to

Figure 6.14: High resistance measurement technique as depicted in the manual of Keithley
electro-meter 6517A [39]

the electro-meter 6517 which supplied a voltage set to 500 V and the current was measured

by the same instrument. Values of current were recorded over time. After leaving the GEM

under HV for 24 hours, the voltage on 6517 was set to 0 V effectively shorting the GEM
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terminals. The current was later recorded as a function of time.

6.4.4 Observation

Measured current varied over time and exhibited a behavior shown in the fig. 6.15(left). The

current behavior over time was not constant like a resistor, nor was it exponential like a

capacitor. It was also not linear. The dependence followed a 1
t

rule as seen from the fit to

the measured data. A similar behavior was observed even in the decay part of the curve.

Figure 6.15: Left: Variation of current over time in a GEM under high voltage. Right:
Subsequent variation of current over time in a shorted GEM

Analysis The observed decay of current seemed to follow the Kohlrausch’s relaxation pro-

cess. A detailed account of the processes and the physics involved can be found in the [40].

There are many physical models that suit the relaxations but one particular model is rel-

evant to our scenario. Let us consider a polymer substance under the influence of electric

field applied on either ends through electrodes. Ions and free radicals in the polymer move

under the influence of the applied field. This motion causes a current which can be measured.

At the electrode polymer interface a thin oxide layer with thickness of the order of 0.1 nm

gets developed. Although the layer does not prevent the motion of electrons across itself,
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ions and radicals cannot cross the thick layer. Presence of metal electrode adjacent to the

oxide layer gives rise to a mirror effect where oncoming charges see their images across the

oxide layer. This causes an electrostatic attraction which enhances the motion of the charges

moving towards the electrode and also brings a deviation from a constant current. The above

described phenomenon gives rise to the observed 1
t

dependence.

The chemical structure of polyimide is such that they form a type of bonding. Presence

of water molecules usually causes the H+ and OH- groups to separate and the protons cause

conduction. This is dominant initially and goes down gradually with time going upto hours

to decrease an order of magnitude. In our case, the GEM is sufficiently clean and dry hence

the possibility of moisture induced conduction is ruled out. This is one reason why very high

resistivity is noted in our samples. The rapid decay in the current still needs to be explained.

This observation has an important consequence in the understanding of charge conduction

process in PMD. It can be concluded that the conduction is due to ions and radicals since

they will not be able to cross the oxide layer at the electrode-polymer interface and hence

get accumulated resulting in a decay of the current.

6.4.5 Results

Steady state resistivity of the PMD has been found to be around 1018 Ωcm at E = 100 kV.cm−1.

The high measured value can be a consequence of the extremely dry sample and the presence

of Cu− Cr electrode.

Fig 6.16(right) shows the comparison of steady state resistivity with the values measured

by E.Motyl at 100 kV cm−1 [41], E.Motyl and R.Kacprzyk at 20 kVcm−1 [42] both for a

25 µm thick Kapton R© HN with Al electrodes, in addition to other sources mentioned before.

There are two components of the current, the transient and the steady state. Transient

current is the result of the flow of protons, ions and other radicals. This current decreases

over time since there is a finite supply of these carriers in the polymer. Steady state current

is due to the flow of electrons and extremely slow moving ions and radicals that contribute
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Figure 6.16: Left: Transient resistivity increasing and stabilizing towards a steady value,
Right: Measured steady state resistivity in comparison with values from literature at various
temperatures.

to a smaller current.

The transit times of the charge carriers through PMD at the given resistivity can be seen

in fig 6.17(right). Transit time is the time required by the charge deposited to travel through

the bulk to reach the electrode. It can be estimated that on application of electric field charge

evacuation on a GEM is possible in timescales of the order or hours(104 s) to days(105 s).

The transit times for both electrons and positive ions is comparable given the uncertainty in

the mobility measurement.
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Figure 6.17: Left: Measured discharging current in comparison with the measurement of
A.A. Alagiriswamy et al.(2002), Right: Transit times of the charge carriers inside polyimide.
A section of GEM hole is seen with marked trajectories of the charges.
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7 CONCLUSIONS AND FUTURE WORK

A full understanding of the Gas Electron Multiplier working has been achieved through

simulations and other experiments for the first time. The gain has been computed through

simulation which is nearly half the measured value, this is an improvement over previous

comparisons with simulations which were a factor of 6 lower than measurements as shown

by Croci [24].

The discrepancy is still being studied. GEM gain free of charging up effects has been mea-

sured through experiments that have been performed at a lowered rate of incident radiation

per GEM hole. Gain has been found to be affected by less than 10% due to charging up as

found through simulations. Charging up simulations have been performed by R.Veenhof and

P.Correia and the comparisons were consistent with the measurements and have observed

that the variation in field does stabilize over time due to the charge compensation of ions

and electrons.

Simulations on the dependence of gain on hole diameter have revealed an optimal value

without indications of stable plateau region as indicated by prior measurements. To experi-

mentally verify this result, GEMs with various hole diameters ranging from 30 µm to 120 µm

have been fabricated. These measurements in future can offer a solution to the problem of

robustness of gain behavior in spite of the inconsistencies in the hole size due to fabrication

limitations.

Although the charging up effects on a single GEM were studied and characterized in

this work, it is not a reflection of the mechanisms involved in a triple GEM. Triple GEMs

have been shown to have a far greater gain stability presumably due to a more complicated

mechanism involved as a result of multiple stages.

Experiments on polyimide conductivity show a greater likelihood of bulk conduction as

against surface conduction. The physics involved in charge transport has been understood.

A steady state resistivity of 1018 Ω has been measured and a possible mechanism for the

evacuation of charges deposited on the polyimide has been found.
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Building on this work, research directed to understand triple GEMs and other kinds of

GEMs can be undertaken in future. These studies will play a key role to better harness the

potential of GEMs which are being applied to a wide range of areas today.
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