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ABSTRACT 

Olfactory processing in the mammalian brain is a highly dynamic process, yet most of the 

olfaction experiments have been studied primarily with static stimuli. Odors in the natural 

environment are transported by turbulent flow of air or water. Natural odorants have fluctuations 

in concentration and it changes rapidly with time. These rapid fluctuations may pose some 

challenges to identifying an odor; on the other hand, the variation itself may provide important 

clues about the odor source. The goal of this thesis project was to create a similar odorant 

environment like the rapid odor fluctuations encountered in nature – to meet this goal; we built 

an odor delivery and optical odor detection system. We combine visible smoke with invisible 

odorant to make the odorant detectable using two high sensitivity CCD line cameras. Initial tests 

of the system were carried out to determine the plausibility of its use in future experiments. 

Based on observed and quantified fluctuations of smoke and odorants, we conclude that the 

system is a promising tool for studying olfaction with naturalistic odorant fluctuations. 
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1. INTRODUCTION

Many animals rely greatly on their olfactory system to categorize food sources, 

evaluate the social status within the species, and avoid predators. The odorants that give 

rise to these behaviors are complex mixtures of chemicals that must be represented 

as distinct patterns of activity by neurons in the olfactory system. The principles of 

encoding and discrimination of natural odor stimuli in the main olfactory bulb (MOB) , the 

first stage in the neural processing of volatile odorants31 remain unclear. 

Turbulent media such as air or water carries odors and creates fluctuations of 

concentrations of odorant. As a result, signals arriving at the olfactory sensors vary both in 

intensity and in duration1. Further fluctuations to the signal is added by sniffing, whisking, 

head movements and other active sampling behaviors2,3.Odors of interest (e.g., food or mates) 

are usually classified within a fluctuating, multi-odor background4–7 by the animal to locate 

their source. However, the extract encoding of identity and intensity of multiple odors extracted 

from the natural spatiotemporal fluctuations of odorants by the olfactory system is still 

unknown. 

1.1 Thesis Overview 

 The motivation behind this thesis was to find neural response of olfactory bulb to the 

spatiotemporal fluctuations of olfactory stimuli and to relate the statistics of neural response to 

the statistics of stimulus. In chapter 1 the basic of olfactory system and the mechanism of 

olfactory coding is briefly described. Chapters 2 and 3 discuss the devices used to create and 

detect fluctuations of odorant molecules. Chapter 4 describes experimental results and 

finally, in chapter 5 the project is concluded and the possible future works are proposed.
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1.2 Basic of Olfactory system 
 
 

       The sense of smell is commonly termed as Olfaction. General sensation of smell of a 

particular quality is known as Odor and any specific fragrant chemical is called odorant. Every 

chemical is not an odorant. Molecules must be volatile, small, and hydrophobic 25 to be sensed by 

the olfactory system. Nose is our only olfactory organ. 
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Figure 1.1.  Human olfactory systems.22Inhaled air transports odorant chemicals into the 

epithelium. These signals are then transmitted to olfactory bulb and onward to other 

brain regions for further processing. Note that the concentration of odorants carried by 

the inhaled air is spatiotemporally fluctuating due to turbulent mixing in the outside 

environment.  
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Most of the mammals share a common internal olfactory system. Olfactory sensory system 

activates when odor molecules come in contact with particular processes known as the olfactory 

vesicles 26. Olfactory epithelium consists of secretary mucosa which is known as the “retina of 

the nose”. Detection of odorants is the primary function of olfactory epithelium which consists of 

three types of cell: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.2. Cross-section of olfactory neural pathway between nose and 

olfactory bulb. 23 
 

 
 

The main cell type in the olfactory epithelium is the olfactory sensory neurons (OSNs). They are 

located below mucous layer in the epithelium. Unlike in retina, cochlea, skin, or tongue, they are 

the only kind of sensory receptors that make direct contact with physical stimulus. Hair like 

protrusions on OSN dendrites called cilia acts as a receptor of odorant molecules. They receive 
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and transfer olfactory signals to the upper parts of the brain .Odorant molecules bind on the 

olfactory receptor neurons on the OSNs. Initiation of an action potential requires binding of 

seven or eight odor molecules. Observation by a recent group suggests that the primary step in 

odor discrimination is mediated by ~ 1000 individual olfactory receptors 24. 

 
 

1.3 How fast changes in odorant concentration are encoded 
 

 

       In the input layer (glomeruli) of the olfactory bulb (OB) odor identity is represented and 

well characterized. Individual olfactory receptor neurons (ORNs) have a selection for subsets 

of odors and projections of ORNs to glomeruli are conserved. As a result, spatiotemporal 

activity patterns on the OB surface8–12 are formed which are different for individual odors. 

Inputs from multiple glomeruli are integrated by the local microcircuits which transforms the 

spatial distribution of glomerular patterns into temporal codes on Mitral/Tufted (M/T) cells13. 

The respiratory cycle responded by the phasic tuning of M/T cell which is known as respiration 

tuning14, 15. This response further increases the temporal variety of odor responses16–18. The 

variety of latencies of individual odors of M/T cell responses during respiration have been 

anticipated as a substrate for coding of individuality of odor which is known as latency 

coding.19–21   

 There are temporal variations in odor stimuli which challenge a temporal framework for 

coding of identical odors. M/T cell responses temporally modulate with the variations in 

concentrations of the odor stimuli. Additional glomeruli are recruited with the increase in 

concentrations in the stimuli8–10, 12 which changes M/T cell firing patterns. M/T cells are 

likely to fire in advance in the respiratory cycle and show signs of comprehensive inhibitory 

responses16, 32 with higher concentrations. Temporal shifts in M/T cell firing relat ing to 
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the respiratory cycle have been revealed to be distinctive of mixture responses16, 33. Odor 

mixtures activate glomerular activity patterns w h i c h  usually go beyond the particular odor 

activation maps in the glomeruli12, 34. As a result, neither the behavioral percepts35, 36 nor 

the particular M/T cell firing patterns33 can be concluded as simple sums of the particular 

odors in a mixture. Therefore, M/T cell encoding is extremely controlled, since it must retain 

real-time data on spatiotemporal properties of individual odor, intensity, etc. Limitations in 

technical devices37 in maintaining spatiotemporal fluctuations of odor stimuli have 

constrained the facility on olfactory experiments with natural odorants.  

      Most recently, one group have found that individual M/T cells respond in a surprisingly linear 

manner to temporally interleaved inputs of particular odors and their mixtures. Further, they 

showed that latency coding of spatiotemporal odor of M/T cells across the respiration cycle are 

growing properties of linear summation38. 

 

1.4 Turbulence creates odorant fluctuations 

 

        Wind disperses odor molecules from their source when odor plume formed. Their 

complex structure is much like that seen in smoke plumes. The plume spreads randomly 

over a wide area. Most of the animals and insects have the ability to track odor plumes to their 

source and this process helps them to find food and mate at distant sources . Odors are released 

from the source and odor plumes are formed when the molecules are spread by the wind. 

Since the odor plumes moves away from the source, it expands and the mean concentration 

of plumes falls. In a stable atmosphere at night under clear skies, buoyancy forces reduce 

turbulence and restrain its production.  
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Figure 1.3.  Visualization of air turbulences performed by Computer simulation at the Julich 

Supercomputing centre. Turbulences boundary layer is shown by vertical cross-section and 

the upper troposphere is the undulations due to the turbulences. Local variations of the 

density field is indicated by color variations, increasing from black to yellow to red.44 

 
 

On the other hand in an unstable atmosphere, buoyancy forces promote the production of 

turbulence. Unstable conditions occur when heat from the sun rays is transmitted to the 

air at ground level and convective updrafts develop.  Turbulence created by non-

buoyancy forces is continued under neutral conditions. Transformation of energy 

continues from the massive vortices or eddies to smaller vortices. Vortices become more 

randomly oriented as they become smaller, until they show no favored direction. As a 

result the wind speed in a given direction fluctuates frequently. Viscous dissipation in 

the smallest eddies then removes the energy in the largest eddies injected by the 

turbulence. V iscosity of the air determines the size of the dissipation range of eddies 

and is characterized by the Kolmogoroff length which a measure of the size of the 

smallest turbulent motions. It is normally a centimeter or so in the atmosphere, and is 

approximately a function of wind speed and height30.  
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      Odor molecules released from a source smaller than the Kolmogoroff scale, will 

expand slowly by molecular diffusion until it reaches the size of the smallest eddies 

and the development of the plume depends on the characteristics of the odor molecules. 

The length plume growth of this molecular diffusion depends on source size and wind 

speed. In the case of a small source Miksad & Kittredge 3 0 found the length could be 

some meters which was argued by Aylor et al2 7  .They showed that pheromone emitted 

by a female insect on the edge on a leaf, the source aerodynamically includes both leaf 

and insect and compares in size to the smallest eddies and this would probably not 

exceed a centimeter or so. Outside this point, the odor plume is independent of the 

material within it. Larger turbulence balances on a developing odor plume28 when 

observed with tracers. The small-scale structure is determined by the eddies with size 

range from the Kolmogoroff length up to some hundreds of millimeters which stretch 

and stir the filaments in the plume2 9 . 

   The air inside our lab is turbulent due to the variations in the room 

temperature. So smoke-odor mixture when puffed went through this turbulent 

air. Air turbulence causes the fluctuations in the odor mixture which was 

detected by high sensitivity line camera.  

    

2.   DEVICE  

 

2.1 Introduction 
 

 
       This chapter briefly discuss about the devices used in this thesis project for odor 

delivery and odor detection. Then precise control of the devices is discussed to obtain 

desired fluctuations in odorant. The last part of this chapter discussed about Schlieren 

imaging and optical detection of odorant fluctuations. 
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2.2 Odor delivery system 

 

       In order to make odorant molecule detectable by the optical sensor, we mixed them with 

smoke. The smoke is formed by a puffer which uses a liquid solution of ethylene glycol and 

glycerin to produce smoke. Ethylene glycol and glycerin are individually odorless and 

nonhazardous but when they burned together they generate smoky odor (Figure 2.2). The 

mixture of odor and smoke is kept in a Pyrex flask which is then puffed in between the 

scanner by a puffer system. Our puffer system included a computer-controlled pressure 

regulator (IP610-030, Omega Engineering Inc., CT, USA) connected to a compressed air 

source. Next to the pressure regulator was a small electro-mechanical valve 

(LHDA0531115H, The Lee Company, CT, USA). The pressure regulator, the valve, and 

data acquisition from the CCDs were o r ga n i z ed  w i t h  a  Labview program and a NI 6343 

acquisition system (National Instruments, TX, USA). We were able to tune puff pressure 

from zero to 30 PSI and the valve could be opened for any period which allows a wide 

range of puff strength. The examples shown in this paper were 1.0 sec in duration with a puff 

tube inner diameter of 1cm positioned 5.0 cm from the line camera (Figure 2.1).  

 

2.3 Odor detection system 

       The mixture of smoke and odorant molecule puffed in between two line camera can be 

detected by optical sensors. The image formed in this case is a shadow of the mixture of 

smoke and odor. This image formation can be explained by the principle of Schlieren 

imaging. 
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Figure 2.1. Odor fluctuation is detected based on shadows cast by the mixture of odor 

and smoke upon two CCD line cameras (up to 1000 images/sec, 1×2048 pixels, 14 

µm/pixel resolutions). The light sources are laser diodes. 

 

 

 

 

 

 

 

 

 

Figure 2.2. Smoke generator which uses a mixture of Ethylene glycol and glycerin 

to produce smoke 39. 

 

 

Our odor detection is based on simple light scattering. The smoke passes between a laser 

diode light source and a linear CCD array (line camera), as illustrated schematically in Figure 
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2.3. The smoke particles are small (<1 micron) and, thus, scatter light in all directions. These 

results in less light reaching the CCD when the smoke is present compared to when the 

smoke is absent. The shadow of the smoke is what we are interested in detecting, because a 

darker shadow indicates a higher smoke concentration. Our technique is similar to, but 

different than Schlieren shadowgraphy as discussed in section 3. 

 

 
 

 2.3.1 Optica l  detection 

 

           We used optical sensors to capture the shadow cast by the mixture of odor and 

smoke, which is puffed between the sensors and a light source. The system is capable of 

capturing the motion of puffed smoke with millisecond temporal resolution, micron spatial 

resolution. 

          The odor detector involved two linear charge-coupled devices (CCD) each with 2048 

pixels in a line and was able to capture one linear ‘image’ per 1.06 milliseconds (LC100, 

Smart Line Camera, Thorlabs Inc, NJ, USA). It was connected with a data gaining computer 

via USB and was supplied with Lab view drivers which allow easy incorporation into 

multifarious systems of experiments. Labview code helped us t o  control the CCDs in 

Supporting Information (SI). We were able to configure pressure regulator via Labview to 

provide a 0–5 V square pulse for each image acquired. The length of each pixel was 14 

microns which provided a superb spatial resolution concluded the 2.87 cm length of each 

CCD. Figure 2.1 shows, a laser diode (650 nm, 5 mW, D650-5I, US Lasers Inc, CA, USA) 

located 17 cm from each CCD provides coherent point-source lighting of the whole CCD 40. 

A  rigid frame as shown in Figure 2.1 was used to mount two CCDs and two laser diodes. 
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3.   SIMILAR DEVICES /METHODS    
 
 

 
3.1 Introduction 

       

       This chapter briefly discusses about Schlieren imaging and photo ionization detectors 

(PID) to measure the concentration of volatile organic compounds directly in the sample. It 

also explains about working principles of PID and various applications in the field of 

science and technology. We will use PID to measure the concentrations in the fluctuations 

of the odorant. 

 

3.2 Schlieren imaging 

 
 
 

           The physical basis for Schlieren imaging emerges from Snell’s Law, which states that 

light, slows upon interaction with matter. If media is homogeneous, such as in a vacuum, or 

space, light travels uniformly, at a constant velocity. The density of an inhomogeneous media 

such as smokes in motion varies with time. And, the index of refraction changes with smoke 

density. When encountering such inhomogeneous media, variations in the refractive index 

deflect or phase shift light passing through the smoke, resulting in schliere. Slight deviations 

in a conventional Schlieren set-up can result in systems with distinct but informative optical 

representation of flow. One notable method is shadowgraphy. 

        Shadowgraphy is an optical technique which projects the shadow of an optical image 

onto a viewing plane for image capture 41. The method of collecting shadowgraphs is similar 

to how humans visualize fluctuations in air density with their eyes, e.g. from the hood of an 

overheated car or gas rising from a barbecue grill 42. A basic shadowgraph system consists of 

a light source and a light capturing device to project shadowgraph onto for observation, as 

shown in Figure 3.1. Because shadowgraphs are simply shadows of a Schlieren object, they 

can be magnified in accordance to their distance from the screen 41.    
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Figure 3.1.  Formation of shadowgraph by the scattering of light ray from the smoke particles 

in motion. 

 

In addition, the size and flexibility of a shadowgraph system construction is desirable in 

visualizing large-scale or extremely sensitive Schlieren objects 41. 

 

 

3.2   Photo ionization Detector 

 

       The photo ionization detector (PID) is used to detect the concentrations of volatile 

organic compounds (VOCs). There is a lamp inside PID device which uses ultraviolet light 

to ionize gas molecules. The ionized molecules then used to measure the 

concentrations of the organic compounds 43. 

    There are portable PIDs (see Figure 3 . 2) which offer fast response and the ability 

to detect low gas concentrations. They are practical and reliable for the detection of 

VOCs. 
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3.2.1 Principle of Operation 

          PID lamp is filled with a low-pressure inert gas which is energized with energy in 

resonance with the natural frequency of the gas molecules. As a result, an ultraviolet 

spectral radiation is produced. The emitted UV light shows a variety of wavelengths 

based on the type of gas in the lamp. Krypton is commonly used with other variety of 

gases. Figure 3.3 shows wavelengths emitted by argon, krypton, and. A t the discharge 

end of the lamp special crystal materials are used to allow spectral emissions to traverse. 

A pair of electrode biased with a stable DC voltage is placed in close proximity to the 

lamp window where the light is emitted. Ionization of gas molecules happens when 

they enter on the radiated field in the space between the electrodes and the free 

electrons are stored at the electrodes. As a result, a current flows whose magnitude 

is directly proportional to the gas concentration 43.   

 

Figure 3.2.  A Pocket PID Monitor 43. 
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    Figure 3.3. Typical Photo ionization Detector Configuration 43. 

 

 

3.2.2   Applications 

 

          PID devices are recommended for fast response, high accuracy, and good 

sensitivity for detection of volatile organic compounds (VOCs). They are not 

recommended for use in stationary monitors, which sample continuously since PID 

sensors involve intermittent cleaning and have limited life expectancies. Portable 

models are useful only where periodic readings are required 43.
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4.   RESULTS AND DISCUSSIONS 
 
 

 
4.1 Introduction 

 

     This chapter briefly describes the results we found from our odor delivery and detecting 

system. We used the system to visualize a brief (1 s) puff of smoke and odorant. The 

visualization of odorant fluctuations is presented as image and plots using Matlab program. 

 

4.2 Optical image of odorant fluctuations 

 

 

     Each line camera is capable of collecting linear ‘images’ at up to 1000 frames per second. 

The frame rate is set by the user via the Labview interface. For the purposes of our study we 

acquired one image every 1.9 ms from both line cameras. We collected 1000 images and stored 

the data in a 2048×1000 matrix (2048 pixels x 1000 images). This provided a total recording 

duration of 1.9 s, during which the puff of smoke and odorant was delivered. Labview was used 

to write the data to disk. We used Matlab to analyze the data. The first step in this analysis was 

to subtract the background baseline from every image (Figures 4.1 & 4.2). This was necessary 

because the laser diodes did not produce spatially uniform light. The baseline was defined and 

calculated as the mean of first 50 scans (when no smoke was present). Deviations from baseline 

are due to light scattering by the smoke. The subtracted data sets are used to create images in 

Matlab to visualize the fluctuations of concentration in the mixture of smoke and odorant. The 

image (Figure 4.5) is a representation of 2048×1000 matrix with pixels on the y axis and time 

on the x axis. Color indicates baseline-subtracted light intensity measured by the line cameras. 

Variations of light intensity are due to scattering from smoke particles .The puffing started at 

~0.6 sec and continues until ~1.7 sec. Before puff started the baseline-subtracted light 

intensity was ~0 (yellow), Figure 4.5.  



16 
 

 

 
 

 

Figure 4.1.  Each line in this figure represents one image from one of the line cameras when no 

smoke was present. The vertical axis is light intensity (in arbitrary units, a.u.); the horizontal 

axis is spatial distance (in pixels). (TOP) The light intensity fluctuations in this image are due to 

spatial inhomogeneity of the light source. No smoke is present. (MIDDLE) The baseline image 

is defined as the average of 50 single images like the one shown in the top panel. (BOTTOM) 

After subtracting the baseline, the remaining fluctuations are small and define the noise floor of 

our measurement system. The noise is most likely electrical in nature and varies randomly from 

one image to another. 
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Figure 4.2.  Subtraction of raw data from the baseline in the presence of smoke and odorant 

mixture. Fluctuations of odorant concentrations are clearly visible in the subtracted line. 

  

 

Figure 4.3.  This figure displays 1000 images acquired from one line camera during 1.9 s. Each 

image comprises one column of this figure. Color indicates light intensity recorded by the 

camera. Thus, one row of this figure shows how light intensity of one camera pixel changes in 

time (with 1.9 ms temporal resolution). This data has not yet been subtracted by the baseline. 

The spatial irregularities of the raw scan are due primarily to non-uniform illumination from 

the l a se r  diode light sources. 
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Figure 4.5. Static spatial irregularities of the light source are removed by subtracting the 

baseline (Fig 4.4) from the original data (Fig 4.3). The remaining fluctuations now clearly reveal 

the spatiotemporal dynamics of the smoke as it passes the line camera. 

 

 

The region from 0.6 sec to 1.6 sec is covered with blue, red and yellow colors. Yellow is the 

color of the baseline which represents the state of the scanner before puffing smoke. On the 

Figure 4.4.  1000 baseline images. This matrix is subtracted from that in Fig 4.3 in order to 

obtain Fig 4.5. 
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image, it is shown before 0.6 sec. Because of the background noise (electrical, mechanical or 

any other types), there were some initial fluctuations. As a result, the image before puff started 

was covered with yellow and some tiny red spots. When we subtracted pixels from the baseline 

some of the pixels went below baseline which indicated lower light intensity (marked by blue) 

and some other went above baseline which indicated higher light intensity (marked by 

red).Now, when the puff started (after 0.6 sec), it flowed over the scanner and made  

spatiotemporal fluctuations. Blue color on the image, represented the presence of smoke 

particles which was the shadow of the particles on the scanner. The surrounding red colors were 

due to the scattering of light from the smoke particles which intensified the light coming from 

the source and falling directly on the scanner. The spatiotemporal fluctuations of the smoke-

odorant mixture were clearly visible on the image as the puff continued to ~1.9 sec.   

  

 

 

4.2.1.   Quantifying concentration statistics 

           Smoke-odor mixture was puffed through 5mm plastic tube at a distance of 5cm from the 

optical sensors. When we puffed in the central region bounded by the two optical sensors, we 

observed good fluctuations, roughly comparable to the fluctuations expected for natural odors. 
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Figure 4.6. The data shown in this figure come from two line cameras oriented at a right angle 

to each other. The ‘x camera’ data is shown in panels a, c, e. The ‘y camera’ data is shown in 

panels b, d, f. (a) Image of puff captured by line camera on ‘x’ axis (b) Image of same puff 

simultaneously captured by line camera on’ y’ axis (c) Time series of fluctuations of mean x 

concentration within the region through which the smoke passed (pixels 600-1100) (d) 

Fluctuations of mean y concentration (mean over pixels 500-1200) (e) & (f) Note that the 

concentration across the averaged pixels is not uniform standard deviation(SD) of concentration 

along ‘x’ axis & ‘y’ axis. 
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 Figure 4.7. The data from the x and y cameras provides related, but not identical information 

about the smoke concentration within the measurement volume. To better approximate this 

concentration, we averaged the concentrations of x and y axis (Fig 4.6c and 4.6d). Shown is the 

time series of this x-y average. 

 

 

 

 

 

 

Figure 4.8. Our study is motivated by the fact that odors fluctuate in the natural world. Here 

we make an initial step towards quantifying the statistics of the fluctuations generated by our 

system. Shown is a probability distribution of mean x-y concentration within the measurement 

volume (based on the time series shown in Figure 4.7). This result demonstrates that the 

fluctuations (width of distribution) are comparable to the mean (center of the distribution). 

Therefore, conventional studies of the olfactory system should better account for odorant 

fluctuations. In future studies our system may be a useful tool for this goal. 
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5.   CONCLUSION AND FUTURE WORK 

 
 

5.1 Conclusion 
 

        The olfactory system must perform multiple tasks including odor identification and 

concentration detection. If there multiple odor present odor segmentation must also be 

performed. It many animals (not so much in humans), localization of odor sources, like food and 

mates, is also essential. Fluctuations in the odors concentration may play an important role in all 

of these activities. Based on the high and low concentrations, animals can decide how far or 

close the food source is. To better study the role of odor fluctuations in olfaction we need a 

reliable odor delivery system which can imitate natural spatiotemporal odor fluctuations. Only 

Then we can have study how the olfactory system of animal works with natural spatiotemporal 

fluctuation of odors. The system we have developed here may serve this purpose. 

 

5.2 Future Work 

      In this thesis, we developed and explained a basic experimental system to produce 

spatiotemporal odorant fluctuations and optical detection of the fluctuation. This set up is very 

cost effective. However, some limitations of our device include the inability to precisely 

measure concentration in units such as mol/l. Rather; we can only see relative changes 

compared to baseline in arbitrary units. This limitation could be mitigated in future experiments 

using a PID device to calibrate our optical measurements. In addition the spatial resolution is not 

capable of measure concentration accurately in volumes smaller than about 5 mm x 5 mm x 5 

mm. Finally, a significant limitation of our approach is that the odorant must be mixed with a 

visible medium like smoke. Nonetheless, future experiments could be performed with our 

device to deliver spatiotemporal odorant fluctuations to the rodent nostrils. 
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Together with recordings of electrophysiological neural activity of olfactory bulb and 

olfactory cortex, our device opens interesting possibilities for future work. Our device could 

reveal a statistical relation between the spatiotemporal fluctuations of odors and the neural 

activity .This may provide us an improved understanding of, how the olfactory system encodes 

natural odorants with spatiotemporal fluctuations.
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                                                       Appendix 
 
 

Matlab Programs 

 

 

 

B=importdata('xaxis3'); 

A=mean(B(:,1:50),2); 

for i=1:1000 

    C(:,i)=B(:,i)-A(:,1); 

end 

figure(2) 

imagesc((1:1000)*0.0019,1:2048, C); 

  

colorbar; 

colormap(jet(128)) 

xlabel('time (s)') 

ylabel('pixel') 

  

figure(3) 

subplot(311) 

plot(B(:,600)) 

xlabel('pixel') 

ylabel('Light intensity') 

  

subplot(312) 
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plot(A) 

xlabel('pixel') 

ylabel('Light intensity') 

subplot(313) 

plot(C(:,600)) 

xlabel('pixel') 

ylabel('Light intensity') 

 


