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Abstract 

Cerebral cortex exhibits vigorous ongoing, internal neural activity even with no sensory input is 

present or the animal is minimally engaged in a task or behavior. This internal ongoing activity is 

not static; the ‘cortical state’ varies ranging from synchronous and highly correlated activity to 

asynchronous and weakly correlated neural activity. The main goal of the work presented here is 

to understand how changes in cortical states effect several aspects of cortical function and 

dynamics.  

To meet this goal, we did three separate projects. First, we compared the predictability of neuronal 

network dynamics across cortical states in somatosensory cortex of anesthetized rats.  We found 

that predictably was not static; it depends on cortical state and the duration of prediction. Second, 

we implemented a closed-loop feedback control to control the neural activity in the motor cortex 

of anesthetized mice. We found a trade-off between the accuracy and cost of control as we tuned 

the cortical state with anesthetic drugs. Finally, we studied how single neuron is related to summed 

activity of large population, referred to as population coupling. We found different neurons within 

the same network can have diverse population coupling and that this coupling change if we 

manipulate inhibitory signaling in the network.  
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Introduction 

Making sense of brain’s complexity is one of the most challenging field of research in modern 

science.  The brain is the most complex organ of the human body and is made up of different 

regions.  The cerebral cortex, located in the outer-most layer of the brain, is the largest region of 

brain. The cortex plays a key role in many functions including cognition, awareness, thought and 

language.  Although much of traditional neuroscience research has focused on how the cortex 

processes sensory input or generates motor output, the cortex is continuously processing and 

computing even without sensory input or body movements.  This internal cortical neural activity 

that is not directly related to sensory input or motor output is often referred to as ‘intrinsic’, 

‘spontaneous’, or ‘ongoing activity’.  In general, a complete view of cortical dynamics must 

account for the interaction of external processes, like sensory stimulation and motor actions, with 

the intrinsic spontaneous activity. Because the cortical activity is driven as much by spontaneous 

activity as sensory input in neural processing, understanding of spontaneous activity and cortical 

states is essential.  The work in this thesis is aimed at gaining better understanding of multiple 

aspects of ongoing cortical dynamics. 

The character of ongoing cortical dynamics is highly nonstationary. For example, at sometimes, 

ongoing cortical dynamics are strongly coordinated with many neurons firing together in 

synchrony, while at other times the neurons fire more independently.  These changes are referred 

to as changes in ‘cortical state’.  The cortex continuously alters its internal state depending on 

changes in the behavior of the organism.  One underlying mechanism that is thought to be 

important for changes in cortical state is the ‘balance of excitation and inhibition’.  This refers to 

the ongoing competitive interactions between two types of neurons in the cortex: excitatory 

neurons, which generate signals that excite other neurons, and inhibitiory neurons, which 
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generate signals that make other neurons less excited.  Here, we manipulated the balance of 

excitation and inhibition pharmacologically, either with drugs that specifically target inhibitory 

synapses or with anesthetic drugs, which cause more complex changes in the balance of 

excitation and inhibition.     

We use these manipulations to change the dynamical state of the neuronal population, i.e. to 

change the ‘cortical state’.  We did three different studies which ask three different questions 

about how changes in cortical state impact cortex function. 

First we studied how changing cortical states changes temporal continuity and predictability of 

neuronal network dynamics in experiments with anesthetized rats and in a computational model. 

We showed that the collective population-level electrical signals, called ‘local field potential’ 

(LFP), can be predicted for short periods based on its own history using a simple autoregressive 

model, but that the efficacy of prediction depended sensitively on the cortical state and how far 

into the future the prediction was attempted. 

Second, we developed a closed-loop feedback control system to try to control the activity in motor 

cortex of mice.  We tuned the cortical state by changing anesthesia and measured how 

controllability of the neural network depends on cortical state in both experiments and in a 

computational model. We found a trade-off between the accuracy and cost of control in both 

experiment and network level computational model.   

Finally, we studied how single neurons in motor cortex of awake rats are related to overall firing 

of the cortical neural population. We asked the question: do all neurons participate with the 

population in the same way, or are some neurons more strongly ‘coupled’ to the population than 

others.  We found that population coupling varied greatly from neuron to neuron, from strongly 
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coupled to weakly coupled neurons. Furthermore we found that manipulation of inhibition changes 

the population coupling of a neuron. 

The results from these three projects provided new fundamental understanding of how changes in 

cortical state can cause changes in how the cortex works.  
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Chapter 1 

 

Abstract 

The information encoded in cortical circuit dynamics is fleeting, changing from moment to 

moment as new input arrives and ongoing intracortical interactions progress.  A combination of 

deterministic and stochastic biophysical mechanisms governs how cortical dynamics at one 

moment evolve from cortical dynamics in recently preceding moments.  Such temporal continuity 

of cortical dynamics is fundamental to many aspects of cortex function but is not well understood.  

Here we study temporal continuity by attempting to predict cortical population dynamics (multisite 

local field potential) based on its own recent history in somatosensory cortex of anesthetized rats 

and in a computational network-level model.  We found that the intrinsic predictability of cortical 

dynamics was dependent on multiple factors including cortical state, synaptic inhibition, and how 

far into the future the prediction extends.  By pharmacologically tuning synaptic inhibition, we 

obtained a continuum of cortical states with asynchronous population activity at one extreme and 

stronger, spatially extended synchrony at the other extreme.  Intermediate between these extremes 

we observed evidence for a special regime of population dynamics called criticality.  Predictability 

of the near future (10-100 ms) increased as the cortical state was tuned from asynchronous to 

synchronous.  Surprisingly, predictability of the more distant future (>1 s) was highest for 

asynchronous states.  These experimental results were confirmed in a computational network 

model of spiking excitatory and inhibitory neurons. Our findings demonstrate that determinism 

and predictability of network dynamics depend on cortical state and the time-scale of the dynamics. 

 

 



  

5 

 

Significance statement 

Many cognitive functions require well-controlled, predictable evolution of brain activity over a 

period of time.  For instance, in working memory tasks we routinely maintain some information 

“in mind” for a few seconds.  On faster timescales, some complex motor tasks are thought to 

require a nearly deterministic, stereotyped sequence of neural commands to the muscles.   What 

factors affect our ability to carry out such tasks?  More generally, what factors affect the temporal 

continuity and predictability of neural dynamics in the cortex?  Our experiments and computational 

model show that predictability depends strongly on how synchronized the collective dynamics of 

neurons are.   Stronger synchrony results in more predictable dynamics at short time scales, while 

asynchronous dynamics are more predictable at longer times.  

  

Introduction 

Concepts like “train of thought” or “stream of consciousness” evoke a picture of ongoing brain 

function in which thoughts at one moment are inextricably linked with those of the recent past.  

The neural underpinnings of such temporal continuity of brain activity are unclear.  At a basic 

physiological level, it is clear that the action potentials at one moment are caused by those 

occurring in the recent past, which in turn, were caused by earlier neural activity.  However, the 

synaptic interactions that mediate such temporal evolution of neural activity can be strongly 

modulated, resulting in qualitatively diverse states of neural dynamics, depending on behavioral 

or pharmacological factors (1, 2).  For instance, changes in levels of arousal (3–6), body motility 

(3), sleep (7), anesthesia (6, 8–10), and the balance of excitation and inhibition (11) can incur 

dramatic changes in dynamics in cerebral cortex.  In this context, it stands to reason that, the 
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temporal continuity of neural activity should depend on the cortical state.  To test this hypothesis, 

we measured how well cortical population activity can be predicted based on its own recent history.  

We interpret the degree of predictability as a quantitative proxy for the degree of temporal 

continuity.  We experimentally measured ongoing population neural activity in the cortex (multi-

site local field potential) and in a computational model network of spiking excitatory and inhibitory 

neurons.  We measured predictability across a continuum of different cortical states incurred, in 

part, by tuning synaptic inhibition.  The continuum of states ranged from asynchronous, weakly 

correlated activity to strongly fluctuating, synchronous activity.  Confirmed by our experiments 

and our model, we found that predictability does indeed exhibit a complex dependence on cortical 

state.  For short term predictions (<50 ms) asynchronous cortical states were less predictable than 

synchronous states.  Surprisingly, the reverse was true for longer term predictions (> 1s) – the 

synchronous state was less predictable than the asynchronous state.  Together, our experimental 

and computational results suggest that temporal continuity of ongoing cortical activity can be 

dramatically altered by tuning inhibitory synaptic interactions or by other means of tuning the 

cortical state.    

   

Results 

We studied temporal continuity and predictability of neuronal network dynamics in experiments 

and in a computational model.  In experiments, we recorded multi-unit activity (MUA) and local 

field potential (LFP) in somatosensory cortex of anesthetized male rats using 32-channel micro-

electrode arrays (Fig 1).  Our model consisted of 2952 spiking neurons – 80% excitatory, 20% 

inhibitory – placed on a two-dimensional grid with spatially localized connectivity.  The model 

neuron dynamics were simulated using established computationally efficient methods (12).  Model 



  

7 

 

spiking activity was compared with experiment MUA.  Experimental measurements of LFP were 

compared with the average membrane potential of groups of model neurons (32 groups, akin to 

the 32 electrodes in experiments, each group was comprised of 81 neurons in a 9 x 9 grid).  In the 

following results, we will first describe how we imposed changes in cortical state and how we 

quantitatively assess such changes.  Second, we will describe how we measure predictability and 

how predictability depends on cortical state.  

In both the experiments and in the model, we manipulated inhibitory synapses to change the 

dynamical state of the neuronal population.  In experiments, inhibition was manipulated 

pharmacologically with GABAA agonist muscimol or antagonist bicuculline.  Moreover, in 

experiments, the dynamical state exhibited changes without direct experimental control, likely due 

to changes in anesthetic depth.  Our data analysis accounts for both the naturally occurring shifts 

in state and the pharmacologically induced shifts, as we describe further below.  In both the 

experiment and the model, we found that enhanced inhibition resulted in asynchronous, low rate 

population activity, while reduced inhibition typically resulted in large bursts of correlated activity 

(Fig1) 

 

Fig 1) Tuning inhibition to alter the cortical state. we studied a range of cortical states characterized 

at one extreme by asynchronous firing and low amplitude LFP (a) and at the other extreme by 

firing synchrony and large amplitude LFP (c).  These extremes were typically observed when 

inhibition was increased or decreased, respectively. In between the extremes, population spiking 

was more varied and LFP was moderate in amplitude (b).   
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Fig 2) The same as Fig 1 except the shown model examples were computed with IC=-75 (increased 

inhibition), IC=-28.5 (normal), and IC=-7.5 (reduced inhibition). 

 

We quantitatively assessed changes in the dynamical state of the network based on the prevalence 

of different spatiotemporal scales of population activity.  More specifically, we analyzed 

distributions of ‘avalanche’ sizes.  An avalanche is a period of elevated population activity, which 

we defined based on MUA spike count time series for the entire population, as other in recent 

studies (13–15).  In brief, an avalanche is defined as an excursion above a threshold level of 

spiking.  The size of an avalanche is defined as the total number of spikes that occur during this 

period of above-threshold activity.  Distributions of avalanche sizes reveal how often large 

avalanches occur relative to small avalanches, thus assessing the prevalence of different 

spatiotemporal scales of population activity (Fig 2a, d).   
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Fig 3) Parameterizing the experimental cortical state based on avalanche distributions.  For both 

the experiment (a-c), we indexed the continuum of observed cortical states based on the prevalence 

of different spatiotemporal scales of activity.  a) Each line shows one probability density 

distribution of avalanches obtained from one 20 min experimental recording of ongoing activity 

(shifted vertically to facilitate comparison of the distribution shapes).  Both vertical and horizontal 

axes are logarithmic.  Vertical scale bar indicates 5 orders of magnitude.  The colored dot beside 

each distribution indicates the experimental drug condition (black – no-drug; blue – muscimol; 

pink – bicuculline 20 μM).  A subset of all experiments is shown.  Line color indicates the κ value, 

which measures deviation from a power-law distribution with exponent -1.5 (black dashed line).  

When large bursts of population activity are dominant κ>1 and when large bursts are absent κ<1.  

b) The probability distributions shown in panel (a) are shown here as cumulative distributions.  

Color indicates κ, which is defined as the mean of 10 differences (equally spaced across the 

horizontal axis) between the measured distributions and the reference power-law distribution 

(black dashed).  One distribution for each experiment is shown.  c)  Shown are the upper and lower 

quartiles, median, and range (box bottom, top, midline, and error bars, respectively) of κ values 
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for each drug condition.  Note that decreasing or increasing inhibition systematically increases or 

decreases κ, respectively. 

 

 

Fig 4) Parameterizing the model cortical state based on avalanche distributions.  a-c)  The model 

results closely parallel the experimental findings.  In the model, we treat the pharmacological 

changes by directly tuning the strength of inhibitory connections (IC).   Tuning IC in the model 

results in the same family of avalanche size distributions as seen in the experiments. 

 

A convenient parameter to index the continuum of observed cortical states, called κ, was developed 

in previous studies of neuronal avalanches (13, 16, 17).  Based on cumulative probability 

distributions (Fig 2b, e) κ quantifies how an observed avalanche size distribution deviates from a 

-1.5 power law.  When κ was less than 1, large avalanches were rare and the size distribution was 
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close to exponential in form.  When κ was greater than 1, large avalanches were dominant, 

typically exhibiting a bimodal distribution of sizes.  Intermediate between these extremes, 

avalanches occurred with diverse sizes and the size distribution had a form close to a power law 

with exponent -1.5.  By definition, a perfect match to -1.5 power law corresponds to κ=1.  

Importantly, κ allows quantitative comparison of experimental and model results, because κ is 

readily obtained from both. 

In our model, κ≈1 occurred uniquely near the boundary between two different regimes in 

parameter space.  This observation is in line with the possibility that our model undergoes a phase 

transition as inhibition is tuned from strong to weak.  Indeed, a power law avalanche size 

distribution with -1.5 exponent is often cited as evidence that the system operates in a special 

dynamical regime, called criticality (18, 19), which is expected to occur at the tipping point of 

such a phase transition.  To our knowledge, our model has not been used to study critical 

phenomena previously.  Nonetheless, our model results are consistent with previously studied 

models, in which inhibition can serve as a control parameter for a phase transition (15, 20–22).   

 

 



  

12 

 

Fig 5) Measuring predictability of multisite LFP.  We fit an autoregressive model to a period of 

recorded data of duration Tf.  This fit is based on all 32 channels, even though only one channel 

is shown here.  We predict a period of duration Tp following the fitting time window.  The 

prediction (blue) is compared with the true measured data (red) to assess the efficacy of the 

prediction Q.   

 

 

Fig 6) Examples for prediction in the experiment. Shown are examples of a poor prediction from 

the experiment(a), a good prediction from the experiment (b).  

 

 

 

Fig 6) Examples for prediction in the model. Shown are examples of a poor prediction from the 

model, b) and a good prediction from the model (b). 
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Fig 7) Predictability depends on time scales for experimental LFP. Here we show how 

predictability Q (color) depends on the fitting time Tf, the prediction time Tp, time resolution of 

the recording TRES, and frequency band of filtering.  The example is from a no-drug recording with 

κ=0.99. 
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Fig 8) Predictability depends on time scales for model LFP. The same as Fig 7 except The example 

model was simulated with IC=-30 and κ=0.95.  We find good agreement between the experiment 

and model.  Predictions are more sensitive to changes in TP than TF.  Low frequencies are more 

predictable than high frequencies for small TP, while the opposite is true for longer TP.   

 

To determine how the temporal continuity of cortical population dynamics depends on cortical 

state changes, i.e. changes in κ, we next computed the predictability of population dynamics.  We 

computed predictions of many short periods of ongoing activity and averaged them to assess the 

overall predictability Q of a given recording.  The first step in computing a prediction was to fit an 

autoregressive model to a short duration TF of local field potential (LFP) recorded from 32 

electrodes (Fig 3a), similar to other recent studies (9, 23).  After fitting the autoregressive model, 

it was used to predict LFP during a short time window TP immediately following the fitting time 

window (Fig 3a).  An autoregressive model is meant to handle continuous variables, and thus, is a 

natural choice for assessing predictability of LFP.  Although an autoregressive model is a linear 
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model, and cortical dynamics are certainly nonlinear, it is expected that, over sufficiently short 

times, nonlinear dynamics can be well approximated by a linear model.  Indeed, our predictions 

were often quite high in quality for short time periods (Fig 3c, e and Fig 4).  However, we do not 

know a priori what duration is sufficiently short for such a linear approximation to be accurate.  

Indeed, as we will show below, the efficacy of such linear modeling can depend sensitively on 

changes in cortical state.  Rather than pick a single time period TP, we studied a range of time 

windows TP from 50 ms to 2 s.  We also examined a range of fitting time window durations TF 

from 0.8 to 2 s.  As expected, shorter times were much more predictable than longer times, i.e. 

prediction quality Q was highest for short TP; Q also depended on TF, but not as strongly as it 

depended on TP (Fig 4).  We also note that the prediction is more effective in restricted frequency 

bands, compared to broadband LFP (Fig 4), generally slow frequencies (1-5 Hz) were most 

accurately predicted.  Moreover, the time resolution of the data (i.e. the sample rate) can also 

significantly influence predictability (Fig 4).  Generally, we found that predictability depended on 

TP, TF, frequency band, and time resolution in a similar way for the experiment (Fig 4a) and the 

model (Fig 4b). 

Finally, we determined how predictability depends on the cortical state, i.e. how Q depends on κ 

for broadband LFP (1-100 Hz) both in the experiment and the model (Fig 5).  In our experiments, 

we found that for short time predictions (small TP), Q rises gradually as κ is increased from 0.7 to 

near 1 and then increases more sharply for κ>1.  For longer time predictions (large TP), we were 

surprised to find precisely the opposite trend; Q falls gradually as κ is increased from 0.7 to near 

1 and then decreases more rapidly for κ>1.  These data demonstrate that the highly synchronous 

state with κ>1 is relatively difficult to predict at long times, but quite predictable at short times.  

This variability in predictability across timescales is less dramatic for asynchronous cortical states 
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with κ<1.  Moreover, the mean predictability across timescales is highest in the synchronous state 

and lowest in the asynchronous state.  A balance is found for intermediate states with κ~1; the 

mean predictability is not too low, and the variability in predictability is not too high.  These 

experimental results were in good agreement with our model results, but the model allowed us to 

extend the range of κ values to higher values.  For these extremely synchronous states, the model 

revealed a drop in predictability for the highest κ values (κ>1.3) even for short time predictions. 

 

Fig 5) Time-dependent reversal of predictability vs. cortical state.  a) For short-term predictions 

(TP=10-100 ms, purple), mean predictability rises as the cortical state is tuned from asynchronous 

to synchronous, i.e. for increasing κ.  For longer-term predictions (TP=1-2 s, red), this trend 

reverses; low κ is more predictable than high κ.  Each curve summarizes data from all experiments 

(n=72).  Line indicates the median.  Shaded region delineates quartiles.    Vertical axes are 

logarithmic.  b)  We observed the same trend in the model for the experimentally observed range 

of states (0.8 > κ > 1.3).  For more extremely synchronous states (κ > 1.3) the model revealed a 

decline in predictability for all prediction durations.  c) The model data predictability values are 

shown versus inhibitory synapse strength IC.  The <Q> values in this figure (all panels) represent 

an average of Q over all TF, all TRES, and a range of TP for each dataset. 
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Materials and Methods 

Electrophysiology 

 All procedures were carried out in accordance with the recommendations in the Guide for the 

Care and Use of Laboratory Animals of the National Institutes of Health and approved by 

University of Arkansas Institutional Animal Care and Use Committee (protocol #12025). We 

studied adult male rats (n=12, 328±54 g; Rattus Norvegicus, Sprague-Dawley outbred, Harlan 

Laboratories, TX, USA). Anesthesia was induced with isoflurane inhalation and maintained with 

urethane (1.5 g/kg body weight (bw) dissolved in saline, intraperitoneal injection (ip)). 

Dexamethasone (2 mg/kg bw, ip) and atropine sulphate (0.4 mg/kg bw, ip) were administered 

before performing a 2 mm x 2 mm craniotomy over barrel cortex (1 to 3 mm posterior from 

bregma, 5 to 7 mm lateral from midline). 

Extracellular voltage was recorded using 32-channel microelectrode arrays (8 shanks, 4 

electrodes/shank, 200 μm inter-electrode distance, 400 μm inter-shank distance, A468-5mm-200–

400-177-A32, NeuroNexus, MI, USA). Insertion depth was 650 μm, centered 2 mm posterior from 

bregma and 6 mm lateral from midline. Voltages were measured with respect to an AgCl ground 

pellet placed in the saline-soaked gel foams, which protect the exposed tissue surrounding the 

insertion site. Voltages were digitized with 30 kHz sample rate (Cereplex + Cerebus, Blackrock 

Microsystems, UT, USA). Recordings were filtered between 300 and 3000 Hz and thresholded at 

-3 SD to detect multi-unit activity (MUA). 
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Pharmacology 

 Six 20 min recordings were conducted with each rat. First, three recordings were performed with 

no direct manipulation of inhibition (n=36, indirect effects may be imposed by anesthetics (35) 

and atropine sulfate). Then, three recordings were performed with a drug topically applied via gel 

foam pieces soaked in saline mixed with drug.  Three drug conditions were studied (one condition 

per rat): 1) 20 μM muscimol (6 rats, 18 recordings), 2) 20 μM bicuculline methiodide (3 rats, 9 

experiments), 3) 40 μM bicuculline methiodide (3 rats, 9 experiments).  

 

Avalanche definition 

 We define an avalanche based on the spike count time series 𝑐(𝑡) of MUA recorded on all 

electrodes, counting spikes in consecutive 15 ms time bins.  An avalanche begins at ti when c(ti) 

exceeds a threshold equal to the mean spike count.  The avalanche ends at tf when c(tf) drops back 

below the threshold.  The avalanche size s is defined as the total number of spikes occurring 

between ti and tf, 𝑠 = ∑ 𝑐(𝑡𝑛)
𝑓
𝑛=𝑖 .  Our approach for defining avalanches contrasts with many 

previous studies of neuronal avalanches, which were mostly based on local field potential.  A few 

other experimental studies have considered spike avalanches, but defined the start and stop of 

avalanches as time periods with no spiking (36, 37).  In our view, this previous definition is 

inherently limited, because it does not scale well with increasing numbers of measured neurons 

and does not account for the fact that some neurons fire at extremely high rates.  Moreover, it may 

be the case that the cortex operates in a regime with inherently self-sustained ceaseless dynamics, 

as studied in recently in the context of avalanches (14).  In this case, it does not make sense to 

define avalanches based on quiet periods with no spiking, because such quiet periods do not exist.  
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As tools for measuring large populations of neurons become more prevalent, it is likely that a well-

sampled population of neurons in real cortex will also be devoid of meaningful silent periods.  

  

κ parameter 

 Deviation from the reference power-law (-1.5 exponent) was quantified with κ, which is a 

previously developed non-parametric measure with similarities to a Kolmogorov-Smirnov statistic 

(17, 24); κ equals 1 plus the sum of 10 differences (logarithmically spaced) between the observed 

avalanche size distribution (recast as a cumulative distribution) and a perfect power-law with 

exponent -1.5 (in cumulative form).  

 

Computational model  

Our model consisted of 2952 spiking neurons – 80% excitatory, 20% inhibitory – placed on a 72 

x 36 grid (the 2:1 aspect ratio matched the geometry of the experimental electrode arrays).  Each 

neuron was modeled with two coupled differential equations which were derived from the 

Hodgkin–Huxley equations by Izhikevich (12),  

dvi

dt
= 0.04vi

2 + 5vi + 140 − ui + Ii    and   
dui

dt
= a(bvi − ui), 

where 𝑣𝑖 represents the membrane potential of neuron 𝑖 and 𝑢𝑖 represents the ‘recovery’ variable 

of neuron 𝑖.  The parameter a represents a scale time of recovery and b couples the membrane 

potential and recovery potential.  For all excitatory neurons, 𝑎 = 0.02 and 𝑏 = 0.2.  For inhibitory 

neurons a and b are drawn from uniform distributions on [0.02, 0.1] and [0.2, 0.25], respectively.  

When the membrane potential 𝑣𝑖  exceeds 30, the neuron fires.  Upon firing, 𝑣𝑖  is reset to -65 and 
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𝑢𝑖 is incremented to 𝑢𝑖 + 𝑑, where d is 2 for all inhibitory neurons and drawn from a uniform 

distribution on [2, 8] for excitatory neurons.  We use the numerical techniques developed by 

Izhikevich (12) to simulate these dynamics.  

The input Ii to neuron i is comprised of random external input 𝜂 and input due to presynaptic firing 

of the other neurons in the model, 

𝐼𝑖(𝑡) = 𝜂𝑖(𝑡) + ∑ 𝑆𝑖𝑗𝑥𝑗(𝑡 − 1)

𝑁

𝑗=1

 

where 𝜂 is drawn from a uniform distribution with mean 3 and unity standard deviation.  Here 

𝑥𝑗(𝑡) is a binary variable equal to one when neuron j fires and zero otherwise.  The synapse from 

neuron j to neuron i is represented by the connection matrix element Sij.  The S matrix was 

constructed in three steps. First, for excitatory presynaptic neurons, Sij is drawn from a normal 

distribution with mean 8.4 and standard deviation 1.5.  Second, for inhibitory presynaptic 

neurons, Sij is drawn from a normal distribution with mean IC and standard deviation 1.5.  To 

model the experimental pharmacological manipulation of inhibitory interactions we studied 30 

different values of IC linearly spaced between -75 and 0.  Finally, long-range connections were 

attenuated, by multiplying all Sij by a distance dependent factor 𝑒−𝑑𝑖𝑗
2 /𝑑𝑜

2
, where 𝑑0 = 2.24 and 

𝑑𝑖𝑗 is the distance between neuron i and neuron j.  For each IC, the model was run for 500000 

time steps (500 s, considering 1 time step to be 1 ms). 
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Model LFP 

 To derive an LFP-like variable from our model dynamics we divided the 2D grid into 32 equal 

groups (each 9 x 9 in model grid space) meant to represent the 32 electrode channels in our 

experiments.  To obtain the LFP for each group, we computed the average 𝑣𝑖 across all neurons 

within the group, in line with experiments that show a close relationship between membrane 

potential fluctuations and LFP (38).  We clipped spikes before this averaging process.  Finally, we 

filtered the model LFP just as we did with the experimental data. 

 

Auto regressive model fitting and prediction 

We use a first order autoregressive model to generate the predictions reported here.  The model 

specifies how each single LFP channel at time t, yi(t), is determined by all other LFP channels at 

previous times 

yi(t) = ∑ Aijyj(t − 1)n
j=1 + ϵ(t), 

where n is the number of LFP channels (32 in our experiments and model) and t is a discrete 

variable advancing 1 per sample.  A is a 32 x 32 matrix which specifies how each channel 

influences each other channel and ϵ is a noise term.  The matrix A and the noise ϵ are determined 

by fitting this model to a short period Tf of recorded data.  For the fitting procedure, we used the 

Neumaier and Schneider (2001) algorithm implemented with the ‘ARfit’ functions developed by 

Tapio Schneider for Matlab (Mathworks) (39).  After obtaining the best fit A based on the period 

starting at time t and ending at time t+Tf, we then constructed a prediction over a time period with 

duration Tp starting at time t+Tf+1.  The prediction is constructed by iteratively applying the above 

equation starting with y(t + Tf + 1) as an initial condition.   
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Conclusion 

Here we measured multisite ongoing population activity in anesthetized rat somatosensory cortex.  

We showed that LFP can be predicted for short periods based on its own history using a simple 

autoregressive model, but that the efficacy of prediction depended sensitively on the cortical state 

and how far into the future the prediction was attempted.  Based on distributions of population 

activation events, called neuronal avalanches, we parameterized a continuum of cortical states 

ranging from asynchronous, weakly correlated activity to large-scale synchronous activity.  We 

found that near future (~10-100 ms) predictability is lower for the weakly correlated end of the 

continuum compared to synchronous states.  This trend reverses for longer term predictions (~1 

s); the synchronous state was less predictable than the asynchronous state.  We observed a similar 

continuum of states and relationship between predictability and state in a network model of spiking 

neurons.   

We parameterized the continuum of observed cortical states using κ, which measures how the 

avalanche size distribution deviates from a power law with exponent -1.5, as in previous studies 

(13, 17, 24, 11, 15).  Such power law distributed avalanches are predicted to occur at the critical 

point of a phase transition (25–27).  The hypothesis that cortical network dynamics can be tuned 

through a phase transition has a long history with origins in statistical physics research and, more 

recently, growing support from neuroscience experiments (17, 28–32).  Near the ‘center’ of our 

observed continuum of cortical states, we found κ≈1, i.e. avalanche size distributions that were 

close to power law in form.  This observation suggests that the continuum of cortical states we 

observed spans a critical phase transition, both in the experiment and the model.  In this context, 

our observations suggest that, for both short and long time scales, criticality marks the tipping 

point between low to high predictability.  However, which way the predictability tips, toward high 
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or low values, depends on the time scale of prediction.  Although many types of phase transitions 

can occur in different systems, all can be characterized as a transition between an ordered phase 

and a disordered phase.  In the context of our findings, the disordered phase corresponds to the 

asynchronous, low kappa end of the cortical state continuum.  The ordered phase corresponds to 

the synchronous, high kappa end of the continuum.  From this point of view, it is perhaps not 

surprising that the ordered phase is more predictable than the disordered phase, as we see for the 

short term predictions.  However, the drop in predictability in the ordered phase for longer time 

scales is more surprising.  

One limitation of our work is that the continuum of cortical states was observed in anesthetized 

animals.  Thus, it remains for future experiments to test whether a similar continuum of cortical 

states and corresponding predictability exists during wakefulness.  This possibility is plausible, 

because previous studies have demonstrated behaviorally relevant changes in κ.  For example, 

EEG recordings in humans suggest that sleep deprivation can elevate κ (33), while increased 

attention to a reaction time task can decrease κ (34).  Another study has shown that as a mouse 

awakens following pentobarbital anesthesia, κ decreases from values typically >1 to values closer 

to 1 as the arousal increases (17).  In this context, our results predict that the extremes of 

predictability, either high or low, are avoided in the awake state.  We anticipate that future 

experiments will provide answers to these interesting questions.   
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Chapter 2 

Abstract 

 

Closed-loop feedback control approaches allow precise, real-time control of neural activity to lock 

spiking activity to specific target spiking rate within the neural network. These approaches enable 

investigators to tune the ongoing brain activity , induce or disrupt the related frequency of neural 

network in order to achieve better functionality.  

Here we implement a continuous, precise closed-loop feedback control to lock the firing rate at 

specific targeted spiking activities in the motor cortex of isoflurane-anesthetized rats and in a 

computational network-level model.  We found that controllability of neural activity strikingly 

varies as neural state changes.  Furthermore, we found a trade-off between the accuracy of control 

and energy required to maintain it both in the experiment and computational model. 

 

Introduction 

Cortical spontaneous activity 

Cortical activity is determined by the interaction of external stimulation and intrinsic spontaneous 

activity. Because the cortical activity is driven as much by spontaneous activity as sensory input 

in neural processing, understanding of spontaneous activity and cortical states is essential. 

In early studies, relatively low spiking rate and apparent stochasticity of spontaneous activities 

caused investigators to suspect that spontaneous activities represent noise [1]. But in later studies, 

a strong correlation between individual cells firing and its neighbor’s spontaneous activity was 

revealed [2],[3], indicating that if spontaneous activity is ‘noise’, then this noise is not independent 

from one neuron to another. Other studies revealed that fluctuation of spontaneous population 
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activity is comparable to average response to a strong stimulus [4],[5], suggesting that it should 

not be neglected when trying to understand  how the cortex processes sensory stimuli. These 

studies suggested that spontaneous activity has a spatiotemporal structure with a potential role in 

processing the cortical population activity.  

One hypothesis is that the spatiotemporal structure of ongoing cortical activity reflects neural 

network connectivity. Studies supporting this hypothesis suggest that the spontaneous activity can 

be used to disclose the complex structure and wiring of the neural network [6]. 

 

How important is the functional role of spontaneous activity in neural processing? Could a strong 

external stimulation wipe out the footprint of cortical ongoing activity prior to the onset of stimuli? 

In other words, can stimulus overwhelm the intrinsic population activity? Many studies and 

evidence show that this is not the case [7],[8],[9],[10]. The external stimulation will not suppress 

the ongoing population activities but interact with them. In fact, the large trail-to-trial variability 

of response evoked by repeated presentation of identical stimuli can be partially explained by 

variability of ongoing population activities prior to the presentation of stimuli. It has been shown 

that linear summation of ongoing background cortical activity and a stereotyped response could 

reliably predict the response [7]. 

  

Cortical state 

The statistical structure of cortical spontaneous activity changes depending on the internal brain 

state.  Changes in brain state are often assessed based on measurements of voltage fluctuations 

using electrodes implanted in the extracellular space.   In particular, low frequency (1-100 Hz) 

voltage fluctuations, called ‘local field potential’ (LFP) are useful indicators of changes in brain 
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state.   Although the biophysics underlying LFP signals is very complex and incompletely 

understood, LFP is known to originate from a sort of aggregate, collective activity of many neurons 

nearby the measurement location.  Much of the LFP signal seems to originate from dendritic 

processing of synaptic inputs [11].   

Prominent examples of  changes in brain state are  caused by sleep-wake cycle [12]. In slow wave 

sleep, low-frequency local field potential (LFP) fluctuations are dominant in the ongoing cortical 

activity and cortex operates within an inactivated or synchronized state with an ordered and regular 

pattern. In contrast, cortex operates in an activate or desynchronized state with iregular, disorded 

and high-frequency local field potential patterns during rapid eye movement (REM) sleep. Recent 

studies show that the state of cortex changes even with wakefulness, so that during the attention 

and behavior, low-frequency fluctuations are suppressed and cortical activity pattern shows 

desynchronization whereas, during quiescence or drowsiness, cortex operates in a synchronized 

state with low-frequency oscillation [12]. 

 

Although the classical picture holds that cortex usually operates within the synchronized state in 

anesthetized animal, recent studies show that cortex can exhibit either synchronized or 

desynchronized state under anesthesia, depending on the type of anesthetic and depth of anesthesia.  

It has been shown that urethane anesthetized animals mimic the spontaneous and sleep-like cycling 

of the brain during natural sleep [12]. In summary, the cortex can operate in a continuum of states 

with synchronized and desynchronized state at the two extremes in this continuum 

[13],[14],[11],[15],[14],[16],[17],[18],[19]. 
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Also, it has been shown that there is a strong correlation between intracellular voltage 

measurements and population activity; fluctuation of membrane potential changes with internal 

brain state [20]. During the desynchronization, intracellular voltage reveals a small, fast large-

amplitude intracellular fluctuation whereas, during synchronization, it shows a slow, large-

amplitude and steady intracellular fluctuation.  However, most the work in this thesis is based on 

LFP measurements, so we will not discuss intracellular measurements any further. 

 

Sensory response and cortical state 

Although the response to a sudden sensory stimulus is typically large regardless of background 

ongoing activity, it varies as cortex alters its internal state between synchronized and 

desynchronized states. For example, during synchronization and quiescent animal, the initial 

response (~50ms after the onset of stimuli) to a punctuate stimuli (i.e. an unexpected brief stimuli) 

are large, while during the desynchronization and active animal, cortex generates a smaller 

response[21],[22].  

 

State dependency of cortical response for the later response of isolated punctuate stimuli ( > 50ms)  

is more complex. Within the desynchronized state, a punctuate stimuli modulates a brief response 

accompanied by suppression which lasts ~100ms, while punctuate stimuli evokes a prolonged 

response with no suppression in the synchronized state [23],[24]. 

 

Response to a high-frequency sequence of stimuli also varies as state changes. In the 

desynchronized state, the first stimulus of the sequence evokes a smaller response but adaptation 
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to repeated stimuli is weaker compared to a synchronized state so that after some repetition of 

stimuli, the response of synchronized state is equal or even smaller than the desynchronized state.  

Why does a quiescent animal evoke a larger response and adaptation comparing to an active and 

awake animal? There is a hypothesis that when cortex maintains the synchronized state in an 

anesthetized and quiescent awake animal, synapses are often in resting state so they are electrically 

less active. Therefore, they can save energy to perform other functions. Also, when the cortex 

evokes a large response to the first stimulus in a high repetitive stimulus within synchronization, 

it leaves less energy for response to other stimuli in the train therefore the response would suppress 

stronger in synchronized than the desynchronized state. [25],[26] 

 

 Despite apparent complex state dependency of cortical response, investigators developed a simple 

excitable model to predict subsequent sensory response using background ongoing activity prior 

to the presentation of stimuli, they estimated the parameters of the model using spontaneous 

activity prior to the onset of stimuli. Model dynamics was changed to reproduce different cortical 

states, a nonlinear, self-exciting system generated synchronized state and a linear system in 

reproduced desynchronized states. 

 

 response to an isolated unattended stimulus was quantitatively predicted on a trial-by-trial basis 

using a simple dynamical system, it was shown that response is generated based on the same 

dynamics as spontaneous activity [23]. 
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Closed loop control systems 

A closed loop control system, also referred to as a self-adjusting system, is an interdisciplinary 

branch of engineering that deals with trying to control the output of a system using feedback.  

The idea is to measure the error or difference between the output of a system and some desired 

target output and use this error signal to modify the input to the system (figure 1). 

 In order to maintain a successful control, there must be a mathematical relationship between the 

measured output and input. Perhaps the most popular example of a closed loop control systems is 

automobile cruise control which maintains a constant speed by accelerating or decelerating the car 

to reach a target speed using an error signal (difference between actual speed and target speed).  

 

 

 

 

 

Fig 1) Block diagram of a closed loop control system 

 

Closed loop control in neuroscience 

For decades, the brain has been treated as a block box in open loop approaches by imposing a pre-

defined stimulus (usually sensory stimulation) in a controlled laboratory environment and 

exploring the input and output relationship and how they are modulated (Figure 1). However, many 

controller process 

measurement 

Input output 
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functions in the nervous system are actually implemented in a closed loop manner.  Also the 

nervous system itself is embedded in a closed loop system; sensory input changes depending on 

the behavior (i.e. motor output) of the organism. The brain operates as a generator of behavior 

which continuously interacts with its surrounding environment. In fact, behaving animal can 

influence the environment which can change the sensory input. Therefore, it is important to gain 

better understanding of the nervous system in a closed loop manner instead of a traditional open 

loop approach.  

 

Open-Loop 

 

Fig 2) A typical open loop experiment in neuroscience.  Input is usually delivered via sensory 

organs.  Output is sometimes measured in terms of neural response to input, but ultimately, the 

output of the brain are the signals which control muscles and generate behavior. 

 

In neuroscience, closed loop control systems refer to two conceptually different categories of 

loops. In ongoing brain activity dynamics loop, the fluctuation of neural activity (output) 

influences and changes the evoked stimuli (input).  In this case, however, environmental dynamics 

are assumed to be stateless and static, therefore, stimuli don't get any direct influence from outside 

of the brain  

A more complicated closed loop scenario, behavior-in-the-loop, acknowledges that the 

environment retains its own dynamical state comprising of the equation of motion ruled by laws 

Input Output 
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of physics and observable state. Therefore, the stimuli influencing the ongoing brain activity 

changes by the interaction of motor and sensory systems. In other words, a task dynamic loop deals 

with the active interaction of brain and real-world environment or computer simulated 

environment to maintain a goal oriented behavioral task. 

The most comprehensive and efficient close loop neuroscience is the combination of ongoing brain 

activity triggered and behavior in the loop which controls the internal brain activity of the animal 

while performing a behavioral task.  

 

Closed-Loop system in physiology 

Implementing the closed loop control system with a time scale of millisecond allows selective 

manipulation of the internal state of the brain that can lead to answering many open questions in 

neurophysiology. Such as which oscillation frequencies occur during specific behaviors? How 

does noninvasive brain stimulation, like transcranial magnetic stimulation, induce activity in spinal 

cord and cortex?  

In a recent study, scientist carried out a closed loop control system and trained monkey to move a 

cursor toward a target, causing the enhancement of the low-gamma frequency power in a specific 

site of the motor cortex. They showed that high power of low gamma frequency of LFP in monkey 

was accompanied with the synchronized ongoing brain activity. Volitional manipulation of 

ongoing internal firing pattern offers a promising and unique approach for neural processing [27]. 

In another study, investigators implemented a closed loop control system in a freely moving rabbit 

performing memory and learning. They monitored the pre-existing state of the hippocampus just 

before the task. They classified the pre-existing state into two categories of low LFP frequency 
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(theta oscillation 2-8Hz) and high LFP frequency (non-theta 8-22 Hz), they found a strong 

correlation between pre-existing ongoing patterns and learning task, in fact, the rabbit learned at a 

faster rate in theta frequency than non-theta frequency. These types of research can help to better 

understand the neural processing and mechanism of learning and memory. Also, these results 

suggest that there might exist an optimal state that animal performs the best and most efficient 

functionality. 

In another important example of closed loop related to memory, the closed loop simulation was 

implemented to stimulate the auditory system during <1 Hz slow-wave sleep in sleeping humans.  

Such slow wave oscillation plays an important role in consolidation of memory during sleep.  It 

was shown that closed loop stimulation during slow oscillation up states enhanced the slow 

oscillation and, in turn, enhanced memory consolidation while stimulation out phase with ongoing 

rhythmic remained ineffective [28]. 

Nonetheless, designing an experiment with a well-controlled physical environment for an awake 

behaving animal, and quantifying the motor and sensory interplay,  can be very challenging.  

Therefore many studies have recently done with a ‘virtual reality’, computer simulated 

environment[29],[30],[31],[32].  
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Closed loop system in neurological therapy 

Closed loop systems have great potential for treatment of neurological disorders caused by network 

dysregulation. In neurological therapy, closed loop system used to either re-set the local 

excitability and neural activity or induce plasticity to re-wire connectivity damaged due to 

neurological disorders. 

For example, in a recent study, deep brain stimulation feedback control was carried out to treat the 

Parkinson disease by delivering the adaptive deep brain stimulation when beta oscillation power 

in LFP exceeded a threshold. Closed loop approaches were more efficient, with fewer side effects 

and cost compared to open loop deep brain stimulation[33],[34]. 

 

Optogenetic stimulation 

Optogenetics is a technique that enables targeted control over the specific well-defined events in 

neural circuits. This new technology allows the high temporal precision control of specific neurons 

to better understand the underlying mechanism of circuit function.  

In optogenetic techniques, neurons are genetically modified to express a light-activated protein 

called opsin. Depending on what type of opsin has been expressed in neurons, they will be 

activated or inhibited or detect neuronal activity when exposed to a specific frequency of light. 

Optogenetic techniques has recently improved extensively and offers a variety of opsins with a 

range of timescales to control neural activity [35]. 
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Microbial opsins 

Microbial opsins, found in a microorganism called algae, are light sensitive proteins that can 

induce or suppress the action potential when exposed to the specific frequency of light. 

Channelrhodopsin2 (Chr2) is a blue light sensitive light protein that opens non-specific cation 

channels in the neuron membrane, causing the neuron to depolarize and fire one or more action 

potentials. Halorhodopsins (HR) is a green/yellow light sensitive protein that pumps chloride ions 

out of the neuron, causing depolarization of the membrane potential,  which inhibits action 

potentials. Archaerhodopsin (Arch) works the same as  Halorhodopsins (HR) except pumping out 

hydrogen ions instead of chloride ions.  

 

Closed-loop optogenetic 

  

Closed-loop optogenetic allows a neuroscientist to deliver optical stimulation or inhibition based 

on currently observed neural activity. Input in a closed loop optogenetic system is a tunable light 

stimulus which is regulated based on an error signal (the difference between target and measured 

output).  

 

Although many optogenetic experiments have been implemented to guide the neural activity, most 

of them can be categorized as open loop optogenetic control or activity-guided control thus not 

many closed loop optogenetic control have accomplished by neuroscientists so far. Indeed, 

observed neural activity was used to select the stimulus parameters based on earlier published 

neural activity recording [37], [38], [39]. But this was done without feeding back the outcome of 

stimulation on neural activity to modulate the optical stimulation parameters in real time. In 

https://www.addgene.org/optogenetics/#chr
https://www.addgene.org/optogenetics/#nphr
https://www.addgene.org/optogenetics/#arch
https://www.addgene.org/optogenetics/#nphr
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contrast, online readout of recording neural activity such as electrophysiological or behavioral data 

is processed to modulate optical stimulation or inhibition parameters (frequency, intensity, etc.) in 

the closed loop optogenetic. 

 

For example in a recent study, optogenetic techniques were implemented to demonstrate that firing 

pattern in pyramidal cells modulates gamma frequency in local field potential, furthermore, it was 

shown that increasing gamma frequency power enhanced the information processing [40]. While 

open loop stimulation also could induce the gamma frequency, closed loop inhibition of spikes 

illustrated a cause and effect relation between increasing gamma frequency power and 

enhancement of information flow which couldn’t be achieved by open loop inhibition 

approaches[32]. 

 

Light illumination in optogenetic 

 

Light sources are a key part of experimental set-up in optogenetic control, Lasers and LEDs are 

two popular light sources in optogenetic for illuminating the light sensitive opsins. Either of laser 

of LED can be used depending on experiment. Lasers supply a narrow bandwidth of light with 

efficient coupling to fiber optics. High power and narrow bandwidth frequency of lasers permits 

the deep brain stimulation or inhibition of single neurons in transgenic animals. While LEDs are 

useful because of their low cost and diverse choice of wavelengths. Small size and low power of 

LEDs make them an ideal choice for multisite photo stimulation and portable devices. 
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Optogenetic drawbacks 

Recent development in optogenetic enables neuroscientist to manipulate the selected neurons 

activity within complex neural network with high level of precision. It permits researchers to 

disclose how neural circuit activities regulates the behavior, however they have some drawbacks 

in terms of applications and efficiency. For example, optogenetic stimulation might causes some 

abnormal unintended physiological activities with unpleasant consequences. In many photo-

excitation and photo-inhibition, firing rates evoked are at the extreme end of naturally occurring 

spontaneous firing activity, therefore they could push firing rates outside of normal physiological 

ranges. 

Also, pulsed optogenetic stimulation can induce intense synchrony and correlation among large 

populations of stimulated or inhibited neurons, since frequency and synchrony are the main foci 

of many researchers that study physiological recordings during behavior, induced frequencies can 

be confusing and troublesome. Furthermore, illuminating the neural tissue is spatially non-uniform 

causing different level of activities throughout the illuminated area. Finally, optogenetic 

techniques manipulate the electrical activity of all targeted population of neurons and can’t easily 

target subset of neurons. 

 

Experimental preparation 

All animal procedures were in accordance with guidelines of Care and Use of Laboratory Animals 

of the National Institutes of Health and approved by University of Arkansas Institutional Animal 

Care and Use Committee under Animal Use Protocol 17003.  
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Genetically modified female mice were used (19 2 gr, Genotype: Homozygous for Tg(Thy1-

COP4/EYFP) 18Gfng, Jackson laboratory, ME, USA). Thy1-ChR2-YFP transgenic mice express 

Channelrhodopsin-2, which functions as a light-activated ion channel.  

Channelrhodopsin-2 from the green alga Chlamydomonas reinhardtii are one of the first 

discovered Channelrhodopsin-2. They bind to Yellow Fluorescent Protein (ChR2-YFP) under the 

control of the mouse thymus cell antigen 1 (Thy1) promoter.  The ChR2-YFP protein is expressed 

in all neurons throughout cortex, hippocampus, thalamus, midbrain, and brainstem. Morphological 

and physiological properties of transgenic neuron is fairly similar to counterpart intact neurons 

[35]. 

The mice were anesthetized using vaporized isoflurane. Initial induction of anesthesia was done 

by placing the mouse in a closed box, through which a mixture of oxygen and isoflurane was 

flowing.  Anesthesia was maintained throughout the rest of the experiment using an Isoflurane 

Low-Flow Anesthesia Systems (SomnoSuite, Kent Scientific Corporation). The anesthetic was 

mixed with medical-grade carbogene (95% oxygen and 5% carbon dioxide) and delivered directly 

to the animal through a mask that fit tightly over the mouse’s snout.  This allowed us to maintain 

a stable and accurate level of anesthesia.  Using the SomnoSuite, isoflurane concentration was 

tunes 

The mice were mounted in a stereotaxic frame and head-fixed with two ear bars. A 3 mm × 3 mm 

craniotomy (1 mm posterior from bregma, 3 mm lateral from midline) was performed over the 

motor cortex to allow access to the motor cortex of the mouse (Figure 3). 
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   Fig 3)  A cartoon illustration of experimental setup. 

 

Multielectrode recording 

Multielectrode recording were obtained from motor cortex, using 32-channel microelectrode 

arrays (8 shanks, 4 electrodes, [B8D3], Neuronexus, MI, USA). Electrode signals were digitalized 

and sampled at 30 kHz using Blackrock microsystem (Cereplex + Cerebus, Blackrock 

Microsystems, UT, USA). After inserting the electrodes to a depth of 650 microns, the craniotomy 

was covered with small gel foam pieces, soaked in saline.  Voltages were referenced to Ag-AgCl 

pellet placed in the gel foam pieces.  

 

Local field potential 

The brain signals we used in our closed-loop feedback system were mid- to high-frequency local 

field potentials.  Voltages were first band pass filtered between 10 and 250Hz.  Then negative 

peaks in the LFP fluctuations were detected by thresholding at -30 µv.   The rate of these LFP peak 
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events, hereafter referred to as ‘activity rate’, was the variable that we controlled in our 

experiments.  The LFP peaks were detected using the Cerebus system.  This data was directly 

accessed, in real time, by Matlab for use in closed-loop feedback control as described more below. 

 

Data Analysis 

All data analysis was performed in MATLAB (Mathworks). As discussed further below, the 

Controllability of the neural network was defined as the SAE(sum of the absolute values) of 

differences between the target activity rate time series and the measured firing rate time series. 

‘Energy’ needed to maintain the target activity rate were defined as the integral of the LED control 

voltage time series during the control period.  Correlation coefficients between Controllability and 

Energy were computed using the function  

𝑐𝑜𝑟𝑟(𝑥, 𝑦) =
𝑐𝑜𝑣(𝑥, 𝑦)

ơ𝑥ơ𝑦
 

Where cov is covariance and ơ is standard deviation. 

 

Optical stimulation 

A 470 nm LED was coupled to a 125 µm optical fiber using the butt-coupling technique. To 

minimize the losses at the fiber input and maximize the output power, the fiber connector was 

placed in a way that the end of fiber was as close as possible to the emitter. The other end of the 

fiber optic was positioned so that its tip was in contact with the brain surface approximately 1 mm 

away from the insertion point for the microelectrode array.  The fiber optic was fixed in place 



  

44 

 

using a micromanipulator. An implantable fiber optic cannula was used to decrease the numerical 

aperture to (NA) 0.39. The micromanipulator was attached to stereotactic frame.  

 

Optical stimulation protocol 

The LED driver mode was set to ‘external modulation’ and was controlled by Matlab Online 

interface (CBMEX) output.  Matlab was used to control an analog output of the Blackrock Cerebus 

system, which was connected the LED driver.   Each recording trial last for 300sec. During the 

first 180 sec, the LED control voltage was set to zero (no light output), during which we recorded 

spontaneous neural activity. During the next 30 sec, closed-loop optical stimulation was used to 

attempt to control the activity rate of the motor cortex.  The activity rate was measured and the 

LED control voltage was updated every 15 ms.   Finally the LED voltage was set back to zero to 

record the post stimulation effects. 

 

Average firing rate 

The feedback controller was carried out using a toolkit of Matlab functions provided by Blackrock 

which allowed access to the data in real time as it was being recorded.  Matlab was used to count 

the total number of negative LFP peaks recorded from all 32 electrodes every 15 ms.  Since this 

count was often zero, we temporally smoothed  the activity rate of network using a first-order 

averaging filter as done in previous studies [32]. 
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Where   𝑟(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠

𝛥𝑡
 represents the instantaneous firing rate with 𝛥𝑡 = 15𝑚𝑠 

Α is weighting factor, choosing appropriate value for α was crucial and changed the quality of 

control significantly, 

 

 

 

. A small enough value of  α resulted in an excellent control, but in expense of smoothing out the 

average firing rate, and large value of alpha resulted in the high fluctuation of average firing rate 

which was very difficult to control.  To set the best value for  α  ,  a range of values between   

𝟎. 𝟎𝟎𝟎𝟏 < 𝜶 < 𝟎. 𝟏 was tried and   𝜶 = 𝟎. 𝟎𝟏 found to be the smallest value that lead to 

reasonable control.  

 

Proportional controller 

Matlab was used to implement a proportional feedback controller with the goal of controlling the 

neural activity to a desired rate of LFP peaks. The averaging firing rate was subtracted from a 

target firing rate  to calculate the error. 

 

 This value was used to update the voltage of the LED in real time (15 ms temporal resolution). 

starting from an initial voltage before control set to zero. Voltage was measured in mV 
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Parametric sensitivity of controller, was chosen by trying out different values of P, while keeping 

other parameters fixed.   any value in the range of (0.01<P<0.5) did not change the control 

significantly, therefore P=0.1 was used throughout the following experiments for consistency. 

 

Target firing rate 

Due to high variability from animal to animal, spontaneous activity rate varied a lot from 

experiment to experiment. Therefore, two different methods of choosing a target rate were tried.  

The first method was to settle target rate based on the rate of ongoing activity recorded during the 

5 minutes prior to starting control.  Target rate was set to 4, 5 or 8 times of average spontaneous 

activity rate.  The second method was simply to set the target rate to 25, 50 or 70 irrespective of 

the ongoing activity rate.   

 

Results 

Hypothesis 

Here we implement a closed loop feedback control to induce and maintain a specific neural activity 

rate in motor cortex. First, we hypothesized that our ability to control the activity rate will depend 

on the cortical state of the animal.  More specifically, we hypothesized that there exists a state-

dependent trade-off between the accuracy of control and the cost to maintain control.  That is, 

some cortical states may allow very accurate control, but require excessive control ‘energy’, while 

other cortical states require less energy, but are more prone to control errors.  Thus, we hypothesize 

that an optimal cortical state can be found that compromises between accuracy and cost.  We first 
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developed the hypothesis based on a study using a computational model and then we 

experimentally confirmed the hypothesis.   

 

Model results 

We developed a network level computational model consisted of 2000 binary neurons with 80% 

excitatory and 20% inhibitory neurons. To model changes in cortical state, we manipulated 

inhibitory synapses, which resulted in dramatic changes in the ongoing dynamics of the neuronal 

population. By tuning the inhibitory synapses, various dynamic states ranging from low to high 

rate spiking activity was generated (Fig 4-6a).  

 A proportional feedback controller was used to control the model neural spike rate.  A target spike 

rate was maintained by a feedback closed loop approach.  The  difference between current spiking 

rate and targeted spike rate was used as an error signal to change the input to the model neurons. 

Feedback control was maintained during 60 time model time steps after a period of 180 time steps 

pre stimulation without control and before a period of 60 time step post stimulation without control 

(Fig 4-6 b,c). 

 We quantified the control based on two factors: 1) how accurate the spiking rate can be fixed at a 

constant target rate level as 

𝐸𝑟𝑟𝑜𝑟 = ∑ |𝑠𝑝𝑖𝑘𝑒 𝑟𝑎𝑡𝑒 (𝑡) − 𝑡𝑎𝑟𝑔𝑒𝑡  𝑟𝑎𝑡𝑒|
60

𝑡=1
 

 and 2) how much ‘energy’ is required to maintain the targeted spiking activity as 
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𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑃 ×

60

𝑡=1

|𝑠𝑝𝑖𝑘𝑒 𝑟𝑎𝑡𝑒(𝑡) − 𝑡𝑎𝑟𝑔𝑒𝑡  𝑟𝑎𝑡𝑒| 

 

 

Fig 4) Feedback control of firing rate: enhanced inhibition. Feedback control of firing activity 

over 60-time step for enhanced inhibition of synaptic weight a) Spike raster plot b) Averaged 

spike rate c) feedback control signal input into the network. 
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Figure 5) Feedback control of firing rate: balanced inhibition 
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Fig 6) Feedback control of firing rate: reduced inhibition  

 

The controllability of the network changed significantly as the dynamic state shifted the low firing 

state (Fig 4) to the high firing state (Fig 6).  Low spiking rate dynamic activity required the highest 

energy but it maintained the most accurate control, while the high spiking rate dynamic required 

the lowest energy, but had the lowest accuracy (Fig 7).   Therefore, we predicted a trade-off 

between accuracy of the control and energy required to maintain the control. Decreased control 

energy in the high firing state makes sense since less external input was required to increases the 

spiking activity to reach the target rate. However increasing the accuracy by decreasing the 

population activity was less obvious. 
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Fig 7). Energy and error trade off. Here each point represents one control trial from the model. 

Inhibition is decreased from left to right along the horizontal axis. a) Energy required to control 

the firing rate at the neural network decreases as inhibition was decreased. b) Error between the 

targeted firing rate and measured firing rate increases as inhibition decreases.  These results 

suggest that an intermediate level of inhibition is required to balance between low energy 

consumption and low control error.  

 

Experimental results 

We tested the trade-off hypothesis in experiments by implementing a closed-loop optogenetic 

feedback control neural activity in mouse motor cortex.  In our model, we obtained a continuum 

of dynamical states by varying synaptic inhibition.  Similarly, in our experiments, we obtained a 

continuum of cortical states by varying the level of isoflurane anesthesia, which also is known to 

affect inhibitory synapses.  If our experiments agree with our model predictions, we expect to find 

that control error is inversely related to the control energy.   
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We recorded local field potential (LFP) in motor cortex of anesthetized transgenic female mice 

using 32-channel micro-electrode arrays. Recordings were filtered between 10 and 250 Hz and 

thresholded at -30 µv to detect high frequency LFP peaks. The average activity rate over all 

electrodes was estimated and temporally smoothed using a first-order averaging filter (more details 

in material and method section). A 470 nm LED was coupled to a 125 µm optical fiber to 

optogenetically stimulate the motor cortex of the mouse.  The control voltage of the stimulation 

LED changed based on difference between the estimated spiking rate and a targeted spike rate. 

Similar to model, each experimental trial was broken up into three periods:   60 second of feedback 

control after a 240 second pre-stimulation period and before a 60 seconds post stimulation period 

(Fig 8-10). As shown in previous studies[41] we observed that as isoflurane was increased, and 

the animals were more deeply anesthetized, firing rate decreased and the neural activity was more 

similar to enhanced inhibition firing activity of our model.    
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Fig 8) Closed loop feedback control of neural activity for a low flow rate isoflurane(high firing 

activity) case. a) LFP peak activity raster plot b) activity rate c) LED control voltage. 
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Fig 9) The same as Fig 5 except for a case of medium isoflurane flow rate (medium firing 

activity) 
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Fig 10) The same as Fig 5 except for a case of high isoflurane flow rate (low firing activity) 

 

Evaluating the Hypothesis  

We carried out the closed loop feedback on various ongoing activity ranging from low to high rate 

firing activity. We are still working on this project, but the primary results we found were very 

interesting and promising.  We measured a significant anti-correlation between energy and 

accuracy of controlling the neural firing activity  as it was predicted earlier by the model.  

Quantitatively, we found a Pearson correlation coefficient < -0.9 and significance<0.05 (example 

results from three different mice with their correlation are shown in (Fig 8-10).  Thus the most 

accurate control comes at the cost of consuming higher energy, however despite the model 
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prediction, energy and error didn’t correlate with the anesthetic level (Fig 8-10).  This may be 

because the effects of anesthesia vary from animal to animal and from hour to hour within one 

animal.  One way that we hope to deal with this issue is to develop a better way to assess the 

cortical state that is more reliable than the isoflurane concentration.  We hope to analyze the 

recording of ongoing activity prior to control to get a more precise quantitative measure of the 

cortical state that is insensitive to the nonstationary changes in depth of anesthesia that are very 

difficult to control experimentally.  

 

 

Fig 11) An example of strong anticorrelation between the energy and error (pairwise linear 

correlation ρ=-0.9833 and significant P=0.0167).  a) Energy.  b) Error 
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Fig 12) An example of strong anticorrelation between the energy and error (pairwise linear 

correlation ρ=- 0.9946 and significant P=0.0054).  a) Energy b) Error 
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Fig 13) An example of strong anticorrelation between the energy and error (pairwise linear 

correlation ρ=- 0.9951 and significant P=0.0049).  a) Energy b) Error 

 

Rebound effect 

We observed an interesting effect in the experiment which didn’t match the model prediction 

whenever cortex adapted to the light. In that case immediately after stopping the LED light cortex 

started a significant firing activity. This effect was consistent through all experiment (5 mice and 

trails). Few examples are shown in Fig 14.  Further experiments are required to better understand 

this adaptation-rebound effect. 
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Fig 14) Significant firing activity following adaptation. a) Spiking activity. b) LED voltage. 

Conclusion  

In conclusion, we carried out a closed loop feed back control system to lock the firing activity of 

motor cortex of isoflurane anesthetized mice at a targeted firing rate. We found controllability 

changes as spontaneous neural activity varies. We found a trade off between the accuracy of fixing 

the firing rate at target and energy needed to maintain the control, so that as neural states tuned 

from high firing rate pattern to low firing pattern error decreased while the energy increased.  
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Chapter 3 

Abstract 

A large population of neurons in cerebral cortex can produce diverse types of collective dynamics 

ranging from highly synchronized to desynchronized.  Such differences in cortical state are 

typically studied using collective signals that average over many neurons.  Little is known about 

how individual neurons participate in the collective dynamics. Here we hypothesize that different 

neurons imbedded in the same network can differ substantially in how they participate with the 

greater population; they can be strongly or weakly coupled to the population.  Each of these 

scenarios has its own potential functional benefits in the cortex. Weak population coupling might 

enhance information capacity while strong population coupling might enhance the robustness of 

information transmission. Therefore, different population coupling can be functionally important 

in the cortex. Motivated by recent experiments in our lab, here we study population coupling in a 

network-level computational model. We show that neurons with high and low population coupling 

can coexist, and population coupling changes as we tune the inhibition.  

 

Introduction 

Collective network activity and single neurons 

A large population of neurons can generate various population patterns ranging from synchronous 

and regular to desynchronized and irregular population activity, but how do individual neurons 

embedded in neural network correlate with the average activity of the population?  Are individual 

neighboring neurons synchronized with overall firing of the population or do they fire 
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independently? Are neurons strongly correlated with a synchronized population pattern or they are 

weakly correlated? 

Population coupling measures the relationship between individual neurons and the larger 

population of neurons in the network. It measures how the firing activity of each neuron is related 

to the summed activity of all the other neurons within the network. 

 Studying the correlated activity of neurons and population is beneficial to understand underlying 

sensory information and computation in the cortex.  For instance, a neuron that fires in perfect 

synchrony with the population may be beneficial for contributing to a more robust population-

level signal.  The idea is if some other neuron receives input from a large number of synchronized 

neurons, it is more likely to receive their signal with less chance of corruption due to noise.  On 

the other hand, if all neurons fire together in synchrony, then the repertoire of different firing 

patterns they can produce is vastly reduced.  More independent firing supports a more diverse set 

of firing patterns, i.e. a greater information capacity [1].   

Given that both strong and weak population coupling have potential benefits, a network that can 

do both could be optimal.   That is, here we hypothesize that some neurons in the population will 

have high population coupling, while others simultaneously have low population coupling.  This 

hypothesis is also motivated by experimental measurements from our own lab (not yet published) 

and others [2].  Moreover, we hypothesize that population coupling can change depending on 

changes in cortical state.  This is also supported by experimental measurement from our lab (not 

yet published). 
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Material and methods 

Computational model 

A simple spiking model, consisting of N = 1000 binary neurons was developed. The state of 

neuron j at time t is 

𝑆𝑗(𝑡) = {
1         𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝𝑗(𝑡)

0         𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑗(𝑡)
                                                   (5) 

Where 𝑆𝑗(𝑡) = 1 represents spiking and 𝑆𝑗(𝑡) = 0  represents not spiking state of the neuron.  

The firing probability depends on the summed input to the neuron 

𝑝𝑖(𝑡) = 𝜎 (𝑟𝑖(𝑡) [𝜂 + ∑ 𝑊𝑖𝑗𝑠𝑗(𝑡 − 1)

𝑁

𝑗=1

])                        (6 ) 

Where 𝜂 is external input 

𝑠𝑝𝑖𝑘𝑒 𝑟𝑎𝑡𝑒 = ∑ 𝑆𝑗(𝑡)

𝑗

 

ơ(𝑥) = {
0                   𝑥 < 0
1                   𝑥 > 0
𝑥          0 < 𝑥 < 1

                                                       (7) 

                                          

 Where summation represents the input from all firing neurons at time t-1 that were connected to 

neuron j . 

𝑟𝑖(𝑡) = (1 + 𝛼[∑ 𝑠𝑖(𝜏)

𝑡−1

𝑡−𝑇𝑟

])−1                                        (8) 
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 𝑟𝑖(𝑡) is an activity-dependent factor which decreases the probability of firing if neuron has fired 

recently (i.e. within a 100-time step time period before time t), and 𝛼 is a factor used to control 

the influence of this history-dependent depression term (here α is set to 0.1), 

Network connectivity and synaptic weight was modeled by an N×N matrix with entries Wij 

representing the connection from neuron j to neuron i.  90% of connections set to zero (not all 

neurons are connected), 20% of columns were multiplied by minus 1 to represent the inhibitory 

neurons. All elements of matrix were divided by the maximum eigenvalue of the matrix to assure 

that the network dynamics neither explode nor dies out [3].  The manipulation of inhibition 

discussed below was done by multiplying all the negative entries of W by a constant ranging from 

-0.2 to 0.2 to represent enhanced or suppressed inhibition, respectively.  This change in inhibition 

was made after normalizing W by its largest eigenvalue.   

 

Population coupling 

We measured the population coupling as it was introduced by other studies [2] 

𝐶𝑝𝑜𝑝,𝑖 =
1

𝑁𝑖
∑ 𝑓𝑖

𝜏

𝑡=1

(𝑡)𝑃𝑖(𝑡) 

Where 𝑓𝑖(𝑡) represents the spike count of neuron i in time bins of duration 50 time steps, N is the total 

number of spikes fired by neuron i  over the entire duration τ=50000 time steps, and 𝑃𝑖(𝑡)is called 

population spike count time series defined as 

 

𝑃𝑖(𝑡) = ∑ 𝑓𝑗

𝑗≠𝑖

(𝑡) − µ𝑗 
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Where µ𝑗is average spike count of neuron j.   Note that Pi(t) excludes the spikes of neuron i.  Thus, Cpop is 

similar to a correlation coefficient between the spike time series of one neuron and the population average. 

 

Results  

We developed a simple binary model to generate the firing rate of each cell and distribution of 

population coupling. We studied the correlated activity between neurons and population rate and 

how changing the balance between inhibition and excitation could affect the population coupling 

among neurons. 

 We built a network level computational model consisting of 1000 binary neurons with 80% 

excitatory and 20% inhibitory neurons (more details in material and methods). Population coupling 

was computed based on groups of 20 neurons 

As it was shown experimentally in previous studies, we found that some neurons had a strong 

correlation with population rate while some others  were weakly correlated [4].  We manipulated 

two aspects of the model to obtain various dynamical state of the neuronal population.  We changed 

either the strength of inhibitory connections in the network or we changed the strength of external 

input.  Both of these changes are motivated by experiments in which inhibition is altered with 

drugs that affect all inhibitory neurons throughout the nervous system.  The idea is that changing 

inhibition globally, like in these experiments, can cause changes due to local changes in inhibition 

or due to inhibition among more distant neurons that changes the input to the local neurons being 

measured.   

First we increased the local inhibition and while keeping external input fixed measured the firing 

rate and population coupling. We observed that both firing rate and population coupling decreased 

as inhibition increased locally (Figure 2). Second we fixed the inhibition and decreased the external 
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input (when inhibition act globally, increasing the inhibition may decrease the firing rate not only 

in the cortex but firing rate caused by external input such as thalamus)(Figure 3). We found out 

that decreasing the external input increased the population coupling significantly while changing 

firing rate slightly.  This observation was more similar to what has been seen in experiments from 

our lab (not yet published).  

 Finally, since both these effects are likely to be present together in experiments, we combined 

changes inhibition and external input. We found that a combination of increased local inhibition 

and decreased external input can result in a net increase in population coupling, suggesting that 

the changes in input can be the dominant effect(Figure 4). 

 

  

 

Fig 1) Neurons maintain high and low population coupling with population activity.  a) Schematic 

of excitatory(E) and inhibitory(I) model of neurons with external input. Manipulating the 

inhibition globally, changes local inhibition(green) and external input(yellow) in the network. b) 

Examples of spike count time series with strong(red) and weak(blue) population coupling. 

Population rate is shown with black line and grayscale background 
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Fig 2) Tuning local inhibition alters the population coupling.  Population coupling and firing 

rate(inset) increases as inhibition decreases (external input is constant)   
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Fig 3) Tuning external input alters the population coupling. Population coupling decreases as 

external input increases while firing rate(inset) remains constant (strength of inhibition is 

constant). 

 

 

Fig 4) Change of inhibition and external input. Enhanced inhibition with reduced external input 

increases the population coupling(purple) whereas reduced inhibition and enhanced external input 

decreases the population coupling(cyan) in contrast to fixed inhibition and external input(orange). 
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Conclusion 

In conclusion, we found neurons imbedded in a large scale network can have different population 

coupling. Neighboring neurons can be highly or weakly correlated to the population. Locally 

enhancing the inhibition decreased the population coupling while globally enhancing the inhibition 

(reducing external input and increasing local inhibition) increased the population coupling.  

Experiments with global manipulation of inhibition from our lab agree with these predictions so 

far.  We are currently doing additional experiments with local manipulation of inhibition to further 

test the predictions that come from the model presented in this chapter. 
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Conclusion 

 

Depending on behavioral context, the cerebral cortex can exhibit dramatic changes in the nature 

of collective, population neural activity.   The overall goal of the work presented in this thesis was 

to better understand how these changes in cortical state manifest in a three specific aspects of 

cortex dynamics and function.  In all three studies, we generated a continuum of cortical states 

ranging from asynchronous, weakly correlated activity to large-scale synchronous activity by 

tuning the balance of inhibition and excitation.  In all three studies we combined experimental data 

and data from computational models.  

 In first study (chapter I of this thesis), we measured how well the ongoing cortical population 

activity can be predicted based on its own recent history.  The study was performed in anesthetized 

rat somatosensory cortex and in a computational model.  For long time scales (~1 sec), we found 

that predictability improves as cortical states shifts from synchronized to desynchronized states. 

For short time period of prediction (~10-100 ms) this trend reverses f in both experiment and 

computational model.  Thus, we can conclude that the intrinsic predictability of cortex network 

dynamics depends strongly on changes in cortical state. 

In another study we compared controllability of network dynamics across the continuum of cortical 

states using an optogenetic closed-loop feedback system.   The study was performed in isoflurane 

anesthetized mice, in motor cortex, and in a probabilistic integrate-and-fire model of neurons.  We 

observed a strong anti-correlation between the accuracy of the control and the cost of control.  The 

same results were found in the computational model.  One interesting implication of these results 

was that, if the cortex needs to balance between cost and accuracy of control, then it would need 
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to operate in a cortical state that is not too synchronized and not too desynchronized.  The optimal 

state may lie near the tipping point between these two regimes.   

Finally, in a purely computational study, we studied how the activity of single neurons is related 

to collective spiking activity of a large population in which the single neuron is embedded.  More 

specifically, we studied how the ‘population coupling’ of individual neurons changes when we 

tuned the balance of excitation and inhibition of the network. We found that increased inhibition 

in the brain can have two opposite effects on population coupling.  Enhancing the local inhibition 

decreased population coupling while globally enhancing inhibition might increase population 

coupling.   

Future work 

For the feedback control study, the next steps are performing more experiment and collecting more 

data, and deeper data analysis to assess the cortical states, in order to compare the controllability 

versus cortical state instead of anesthetic level. 

For the population coupling study, experimental tests comparing local versus global manipulation 

of inhibition are currently underway and we hope to have results on this soon.  Depending on the 

results of these experiments, we may or may not need to improve our model to explain the 

experimental results. 
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