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ABSTRACT 

 Graphene was the first two-dimensional material ever discovered, and it exhibits many 

unusual phenomena important to both pure and applied physics. To ensure the purest electronic 

structure, or to study graphene’s elastic properties, it is often suspended over holes or trenches in 

a substrate. The aim of the research presented in this dissertation was to develop methods for 

characterizing and manipulating freestanding graphene on the atomic scale using a scanning 

tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be 

carefully reconsidered to account for movement of the extremely flexible sample. 

 First, the acquisition of atomic-scale images of freestanding graphene using the STM and 

the ability to pull the graphene perpendicular to its plane by applying an electrostatic force with 

the STM tip are demonstrated. The atomic-scale images contained surprisingly large 

corrugations due to the electrostatic attractive force varying in registry with the local density of 

states. Meanwhile, a large range of control over the graphene height at a point was obtained by 

varying the tip bias voltage, and the application to strain engineering of graphene’s so-called 

pseudomagnetic field is examined. Next, the effect of the tunneling current was investigated. 

With increasing current, the graphene sample moves away from the tip rather than toward it. It 

was determined that this must be due to local heating by the electric current, causing the 

graphene to contract because it has a negative coefficient of thermal expansion. 

 Finally, by imaging a very small area, the STM can monitor the height of one location 

over long time intervals. Results sometimes exhibit periodic behavior, with a frequency and 

amplitude that depend on the tunneling current. These fluctuations are interpreted as low-

frequency flexural phonon modes within elasticity theory. All of these findings set the 

foundation for employing a STM in the study of freestanding graphene.  
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I. INTRODUCTION 

 The most important and surprising discovery of condensed matter physics in the last 

decade was the isolation of graphene [1], for which Andre Geim and Konstantin Novoselov were 

awarded the 2010 Nobel Prize in Physics. Graphene can be described as a single atomic layer of 

the common semimetal graphite, or as an unrolled single-wall carbon nanotube. As such, it is a 

two-dimensional (2D) material composed entirely of carbon, with the sp2-bonded atoms forming 

a honeycomb lattice that contains two atoms per unit cell. Prior to the confirmation of the 

existence of isolated graphene, long-range 2D crystalline order was widely considered 

impossible [2], a result of well-established theory [3] and numerous experiments in which thin 

films rolled up or decomposed below a certain minimum thickness [4-6]. Graphene prompted a 

reconsideration of that long-standing supposition and opened the door to a flood of other 2D 

crystals. However, this distinction is only the beginning of what makes graphene so special. 

A. PROPERTIES OF GRAPHENE 

 The band structure of graphene was first calculated in 1946 as the starting point for 

studying graphite [7]. Much of the theory surrounding graphene was thus able to develop long 

before experiments were possible or even imagined. The most fascinating prediction is that the 

low-energy charge carriers in graphene mimic massless Dirac fermions, meaning they exhibit a 

linear electronic dispersion but travel at the Fermi velocity ≃ 1 10 	m/s  instead of the speed 

of light [8]. This leads to the manifestation of several remarkable phenomena typically reserved 

for quantum electrodynamics. For example, the cyclotron mass in graphene depends on the 

square root of the electronic density, rather than remaining constant [9]. It is also possible to test 

the Klein tunneling paradox [10], observe a half-integer quantum Hall effect [11], and achieve 

micrometer-scale ballistic transport [12]. 
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 In addition to curious and useful electronic properties, graphene also possesses 

noteworthy mechanical and structural characteristics. Most famously, despite being only one 

atom thick, it has been called the “strongest material ever measured” [13]. This rigidity can be 

attributed to the stiff nature of the in-plane sigma bonds, yet perpendicular to the plane it remains 

very flexible. Furthermore, graphene is impermeable to gases [14] and suitable for high-

frequency mechanical actuation by electrical or optical means [15]. Interestingly, contrary to the 

common theoretical description and 2D designation, freestanding graphene is not perfectly flat, 

but rather displays intrinsic ripples around 5 nm wide and 0.5 nm high [16-18]. Most researchers 

believe these are the key to understanding graphene’s unexpected stability, but the exact 

mechanism responsible is still under debate [19]. All these intriguing properties discussed so far 

shed some light on the intense excitement and research activity that has been associated with 

graphene since its discovery. 

B. FREESTANDING GRAPHENE 

 There are many methods of producing and handling graphene. The first samples were 

fabricated by micromechanical cleavage of graphite, which results in especially pristine flakes 

for sensitive experiments [20, 21]. However, the flakes are typically miniscule, only a small 

fraction of them are monolayer, and they must be viewed on an oxidized silicon wafer under an 

optical microscope to be identified [22]. Much work has also been devoted to reliably forming 

high-quality epitaxial graphene by thermal decomposition of SiC wafers [23, 24]. This has the 

advantage of being the most direct path to graphene-based electronics, but the disadvantages of 

expense and difficulty in controlling uniform growth [25, 26]. The final common method of 

graphene production is chemical vapor deposition (CVD) on certain metallic surfaces [27-29]. 

Copper is probably the most popular choice because it naturally limits the growth to one layer 
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that is continuous across various topographical features and can be transferred to other surfaces 

on a large scale [30-32]. Unfortunately, no matter the method of production or transfer, graphene 

on a substrate maintains some level of interaction with the substrate, which degrades the intrinsic 

mobility [33, 34] through local effects, such as charged-impurity scattering [35], and nonlocal 

phenomena, such as remote phonon scattering [36]. In order to study pure graphene, it becomes 

necessary to suspend the sections to be tested. 

 This has been accomplished in numerous ways, but almost always with impressive 

results. For example, the record-breaking carrier mobility in graphene was only measured after 

partially etching away the SiO2 under a mechanically exfoliated flake [37, 38]. Similarly, pristine 

cleaved layers have been placed over prefabricated trenches in a Si/SiO2 substrate to measure 

graphene’s negative thermal expansion coefficient [39] and superb thermal conductivity [40]. 

Freestanding graphene, transferred onto a gold or copper scaffold, is also convenient for 

transmission electron microscopy (TEM), with the best images achieving atomic resolution [41]. 

Moreover, suspension is the only way for atomic force microscopy to determine the effective 

spring constant, Young’s modulus, and other elastic parameters of graphene [42, 43]. Clearly, a 

thorough examination of freestanding graphene is a necessary and valuable step toward realizing 

the full potential of this remarkable material. Applications are envisioned in almost every field, 

including high-performance flexible electronics, superior solar cells and fuel cells, ultrasensitive 

measurement devices, and advanced in vivo drug delivery [44, 45]. 

C. SYNOPSIS 

 In this dissertation, I will explore ways to characterize and manipulate freestanding 

graphene using a scanning tunneling microscope (STM). Focus will be given to proper 

interpretation of the data, in light of significant interactions between the STM tip and graphene, 
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in order to deduce atomic-scale properties of the sample. I will begin with an overview of STM 

and a description of the system and sample used, then discuss the challenges and peculiarities of 

imaging freestanding graphene. Next, attention will turn to constant-current scanning tunneling 

spectroscopy (STS) as a method for pulling on the membrane and introducing strain, with 

approaches for calculating the applied electrostatic force and induced pseudomagnetic field. 

Complementing that strategy, I also consider constant-voltage STS, which reveals the 

unexpected influence of the tunneling current. Finally, a new procedure is introduced for 

recording height fluctuations of a single atom in the graphene sheet, and low-frequency periodic 

oscillations are observed and analyzed. Taken together, these capabilities form a useful set of 

STM experiments that will provide a fundamental understanding of freestanding graphene, its 

functionalized derivatives, and any similar 2D materials of interest. 
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II. STM THEORY AND OPERATION 

 Invention of the STM is credited to Gerd Binnig and Heinrich Rohrer, who won the 1986 

Nobel Prize in Physics for their work [46]. They experimentally demonstrated quantum 

tunneling in vacuum by measuring an electrical resistance that depended exponentially on the 

width of the gap between a tungsten tip and platinum sample [47]. Then they cleverly applied 

this ability to acquire the first atomic-resolution image of the Si(111) 7×7 surface [48]. Atomic-

resolution microscopy was a breakthrough that revolutionized surface physics by revealing 

never-before-seen details in real space [49-51]. Furthermore, the precision of the newly 

developed instrumentation allowed positioning of the probe with atomic accuracy for sensitive, 

local spectroscopic experiments [52]. If microscopy and spectroscopy were not enough, the STM 

was also shown to be capable of manipulating single atoms adsorbed on a surface, adding yet 

another dimension to its impressive capabilities [53-55]. In this chapter, I will summarize the 

basics of STM as they pertain to the rest of this dissertation and describe the system used in my 

experiments. For a more complete review of STM, consult Ref. [56]. 

A. OPERATIONAL PRINCIPLES 

 In STM an atomically sharp metal tip is brought within a few angstroms of a conducting 

sample surface, typically in vacuum. When a potential difference is applied between the two, 

some electrons will be able to undergo quantum mechanical tunneling through the vacuum, the 

direction of current depending on the applied bias voltage. The tunneling current (I) decreases 

exponentially as the tip-sample separation (s) increases, according to: 

 ∝ / , (1)

where m is the electron mass,  is the effective local potential barrier height, and  is the 

reduced Planck constant [57, 58]. This means that small changes in the gap result in large 
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changes in the current, making it possible to achieve excellent vertical resolution (~0.01 nm). 

Likewise, with an adequately sharp tip, almost all the measured current will be following the 

shortest possible path, from the tip apex to the region of the surface directly below the apex. 

Thus quantum tunneling also facilitates superb lateral resolution (~0.1 nm). When the tip is raster 

scanned over a surface, with the tip height controlled via a feedback loop programmed to keep 

the tunneling current constant, a topographical map is formed which traces a constant local 

density of states (LDOS). This is the basis of constant-current microscopy. The necessary 

precision of movement is achieved using piezoelectric actuators. 

 The STM can also be used to perform spectroscopy, especially to map the sample’s 

density of states (DOS). With the tip stationary at one lateral location and a constant height 

determined by an initial “setpoint” current and voltage, the potential bias (V) is ramped and the 

tunneling current is recorded. If one plots / / / ln / ln  versus V, the 

peaks in the graph correspond to peaks in the DOS [59, 60]. Another option for spectroscopy is 

“feedback-on” spectroscopy, in which the tip height is allowed to change in order to maintain the 

setpoint current. In this case, one may ramp either the voltage or setpoint current and measure the 

change in tip height. At constant V, for example, an apparent local barrier height ( ) can be 

calculated by this method according to [61]: 

 eV
8

ln
. (2)

Feedback-on spectroscopy is less common but will be critical to the experiments performed for 

this dissertation. 

B. SYSTEM DESCRIPTION 

 The STM used in the following experiments is an Omicron low-temperature model. 

Though operated at room temperature for our research, this model is somewhat unusual in that 
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the tip points upward at a downward-facing sample surface, as depicted in Fig. 1. (Note that later 

diagrams may not reflect this orientation.) It is important to understand, however, that in graphs 

showing the tip height (Z), an increase in Z corresponds to moving away from the sample, even 

though this is downward motion relative to the Earth. This convention is indicated in Fig. 1 by 

the plus sign next to the arrow. Another notable convention is that our samples are electrically 

grounded for all experiments. Therefore, the system voltage reported (V) is always the bias 

applied to the tip, measured relative to ground and the sample. 

 This STM operates under ultra-high vacuum (UHV) conditions, meaning the mean free 

path for molecules in the chamber is on the order of 100 km. Its base pressure is about 

10−10 mbar, and the pressure during experiments was typically around 10−9 mbar. UHV is 

achieved and maintained through a combination of techniques and devices, including baking the 

system at high temperature, all-metal seals, a turbopump, an ion pump, and a titanium 

sublimation pump. Macroscopic positioning of the STM tip is accomplished using stick-slip 

piezoelectric actuators, and microscopic positioning relies on a piezoelectric single-tube scanner. 

Furthermore, the STM has been customized to operate two orthogonal tips simultaneously [62]. 

 It is critical that the STM be free of both mechanical and electrical noise. It comes 

equipped with a spring suspension system with a resonance frequency of about 2 Hz and an 

eddy-current damping mechanism to remove vibrations from the STM stage. In addition, the 

entire UHV chamber is supported by an active vibration-cancellation table, which was only 

recently added. To minimize electrical noise, the STM and all its supporting electronics are 

powered by a large uninterruptable power supply (UPS). The batteries of the UPS provide a quiet 

electrical source and prevent equipment damage or loss of data due to power failures. In
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Figure 1: Depiction of a biased STM tip as it is brought near a suspended, grounded graphene 

sample with intrinsic roughening. As in our STM system, the tip approaches from below, but the 

measured tip height increases as it moves away from the sample.  
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addition, a private grounding rod was installed outside the lab for the STM to have a clean 

electrical ground. 

C. ELECTROCHEMICAL TIP ETCHING 

 Atomically sharp, mechanically stable tips are critical for most STM experiments. 

Therefore, we have devoted significant effort to developing an easy and reliable etching method. 

STM tips are manufactured in-house from 0.25-mm-diameter, polycrystalline tungsten wire, 

which is electrochemically etched in a sodium hydroxide solution using a custom double-lamella 

setup with an automatic gravity-switch cutoff [63]. Compared to other methods tested, this one 

was the most likely to produce a tip both sharp and stable enough to achieve atomic-resolution 

images on highly oriented pyrolytic graphite. It combines precision, ease of operation, and a fast 

cutoff time. The design was later improved further by applying an etch stop to limit the length of 

wire exposed to the etchant, while still permitting the use of a thick, stable lamella [64]. After 

etching, the tips are gently rinsed with distilled water, briefly dipped in a concentrated 

hydrofluoric acid solution to remove surface oxides [65], and promptly transferred through a 

load-lock into the STM chamber where they can be temporarily stored or immediately utilized. 
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III. STM IMAGING AND MANIPULATION OF FREESTANDING GRAPHENE 

A. SAMPLE DESCRIPTION AND PREPARATION 

 All graphene samples were grown via CVD by a commercial provider.* The freestanding 

graphene was first grown on nickel foil, which was then placed graphene-down over ultrafine, 

2000-mesh copper TEM grids. The circular TEM grids are 3.05 mm in diameter and feature a 

scaffold of square holes 7.5 μm wide and bar supports 5 μm wide. When the nickel is chemically 

etched away, graphene is left behind, partially supported by the copper bars and partially 

suspended over the square holes. The transferred graphene is reported to be from one to six 

monolayers thick with 60% to 90% coverage. The high coverage was confirmed by scanning 

electron microscopy (SEM), and example images are shown in Fig. 2. In addition, energy 

dispersive X-ray analysis confirmed that the surface was free of detectable contamination. For a 

non-flexible control sample, single-layer graphene grown on polycrystalline copper foil was used 

without transferring it to a different substrate. 

 Prior to loading into the STM chamber, all samples were mounted on standard flat 

tantalum plates using silver paint. The grids can be mounted with the graphene side up or down, 

and both options were sometimes employed. When facing down, the grid was elevated by a 

stand-off support so that the graphene could not come into contact with the sample holder. The 

STM tip can still access the freestanding graphene through the holes of the copper grid, and we 

had fewer problems with stability in this configuration. Once the sample was loaded into the 

STM chamber, only lamp-type heating was applied, and no other heating or annealing was done 

to the sample. Excessive annealing of the freestanding graphene may cause macroscopic 

texturing due to the grid expanding and the graphene contracting during the heating process [39].

                                                 
*Graphene Supermarket, Calverton, NY (http://www.graphene-supermarket.com). 
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Figure 2: SEM images of freestanding graphene on a 2000-mesh, copper grid. Acquired using an 

FEI Quanta 200 field-emission SEM equipped with a scanning TEM detector and an Oxford 

INCA 250 silicon-drift, energy-dispersive X-ray spectrometer. Graphene covers most of the 

holes, but not the darker regions. Scale bars are included in the images. 

  

(a) (b)

(c) (d)
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B. IMAGING WITH ENHANCED CORRUGATIONS 

 Performing STM on a truly flexible substrate represents new territory, and as such, there 

was little framework for developing or interpreting the following experiments. Although 

numerous studies had used STM to image graphene at the atomic scale on various substrates, it 

was never certain that this would be possible with suspended graphene of any appreciable area. It 

had been attempted, but the system did not seem mechanically stable enough for such an ultra-

sensitive technique [66]. Nevertheless, we sought to image the freestanding graphene as a 

starting point in order to establish its presence and character for any future research. 

Experiment and Results 

 Constant-current STM images were acquired from both types of graphene sample, as 

shown in Fig. 3. Note that the hexagons in these STM images confirm that it is effectively 

single-layer graphene [67, 68]. All STM images presented are 400 pixels × 400 pixels (400 data 

points per line with 400 lines per image) and have a black-to-orange-to-white color scale 

representing height. A representative 6 nm × 6 nm STM image of graphene on copper foil is 

displayed in Fig. 3(a). The honeycomb structure is visible but somewhat obscured by the more 

dominant topography of the copper substrate. To see the graphene more clearly, the upper right 

inset shows an atomic-resolution image around a single honeycomb ring from the central section 

of Fig. 3(a). It is magnified two times and displayed with a compressed color scale. Below the 

STM image is a height cross-section line profile extracted across its center, showing an atomic-

scale corrugation amplitude of about 0.05 nm. This is consistent with what is expected for 

stationary graphene [69]. 

 A 6 nm × 6 nm STM image of freestanding graphene is displayed in Fig. 3(b), but this 

was more difficult to obtain. While the STM can usually establish stable constant-current
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Figure 3: 6 nm × 6 nm, filled-state STM images of (a) graphene on copper foil and 

(b) freestanding graphene. Imaging parameters were V = 0.1 V and I = 1.0 nA. The upper insets 

were cropped from their respective images, magnified two times, and displayed with compressed 

color scales. The lower graphs are height cross-section line profiles of the atomic corrugations, 

extracted across the centers of their respective images. 

  

(a) (b)
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tunneling after approaching the freestanding graphene, it can rarely be maintained once we 

attempt to acquire an image of any appreciable size. We succeeded at this location, however, and 

several others although only one example is shown. The honeycomb structure is visible but 

noticeably warped, presumably due to the instability of the membrane and not because the bonds 

are actually stretched. The inset reveals the details of the distorted local atomic structure. There 

is also a curvature to the overall topography, highest along a diagonal line from the lower left 

corner to the upper right corner. The most remarkable feature of this data is that the underlying 

atomic lattice is still visible even with an overall black-to-white height scale of 4 nm. This is 

possible because the height change across each atomic ring is nearly a full nanometer (see line 

profile below image), 20 times greater than the electronic corrugation for graphene on copper. 

Such a surprising result deserves careful consideration. 

Discussion 

 Clearly, the tip height when imaging freestanding graphene does not merely represent an 

electronic surface of constant LDOS. There must actually be two features that contribute to the 

atomic corrugation amplitude in Fig. 3(b), one electronic and the other elastic. The electronic 

component is caused by the spatial variation in the DOS, which is normally observed with STM. 

For graphene on a substrate, this electronic height change is known experimentally and 

theoretically to be at most 0.05 nm [69]. The elastic component is caused by movement of the 

freestanding graphene through electrostatic attraction between the biased STM tip and grounded 

sample, as depicted in Fig. 4(a). (In a related point, evidence for elastic distortions in graphite 

has been previously reported [70].) After much debate, it was suggested that this attractive force 

must increase and decrease in registry with the local charge density, meaning that it causes the 

flexible substrate to move up and down in the same pattern as the electronic “height,” thus
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Figure 4: (a) Cross-sectional schematic of the STM tip in tunneling on suspended graphene 

using feedback-on electronics. The graphene is attracted to the tip due to an image charge. 

(b) Diagram illustrating the tip over a carbon atom (left) and over a hole in the honeycomb lattice 

(right). The electrostatic attractive force is stronger and the graphene is pulled farther when over 

an atom, but the tip-sample separation remains approximately the same. 

  

(a) (b)
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greatly enhancing the corrugations. This prediction was confirmed through a calculation using 

the self-consistent Hückel method, in which a point charge was placed 0.1 nm above a 20 nm × 

20 nm graphene patch at different lateral locations [71]. 

 To illustrate this interaction more clearly, imagine that the STM tip is brought into 

tunneling over a carbon atom, as shown on the left side of Fig. 4(b). The freestanding graphene is 

attracted to the tip by the electrostatic image force and moves toward it. The feedback circuitry 

retracts the tip until a sufficient elastic restoring force builds up in the graphene to balance the 

electrostatic attraction, and a stable tunneling current is achieved [71]. Next, as the tip scans 

away from the atom and toward the center of a hexagon, the electrostatic force decreases. 

Consequently, the elastic restoring force causes the graphene sheet to retract away from the tip, 

as shown on the right side of Fig. 4(b). The feedback circuit prompts the tip to chase the 

graphene about 1 nm until a new equilibrium configuration is reached and the tunneling current 

setpoint is restored. As the tip scans to the next atom, the electrostatic force increases once more, 

and the process repeats. This repetitive, dynamic, and interactive process is in perfect registry 

with the electronic corrugation, producing images which depict freestanding graphene at the 

atomic scale but with unexpectedly large corrugations. 

C. CONSTANT-CURRENT ELECTROSTATIC MANIPULATION 

Experiment and Results 

 The electrostatic attractive force between tip and sample can be studied and exploited 

using constant-current spectroscopy. Constant-height spectroscopy is not an option because the 

freestanding graphene will either crash into the tip or fall out of tunneling as the voltage is 

increased or decreased, respectively. Instead, the change in tip height required to maintain a 

constant current is recorded as the bias voltage is varied, as shown in Fig. 5 for suspended 
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graphene (top three pairs of curves) and graphene on copper foil (bottom curve). The inset shows 

the actual measured current versus voltage on a log scale. Notice that constant current is 

achieved, indicating that the sample and tip always maintain a close separation s to sustain 

electron tunneling. By doing the experiment with graphene on copper, we show that s changes by 

no more than a few nanometers due to the increased tunneling probability with applied voltage. 

Therefore, the much larger displacements attained with freestanding graphene must depend on 

movement of the sample, or else the tunneling current would decrease exponentially. 

 For the highest setpoint current, the freestanding graphene membrane rises and follows 

the tip about 30 nm as the voltage is increased to 3 V (solid red line). The result is almost fully 

reversible as the graphene drops by about 35 nm when the voltage is ramped back down (dashed 

red line). The graphene can be held at any height in between by simply setting the voltage 

accordingly. The setpoint current appears to plays a similar role in the maximum displacement 

achieved. A tenfold reduction in current reduces the maximum height achieved by about a factor 

of 2. Therefore, a combination of setpoint current and bias (for fine tuning) can be employed to 

set the height of the graphene membrane at will. This electrostatic manipulation technique is 

ideal for precisely quantifying the movement of the freestanding graphene since the voltage is 

incrementally changed in small amounts (∼10 mV step size), and the acquisition waits for a long 

time (∼3 ms) so that the feedback can stabilize before the current and new vertical position of 

the STM tip are recorded. Furthermore, the voltages are kept low enough to disregard field-

emission resonance effects [72, 73]. 

Discussion 

 The origin of the movement of the freestanding graphene membrane can be explained via 

mechanisms similar to those previously discussed with imaging. First, as the voltage increases,



18 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Constant-current STS data showing the vertical movement of the STM tip versus 

applied bias voltage for three different setpoint currents on freestanding graphene. The voltage 

was ramped both forward (solid lines) and backward (dashed lines). The bottom trace is 

graphene on copper data that has been offset for clarity. The inset shows the measured current on 

a log scale as a function of applied bias voltage during the corresponding STS measurements. 
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the current will increase due to an increasing tunneling probability. With the feedback turned on, 

the tip pulls away from the surface. However, the tip need only move about 0.1 nm to decrease 

the current by a factor of 10, so this portion of the movement will always be small [56, 69]. More 

relevant to this study, the increased bias voltage increases the electrostatic force on the 

freestanding graphene membrane, causing it to move toward the tip. To maintain a constant 

current, the tip pulls away from the approaching graphene membrane. The graphene continues to 

chase the tip until an elastic restoring force grows and eventually equals the electrostatic 

force [71]. At this point, an equilibrium is reached, allowing the system to achieve the setpoint 

tunneling current and record the new height. However, if the force is governed mainly by the 

voltage, one would expect each trial to reach the same final height regardless of the setpoint 

current. In the graph of Fig. 5, each curve was set to zero height at its beginning for convenience, 

but the sample does not necessarily begin at the same height each time. This important question 

will be revisited later. 

 It is interesting to notice that the curves are generally characterized by a quick rise as the 

tip bias is ramped from 0.1 V to around 1.0 V, followed by a plateau region over the remaining 

range to 3.0 V. This may be evidence of large-scale, low-energy configurations, or ripple 

textures, of the graphene membrane [17, 39, 74]. That is, the first linear region is soft due to 

removing ripples or slack, and the second region is harder due to straining the lattice. Insights 

like this make electrostatic manipulation of freestanding graphene a potentially valuable tool for 

learning about the elastic and electronic properties of freestanding graphene, especially when 

modified by local defects or nanoparticles [75, 76]. This experiment also demonstrates that STM 

can be used to induce a controllable strain on freestanding graphene membranes, laying the 

groundwork for using local probes in strain engineering [77, 78]. In fact, a number of studies 
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have employed the electrostatic STM force to test and manipulate freestanding graphene for 

various purposes [79-81], but they do not focus on elucidating the fundamental interaction. 

D. IMAGE-CHARGE MODEL OF ELECTROSTATIC ATTRACTION 

Setup and Derivation 

 In many ways, the Z(V) results above would be more useful if one knew the electrostatic 

force F that the tip exerts on the sample as a function of bias voltage. While this is impossible to 

know exactly, we can calculate an approximate force using an idealized model. Let the STM tip 

be simplified to a conducting sphere of radius a, held at potential V, and placed with its outer 

surface a distance s from an infinite grounded conducting plane representing the graphene 

sample, as illustrated in Fig. 6. The resulting electrostatic problem has an exact solution found 

using the iterative method of images technique [82-84]. Because a point charge generates 

spherical equipotentials, the boundary condition on the sphere can be easily satisfied by 

removing the physical surface and placing a point charge of magnitude 4  at the 

former center of the sphere. Next, to satisfy the grounded boundary condition at the plane, an 

equal and opposite charge  must be placed equidistant from the plane and on the other side 

(see Fig. 6). Now the boundary condition on the plane is satisfied, but that on the sphere is no 

longer satisfied. Another positive charge of lesser magnitude must be placed inside the spherical 

boundary at a different location to satisfy the spherical equipotential again, followed by another 

opposite charge across the plane. As the iterations proceed, the magnitudes of the charges 

decrease so that only a finite number of image pairs (e.g., 40) needs to be considered for an 

accurate estimate. For illustration, three such pairs are shown in Fig. 6.  
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Figure 6: To-scale diagram illustrating the iterative method-of-images technique described in the 

text to approximate the tip-sample system and calculate the electrostatic attractive force. 

Calculated electric field lines are shown leaving the biased conducting sphere (STM tip) and 

ending at a grounded plane (graphene sample). 
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 To determine the electrostatic attractive force between the tip and sample from the 

equivalent method-of-images construction, one must first compute the energy stored in the 

system. The electrostatic energy of the 1 positive charges in the upper half-plane is given by 

 
1
2

 (3)

where 

  (4)

is the magnitude of the ith charge in the upper half-plane. Meanwhile,  is the position 

of the initial charge at the sphere center, and 

  (5)

is the position of the ith charge measured relative to the plane. Because the plane is grounded, the 

electrostatic energy of the charges in the lower half-plane is zero, and the above expression is the 

energy of the entire system. The attractive force F between the sphere and plane is then given by 

 
2

2  (6)

where ≡ / . The last step is performed in order to pull out the common  factor and 

thereby show that the force is predicted to increase quadratically with the tip bias. 

 Since the electrostatic force depends quadratically [85] on the bias voltage ∝ , we 

can get a quick idea of how that force varies with tip height by plotting  as a function of Z. 

This has been done for a new 1.00 nA Z(V) curve, as shown in the main graph of Fig. 7(a). (The 

original data is provided in the inset.) The main plot is divided into four regions for discussion 

purposes: (I) low-bias voltages where 0.1	V , (II) voltages between 0.1 V2 and 1 V2,



23 

 

 
 

 

 

 

 

 

 

 

Figure 7: (a) The change in STM tip height at one location on freestanding graphene as a 

function of bias voltage. It increases by 20 nm as the voltage is ramped from 0.1 V to 3.0 V at 

1.00 nA, as shown in the inset. The main plot is rescaled to show  as a function of height 

because  is proportional to the electrostatic force. The four regimes present in the data are: 

I) thermal fluctuations, II) linear elasticity, III) nonlinear elasticity, and IV) boundary effects. 

(b) Similar to (a) except that the voltage is decreased from −0.1 V to −3.0 V. The tip height still 

increases by about 20 nm (rather than decreasing) because the electrostatic force is proportional 

to . The error bars represent the standard deviation of ten repeated measurements taken 

consecutively at the same location of the sample. 

  

(a) (b)
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(III) voltages between 1 V2 and 4 V2, and (IV) voltages beyond 4 V2. In region (I) where the film 

has not been pulled very high, most likely the thermal contribution to the energy is much larger 

than the electrostatic one. After that, in region (II) where most of the height change happens, the 

electrostatic force is proportional to the height variation, and the system obeys Hooke’s law 

(linear region). Next, in region (III) the electrostatic force is no longer proportional to the height 

variation, and the nonlinear effects become important. Finally, in region (IV) there is no further 

increase in the height with increasing voltage, meaning the graphene sheet is fully pulled up (i.e., 

tense membrane boundary condition) and becomes inflexible. One other important result of the 

∝  conclusion is that similar height curves should be obtained whether positive or negative 

tip biases are used. The electrostatic force will still be attractive. The Z(V) data in Fig. 7(b) was 

taken using the same parameters as that in Fig. 7(a) except that the voltage was decreased from 

−0.1 V to −3.0 V rather than increased from 0.1 V to 3.0 V. It demonstrates that the sign of the 

tip bias in fact does not influence the outcome. 

Calculation of Force as a Function of Voltage 

 To put a number on the electrostatic force exerted by the STM tip as a function of bias 

voltage, we need to know the tip radius a and the tip-sample separation s to substitute into the 

equations derived from the sphere-plane model. This quantitative relationship has been plotted in 

Fig. 8(a) for several experimentally reasonable values of a and s, and over the voltage range used 

in our experiments. For clarity, the s = 0.5 nm and s = 1.0 nm families of curves are offset 

upward by 15 nN and 5 nN, respectively. We find that the largest forces are generated by a 

smaller s and larger a, with a maximum of 25 nN possible within the chosen parameter space. 

From several SEM images taken in other studies on electrochemically-etched tungsten STM tips, 

our best estimate for a realistic tip radius is a = 20 nm [86]. Similarly, from first-principles STM
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Figure 8: (a) Theoretical electrostatic sphere-plane forces as a function of the sphere potential 

for multiple sphere radii a and sphere-plane separations s. The curves for s = 1.0 nm and s = 

0.5 nm have been offset upward by 5 nN and 15 nN, respectively. (b) Experimental Z(V) curves 

at three different setpoint currents for graphene on copper foil (used to determine how s changes 

with V). (c) Corrected force curves, letting s begin at 0.5 nm and changing with V according to 

the data in part (b), and letting a = 20 nm. 

  

(a) 

(c)

(b)
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tunneling studies [69], we conclude that a good average tip-sample separation in these 

experiments is s = 1.0 nm. These particular parameters give rise to a maximum force of about 

5 nN. 

 Up to this point, however, our model neglects the small changes in the tunneling junction 

width which are known to occur as the tip bias is varied. These small changes can have a 

noticeable impact on the electrostatic force. To correct for this, experimental Z(V) curves were 

acquired for graphene on copper foil, and are shown in Fig. 8(b). These measurements were 

performed in exactly the same manner as the earlier Z(V) data for freestanding graphene, and in 

fact, the two sets of curves bear a strong resemblance. In this case, though, the graphene is 

bonded to the copper [31], preventing mechanical movement of the sample, so the tip 

displacements  are almost if not entirely electronic. Therefore, they are an order of magnitude 

smaller than those shown earlier in Fig. 5. The initial tip-sample separation  in these 

experiments is still unknown, so we define the true . This relationship is then 

assumed to hold for the freestanding graphene, so that in the above equations , 

and at each V a new set of image charges is generated. Since the /  terms now vary with V, 

the F(V) relationship is no longer purely quadratic. Three corrected  curves using a =20 nm 

and  = 0.5 nm are shown in Fig. 8(c). These are the final curves used to predict the electrostatic 

force as a function of bias voltage for our three setpoint currents. However, they could still use 

further revision since  will not be the same for different tunneling currents. This may be 

responsible for I0 = 1.00 nA yielding the lowest force although it should correspond to the 

smallest value of s. 
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E. LARGE PSEUDOMAGNETIC FIELDS 

 The discovery of graphene was made even more exciting when mechanical distortions 

were found to alter its electromagnetic characteristics. Through strain of the two-dimensional 

plane, the properties of charge carriers in graphene can change dramatically as gauge fields 

(pseudomagnetic and deformation potential) are created [87, 88]. For example, when uniaxial 

strain is applied to the honeycomb lattice, it affects the hopping probability for electrons in the pz 

orbitals. The resulting energy change can be represented mathematically by a position-dependent 

vector potential, thereby suggesting the presence of a magnetic field [8]. Further analysis 

clarifies that it is in fact a pseudomagnetic field because opposite Dirac cones are related in such 

a way as to preserve global time-reversal symmetry. Guinea et al. predicted that this field should, 

nevertheless, have a measurable impact [89]. Experimental verification came from Levy et al., 

who grew graphene on a platinum substrate [90]. After cooling to ~7.5 K, the graphene formed 

triangular nanobubbles due to its negative thermal expansion coefficient [39]. STS was then 

performed on the nanobubbles, and a series of peaks in the spectra was attributed to Landau 

levels originating from static magnetic fields with magnitudes as high as 300 T. Theoretically, 

such fields also form when the STM tip is used to pull on freestanding graphene. Since they 

cannot be measured directly, several steps are required to estimate the pseudomagnetic field 

strength present in our system. I do not develop a complete method here, but I provide the details 

related to certain necessary elements. 

Shape of the Graphene Membrane 

 The first requirement is to know the shape of the graphene membrane when undergoing 

electrostatic manipulation by the tip. Since our displacements are very small relative to the 

sample size, the 7.5-μm-square boundary region can be reasonably approximated as circular, 
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with the tip pulling on a point at the center with a force F perpendicular to the plane. This 

particular setup is addressed in Ref. [91] using molecular mechanics simulations and von 

Kármán plate theory, but for small deflections the governing equations reduce to the Kirchhoff 

plate theory. An analytical expression can then be written for the vertical deflection w of the 

sheet as a function of the radial coordinate r. However, these are divided by the radius R of the 

graphene sample to express the equation with dimensionless quantities, /  and / . 

Specifically, 

 
2

1
ln  (7)

where /  is the dimensionless force, /  is a quantity determined by the 

initial in-plane tension , and D is the flexural or bending rigidity. In addition, I and K are the 

modified Bessel functions of the first and second kind, respectively. (Note that I does not refer to 

tunneling current in this context.) 

 Unfortunately, certain problems arise in attempting to apply this formula to the 

experimental freestanding graphene system. One difficulty is computational. When R is large,  

is very large, and  quickly exceeds the maximum double-precision floating-point number. 

Luckily, for large, real arguments there is an asymptotic expansion [92]: 
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(8)

Since  and  are both divided by  in Eq. (7), the large exponential factor will be 

reduced, allowing the ratio to be computed even if the individual functions cannot be evaluated. 

MATLAB code for dividing two modified Bessel functions of the first kind with large arguments 
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can be found in Appendix A. A more challenging obstacle in determining the graphene shape is 

that the initial in-plane tension  is unknown. In fact, it is likely that the membrane is rippled 

and not properly taut at the beginning of a given Z(V) measurement [93, 94]. This means 

calculated pseudomagnetic fields should probably be viewed as upper limits. Furthermore, the 

appropriate flexural rigidity D is difficult to ascertain for the same reason, though many studies 

have sought to measure or predict it under more ideal circumstances [95-98]. These issues aside, 

an example of the possible graphene shape from Eq. (7) is depicted in Fig. 9, assuming 

3.75	μm, 5	nN, 7.1	eV (Ref. [95]), and 1.2	eV/nm  in order to attain a deflection 

of 30 nm at the center. The MATLAB generating code may be found in Appendix B. 

Calculation of the Strain-Induced Field 

 If a 2D strain field u can be obtained for the graphene sheet in polar coordinates , , 

Ref. [89] provides general equations for the gauge-field vector potential A and strain-induced 

pseudomagnetic field B. Assuming circular symmetry and a central point load (as in our system), 

0 and ⁄ 0. The given equations for A thus reduce to 

 

cos 3  

sin 3  

 

(9)

(given in units / ≡ 1  where a is the lattice constant of graphene (not a radius in this context), 

ln ln⁄ 2, and t is the nearest-neighbor hopping parameter. Substituting these 

components into the equation for B yields 

 ,
3

3 sin 3 sin 3  (10)

Corresponding code to calculate  from  is included in Appendix C. To get an idea of the 

induced pseudomagnetic field as a function of height on the electrostatically manipulated
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Figure 9: Shape of a circular freestanding graphene membrane under a central point load, using 

Eq. (7) and parameters listed in the main text. Note that the vertical dimension has been greatly 

exaggerated compared to the horizontal scale. 
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freestanding graphene samples, the above formulas were used in combination with the 

deformation potential from Ref. [99]. | | was averaged from r = 0 nm to 5 nm, and this 

average was found to increase linearly to a maximum of about 25 T as w(0) was raised to 

approximately 30 nm, as in the experimental data [71]. 

F. EFFECTS OF TUNNELING CURRENT ON GRAPHENE HEIGHT 

Experimental Results and Discussion 

 Thus far, attention has been focused on varying the STM tip bias to apply a perpendicular 

electrostatic attractive force to the freestanding graphene sheet. However, it has already been 

observed that the tunneling current also has an effect on the height measurements. In order to 

systematically study this contribution, constant-bias Z(I) measurements were taken for several 

voltage setpoints (V0), as displayed in Fig. 10. These were performed with the feedback on, in the 

same manner as the earlier Z(V) experiments, and each curve is again arbitrarily offset to have a 

height of zero at the starting current of 0.01 nA. In contrast with the Z(V) measurements, the tip 

height decreases over the scan rather than increasing. Interestingly, a small V0 (0.1 V) results in a 

very large initial drop of approximately 15 nm from 0.01 to 0.10 nA, followed by a slower 

decrease spanning more than 5 nm as the final current of 1.0 nA is approached. At high biases 

(V0 ≥ 1 V), on the other hand, the tip height decreases only a few nanometers or less, appearing 

almost constant by comparison, and the curves for intermediate voltages fall somewhere between 

these two extremes. The inset, showing the measured tunneling current (I) plotted versus the 

setpoint current (I0), confirms that the tunneling current setpoint was continuously maintained 

throughout the scans. 

 The origin of the downward movements is not immediately obvious. In order to increase 

the tunneling current, the tip would move toward the sample as observed. However, the
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Figure 10: Tip height versus tunneling current for six different constant voltages on freestanding 

graphene. Inset confirms the measured current agreed with the setpoint as it was raised. 
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displacement at low voltage is too large to be purely a change in the tunneling gap. Moreover, 

decreasing the tip-sample separation would increase the electrostatic attractive force, which by 

itself would cause a height increase rather than a decrease. The remaining possibility to consider 

is that increasing the current locally heats the graphene [100], causing it to contract and pull 

away from the tip due to its negative thermal expansion coefficient. This contraction is not to be 

understood in terms of a decreasing bond length, but rather thermal excitations are known to 

increase the amplitude of out-of-plane atomic vibrations, which causes an effective in-plane 

contraction [101-103]. At low voltage, this effect is stronger than the electrostatic force, resulting 

in a large downward displacement. At high voltage, on the other hand, the electrostatic force is 

dominant, and the sample is not allowed to contract much as the current is increased. 

 This revelation means an adjustment should be made to the Z(V) graph in Fig. 5. Since 

the Z(I) sample height is approximately the same across all currents when V0 = 3.0 V, the Z(V) 

curves, which all end at 3 V, should have nearly equal final heights rather than the same starting 

heights. A new but similar set of Z(V) data has been plotted in Fig. 11(a) and offset using the 

3-volt Z(I) data shown in the inset. Note that the shift is also independently consistent with the 

Z(I) data for lower voltages. This representation of the data naturally shows that the graphene 

film plateaus at nearly the same height, regardless of current, representing a taut graphene 

configuration. In other words, the graphene is not actually being stretched farther at larger 

currents as it previously appeared. Rather, it is starting at a lower position due to thermal 

fluctuations, and this is overcome as the voltage and electrostatic force are increased. 

 Additionally, the force curves earlier derived may now be combined with the corrected 

Z(V) data to plot the force as a function of height, as in Fig. 11(b). The F(Z) curves are 

approximately flat up to around Z = 20 nm, after which the force increases very rapidly, up to a
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Figure 11: (a) New Z(V) data, similar to that in Fig. 5 but offset to agree with the Z(I) results in 

Fig. 10. The inset shows the 3.0 V curve used to set the final heights relative to one another. 

(b) Force exerted on graphene by the tip as a function of height, deduced from the data shown in 

(a) and earlier sphere-plane electrostatic force calculations. Each curve roughly follows the same 

path. 
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maximum value (which is just over 4 nN for the I0 = 0.01 nA curve). This indicates that the 

graphene is more flexible at first and suddenly becomes rigid, or that bond bending is primarily 

responsible for the large movements and not bond stretching. Also, each curve nearly overlaps 

the others, which suggests that the force necessary to bend the membrane a given amount in this 

region is largely independent of the tunneling current chosen. However, the starting height is 

directly affected by the tunneling current, and it decreases with increasing I0. Finally, the work 

done by the STM on the freestanding graphene for each trial can be calculated from the area 

under the curve, and it was found to be roughly the same for each at about 50 eV. 

Modeling Thermal Contraction of Graphene 

 One simple model for understanding the contraction of the graphene membrane as the 

current is increased is illustrated in Fig. 12. A common statistical mechanics problem involves 

the average length and tension of a rubber band at various temperatures T and loads F [104]. The 

rubber band is modeled as a series of segments that can be oriented either parallel or antiparallel 

(details not shown in the figure) [105]. As the rubber band is heated, the segments favor an 

antiparallel arrangement, decreasing the total length and resulting in a negative thermal 

expansion coefficient. Quantitatively, the length of a rubber band carrying a constant load is 

proportional in first order to F/T (see Appendix D), where a larger F stretches the system and a 

larger T contracts the system. For our experiment, the tunneling current sets the temperature of 

the sample through Joule heating (T~I2), so as the setpoint current is increased, the sample’s 

local temperature is increased. We observe that the graphene contracts sharply at first and then 

more slowly, creating Z(I) curves that qualitatively obey a 1/I2 relationship, like the one in 

Fig. 13. In this way, the rubber band model correctly mimics both the contraction of the 

graphene and the specific 1/T dependence. In addition, we can estimate the temperature of the
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Figure 12: Schematic diagrams illustrating the entropic rubber band model, to which 

freestanding graphene is compared. The same change in temperature occurs in both, resulting in 

a larger displacement for the smaller weight and a smaller displacement for the larger weight (for 

the same amount of work done). In the STM, temperature is controlled by the tunneling current 

and weight, or force, by the tip bias. 

  

(a) (b)
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graphene directly under the STM tip. Using a value of 10 	K  for the thermal expansion 

coefficient, our height contraction of 20 nm, and assuming a distance of 3 μm to the copper 

support (which is held at room temperature), an increase of 10–100 K is estimated [39]. 

 The rubber band model can also be used to explain the bias dependence of the Z(I) 

measurements shown in Fig. 10. For the rubber band model, under a small load, it contracts a 

large amount ∆  for a given increase in T, as illustrated in Fig. 12(a). However, when the load is 

increased, the length will change much less for the same temperature difference ∆  (and for the 

same amount of work done), as shown in Fig. 12(b). For our experiments, the bias voltage sets 

the load or force through electrostatics, so as the voltage increases the force increases. Thus, at 

low bias, the small force on the graphene allows a large displacement as the current is increased, 

whereas at high bias the large load on the graphene results in a much smaller displacement over 

the same increase in current or temperature. 

 A more quantitative approach can also be applied. As already mentioned, we assume that 

in the steady state, the temperature rise under the tip is proportional to the power of the Joule 

heating at the junction ∝ . Then the local height of the graphene under the tip decreases as 

 due to contraction, where 0 	depends on V, while the constant k 

depends on graphene’s thermal conductivity and expansion coefficient, as well as on the tip-

sample separation ln /  (see Appendix E for details). A typical value of the decay 

constant c is 1	 , and the contact resistance  is typically 13 kΩ. However, at constant V we 

can let 	ln  and determine the unknown parameters by fitting the total tip height 

 Height	 ln  (11)
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Figure 13: The change in STM tip height at one location on freestanding graphene as a function 

of tunneling current. The experimental height decreases by 20 nm as the current is raised from 

0.01 nA to 1.00 nA at 0.1 V, and this behavior can be replicated by Eq. (11). Thermal 

fluctuations appear at higher currents. The error bar represents the standard deviation of ten 

repeated measurements taken consecutively at the same location of the sample. 
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to the experimental data. Doing so can replicate the shape of a Z(I) curve very closely, as seen in 

Fig. 13. Note that the z-offset is necessary because the absolute starting height is unknown; it is 

set to zero in the graph for convenience.  
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IV. MEASURING LOW-FREQUENCY HEIGHT FLUCTUATIONS 

 Tracking the movement of individual atoms has its origins in field ion microscopy [106], 

but STM ushered in a new era. For instance, Mo et al. used STM to observe the migration of Si 

atoms on the Si(001) surface and extract the activation energy for diffusion [107]. 

Swartzentruber went a step further by programming the STM tip to physically follow each step 

of a single diffusing atom, thereby recording its site-to-site movement [108]. In this tradition, I 

now present a method using STM to precisely monitor the out-of-plane motions of a one-square-

angstrom region in freestanding graphene for the first time. These fluctuations [109] are linked to 

the flexural phonon modes, which are critical to many of graphene’s amazing properties, such as 

its previously unpredicted stability [16, 19], anomalous negative coefficient of thermal 

expansion [110], and efficient thermal conductivity [111]. The ripples which form as a result are 

also important for understanding transport properties in graphene, as they decrease the carrier 

mobility in freestanding membranes [112], cause disruptive charge puddling [113], and induce 

strong pseudomagnetic fields [8]. The ability to locally measure the thermal fluctuations as a 

function of time will open the door to directly testing their role in these and other important 

processes. 

A. DEMONSTRATION OF EXPERIMENTAL TECHNIQUE 

 All fluctuation data was recorded by taking a 0.1 nm × 0.1 nm STM image on 

freestanding graphene, such as the example shown in Fig. 14(a) (lower image). The scan rate was 

0.2 nm/s, with 400 data points per line and 400 lines per image. For each line, the topographical 

data was collected simultaneously with the tunneling current in both the forward and backward 

scanning directions. In this way, each line took one second to complete for a total of 400 seconds 

per image. To understand the size of this scan relative to the lattice of atoms in graphene, refer to
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Figure 14: (a) Top: a 1 nm × 1 nm filled-state STM image of freestanding graphene with a box 

highlighting the size of a one-square-angstrom region. Bottom: a one-square-angstrom STM 

image taken at constant current (0.20 nA) and voltage (0.01 V) on freestanding graphene, 

showing the height fluctuations over a time of 400 s. The slow scan direction is oriented 

horizontally. Scale bar, 0.02 nm. (b) Height fluctuations as a function of time, taken by averaging 

the points in each vertical line of the lower STM image. For comparison, the same data was 

collected from a sample of gold. The error bar represents the standard deviation of the 400 data 

points in the fast scan direction. (c) Actual tunneling current measured concurrently with the 

height fluctuations. (d) Autocovariance of the height data, with an exponential decay constant of 

8 s. 

  

(a) (b) (c) 

(d) 
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the 0.1 nm × 0.1 nm square outlined in the upper STM image, which was acquired separately 

from a stabilized region of the same freestanding graphene sample. The lower image shows the 

height of the tip in the normal black-to-orange-to-white color scale, but it is oriented such that 

the slow scan direction is horizontal and the fast scan is vertical. Note that significant changes in 

height rarely occur within a single vertical line. Therefore, a height-time signal was extracted 

along the slow scan direction by averaging the 400 points in each vertical line, resulting in a 

sampling frequency of 1 Hz over 400 s, as shown in Fig. 14(b). The unique power of this 

technique is that it effectively monitors the vertical position of a one-atom sized region for a long 

period of time. Normal imaging covers too large an area to determine how any one location 

changes on a short timescale, and spectroscopy measurements like those in Fig. 5 happen too 

quickly to observe these fluctuations, though focused in one spot. 

 The result on freestanding graphene is that the height displacements greatly exceed the 

scale of the scan area. In this low-bias regime (0.01 V), thermal energy is dominant. The 

graphene height in Fig. 14(b) fluctuates around zero (average height was subtracted from the raw 

data) with a standard deviation of 1.47 nm, an indication of the amplitude of wrinkles present in 

the graphene. For comparison, data taken in exactly the same manner on a sample of gold is also 

plotted, showing only the smallest changes in height over the entire scan. In addition, we always 

verify that the graphene is indeed moving with the tip by measuring the tunneling current as a 

function of time, displayed in Fig. 14(c). It is almost constant at the setpoint value (0.2 nA), and 

the variations that do occur are not large enough to account for 3-nm fluctuations in the tip 

height without the sample also moving. We can further characterize each height-time data set by 

calculating its autocovariance function A(t) (defined in Appendix F), which is plotted in 

Fig. 14(d). A(t) decays exponentially for random fluctuations such as these, indicating that they 
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are only correlated for short periods of time. In this example, the decay constant is 8 s. Atomistic 

simulations for the scaling properties of flexible membranes predict [114] that the size of the 

fluctuations of thermal ripples in freestanding graphene is scaled with the size of the system as 

0.00232L2-η, where η = 0.85 is a measure of the anharmonic effect in graphene. It is noteworthy 

that the height variance of 2.17 nm2 observed in Fig. 14(b) is in reasonable agreement with that 

prediction. 

B. PERIODIC FLUCTUATIONS 

Data and Analysis 

 When we increase the tunneling current, the freestanding graphene exhibits noticeable 

periodic oscillations as represented in Fig. 15. The electronics (cabling and pre-amplification in 

particular) used for these experiments effectively act as a low-pass filter with a bandwidth 

(-3 dB) of approximately 800 Hz. In addition, the speed at which we acquire digital data is 800 

points per second, so we have a maximum measurable frequency of 800 Hz. And for the height-

time graphs presented here, digital data was collected for 400 s, giving a minimum detectable 

frequency of 0.0025 Hz. Two typical samples of height-time data, taken at different currents but 

at the same location and the same low voltage (to avoid stretching), are displayed in Fig. 15(a). 

The most noticeable difference is in the peak-to-peak amplitude; however, the fluctuations in 

both appear to have a roughly repeated character. 

 The periodic components of the data were confirmed by calculating A(t) for each curve, 

plotted in Fig. 15(b). Its peaks share the periodicity of the signal, which is clearly around 100 s at 

3 nA and 50 s at 5 nA. Conveniently, the linear susceptibility  can also be obtained from A(t) 

according to  
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Figure 15: (a) Four line profiles taken in the same manner as those in Fig. 14(b). All were 

acquired at a tip bias of 0.01 V, but the tunneling current was 3.00 nA for the top set and 5.00 nA 

for the bottom set. (b) Associated A(t) for each graphene curve in part (a). This function shares 

the periodicity of the signal. Smoothed first derivatives (related to the linear response) were 

calculated using the Savitzky-Golay algorithm and are plotted as insets. (c) Power spectral 

density for each graphene curve in part (a), revealing the primary oscillation frequencies. 

  

(a) (b) (c)
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1

 (12)

where kB is the Boltzmann constant, and T is the absolute temperature [115]. dA/dt is therefore 

plotted as an inset for each curve in Fig. 15(b) and gives a maximum susceptibility of 5 nm2/s. 

(The smoothed first derivatives were calculated using the Savitzky-Golay algorithm [116, 117]. I 

wrote an executable program in C++ for general Savitzky-Golay smoothing and derivatives, 

which is included in Appendix G.) Furthermore, ̂ , the Fourier transform of , can in turn 

be related to the power spectral density  by the fluctuation-dissipation theorem, which states 

 
2

Im ̂  (13)

where  is the frequency. The periodogram, an estimate of  for a discrete, finite signal, was 

computed for the periodic results and plotted in Fig. 15(c). (The periodogram is defined in 

Appendix F, and MATLAB code for calculating it may be found in Appendix H.) The 3 nA 

periodogram spectrum has a prominent maximum near a frequency of 0.01 Hz, and gives a 

maximum power spectral density of 9,000 nm2/Hz. Meanwhile, the 5 nA spectrum peaks around 

0.02 Hz, and gives a smaller maximum power spectral density of 1,500 nm2/Hz. These low-

frequency peaks represent the dissipation of thermal energy through flexural acoustic modes near 

the Brillouin zone center [118-120]. 

 At this point, it is worth comparing our findings with a previous study. The general 

topography of ripples in freestanding graphene was first imaged using STM by Zan et al. [121]. 

With a STM setup similar to ours, they found that the height of the ripples was on the order of 

1 nm and that the wavelength was on the order of 5 to 10 nm. They also report that the ripple 

structure is static in time and is stable enough to repeatedly image the surface topography. At 

first, this seems to contradict our results. However, Zan et al. also report that the freestanding 
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graphene sheet has regions that are too unstable to image with the STM (i.e., when they look in a 

region far from the copper bar supports). This is also what we found. The surface of the graphene 

fluctuates too quickly for the STM to acquire constant-current images of the surface topography. 

However, we have been able to tunnel into the graphene sheet at that one spot, maintain a 

constant current, and record the height changes occurring in time. Sometimes the surface will 

spontaneously stabilize as shown in Fig. 3(b), and then, if it stays that way, it can be imaged with 

the STM. We also found that the surface can be locally stabilized using constant current height-

voltage sweeps up to 3 V. 

Agreement with Elasticity Theory 

 If we model the freestanding graphene sample as a doubly-clamped resonator with length 

L = 7.5 m and mass density  subjected to an initial strain , plate theory predicts a resonance 

frequency given by , where 340	N/m is the Young’s modulus. This results in 

frequencies in the GHz range [122], which is much too large for our results. Therefore, in order 

to explain the experimental data using elasticity theory, a different mechanism must be invoked. 

Since the measurements in Fig. 15(a) are performed in the limit of high electric current (i.e., 

temperature) and low (but not negligible) bias voltage, there are additional terms in the stress 

tensor [123]: 

 2
1
2

∆ , 1,2 (14)

where the Lamé coefficient  characterizes the shear rigidity of graphene, 	is the bulk 

modulus [103], and 5 10 	K  is the absolute value of the thermal expansion coefficient 

at room temperature. The last term represents the thermal stress due to the temperature gradient 

near the tip region and the supports. In the steady state, ∆  is constant for a given electric 
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current. In the presence of thermal stress, using Eq. (14) and the corresponding equation of 

motion for the graphene membrane results in the following flexural phonon frequency [124]: 

  (15)

where  is the bending rigidity of graphene, ≅ 7.6 10 	kg	m  is the mass density, and 

∆  is the effective negative surface tension. Since ∆ 0, Eq. (15) can result in low 

frequencies. The critical wave vector is determined as 

 Å
| |

 (16)

Using typical values [112] of 1.1	eV and 208	N/m, we can estimate the critical wave 

vector, which attains realistic values for low ∆ . For example, at ∆ ≃ 10	K, ∆ ≃ 20	K, and 

∆ ≃ 100	K the corresponding wavelengths are around 26 nm, 18 nm, and 8 nm, respectively. 

Note that longer critical wavelengths would be expected when other external stress sources exist; 

for example, when scanning close to the boundary or in the presence of a strong asymmetry. 

 By defining ⁄ , we can rewrite Eq. (15) as 

 1  (17)

And for q near to qc, Eq. (17) results in small frequencies with ∝ ∆ ∝ . Therefore, the 

larger the electric current, the larger the frequency when q is very close to qc. This prediction is 

confirmed in Fig. 16(a) by plotting the primary oscillation frequency as a function of  and a 

linear trend line for four different scans obtained at the same low bias voltage. Furthermore, we 

can deduce based on the aforementioned theory that the bottom panel in Fig. 15(a) is more
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Figure 16: (a) The primary frequency as a function of  for four height-time STM images of 

freestanding graphene taken with a tip bias of 0.01 V. A trend line has been added to 

demonstrate the linear relationship of the data. (b) The height variance as a function of  for 

four height-time STM images of freestanding graphene taken with a tip bias of 0.01 V. 

  

(a) (b)
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affected by thermal stress than the top panel. Also the height variance should approximately 

obey 〈 〉 ∝  [124], which is in agreement with these four different electric currents as shown 

in Fig. 16(b). In fact, these results are evidence for the softening of flexural phonons in the case 

of compressive strain in graphene. This result has been theoretically predicted using density 

functional theory calculations combined with non-linear classical elasticity theory [110, 125]. 

C. MIRROR BUCKLING 

 A final type of fluctuations discovered appears to exhibit a “mirror buckling” effect and 

is explored in Fig. 17. The example STM image shown in Fig. 17(a) is very dark for the first 

fourth of the image and nearly white for the rest, signaling that a sudden jump has occurred 

which is much larger than the variations before or after. A height-time profile, extracted in the 

manner previously described, is plotted in Fig. 17(b) to reveal that the membrane surprisingly 

undergoes an enormous 60 nm displacement around t = 100 s but oscillates relatively little after 

the jump, somewhat similar to a critical transition. Examining the tunneling current as a function 

of time, as provided in Fig. 17(c), verifies that the sudden displacement is a real effect. Because 

the current is reasonably constant at 4 nA except for a spike coinciding with the jump in height, 

and since the spike is well below the system’s saturation current of 50 nA, tunneling was never 

compromised. Height profiles such as this yield an unusual A(t), plotted in Fig. 17(d). It takes a 

much longer time to decay, and its value at t = 0 (equivalent to the variance 〈 〉) is anomalously 

large. This snap-through behavior can typically be produced by performing a series of scans at 

progressively larger currents, keeping the voltage constant. The Fig. 17 data was part of such a 

series that went all the way up to 10 nA. However, the large jump normally only occurs once as 

the current is increased within these limits, and not always at the same current.  
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Figure 17: (a) A one-square-angstrom STM image of freestanding graphene, acquired in the 

same manner as that in Fig. 14(a), but at a current of 4.00 nA and voltage of 0.1 V. Scale bar, 

0.02 nm. (b) Height profile extracted from the STM image and showing a jump of nearly 60 nm 

at t = 100 s, mimicking a critical transition. Corresponding data from a gold sample is provided 

for comparison. The error bars represent the standard deviation of the 400 data points in the fast 

scan direction both before and after the large jump. (c) The measured tunneling current, which 

shows a large but unsaturated spike coinciding with the sudden displacement. (d) A(t) for the 

graphene data. The variance, A(0), is anomalously large when the mirror buckling effect occurs. 

  

(a) 

(b) (c) 

(d) 



51 

 This unusual and unexpected event must be connected to heating the sample in the 

presence of an attractive force. We can interpret this effect as being due to mirror buckling of a 

thin shell. For example, for a spherical shell with radius R, the critical pressure  which causes 

mirror buckling is estimated as [126] 

 ∝  (18)

where ∝ , and both  and  will be modified by the presence of heating and an electrostatic 

force. By increasing temperature (electric current), Y is reduced, and a lower bias voltage is 

required to invert the buckled structure. Also, a larger radius lowers the voltage that leads to a 

flip. At this specific current and voltage, a large buckled region below the tip is heated for 100 s 

and then suddenly changes its curvature from negative to positive, i.e., it switches from a bowl-

like to a bump-like shape. This process is illustrated in Fig. 18. During Stage 1 [also labeled in 

Fig. 17(b)] the height increases as the tip begins to deform the bowl. A metastable state is 

reached at Stage 2 where the force is not large enough to keep altering the local graphene 

configuration. However, the critical pressure is finally reached as the temperature continues to 

rise, leading the system to suddenly switch to the more stable bump shape shown in Stage 3. 
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Figure 18: Series of illustrations depicting the stages of mirror buckling for a hemispherical 

shell. Corresponding labels are applied to the data in Fig. 17(b). A sudden inversion in the 

curvature occurs at the critical pressure, just before Stage 3. 
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V. SUMMARY 

 The STM is a versatile instrument that continues to break new ground. I have here 

demonstrated several of its capabilities on a flexible, conducting substrate. Specifically, I 

presented atomic-resolution STM images of graphene, including freestanding graphene. The 

graphene membrane was shown to be attracted to the STM tip, but the attractive force fluctuates 

periodically from a maximum over the carbon atoms to a minimum over the holes in the 

hexagonal structure. This gives rise to measuring an extremely large atomic corrugation in the 

images that must be interpreted as a combination of the electronic structure and elastic 

deformations working in tandem. 

 Constant-current STS is also a powerful tool to manipulate and study the atomic-scale 

properties of freestanding graphene. A series of feedback-on, tip-height measurements was 

collected at a single location on a sample of freestanding graphene by systematically changing 

the bias voltage and tunneling current. Increasing the bias voltage by 3 V resulted in the 

graphene being attracted to the STM tip and moving as much as 30 nm. On the other hand, 

increasing the setpoint current by 1 nA resulted in the graphene contracting away from the STM 

tip and moving as much as 20 nm, but in the opposite direction. A simple electrostatic model was 

used to quantify the attractive force between the tip and the sample, which was estimated to rise 

as high as 4 nN and explained the experimental dependence on bias voltage. From the induced 

strain, the magnitude of the pseudomagnetic field in the vicinity under the STM probe can be 

estimated. 

 The freestanding graphene was also modeled as an entropic rubber band to successfully 

account for its contraction as the current was increased, raising the temperature of the sample 

through Joule heating. The voltage and current data sets were shown to be consistent with each 
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other and to complement the understanding of one another. These results also highlight the very 

different interaction between a probe tip and flexible sample, compared to a stationary sample. 

Additionally, this technique allows one to locally quantify the unusual properties arising from 

graphene’s negative thermal expansion coefficient. 

 Finally, the novel fluctuation measurements are a way to gain unprecedented insight into 

the dynamics of ripples in freestanding graphene using STM. While imaging an area the size of a 

single carbon atom, the vertical movement of the graphene is easily monitored with unparalleled 

precision. A degree of control over the shape and temperature of the membrane is applied 

through changing the tunneling parameters. The observed fluctuations are generally large and 

can be sorted based on exhibiting random, periodic, or mirror-buckling behavior. In particular, 

the periodic oscillations and their current-dependent characteristics were shown to be consistent 

with the predictions of elasticity theory under the influence of thermal stress. No other technique 

has demonstrated the ability to probe such low-frequency flexural phonon modes at the atomic 

scale, permitting direct investigation of the dynamic ripples that affect almost every property of 

graphene. 
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Appendix A: Bessel Function Ratio 

function [ q ] = dividelargebesseli( n1,arg1,n2,arg2 ) 

 

% This is a MATLAB function to find the ratio between two modified Bessel functions of the 

% first kind which have real arguments that are too large to evaluate with the besseli(nu,Z) 

% function. It is currently optimized for application in solving Equation (7). 

% 

% Inputs: 

% n1 - A scalar, the order of the Bessel function in the numerator. 

% arg1 - A vector, the list of arguments for the Bessel function in the numerator. 

% n2 - A scalar, the order of the Bessel function in the denominator. 

% arg2 - A scalar, the argument for the Bessel function in the numerator. This could easily be 

%     changed to be a vector, but in Eq. (7) it will be a scalar. 

%  

% Output: 

% q - A vector, the list of final calculated ratios, one for each element of arg1. 

 

% Determine how many elements are in the arg1 vector. Initialize the q vector to this size and fill 

% it with zeros. 

s = size(arg1,2); 

q = zeros([1 s]); 
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% This loop will calculate the ratio for each element individually. Since it will be zero when arg1 

% is much less than arg2, the if-statement checks for this condition before proceeding. 

for m = 1:s 

if arg1(m) >= 0.9*arg2(1) 

 

% This section computes the part in brackets in Eq. (8) for the Bessel function in the numerator 

% (num) and denominator (den), then finds their ratio (f). 

num = 1-(4*n1^2-1)/(8*arg1(m))+(4*n1^2-1)*(4*n1^2-9)/(2*(8*arg1(m))^2)-(4*n1^2-

1)*(4*n1^2-9)*(4*n1^2-25)/(6*(8*arg1(m))^3); 

den = 1-(4*n2^2-1)/(8*arg2(1))+(4*n2^2-1)*(4*n2^2-9)/(2*(8*arg2(1))^2)-(4*n2^2-

1)*(4*n2^2-9)*(4*n2^2-25)/(6*(8*arg2(1))^3); 

f = num/den; 

 

% Finally, f is combined with the exponential factor at the beginning of Eq. (8) to get the final 

% ratio (q). 

q(m) = f*sqrt(arg2(1)/arg1(m))*exp(arg1(m)-arg2(1)); 

 

end 

end 

end 
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Appendix B: Graphene Height under Central Load 

function [ r,w ] = deflection( a,F ) 

 

% This is a MATLAB function to evaluate Eq. (7) for the vertical deflection of a circular 

% graphene membrane under a central point load. It requires the use of dividelargebesseli found 

% in Appendix A.  

% 

% Inputs: 

% a - A scalar, the radius of the circular graphene sheet, in nanometers. 

% F - A scalar, the force applied by the central point load, in nanonewtons. 

%  

% Outputs: 

% r - A vector, all the radial positions at which the deflection was computed, in nanometers. 

% w - A vector, the vertical deflection of the graphene at each position (r), in nanometers. 

 

% The force is converted from nN to eV/nm. Then the flexural rigidity (D) is set, in eV. To 

% change the initial in-plane tension, adjust the "1.2" (eV/nm^2) in the formula for "lam". P and 

% lam are dimensionless quantities used later. 

F = F*6.24150932378; 

D = 7.1; 

P = F*a/D; 

lam = sqrt(1.2*a^2/D); 
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% Eta is the dimensionless radial variable. This creates an eta vector with 10,000 elements 

% evenly spaced from just over 0 to 1. The deflection will be calculated at each of these 

% locations. You can choose any range between 0 and 1, but it will not work at eta = 0. 

eta = linspace(0.005/a,1,10000); 

 

% Eq. (7) is evaluated here, adding an element to the dimensionless height vector W for each one 

% in eta. 

W = (P/(2*pi*lam^2))*((dividelargebesseli(0,lam*eta,1,lam)-

dividelargebesseli(0,lam,1,lam))*(1-lam*besselk(1,lam))/lam+besselk(0,lam)-

besselk(0,lam*eta)-log(eta)); 

 

% Get the position and height in nm. 

r = a*eta; 

w = a*W; 

 

% Switch r and w from rows to columns for convenience. 

r = transpose(r); 

w = transpose(w); 

end 
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Appendix C: Pseudomagnetic Field Calculation 

function [ B ] = magfield( r,u ) 

 

% This is a MATLAB function to numerically evaluate B(r) in Eq. (10), the radially dependent 

% part of the pseudomagnetic field for a circular graphene sample under a known circularly 

% symmetric strain. 

% 

% Inputs: 

% r - A vector, all the radial positions (in nm) at which B should be calculated. The elements of r 

%     must be evenly spaced. 

% u - A vector the same size as r, the radial strain (in nm) at each location r. The elements of u 

%     should change slowly with respect to the step size of r. 

% 

% Output: 

% B - A vector, the pseudomagnetic field (in teslas) at each value of r, given in the same order. 

 

% Set beta and the lattice constant a (in nm). 

bet = 2; 

a = 0.246; 

 

% Determine the step size in the vector r. 

h = r(2)-r(1); 
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% Calculate the first (v) and second (w) derivatives of u with respect to r. 

v = gradient(u,h); 

w = gradient(v,h); 

 

% Compute B and convert it to teslas. 

B = (bet/a).*(w-(3./r).*v+3.*u./r.^2).*658.265; 

 

end 
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Appendix D: The Rubber Band Problem 

 A rubber band is fastened at one end to a peg and supports from its other end a weight F. 

Assume a simple microscopic model for the rubber band which consists of a linked polymer 

chain of N segments [ 10 ] joined end to end. Each segment has a length ℓ and can be 

oriented either parallel to the vertical direction. Neglect the kinetic energies or weights of the 

segments themselves, or any interaction between the segments. The rubber band is in equilibrium 

with its surroundings at temperature T. Compute the equilibrium length . 

 

 Let the number of segments pointing down be n, so the number pointing up is . 

Then the length of the rubber band is 

ℓ ℓ 2  

and the energy of the configuration is 

ℓ 2  

For use in a moment, solve this equation for n: 

2
ℓ
⟹

1
2 ℓ

 

Also note that 

1
2

1
2 ℓ

1
2

1
2 ℓ

1
2 ℓ

 

The entropy of the configuration is 

ln
!
! !

ln ! ln ! ln !  

where the argument of the first logarithm is the number of different ways to arrange the 

segments. Use Stirling’s approximation [ln ! ln , for large m] to simplify: 

ln ln ln  
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ln ln ln  

Substitute into this the above expressions for n and  to get S(E): 

ln
1
2 ℓ

ln
1
2 ℓ

1
2 ℓ

ln
1
2 ℓ

 

 To relate this with the temperature, use the fact that 1⁄ ⁄ : 

1
2 ℓ

ln
1
2 ℓ

ln
1
2 ℓ 2 ℓ

ln
ℓ⁄

ℓ⁄
 

Now rearrange and manipulate to isolate ℓ⁄ : 

ln
ℓ⁄
ℓ⁄

2 ℓ
⟹

ℓ⁄
ℓ⁄

ℓ⁄  

ℓ
ℓ⁄

ℓ
ℓ⁄ ⟹

ℓ
ℓ⁄

ℓ
ℓ⁄  

ℓ
ℓ⁄ 1 ℓ⁄ 1 ⟹

ℓ

ℓ⁄ 1
ℓ⁄ 1

tanh
ℓ

 

Since / , 

ℓ tanh
ℓ

 

The Taylor series expansion for hyperbolic tangent is 

tanh
3

2
15

17
315

⋯ 

So to first order (for small forces and/or large temperatures): 

ℓ
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Appendix E: Graphene Height as Function of Current 

 This is the development of Eq. (11), a fitting equation for the height of a freestanding 

graphene membrane under a STM tip when the graphene is being locally heated by an increasing 

tunneling current I. The total tip height Z is the sum of the local graphene height h and the tip-

sample separation s. Each component will be considered separately, beginning with s. 

 We already know from STM tunneling theory that ∝  [Eq. (1)], where c is related 

to the work function of the sample. This can be written as: 

 

Assuming the electrical resistance of graphene is negligible compared with the vacuum, and we 

apply a constant bias : 

 

where  is a constant, but the general vacuum resistance R varies with s. Next some simple 

algebra must be performed to arrive at s as a function of I. 

⟹ 2 ln  

1
2

ln
1
2
ln  

 therefore increases logarithmically if  increases or  decreases while the other quantity is held 

constant. Separating the  dependence: 

1
2

ln
1
2
ln ln  

where b and d are constants to be determined by fitting. 

 Next, we need an expression for h as a function of I. To first approximation, the change 

in height of graphene is related to temperature T by a linear thermal expansion coefficient : 



73 

 

Note that the coefficient should be negative for graphene. I choose to let  be positive and make 

the negative sign explicit. Then, assuming the temperature increase under the tip is proportional 

to  (Joule heating): 

⟹ 2  

where  and  are constants. Now substitute dT into the previous equation: 

2
⟹ 2  

where I have combined constants to let . This is solvable by separation of variables: 

2  

Letting  be the height when 0: 

2  

ln  

 

 The above results for s and h can now be combined to arrive at Eq. (11). Note that the 

constant d has been absorbed into , which also accounts for the unknown STM starting 

height: 

	ln  
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Appendix F: Autocovariance and Periodogram Definitions 

Autocovariance 

 Covariance is a measure of how much two random variables change together. It can be 

positive or negative depending on whether they change together or in opposite directions. The 

magnitude is related to strength of their linear relationship. If x and y are independent, their 

covariance ,  is zero, but the converse is not necessarily true. Definition of covariance: 

, 〈 〈 〉 〈 〉 〉 〈 〉 〈 〉〈 〉 

where 〈 〉 is the average value of x. This includes the formula for variance:	 , . 

 Given a random process, the autocovariance  is the covariance of the variable 

against a time-shifted version of itself. Definition of autocovariance (  is the time shift): 

〈 0 〈 0 〉 〈 〉 〉 〈 0 〉 〈 0 〉〈 〉 

Autocorrelation is an even function. The maximum is always at 0. The autocorrelation of a 

periodic function is periodic with the same period. 

 

Periodogram 

 The power spectral density describes how the power of a signal is distributed over 

different frequencies. For convenience, “power” is often defined generally as the squared value 

of the signal. If the Fourier transform  of a signal  is: 

1

√
 

then the power spectral density  is given by: 

lim
→
〈| | 〉 
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Also,  and  are a Fourier transform pair. That is, . 

However, for a finite time series  with 1 , and a sample interval ∆  so that ∆ , 

the true power spectral density must be approximated by the periodogram: 

∆
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Appendix G: Savitzky-Golay Program 

/* This is C++ code for an executable program that will perform basic Savitzky-Golay 

smoothing and derivatives. It can read an input data file and create an output file. 

 

Input File: 

It is important that the input file meet certain requirements. First, it must contain two columns of 

data. The first column is for the independent parameter (or x-values), such as time. These have to 

be in equally spaced steps or the S-G algorithm will not work. The second column should 

contain the measured parameter (or y-values), with the same number of entries as the first 

column. Example: 

0.0 5.4 

0.1 4.9 

0.2 5.1 

0.3 4.6 

etc 

You need a large number of data points (many rows in the input file) for S-G to be worthwhile. 

The columns can be separated by spaces or tabs as long as they are separated and contain only 

numbers. Your file can have a header. The program will ask how many lines in the input file 

need to be skipped, so you just need to know that. However, it should not have any text at the 

bottom. The last line should be data or blank. Finally, the input file can have any name. The 

program will ask for it. As long as the file is in the same folder as the program, you need only the 

file name. Otherwise, you will have to specify the directory. 
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Output File: 

You will get to name the output file. It will be placed in the same folder as the program unless 

you specify a directory in addition to the file name. It will be formatted like the input file above. 

The x and y columns will be tab-separated, and there will be no header. The x-values should be 

the same as the input file, except there will be a few points missing at the beginning and end. The 

exact number depends on how many data points you instruct the program to consider at once as 

it works. If your input data is too short, the output file may be blank. */ 

 

#include <fstream> 

#include <iostream> 

#include <cctype> 

#include <new> 

#include <cmath> 

#include <string> 

using namespace std; 

 

// This is the default string length. It is set high to be able to accept any possible user input. 

const int SL=1000; 

 

/* MatrixMult is a general matrix multiplication function. Its full capabilities are not necessary 

for S-G, but I had already written it. As input, it requires the “first” and “second” matrices to be 

multiplied, a matrix of the proper size (caller must ensure) into which it will put the "result", the 

number of rows (R1) and columns (C1) in the first matrix, and the number of columns (C2) in 
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the second matrix. R2 is not requested since it has to equal C1 (caller must ensure this). 

MatrixMult is used by CalcFit, CalcDeriv1, and CalcDeriv2. */ 

void MatrixMult(double **first, double **second, double **result, int R1, int C1, int C2) 

{ 

int i, j, cnt; 

double sum; 

 

for (i = 0; i < R1; i++) 

for (j = 0; j < C2; j++) 

{ 

sum = 0; 

 

for (cnt = 0; cnt < C1; cnt++) 

sum += first[i][cnt] * second[cnt][j]; 

 

result[i][j] = sum; 

} 

} 

 

/* CalcFit, CalcDeriv1, and CalcDeriv2 are all called by main to perform the bulk of the S-G 

algorithm. CalcFit is for smoothing, CalcDeriv1 for taking the first derivative, and CalcDeriv2 

for taking the second derivative. S-G is capable of higher order derivatives, and these could be 

added without great difficulty, but they are rarely needed and thus excluded. As input, they all 
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require a subset of the Y data (2*m+1 points), B for writing the result, the order (n) of 

polynomials used for fitting, and the number of data points (2*m+1) to consider at once. I will 

comment within CalcFit only since the other functions are very similar. */ 

void CalcFit(double **Y, double **B, int n, int m) 

{ 

int i; 

 

/* The QuadCub matrix contains the convoluting integers (first 2*m+1 in each row) and 

normalization factors (last entry in each row) for all m (2 through 12 from top to bottom) when n 

is 2 or 3 (quadratic or cubic fitting). There is no difference; if the user asks for quadratic fitting, 

they will actually get cubic. This is just a byproduct of the mathematical procedure. It is possible 

to calculate these numbers on the fly, but it was ultimately simpler to hard code them. */ 

double QuadCub[11][26]={ 

{-3,12,17,12,-3,35}, 

{-2,3,6,7,6,3,-2,21}, 

{-21,14,39,54,59,54,39,14,-21,231}, 

{-36,9,44,69,84,89,84,69,44,9,-36,429}, 

{-11,0,9,16,21,24,25,24,21,16,9,0,-11,143}, 

{-78,-13,42,87,122,147,162,167,162,147,122,87,42,-13,-78,1105}, 

{-21,-6,7,18,27,34,39,42,43,42,39,34,27,18,7,-6,-21,323}, 

{-136,-51,24,89,144,189,224,249,264,269,264,249,224,189,144,89,24,-51,-136,2261}, 

{-171,-76,9,84,149,204,249,284,309,324,329,324,309,284,249,204,149,84,9,-76,-171,3059}, 

{-42,-21,-2,15,30,43,54,63,70,75,78,79,78,75,70,63,54,43,30,15,-2,-21,-42,805}, 
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{-253,-138,-33,62,147,222,287,342,387,422,447,462,467,462,447,422,387,342,287,222,147,62,

 -33,-138,-253,5175} 

}; 

 

// Same as above but for n = 4 or 5 (quartic or quintic smoothing). The first row says 0 because m 

// is not allowed to be 2 this time. It starts at 3 instead. 

double QuarQuin[11][26]={ 

{0}, 

{5,-30,75,131,75,-30,5,231}, 

{15,-55,30,135,179,135,30,-55,15,429}, 

{18,-45,-10,60,120,143,120,60,-10,-45,18,429}, 

{110,-198,-135,110,390,600,677,600,390,110,-135,-198,110,2431}, 

{2145,-2860,-2937,-165,3755,7500,10125,11053,10125,7500,3755,-165,-2937,-2860,2145,

 46189}, 

{195,-195,-260,-117,135,415,660,825,883,825,660,415,135,-117,-260,-195,195,4199}, 

{340,-255,-420,-290,18,405,790,1110,1320,1393,1320,1110,790,405,18,-290,-420,-255,340,

 7429}, 

{11628,-6460,-13005,-11220,-3940,6378,17655,28190,36660,42120,44003,42120,36660,28190,

 17655,6378,-3940,-11220,-13005,-6460,11628,260015}, 

{95,-38,-95,-95,-55,10,87,165,235,290,325,337,325,290,235,165,87,10,-55,-95,-95,-38,95,

 2185}, 

{1265,-345,-1122,-1255,-915,-255,590,1503,2385,3155,3750,4125,4253,4125,3750,3155,2385,

 1503,590,-255,-915,-1255,-1122,-345,1265,30015} 
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}; 

 

// Dynamically allocates memory for a row vector to contain a row of coefficients above. 

double **coeff; 

coeff = new double*[1]; 

coeff[0] = new double[25]; 

 

if(n==2 || n==3) 

{ 

// Put the proper convoluting integers into “coeff”. 

for(i=0; i<2*m+1; i++) 

coeff[0][i] = QuadCub[m-2][i]; 

 

// Use MatrixMult on coeff and Y, and put the result in B. 

MatrixMult(coeff,Y,B,1,2*m+1,1); 

// Divide B by the normalization factor. 

B[0][0]=B[0][0]/QuadCub[m-2][i]; 

} 

 

else if (n==4 || n==5) 

{ 

for(i=0; i<2*m+1; i++) 

coeff[0][i] = QuarQuin[m-2][i]; 
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MatrixMult(coeff,Y,B,1,2*m+1,1); 

B[0][0]=B[0][0]/QuarQuin[m-2][i]; 

} 

delete[]coeff; 

} 

 

void CalcDeriv1(double **Y, double **B, int n, int m) 

{ 

int i; 

double Quad[11][26]={ 

{-2,-1,0,1,2,10}, 

{-3,-2,-1,0,1,2,3,28}, 

{-4,-3,-2,-1,0,1,2,3,4,60}, 

{-5,-4,-3,-2,-1,0,1,2,3,4,5,110}, 

{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,182}, 

{-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,280}, 

{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,408}, 

{-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,570}, 

{-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,770}, 

{-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,1012}, 

{-12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,1300} 

}; 
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double CubQuar[11][26]={ 

{1,-8,0,8,-1,12}, 

{22,-67,-58,0,58,67,-22,252}, 

{86,-142,-193,-126,0,126,193,142,-86,1188}, 

{300,-294,-532,-503,-296,0,296,503,532,294,-300,5148}, 

{1133,-660,-1578,-1796,-1489,-832,0,832,1489,1796,1578,660,-1133,24024}, 

{12922,-4121,-14150,-18334,-17842,-13843,-7506,0,7506,13843,17842,18334,14150,4121,

 -12922,334152}, 

{748,-98,-643,-930,-1002,-902,-673,-358,0,358,673,902,1002,930,643,98,-748,23256}, 

{6936,68,-4648,-7481,-8700,-8574,-7372,-5363,-2816,0,2816,5363,7372,8574,8700,7481,4648,

 -68,-6936,255816}, 

{84075,10032,-43284,-78176,-96947,-101900,-95338,-79564,-56881,-29592,0,29592,56881,

 79564,95338,101900,96947,78176,43284,-10032,-84075,3634092}, 

{3938,815,-1518,-3140,-4130,-4567,-4530,-4098,-3350,-2365,-1222,0,1222,2365,3350,4098,

 4530,4567,4130,3140,1518,-815,-3938,197340}, 

{30866,8602,-8525,-20982,-29236,-33754,-35003,-33450,-29562,-23806,-16649,-8558,0,8558,

 16649,23806,29562,33450,35003,33754,29236,20982,8525,-8602,-30866,1776060} 

}; 

 

double QuinSex[11][26]={ 

{0}, 

{-1,9,-45,0,45,-9,1,60}, 
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{-254,1381,-2269,-2879,0,2879,2269,-1381,254,8580}, 

{-573,2166,-1249,-3774,-3084,0,3084,3774,1249,-2166,573,17160}, 

{-9647,27093,-12,-33511,-45741,-31380,0,31380,45741,33511,12,-27093,9647,291720}, 

{-78351,169819,65229,-130506,-266401,-279975,-175125,0,175125,279975,266401,130506,

 -65229,-169819,78351,2519400}, 

{-14404,24661,16679,-8671,-32306,-43973,-40483,-23945,0,23945,40483,43973,32306,8671,

 -16679,-24661,14404,503880}, 

{-255102,349928,322378,9473,-348823,-604484,-686099,-583549,-332684,0,332684,583549,

 686099,604484,348823,-9473,-322378,-349928,255102,9806280}, 

{-15033066,16649358,19052988,6402438,-10949942,-26040033,-34807914,-35613829, 

 -28754154,-15977364,0,15977364,28754154,35613829,34807914,26040033,10949942,

 -6402438,-19052988,-16649358,15033066,637408200}, 

{-400653,359157,489687,265164,-106911,-478349,-752859,-878634,-840937,-654687,-357045,

 0,357045,654687,840937,878634,752859,478349,106911,-265164,-489687,-359157,

 400653,18747300}, 

{-8322182,6024183,9604353,6671883,544668,-6301491,-12139321,-15896511,-17062146,

 -15593141,-11820675,-6356625,0,6356625,11820675,15593141,17062146,15896511,

 12139321,6301491,-544668,-6671883,-9604353,-6024183,8322182,429214500} 

}; 

 

double **coeff; 

coeff = new double*[1]; 

coeff[0] = new double[25]; 
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if(n==2) 

{ 

for(i=0; i<2*m+1; i++) 

coeff[0][i] = Quad[m-2][i]; 

 

MatrixMult(coeff,Y,B,1,2*m+1,1); 

B[0][0]=B[0][0]/Quad[m-2][i]; 

} 

 

else if (n==3 || n==4) 

{ 

for(i=0; i<2*m+1; i++) 

coeff[0][i] = CubQuar[m-2][i]; 

 

MatrixMult(coeff,Y,B,1,2*m+1,1); 

B[0][0]=B[0][0]/CubQuar[m-2][i]; 

} 

 

else if (n==5 || n==6) 

{ 

for(i=0; i<2*m+1; i++) 

coeff[0][i] = QuinSex[m-2][i]; 
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MatrixMult(coeff,Y,B,1,2*m+1,1); 

B[0][0]=B[0][0]/QuinSex[m-2][i]; 

} 

delete[]coeff; 

} 

 

void CalcDeriv2(double **Y, double **B, int n, int m) 

{ 

int i; 

double QuadCub[11][26]={ 

{2,-1,-2,-1,2,7}, 

{5,0,-3,-4,-3,0,5,42}, 

{28,7,-8,-17,-20,-17,-8,7,28,462}, 

{15,6,-1,-6,-9,-10,-9,-6,-1,6,15,429}, 

{22,11,2,-5,-10,-13,-14,-13,-10,-5,2,11,22,1001}, 

{91,52,19,-8,-29,-44,-53,-56,-53,-44,-29,-8,19,52,91,6188}, 

{40,25,12,1,-8,-15,-20,-23,-24,-23,-20,-15,-8,1,12,25,40,3876}, 

{51,34,19,6,-5,-14,-21,-26,-29,-30,-29,-26,-21,-14,-5,6,19,34,51,6783}, 

{190,133,82,37,-2,-35,-62,-83,-98,-107,-110,-107,-98,-83,-62,-35,-2,37,82,133,190,33649}, 

{77,56,37,20,5,-8,-19,-28,-35,-40,-43,-44,-43,-40,-35,-28,-19,-8,5,20,37,56,77,17710}, 

{92,69,48,29,12,-3,-16,-27,-36,-43,-48,-51,-52,-51,-48,-43,-36,-27,-16,-3,12,29,48,69,92,26910} 

}; 
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double QuarQuin[11][26]={ 

{0}, 

{-13,67,-19,-70,-19,67,-13,132}, 

{-126,371,151,-211,-370,-211,151,371,-126,1716}, 

{-90,174,146,1,-136,-190,-136,1,146,174,-90,1716}, 

{-2211,2970,3504,1614,-971,-3016,-3780,-3016,-971,1614,3504,2970,-2211,58344}, 

{-31031,29601,44495,31856,6579,-19751,-38859,-45780,-38859,-19751,6579,31856,44495,

 29601,-31031,1108536}, 

{-2132,1443,2691,2405,1256,-207,-1557,-2489,-2820,-2489,-1557,-207,1256,2405,2691,1443,

 -2132,100776}, 

{-32028,15028,35148,36357,25610,8792,-9282,-24867,-35288,-38940,-35288,-24867,-9282,

 8792,25610,36357,35148,15028,-32028,1961256}, 

{-12597,3876,11934,13804,11451,6578,626,-5226,-10061,-13224,-14322,-13224,-10061,-5226,

 626,6578,11451,13804,11934,3876,-12597,980628}, 

{-115577,20615,93993,119510,110545,78903,34815,-13062,-57645,-93425,-116467,-124410,

 -116467,-93425,-57645,-13062,34815,78903,110545,119510,93993,20615,-115577,

 11248380}, 

{-143198,10373,99385,137803,138262,112067,69193,18285,-33342,-79703,-116143,-139337,

 -147290,-139337,-116143,-79703,-33342,18285,69193,112067,138262,137803,99385,

 10373,-143198,17168580} 

}; 
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double **coeff; 

coeff = new double*[1]; 

coeff[0] = new double[25]; 

 

if(n==2 || n==3) 

{ 

for(i=0; i<2*m+1; i++) 

coeff[0][i] = QuadCub[m-2][i]; 

 

MatrixMult(coeff,Y,B,1,2*m+1,1); 

B[0][0]=B[0][0]/QuadCub[m-2][i]; 

} 

 

else if (n==4 || n==5) 

{ 

for(i=0; i<2*m+1; i++) 

coeff[0][i] = QuarQuin[m-2][i]; 

 

MatrixMult(coeff,Y,B,1,2*m+1,1); 

B[0][0]=B[0][0]/QuarQuin[m-2][i]; 

} 

delete[]coeff; 

} 
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/* StringToInt takes a character string as input and returns an integer data type if possible. Main 

always reads the user's response as a string to prevent the program from crashing, but if the 

program needs to know what number the user entered into the string, then this script is necessary 

to convert it. It returns -1 if it fails. */ 

int StringToInt(char string[SL]) 

{ 

int i = 0, j = 0, number = 0, digit = 0; 

bool ok = 1, end = 0; 

 

// If the first character is null, then don't look any further, just quit. 

if(string[0] == '\0') 

ok = 0; 

 

// Figure out how many digits (j) there are before the null. If anything other than a digit is 

// encountered, quit with error. Also, the integer being read can't be larger than 999,999,999. 

while (ok && !end && i<SL && i<=9) 

{ 

if(string[i]=='0' || string[i]=='1' || string[i]=='2' || string[i]=='3' || string[i]=='4' || string[i]=='5' ||

 string[i]=='6' || string[i]=='7' || string[i]=='8' || string[i]=='9') 

i++; 

 

else if(string[i]=='\0') 
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{ 

end = 1; 

j = i-1; 

} 

 

else 

ok = 0; 

} 

 

// If a valid integer is present, this converts it by associating each digit with its corresponding 

// power of 10 and adding together. For example: 1,234 = 1000 + 200 + 30 +4. 

if(ok && end) 

{ 

i=0; 

 

while(j >= 0) 

{ 

if(string[i] == '0') 

digit = 0; 

else if(string[i] == '1') 

digit = 1; 

else if(string[i] == '2') 

digit = 2; 



91 

else if(string[i] == '3') 

digit = 3; 

else if(string[i] == '4') 

digit = 4; 

else if(string[i] == '5') 

digit = 5; 

else if(string[i] == '6') 

digit = 6; 

else if(string[i] == '7') 

digit = 7; 

else if(string[i] == '8') 

digit = 8; 

else if(string[i] == '9') 

digit = 9; 

 

number = number + digit * pow(10.0,j); 

i++; 

j--; 

} 

} 

 

else 

number = -1; 
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return number; 

} 

 

void main() 

{ 

int i, n, m, skip, order = -1; 

bool outfileok, infileok, skipok, nok, mok, check; 

char inname[SL], outname[SL], answer[SL]; 

ofstream outfile; 

ifstream infile, testfile; 

 

// This warning is for simplicity, but the user can specify a different file path. 

cout << "Please make sure the file you wish to use" << endl << "is in the same directory as this 

 program." << endl; 

 

// This loop determines whether the user wants to smooth or differentiate data, and if the latter, 

// then first or second derivative. Sets "order" accordingly. 

while(order == -1) 

{ 

cout << "\nDo you want to smooth or differentiate data? (S/D): "; 

cin.getline(answer,SL); 
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if((answer[0]=='s' || answer[0]=='S') && answer[1]=='\0') 

order = 0; 

 

else if ((answer[0]=='d' || answer[0]=='D') && answer[1]=='\0') 

{ 

while(order == -1) 

{ 

cout << "\nWhat order derivative do you want to perform? (1 or 2): "; 

cin.getline(answer,SL); 

 

if(answer[0]=='1' && answer[1]=='\0') 

order = 1; 

 

else if(answer[0]=='2' && answer[1]=='\0') 

order = 2; 

 

else 

cout << "\nInvalid choice.\n"; 

} 

} 

 

else 

cout << "\nInvalid choice.\n"; 
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} 

 

infileok = 0; 

// Ask the user for the input file name. 

while(!infileok) 

{ 

if(order==0) 

{ 

cout << "\nWhat is the name of the file you wish to smooth?" << endl << "For example,

 \"ToSmooth.dat\": "; 

} 

 

else 

{ 

cout << "\nWhat is the name of the file you wish to differentiate?" << endl << "For example,

 \"ToDiff.dat\": "; 

} 

 

cin.getline(inname,SL); 

// Try to open the input file. If it fails, tell the user and ask for a new name. If it works, then close 

// the file and move on. 

testfile.open(inname); 
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if(testfile.fail()) 

{ 

testfile.close(); 

testfile.clear(); 

cout << "\nFailed to open \"" << inname << "\"\n"; 

infileok = 0; 

} 

 

else 

{ 

testfile.close(); 

testfile.clear(); 

infileok = 1; 

} 

} 

 

skipok = 0; 

// Ask the user how many lines are in the input file's header so that they can be skipped later. 

while(!skipok) 

{ 

cout << "\nHow many lines in \"" << inname << "\" need to be skipped?: "; 

cin.getline(answer,SL); 

skip = StringToInt(answer); 
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if(skip != -1) 

skipok = 1; 

 

if(!skipok) 

cout << "\nInvalid number.\n"; 

} 

 

nok = 0; 

// Ask the user what order of polynomials to fit the data with. A lower n smoothes over more 

// features than a higher n (for both smoothing and derivatives). 

while(!nok) 

{ 

cout << "\nThe program will fit polynomials of order n to the data.\n"; 

 

if(order == 1) 

cout << "What is n? (2-6): "; 

 

else 

cout << "What is n? (2-5): "; 

 

cin.getline(answer,SL); 

n = StringToInt(answer); 
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if(n==2 || n==3 || n==4 || n==5 || (n==6 && order==1)) 

nok = 1; 

 

else 

cout << "\nInvalid number.\n"; 

} 

 

mok = 0; 

// Ask the user how many data points to fit at once. A higher m smoothes over more features than 

// a lower m. A higher m will also crop more data at the beginning and end. 

while(!mok) 

{ 

cout << "\nThe program will use 2m+1 data points for each fit.\n"; 

 

if(n <= 3 || (n==4 && order==1)) 

cout << "What is m? (2-12): "; 

 

else 

cout << "What is m? (3-12): "; 

 

cin.getline(answer,SL); 

m = StringToInt(answer); 
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if(m==12 || m==11 || m==10 || m==9 || m==8 || m==7 || m==6 || m==5 || m==4 || m==3 || (m==2

 && (n<=3 || (n==4 && order==1)))) 

mok = 1; 

 

else 

cout << "\nInvalid number.\n"; 

} 

 

outfileok = 0; 

// Ask the user for the output file name. 

while(!outfileok) 

{ 

if(order==0) 

{ 

cout << "\nWhat do you want to name the smoothed file?" 

<< "\nFor example, \"Smoothed.dat\": "; 

} 

 

else 

{ 

cout << "\nWhat do you want to name the differentiated file?" 

<< "\nFor example, \"Derivative.dat\": "; 
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} 

 

cin.getline(outname,SL); 

// Try to open the output file. If it fails, then it does not already exist, so we can create it without 

// a problem. If it succeeds, then there are two possibilities below. 

testfile.open(outname); 

 

if(testfile.fail()) 

{ 

if(outname[0] != '\0') 

outfileok = 1; 

 

testfile.close(); 

testfile.clear(); 

} 

 

else 

{ 

testfile.close(); 

testfile.clear(); 

 

// Check whether the input and output file names are the same. This is not allowed. 

if(strcmp(inname,outname)==0) 
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{ 

cout << "\nOutput file cannot be same as input file.\n"; 

outfileok = 0; 

} 

 

else 

{ 

check = 1; 

// If the output file already existed and was not the same as the input file, then ask the user 

// whether they want to replace that file. If not, then ask for a new file name. 

while(check) 

{ 

cout << "\n\"" << outname << "\" already exists. Replace it? (Y/N): "; 

cin.getline(answer,SL); 

 

if((answer[0]=='y' || answer[0]=='Y') && answer[1]=='\0') 

{ 

outfileok = 1; 

check = 0; 

} 

 

else if((answer[0]=='n' || answer[0]=='N') && answer[1]=='\0') 

{ 
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outfileok = 0; 

check = 0; 

} 

 

else 

{ 

outfileok = 0; 

cout << "\nInvalid choice.\n"; 

} 

} 

} 

} 

} 

 

// Open the input file and create the output file. 

infile.open(inname); 

outfile.open(outname); 

// Throw away the first few header lines if the user said to. 

for(i=0;i<skip;i++) 

infile.getline(answer,SL); 

 

int R=2*m+1; 
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// Allocate memory for B, X, and Y. X and Y will hold 2*m+1 numbers at once. B will only 

// have one. 

double **B; 

B = new double*[1]; 

B[0] = new double[1]; 

 

double **Y; 

Y = new double*[R]; 

for(i=0;i<R;i++) 

Y[i] = new double[1]; 

 

double **X; 

X = new double*[R]; 

for(i=0;i<R;i++) 

X[i] = new double[1]; 

 

// Get the first 2*m+1 X and Y data points from the input file. 

for(i=0;i<2*m+1;i++) 

{ 

infile >> X[i][0] >> Y[i][0]; 

infile.get(); 

} 
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// Calculate the step size from one x-value to the next. (Should all be the same.) 

double diff = abs(X[1][0]-X[0][0]); 

 

// Send Y, B, n, and m to the appropriate fitting/derivative function until end of file. 

while(!infile.eof()) 

{ 

if(order == 0) 

{ 

CalcFit(Y, B, n, m); 

// Make a row in the output file: the current x-value, then tab, then the current new y-value. 

outfile << X[m][0] << "\t" << B[0][0] << endl; 

} 

 

else if(order == 1) 

{ 

CalcDeriv1(Y, B, n, m); 

outfile << X[m][0] << "\t" << (B[0][0])/diff << endl; 

} 

 

else 

{ 

CalcDeriv2(Y, B, n, m); 

outfile << X[m][0] << "\t" << (B[0][0])/(diff*diff) << endl; 
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} 

 

// Advance X and Y one row in the input file. Note that this only requires reading in one line 

// from the file since 2*m of the rows you need are already in X and Y. Just shift them one spot. 

for(i=0;i<2*m;i++) 

{ 

X[i][0]=X[i+1][0]; 

Y[i][0]=Y[i+1][0]; 

} 

infile >> X[i][0] >> Y[i][0]; 

infile.get(); 

} 

 

// Close the files and clean up the memory. 

infile.close(); 

outfile.close(); 

delete[]B; 

delete[]Y; 

delete[]X; 

 

cout << "\nDone!\n\nPress \"Enter\" to terminate..."; 

cin.get(); 

}  
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Appendix H: Periodogram Code 

function [ f,S ] = periodogram( x,max ) 

 

% This is a MATLAB function to compute the power spectral density of a signal recorded as a 

% function of time. 

% 

% Inputs: 

% x - A vector, the signal measurements in chronological order. They must be separated by 

%     equal-length steps in time (duration set in the code). 

% max - A scalar, the maximum frequency you want to calculate out to, in Hz. The minimum 

%     frequency is zero by default. 

% 

% Outputs: 

% f - A vector, all the frequencies at which the periodogram was computed, in Hz. 

% S - A vector, the power spectral density of the signal at each frequency, in units of the signal’s 

%     measurement unit squared. 

 

% Set the time step interval in seconds by changing t. It is currently 1 because the graphene 

% height-time data had one point per second. 

t = 1; 

 

% The program here automatically determines how many data points are in your signal. 

N = length(x); 
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T = N*t; 

 

% This sets the frequency space to be considered. 0 Hz is the minimum, max is the maximum, 

% and there will be 1000 steps between them unless you change it here. 

f = linspace(0,max,1000); 

f = transpose(f); 

a = t^2/T; 

 

% Initialize the S vector to store final results. 

S = zeros(1000,1); 

 

% This double loop calculates S at each f using the periodogram definition at the end of 

% Appendix F. If you change the length of f above, then also change the upper limit on c here. 

for c = 1:1000 

B = 0; 

 

for n = 1:N 

B = B + x(n)*exp(-1i*2*pi*f(c)*n); 

end 

 

S(c) = a*(B*conj(B)); 

end 

end 


