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Abstract

Laser beams are wave-like optical disturbances. They are characterized by a dominant direction of

propagation and a finite extent transverse to the direction of propagation. Many characteristics of

laser beams can be described in terms of a scalar function multiplied by a constant vector, which

can be real (for linear polarization) or complex (for elliptical polarization). The scalar function is a

solution to the paraxial scalar wave equation. This scalar description, however, fails to describe the

polarization and focusing characteristics of laser beams correctly. For a correct accounting of these

characteristics, the electric and magnetic fields associated with laser beams must satisfy not only

the wave equation but also the Maxwell’s equations. We show that, due to the finite transverse

size of laser beams, Maxwell’s equations require that the electric field (as well as the magnetic

field) associated with laser beams will possess all three nonzero Cartesian components even in free

space. Each component can be expressed in terms of the scalar solutions of the paraxial wave

equation. We construct three-component solutions giving expressions for the dominant, cross, and

longitudinal-polarization components, for linearly polarized Hermite-Gauss and Laguerre-Gauss

beams. Such a description correctly accounts for focusing as well as polarization properties of

laser beams. We demonstrate the validity of this description experimentally by generating two

families of laser beams and verify the existence of cross-polarization field components and their

evolution in propagation.

We generate experimental higher-order Hermite-Gauss laser beams intracavity via a pair of crossed

fibers. Laguerre-Gauss laser beams were generated by converting Hermite-Gauss beams into

Laguerre-Gauss beams of the same order by using a pair of cylindrical lenses to manipulate Guoy’s

phase of the beams. Intensity profiles of the dominant and cross-polarization components of lin-

early polarized Hermite-Gauss and Laguerre-Gauss beams are measured and their evolution as the

beam propagates away from its focal region was studied. The transverse profiles of the cross-



polarization components of these beams undergo an evolution with propagation. The theoretically

expected and experimentally observed intensity profiles are in reasonable agreement confirming

the field structure of laser beams derived in this thesis.
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Chapter 1

Introduction

In the physical science community, the term polarization of light or any other type of electro-

magnetic radiation refers to the direction of the electric field associated with the electromagnetic

radiation. Before the advent of lasers most directed electromagnetic disturbances were modeled in

terms of plane waves which, of course, have a definite direction of propagation. For such a field,

the direction of the electric field can be specified in terms of constant vectors. This is no longer

the case when one is dealing with electromagnetic beams which are electromagnetic disturbances

with a finite transverse size. A consequence of this is that the direction of the electric field is not

constant in space, similar to the field of a spherical wave. Typically, laser beams are described in

terms of a single component electric field that is written as the product of a constant unit vector

and a scalar function, which must satisfy the paraxial scalar wave equation. While this description

describes many characteristics of laser beams it fails to properly describe their polarization and

propagation characteristics. This is true even for linearly polarized laser beams. As will be shown,

the result is that there are three nonzero components of the electric field; in addition to the compo-

nent of the field in direction of (dominant) polarization the field will also have a cross-polarization

and longitudinal polarization component.

In the past few decades, special cases of the cross and longitudinal components of the field have

been investigated [1–12]. Recently, there has been an increase in interest in the generation and

characteristics of different types of laser beams [12–20]. This chapter serves as a brief introduction

to this research and present a servery of related work in the field.
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1.1 Applications

To fully appreciate the propagation and polarization characteristics of laser beams. Here, a few

applications of Gaussian laser beams are discussed. This is by no means a complete list but is

meant to illustrate the significance of laser beam propagation and polarization characteristics on

their applications.

Particle acceleration

The basic principle behind accelerating particles is the force exerted by the longitudinal electric

field component possessed by polarized laser beams [1]. This field, as we will show in the follow-

ing chapter, depends inversely on the spot size of the beam. Therefore, the more tightly focused the

beam, the stronger the longitudinal component [21–25]. A lens wave guide setup is suggested by

Scully [26] and Scully and Zubairy [24] that would create a sufficiently intense longitudinal elec-

tric field to accelerate a beam of charged particles. Proof of principle for this type of laser linear

accelerator is reported by Bochove et. al. using a asymmetric radially polarized Hermite-Gaussian

laser beam [27]. This type of laser linear accelerator injects a beam of electrons in the laser beam

leading to an increase in energy on the order of GeV/m [28].

Bahari and Shahriari report charged particle acceleration using a similar method by using two

orthogonal Hermite-Gaussian modes [29]. They suggest that, unlike the conclusion reached by

Scully and Zubairy [24], the change in energy of the accelerated electrons does not depend linearly

on the radius of the beam but there is an ideal beam size for electron acceleration. They calculated

optimal laser beam parameters, including polarization, beam radius, and intensity, for laser linear

accelerators.

2



Orbital angular momentum

As first suggested in 1909 by Poynting [30] and demonstrated by Beth [31], nearly thirty years

later, laser beams that are circularly polarized have ±~ spin angular momentum per photon for

left or right circular polarization, respectively. Laguerre-Gaussian beams possess an interesting

property that Hermite-Gaussian beams do not: each photon in a LG beam carries l~ orbital angular

momentum (OAM) and therefore (l±1)~ total angular momentum for a circularly polarized beam

[16, 32–34]. It is important to note here that even a linearly polarized LG beam can carry orbital

angular momentum [32].

Not only is the study of the orbital angular momentum possessed by light, in itself, fundamentally

interesting but OAM is the basis for many other applications. For example, more information can

be carried by a beam with orbital angular momentum per than by the spin of the beam alone [35].

Thus being able to control OAM could lead to better optical communication methods [36–38].

Additionally, a better understanding leads to improvement of microscopic particle manipulation

methods, such in optical tweezers [39–44].

1.2 Solution Families

Laser beams can be modeled by the paraxial wave equation (PWE). In Chapter 2 we examine two

complete sets of solutions to the PWE. The most common coordinate systems used to construct

beam like solutions to the PWE are Cartesian and circular cylindrical, which give the Hermite-

Gaussian (HG) and Laguerre-Gaussian families of beam solutions, respectively. Both families of

solutions have been studied comprehensively [17–20] and they are of practical importance since

lasers tend to operate in these modes due to the fact that corresponding symmetries are realized in

of stable cavities [45, 46].

For several years HG and LG beams were the only known sets of solutions to the wave equa-

3



tion. Recently, there has been an upsurge of interest in other stable beam solutions. Several new

solutions have been theoretically proposed and experimentally observed. These include: Hermite-

Laguerre-Gaussian beams [47, 48], Spiral beams [49, 50], Airy-Gaussian beams [51, 52], and Hy-

pergeometric beams [53]. Another, particularly interesting family of complete solutions to the

PWE, the one with elliptical symmetry, is known as Ince-Gaussian (IG) beams [43, 54, 55]. IG

beams are the continuous “connection” between HG and LG beams [54]. Like the Hermite and

Laguerre-Gaussian families of solutions, the Ince-Gaussian family forms a complete set of solu-

tions with elliptic symmetry and are eigenmodes of stable resonators (i.e. are natural resonating

modes of stable resonators) [54, 55].

While the Hermite and Laguerre-Gaussian solutions are discussed in detail in the following chap-

ters Ince-Gaussian beams are discussed only here. At this time, little is known about Ince poly-

nomials and, according to Bandres et. al. [54], have not received the attention that they deserve.

A particularly interesting property of IG beams is that they represent a continuous set of modes

between Hermite and Laguerre-Gaussian beams. HG and LG beams are special extreme cases

of IG beams [54]. The IG beam solution is similar to that of HG and LG beams (see Chapter 2

sections 1.1 and 1.2), save that the Hermite and Laguerre polynomials are replaced by Ince polyno-

mials. The radius of curvature of the wave front is the same for IG beams as that of a fundamental

Gaussian beam. Therefore, the propagation of IG beams through optical elements can be described

in terms of the well know ABCD matrix formalization [45, 54]. Additionally, the beam diameter

depends on propagation distance and the magnitude of the intensity varies in the same way as the

intensity of a fundamental Gaussian beam.

Schwarz et. al were the first to report experimental generation of Ince-Gaussian beams in a stable

resonating cavity [56]. They report that by breaking the symmetry of a solid state, diode pumped

laser, high order IG beams with high quality can be produced. By using two different output cou-

plers with differing radii of curvature, adjusting the pump power, and changing the symmetry by

translating the output coupler, different orders and degrees of IG beams are produced. Additional
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cavity modifications, such as crossed fibers in the cavity can be introduced to change the output

mode [43, 56, 57].

Ince-Gaussian beams can also be generated using a pair of carefully aligned and specifically placed

cylindrical lenses [43]. This pair of cylindrical lenses is known as an astigmatic mode converter

(AMC) which will be discussed in Chapter 2 in detail. The number of hyperbolic and nodal lines

(or, in this case, the order of a HG mode) will be determined by the degree of alignment of the

laser cavity and or with the use of a pair of crossed fibers inside the cavity, forcing non-fundamental

mode operation. The structure of the corresponding mode changes as the angle between the mode

axis and the mode converter changes, altering the elipticity of the mode [43].

Figure 1.1: Example of HG, LG, and IG beams of the same order. From left to right: HG02, LG20,

and IG20.

Figure 1.1 gives an example of second order HG, LG, and IG beams. If the HG beam, depicted on

the far left, was sent through an AMC with its axis parallel to the mode converter axis the output

of the AMC would be the same HG beam. If the same beam was sent through the mode converter

with its axis 45o to the AMC the output would be the LG mode given in the middle. On the other

hand, if the beam was sent into the mode converter with its axis at a small angle to the mode

converter axis then the output would be similar to the IG beam given on the right.
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1.3 Mode Generation

1.3.1 Present Research

Chapters 3 and 4 discuss how HG and LG beams are generated for this study. For this research

we chose to generate Hermite-Gaussian beams by inserting a pair of crossed fibers in the laser

cavity [15]. There are other ways to generate these beams. This method was chosen due to its

effectiveness and simplicity. Additionally, the crossed fibers method did not require acquisition of

any new equipment. Laguerre-Gaussian modes are generated by sending the HG modes generated

from the laser through an astigmatic mode converter [32]. This type of mode converter consists

of two cylindrical lenses and two spherical lenses, with proper alignment and separation the mode

converter will convert a Hermite-Gaussian beam into a Laguerre-Gaussian beam of the same order.

Figure 1.2 depicts this type of mode converter. This method of generation for LG beams was

chosen because the components of the converter were readily available and the high purity of

modes that can be generated. The quality of mode generated by the astigmatic mode converter is

limited by the quality of the input HG beam [58] and proper alignment and placement of the mode

converter.

Figure 1.2: Astigmatic mode converter: two appropriately separated identical cylindrical lenses to

convert a Hermite-Gaussian mode into a Laguerre-Gaussian mode of the same order.
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1.3.2 Other Methods

While the present investigation uses the above mentioned methods for higher-order Hermite-

Gaussian and Laguerre-Gaussian mode generation, there are other notable methods that will be

mentioned in this section.

Generalization of an astigmatic mode converter: variable phase mode converter

O’Neil and Courtial advocate that the cylindrical lens mode converter briefly described above is a

specific arrangement of the general variable phase mode converter (VPMC) [59]. The basis of the

VPMC is the matrix formulation given by Allen et. al. [60], which describes phase and intensity

structure of Laguerre-Gaussian beams as they propagate through an optical system, with Hermite-

Gaussian modes as the basis set of orthogonal modes. Allen draws a parallel between how a

waveplate treats polarized light and a mode converter converts between mode families: a waveplate

introduces a phase shift between two orthogonally polarized light beams and a mode converter

introduces a phase shift between orthogonal modes. O’Neil and Courtial generalize Allen’s matrix

formulation and additionally write a matrix describing Hermite-Gaussian modes with Laguerre-

Gaussian modes as the basis set of orthogonal modes. Analyzing the two formulations (one with

HG basis and the other with LG basis) a connection was found between rotation in one set and

mode conversion in the other. This connection forms the operating basis of the VPMC. The VPMC

consists of two sets of astigmatic mode converters rotated at 90o and two dove prisms (that are

rotated to change phase) between the two sets of converters that serve as an image rotator (Fig. 1.3

A) [59]. In addition to the analogy between this mode converter and polarizers that leads to a very

intuitive connection between HG and LG modes another advantage, in some applications, in using

such a mode converter is that the pattern of conversion is repeated every 180o of rotation of the

mode converter (as opposed to every 90o for the astigmatic mode converter).
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Figure 1.3: Variable phase mode converter consisting of two astigmatic mode converters (AMC)

and two dove prisms that are rotated to change phase. The astigmatic mode converters consisting

of two cylindrical lenses are depicted as cylinders.

Laguerre-Gaussian modes via holograms

Laguerre-Gaussian beams, of theoretically any order, can also be generated using a hologram. The

pattern on the holographic plate is an interference pattern of the mode that is desired and a reference

field which is the output of the laser that is to be used to generate the LG beam [61, 62]. There are

two general methods for generating Laguerre-Gaussian beams holographically, one dynamic and

the other static. The static method involves printing the computer generated interference pattern

on a transparency. A reference Gaussian beam is sent through the hologram generating the desired

Laguerre-Gaussian beam. The dynamic system uses liquid crystals to display a cross section of

the phase pattern of the desired LG mode on silicon (LCOS) [63, 64]. The liquid crystals can be

electrically manipulated allowing dynamic control of the mode to be generated. LCOS also has the

advantage of being able to actively correct phase distortions leading to a higher quality beam [63].

The Laguerre-Gaussian modes generated via holograms are typically of significantly lower purity

then those generated from an astigmatic mode converter or the dynamic method [65]. On the
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other hand, to convert a higher order Hermite-Gaussian beam to Laguerre-Gaussian beam with a

astigmatic mode converter it is necessary to be able to generate the Hermite-Gaussian beam of

the desired order. Generally, it is desired to have a laser beam operating in only the fundamental

mode. Thus, lasers are typically designed so that they are forced to operate in the fundamental

mode, making it difficult or impossible to force the laser to operate in a higher order mode, making

the holography scheme advantageous in such situations.

Spot-defect mirror Laguerre-Gaussian mode generation

The previously discussed methods for Laguerre-Gaussian beam generation all have one thing in

common and that could be considered a disadvantage in generating high quality beams, they are

all extra-cavity methods. An innovative, and beautifully simple, intracavity method is presented by

Ito et. al. [66]. They suppress the operation of lower order modes by replacing the high-reflectivity

mirror at the rear of the cavity with one that has a low reflectivity spot defect. A defect on the

mirror can be achieved by focusing a high intensity laser pulse at the center of a typical high-

reflectivity dielectric mirror. Using a laser to create the spot defect allows for controlled size of the

spot. While an aperture can be used inside the laser cavity to suppress higher order modes from

oscillating, the spot defect on the mirror works in the opposite manner. The operating principle is

rather straight forward, the losses induced by the low reflectivity spot forces the laser to operate in

a higher-order Laguerre-Gaussian mode, similar to the cross-fiber method used to generate higher-

order Hermite-Gaussian modes. This method can only be used to generate beams with a radial

index of zero (p = 0), the radial index dictates the number of rings the beam possesses, where

the number of rings is p + 1. Also, since this method generates sanding waves in the azimuthal

direction, the LG +` and LG −` will be generated at the same time. Therefore, the output of the

laser will be an interference pattern of the two modes.

The length of the laser cavity and the radii of curvature of the cavity mirrors determine the beam

diameter. With increase in order of the beam there is an increase of the relative size of the null in
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the center of the beam. Ito et. al. [66] report changing the length of the cavity, keeping the defect

on the mirror the same size, to change the ratio of the spot defect to beam radius for mode selection.

Kano et. al. [67] describe another approach to change the spot defect size to beam diameter ratio,

change the defect spot size, the larger the defect size the higher the order of the mode generated.

1.4 Longitudinal Field Observation

Apart from the aforementioned particle acceleration there are other uses for the longitudinal field

component of a laser beam such as single molecule orientation determination [68]. It has been

suggested that the direction of the field could also be of use in near-field optical microscopy [69].

The observation of the longitudinal field is beyond the scope of this research. It is, however, a well

researched and interesting topic. This section gives a few examples of methods used to observe the

longitudinal field.

1.4.1 Direct measurement via photoresist

Hao and Leger report a method to directly measure the longitudinal component of radially po-

larized beams by recording the profiles in photoresist [70]. A silica substrate was coated with

photoresist and placed in the focal plane of a microscope objective, the location of the focus of the

beam. This method takes advantage of the fascinating characteristic that a very tightly focused,

radially polarized beam’s longitudinal component can have a larger intensity then its transverse

component [70]. After exposing the photoresist to the beam, the photoresist is developed and the

depth of the photoresist is measured. The depth is directly proportional to the intensity of the beam,

the profile of the longitudinal component can thus be directly observed.

The method used by Hao and Leger is convenient because the longitudinal component can be

measured in a straight forward way but it has disadvantages. First, there is a high cost associated

10



with acquiring the profiles, the mask required for the photoresist deposition requires electron-

beam mask fabrication techniques. Second, since the longitudinal component is only going to be

appreciable if the beam is tightly focused, the area recorded in the photoresist will be very small

(on the order of the wavelength of the light used) so it is necessary to use something such as an

Atomic Force Microscope to measure the surface profile.

1.4.2 Probing

Another arrangement for longitudinal field observation is presented by Novonty et. al. [71],

they verify theoretical profiles for the longitudinal-polarization component of a radially polarized

Laguerre-Gaussian beam by using a fluorescing molecule as a probe. Single molecules with known

dipole orientation are scanned through the focus of the laser. Fluorescence rate of the molecule

and laser location data is compiled to generate an image of the field.

Bouhelier et. al. [69] report using the tip of near field optical microscope to scan the longitudinal

field. This method scans the focus of the field with a metallic or dielectric tip which scatters the

electric field. The field profile can be determined by recording the scattering field as function of

the tip position.

1.5 Other polarizations

While this thesis focuses on linearly polarized Hermite and Laguerre-Gaussian beams, it is worth

noting here that for other types of polarization, Maxwell’s equations will also require three non-

zero field components. For example, a right circularly polarized beam will have a small longi-

tudinal component and a smaller left circular polarization component [72]. The experimental ar-

rangement required to generate a circularly polarized beam consists of sending a linearly polarized

beam through a quarter wave plate. To observe the cross-polarization component of a circularly
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polarized beam would then require another quarter wave plate. The addition of the second quarter

wave plate to the already circularly polarized beam is the same as introducing a half wave plate to

a linearly polarized beam, i.e. it will simply rotate the linear polarization. The result is that the

setup to experimentally observe the cross-polarization component of a circularly polarized beam

reproduces the setup used here to generate the cross-polarization profiles of a linearly polarized

beam [14]. For beams that are radially and azimuthally polarized the longitudinal and cross po-

larization components will be more significant when beams do not have circular symmetry about

direction of propagation [21, 70, 72].

1.6 Experiment

Chapter 3 describes Hermite-Gaussian laser beams. We compare experimental and theoretical

transverse HG intensity profiles for several orders of modes and demonstrate the change in their

shape with propagation. Laguerre-Gaussian beams are discussed in Chapter 4 along the same

lines as described for HG beams in Chapter 3. Additionally, the rotation of the cross-polarization

components of the LG beams is quantitatively verified.

In the final chapter, conclusions and recommendation for further research are given. Included in

the appendix are the Maple work sheet used to generate the theoretical transverse intensity profiles

and the MATLab programs used to compare theoretical and experimental profiles and to analyze

the rotation of the cross-polarization components of the Laguerre-Gauss beams.
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Chapter 2

Paraxial Beam Solutions to Maxwell’s Equations

This chapter begins with a discussion of the solutions to the wave equation and the failure of the

typically used scalar paraxial wave approximation in describing the polarization and focusing of

laser beams. For linearly polarized beams it is typically assumed that the electric field can be

written as a constant vector (possibly complex) multiplied by a scalar function. Therefore, only

one component to the electric field is necessary. We will show that there must be three nonzero

components to the electric field, leading to vector solutions. Solutions to Maxwell’s equations in

Cartesian and circular cylindrical coordinates, which give rise to the Hermite-Gauss and Laguerre-

Gauss beams, respectively, are then discussed. The discussion of an astigmatic mode converter

capable of converting Hermite-Gauss beam into a Laguerre-Gauss beam of the same order can be

found in Chapter 3.

2.1 Beam Solutions to Maxwell’s Equations

Since laser beams are electromagnetic radiation, we naturally start this section with Maxwell’s

equations in free space:

~∇ · ~E = 0, (2.1)

~∇× ~E = −∂
~B

∂t
, (2.2)

~∇ · ~B = 0, (2.3)

~∇× ~B = µ0ε0
∂ ~E

∂t
, (2.4)
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where ~E and ~B are the electric field and magnetic field, respectively. µ0 and ε0 are the permeability

and permittivity of free space. On taking the curl of Eq. (2.2) we get:

~∇×
(

~∇× ~E
)

= − ∂

∂t

(

~∇× ~B
)

. (2.5)

Combining Eq. (2.5) with Eq. (2.4), using the vector identity

~∇×
(

~∇× ~E
)

= ~∇
(

~∇ · ~E
)

−∇2 ~E,

and Eqs. (2.1) and (2.4) to eliminate ~∇× ~B we find that the equation satisfied by the field is

[

~∇2 − µ0ε0
∂2

∂t2

]

~E = 0. (2.6)

Equation (2.6) is known as the wave equation. Following the same method we find the same

equation for the magnetic field,
[

~∇2 − µ0ε0
∂2

∂t2

]

~B = 0. (2.7)

Note that each cartesian component of the electric and magnetic fields satisfies Eqs. (2.6) and

(2.7), respectively.

2.1.1 Hermite-Gauss solutions of the scalar wave equation

In many situations it is assumed that there is only one nonzero Cartesian component of the electric

field (polarization direction). In this section we will consider solutions in cartesian coordinates.

Assuming only one nonzero Cartesian field component, Eq. (2.6) reduces to the scalar wave

equation,
[

∇2 − 1

c2
∂2

∂t2

]

ψ(~r, t) = 0, (2.8)
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where ψ(~r, t) represents a cartesian component of the field amplitude and

c =
1√
µ0ε0

(2.9)

is the speed of light in vacuum. Assuming quasimonochromatic waves of angular frequency ω,

propagating in the z direction, we seek a solution with a finite transverse extent,

ψ(~r, t) = ψ(~r)ei(kz−ωt), (2.10)

where k = ω
c
= 2π

λ
is the magnitude of the wave vector and λ is the wavelength. The ψ(~r) term

describes the transverse variation in the wave amplitude. Since we are in search of a solution with

a slow change in the transverse profile ψ(~r) over a few wavelengths we look for fields that satisfy,

1

k

∣

∣

∣

∣

∂ψ(~r)

∂z

∣

∣

∣

∣

=
λ

2π

∣

∣

∣

∣

∂ψ(~r)

∂z

∣

∣

∣

∣

� |ψ(~r)| (2.11)

and

1

k

∣

∣

∣

∣

∂

∂z

(

∂ψ(~r)

∂z

)∣

∣

∣

∣

=
λ

2π

∣

∣

∣

∣

∂

∂z

(

∂ψ(~r)

∂z

)∣

∣

∣

∣

�
∣

∣

∣

∣

∂ψ(~r)

∂z

∣

∣

∣

∣

. (2.12)

These equations state what is known as the paraxial approximation. Substituting Eq. (2.10) into

Eq. (2.8) gives,

[

∇2 − 1

c2
∂2

∂t2

]

ψ(~r, t) =

[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2

]

ψ(~r)ei(kz−ωt)

=

[

∂2

∂x2
+

∂2

∂y2

]

ψ(~r)ei(kz−ωt) +
∂

∂z

(

∂ψ(~r)

∂z
ei(kz−ωt) + ikψ(~r)ei(kz−ωt)

)

+
ω2

c2
ψ(~r)ei(kz−ωt)

=

[

∂2

∂x2
+

∂2

∂y2

]

ψ(~r)ei(kz−ωt) +
∂2ψ(~r)

∂z2
ei(kz−ωt)

+ 2ik
∂ψ(~r)

∂z
ei(kz−ωt) + (ik)2ψ(~r)ei(kz−ωt) + k2ψ(~r)ei(kz−ωt),
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where ω2/c2 = k2 is used. Dropping the second order derivative with respect to z, in accordance

with Eq. (2.12), and simplifying we arrive at the scalar paraxial wave equation,

[

∂2ψ(~r)

∂x2
+
∂2ψ(~r)

∂y2
+ 2ik

∂ψ(~r)

∂z

]

= 0. (2.13)

The well known solutions in cartesian coordinates to Eq. (2.13) can be realized via separation of

variables by assuming a solution as a product of two functions depending on x and z and y and z,

respectively [12, 45]

ψmn(x, y, z) = ψm(x, z)× ψn(y, z). (2.14)

We can then write the paraxial wave equation as,

[

∂2ψm(x, z)

∂x2
+ 2ik

∂ψm(x, z)

∂z

]

+

[

∂2ψm(y, z)

∂y2
+ 2ik

∂ψm(y, z)

∂z

]

= 0. (2.15)

Since the x, z and y, z parts of Eq. (2.15) must independently equal zero we can find the solution

in one transverse direction and then use it to find the solution in the other coordinate. Focusing

only on the x, z dependent solutions we can write the paraxial wave equation as

[

∂2ψm(x, z)

∂x2
+ 2ik

∂ψm(x, z)

∂z

]

= 0. (2.16)

Since we seek a wave-like solution that will describe laser beams which have a definite direction

of propagation and a finite transverse area we assume a general solution of the form [46]

ψm = hm

(

x
√
2

w(z)

)

· ei
(

k x2

2q(z)
+P (z)

)

, (2.17)

where hm, q(z), w(z), and P (z) are to be determined. w(z) is a z dependent function that will be

shown to be related to beam size and q is a complex function that will be referred to as the complex
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beam parameter. Inserting Eq. (2.16) into Eq. (2.17) yields,

[

∂2ψm(x, z)

∂x2
+ 2ik

∂ψm(x, z)

∂z

]

=

{

2

w2(z)
h′′m +

[

i2kx
√
2w(z)

q(z)
− 2ikx

√
2

q2(z)

dw(z)

dz

]

h′m +

[

ik

q(z)
− 2ki

dP (z)

dz

]

hm

}

e
i
(

k x2

2q(z)
+P (z)

)

= 0, (2.18)

where the argument of hm is suppressed for simplicity and we have imposed the requirement

dq

dz
= 1. (2.19)

A single prime on hm is used to denote a first order derivative with respect to its argument and a

double prime to represent a second order derivative with respect to its argument:

h′m (X) =
dhm (X)

dX
, (2.20)

h′′m (X) =
d2hm (X)

dX2
. (2.21)

where

X =
x
√
2

w(z)
.

Upon simplifying the left hand side of Eq. (2.18) we are left with the following differential equation

h′′m + ik

[

1

q(z)
− 1

q2(z)

d

dz
w(z)

]
√
2x

w(z)
h′m +

[

ikw2(z)

2q(z)
− kw2(z)i

dP (z)

dz

]

hm = 0, (2.22)

If we choose w and P to satisfy

ikw2(z)

2q(z)
− kw2(z)

idP (z)

dz
= m (2.23)
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and

ik

q(z)
− 1

q2(z)

d

dz
w(z) = −2, (2.24)

Eq. (2.22) becomes:

d2hm(x)

dx2
− 2x

dhm(x)

dx
+mhm(x) = 0. (2.25)

Equation(2.25) has the form of the Hermite differential equation [73]. This approach then leads to

what is often called the standard Hermite equation [45]. The function hm is therefore a Hermite

polynomial, Hm. The Hermite polynomial is given by

Hm(µ) = (−1)meµ2 dm

dmµ
e−µ

2

. (2.26)

A few lower order Hermite polynomials are as follows:

H0(µ) =1 (2.27)

H1(µ) =2µ (2.28)

H2(µ) =4µ2 − 2 (2.29)

H3(µ) =8µ3 − 12µ (2.30)

H4(µ) =16µ4 − 48µ2 + 12 (2.31)

H5(µ) =32µ5 − 160µ3 + 120µ (2.32)

(2.33)

P (z) must be found so that Eqs. (2.23) and (2.24) are satisfied. Since we required

dq/dz = 1, q is given by

q(z) = q0 + z, (2.34)

where q0 = q(0). With expectation of q being complex we will write

q(z) = z − iz
R
, (2.35)
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where z
R

is to be found. Writing q as the denominator of a fraction, as it is in the exponent of Eq.

(2.17), we have

1

q(z)
=

1

z +
z2
R

z

+
i

z2

z
R

+ z
R

. (2.36)

If we introduce the notation

R(z) = z + z2
R
/z, (2.37)

and

w(z) = w0

√

1 + (z/z
R
)2, (2.38)

where we write

w0 =

√

λz
R

π
, (2.39)

we can then rewrite Eq. (2.36) in terms of two the real parameters, w and R as

1

q(z)
=

1

R(z)
+

2i

kw2(z)
. (2.40)

The physical significance of w(z) and R(z) will be discussed after the final solution for the wave

is found.

Next, the function P (z) is to be found. Substitute Eqs. (2.38) and (2.40) in Eq. (2.23):

dP (z)

dz
=i

m

kw2(z)
+

1

2q(z)

=
im

kw2
0

(

1 + z2/z2
R

) +
1

2 (z − z
R
)

=
imz

R

2
(

z2
R
+ z2

) +
z + iz

R

2
(

z2
R
+ z2

)

=
(m+ 1)z

R

2
(

z2
R
+ z2

) +
z

2
(

z2
R
+ z2

) (2.41)

19



Upon integration of Eq. (2.41), from 0 to z, an expression for P (z) is found,

P (z) = i
m+ 1

2
arctan

(

z

z
R

)

+
1

4
ln

[

1 +
z2

z2
R

]

. (2.42)

To understand the significance of P (z) first consider the exponential of the real part of P (z):

e<[P (z)] = exp

[

1

4
ln

(

1 +

(

z

z
R

)2
)]

=

√

w0

w(z)
. (2.43)

As can seen from Eq. (2.43) the real part gives an amplitude factor that leads to a decrease in

intensity with propagation distance z. Let

θ(z) = arctan

(

z

z
R

)

, (2.44)

then the imaginary part of P (z) can be written as

=[P (z)] = (m+ 1)

2
θ(z). (2.45)

Examining the exponential of the imaginary part of P (z) it can be seen that it gives a phase shift,

θ, which is called the Gouy phase and will be discussed in more detail in the following section.

Substituting Eqs. (2.40) and (2.42) into Eq. (2.17), the x, z dependent part of a solution to the

paraxial wave equation is found:

ψm(x) =

(

w0

w(z)

)1/2

Hm

(

x
√
2

w(z)

)

· e
(

ik x2

2q(z)

)

+i(m+1)θ(z)/2
, (2.46)

where Am is dependent on the total power of the beam and is found in section 1.2. With a similar

solution for ψ(y, z), the product of ψ(x, z) and ψ(y, z) gives the well known Hermite-Gaussian
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beam solution:

ψmn(
−→r ) = w0

w(z)
Hm

(√
2x

w(z)

)

Hn

(√
2y

w(z)

)

× ei(m+n+1)θ(z)+ ikρ2

2q(z) , (2.47)

where Hm and Hn are Hermite polynomials. q(z) and w(z) are discussed below and z
R

is given

by

z
R
=
πw2

0

λ
. (2.48)

We can understand the physical significance of Eq. (2.38) by inserting Eq. (2.40) into the expo-

nential of Eq. (2.17):

e
ik(x2+y2)

2R(z)
−x2+y2

w(z) (2.49)

In doing so it is seen that w(z) is a measure of the beam size as a function of propagation distance,

z. As required, the beam intensity drops off in a Gaussian manner, as shown in Fig. 2.1. w(z) is

located where the intensity of the field goes to 1/e2 of its maximum value, this is demonstrated for

the fundamental (n = m = 0) Gaussian beam in Fig. 2.1. This beam size will be referred to as

the spot size or beam radius in the following sections. The other real parameter, R, is the radius of

curvature of the wavefront. w0 is the minimum spot size of the beam and is at the beam waist. z
R

,

given by Eq. (2.48), is known as the Rayleigh range and is the distance from the waist where the

spot size increases to
√
2 of its value at the waist. The relative locations of the beam waist and the

first Rayleigh range is given in Fig. 2.2.

2.1.2 Laguerre-Gauss solutions of the scalar wave equation

While the Hermite-Gauss mode functions form a complete set of solutions to the wave equation

they are not the only set. Laguerre-Gauss beams also form a complete set of solutions to the scalar

wave equation in circular cylindrical coordinates. To find the cylindrical solutions we follow a

method similar to the one used to find the Hermite-Gauss solutions. We seek solutions to the
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Figure 2.1: Intensity of the fundamental Gaussian beam. The radius w(z) of the spot size of the

beam is defined as the distance from the center of the beam to the location where the intensity

drops to 1/e2 of its maximum value (Imax). Here, r =
√

x2 + y2.

Figure 2.2: Beam waist and first Rayleigh range locations.

scalar wave equation in cylindrical coordinates,

[

∇2
⊥
+ 2ik

∂

∂z

]

ψ(r, φ, z) = 0, (2.50)

where k = 2π/λ is the magnitude of the wave vector and

∇2
⊥
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
. (2.51)
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Motivated by the previously found Hermite-Gauss solutions we start by assuming a solution of the

form [46]:

ψ`(r, φ, z) =

(√
2r

w(z)

)`

L

(

2r2

w2(z)

)

e
ikr2

2q(z)
+i`φ−G(z), (2.52)

We expect the solution to be a power series in r. Due to the periodic nature of cylindrical coordi-

nates in the azimuthal coordinates we must impose a restriction on ` to ensure that the φ depen-

dence is single valued. We have chosen the φ dependence to be eiφ`, where ` must be an integer, so

that this single-valued periodic boundary condition is met. G(z) is a function to be determined and

expected to be similar to the phase shift found for the Hermite-Gauss solution. We are now left to

find our trial solution by substituting Eq. (2.52) into Eq. (2.50) and endeavor to find the unknown

functions L and G. We will start by finding the derivatives of Eq. (2.50):

∂

∂r
ψ`(~r) =

(√
2r

w

)`
[

`

r
L+

4r

w2(z)
L′ − ikr

q(z)
L

]

e
ikr2

2q(z)
+imφ−G(z), (2.53)

∂2ψ`(~r)

∂r2
=

(√
2r

w

)`
[

16r2

w4(z)
L′′ +

(

8`

w2(z)
− 8r2ik

q(z)w2(z)
+

4

w2(z)

)

L′+

(

(ik)2r2

q2(z)
− 2`ik

q(z)
− ik

q(z)
+
`2

r2
− `

r2

)

L

]

e
ikr2

2q(z)
+i`φ−G(z), (2.54)

∂ψ`(~r)

∂z
=

(√
2r

w

)`
[

−dw(z)
dz

4r2

w3(z)
L

+

(

−dq(z)
dz

r2ik

2q2(z)
− dw(z)

dz

`

w(z)
− dG(z)

dz

)

L

]

e
ikr2

2q(z)
+imφ−G(z), (2.55)

and

∂2ψ`(~r)

∂φ2
= −

(√
2r

w(z)

)`

`2Le
ikr2

2q(z)
+i`φ−G(z), (2.56)

where the argument , 2r2/w2(z), of L is suppressed. We have used single prime on L to denote a

first derivative with respect to its argument and two primes as a second derivative with respect to

23



its argument. Putting it all together and simplifying we have

L

(

2`ik

q(z)
+

2ik

q(z)
− 2ik`w′(z)

w3(z)
− 2ik

dG(z)

dz

)

+ L

(

8(m+ 1)

w2
+
dw(z)

dz

ik8r2

w3(z)

)

+ L′′
16r2

w4(z)
= 0,

(2.57)

where we have used dq(z)/dz = 1. Rewriting we have:

L′′

L

16r2

w4(z)
+
L′

L

(

8(`+ 1)

w2(z)
+

8ikr2

w2(z)q(z)
− 8ikr2w′(z)

w3(z)

)

= −
(

2`ik

q(z)
+

2ik

q(z)
− dw(z)

dz

2ik`

w3(z)
− 2ik

dG(z)

dz

)

. (2.58)

Since the right hand side has no r dependence we will equate it to a constant C to put Eq. (2.58)

in a more manageable form:

L′′
2r2

w2(z)
+ L′

(

1 + `+
ikr2

q(z)
− dw(z)

dz

ir2

w(z)

)

+ L
Cw2(z)

2
= 0, (2.59)

where

C = −
(

2`ik

q(z)
+

2ik

q(z)
− dw(z)

dz

2ik`

w3(z)
− 2ik

dG(z)

dz

)

. (2.60)

Writing

1

q(z)
=

1

R(z)
+

i2

kw2(z)
, (2.40

∗
)

w(z) = w0

√

1 +

(

z

z
R

)2

, (2.38
∗
)

dw(z)

dz
=

zw0
√

1 +
( z

R

z

)2
=

zw2
0

w(z)
, (2.61)

and letting

ν =
2r2

w2(z)
, (2.62)

we are left with:

νL′′ + L′(1 + `− ν) + L
Cw2(z)

2
= 0, (2.63)
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which is in the same form as the associated Laguerre differential equation [73],

ξL′′ + (1 + `+ ξ)L′ + pL = 0. (2.64)

So we have

L

(

2r2

w2(z)

)

= L`
p

(

2r2

w2(z)

)

, (2.65)

where L`
p is the associated Laguerre polynomial. Comparing Eqs. (2.63) and (2.64) we find that C

must be

C =
2p

w2(z)
. (2.66)

We are now left to find G(z). Consider Eq. (2.60) and Eq. (2.66) ,

− 2ik

q(z)
(`+ 1) +

dw(z)

dz

2ikm

w(z)
− 2ik

dG(z)

dz
= C =

2p

w2(z)
. (2.67)

Using Eq. (2.61) in Eq. (2.67) and rearranging, we are left with:

dw(z)

dz
= −`+ 1

q(z)
− 2lz

kw2(z)
+

ip

kw2(z)
. (2.68)

After putting Eq. (2.40) in for 1/q(z), Eq. (2.38) for w(z), and simplifying Eq. (2.68) becomes

dG(z)

dz
=

`+ 1

z − iz
R

− 2`z − ip

z
R

[

z +
(

z
z
R

)2
]

=
z

z2
R
+ z2

+ i(1 + `+ 2p)
z
R

z2
R
+ z2

(2.69)

After integrating both sides with respect to z, from 0 to z, the expression for G(z) is found to be,

G(z) = i(`+ 1 + 2p) arctan

(

z

z
R

)

+
1

2
ln

(

1 +

(

z

z
R

)2
)

. (2.70)
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Here, the real part of G(z) corresponds to the expected decrease in intensity with distance z, as the

beam increases in diameter with propagation,

e<[G(z)] = exp

[

1

2
ln

(

1 +

(

z

z
R

)2
)]

=
w0

w(z)
, (2.71)

where w0 is the beam radius at its waist, taken to be at z = 0. Again, letting

θ(z) = arctan

(

z

z
R

)

, (2.72)

we see that the imaginary part of G(z) gives a phase shift θ between a Gaussian beam and a plane

wave. This phase shift is the same as the shift mentioned in the Hermite-Gauss derivation and is

called the Gouy phase shift and will be discussed in the next section. After using Eqs. (2.65),

(2.70), and (2.71) in Eq. (2.52) we have the Laguerre-Gauss beam solutions to the wave equation,

ψp`(r, φ, z) =
2w0

w(z)

(√
2r

w(z)

)`

L`
p

(

2r2

w2(z)

)

e−i(2p+`+1)θ(z)+ikr2/2q(z)+i`φ. (2.73)

An interesting feature of Laguerre-Gaussian beams is that they carry orbital angular momentum.

Recall that the azimuthal dependence on the transverse field is in the from exp(i`φ). The integer `

is known as the topological charge or the azimuthal index and gives the orbital angular momentum

that the beam carries, `~ per photon [32,34]. Such LG beams that carry orbital angular momentum

are often referred to as optical vortex beams [14, 15]. The sign of ` gives the handedness of the

orbital angular momentum.
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Gouy phase

It is important discuss the Gouy phase and its physical significance. We shall see that its presence

is responsible for the change of the cross-polarized higher-order beams with propagation and is the

basis for the mode converter that will be discussed in the next chapter.

The Gouy phase, given by Eq. (2.72), represents the difference in phase shift of a gaussian beam

with respect to a plane wave of the same wavelength. This phase was first discovered by Gouy

and was then shown to exist for any wave as it passes through its focus [74]. In going through the

waist, a fundamental Gaussian beam will experience a phase shift of π, which is demonstrated in

Fig. 2.3.

Figure 2.3: Gouy phase shift and beam shape for a gaussian beam.

Failure of the single-component solutions

Lax et. al., describing the failure of the single-component description as “an apparent paradox”

in describing optical beams, were among the first to consider more then one component to the

field [1]. It is easy to see why the single-component description fails for a beam of finite transverse

size if we consider Eq. (2.1). With only one component for the electric field (for say an x-polarized

beam) we are left with,

∂ψ(~r)

∂x
= 0. (2.74)
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The solution to Eq. (2.74) is a constant, ψ(~r) = ψ0. This implies that for finite transverse size

beam there must be more then one component to the field of a Gaussian beam, a dominant , cross,

and longitudinal polarization term.

2.1.3 Vector Solutions

We now seek a solution to Maxwell’s equations. We follow the treatment given by Erikson and

Singh [12]. These solutions must be vectors and wavelike. Considering general electric and mag-

netic fields for a beam propagating in the z direction with angular frequency, ω, the fields are given

by

~E(~r, t) = [x̂E1(~r) + ŷE2(~r) + ẑE3(~r)] e
i(kz−ωt), (2.75)

~B(~r, t) = [x̂B1(~r) + ŷB2(~r) + ẑB3(~r)] e
i(kz−ωt), (2.76)

where k is the wave vector. After inserting Eqs. (2.75) and (2.76) in Maxwell’s equations and

isolating ~E(~r) and ~B(~r) we arrive at the three components of the electric field. The electric field

components for a beam dominantly polarized in the x direction are given by

E
(mn)
1 (~r) = Amnψmn (~r) , (2.77)

E
(mn)
2 (~r) = Amn

(

1

2k2

)

∂2ψmn (~r)

∂x∂y
, (2.78)

E
(mn)
3 (~r) = Amn

(

i

k

)

∂ψmn (~r)

∂x
, (2.79)

where ψmn is given by Eqs. (2.46) or (2.73) and Amn is related to the total power of the beam. In

writing the previous three equations, only the leading nonzero terms have been kept.
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Hermite-Gauss vector solutions

First we will consider Hermite-Gauss beams, therefore ψmn (~r) is given by Eq. (4.4). Amn is

determined by considering the total power of the beam, P0:

P0 =
ε0c

2

∞
∫∫

−∞

∣

∣

∣

~E
∣

∣

∣

2

dxdy

=
ε0cπw

2
0

4
|Amn(z)|2 2n+mm!n!, (2.80)

Solving for Amn,

Amn(z) =

√

4P0

πw2
0ε0c2

n+mm!n!
. (2.81)

Inserting Eq. (2.73) into Eqs. (2.77-2.79) we can derive explicit expressions for all three compo-

nents of the field. We will start by considering the behavior of the field at the waist, z = 0. Once

this behavior is determined for z = 0 the solution can be generalized for any distance, z. At the

waist q and θ are given by,

1

q(0)
=

1

R(0)
+

i2

kw2
0

=
i2

kw2
0

and θ(0) = 0.

Let X =
√
2x

w2(z)
, Y =

√
2y

w2(z)
, and at the waist the dominant polarization component of the electric

field is

E
(mn)
1 (x, y, 0) = Amnψmn (x, y, 0)

= Amn

√

2

πw2
0

Hm(X)Hm(Y )e−(X
2+Y 2)/2. (2.82)

Using the definition of the derivative of a Hermite polynomial,

dHm(x)

dx
= 2mHm−1(x), (2.83)
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and Eq. (2.75), we can find the cross polarization term:

E2 =

(

Amn

2k2

)

∂2ψmn(~r)

∂x∂y

=

(

Amn

2k2

)

∂

∂y

[√

2

πw2
0

1

2

(

2mHm−1(X)Hn(y)−Hm+1(X)Hn(Y )

√
2

w2
0

)]

=

(

Amn

2k2

)

√

2

πw2
0

1

w2
0

[

(2mHm−1(X)−Hm+1(X)) 2nHn−1(Y )

√
2

w2(z)

+

(

−
√
2

w0

2mHm−1(X)−Hm+1(X)

)

Hn(Y )

]

e−i(m+m+1)θ(z)+i kr
2

2q

=

(

Amn

2k2

)

√

2

πw2(z)

1

w2
0

[(2mHm−1(X)−Hm+1(X)) (2nHn−1(Y )−Hn(Y ))] e−
(X2+Y 2)

2 .

Using another property of Hermite polynomials,

2xHm(x) = Hm+1(x) + 2mHm+1(x), (2.84)

we have the cross-polarization component of z = 0

E2(x, y, 0) =

(

Amn

4k2w2
0

)

√

2

πw2(z)
[4mnHm−1(X)Hn−1(Y )− 2mHm−1(X)Hn+1(Y )

−2nHm+1(X)Hn−1(Y ) +Hm+1(X)Hn+1(Y )] e−
(X2+Y 2)

2

=
Amn

4kw2
0

[4mnψm−1,n−1(x, y, 0)− 2mψm−1,n+1(x, y, 0)

−2nψm−1,n−1(x, y, 0) + ψm+1,n+1(x, y, 0)] . (2.85)

The longitudinal field component can similarly be found:

E
(mn)
3 (x, y, 0) =

(

iAmn

k

)

∂ψmn (~r)

∂x

=

(

iAmn

k

)

√

2

πw2
0

[

−
√
2

w0

Hm(X)Hn(Y ) +
4
√
2

w2
0

mHm+1(X)Hn(Y )

]

e−
(X2+Y 2)

2 ,
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where, using Eq. (2.84) we arrive at

E3(x, y, 0) =

(

iAmn

k

)

√

2

πw2
0

1

2
[2mHm−1(X)Hn(Y )−Hm+1(X)Hn(Y )] e−

(X2+Y 2)
2

=

(

iAmn√
2kw0

)

[ψm−1,n(x, y, 0)− ψm+1,n(x, y, 0)] . (2.86)

It has already been shown that ψ(~r) satisfies the scalar wave equation therefore knowing the field

at the waist we can write down the field at an arbitrary z:

E
(mn)
1 (~r) = Amnψmn (~r) , (2.87)

E
(mn)
2 (~r) =

(

Amn

4(w0k)2

)

[4mnψm−1,n−1(~r)− 2mψm−1,n+1(~r)

−2nψm+1,n−1(~r)− ψm+1,n(~r)] , (2.88)

E
(mn)
3 (~r) =

(

iAmn√
2kw0

)

[2mψm−1,n(~r)− 2mψm+1,n(~r)] . (2.89)

Eqs. (2.87-2.89) are in agreement with Erikson and Singh [12]. Explicit expressions for some

low-order modes are given in Table 2.1 and theoretical intensity profiles for them are given in Figs.

2.4-2.7, density plots were generated using Maple. We have introduced N = m + n as the order

of the mode.
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Figure 2.4: Intensity profile for the dominant, cross-polarization, and longitudinal components

(left to right) for the fundamental Hermite-Gauss beam.

Figure 2.5: Evolution of intensity profile for the dominant, cross-polarization, and longitudinal

components (top to bottom) for a linearly polarized HG0,2 beam at z = 0, z = 1
2
z
R
, z = z

R
, and

z = 5z
R

(left to right).

It is interesting to note that the dominant polarization component does not change shape with

propagation but the cross-polarization component with nonzero n or m evolves with propagation.

The longitudinal components also evolves for nonzero m. It is interesting to explore why the beam

shape changes and why it evolves to a stable pattern. Recall the Gouy phase, given by Eq. (2.72),

θ(z) = arctan
z

zR
, (2.72

∗
)
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Figure 2.6: Evolution of intensity profile for the dominant, cross-polarization, and longitudinal

components (top to bottom)for a linearly polarized HG2,0 beam at z = 0, z = 1
2
z
R
, z = z

R
, and

z = 5z
R

(left to right).

and consider, for example, the expression for the intensity profile for the cross-polarization com-

ponent of the first higher order mode,

I
(01)
1 =

1

(kw0)4

[

2P0

πw2(z)

]

X2e−(X
2+Y 2) ×

[

(1− Y 2)2 cos2 θ(z) + Y 4 sin2 θ(z)
]

. (2.90)

From this expression, it can be seen that the only z dependence in the intensity profile is in the

beam size w(z) and the Gouy phase θ(z). w will only affect the size of the beam so the change

in shape with propagation must be due to the presence of the Gouy phase. A closer look at the

z dependence of the sin and cos term, graphed in Fig. 2.8, shows why the change in beam shape

becomes less apparent after several Rayleigh ranges. From Fig. (2.8) we see that for z << z
R

sin θ ≈ 0 and cos θ ≈ 1. On the other hand for z >> z
R
sin θ ≈ 1 and cos θ ≈ 0. The change after

z > 2z
R

is small and eventually the mode reaches a stable pattern.
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Figure 2.7: Evolution of intensity profile for the dominant, cross-polarization, and longitudinal

components (top to bottom) for a linearly polarized HG1,1 beam at z = 0, z = 1
2
z
R
, z = z

R
, and

z = 5z
R

(left to right).

Figure 2.8: cos θ(z) and sin θ(z) verses z/z
R

.

Further investigating the shape that different mode orders evolve to, consider I
(20)
2 far from the

location of the beam waist (z >> z
R

) where

I
(20)
2 =

1

(kw0)4

[

P0

πw2(z)

]

X2Y 2(2X2 − 1)2e−(X
2+Y 2), (2.91)
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along with I
(10)
2 and I

(30)
2

I
(10)
2 =

1

(kw0)4

[

P0

πw2(z)

]

Y 2X4e−(X
2+Y 2), (2.92)

I
(30)
2 =

1

(kw0)4

[

2P0

6πw2(z)

]

Y 2X4(2X2 − 3)2e−(X
2+Y 2). (2.93)

These are shown graphically as density plots in Fig. 2.9. For an indication of what the structure of

the intensity profiles evolves to far from the waist I
(50)
2 and I

(20,0)
2 are also graphically shown. Due

I
(10)
1 I

(20)
1 I

(30)
1 I

(20,0)
1

Figure 2.9: Intensity profiles for several orders for z >> z
R

to the restrictions imposed by the radius of the bore of the laser cavity are not able to study modes

with N > 4 experimentally.

Laguerre-Gauss vector solutions

We now discuss the vector solutions to Maxwell’s equations in cylindrical coordinates. Again, a

three component wave solution that satisfies Maxwell’s equations is sought. It was shown in the

previous section that for a beam propagating in the z direction and polarized in the x direction the

field components are given by Eqs. (2.77)-(2.79):

E
(`p)
1 (~r) = A`pψ`p (~r) , (2.77

∗
)

E
(`p)
2 (~r) = A`p

(

1

2k2

)

∂2ψ`p (~r)

∂x∂y
, (2.78

∗
)

E
(`p)
3 (~r) = A`p

(

i

k

)

∂ψ`p (~r)

∂x
. (2.79

∗
)
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In this section we are interested in beams in cylindrical coordinates. Therefore the dominant field

amplitude is given by Eq. (2.73):

ψ`p(r, φ, z) =
2w0

w(z)

(√
2r

w(z)

)`

L`
p

(

2r2

w2(z)

)

e−i(2p+`+1)θ(z)+ikr2/2q(z)+i`φ. (2.73
∗
)

It is necessary to first convert Eqs. (2.77-2.79) into cylindrical coordinates,

E
(`p)
1 (r, φz)) = A`pψ`p (r, φ, z) , (2.94)

E
(`p)
2 (r, φ, z) = A`p

(

1

2k2

)[

cos(2φ)

(

1

r

∂2

∂φr
− 1

r2
∂

∂φ

)

+
1

2
sin(2φ)

(

∂2

∂r2
− 1

r

∂

∂r
− 1

r2
∂2

∂φ2

)]

ψ`p(r, φ, z), (2.95)

E
(`p)
3 (r, φ, z) = A`p

(

i

k

)[

cos(φ)
∂

∂r
− sin(φ)

r

∂

∂φ

]

ψ`p(r, φ, z). (2.96)

The cross polarization component of the electric field, E2, will be found first. After rewriting sin

and cos in terms of exponentials, taking the required derivatives, and gathering coefficients of the

same power we have,

E`p
2 (r, φ, z) =

{

ei(`−2)φ
ξ`−2

4

[

`ξ′2L− `

r
ξξ′L+

1

r
ξ′2L+ `ξξ′L′

− 4`

w2(z)
rξξ′L− 4

w2(z)
rξ2L′ +

4

w4(z)
r2ξ2L+

`2

r2
ξ2L

−2`

r2
ξ2L+

2`2

r
ξξ′L+

2`

r
ξ2L′ − 4`Lξ2

w2(z)
− 1

r
ξ2L′′ + ξ2L′′

]

+ e−i(`+2)φ1

4

[

−`2ξ2L− `2

ξ2r2
L+ lξ′2L− 2

ξ3
`ξ′L′ +

4r`

ξ3w2(z)
ξ′L

+
4r

ξ2w2(z)
L′ − 4r2

ξ2w4(z)
L+

`

rξ3
ξ′L+

2`

rξ2
L′ − `

ξ2w2(z)
L

1

rξ2
L′ − 1

ξ2
L′′2
]}

e−i(2p+`+1)θ+ikr2/2q(z), (2.97)

where, for simplicity, ξ =
√
2r/w(z), L`

p = L, and the argument of L, ξ2, has been suppressed.

L′ represents the first derivative of L`
p with respect to r, and L′′ is the second derivative of L`

p with
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respect to r. Evaluating the remaining derivatives

ξ′ =
d

dr

(√
2r

w(z)

)

=

( √
2

w(z)

)

, (2.98)

and by making use of recursion relations for Laguerre polynomials:

dL`
p(x)

dx
= −L`+1

p−1(x), (2.99)

L′ =
d

dr
L

(

2r2

w2(z)

)

= −
(

4r

w2(z)

)

L
(`+1)
(p−1)

(√
2r

w(z)

)

, (2.100)

L′′ =
d2

dr2
L

(

2r2

w2(z)

)

=

(

4r

w2(z)

)2

L
(`+2)
(p−2)

(√
2r

w(z)

)

−
(

4

w2(z)

)

L
(`+1)
(p−1)

(√
2r

w(z)

)

(2.101)

which, after taking z = 0, we are left with,

E`p
2 (r, φ, 0) =A`pe

i(`−2)φ ξ
`−2

w2
0

[(

−2`+ 2`2 − 2ξ2`+
1

2
ξ4
)

L`
p

+
(

ξ2 − 4ξ2`+ 2ξ4 − ξ2
)

L`+1
p−1 + 2ξ4L`+2

p−2
]

+ A`pe
i(`+2)φ ξ

`+2

w2
0

[

−1

2
L`
p − 2L`+1

p−1 − 2L`+2
p−2

]

. (2.102)

Eq. (2.102) can be further simplified using the following recursion relations for Laguerre polyno-

mials:

xL`
p(x) =(`+ p)L`−1

p − (p+ 1)L`−1
p+1, (2.103)

x2L`
p(x) =(`+ p)(`+ p− 1)L`−2

p−2(x)− 2(`+ p)(p+ 1)L`−2
p+1(x)

+ (p+ 1)(p+ 2)L`−2,
p+2 (2.104)

xL`+1
p−1(x) =`L

`
p(x)− (`+ p)L`−1

p , (2.105)
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x2L`+1
p−1(x) =`(`+ p)L`−1

p (x)− `(p+ 1)L`−1
p+1(x)

− (`+ p)(`+ p− 1)L`−1
p (x) + (`+ p)(p+ 1)L`−1

p+2(x), (2.106)

xL`−1
p (x) =`(`+ p)``−1p (x)− `(p+ 1)Lell−1

p+1 (x)

− (`+ p)(`+ p− 1)L`−2
p (x) + (`+ p)(p+ 1)L`−2

p+1(x), (2.107)

xL`+2
p−2(x) =− (`+ p)L`

p−1(x) + (`+ 1)L`+1
p−1(x), (2.108)

x2L`+2
p−2(x) =`(`+ 1)L`

p(x)− `(`+ p)L`+1
p−1(x) + (`+ p)(`+ p− 1)L`−2

p (x), (2.109)

L`
p =L

`+2
p − 2L`+2

p−1 − L`+2
p−2, (2.110)

and

L`+1
p−1 = L`+2

p−1 − L`+1
p−2. (2.111)

Letting x = ξ2, we have

E`p
2 (r, φ, 0) =A`pe

i(`−2) ξ
`−2

w2
0

[

1

2
(`+ p)(`+ p− 1)L`−2

p

(

ξ2
)

+ (`+ p)(p+ 1)L`−2
p

(

ξ2
)

+
1

2
L`−2
p+2

(

ξ2
)

]

− A`pe
i(`+2) ξ

`+2

2w2
0

[

L`+2
p

(

ξ2
)

+ 2L`+2
p−1
(

ξ2
)

+ L`+2
p−2
(

ξ2
)]

(2.112)

=

(

iAp`

4(kw0)2

)

[−ψ`+2,p(r, φ, 0)− 2ψ`+2,p−1(r, φ, 0)− ψ`−2,p−2(r, φ, 0)

+(p+ 1)(p+ 2)ψ`−2,p+2(r, φ, 0) + 2(`+ p)(p+ 1)ψ`−2,p+1(r, φ, 0)

+(`+ p)(`+ p− 1)ψ`−2,p(r, φ, 0)] (2.113)

The next task is to find the longitudinal polarization component. Starting with the following recur-

sion property of Laguerre polynomials,

dL`
p(x)

dx
= −L`+1

p−1(x), (2.114)
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we find the derivative of the Laguerre polynomial,

d

dr
L`
p

(

2r2

w2(z)

)

= − 4r

w2(z)
L`+1
p−1

(

2r2

w2(z)

)

. (2.115)

Taking the rest of the required derivatives we are left with,

E`p
3 (r, φ, z) =

(

iA`p

2k

)

ξ`
[

(

eiφ + e−iφ
)

(

L`
p

(

ξ2
)

− 4r

w2(z)
L`+1
p−1
(

ξ2
)

)

+
(

e−iφ − eiφ
)

i`L`
p

(

ξ2
)]

eikr
2/2q(z)−i(2p+`+1)θ−i`φ. (2.116)

Eq. (2.116) can be further simplified by letting ξ =
√
2r/w(z) and looking at z = 0 (ie. w(0) =

w0, θ(z) = 0, and q(0) = −iw0/2k):

E`p
3 (r, φ, 0) =

(

iA`p

2k

)[

ei(`+1)φ ξ`

2rw0

(

−ξ2L`
p(ξ

2)− 2ξ2L`+1
p−1(ξ

2)
)

+ ei(`−1)φ
ξ`

2rw0

(

−ξ2L`
p

(

ξ2
)

(2`− ξ2)− 2ξ2L`+1
p−1(ξ

2)
)

]

. (2.117)

Next, taking advantage of the following recursion relations of Laguerre polynomials,

L`
p(x) =L

`+1
p (x)− L`+1

p−1(x), (2.118)

xL`+1
p−1(x) =− (`+ p)L`−1

p (x) + `L`
p(x), (2.119)

Eq. (2.116) simplifies to,

E`p
3 (r, φ, 0) =

(

iA`p

2k

)

1√
2w0

[

ei(`+1)φξ`+1
[

−L`+p
p − L`+1

p−1
]

+ei(`−1)φξ`−1
[

(`+ p)L`−1
p + (p+ 1)L`−1

p+1

]]

=

(

iA`p

2k

)

1√
2w0

[−ψ`+1,p(r, φ, 0)− ψ`+1,p−1(r, φ, 0)

+(`+ p)ψp,`−1(r, φ, 0) + (p+ 1)ψp+1,`−1(r, φ, 0)] . (2.120)
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Where the field components satisfy Maxwell’s equations and the paraxial wave equation

[

∇2
⊥
+ 2ik

∂

∂z

]

Ei(r, φ, z) = 0, (2.121)

where, Ei, i = 1, 2, 3 is given by Eq. (2.75). Having found the field components for z = 0 we

can now write down the components for arbitrary z using the fact that Eqs. (2.77
∗
), (2.113), and

(2.120) satisfy the paraxial wave equation:

E`p
1 (r, φ, z) = A`pψ`p(r, φ, z) (2.122)

E`p
2 (r, φ, z) =

(

iA`p

4(kw0)2

)

[−ψ`+2,p(r, φ, z)− 2ψ`+2,p−1(r, φ, z)− ψ`−2,p−2(r, φ, z)

+(p+ 1)(p+ 2)ψ`−2,p+2(r, φ, z) + 2(`+ p)(p+ 1)ψ`−2,p+1(r, φ, z)

+(`+ p)(`+ p− 1)ψ`−2,p(r, φ, z)] (2.123)

Elp
3 (r, φ, z) =

(

iA`p√
2w0k

)

[−ψ`+1,p(r, φ, z)− ψ`+1,p−1(r, φ, z)

+(`+ p)ψ`−1,p(r, φ, z) + (p+ 1)ψ`−1,p+1(r, φ, z)] . (2.124)

Eqs. (2.122-2.124) are in agreement with Vyas and Singh [75].

The constant Alp can be found by considering the total power of the beam P0:

P0 =

∫ ∞

0

∫ 2π

0

I(r, φ, z)rdrdφ, (2.125)

where

I =
1

2
ε0c |E`p|2 . (2.126)

This gives,

P0 =2π

(

1

2
ε0c |A`p|2

)

4w2
0

w2(z)

∫ ∞

0

(√
2r

w(z)

)2` ∣
∣

∣

∣

L`
p

(

2r2

w2(z)

)∣

∣

∣

∣

2

e−2r
2/w2(z)dr,

=πε0cw
2
0 |A`p|2

(`+ p)!

p!
, (2.127)
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which upon solving for the constant A`p yields,

A`p =

√

P0p!

w2
0πε0cn(`+ p)!

. (2.128)

The fundamental Gaussbeam is recovered for ` = p = 0. Figures 2.10, 2.11, and 2.12 show the

intensity profiles of the dominant, cross, and longitudinal-polarization components for a few orders

of LG beams.

Figure 2.10: Intensity profile for the dominant, cross-polarization, and longitudinal components

(left to right) for a linearly polarized fundamental Laguerre-Gauss beam.

Figure 2.10 shows the intensity profiles of the dominant, cross, and longitudinal-polarization com-

ponents for a linearly polarized fundamental Laguerre-Gaussbeam, which is the same as the HG

beam. The intensity profiles of all three of the components undergo an increase in size but do not

change shape with propagation. The cross-polarization component of the fundamental beam, hav-

ing a four lobed pattern, is mathematically the same as the HG11 mode. With a two lobed pattern,

the longitudinal-polarization component is the same as the HG10 mode.

The evolution of the dominant, cross, and longitudinal-polarization intensity profiles of a linearly

polarized LG10 with propagation is shown in Fig. 2.11. The cross-polarization component has a

four blade structure that undergoes a rotation as the beam propagates away from its waist. The

intensity profile for this component stabilizes to a four lobe pattern that is a linear combination of

the cross-polarization components of the HG10 and HG01 modes far from the waist.

Figure 2.12 gives the intensity profiles of the three polarization components of a linearly polarized

LG11 beam at different distances from the focus of the beam. Comparing 2.11 and 2.12 it is seen
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Figure 2.11: Evolution of intensity profile for the dominant, cross-polarization, and longitudinal

components (top to bottom) for a linearly polarized LG10 beam at z = 0, z = 1
2
z
R
, z = z

R
, and

z = 10z
R

( left to right).

that the evolution of the cross and longitudinal-polarization intensity profiles of the LG10 and LG11

beams are very similar.

Again notice that, similar to the HG modes, the dominant polarization component does not change

shape with propagation while the cross and longitudinal components of higher-order beams un-

dergo an evolution as the beam propagated away from the focus. Once again the evolution of the

cross and longitudinal components is due to their dependence on Gouy’s phase.

2.2 Poynting vector

Here the significance of the longitudinal-polarization component on the energy flow of Maxwell-

Gauss beams is discussed. The energy flow of a electromagnetic beam is described by the Poynting

vector. The vectors that describe the energy flow of Gauss laser beams should converge as they ap-
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Figure 2.12: Evolution of intensity profile for the dominant, cross-polarization, and longitudinal

components (top to bottom) for a linearly polarized LG11 beam at z = 0, z = 1
2
z
R
, z = z

R
, and

z = 10z
R

(left to right)

proach the focus of the beam and diverge as they leave the focal region. With out the longitudinal-

polarization component of the field the Poynting vector does not possess this property [12]. The

Poynting vector averaged over an optical cycle is given by

~S (~r) =
1

2
ε0c

2<
[

~E (~r)× ~B∗ (~r)
]

, (2.129)

where ~E (~r) is given by Eqs. (2.87)-(2.89) and

~B∗ (~r) = x̂
1

c
E2 − ŷ

1

c
E1 − ẑ

i

kc

∂E1

∂y
. (2.130)

Here, we will assume Cartesian coordinates and work with Hermite-Gauss beams. Hence using

the fields given by Eqs. (2.87)-(2.89) and making use of the Hermite recursion relations given in
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Eqs.(2.83) and (2.84), Eq. (2.130) becomes

~S (~r) =
1

2
ε0c

2 |Amn|2 ψmn (~r)

[

x̂
x

R(z)
+ ŷ

y

R(z)
+ ẑ

]

. (2.131)

Here, R(z) is the radius of curvature of the wave front, and is positive for a diverging wave and

negative for a converging wave. ψmn and Amn are given by Eqs. (2.46) and (2.81), respectively.

Figure 2.13 shows the Poynting vector of a Gauss beam at different locations as the beam propa-

gates to the right.

Figure 2.13: The energy flow of a Gauss beam near its focus propagating to the right. Line seg-

ments represent local trajectories of the Poynting vector, curves perpendicular to them represent

the curved wave front.

If the longitudinal component is not retained in describing the field, the energy flow vector would

only point in the z direction. Therefore, in order to properly describe the energy flow of the beam

the presence of the longitudinal component is necessary .
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2.3 Chapter summary

In this chapter we have discussed the structure of linearly polarized Hermite-Gauss and Laguerre-

Gauss laser beams. The need for a three-component vector solution is presented followed by a

derivation of said solutions. Theoretical intensity profiles for a few low order of Hermite-Gauss and

Laguerre-Gauss beams are given at different distances from the beam’s waist. The intensity profiles

of the cross-polarization component of both HG and LG beams change shape with propagation for

N = n +m > 0. The longitudinal-polarization component evolves with propagation for nonzero

n or m for the LG beam and when m is nonzero for the HG beam. We have also discussed the

importance of the longitudinal-polarization component in properly describing the energy flow of

the beam.

46



Chapter 3

Linearly Polarized Hermite-Gauss Laser Beams

In this chapter we present the experimental setup used to generate and verify the polarization

structure of linearly polarized Hermite-Gauss laser beams. In addition to the experimental setup,

we present experimentally recorded profiles for linearly polarized Hermite-Gauss laser beams. A

comparison between the theoretical and experimental profiles is also carried out in this chapter.

3.1 Generation of higher-order Hermite-Gauss laser beams

Typically, it is not desirable to have the laser operate in higher order modes. How ever, in general,

there can be a mixture of the fundamental mode (HG00) and higher order modes at any time in the

cavity. An aperture can be introduced within the laser cavity to force only the fundamental mode

to oscillate. Here we desire to generate the fundamental and higher-order modes, one at a time.

We do this by taking advantage of the fact that a laser will oscillate in the mode which has minimal

loss. The inclusion of non-symmetric elements in the cavity such the Brewster window attached to

the laser gain tube forces rectangular symmetry. Higher-order modes can be generated by inserting

a wire or a fiber at one of the nodes of the desired modes, as shown in Fig. 3.1 [15]. The top row

shows the intensity distribution along the x−direction and the bottom row gives the beam profile.

Note that the wire only needs to be at one of the zeros of the mode (in each direction). This same

idea can be applied to generate modes with more then one lobe in both coordinates by using a pair

of crossed wires, as shown in Fig. 3.2. This method can be used to generate any higher-order

mode, the order of the mode is only limited by the radius of the bore of the gain tube as the radius

of the beam increases with mode number.
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I0,0(x) ∝ e−x
2

I1,0(x) ∝ x2e−x
2

I2,0(x) ∝ (2x2 − 1)2e−x
2

Figure 3.1: Intensity distribution and beam profiles for HG00, HG10, and HG20 modes in demon-

stration of higher-order mode generation

I11(x, y) ∝ x2y2e−(x
2+y2)

Figure 3.2: Intensity distribution demonstrating HG11 generation

Physically, higher order Hermite-Gaussian mode generation can be understood by considering res-

onating modes of stable resonators. For a mode to be resonant with the cavity boundary conditions

must be met, i.e. the distribution of the field must maintain its shape over each pass of the cav-

ity, must undergo a phase shift in a multiple of 2π, and gain must exceed the loss in each round

trip [45]. As stated above, by inserting a fiber at a node of a desired higher-order HG mode the

desired mode can be generated. This is obvious for modes with only one node (in each transverse

direction) but less so for modes with more than one node in a transverse direction we find that only

one fiber is required (in each transverse direction), even for modes with more than one node in that

direction.
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The modes in laser cavities were modeled by Fox and Li by considering round trip propagation

of a wave in a laser cavity [76]. Fox and Li calculations are analytical calculations that find the

change in the transverse profile of the beam with several round trips in the cavity. The idea here

is that with the repeated round trips a set of discrete transverse eigenmodes (field profiles) will be

found. These self reproducing modes depend on the shape and curve of the laser mirrors and other

losses introduced in the cavity (such as the crossed fibers) these transverse modes are similar to the

transverse modes of a waveguide. Once the laser starts oscillating in one of these eigenmodes and

the gain medium produces sufficient population inversion, overcoming the losses, then it will be a

steady state solution and produce the desired order and family of beam. It can then be understood

that, in addition to the typical optical elements, placing a fiber at only one of the nodes in each

transverse direction are the necessary and sufficient boundary conditions to force operation in the

desired order.

3.2 Hermite-Gaussian setup

A coherent CR-12 super graphite laser head fitted with an Innova-15 plasma tube was used to

generate higher order Hermite-gaussian beams. The laser normally operates in the fundamental

mode. The laser cavity was modified to facilitate generation of higher-order modes as follows.

The cavity was extended by attaching an external frame to the original cavity. The extended cavity

provided additional space to insert a pair of fibers described in Section 2. A diagram of the modified

cavity and crossed fibers is given in Fig. 3.3. The original high reflectivity mirror was flat and the

original output coupler had a radius of curvature of R = 15m, they were replaced by mirrors with

a radius of curvature R = 3m and specifically coated to reflect only 514nm, the new mirrors,

with a shorter radius of curvature, were necessary to decrease the beam radius of the fundamental

mode so that higher order modes would fit into the bore of the tube (gain volume). The cavity

expander and mirror modifications allowed up to N = 3 modes to be generated with power output

of up to 400mW. In addition to the set of crossed fibers in the cavity to select higher order mode
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operation, it was necessary to also include a pair of adjustable apertures to prevent undesirable

modes from operating. The frames that hold the fibers and the slit apertures were mounted on

micrometer translation stages, to allow their horizontal and vertical position to be adjusted relative

to the cavity axis. Micrometer adjustments to the location of the fibers and the slits were necessary

since the beam radius was only about half of a millimeter and the distance between nodes is a small

fraction of that.

Figure 3.3: Diagram of modified laser cavity

A diagram of the experimental setup is given in Fig. (3.4). Since we have a standing wave cavity

the beam size, waist location, and Rayleigh range are calculated as follows [45]. The beam waist

inside the cavity is given by

w01 =

√

Lλ

π

[

g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2

] 1
4

,

where

g1 = 1− L

R1

, and g2 = 1− L

R2

. (3.1)

In our case, the length of the cavity L = 2.05 m and the radius of curvature of the high reflectivity

mirror and the output coupler is R1 = R2 = 3 m, giving us

g1 = g2 = 0.317.
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Figure 3.4: Hermite-Gauss Experimental setup

With λ = 514 nm the radius of the beam at the waist in the cavity is,

w01 = 0.482 mm.

The beam waist is located a distance z2 from the waist:

z2 =
g1(1− g2)

g1 + g2 − 2g1g2
L = 1.025 m.

While the brewster windows have little affect on the beam waist size and location we should

Figure 3.5: Modification of the beam waist location and spot size by the output coupler on exit

from the laser cavity.
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consider the change in the beam as it exits the cavity. It is necessary to consider the ray matrix of

the system shown in Fig. 3.5. The beam is incident on the output coupler (of thickness t) from

the left, the radius of curvature of the left side of the output coupler is R2 = 3 m, the right side

is plane. Call the distance of the output coupler from the beam waist inside the cavity z2 and the

beam radius w01, and the new beam waist location z
′

2 and the spot radius there w
′

01. The matrix

that describes the transformation of the beam exiting the laser cavity is given by:







A B

C D






=







1 z
′

2

0 1













1 0

na−nd

nd

1
R∞

na

nd













0 t

0 1













1 0

nd−na

na

1
R2

nd

na













1 z2

0 1







=







1 + t
R2

(

na

nd
− 1
)

+
z
′

2

R

(

1− nd

na

)

z
′

2 + z2 + tna

nd
+ z2t

R2

(

na

nd
− 1
)

+
z
′

2z2
R2

(

1− nd

na

)

1
naR2

(na − nd) 1 + z2
naR2

(na − nd) ,






(3.2)

where na is the index of refraction of air and nd is the index of refraction of the mirror (nd ≈ 1.5).

The ABCD matrix gives us the transformation equation,

q
′

1 =
Aq1 +B

Cq1 +D
, (3.3)

where q1 and q
′

1 are the complex beam parameters for at the right and left of the output coupler,

respectively. In our case the complex beam parameters q1 and q
′

1 are purely imaginary since we

have defined the ABCD matrix so that we go from the original waist at z2 to the new waist at z
′

2,

q1 = −
iπw2

01

λ
and q

′

1 = −
iπw

′2
01

λ
. (3.4)

Combining Eqs. (3.3) and (3.4) we arrive at

−iz′
R1

=
−iz

R1
A+B

−iz
R1
C +D

. (3.5)
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Equating the real and imaginary parts of Eq. (3.5) we obtain

<(q′1) = 0 =
z2
R1
AC +BD

(z
R1
C)2 +D2

(3.6)

=(q′1) = −z
′

R1
=
z
R1

(AD − BC)

(z
R1
C)2 +D2

. (3.7)

After inserting A,B,C,D, z
R1

= πw2
01/λ, and z

′

R1
= πw

′2
01/λ into Eq. (3.7) and inserting the

given values we get the new beams waist

w
′

01 = 0.55 mm,

were λ = 514 nm, w01 = 0.482 mm, na = 1, and nd = 1.5 is used. Similarly, from Eq. (3.6) we

find the location of the beam waist to be

z
′

2 = −73.7 cm,

which means that the new waist lies to the left of the output coupler mirror.

After leaving the laser cavity, the beam is sent through a pair of linear polarizers. The transmission

axis of the first polarizer is always parallel to the direction of the dominant polarization component

of the beam coming from the laser. The transmission axis of second polarizer was oriented to be

parallel to the transmission axis of the first polarizer to observe the intensity profile of the dominant

component. To observe the intensity profile of the cross-polarization component, the transmission

axes of the second polarizer was aligned perpendicular to the axis of the first polarizer. The purpose

of the first polarizer was two-fold; it reduces the unpolarized background fluorescence by at least

50% and it defines a reference for the proper orientation for the second polarizer.

Upon leaving the polarizers, the beam is then sent through a lens of focal length
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f = 54.6 cm. The beam waist size and location after propagation through the lens are given

by [45]:

w02 =

√

w
′2
01

z
′2

R1/f
2 + (1−D/f)2

(3.8)

where, with λ = 514 nm,

z
′

R1 =
πw

′2
01

λ
= 1.44 m,

and D, is the distance of the lens from the incident beam waist. Refereing to Fig. 3.4 we find that

D is given by

D = z′2 + d1 + d2 + d3 = 73.7 cm + 50 cm + 17 cm + 29 cm = 1.70 m.

This give the new beam waist size,

w02 = 0.137 mm

and the waist location

d4 = f

(

1− 1−D/f

zR1/f 2 + (1−D/f)2

)

= 61.7 cm.

The Rayleigh range of the beam after propagation through l1 is given by

zR2 =
πw2

02

λ
= 11.5 cm.

The laser was operated at an output of a few mW for acquisition of the dominant-polarization

profiles and about 100mW for recording the cross-polarization component profiles. The CCD

camera was placed at varying distances from the beams waist to acquire beam profiles for both

the dominant and cross polarization components. Possible methods for observing the longitudinal

component were discussed in the introduction. Experimental profiles for the dominant and cross

polarization profiles are given in the next section.
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3.3 Hermite-Gauss intensity profiles

The profiles for the dominant direction of polarization (x-component) and the fundamental mode

profiles (HG00) are not expected to change with propagation, but simply increase in size. On the

other hand, it is expected that the cross polarization profiles for higher order modes will change

shape with propagation as the beam propagates. As mentioned in section 1.1.1 the Gouy phase is

responsible for this change in shape. It can be seen from the experimental profiles, after several

Rayleigh ranges the profiles continue to increase in size but the shape seems to stabilize.

The following figures give beam profiles for HG beams up to N = n + m = 3. In each set

the top row shows the theoretical profiles and the row below shows the experimentally obtained

profiles. The experimental images are all shown at 50% of the original size as recorded by the

CCD. The theoretical images were scaled to fit the experimental profiles. In doing such scaling the

information associated with the absolute beam size with propagation is lost but it allows for a direct

comparison of the images and gives a greater appreciation for the alteration the beam undergoes

with propagation. In a subsequent section a direct comparison of the experimental and theoretical

beam size is made.
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N = 0

I
(00)
1

I
(00)
2

N = 1

I
(10)
1

I
(10)
2

Figure 3.6: Dominant (I1) and cross-polarization (I2) components of the fundamental Gaussian

beam (HG00) and HG10 at z = 0, z = 0.5z
R

, z = z
R

, z = z2R, and z = 4z
R

.
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N = 2
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Figure 3.7: Dominant (I1) and cross-polarization (I2) components of HG20 andHG11 at z = 0,

z = 0.5z
R

, z = z
R

, z = 2z
R

, and z = 4z
R

.

57



N = 3
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Figure 3.8: Dominant (I1)and cross-polarization (I2) components of HG30 andHG21 at z = 0,

z = 0.5z
R

, z = z
R

, z = 2z
R

, and z = 4z
R

.
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3.4 Discussion and analysis of results

Both the dominant and cross-polarization component beam profiles of the fundamental HG mode

(N=0), apart from the increase in beam size, do not change shape with propagation. The change in

size with propagation can be thought of as a change in scale of the beam. The increase in the beam

spot size is directly due to the distance dependent beam waist size, w(z), given in Chapter 2 Eq.

(2.38).

The intensity profiles of the cross-polarization for beams with N > 0 have a more interesting evo-

lution with propagation. The dominant-polarization component of higher order modes only under-

goes scale change as the fundamental beam. The evolution of the cross-polarization component of

the higher-order mode intensity profiles is more substantial. The structure of the cross-polarization

component intensity profiles is a function of propagation distance. The change in structure of the

cross-polarization components is due to the propagation dependence of the Gouy phase. For in-

stance, consider the dominant and cross-polarization component intensity profiles for m = 2 and

n = 0:

I
(20)
1 (~r) =

[

P0

πw2(z)

]

(2X2 − 1)2e−(X
2+Y 2), (3.9)

I
(20)
2 (~r) =

1

(kw0)4

[

P0

πw2(z)

]

X2Y 2
[

(2X2 − 5)2 cos2 θ(z) + (2X2 − 1)2 sin2 θ
]

e−(X
2+Y 2),

(3.10)

where X and Y are scaled transverse coordinates as described in Chapter 2, P0 is the total power

of the beam, k is the the magnitude of the wave vector, and w(z) is the radius of the beam. One

can see from Eq. (3.9) that the only z dependence is in the beam radius, w(z), which leads to

the above described scale change of the beam. On the other hand, in addition to the z dependence

present in w(z) in the cross-polarization term, there is an additional z-dependent Gouy phase, θ(z).

This dependence of Gouy phase is responsible for the change in structure of the cross-polarization

intensity profiles of higher-order HG beams. As predicted by theory and discussed in Chapter 2

Section 1.3, after a propagation distance of several Raleigh ranges the intensity profile settles to a
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stable structure.

3.4.1 Experimental and theoretical difference analysis (figure of merit)

In order to quantitatively analyze the experimentally attained beam profiles the following differ-

ence analysis method was devised and implemented in Matlab (see appendix for code):

1. Crop the experimental Imge and theoretical images Imgt to a rectangular region of interest

that encloses the beam profile.

2. Scale the intensity of the theoretical image to be in the same range as the experimental image.

This is accomplished with the imadjust command.

3. Resize the theoretical image to be the same number of pixels as the experimental. This is

done withe the imresize command.

4. Once the set of images are the same size they are subtracted from each other,

Imgs = |Imge − Imgt|.

5. Since the experimental images have varying intensity ranges and size, due to the fact that

as the laser beam propagates it spreads and thus also decreases in intensity, we calculated a

figure of merit as follows. We count the number (Nj) of each integer value (j) in Imgs. As

an example let

Imgs =

























0 0 0 0 1

0 0 2 0 1

0 3 0 2 1

1 1 2 1 0

0 3 1 0 1

























, (3.11)
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then N1 = 8, N2 = 3, and N3 = 2.

Then the sum of the products Nj × j is calculated and divided by the product of the total

number of pixels in Imgs (TP ) and the maximum pixel value in the experimental image,

max(Imge)

FM =
1

max(Imge)× TP

maxj
∑

j=1

j ×Nj. (3.12)

FM gives a quantitative figure of merit that characterizes how good the match is between

the experimental and theoretical images for each mode and longitudinal distance from the

beam’s waist. FM = 1 indicates the worst possible match and FM = 0 a perfect match.

To give a visual appreciation for what results in the subtraction of the theoretical and experimental

images, Imgs for a few orders is given in Fig. 3.9. The dark regions in Fig. 3.9 correspond to low

intensity pixels, i.e. areas of a good match. The lighter regions correspond to high intensity values,

or a poor match. Table 3.1 gives the total weighted difference fractions for all experiment-theory

image sets given in Fig. 3.3.

Figure 3.9: Imgs for the fundamental mode at z = 0, z = z
R

, z = 4z
R

z/z
R

HG00 HG01 HG02 HG03 HG11 HG12

0 0.055 0.071 0.138 0.098 0.120 0.110

0.5 0.078 0.046 0.051 0.127 0.038 0.037

1 0.088 0.054 0.062 0.072 0.076 0.073

2 0.087 0.051 0.056 0.048 0.034 0.039

4 0.073 0.016 0.054 0.033 0.013 0.011

Table 3.1: Figure of merit values for the Hermite-Gauss intensity profiles.
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The left most profile in Fig. 3.9 is the difference of the experimental and theoretical intensity

profiles of the fundamental Gaussian beam at its waist. The figure of merit for this set of images

is FM = 0.055. The difference of the experimental and theoretical intensity profiles of the same

beam at z = z
R

and z = 4z
R

are the middle and right most images in Fig. 3.9 and have figures of

merit of FM = 0.088 and FM = 0.073, respectively. From the three images and these difference

values one can get a sense of the effect the size and intensity ranges can have on the figure of merit

and the necessity to weight the difference values so that the goodness match of all the images can

compared.

From the figure of merit values it is seen that the of the experimental and theoretical cross-

polarization intensity profiles are in reasonable agreement.

Profile size

Since the theoretical intensity profiles presented in Fig. 3.3 are scaled so that they are the same

size as the experimental profiles, we will address here the absolute beam size of profiles that the

CCD records. Figures 3.10-3.13 give the size of the beam with propagation distance a both the

theoretically expected and the experimentally observed growth. The experimental pixel data was

found using MatLab by first converting the image to binary with threshold such that all pixels

that are with in a factor of 0.135 (≈ 1/e2) of the maximum intensity will become 1 and the rest

0. The number of nonzero pixels across the profile in each of the transverse directions is then

counted, giving a measured beam size in pixels. The theoretical beam growth is determined using

the propagation distance dependent beam size Eq. 2.38,

w(z) = w0

√

1 +

(

z

z
R

)2

. (2.38
∗
)

See Figs. 3.10 and 3.11for the growth of the cross and dominant-polarization component profiles

for the fundamental mode (HG00) and Fig. 3.13 for the growth in the transverse directions for the
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HG20 mode. The theoretical beam size is scaled so that w(0) is the measured diameter (number of

pixels) of the beam at its waist. Unless otherwise stated the diameter is measured across the profile

along the x−axis. The fundamental mode (HG00) beam size at the waist is 2w0 = 0.28 mm, which

corresponds to about 50 pixels.

Figure 3.10: Experimental (squares) and theoretical (line) beam diameter (number of pixels) with

propagation for the dominant-polarization component of a fundamental Gaussian beam

As can be seen from the plots of the experimental pixel count and the theoretical size in Figs.

3.10-3.13, the growth of the experimentally acquired beam profiles are in good agreement with the

theoretically expected growth.

3.4.2 Beam power

According to Eqs. (2.87) and (2.88), the power ratio of the dominant polarization and the cross-

polarization component is

P2

P1

=
1

16(w0k)4
, (3.13)
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Figure 3.11: Experimental (squares) and theoretical (line) beam diameter (number of pixels) with

propagation for cross-polarization component of a fundamental Gaussian beam

Figure 3.12: Experimental (squares) and theoretical (line) profile diameter (number of pixels)in

the x−direction with propagation for the cross-polarization component of a HG20 beam in the

x−direction.
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Figure 3.13: Experimental (squares) and theoretical (line) profile diameter (number of pixels) in

the y−direction with propagation for the cross-polarization component of a HG20 beam.

where k = 2π/λwith λ = 514nm. Therefore, a beam with a spot size of w0 = 0.14 mm, the power

ratio of the beam prior to the second polarizer and after the polarizer should be P2/P1 ≈ 10−14.

Here we present measured power data. The power is measured after the first polarizer (P1), whose

axis is parallel to the to the polarization axis of the beam emitted from the laser, and after the

second polarizer (P2) with its axis both perpendicular and parallel to the first polarizer, see Fig.

3.4.2.

The slope of the best fit line of the data in Fig. 3.14, found using a linear least squares regression,

gives the power ratio P2/P1 with polarizers parallel is found to be about 0.5. The slope of the best

fit line of the data in Fig. 3.4.2 gives the ratio of the power of P2 parallel to P1 and P2 perpendicular

to P1 is on the order of 10−5. The beam profiles for the cross polarization component are still

observed, as expected from theory, because after the second polarizer the other term (Inm1 ) is 10−14

smaller then the, now dominant, term (Inm2 ).

The extinction ratio, which is the ratio of the power of a plane-polarized beam transmitted through a

65



Figure 3.14: Beam power after the first polarizer verses the power after the second polarizer for

the polarizers parallel to each other.

Figure 3.15: Beam power after the first polarizer verses the power after the second polarizer for

the polarizers perpendicular to each other.

polarizer with with polarizer’s axis parallel to the dominant direction of polarization as compared

with the transmitted power when the polarizer’s axis is perpendicular the dominant direction of
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Figure 3.16: Beam power after the second polarizer with its axis parallel to the first verses the

power after the second polarizer with its axis perpendicular to the first.

polarization, specified by the manufacturer of the polarizers is 10−4. We are not limited by this

specification. Careful alignment led to an order of magnitude decrease in the extinction ratio

(10−5) but is still nine orders of magnitude larger then the expected power ratio of the dominant

and cross-polarization terms. Despite the relatively large observed power of the cross-polarization

component of the beam, compared to the expected power, the experimentally observed intensity

profiles are in agreement with the expected profiles. This discrepancy can explained by considering

that the polarizers are only suitable for a certain range of wavelengths, i.e. the UV radiation will

not be polarized. Additionally, the fluorescence from the laser is unpolarized therefore the first

polarizer only blocks half of the incident fluorescence. The fluorescence does not have a definite

shape so while it contributes to the total power of the beam it has no affect on the shape of the

intensity profile.
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3.5 Chapter summary

In summary,in this chapter we have discussed the generation of higher-order Hermite-Gaussian

laser beams. We have presented the theoretical and experimental intensity profiles for the dominant

and cross-polarization components of HG beams up to N = 3, the transverse profile of the cross-

polarization component undergoes an observable evolution with propagation that stabilizes after a

few Rayleigh ranges. We have presented a method to quantify the shape congruence of the two.

The comparison of the expected and observed beam evolution with propagation are in reasonable

agreement.
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Chapter 4

Linearly Polarized Laguerre-Gauss Laser Beams

This chapter gives the method used to generate Laguerre-Gauss laser beams. A discussion of the

working principles of the mode converter used to transform Hermite-Gauss modes into Laguerre-

Gauss modes is given. Additionally, the experimental setup and experimentally recorded profiles

and their comparison with theoretical beam profiles are also presented in this chapter.

4.1 Relation between Hermite-Gauss and Laguerre-Gauss beams

We begin by discussing the mathematical connection between Hermite-Gauss and Laguerre-Gauss

beams which will give insight into the working of the mode converter used in the experiment to

generate Laguerre-Gauss beams. We note that Laguerre-Gauss and Hermite-Gauss beams both

form a complete set of solutions to the paraxial wave equation. Therefore, we should be able to

write one set of modes as a superposition of the other set of modes. In particular, we can write the

Laguerre modes in terms of Hermite modes with appropriate real coefficients and phase factors.

This relation between the Laguerre-Gauss modes and Hermite-Gauss modes is given by [32,77,78]

ELG
nm(x, y, z) =

N
∑

k=0

ikb(n,m, k)EHG
N−k,k(x, y, z), (4.1)

where b(n,m, k) are real coefficients given by

b(n,m, k) =

(

(N − k)!k!

2Nn!m!

)1/2
1

k!

dk

dtk
[(1− t)n(1 + t)m] |t=0. (4.2)
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ELG
nm =

2w0

w(z)

(√
2r

w(z)

)|n−m|

L
|n−m|
min(m,n)

(

2r2

w2(z)

)

e−i(m+n+1)θ(z)+ikr2/2q(z)+i|n−m|φ, (4.3)

where r =
√

x2 + y2 and

EHG
nm (x, y, z) =

w0

w(z)
Hm

(√
2x

w(z)

)

Hn

(√
2y

w(z)

)

× ei(m+n+1)θ(z)+
ik(x2+y2)

2q(z) . (4.4)

Here the indexN = n+m is introduced and is referred to as the order of the mode. The coefficients

b(n,m, k) for N = 1 to 4 are given in Table 4.1.

We also use the relation expressing the Hermite-Gauss modes rotated at 45o with respect to the x, y

(a diagonal mode) in terms of Hermite-Gauss modes with respect to the x, y [32, 73],

EHG
nm (

x+ y√
2
,
x− y√

2
, z) =

N
∑

k=0

b(n,m, k)EHG
N−k,k(x, y, z), (4.5)

where b(n,m, k) are the same real coefficients as in Eq. (4.1) and given by Eq. (4.2). It is

seen that the diagonal Hermite modes form the same set as the Laguerre modes with one key

difference; the expression in Eq. (4.5) does not have, the ik term that appears in Eq. (4.1). A

mode decomposition for HG02 is shown visually in Fig. 4.2. Eqs. (4.1) and (4.5) suggest that

to generate a Laguerre-Gauss it is necessary to merely decompose a Hermite-Gauss mode into its

components and introduce a phase difference of ik between successive terms. This phase difference

in successive terms can be realized by taking advantage of the Gouy phase.

4.1.1 Mode converter

In this section, we will discuss the mode converter that is used in the experiment to convert

Hermite-Gauss modes into Laguerre-Gauss modes of the same order. The principle of the mode

converter is based on the Gouy phase possessed by Gauss beams. The Gouy phase was introduced

in section 2.1. This type of mode converter has been widely used in literature: [15, 32, 65, 79, 80].
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n m k = 0 1 2 3 4

N = 0 0 0 1

N = 1 0 1
1√
2

1√
2

1 0
1√
2

− 1√
2

N = 2 0 2
1
2

1√
2

1
2

1 1
1√
2

0 − 1√
2

2 0
1
2

− 1√
2

1
2

N = 3 0 3
1√
8

√

3
8

√

3
8

1√
8

1 2

√

3
8

1√
8
− 1√

8
−
√

3
8

2 1

√

3
8

− 1√
8
− 1√

8

√

3
8

3 0
1√
8
−
√

3
8

√

3
8

− 1√
8

N = 4 0 4
1
4

1
2

√
6
4

1
2

1
4

1 3
1
2

1
2

0 −1
2
−1

2

2 2

√
6
4

0 −1
2

0

√
6
4

3 1
1
2

−1
2

0
1
2
−1

2

4 0
1
4

−1
2

√
6
4

−1
2

1
4

Table 4.1: The coefficients b(n,m,k)

The mode converter can be understood by considering Fig. 4.1. This figure shows the shape of the

beam as it passes through its waist. It possesses the typical Gauss profile and has the same shape

in both the x and y directions.

As noted above we require a ik phase difference between the successive components of Hermite

modes, rotated at 45o, to be introduced so that a Laguerre mode can be generated. Consider a lower
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Figure 4.1: Beam shape near waist

order mode, HG02 mode rotated at 45o to the (x, y) axis. The diagonal mode can be written as

EHG
02 (

x+ y√
2
,
x− y√

2
, z) =

2
∑

k=0

b(0, 2, k)EHG1
2−k,k(x, y, z)

=
1

2
EHG

20 +
1√
2
EHG

11 +
1

2
EHG

02 . (4.6)

This decomposition is represented pictorially in Fig. 4.2. The decomposition of the Laguerre-

Figure 4.2: Pictorial example of the decomposition of the diagonal HG02 mode.

Gauss mode of the same order is represented pictorially in Fig. 4.3. Mathematically, the decom-

Figure 4.3: Pictorial example of the decomposition of the LG02 mode.
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position of LG02 is given by,

ELG
02 (

x+ y√
2
,
x− y√

2
, z) =

2
∑

k=0

b(0, 2, k)EHG1
2−k,k(x, y, z)

=
1

2
EHG1

20 +
i√
2
EHG1

11 − 1

2
EHG1

02 . (4.7)

From Figs. 4.2 and 4.3, the diagonal HG02 mode is a superposition of the same modes for a LG02

beam without a phase difference of ik between terms. Our task now is to find a solution to the

problem of introducing this ik phase between successive terms in a diagonal Hermite-Gauss mode

so that a Laguerre-Gauss mode is generated.

A phase difference can be introduced if the Rayleigh range in the y direction (z
Ry) is changed

over a localized region while the Rayleigh range in the x direction (z
Rx) is unchanged. This local

astigmatism is introduced by placing a pair of cylindrical lenses in the beam path. The first lens

must be placed such that the Rayleigh range in one transverse direction of the beam changes but

the waist location and Rayleigh range in the other transverse direction does not. If the first lens is

placed a distance d from the beam waist the second lens must be located a distance 2d from the

first lens on the other side of the waist so that the astigmatism is removed outside the lens set. This

is shown in Fig. (4.4). Note that the cylindrical lenses cause the astigmatism only between the two

lenses (localized astigmatism).

Figure 4.4: Beam shape between the two cylindrical lenses of mode converter
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We are now left to find the proper cylindrical lens separation, d, location of the lens set, and the

Rayleigh range of the incoming beam such that there is astigmatism only between the lenses.

We start by assuming the transverse shape of the beam to be circular at the cylindrical lenses,

z = ±d [32, 46, 79]:

wx(±d) = wy(±d). (4.8)

With the equation for the beam size, w(z),

w2(z) =
2(z2

R
+ z2)

kz
R

, (4.9)

we have

z2
Rx

+ d2

z
Rx

=
z2
Ry

+ d2

z
Ry

. (4.10)

To find z
Rx

and z
Ry

we need an additional relationship between the two. This relationship can be

found by considering the radius of curvature of the beam. The radius of curvature of the beam

before and after the first cylindrical lens of focal length fc is related by

1

fc
=

1

R1

− 1

R2

, (4.11)

whereR1 is the radius of curvature of the beam prior to the propagating through the first cylindrical

lens and R2 is the radius of curvature after the lens. The lens, being cylindrical, will only change

the radius of curvature in the y direction leaving the radius of curvature in the x direction (Rx(−d)

and Rx(d)) unchanged, additionally the radius of curvature in the x and y directions will be the

same before the first cylindrical lens. Therefore

Ry(−d) = Rx(−d) (4.12)

and

Rx(−d) = Rx(d). (4.13)
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Combining with Eq. (4.11) we have

1

fc
=

1

Ry(−d)
− 1

Ry(d)
=

1

Rx(d)
− 1

Ry(d)
, (4.14)

where d and −d are as indicated in Fig 4.4. Combining

R(z) =
z2
R
+ z2

z
(4.15)

with Eq. (4.14) we have

1

fc
=

d

z2Rx
+ d2

− d

z2Ry
+ d2

. (4.16)

Solving Eqs. (4.10) and (4.16) for z
Rx

and z
Ry

we find

z
Rx

= d

√

1− d/fc
1 + d/fc

, (4.17)

and

z
Ry

= d

√

1 + d/fc
1− d/fc

. (4.18)

Equations (4.17) and (4.18) give the required Rayleigh ranges in the x and y directions. The next

task it to find the proper lens separation and the Rayleigh ranges in terms of the focal length of the

cylindrical lens, fc. First, consider that the Gouy phase, which has two contributions, one for each

of the transverse directions [45]:

(n+m+ 1)θ(z) =

(

n+
1

2

)

θx(z) +

(

m+
1

2

)

θy(z), (4.19)

where θ(z) is the Gouy phase and given by Eq. (2.72). θx and θy are given by

θx,y = arctan

[

z

z
Rx,y

]

. (4.20)

As the beam propagates from the first cylindrical lens to the second it will experience a difference
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in the Gouy phase given by

∆θ =

(

n+
1

2

)

θx(d) +

(

m+
1

2

)

θy(d)

−
(

n+
1

2

)

θx(−d)−
(

m+
1

2

)

θy(−d)

=

(

n+
1

2

)

∆θx +

(

m+
1

2

)

∆θy. (4.21)

Here

∆θx,y = θx,y(d)− θx,y(−d) = 2 arctan

(

d

z
Rx,y

)

. (4.22)

The phase difference between successive terms in the series for diagonal modes Eq. (4.5) is given

by:

Θ = (N + 1)(∆θx +∆θy)/2 + (N − 2k)(∆θx +∆θy)/2

− (N + 1)(∆θx +∆θy)/2− (N − 2(k + 1))(∆θx +∆θy)/2

= (∆θx −∆θy)

= 2

[

arctan

(

d

zRx

)

− arctan

(

d

zRy

)]

(4.23)

Since a phase difference of i between successive terms is required, and the phase term as given in

Eq. (4.4) is

e−i(m+n+1)θ(z) = e−i(N+1)θ(z), (4.24)

it is necessary for Θ = π/2:

Θ = 2

[

arctan

(
√

1 + d/fc
1− d/fc

)

− arctan

(
√

1− d/fc
1 + d/fc

)]

= π/2, (4.25)

where we have used Eqs. (4.17) and (4.18). Let

η =

√

1− d/fc
1 + d/fc

, (4.26)
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and we can rewrite Θ as

Θ =

[

arctan

(

1

η

)

− arctan (η)

]

=
π

4
. (4.27)

Taking the tan of both sides:

tan

{[

arctan

(

1

η

)

− arctan (η)

]}

= tan
(π

4

)

,

or

tan
[

arctan
(

1
η

)]

− tan [arctan (η)]

1 + tan
[

arctan
(

1
η

)]

tan [arctan (µ)]
= 1

1

η
− η = 2. (4.28)

Solving for η we find

η = −1±
√
2, (4.29)

where only the positive solution is physically meaningful. Putting Eq. (4.26) in for η we have

√

1 + d/fc
1− d/fc

=
√
2− 1. (4.30)

Solving for Eq. (4.30) d, we find the required lens separation is given by

d =
fc√
2
. (4.31)

Combining Eqs. (4.18) and (4.31) we find that the Rayleigh range in terms of the focal length of

the cylindrical lens is given by

z
Ry

= fc

(

1 +
1√
2

)

. (4.32)
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A spherical lens will be used so that the beam will have the Rayleigh range given in Eq. (4.32).

Here we will find the proper placement and focal length of such a lens following the method used

by Kogelnik and Li [46]. Let the original beam waist be located a distance d1 to the left of the lens

and the beam waist after the lens, w02 be a distance d2 to the right, as shown in Fig. (4.5).

Figure 4.5: Astigmatic mode converter used in this research for Hermite-Gauss to Laguerre-Gauss

mode conversion.

The ABCD matrix for the above described system is given by [45],







A B

C D






=







1 d2

0 1













1 0

− 1
f1

1













1 d1

0 1






(4.33)

=







1− d2
f1

d1 + d2 − d1d2
f1

− 1
f1

1− d1
f1






(4.34)

Using the ABCD law:

q2 =
q1A+B

q1C +D
. (4.35)

The q’s will be purely imaginary and given by q1 = iπw′01/λ and q2 = iπw02/λ. We have

iπw2
02

λ
=

1− d2
f1
(iπw′01/λ) + d1 + d2 + d1d2/f1

(−iπw′01/λf) 1 + 1− d1/f1
, (4.36)
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and by equating the real and imaginary parts we have

πw2
01

λ

(

1− d1
f1

)

=

(

1− d2
f1

)

πw
′2
01

λ
,

or

w′01
w02

=
(d1 − f1)

(d2 − f1)
, (4.37)

and

π2

λ2f1
w
′2
01w

2
02 = d1 + d2 −

d1d2
f1

or, with f0 = πw
′

01w02/λ,

f 2
1 − f 2

0 = (d1 − f1) (d2 − f1) . (4.38)

Simplifying we arrive at

d1 = f1 ±
w′01
w02

√

f 2
1 − f 2

0 (4.39)

d2 = f1 ±
w02

w′01

√

f 2
1 − f 2

0 , (4.40)

giving the proper lens placement of the mode matching lens. Here we must choose either both

plus or minus signs but it is desirable to have positive d1 and d2. By placing the spherical lens

a distance d1 from the original beam waist and the cylindrical lens a distance d2 from the center

of the cylindrical lens set, the proper Raleigh range can be achieved, as shown in Fig. 4.5. The

separation of the cylindrical lenses is given by Eq. (4.31):

d =
fc√
2
. (4.41)
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4.2 Experimental arrangement

We used an astigmatic mode converter [15, 32, 79], described in the preceding section, to convert

a Hermite-Gauss beam into a Laguerre-Gauss beam of the same order. A schematic of the experi-

mental setup used to generate Laguerre-Gauss modes and observe linearly polarized beam profiles

is shown in Fig. 4.6.

Figure 4.6: Laguerre-Gauss Experimental setup

The beam size and waist location of the beam emitted from the laser is calculated in the same way

as for the Hermite-Gauss beam in Chapter 3, section 2. The initial spot size and waist location is

different than the value calculated in the previous chapter as a different laser was used to acquire

the Laguerre-Gauss profiles due to failure of the original laser. The values corresponding to the

distances and focal lengths given in Fig. 4.6 are given in table 4.2. Due to space restrictions on the

optics table the focal length of the first lens, f1, is chosen such that the cylindrical lenses available

could be utilized and an appropriate Rayleigh range could be achieved. As discussed in Chapter

2, the beam profiles of the cross-polarization components are expected to stabilize after several

Rayleigh ranges. Therefore, a Rayleigh range is deemed appropriate if a distance z = 5z
R

will fit

on the table. Accordingly, the focal length of the first lens, f1, is chosen for convenience with the

stipulation that a reasonable final Rayleigh range, z
R3 is obtained. The distance d4 is also chosen

for convenience so that several Rayleigh ranges would fit on the table. The location of the beam

waist after propagation through the first lens is given by Eq. (4.39) and d2 is given by Eqs. (4.40).

80



The cylindrical lenses are separated by a distance

2d =
√
2fc, (4.42)

where fc is the focal length of the cylindrical lens. The waist size between the cylindrical lenses is

given by

w02 =

√

λz
R2

π
, (4.43)

where

z
R2

=

(

1 +
1√
2

)

fc. (4.44)

The Rayleigh ranges are given by

z
Rj

=
w2

0jπ

λ
, (4.45)

where j = 1, 2, 3.

R1 = 3 m R2 = 3 m L = 1.16 m w′01 = 0.41 mm

f1 = 55 cm f2 = 14.5 cm fc = 15 cm z′2 = 70 cm

d1 = 90.8 cm d2 = 63.5 cm d = 10.6 cm d4 = 18.6 cm

w02 = 0.20 mm z
R2

= 25.6 cm w03 = 0.082 mm z
R3

= 4.1 cm

Table 4.2: Values corresponding to Fig. 4.6.
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4.2.1 Alignment considerations

After production of high-quality Hermite-Gauss beams, proper alignment of the π/2 mode con-

verter is of considerable importance in generating high-quality Laguerre-Gauss beams. Given

a pure HG mode, an ideal mode converter can theoretically create LG beams with 100% effi-

ciency [65]. As discussed in the previous chapter, a high quality HG beam is generated intracavity

with the inclusion of a fiber or a pair of crossed fibers and a pair of slits to select single higher-order

mode operation.

Proper alignment of the astigmatic mode converter is a multi-step procedure. The first alignment is

to ensure that the beam is propagating parallel to the optics table. Once this is achieved placement

of the lenses can begin. The cylindrical lenses are mounted in lens holders that allow azimuthal

rotation as well as linear translation in each of the transverse directions. Normal incidence of the

beam at the center of the cylindrical lens is assured if, upon rotation of the lens, the reflection of

the beam from the lens rotates in a uniform circular manner centered at the incident beam. This

is observed by placing an aperture on the incident side of the lens and rotating the lens, once the

center of the lens is placed roughly normal to the beam, fine adjustments are made in the tilt and in

the transverse directions until the reflection rotates circularly around the aperture center. Note that

after a change in HG mode selection in the laser cavity there is a slight shift in the direction of the

laser beam causing minor adjustments be made for each LG mode. Not only must great care be

taken to arrange that the beam goes through the center of each lens and at normal incidence to the

lenses but also placing the lenses at the proper distances from the waist is paramount. To aid in the

later issue, the mode matching lens and the cylindrical lens mounts are placed on translators that

allow relatively smooth longitudinal displacement. After placing the lenses in the approximately

correct location based on the calculations described in Chapter 2 and the cylindrical lenses have

the correct alignment small translational adjustments are made until the highest possible symmetry

of the output mode is achieved, as observed on the CCD.
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The alignment considerations of the polarizers are the same for the Laguerre-Gauss modes as that

of those Hermite-Gauss modes discussed in Chapter 3.

4.3 Intensity profiles

Both the theoretical and experimental beam profiles of the cross and dominant-polarization com-

ponents of Laguerre-Gauss beams with p = 0 and ` = 1, 2, 3, 4 are given in Figs. 4.7, 4.8, 4.9,

and 4.11, (`, p) = (0, 1) and for (`, p) = (1, 1) are given in Figs. ?? and 4.10. I1 corresponds to

the dominant-polarization component intensity profile and I2 is the cross-polarization component

intensity profile. The laser is operated at about 5-10 mW to obtain the dominant-polarization pro-

files and 150-200 mW to obtain the cross-polarization profiles. The theoretical images are scaled

to fit the experimental profiles. As in the case of the HG beam profiles, we discuss the growth of

the size of the beam separately from the evolution of the profiles with propagation.
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(10)
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I
(10)
2

I
(−10)
2

Figure 4.7: Dominant (I1) and cross-polarization (I2) intensity profiles for LG beams with ` = ±1
and p = 0, at z = 0, z = 1

2
z
R

, z = z
R

, and z = 4z
R

. The dominant-polarization intensity profile

for ` = −|`| is the same as the ` = +|`| profile.
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Figure 4.8: Dominant (I1) and cross-polarization (I2) intensity profiles for LG beams with ` = ±2
and p = 0, at z = 0, z = 1

2
z
R

, z = z
R

, and z = 4z
R

. The dominant-polarization intensity profile

for ` = −|`| is the same as the ` = +|`| profile.
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Figure 4.9: Dominant (I1) and cross-polarization (I2) intensity profiles for LG beams with (`, p) =
(0, 1), and (`, p) = (±3, 0) at z = 0, z = 1

2
z
R

, z = z
R

, and z = 4z
R

. The dominant-polarization

intensity profile for ` = −|`| is the same as the ` = +|`| profile.
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Figure 4.10: Dominant (I1) and cross-polarization (I2) intensity profiles for an LG beam with

` = −1 and p = 1, at z = 0, z = 1
2
z
R

, z = z
R

, and z = 4z
R

. The dominant-polarization intensity

profile for ` = −|`| is the same as the ` = +|`| profile.
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N = 4

I
(40)
1

I
(−40)
2

Figure 4.11: Dominant (I1) and cross-polarization (I2) intensity profiles for LG with ` = ±4 and

p = 0, at z = 0, z = 1
2
z
R

, z = z
R

, and z = 4z
R

. The dominant-polarization intensity profile for

` = −|`| is the same as the ` = +|`| profile.

The shape of the dominant polarization profiles are not affected by propagation. Conversely, All of

the cross-polarization intensity profiles have a four fold symmetry in the near field that rotates as

they propagate away from their waist, after several Rayleigh ranges the profiles stabilize to a four

lobed patterns.
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4.4 Results and Discussion

Here we consider the difference between the theoretical and experimental cross-polarization pro-

files. Similar to the HG modes, the cross-polarization components of the intensity profiles change

shape with propagation while the dominant-polarization profiles only undergo a change in scale.

The the cross-polarization components of the LG intensity profiles rotate with propagation. This

rotation is analytically examined in this section.

4.4.1 Rotation of the cross-polarization profiles

First, we examine the rotation that the cross-polarization profiles go through during propagation

[14]. It should be noted that beams with ` = 0 do not exhibit rotation (Fig. 4.9). We begin the

discussion of rotation by introducing δ, the angle of rotation of the cross-polarization profiles. The

angle δ is defined as the angle between the radius vector from the center of the beam to the center

of a lobe to the horizontal axis, as shown in Fig. 4.12.

Figure 4.12: Define angle of rotation, δ.

The rotation of the profiles readily be can be observed in Figs. 4.7, 4.8, and 4.10-4.11. The

angle of rotation is measured via a Matlab program (see appendix for code, LG rotate.m ) for both

experimental and theoretical profiles. The procedure for determining δ is as follows,
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1. Crop: The edge of the intensity profile is determined and the intensity profile is cropped to

the region of interest.

2. Find locations of maximum intensity: The built-in function find(max) is used to locate the

maximum intensity of the lobes in the theoretical profiles. To find the location of maximum

intensity of the lobes in experimental profiles it is necessary to first reduce the noise in the

profiles. This is achieved by converting the grey-scale experimental images to binary using

the maximum threshold for the conversion that allows the remaining regions of each lobe to

remain connected.

3. Centroid of the lobe: The regionprops command is then used to find the location of the

maximum of each lobe in the experimental profiles.

4. Knowing the location of each of the maxima and the center of the entire profile the angle of

rotation is readily calculated.

Note that finding the largest possible threshold for the binary conversion, in the second step, allows

for the smallest uncertainty in the locations of maximum intensity. This is seen by considering

a theoretical image, the location of the maximum intensities of the blades is well defined. By

increasing the threshold level one observes that the location of the center of the blade (of the

binary image) approaches the location of the maximum intensity.

A graph of the rotation results are given in Fig. 4.13, experimental data are given as points and the

theoretical data is given as a line. Each experimental point is the average of at least six different sets

of data. The experimental data is in reasonable agreement with the theoretical data. The change in

the Laguerre-Gauss cross-polarization profiles change little after several Rayleigh ranges.
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It is also interesting to note that the beam profile rotates slower for higher azimuthal index, `. Fig.

4.14 gives the angle of rotation with respect to `, in agreement with Vyas et. al [72]. Once again,

the experimental and theoretical data are in reasonable agreement with each other.
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Figure 4.14: Angle of rotation, δ, at z = z
R

as a function of l for p = 0.

Another very interesting property is evident when the cross-polarization profiles for polarized

beams of different topological charge, ±`, of the same order, are compared, see the second and

third rows Figs. 4.7 and 4.8. The cross-polarization profile for beams with ` = −|`| rotates

counter-clockwise with propagation, conversely the beams ` = +|`| rotates in the clockwise di-

rection with propagation. This property can be explained by considering the fact that changing the

sign of the topological charge (`), effectively, interchanges the x and y axes, causing the change in

direction of rotation. Another way to make this change in chirality conspicuous is to realize that

there is two primary ways that one can change the sign of `, the first is to use a dove prim which,

when inserted in to the LG beam path, changes the transverse profile of the output beam to the

mirror image of the transverse profile of the input beam. Another way to change the sign of ` is
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to change the HG beam to be converted to the LG beam from HGnm to HGmn, that is rotate the

angle between the HG beam and the mode converter axis by 90o. Either of the options described

facilitate an exchange of x and y coordinates leading to a change in the direction of helicity of the

LG beam. There is no visible change of the dominant polarization profiles for different charges of

`.

4.4.2 Figure of merit of observed intensity profiles

In order to quantify how closely the experimentally recorded LG profiles match the theoretically

expected profiles, the same algorithm as described in Chapter 3 to analyze the HG beam profiles

is used. Table 4.3 gives the figure of merit for the cross-polarization components of the LG beam

profiles, at different distances from the beam waist.

z/z
R

LG10 LG20 LG30 LG40

0 0.103 0.101 0.109 0.123

0.5 0.077 0.095 0.060 0.068

1 0.068 0.114 0.050 0.070

2 0.102 0.167 0.072 0.001

4 0.064 0.164 0.034 0.016

Table 4.3: Figure of merit (FM).

Again, FM = 0 corresponds to perfect agreement and FM = 1 no agreement. The results of the

difference data indicate that the experimental profiles are in good agreement with the theoretical

ones, as is evident in Figs. 4.7-4.11.

4.4.3 Beam growth

The theoretical intensity profiles presented in Figs. 4.7-4.11 are scaled so that they are the same

size as the experimental profiles causing beam growth as a function of distance data to be lost.

Here we give size of the beam profiles that the CCD records in number of pixels as a function of
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distance from the waist. Figures 4.15 and 4.16 give the size of the beam with propagation distance

for both the theoretically expected and the experimentally observed growth. The theoretical and

experimental spot size data is retrieved by following the same procedure as for the Hermite-Gauss

beams described in Chapter 3. Figure 4.15 shows the growth of the dominant-polarization compo-

nent profile for the LG10 mode and Fig. 4.16 for the growth of LG30 mode with propagation.

Figure 4.15: Beam size growth with propagation for the cross-polarization component of LG10.

The diamonds are experimental results and theoretically expected results are drawn as a continuous

curve.

As can be seen from the plots given in Figs. 4.15 and 4.16 the experimentally measured beam

growth data is in reasonable agreement with the theoretically expected growth.

4.5 Chapter summary

This chapter discusses the astigmatic mode converter and the principles behind how it converts HG

beams to LG beams of the same order and alignment considerations specific to this research. Gen-

eration of LG modes and acquisition of the intensity profiles of dominant and cross-polarization

components profiles is discussed. Experimental profiles for several orders of LG beams were

presented and compared to the theoretical profiles. The two show reasonable agreement. The in-
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Figure 4.16: Beam size growth with propagation for the cross-polarization component of LG30.

The squares are experimental results and theoretically expected results are drawn as a continuous

curve.

teresting rotational behavior of the cross-polarization component of LG beams for nonzero ` was

discussed. The rotation is found to be slower for larger values of `. The rotation is in opposite

directions for different topological charges, ±`. The the experimental rate of rotation is in good

agreement with the theoretical data.
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Chapter 5

Conclusions

5.1 Summary

This thesis presents a description of laser beams consistent with Maxwell’s equations. Such beams

are examples of wave-like electromagnetic disturbance that have a dominant direction of propa-

gation their extent in directions transverse to the direction of propagation is finite. As the beam

propagates, it retains the dominant direction of propagation but its transverse extent changes. Laser

beams thus have an intermediate status between a plane wave, which has a definite direction of en-

ergy flow but infinite extent and a spherical wave where energy flows uniformly in all directions.

Since laser beams are electromagnetic radiation, electric and magnetic fields associated with them

must satisfy not only the wave equation but also the Maxwell’s equations. Only such a description

will correctly describe their propagation characteristics including their focusing and polarization

properties. Although for many applications it is adequate to describe laser beams in terms of an

electric field that can be written as a constant vector multiplied by a scalar function which is a

solution of scalar wave equation. This description is termed scalar approximation. It is clear that

a scalar description assumes that beam polarization is uniform. Such a description can account for

overall energy transport but it cannot account for focusing or defocusing of laser beams as they

propagate and, as we have shown in this thesis, it also fails to properly describe the polarization

properties of laser beams. We have shown that a correct description of laser beams emerges only

when we insist that the electric and magnetic field associated with laser beams satisfy not only

the wave equation but also the Maxwell’s equations. We show that in order to satisfy Maxwell’s

equations, the electric field of a linearly polarized laser beam must have three non-zero field com-
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ponents. It should be recalled that wave like solutions with more than one electric field components

are well known in waveguides. This is a consequence of boundary conditions that must be satisfied

by the field components. This thesis shows that even in free-space, with no boundaries present, the

correct description of laser beams leads to an electric field that has all three Cartesian components

nonzero. This means that beams with uniform polarization do not exist. However, if one particular

component of the electric field is dominant and the other two are weak, we can still speak of a

beam linearly polarized in the direction of the dominant component. Similarly, we can speak of

a left circularly (or right circularly) polarized beam if the beam has a dominant left circular po-

larization component and a weaker longitudinal and cross-polarization (right circular in this case)

components. Since a circularly polarized wave can be considered to be a coherent super-position

of two orthogonal linearly polarized wave, we have confined our attention to linear polarization

in this thesis. We have considered two families of laser beams - linearly polarized Hermite-Gauss

(HG) and Laguerre-Gauss (LG) beams - and derived expressions for the electric field components

of these beams.

Theoretical derivation leading to the expressions for the field components of linearly polarized HG

and LG beams was given in Chapter 2. The chapter begins by introducing the conventionally used

scalar description of laser beams in the paraxial approximation. It uses paraxial scalar wave equa-

tion to derive the expressions for Hermite-Gauss and Laguerre-Gauss beams. Problems with the

scalar solution for describing laser beams are then pointed out motivating the search for a correct

description. This search begins by assuming a three-component electric field and linear polariza-

tion (one dominant component). Maxwell’s equations are then solved with this assumption in both

Cartesian and circular cylindrical coordinates giving the three components of linearly polarized

Hermite-Gauss and Laguerre-Gauss beams, respectively. Only the electric components are explic-

itly given. The components of the magnetic associated with these beams can be calculated using

the Maxwell’s equations.

In Chapter 3, we describe the generation of HG beams by an Ar-ion laser and experimental verifi-
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cation of the polarization structure of HG beams. In particular, the transverse intensity distribution

of the dominant and cross-polarization components of Hermite-Gauss beams of several orders

were experimentally verified. Higher order HG beams are generated from an argon-ion laser by

inserting a pair of crossed fibers into the laser cavity. By carefully placing the fibers relative to

the axis of the laser cavity, we were able to generate several higher order HG modes. The output

from the laser was passed through a pair of linear polarizers. Light transmitted by the polarizers

was recorded by a CCD camera. It was found that unlike the intensity profiles of the dominant

polarization component, the intensity profiles of the cross polarization component, for all but the

fundamental mode, undergo an evolution with propagation. Experimentally recorded HG beam

profiles were found to be in agreement with the theoretically calculated profiles both in shape and

in their evolution with propagation.

Chapter 4 describes experiments with Laguerre-Gauss beam similar to those carried out with HG

beams. Different order LG beams were generated by converting HG beams of the same order from

the laser, via a pair of identical cylindrical lenses separated by a distance equal to
√
2 times the

focal length (astigmatic mode converter). This allows us to manipulate the Guoy’s phase of inci-

dent HG beams turning them into LG modes. The LG cross-polarization component was found to

have the interesting property that the intensity profile has noticeable rotation with propagation over

a distance of few Rayleigh ranges. The rotation of the intensity profile for beams with opposite

topological charge ` is in opposite directions. The size, shape, and degree of rotation of the exper-

imental and theoretical cross-polarization component of LG beams are all directly comparable and

are in reasonable agreement within the error associated with mode generation and image capture.

Finally, we mention that although the experiments confirmed the detailed beam intensity profiles

and their evolution with propagation away from the waist predicted by the theory, the power car-

ried by the cross-polarization component was measured to be substantially higher than predicted

by the theory. This discrepancy is not fully understood and merits further study of the polarization

and spectral content of laser background fluorescence and spectral response of the polarizer itself.
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5.2 Future work

An immediately applicable use of knowing the structure of the cross-polarization component of

Laguerre-Gaussian beams is determine the radial index p and azimuthal index `, also known as

the topological charge of the beam. A determination of these indices, especially of the azimuthal

index, requires a Mach Zehnder type of interferometer, which can be a laborious undertaking

[15]. Our work suggests a method for determining these indices. The value of the index p is

readily determined by counting the number of rings present in the intensity profile of the dominant

component in an LG beam (p − 1 = number of rings). Determining the value and sign of ` is not

as straight forward. The intensity profiles of LG beams with the same p value but different ` values

appear similar. Since the direction of rotation of the cross-polarization intensity profiles with

propagation for different charges is in opposite directions, observation of the cross-polarization

intensity profiles near the waist immediately gives the sign of charge of the beam. Since the rate of

rotation of the cross-polarization intensity pattern is different for different azimuthal orders of LG

beams, analysis of the rate of rotation of the cross-polarization intensity profiles can give the order

of the beam. In practice, this is likely to work for low values of `.

There are several related investigations, which would be interesting to carry out. In the experi-

ments described here only the dominant and cross-polarization components of laser beams were

observed. Observation of the longitudinal-polarization component of the field was beyond the

scope of available instrumentation for this project. Longitudinal component of a laser plays an

important role in particle accelerators based on focused laser beams. There have been a number of

investigations of the longitudinal component using nano structures [24, 71, 81]. By appropriately

orienting a collection of nano-crystals, their response can be tailored to respond to a particular

polarization component. This has been used to record the spatial profile of the longitudinal com-

ponent of a focused laser beam. A knowledge of the longitudinal component of laser beam is useful

in laser tweezers where highly focused laser beams with spot size comparable to laser wavelength
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are used [16,68]. Since the strength of longitudinal component relative to the dominant component

is of order (λ/wo)
2

[12], the longitudinal components will be a significant presence in such appli-

cations. Other applications involving highly focused beam include confocal and super resolution

microscopy.

In this thesis we have confined our attention to linearly polarized beams. It would be of interest to

investigate other states of polarizations such as circular, radial, and azimuthal polarizations. There

are no straight forward methods to directly observe these states of polarization or the corresponding

cross-polarization components analogous to those used in this thesis to observe the dominant and

cross-polarization component of linearly polarized beams. Determining a method to experimen-

tally investigate the dominant as well cross-polarization component of other states of polarizations

directly is an open and intriguing problem.

Investigations similar to those described in this thesis can also be extended to other types of beams.

In addition to Cartesian and circular cylindrical coordinates, the paraxial wave equation has separa-

ble transverse beam profiles in parabolic and elliptical cylindrical coordinates. These beams have

been discussed in the paraxial approximation [54]. Description of these beams consistent with

Maxwell’s equations for different polarizations would add to the diversity of beam like solutions

of Maxwell’s equation. In addition to the theoretical description, new methods for generating these

beams would also be of interest from an application point of view. We have used an astigmatic

mode converter for transforming HG beams into LG beams and mentioned the use of holography

and spatial light modulators (SLMs). Other methods to generate these modes directly in a laser

could be explored. Such methods have the potential for generating higher powers and better beam

quality as both the holographic and SLM methods are limited by power and efficiency consid-

erations [63, 64]. For example, due to its potential simplicity, an attractive option for LG beam

generation is to insert an opaque spot in the laser cavity that would act similar to the fibers used in

HG beam generation. The non-transparent spot would force the laser to operate in a higher order

LG mode with a dark center to minimize losses. This has the same principle as the previously
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reported method of using laser cavity mirrors with a spot defect [66] but has the advantage of not

destroying costly mirrors. A key difference of LG modes generated in this way compared to ones

generated via the AMC is that the output of the laser will be an interference pattern of the plus and

minus topological charge (±`). Polarization and propagation investigations on these beams should

also prove fascinating. Furthermore, with minor modifications, the experimental setup used to in-

vestigate polarization properties of linearly polarized LG beams similar properties of Ince-Gauss

beams could also be investigated [43]. Other types of laser beams should similarly be researched.

Polarization, like phase, is an intrinsic property of electromagnetic waves. Evolution of phase in

propagation is well known and is what is normally emphasized. Indeed in free-space propagation

of laser beams we assume that polarization remains unchanged and we rarely talk about the evolu-

tion of polarization. This in fact is the basis of scalar description. Our investigations demonstrate

that like phase, polarization can and does evolve even in free-space. Without this complete descrip-

tion the outcome of a simple experiment involving crossed-linear polarization cannot be correctly

predicted. A description of laser beams consistent with Maxwell’s equations has practical impli-

cations too. Non-uniform polarization and its variation in propagation will be specially important

in the focal region. In applications of laser beams that involve highly focused beams such as mi-

croscopy, optical tweezers, and nonlinear optics, therefore, a careful analysis of polarization and

its evolution may reveal novel phenomena.
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Appendix A

subtract.m

%Name: Jessica Conry

%Prog. Name: SUBTRACT

%Date: 2-14-12

%Notes:

%Use: Rescales intensity and size of an image (with even index) to

%that of another image (stored with an odd index), finds the

%difference of the two and saves the result as a new image.

clear; % clear variables form memory

clf;

% Initialize Variables

n=10; % n is the total number of images

filename = {zeros(n,1)}; % empty filename vector (strings)

MinPerMat = zeros(n/2,1); %

MaxPerMat= zeros(n/2,1);

% Read Data In and Processing

for i=1:1:n

i

filename(i,1) = {[ num2str(i) ’.png’]};

% loop creates filenames for images

I_i = imread(cell2mat(filename(i,1)));

% fill vector images with filenames

imcrop(I_i) % Select crop area in figure, select "copy location"

% then "crop", first crop selects a general region of interest

reply = input(’Crop Boundaries?’);

%paste crop area and location at prompt

M=reply;

I_i=imcrop(I_i,M);% save cropped image

J=imshow(I_i); %shows croped image

attrs = imattributes(J)% shows the attributes of the cropped image

MaxI = input(’Max Intensity?’);

% input the max intensity from the attribute output

MinI = input(’Min Intensity?’);

%input the min intensity from the attribute output
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MinPer= MinI/252; %finds the percentage of 252 of the min intensity

MaxPer = MaxI/252; %finds the percentage of 252 of the max intensity

v= (MinPer+MaxPer)/2 ;

%calculates the threshold to be used in converting the image to

binary

bw=im2bw(I_i,v);

%converts image to binary with the above calculated threshold

imshow(bw);

if mod(i,2)==1

% for odd i, The experimental images are saved

%with odd numbered indexes

m=(i+1)/2;

MaxPerMat(m,1) = MaxPer;

MinPerMat(m,1) = MinPer;

end

reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

% ask if the threshold is ok or if it should be more or less

E= reply;

if (E==1)

%if the threshold of the binary image is satisfactory then enter ’1’

v= (MinPer+MaxPer)/2 ;

bw=im2bw(I_i,v);

elseif (E==2)

% If the threshold is too low then enter ’2’, will start loop

%to get a satisfactory threshold

while(E==2)

reply=input(’How much do you want to change? [0..0.1]’);

t=reply;

v= (MinPer+MaxPer)/2-t ;

bw=im2bw(I_i,v);

imshow(bw)

reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

%ask if the threshold is ok or if it should be more or less

E= reply;

end

elseif (E==3) % If the threshold is too high then enter ’3’, will

% start loop to get a satisfactory threshold

while (E==3)

reply=input(’How much do you want to change? [0..0.1]’);

t=reply;

v= (MinPer+MaxPer)/2+t ;

bw=im2bw(I_i,v);

imshow(bw)

reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

%ask if the threshold is ok or if it should be more or less
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E= reply;

end

end

bw1= edge(bw);%finds edges of the binary image

[r,c]=find(bw1);

fun=[r,c];

allx=fun(:,2);

ally=fun(:,1);

minx= min(allx); % smallest x pixel location for a ’1’ in image

maxx= max(allx); % largest x pixel location for a ’1’ in image

miny= min(ally);% smallest y pixel location for a ’1’ in image

maxy=max(ally); % Largest y pixel location for a ’1’ in image

width=maxx-minx; %width of image

length=maxy-miny; % lenght of image

bw=imcrop(bw, [minx miny width length]);

%crops edge of binary image

I_i=imcrop(I_i, [minx miny width length]);

% Crops the original image with the same boundaries

% as the binary image

if mod(i,2)==1

A_i=size(I_i); %finds size of the experimental image

x_i=A_i(1);

y_i=A_i(2);

end

if mod(i,2)==1 %if i is odd

imwrite(I_i,[’Io’ num2str(i) ’.bmp’]); %rename image

else

I_i = rgb2gray(I_i);

I_i=imresize(I_i, [x_i y_i]);

%resizes the even indexed images (theory)

p=i/2;

I_i = imadjust(I_i,[0 1],[MinPerMat(p,1) MaxPerMat(p,1)]);

imwrite(I_i, [’Ie’ num2str(i) ’.bmp’]);

%adjust theoretical image to have same intensity range as the

%experimental images

end

if mod(i,2)==1

Io= imread([ ’Io’ num2str(i) ’.bmp’]);

%rename experimental images

eval([’Io_’ num2str(i) ’=Io;’]);

else

Ie= imread([ ’Ie’ num2str(i) ’.bmp’]);
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% rename scaled and intensity adjusted theoretical images

eval([’Ie_’ num2str(i) ’=Ie;’]);

end

end

for i=1:2:n

eval([ ’Io = Io_’ num2str(i)]);

s=i+1;

eval([ ’Ie = Ie_’ num2str(s)]);

IS=Io-Ie; % Subtract theory and experiment

imwrite(IS, [’Is’ num2str(i) ’.bmp’]);

%saves the difference of exp and theory image as ISi.bmp

end
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Appendix B

figureofmerit.m

%Name: Jessica Conry

%Prog. Name: LG rotation

%Date: 2-16-12

%

%

%

%Notes:

%

%

%Use: Calculates figure of merit of experemental images

%

clf; %clear functions

clear; % Initialize Variables%

n=10; %n is the total number of images

filename1 = {zeros(n,1)}; % empty filename vector (strings)

filename2 = {zeros(n,1)};

SUM=zeros(n/2,1);

for i=1:2:n

filename1(i,1) = {[ ’Is’ num2str(i) ’.bmp’]};

% loop creates filenames for images

I1 = imread(cell2mat(filename1(i,1)));

filename2(i,1) = {[ ’Io’ num2str(i) ’.bmp’]};

% loop creates filenames for images

I2 = imread(cell2mat(filename2(i,1)));

m1=max(max(I1)); % Finds max pixel intensity of difference image

size2=size(I2); % Size of excremental image

m2=max(max(I2)); % Finds max pixel intensity of experimental image

TotPix= size2(1)*size2(2); % total number of pixels in the

%experimental image

NumPix= zeros(m1,1);

%vector filled with same number of elements as

% the max pixel value in the experimental image

NumPixScale= zeros(m1,1);

PixVal=zeros(m1,1);

RelPix=zeros(m1,1);
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for t=1:m1

PixVal(t,:)=t;

% vector with integers 1 through max pixel value

end

%this for loop counts how many of each pixel values there

% are in difference image

for q=1:m1

l=find(I1==q);

[r,c] = size(l);

NumPix(q,:)=r;

end

NumPixscale=NumPix./TotPix;

%scales pixel values with total number of pixels

MAX=double(m2);

RelPix=PixVal./MAX;

% scales value of pixel with the max pixel value

Total=NumPixscale.*RelPix;

p=(i+1)/2;

SUM(p,1)=sum(Total); %Figure of merit

xlswrite(’dataanaly.xls’,NumPix,’A2’);

%writes data in exel file

end
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Appendix C

LGrot.m

%Name: Jessica Conry

%Prog. Name: LG rotation

%Date: 8-30-11

%

%

%

%Notes:

%

%

%Use: Takes experimental or theoretical the cross-polarization

%component of linearly polarized Laguerre-Gauss laser beam profile

%images, finds the angle from the center of the profile and the

%center of each of the lobes of the profile.

%

clear; % clear variables form memory

clf; % clear figures

clc; % clear command window

workspace; % display workspace window

% Constants

%bmpext = ’.ext’; % .bmp extension string

% Initialize Variables

n=5; %n is the total number of images

filename = {zeros(n,1)}; % empty filename vector (strings)

theta = zeros(n,1);

thetad = zeros(n,1);

thetad2 = zeros(n,1);

thetad3 = zeros(n,1);

thetad4 = zeros(n,1);

centroidlist = zeros(n,1);

center= zeros(n,2);
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centroidslist=zeros(4,2*n);

% Read Data In and Processing

for i=1:1:n

i

filename(i,1) = {[ num2str(i) ’.jpg’]};

% loop creates filenames for images

I_i = imread(cell2mat(filename(i,1)));

% fill vector images with filenames

imcrop(I_i)

% Select crop area in figure, select "copy location" then "crop"

reply = input(’Crop Boundaries?’); %paste location at prompt

M=reply;

I_i=imcrop(I_i,M);% save cropped image

J=imshow(I_i);

attrs = imattributes(J)

% shows the attributes of the cropped image

MaxI = input(’Max Intesisty?’);

% input the max intensity from the attribute output

MinI = input(’Min Intesisty?’);

%input the min intensity from the attribute output

MinPer= MinI/255;

%finds the percentage of 255 of the min intensity

MaxPer = MaxI/255;

%finds the percentage of 255 of the max intensity

v= (MinPer+MaxPer)/2 ;

%calculates the threshold to be used in

%converting the image to binary

bw=im2bw(I_i,v);

%converts image to binary with the above calculated threshold

imshow(bw)

reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

%ask if the threshold is ok or if it should be more or less

E= reply;

if (E==1)

v= (MinPer+MaxPer)/2 ;

bw=im2bw(I_i,v);

elseif (E==2)

while(E==2)

reply=input(’How much do you want to change? [0..0.1]’);

t=reply;

v= (MinPer+MaxPer)/2-t ;

bw=im2bw(I_i,v);

imshow(bw)
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reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

%ask if the threshold is ok or if it should be more or less

E= reply;

end

elseif (E==3)

while (E==3)

reply=input(’How much do you want to change? [0..0.1]’);

t=reply;

v= (MinPer+MaxPer)/2+t ;

bw=im2bw(I_i,v);

imshow(bw)

reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

%ask if the threshold is ok or if it should be more or less

E= reply;

end

end

bw1= edge(bw);%finds edges of the binary image

[r,c]=find(bw1);

fun=[r,c];

allx=fun(:,2);

ally=fun(:,1);

minx= min(allx);

maxx= max(allx);

miny= min(ally);

maxy=max(ally);

width=maxx-minx;

length=maxy-miny;

bw=imcrop(bw, [minx miny width length]);

I_i=imcrop(I_i, [minx miny width length]);

%bw=im2bw(I); %%converts grey scale image to bianary

s= regionprops(bw,’centroid’);

%finds the center of each bright spot (the "blades")

%and the center of the image

centroids_i= cat(1,s.Centroid);

%gives vetors describing the the location of the centers

%locate the center

[y,x,planes]= size(bw);

%gives number of pixels in the x and y directions

nx= x/2; %gives the center pixel in x direction

ny= y/2 ; % gives the center pixel in the y direction

%[min_diff, array_pos]=min(abs(nx-centroids(:,1)));

%gives the array position of the centroid in the middle

center_i=[nx, ny]; % gives the location of the center
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center(i,:)= center_i;

%find the upper left centroid

[L,W] = size(centroids_i);

[q,p]=size(centroids_i);

clear x1 %initalizing variables

clear y1 %initalizing variables

%for loop finds the upper left centroid

centx=centroids_i(:,1);

%writes all of the x coordinates of the centroid to centx

minx=min(centx); % finds minimum x coordinate

centy=centroids_i(:,2);

%writes all of the y coordinates of the centroid to centy

miny=min(centy); % finds minimum y coordinate

maxx=max(centx); % finds maximum x coordinate

maxy=max(centy); % finds maximum y coordinate

centroidslist(1:q,2*i-1)=centx;

centroidslist(1:q,2*i)=centy;

for k=1:L

if (centroidslist(k,2*i-1) == minx)

x1 = centroidslist(k,2*i-1);

%x1 is the x coordinate of the most left lobe

y1 = centroidslist(k,2*i);

end

end

for k=1:L

if (centroidslist(k,2*i) == miny)

x2 = centroidslist(k,2*i-1);

y2 = centroidslist(k,2*i);

%y2 is the y coordinate of the uppermost lobe

end

end

for k=1:L

if (centroidslist(k,2*i-1) == maxx)

x3 = centroidslist(k,2*i-1);

%x3 is the x coordinate of the right most lobe

y3 = centroidslist(k,2*i);

end

end

for k=1:L

if (centroids_i(k,2) == maxy)

x4 = centroids_i(k,1);

y4 = centroids_i(k,2);

% y4 is the y coordinate of the lobe

%closest to the bottom of the figure

end
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end

a1=abs(y1-center(i,2));

%gives the length of the "opposite" side of the triangle

a2=abs(x1-center(i,1));

% gives the length of the "adjacent" side of the triangle

theta(i)= atan(a1/a2);

% gives angle of the upper left lobe from

% the center of the image.

thetad(i)= radtodeg(theta(i));

% converts angle to degrees.

a3=abs(center(i,2)-y2);

a4=abs(x2-center(i,1));

theta2(i)= atan(a3/a4);

% gives angle of the upper right lobe from

% the center of the image.

thetad2(i)= radtodeg(theta2(i));

%converts angle to degrees.

a5=abs(y3-center(i,2));

a6=abs(x3-center(i,1));

theta3(i)= atan(a5/a6);

% gives angle of the lower left lobe from the

%center of the image.

thetad3(i)= radtodeg(theta3(i));

% converts angle to degrees.

a7=abs(y4-center(i,2));

a8=abs(x4-center(i,1));

theta4(i)= atan(a7/a8);

% gives angle of the upper left lobe from the center

%of the image.

thetad4(i)= radtodeg(theta4(i)); % converts angle to degrees.

imwrite(I_i, [ ’LG20y’ num2str(i) ’crop.bmp’]);

%writes image I_i to file NOTE change file name

%for different orders!

imwrite(bw, [ ’LG20y’ num2str(i) ’cropbw.bmp’]);

close all

end

%the Following plots all cropped images on one figure with blue

%stars indicating the centroids used and red stars on the center

%of the image. Note subplot(n,m,i) gives the number of rows and
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%columns of images... this can be changed according to how many

%images there are.

for i=1:2:n

I_i=imread([ ’LG20y’ num2str(i) ’crop.bmp’]);

subplot(6,6,i)

subimage(I_i)

hold on

plot(centroidslist(:,2*i-1), centroidslist(:,2*i), ’b*’);

%plots the centroids on the original image.;

plot(center(i,1), center(i,2), ’r*’)

axis off

hold off

end

figure

for i=1:2:n

bw_i=imread([ ’LG20y’ num2str(i) ’cropbw.bmp’]);

subplot(6,6,i)

subimage(bw_i)

hold on

plot(centroidslist(:,2*i-1), centroidslist(:,2*i), ’b*’);

%plots the centroids on the original image.;

plot(center(i,1), center(i,2), ’r*’)

axis off

hold off

end

%Write data to excel files

xlswrite(’data10a.xls’,center,’center’);

xlswrite(’data10a.xls’,centroidslist,’centroid’);

xlswrite(’data10a.xls’,thetad,’theta’,’A1’);

xlswrite(’data10a.xls’,thetad2,’theta’,’B1’);

xlswrite(’data10a.xls’,thetad3,’theta’,’c1’);

xlswrite(’data10a.xls’,thetad4,’theta’,’d1’);
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