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ABSTRACT 

The purpose of this research is to study the implications of Excitation/Inhibition balance 

and imbalance on the dynamics of ongoing (spontaneous) neural activity in the cerebral cortex 

region of the brain. 

The first research work addresses the question that why among the continuum of 

Excitation-Inhibition balance configurations, particular configuration should be favored? We 

calculate the entropy of neural network dynamics by studying an analytically tractable network 

of binary neurons. Our main result from this work is that the entropy maximizes at regime which 

is neither excitation-dominant nor inhibition-dominant but at the boundary of both. Along this 

boundary we see there is a trade-off between high and robust entropy.  Weak synapse strengths 

yield entropy which is high but drops rapidly under parameter change. Strong synapse strengths, 

on the other hand yield a lower, but more robust, network entropy. 

The second research work is motivated from experiments suggest that the cerebral cortex 

can also operate near a critical phase transition. It has been observed in many physical systems 

that the governing physical laws obey a fractal symmetry near critical phase transition. This 

symmetry exists irrespective of the observational length-scale.  Thus, we hypothesize that the 

laws governing cortical dynamics may obey scale-change symmetry.  We test and confirm this 

hypothesis using two different computational models. Further, we extend the transformational 

scheme show that as a mouse awakens from anesthesia, scale-change symmetry emerges.  

The third research project is motivated by experimental observations from in motor 

cortex under modulation of inhibitory inputs. We found that low intensity increase (decrease) in 

overall inhibition in cortex causes decrease (increase) in spiking activity for some neurons. Even 

though, the population level activity largely unchanged. This behavior is paradoxical when 



compared to the status quo that says that increase (decrease) inhibition should lead to decrease 

(increase) in neural spiking activity. We simulated similar dynamical change to inhibitory signal 

modulation in neural network model. We found that this paradoxical behavior arises due to 

sparse connectivity and inhomogeneity in inhibitory weights.  
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fragility was also found for low 𝑊𝐸 and 𝑊𝐼. ........................................................... 15 

Figure 2-4 Interpretation of results based on Branching function formalism. Branching functions 

𝛬𝑆, for (a) low effective excitatory and inhibitory weight (𝑊𝐸 = 𝑊𝐼 = 1.25) with 

𝑆0 ≈ 0.015 and 𝑆1 ≈ 0.883 and (b) high effective excitatory and inhibitory weight 

(𝑊𝐸 = 𝑊𝐼 = 3.25) with 𝑆0 ≈ 0.105 and 𝑆1 ≈ 0.724. The probability distributions 

(c) low effective weights and (d) high effective weights. All probability distributions 

have been normalized by their peak probability to facilitate comparison of their 
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Figure 3-1 Phase Transition in a Simple Neural Model a. Each panel shows the two-dimensional 

lattice of nodes at a single time step. Each pixel represents one node (yellow, active; 

blue, inactive). A subset of the full lattice is shown for clarity. b. As coupling 

strength 𝐶 increases a sharp increase in time-averaged network activity occurs at a 

critical coupling strength 𝐶 ∗ near 𝐶 = 0.23. 𝑆 is averaged over 104 time steps 
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Figure 3-2 Scale-Invariance of Dynamical Rules Peaks at Criticality. a. Cartoon illustration of 

coarse-graining scheme. Each block of nodes at fine scale b is transformed 

probabilistically to one node at the coarse scale 𝑏 + 1. b. Examples of activity 

snapshots before and after coarse graining. c. Upon coarse graining, the dynamical 
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are optimal coarse-graining functions for three 𝐶 values and six block sizes (legend 

in e. specifies different values of 𝑟 and 𝜏). e. Using the optimal coarse-graining 

function for each 𝐶 resulted in the strongest scale-invariance of dynamical rules, i.e., 

lowest 𝜁𝑚𝑖𝑛 around 𝐶 = 𝐶 ∗. This result held for multiple choices of block size and 

duration (see legend). f. The valley in 𝜁𝑚𝑖𝑛 as a function of coupling strength 𝐶 

became broader as 𝑝 was increased. For a–e 𝑝 = 0.001. .......................................... 26 

Figure 3-3 Scale-Invariance of Dynamical Rules Peaks at Phase Transition in a More 

Biologically Plausible Model. a. Each panel shows the two-dimensional lattice of 

neurons at a single time step. Each pixel represents one neuron (yellow, active; blue, 

inactive). The spatio-temporal dynamics was limited to small scales for strong 

inhibition (𝐼 = 2.0, bottom row), exhibited massive propagating waves and 

oscillations for weak inhibition (𝐼 = 0.01, top row), and had more complexity near 

the transition between these extremes (𝐼 = 0.65, middle row). b. Time series of 

network activity reveals the prominent oscillatory activity of the weak inhibition 

regime (red). c. As inhibition is increased, the boundary of the oscillatory regime 

near 𝐼 = 0.65 (dashed line) is revealed by the drop in mean pairwise correlations. d. 

Scale-invariance of dynamical rules peaked (𝜁𝑚𝑖𝑛 is minimal) near the onset of the 

oscillatory regime. This held for blocks with different spatial sizes and durations (see 

legend). ...................................................................................................................... 30 

Figure 3-4 Applying Our Approach to Continuous Synaptic Input. a. Mean pairwise correlations 

of binarized membrane potential for the realistic model. b. Change in dynamical 

rules 𝜁𝑚𝑖𝑛 governing the binarized membrane potential as a function of inhibition 

strength 𝐼 for 𝑟 = 8 (left), 𝑟 = 16 (right), and different binarization thresholds 

(color). For all the cases shown 𝜏 = 1 and network size, 𝐿 𝑋 𝐿 = 160𝑋160. .......... 32 

Figure 3-5 Increase in Scale-Invariance of Cortical Dynamical Rules as Mouse Awakens a. 

Genetically encoded voltage-sensitive fluorescence imaging was done to measure the 

spatiotemporal dynamics across one hemisphere of mouse cortex as it awoke from 

anesthesia. Each panel shows a snapshot of binarized activity (yellow, active; blue, 

inactive). The signal of each pixel arises from many neurons within 33𝑋33 𝜇𝑚2 

area. b. Time series of binary network activity datasets. Under anesthesia (red), the 

dynamics exhibited relatively large-scale bursts, whereas the awake dynamics (blue) 

tended to be more diverse. c. Mean pairwise correlation decreases as the mouse 

awakens. d. Scale-invariance of dynamical rules increases (𝜁𝑚𝑖𝑛 decreases) as the 

mouse awakens. Results were qualitatively consistent for three different binarization 

thresholds (yellow, red, and blue) and two different coarse graining block sizes (𝑟 =
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Figure 3-6 Scale-Invariance of Rules Versus Avalanche Size Distributions. a. Shown are 

avalanche size distributions obtained from the simple model with different values of 

coupling, c. The probability for large avalanches is prominent for strong coupling 

and dramatically lower for weak coupling. Distributions are shifted vertically for 

visual comparison. Black dashed line indicates a power law with exponent 1.5. b. 

The parameter 𝑘 measures deviation between a measured avalanche size distribution 

and 1.5 power law. Near 𝐶 = 𝐶 ∗, we found minimal deviation from power law (𝑘 =
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1). c. We found minimal change in rules 𝜁𝑚𝑖𝑛 near 𝑘 = 1.  d. For the realistic 

model, avalanche size distributions exhibited high probability for large avalanches 

when inhibition was small (blue) and approximate power law distributions for 

stronger inhibition. e. Near the onset of the oscillatory phase, we found the smallest 

deviation from power law (𝑘 near 1). f. Change in rules 𝜁𝑚𝑖𝑛 was minimal near 𝑘 =
1. ................................................................................................................................ 36 

Figure 4-1 Diverse response to inhibition modulation in motor cortex. a) Single neuron and 

population spike rate as a function of time.  Each row of the image represents a 

single neuron spike rate time series.  Spike rate calculated over 5 seconds bin. b) 

Neuronal and Population Delta ∆. Data for a) and b) taken from Rat#3, with 

bicuculine 20uM concentration and muscimol 40uM concentration. c) Probability 

distribution of Delta ∆, as a function of concentration. The zero concentration Delta 

∆ is calculated by splitting the ‘sham’ reading in two halves and r1 and r0 calculated 

over them. Similarly, the low and high concentration Delta ∆ values are calculated 

by splitting the ‘drug’ reading in two halves and thus r1 is calculated from drug 

readings and r0 from ‘no drug’ reading. The probability distribution of Delta ∆ for 

zero concentration is calculated using all the experiments. For the low and high 

concentration, probability distribution of Delta ∆ is calculated over experiments as 

mentioned in supplementary materials Section 4.5.2. Number of Neurons: Low 

concentration bicuculline- 747; muscimol- 633. High concentration bicuculline- 697; 

muscimol- 568. .......................................................................................................... 48 

Figure 4-2 Diverse responses to inhibition modulation in neural network model. For two kinds of 

inhibition modulation, weakened, I = 0.5 and strengthened, I = 5, a) neuronal and 

population Spike rate, b) neuronal and population Delta ∆, and c) probability 

distribution of Delta ∆, as a function of concentration. Probability is calculated using 

Delta ∆ values from 100 random network realizations at each Inhibitory Signal 

Modulation factor. Spike rate is calculated using spike data over 500 timesteps bin. 

All calculations are done for network size N=1000, connection probability p=0.01 

and external noise η=0.8. ........................................................................................... 52 

Figure 4-3 a) All possible Input Motifs. b) Considering 1000 realizations of our model, 

paradoxical neurons showed a distribution of motif probabilities.  Shown here are 

distributions for two such motifs: Input1(Inh: ∆+: Strong weight)-Input2(Ext: ∆-: 

weak weight) 𝐼 = 0.5 [top] and Input1(Inh: ∆-: Strong weight)-Input2(Ext: ∆-: weak 

weight) 𝐼 = 5 [bottom]. c)  Each bar represents the difference (Kullback–Leibler 

(KL) divergence) in motif probability averaged over 1000 model realizations.  

Shown are a subset of all 64 possible motifs, including those that account for the top 

95% of the Motif probabilities. Motif Probabilities are estimated for 1000 random 

trials. .......................................................................................................................... 54 

 

file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172624
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172624
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172624
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172624
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172624
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172624
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172625
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172626
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172626
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172626
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172626
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172626
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172626
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172626
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172626
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172627
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172627
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172627
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172627
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172627
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172627
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172627
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172627
file:///C:/Users/Vidit/Desktop/Thesis/Thesis%20draft/Dynamics%20of%20Neural%20Networks_Vidit_newformat.docx%23_Toc7172627


1 

 

CHAPTER 1 INTRODUCTION 

1.1 Spontaneous Activity in Cerebral Cortex 

The brain is one of the most complex physical systems which has captured the fascination 

of many scientists around the world. It is composed of many regions that perform different tasks 

that, in coherence, sense the world and control the bodily functions of all animals including 

humans. The cerebral cortex is the highly convoluted outer layer of cerebrum and covers over 

2/3 of the human brain. It performs many important functions such as sensing and interpreting to 

various stimuli such as vision, hearing and touch, and generating a response such as motor 

functions. Also, it performs cognitive functions like thinking, perceiving, information processing 

and understanding languages.(Jones and Peters, 1984)  

Traditionally, most neuroscience research has focused on the role of cerebral cortex in 

processing sensory input and creating a motor response. But, neurons in cerebral cortex are 

active even without the presence of a sensory input and even when the body is not moving. 

(Sanseverino et al., 1973; Webb, 1976; Legendy and Salcman, 1985; Tsodyks et al., 1999; 

Abeles, 2012). This is referred to as ongoing or spontaneous activity. At population level, 

dynamical patterns of the spontaneous activity are seen across the cortex. Examples of some 

studies done include, high-resolution optical imaging in cat’s visual cortex (Arieli et al., 1996), 

optical imaging in mice (Scott et al., 2014; Gautam et al., 2015) and in organotypic cultures 

(Shew et al., 2009) and functional Magnetic Resonance Imaging (fMRI) studies in human brain 

(Fox, Snyder, et al., 2006; Fox and Raichle, 2007). One reason that Studying spontaneous 

activity is of importance is that it has been intricately linked to stimulus-evoked activity.  

Researchers found that orientation maps constructed from spontaneous activity match with the 

ones seen in visual responses (Tsodyks et al., 1999; Kenet et al., 2003). Similar spatiotemporal 
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correlations are seen in visual cortex of animals while under no visual stimulus and observing 

natural scenes(Fiser, Chiu and Weliky, 2004).  Others have found that population response to 

auditory and somatosensory stimuli similar to spontaneous activity(Luczak, Barthó and Harris, 

2009).  Moreover, the ongoing activity is said to contribute to large variability observed in 

stimulus responses(Arieli et al., 1996; Azouz and Gray, 1999; Kisley and Gerstein, 1999).  In 

itself, studying spontaneous activity has important consequences. For example, by analyzing 

spontaneous cortical activity recorded using fMRI scans of human brains, researchers have been 

able to distinguish between human dorsal and ventral attention systems.(Fox, Corbetta, et al., 

2006). Also, researchers have proposed that on a longer timescale spontaneous activity reflects 

past inputs and future responses.(Ohl, Scheich and Freeman, 2001; Yao et al., 2007) The work 

we present here is primarily focused on understanding several dynamical aspects of spontaneous 

activity. 

1.2 Excitation/Inhibition in Cortical Networks 

Before we start with the discussion of network of neurons, it is essential to describe the 

neuron first. Ramón y Cajal described the basic principle of neural connections.(Ramón y Cajal, 

1894) Dendrites receive signals via synapses from upstream neurons.  When such an input signal 

is received it changes the membrane potential (potential difference across cell wall) or the 

receiving neuron. All the signals get integrated at the cell body and, if the membrane potential is 

increased above a certain threshold, then an action potential is generated. Action potentials are 

often referred to as spikes or firing of neuron. This action potential is a pulse like signal that is 

then conducted along the axon which send signal to downstream neurons.  At the end of every 

axon is a synapse, the point of contact between two neurons.  that the neurons in cerebral cortex 

can be classified into two broad classes in terms of their neurotransmitters.  The excitatory 
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neurons release glutamergic neurotransmitters and inhibitory neurons that release GABAergic 

neurotransmitters.(Gutnick and Mody, 1995).  As the names suggest an excitatory or inhibitory 

neuron send signal that increase or decrease the membrane potential of its downstream neurons.  

Each neuron in cerebral cortex receives approximately 104 synaptic inputs on its dendrites; many 

of these inputs are excitatory, many are inhibitory.  These inputs compete with each other, often 

canceling each other, but occasionally excitatory input exceeds inhibitory input by enough to 

cause the neuron to fire. 

The collective activity of a large network of neurons is very sensitive to the balance 

between these excitatory and inhibitory neurons that influence each other via a complex 

connectivity.  The Excitation-Inhibition (E/I) balance is key to a healthy cerebral cortex.  An E/I 

imbalance may lead to serious neurological disorders.  Epilepsy is linked to decrease in 

inhibition, that may cause neurons to become over-amplified and lead to massive brain 

oscillatory activity.(Buckley and Holmes, 2016)  Scientists have proposed that some forms of 

autism are caused by increased ratio of E/I.(Rubenstein and Merzenich, 2003; Nelson and 

Valakh, 2015).  On the other hand increased inhibition is implicated in Down 

syndrome(Fernandez and Garner, 2007) and may silence cortical neurons.(Sitdikova et al., 

2014).  Thalamocortical dysrhythmia which is responsible for conditions like depression and 

Parkinson’s disease has been linked to increase in inhibition. (Llinás et al., 1999).  Alterations in 

GABA neurotransmitter system may be involved in the pathophysiology of  

schizophrenia.(Wassef, Baker and Kochan, 2003)  In a healthy functioning cortex, this E/I 

balance is considered to be maintained carefully within a certain range. Researchers have shown 

in slices of ferret cortex via in vitro measurements that local cortical circuits operate through 

proportional balance of Excitation and Inhibition. This balance is said to be established through 
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local recurrent connections and generate self-sustaining activity that can be turned on and off by 

synaptic inputs.(Shu, Hasenstaub and McCormick, 2003) In rat somatosensory cortex via in vivo 

simultaneous intracellular recordings, other researchers have found continuous synchronization 

and correlations in strengths of excitatory and inhibitory inputs, during both spontaneous and 

sensory-evoked activity.(Okun and Lampl, 2008)  From the perspective of physics of brain, 

previous works have shown many emergent phenomena in neural systems that depend on E/I 

balance. For example, information capacity, transmission and dynamical range maximizes when 

E/I is properly balanced.(Shew et al., 2009, 2011; Larremore, Shew and Restrepo, 2011; Gautam 

et al., 2015)  However, small changes in E/I balance can occur naturally in healthy brains.  For 

example, changes in alertness are associated with neuro-modulatory chemicals that alter the E/I 

balance(Harris and Thiele, 2011; Zagha and McCormick, 2014; Stringer et al., 2016). 

 

 It becomes an interesting research question to alter the E/I balance and study the impact 

on the neural activity. Biologically, there are different ways researchers have altered the E/I 

balance in the neural systems and study its impact on neural activity. For example, by modifying 

relative number of excitatory and inhibitory neurons (Alvarez-Dolado et al., 2006; Gogolla et al., 

2009; Chen and Dzakpasu, 2010), excitatory versus inhibitory synaptic strength(Zhang, Jiao and 

Sun, 2011), intrinsic neuronal excitability (Turrigiano, Abbott and Marder, 1994; Bacci, 

Huguenard and Prince, 2004; Maffei and Turrigiano, 2008), tone of neuromodulators(Bacci, 

Huguenard and Prince, 2004; Williams and Castner, 2006; Lucas-Meunier et al., 2009; William 

Moreau et al., 2009) and synapse-related proteins expression(Hines et al., 2008; Terauchi et al., 

2010) In this thesis we report three projects, each aimed at understanding a different aspect of E/I 

balance and its impact on spontaneous neural activity.  In two of the projects, we approach this 

goal primarily using computational models, in which direct control of the strengths and/or 
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numbers of E and I neurons are feasible.  In the third project, we combine computational 

modeling with analysis of experimental data.  In the experiments, drugs were used to alter the 

strength of inhibition in rat cortex. 

1.3 Motivation 

This dissertation focuses on the Excitation-Inhibition balance and imbalance in cortical 

neural networks. Specifically, we study it’s impact on the collective dynamics of large networks 

of cortical neurons.    

In the first project we study the Shannon entropy H (Shannon, 1948) calculated from 

spontaneous activity of a computational model of neural network. The motivation behind this 

project is to understand how brain would tune the strength of its excitatory and inhibitory 

synapses to achieve high and robust entropy.  Researchers have argued for the benefits of high 

entropy as it would correspond to a larger repertoire of internal states to mediate internal 

information transfer.(Fagerholm et al., 2016) High entropy has also been shown to occur with 

high mutual information between stimulus and response(Shew et al., 2011; Fagerholm et al., 

2016)  Under the manipulation of the numbers and strengths of excitatory and inhibitory 

synapses, our aim is to find that under what conditions one would expect the network activity to 

have high entropy. We further want to explore how the entropy would change under the 

fluctuation of synaptic strengths as it happens in real cortex. 

The second project is motivated by experimental suggestions that under certain conditions 

cerebral cortex operates near criticality (i.e. near the critical point of a second order phase 

transition). The cortical activity under these conditions exhibits scale-invariant 

statistics.(Tagliazucchi et al., 2012; Scott et al., 2014) Criticality and Phase transition is a well-

known phenomenon studied extensively in equilibrium and non-equilibrium physical 
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systems.(H. Eugene Stanley, 1971) In physical systems such as Ising Model, it has been shown 

that not only the network activity but the Hamiltonian is also scale invariant, at criticality. 

(Wilson, 1979) This has been shown via scale-transformation scheme using the mathematical 

framework of Renormalization Group.  We present a hypothesis that, if a system is scale-

invariant, then an appropriately chosen coarse-graining procedure will leave the governing laws 

unchanged and leave the system variables with identical statistics. This has possible implications 

in neuroscience as it will indicate that neural activity observed at different length scale is 

governed by the same laws. Independently, in studies done at different observational length 

scales researchers have shown that neural dynamics follow power-law statistics For example, in 

spatially-resolved measurements in animals(Scott et al., 2014) and low-resolution measurements 

in humans(Tagliazucchi et al., 2012). Since the neural dynamics at these length scales follow 

similar statistics the laws governing these dynamics might also be similar. 

The motivation behind the third project stems from experimental observations of what 

happens to network activity after pharmacologically altering the E/I balance. These experiments 

are done on rat motor cortex where neural activity is recorded via multielectrode voltage 

measurements. The E/I balance is altered by administering drugs that promotes/block GABA 

receptors which is responsible for inhibitory signals between neurons. Traditional thinking about 

such inhibitory signal manipulation is that increasing/decreasing inhibition would 

decrease/increase the spiking rate of neurons. But, paradoxically, we found that some neurons 

exhibit behavior opposite to this traditional expectation. Some neurons fired much more when 

inhibition was increased.  And some neurons fired much less when inhibition was suppressed.  

Surprisingly, the overall population activity, averaged across all neurons, stayed largely 

unchanged. Previous works have also reported that neurons behave in paradoxical manner under 
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signal modulation and the underlying reason has been indicated to be the inhomogeneity in 

network connectivity.(Song et al., 2005; Garcia Del Molino et al., 2017)   

1.4 Dissertation Objectives 

There are three main objectives of this dissertation; 

1. Determine how noise/information capacity/entropy depend on E/I balance by analyzing 

the spontaneous activity in a computational model of network of Excitatory and 

Inhibitory neurons. 

2. Test the hypothesis that dynamical rules governing the neural activity follow scale-

change symmetry. What is the impact of E/I balance on that in a more realistic model and 

the implications of measuring scale-change symmetry of dynamical rules in cerebral 

cortex? 

3. Determine the mechanism by which a cortical neuron generates a paradoxical change in 

firing rate under E/I imbalance. Even though, the population activity on average remains 

constant. What are the intrinsic network characteristics that may give rise to such 

behavior?  
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CHAPTER 2 ENTROPY FOR NETWORK OF EXCITATORY-INHIBITORY 

INTEGRATE-AND-FIRE NEURONS 

Keywords:  Neural networks; Phase transition; criticality; entropy 

2.1 Introduction 

The network of neurons in cerebral cortex displays rich and complex dynamics even 

when not engaged by any particular sensory or motor interaction with the external world.(Arieli 

et al., 1996; Fox and Raichle, 2007) From one point of view, such ongoing internal dynamics are 

thought to mediate memory consolidation and other internal cognitive processes.(Han, Caporale 

and Dan, 2008; Luczak, Barthó and Harris, 2009; Berkes et al., 2011; Miller et al., 2014; 

Romano et al., 2015) On the other hand, ongoing fluctuations in cortical network dynamics have 

often been considered a nuisance, imposing noisy fluctuations in neural response to sensory 

input.(Lee et al., 1998; Averbeck, Latham and Pouget, 2006; Ecker et al., 2014) In both of these 

contexts, it is important to understand the mechanisms that govern the fluctuations of ongoing 

cortical network dynamics. Here, we investigate the Shannon entropy of the network spike rate. 

In the context of internal cognitive processes, high entropy might be beneficial, corresponding to 

a larger repertoire of internal states to mediate internal information transfer.(Fagerholm et al., 

2016) When considered as noise, high entropy can be a hindrance to effective sensory  

coding.(Lee et al., 1998; Averbeck, Latham and Pouget, 2006; Ecker et al., 2014) Indeed, in 

principle, encoding of sensory input would be most reliable if the cortex was totally silent (low 

entropy) until the stimulus excited it. However, real cortex does not operate this way; it has many 

jobs to do beyond encoding sensory input and is never silent. Previous studies have shown that 

ongoing cortical dynamics with high entropy occurs together with high mutual information 

between stimulus and response(Shew et al., 2011; Fagerholm et al., 2016) suggesting that a large 
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repertoire of ongoing dynamical states may be necessary for a large repertoire of stimulus-

evoked states.(Luczak, Barthó and Harris, 2009; Berkes et al., 2011) 

A crucial factor for determining the entropy of network dynamics in the cortex is the 

competition between two types of neurons: excitatory (E) and inhibitory (I). This is most 

apparent in previous experiments that pharmacologically manipulated the E/I balance.(Mao et 

al., 2001; Shew et al., 2011; Gautam et al., 2015; Fagerholm et al., 2016) Enhanced inhibition 

(GABA agonists) often results in a dynamical regime characterized by low firing rates and weak 

population-level correlations, while decreased inhibition (GABA antagonists) tends to result in a 

regime with higher firing rates and strong correlations. Two studies in particular have shown that 

entropy can be increased by tuning the E/I balance to the tipping point between these two distinct 

dynamical regimes.(Shew et al., 2011; Fagerholm et al., 2016) However, a more systematic 

understanding of how E/I balance impacts entropy is difficult to obtain experimentally because 

pharmacological manipulations are rather difficult to precisely control. Moreover, with a few 

interesting exceptions,(Chen and Dzakpasu, 2010; Hunt et al., 2013) experiments do not vary the 

numbers of excitatory or inhibitory neurons. Computational models offer an alternative approach 

in which the number of excitatory and inhibitory neurons, as well as strength of excitatory and 

inhibitory synapses, can easily be controlled. Previous computational studies have addressed 

similar topics but typically have neglected inhibition(Shew et al., 2011; Ferraz, Melo-Silva and 

Kihara, 2017) or have not considered the effects of changing the E/I ratio.(Scarpetta and de 

Candia, 2013; Yang, Zhou and Zhou, 2017) Thus, theoretical and experimental understanding of 

the relationship between the entropy of ongoing dynamics and the balance of excitation and 

inhibition—mediated by both relative strengths of excitatory and inhibitory synapses and relative 

numbers of excitatory and inhibitory cells—remains unresolved. 
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Here, we attempt to improve the theoretical understanding of entropy of ongoing 

dynamics by studying a network model of binary neurons in detail. We consider how entropy of 

the population firing rate depends on the fraction of inhibitory neurons 𝛼 and the strengths of E 

and I interactions, 𝑊𝐸 and 𝑊𝐼, respectively. We find maximal entropy near the tipping point 

between the low and high firing rate dynamical regimes, as seen in experiments.(Shew et al., 

2011) We also find that, for a given choice of 𝑊𝐸 and 𝑊𝐼, the tipping point can be achieved by 

adjusting the value of 𝛼. This raises the question: among the different possible parameter 

configurations that place the system at the tipping point, why should one be favored over 

another? We find that there is a trade-off between high and robust network entropy: networks 

with weak synapses can achieve a high entropy when excitation and inhibition are balanced, but 

the entropy degrades significantly upon small deviations from the balanced state. On the other 

hand, networks with stronger synapses have a lower maximum entropy, but they are more robust 

to parameter changes. We also find that if E and I synaptic strengths are proportional to each 

other, as found in many experiments,(Wehr and Zador, 2003; Haider, 2006; Denève and 

Machens, 2016) then robust, high entropy requires a small fraction of I neurons (𝛼 near 0.1). In 

mammalian cortex, 𝛼 has been found to be near 0.2 with remarkable consistency over the 

lifetime of an organism(Sahara et al., 2012) and over different regions of cortex.(Hendry et al., 

1987; Meinecke and Peters, 1987) Our results suggest that mammalian cortex strikes a 

compromise with intermediate but robust entropy. 

In what follows, we introduce and analyze the binary neuron model which both predicts 

and provides insight into the results of model numerical simulations. 
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2.2 Model and Theory 

2.2.1 Binary Neuron Model 

We explore the effects of excitation and inhibition balance on entropy using a simple, 

analytically tractable model. The model, studied previously in Ref. (Larremore et al., 2014), 

consists of a network of 𝑁 stochastic binary neurons, indexed 𝑖 = 1,2, … , 𝑁. The state of neuron 

𝑖 at time 𝑡 is denoted by 𝑥𝑖
𝑡, which can take the values 𝑥𝑖

𝑡 = 0 if the neuron is resting and 𝑥𝑖
𝑡 = 1 

if the neuron is spiking. Time is assumed to evolve in discrete steps 𝑡 = 0,1,2, … .. The evolution 

of each neuron’s state is stochastic and depends on the states of other neurons at the previous 

time step, 

𝑥𝑖
𝑡+1 =

{
 

 
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜂 + (1 − 𝜂)𝜎 (∑ 𝜖𝑗𝑤𝑖𝑗𝑥𝑗

𝑡

𝑁

𝑗=1

)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                        2-1 

where 𝜖𝑗 = 1  if neuron 𝑗 is excitatory and 𝜖𝑗 = −1 if neuron 𝑗 is inhibitory. The strength of the 

synapse from neuron 𝑗 to neuron 𝑖 is 𝑤𝑖𝑗 > 0 and 𝑤𝑖𝑗 = 0 if neuron 𝑗 does not connect to neuron 

𝑖. The transfer function 𝜎(𝑥) = min [1,max (0, 𝑥)] converts the input to neuron 𝑖 into a 

probability. The constant 𝜂 = 1/(100𝑁) represents independent spontaneous activation due to 

noise or external sources, resulting in one spike per 100 time steps among all neurons, on 

average. We note that other choices of 𝜂 could cause quantitative changes in our results 

below, but we expect that our qualitative conclusions are not sensitive to moderate changes in η. 

For example, it is well known that noise tends to smooth out the sharpness of phase transitions 

like the one discussed below.(Williams-García et al., 2014) 

We consider Erdős-Rényi networks where a directed link is made independently from 

neuron 𝑗 to neuron 𝑖 with probability 𝑘/(𝑁 − 1) for all 𝑖 ≠ 𝑗. The parameter 𝑘 is the expected 
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number of outgoing connections from each neuron. To control the relative number of excitatory 

and inhibitory neurons, we assign each neuron to be inhibitory with probability α and excitatory 

otherwise. Finally, we assume for simplicity that 𝑤𝑖𝑗 = 𝑤𝐸 for excitatory synapses (i.e., if 𝜖𝑗 =

1) and 𝑤𝑖𝑗 = 𝑤𝐼 for inhibitory synapses (i.e., if 𝜖𝑗 = −1) and define the effective excitatory 

weight as 𝑊𝐸 = 𝑘𝑤𝐸 and the effective inhibitory weight as 𝑊𝐼 = 𝑘𝑤𝐼. We interpret our model to 

represent a small patch of cortex, 100 𝜇𝑚 in scale, like a single cortical column. At these scales, 

it is a reasonable approximation to neglect distance-dependent differences in connectivity for 

excitatory and inhibitory neurons.(Song et al., 2005) 

The model is characterized by the parameters 𝑁, 𝑘,𝑊𝐸 ,𝑊𝐼, and 𝛼. For definiteness, in all 

simulations, we will consider, unless otherwise indicated, only the parameters 𝑁 = 10,000 and 

𝑘 = 100 and study the population firing dynamics of the model as a function of (𝑊𝐸 ,𝑊𝐼 , 𝛼). As 

a measure of collective network dynamics, we study the fraction of spiking neurons, or network 

activity, given by 

𝑆𝑡 =
1

𝑁
∑𝑥𝑖

𝑡

𝑁

𝑖=1

                                                                         2-2 

In Ref. (Larremore et al., 2014), it was found that the collective dynamics of the network is 

determined by the largest eigenvalue 𝜆 of the connection strength matrix 𝐴 with entries 

{𝜖𝑗𝑤𝑖𝑗}𝑖,𝑗=1
𝑁 . Network activity saturates at a high value for 𝜆 > 1 and dies out or reaches a steady 

low value for 𝜆 < 1. At the tipping point between these two regimes, defined by 𝜆 = 1, 

excitation and inhibition are balanced such that network activity is characterized by large 

fluctuations that are effectively ceaseless (their lifetime scales exponentially with 𝑁).(Larremore 

et al., 2014)  
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Figure 2-1 shows an example of the time series of network activity for these three 

regimes. For the Erdős-Rényi networks considered here, 𝜆 can be approximated by the expected 

row sum of 𝐴, 

𝜆 ≈ 𝑘𝑤𝐸(1 − 𝛼) − 𝑘𝑤𝐼𝛼 = 𝑊𝐸(1 − 𝛼) −𝑊𝐼𝛼                                2-3  

With this approximation, then, the parameters that give 𝜆 = 1 form a 2-dimensional surface in 

the (𝑊𝐸 ,𝑊𝐼 , 𝛼) parameter space.                                

2.2.2 Entropy 

We consider the Shannon entropy of the time-series of network activity, which quantifies the 

size of the repertoire of accessible population firing rates. The network activity is discrete 

( 0,
1

𝑁
,
2

𝑁
…1). For a given set of network parameters (𝑊𝐸 ,𝑊𝐼 , 𝛼), we consider the steady-state 

probability distribution of network activity 𝑃(𝑆) and the associated entropy, 

𝐻 = −∑ 𝑃(𝑆) 𝑙𝑜𝑔2[𝑃(𝑆)]𝑆                                                       2-4      

Figure 2-1 Network activity and dynamics of binary model. Time series of network activity 

(a) show diverse fluctuations when excitation and inhibition are balanced (𝜆 = 1). Similarly, 

probability distributions (b) of network activity are broadest when 𝜆 = 1. All probability 

distributions have been normalized by their peak probability to facilitate comparison of their 

shapes. Dynamical parameters: 𝛼 = 0.11 (Blue), 0.1 (Red), 0.09 (Yellow); 𝑊𝐸 = 𝑊𝐼 = 1.25. 
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where the sum runs over the allowed values 𝑆 = 0,
1

𝑁
,
2

𝑁
, … ,1. In practice, we estimate 𝑃(𝑆) 

numerically from a time series of 𝑆𝑡 obtained from model simulations (Figure 2-1b).                                      

2.3 Results 

Our primary goal is to determine how the entropy of a network varies with the relative 

numbers of E and I neurons and the relative strength of E and I synapses. We first describe our 

results from numerical simulations of the binary model and then describe results from the theory. 

First, we show in Figure 2-1 that the system network activity visits the widest variety of states 

when excitation and inhibition are balanced at the tipping point between high and low firing rate 

Figure 2-2 High entropy at the boundary between high and low firing regimes. Each panel 

shows how entropy (color) varies across a two-dimensional section of the three-dimensional 

𝑊𝐸 −𝑊𝐼 − 𝛼 parameter space. The relative orientation of the six different sections is 

illustrated and labeled [(i)–(vi)] in the cartoon (left). For (i) and (ii), 𝛼 is fixed at 0.1 and 0.2. 

For (iii) and (iv), 𝑊𝐼 is fixed at 1.5 and 2.5. For (v) and (vi), 𝑊𝐸 is fixed at 1.5 and 2.5. A 

curved critical surface in 𝑊𝐸 −𝑊𝐼 − 𝛼 space separates the high firing regime (H) from a low 

firing regime (L). Entropy is high along this regime boundary. Note that as I or E synapse 

strength increases, the width of the peak in entropy also increases, indicating increased 

robustness (decreased fragility). 
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regimes. This is visible in time series (Figure 2-1a) as well as empirical distributions 𝑃(𝑆) of 

network activity (based on 104 time steps of simulation). Correspondingly, entropy 𝐻 is greatest 

along the boundary between low and high firing regimes (Figure 2-2). In the three-dimensional 

(𝑊𝐸 ,𝑊𝐼 , 𝛼) parameter space, this boundary forms a curved surface, which we henceforth refer to 

as the maximum entropy surface. 

As discussed in Chapter 2.2.1, we expect that the transition from the low to the high firing 

regimes occurs at the critical surface of parameters where 𝜆 = 1. While we find this is usually 

an excellent approximation to our numerical results, the maximum entropy and critical surfaces 

differ slightly for high values of 𝛼, and therefore, we will only use the critical surface as a 

qualitative guide to the location of the maximum entropy surface. 

To numerically identify the maximum entropy surface, for each fixed value of (𝑊𝐸 ,𝑊𝐼), 

we compute entropy across a wide range of values of 𝛼, finding the value 𝛼 that maximizes 

(𝑊𝐸 ,𝑊𝐼 , 𝛼). In Figure 2-3a, we show 𝛼∗ as a function of 𝑊𝐸 and 𝑊𝐼. As one might expect, 

higher values of 𝑊𝐸 require a larger number of I neurons (higher 𝛼∗) in order to maintain a 

balanced network and vice versa. This agrees qualitatively with the estimate using the critical 

Figure 2-3 Trade-off between high entropy and robust entropy. (a) For each combination of 

𝑊𝐸 and 𝑊𝐼 effective synaptic weights, we identify the critical fraction of inhibitory neurons 

(𝛼∗) with the highest entropy. (b) Comparing all critical entropy 𝐻∗ across the entire critical 

surface, entropy was highest for low 𝑊𝐸 and 𝑊𝐼. (c) Highest fragility was also found for low 

𝑊𝐸 and 𝑊𝐼. 
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surface, 𝛼∗ ≈ (𝑊𝐸 − 1)/(𝑊𝐸 +𝑊𝐼) obtained from Eq. 𝜆 ≈ 𝑘𝑤𝐸(1 − 𝛼) − 𝑘𝑤𝐼𝛼 =

𝑊𝐸(1 − 𝛼) −𝑊𝐼𝛼                                2-3 with 𝜆 = 1. 

Having identified the parameters that characterize the maximum entropy surface, we next 

ask two questions. First, where on the surface is entropy highest? Second, where on the surface is 

entropy most robust? We consider the entropy to be robust if it does not drop dramatically when 

we make a small perturbation in 𝑊𝐸 ,𝑊𝐼, and 𝛼 away from the peak entropy surface. This 

approach is similar to other ways to quantify sensitivity to model parameters, such as Fisher 

information.(Lehmann and Casella, 1998) To quantify how much the entropy decreases if 

parameters are perturbed away from the maximum entropy surface, we define fragility 

𝐹(𝑊𝐸 ,𝑊𝐼) as follows. For a given pair of (𝑊𝐸 ,𝑊𝐼) values, we first calculate the entropy at the 

corresponding point on the maximum entropy surface, 𝐻∗ = 𝐻(𝑊𝐸 ,𝑊𝐼 , 𝛼
∗). Then, we calculate 

the entropy at two points at a small distance 𝛿 above and below the surface, 𝐻𝑢𝑝 = 𝐻(𝑊𝐸 +

Δ𝑊𝐸 ,𝑊𝐼 + Δ𝑊𝐼, 𝛼 + Δ𝛼) and 𝐻𝑑𝑜𝑤𝑛 = 𝐻(𝑊𝐸 − Δ𝑊𝐸 ,𝑊𝐼 − Δ𝑊𝐼 , 𝛼 − Δ𝛼). The perturbations 

±(Δ𝑊𝐸 , Δ𝑊𝐼 , Δ𝛼) are defined to be normal to the maximum entropy surface, which will give the 

largest drop in entropy for a given perturbation size. The size of the perturbation was chosen to 

be small (Euclidean norm 𝛿 = 0.01, about 1% variation in parameters) to emphasize that entropy 

can be quite sensitive to these parameter changes in certain parts of (𝑊𝐸 ,𝑊𝐼) space. Finally, we 

define fragility 𝐹(𝑊𝐸 ,𝑊𝐼) as the mean of the entropy difference, 

𝐹(𝑊𝐸 ,𝑊𝐼) =
(𝐻∗ −𝐻𝑢𝑝) + (𝐻

∗ − 𝐻𝑑𝑜𝑤𝑛)

2
                                    2-5 

Our main results are in Figure 2-3b and Figure 2-3c.  Figure 2-3b shows the entropy 𝐻∗ on 

the maximum entropy surface as a function of the effective E and I weight 𝑊𝐸 and 𝑊𝐼. Networks 

with weak effective synapse strengths (low values of 𝑊𝐸 and 𝑊𝐼) can achieve a higher entropy 

𝐻∗ than networks with strong effective synapse strengths. However, as shown in Figure 2-3c, 
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high entropy comes at the cost of high fragility: networks with weak effective synapse strengths 

have the highest fragility, while networks with strong effective synapse strengths are the most 

robust. We note that while the variation in entropy 𝐻∗ is relatively moderate across the range 

studied approximately 10%), the fragility ranges from 3 to 6, indicating that our 1% perturbation 

of parameters results in a dramatic drop in entropy of approximately 30% - 60%. One could 

argue that what matters are the final values of entropy after perturbation (i.e., 𝐻𝑢𝑝 and 𝐻𝑑𝑜𝑤𝑛) 

rather than how much entropy drops due to perturbation (i.e., 𝐹). From this perspective, strong 

synapses are also better; 𝐻𝑢𝑝 and 𝐻𝑑𝑜𝑤𝑛 are lower for weak synapses than for strong synapses. 

This can be seen by subtracting Figure 2-3b and Figure 2-3c. We conclude that there is a trade-

off between high and robust entropy, with stronger effective synapse strengths promoting lower 

but more robust entropy, and weaker effective synapse strengths promoting a high but fragile 

entropy. 

Finally, we address the role of the fraction α of I neurons in promoting entropy robustness. 

We note that if the choices of E and I synapse strengths are constrained to be proportional to 

each other, as experiments suggest,(Wehr and Zador, 2003; Haider, 2006; Denève and Machens, 

2016) then 𝑊 = 𝑊𝐸 = 𝑏𝑊𝐼 and the estimate 𝛼 ≈ (𝑊𝐸 − 1)/(𝑊𝐸 +𝑊𝐼)  becomes 𝛼∗ =

(1 +
1

𝑏
)
−1

(1 −
1

𝑊
). Thus, 𝛼∗ is a monotonically increasing function of synapse strength 𝑊. 

Therefore, for such constrained networks, entropy and fragility decrease with the fraction of I 

neurons 𝛼. Thus, a small non-zero 𝛼, similar to that found in mammalian cortex, is needed to 

obtain high and robust entropy. 

2.4 Discussion 

Here, we have shown that Shannon entropy of neural network dynamics is sensitive to the 

structure of excitatory and inhibitory interactions. Generally, high entropy is obtained by 
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balancing E and I synaptic efficacy such that the system operates near the tipping point between 

two phases of network dynamics. Entropy is high all along this boundary, i.e., for a wide range 

of properly balanced E/I combinations. However, the regions within this boundary with the 

highest entropy are not robust; small variations in the synaptic strengths 𝑊𝐸 ,𝑊𝐼 and in the 

fraction of inhibitory neurons 𝛼 could cause entropy to plummet, drastically reducing the 

accessible states and disrupting the functioning of the network. We found that entropy is more 

robust when the effective synaptic strengths are larger. Given that 𝑊𝐸 ,𝑊𝐼, and 𝛼 are inevitably 

somewhat variable during development, across brain regions, and across individuals,(Hendry et 

al., 1987; Meinecke and Peters, 1987; Sahara et al., 2012) robustness to 𝑊𝐸 ,𝑊𝐼, and 𝛼 

variability may be important. For networks constrained such that 𝑊𝐸~𝑊𝐼,(Wehr and Zador, 

2003; Haider, 2006; Denève and Machens, 2016) our findings imply that a small, nonzero 

fraction 𝛼 > 0 of inhibitory neurons would result in a more robust network entropy. Our results 

suggest that a population of organisms with reliable and high entropy brains requires that small, 

nonzero fraction of neurons be inhibitory, which is consistent with what exists in mammalian 

cortex.(Hendry et al., 1987; Meinecke and Peters, 1987; Sahara et al., 2012) 

 Different parts of the space of models we explore here relate to several other models 

studied previously. The parts of parameter space with relatively weak 𝑊𝐸  𝑎𝑛𝑑 𝑊𝐼 and with 𝛼 =

0.2 are similar to models previously studied in the context of “criticality” in the 

cortex.(Larremore et al., 2014) The parts of parameter space where 𝑊𝐸  𝑎𝑛𝑑 𝑊𝐼 are stronger may 

be related to the widely studied set of models referred to as “chaotic balanced’’ 

networks.(Vreeswijk and Sompolinsky, 1998; Denève and Machens, 2016; Rubin, Abbott and 

Sompolinsky, 2017) A more detailed comparison of our model dynamics to previous models 

could bridge the study of the criticality hypothesis with that of chaotic balanced networks. 
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 How might one experimentally test the results of our work? One way would be to 

measure changes in firing rate fluctuations in response to acute manipulation of excitatory or 

inhibitory synapses. Such manipulations can be made pharmacologically, for example.(Mao et 

al., 2001; Shew et al., 2011; Fagerholm et al., 2016) Our work predicts two testable phenomena. 

First, if the cortex is on the high entropy surface discussed here, then any manipulation of 

excitation or inhibition will result in a drop in firing rate fluctuations. Conversely, if either 

excitatory or inhibitory manipulation results in an increase in firing rate entropy, this would 

suggest that the cortex is not operating on the high entropy surface. A second prediction from our 

work is that size of the drop in entropy due to a manipulation of inhibition or excitation will be 

correlated with the entropy before the manipulation. This prediction supposes that the cortex is 

sometimes operating with a weak-synapse E/I balance where entropy is higher and the drop in 

entropy would be greater and at other times is operating with a strong-synapse E/I balance where 

entropy is lower and the drop in entropy would be less. 

 Although high entropy is likely to be beneficial for certain functions of cerebral cortex, 

other functions might be better served by a low entropy condition. For example, as discussed in 

the introduction, lower entropy might improve sensory signal processing by increasing the 

signal-to-noise ratio. In this context, a small shift toward the lower firing side of the phase 

transition might be beneficial. Such temporary shifts can occur due to neuromodulation; for 

example, attention is known to shift cortical dynamics toward a regime with smaller collective 

fluctuations.(Harris and Thiele, 2011) However, a shift toward the high firing regime or too large 

a shift toward the extremely inhibition-dominant regime would likely be bad for function. 

Indeed, extreme deviation from well-balanced excitation and inhibition is implicated in a variety 

of brain disorders. For instance, when inhibition is sufficiently weak relative to excitation, 
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seizures occur, as in epilepsy.(Dichter and Ayala, 1987) Too much inhibition is associated with 

Down’s syndrome.(Fernandez and Garner, 2007) Autism is also associated with imbalanced 

excitation and inhibition,(Rubenstein and Merzenich, 2003; Nelson and Valakh, 2015) both in 

terms of abnormal numbers of inhibitory neurons and strengths of synapses.(Gogolla et al., 

2009) Our work suggests that the dysfunction associated with these disorders may be, in part, 

due to abnormal entropy of cortical network dynamics. 

If high entropy is a beneficial property for brain circuits, then the robust maximization of 

entropy could be a phenotypic target of evolution in the nervous system. Our results suggest that 

hitting this target requires neural circuits that include some inhibitory neurons and operate near 

the tipping point of a phase transition. 
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CHAPTER 3 SCALE INVARIANCE IN NEURAL NETWORK DYNAMICAL RULES: 

RENORMALIZATION GROUP APPROACH 

3.1 Introduction 

The ongoing collective population activity of neurons in cerebral cortex exhibits complex 

spatiotemporal fluctuations.  This ongoing activity is responsible for the majority of the brains 

energy consumption(Buzsáki, Kaila and Raichle, 2007), is closely related to past experiences 

(Kenet et al., 2003; Han, Caporale and Dan, 2008; Luczak, Barthó and Harris, 2009), contributes 

to memory consolidation (Ji and Wilson, 2007; Gupta et al., 2010), and modulates ongoing 

cortical processing (Arieli et al., 1996; Petersen et al., 2003; Fox, Snyder, et al., 2006; Fox et al., 

2007).  Thus, understanding how ongoing cortical activity is organized is an important goal of 

systems neuroscience.  Comparing ongoing cortical activity across diverse species, measured 

with different experimental methods over the past decade, a common phenomenon has been 

found with surprising consistency.  The spatiotemporal sizes of ongoing fluctuations follow a 

specific statistical law; they are distributed according to a power-law probability density function 

with the same exponent near -1.5.  This phenomenon has been observed in fMRI in humans 

(Tagliazucchi et al., 2012; Haimovici et al., 2013), MEG in humans (Shriki et al., 2013),  voltage 

imaging in mice (Scott et al., 2014; Fagerholm et al., 2016), multi-electrode electrophysiology in 

monkeys (Petermann et al., 2009; Yu et al., 2017),  cats (Hahn et al., 2017), rats (Gireesh and 

Plenz, 2008; Gautam et al., 2015), and even turtles (Shew, Clawson, Pobst, Karimipanah, 

Nathaniel C. Wright, et al., 2015; Clawson et al., 2017) and in vitro brain-in-a-dish systems 

(Beggs and Plenz, 2003; Shew et al., 2011).  What can explain such shared phenomena observed 

across such diverse cortical systems, measured with differing spatial and temporal resolution?   
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One hypothesis is that the cerebral cortex can operate near the critical point of a phase 

transition (Beggs and Timme, 2012; Shew and Plenz, 2013; Hesse and Gross, 2014; Plenz, 

Niebur and Schuster, 2014).  This hypothesis builds upon well-established physics of critical 

phase transitions; at criticality, multiple material properties are expected to be power-law 

distributed according to universal scaling laws that are insensitive to many details of the physical 

system (H E Stanley, 1971; H. Eugene Stanley, 1971; Wilson, 1975, 1979).  From theory and 

computational modeling work, it is clear that neural systems can be tuned into a variety of 

different dynamical regimes or phases (e.g. asynchronous, oscillatory, bursting), often with 

distinct boundaries separating different regimes (Brunel, 2000; Haldeman and Beggs, 2005; 

Wang, Hilgetag and Zhou, 2011; Poil et al., 2012; Gautam et al., 2015).  Similar to physical 

systems, near certain regime boundaries these neural models exhibit power-law distributed 

collective dynamics with the same power-law exponents, despite many detailed differences 

among models (Haldeman and Beggs, 2005; Wang, Hilgetag and Zhou, 2011; Gautam et al., 

2015).  What does the physics of critical phenomena tell us about where this universality comes 

from? 

Fundamental insight into the origins of universal critical phenomena in physical systems 

(and a Nobel Prize) came from the realization that the basic laws governing the system obey a 

peculiar symmetry.  The laws are the same across different scales; they have scale-change 

symmetry.  Critical phenomena, including power-law distributed observables, stem directly from 

this bizarre fractal symmetry of the governing physical laws (Wilson, 1975, 1979).  Motivated by 

this basic fact about critical phenomena in physical systems, here we hypothesize that the 

governing laws for cortical dynamics also conform to scale-change symmetry.  Despite more 
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than a decade of intense research on criticality in neural systems, this basic question has not been 

addressed.  How does one go about testing this hypothesis? 

Here, we develop an approach inspired by renormalization group theory, but with a focus 

on practical applicability to real neural data.  Renormalization group theory is the mathematical 

approach used to understand scale-invariance at criticality in equilibrium physical systems (H. 

Eugene Stanley, 1971; Wilson, 1975, 1979; Stanley, 1999), and in certain non-equilibrium 

dynamical systems (Loreto et al., 1995; Vespignani, Zapperi and Pietronero, 1995; Vespignani, 

Zapperi and Loreto, 1997; Tauber, 2014).  However, renormalization group ideas have not been 

developed in the context of neural systems.  In brief, the idea begins with a coarse-graining 

procedure which transforms all the system variables and governing laws at one spatiotemporal 

scale to new set of variables and laws at a coarser scale. If the system obeys the scale-change 

symmetry, then an appropriately chosen coarse-graining procedure will leave the governing laws 

unchanged and leave the system variables with identical statistics.  

Here, we first applied our approach to two computational models, one simple, and the 

other more biologically realistic.  For both models, we found that dynamical rules were indeed 

maximally scale-invariant when operating near a phase transition. Next, we applied our approach 

to experimental data. We found that, in the awake state, the apparent rules governing dynamics 

of mouse cerebral cortex were more scale-invariant than in the anesthetized state. This suggests 

that the unconscious cortex deviates further from criticality than does the conscious cortex. 

3.2 Results 

3.2.1 Simple Model 

We developed our approach using a network of binary, probabilistic, excitable nodes 

similar to that used in previous studies of non-equilibrium critical phenomena in neural systems 
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(Haldeman and Beggs, 2005; Kinouchi and Copelli, 2006; Shew et al., 2009; Larremore, Shew 

and Restrepo, 2011), but on a two-dimensional 𝐿 𝑋 𝐿 square lattice (𝐿 = 400) with nearest 

neighbor connections (including self). We interpret each node in the network as the aggregate 

state of a group of neurons, analogous to the signals measured using experimental techniques 

with somewhat coarse spatial resolution (e.g. local field potential (Petermann et al., 2009), 

voltage imaging (Scott et al., 2014), or functional magnetic resonance imaging (Tagliazucchi et 

al., 2012; Haimovici et al., 2013)). The state 𝑋(𝑡 + 1) of a node at time 𝑡 + 1 is either active (1) 

or inactive (0) depending on the number of neighbors 𝑛(𝑡) which were active at time 𝑡. 

𝑋(𝑡 + 1) =  {1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜙𝑛 = 1 − (1 − 𝐶)
𝑛(𝑡)(1 − 𝑝)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                   3-1 

and C defines the strength of coupling between all connected pairs of nodes and p defines a 

probability of activation without any active neighbors (𝑝 = 0.001 unless stated otherwise).  We 

interpret p as an external source of input to the neural system.  The states of all the network 

nodes are updated synchronously.  One way to characterize the collective network dynamics is 

by measuring the fraction of active nodes at a time, or network activity, given by 𝑆(𝑡) =

Figure 3-1 Phase Transition in a Simple Neural Model a. Each panel shows the two-

dimensional lattice of nodes at a single time step. Each pixel represents one node (yellow, 

active; blue, inactive). A subset of the full lattice is shown for clarity. b. As coupling strength 

𝐶 increases a sharp increase in time-averaged network activity occurs at a critical coupling 

strength 𝐶∗ near 𝐶 = 0.23. 𝑆 is averaged over 104 time steps excluding a transient period of 

104 time steps. 
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𝐿−2∑ 𝑋𝑖(𝑡)
𝐿2

𝑖=1 .  By tuning the coupling strength, we tuned the model through a critical phase 

transition at 𝐶 = 𝐶∗ separating a low-activity (small S) from a high-activity (large S) regime 

(Figure 3-1).  Most of our results consider the range of C from 0.15 to 0.35. 

Our first goal was to examine how the dynamical rules governing the system change 

when considered at different scales of observation. For this, we consider six activation 

probabilities 𝜙𝑛 = 1 − (1 − 𝐶)𝑛(𝑡)(1 − 𝑝) with 𝑛 = 0, 1, 2, 3, 4, 𝑜𝑟 5 (𝑛 = 5 means all 4 

neighbors plus self). Together, these six probabilities completely specify the rules of the system 

dynamics (actually they over-specify the rules, which are completely specified by C and p, but 

over-specification can be helpful with noisy data). Importantly, we can estimate these 

probabilities directly from data, whether simulated or experimentally measured. For instance, 𝜙1 

is estimated as the fraction of instances with 𝑛(𝑡) = 1 that lead to activation at time 𝑡 + 1. Based 

on 104 timesteps of data from the model (excluding the transient of duration 102 timesteps), we 

can estimate all six 𝜙𝑛 probabilities with precision ≤ 2% for 0.15 < C < 0.35 (except 𝜙0, which 

was less accurate for C > 0.3; see Supplementary materials SM Figure 3-1).  

The scale-change symmetry at the heart of critical phenomena in physical systems 

suggests that the 𝜙𝑛 could be invariant across observational scales when C equals its critical 

value C*, but not if C deviates from C*.  The next step towards testing this possibility was to 

identify an appropriate coarse-graining renormalization transformation to map one observational 

scale onto a coarser scale. 

3.2.2 Coarse-graining scheme 

Motivated by the limited spatiotemporal resolution of typical experimental data and real-

space block renormalization schemes originally used to gain insight on critical phenomena in 

physical systems (H. Eugene Stanley, 1971; Wilson, 1979; Kadanoff, 1993), we devised a 
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spatiotemporal transformation scheme described as follows. Each r × r × τ spatiotemporal block 

of nodes (r × r in space and of duration τ) at scale b transforms into a single node at coarser scale 

b + 1.   Thus, an L × L × T lattice at observational scale b transforms into a coarse L/r × L/r × T/ 

τ lattice at observational length scale b + 1, as illustrated for r = 4 and τ = 1 in Figure 3-2a, b. 

The state Xb+1 of a coarse node depends on the average state 𝑆𝑏 = 𝜏−1𝑟−2∑ 𝑋𝑏
𝑖𝜏𝑟2

𝑖=1  of the 

corresponding 𝜏𝑟2 nodes at the finer scale according to  

𝑋𝑏+1 = {
1    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓(𝑆𝑏) = [1 + 𝑒𝑥𝑝(−𝑘(𝑆𝑏 − 𝑥0))]

−1
,

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
              3-2 

By tuning the transformation parameters k and 𝑥0, we can explore a family of logistic function 

coarse-graining procedures including majority rules and other previously studied functions. 

Figure 3-2 Scale-Invariance of Dynamical Rules Peaks at Criticality. a. Cartoon illustration 

of coarse-graining scheme. Each block of nodes at fine scale b is transformed 

probabilistically to one node at the coarse scale 𝑏 + 1. b. Examples of activity snapshots 

before and after coarse graining. c. Upon coarse graining, the dynamical rules change the 

least (𝜁 is minimal) at criticality. Inset shows the coarse-graining transformation function 

with (𝑘; 𝑥0) = (76; 0.22). Block size was 𝑟 = 8. d. Shown are optimal coarse-graining 

functions for three 𝐶 values and six block sizes (legend in e. specifies different values of 𝑟 

and 𝜏). e. Using the optimal coarse-graining function for each 𝐶 resulted in the strongest 

scale-invariance of dynamical rules, i.e., lowest 𝜁𝑚𝑖𝑛 around 𝐶 = 𝐶∗. This result held for 

multiple choices of block size and duration (see legend). f. The valley in 𝜁𝑚𝑖𝑛 as a function of 

coupling strength 𝐶 became broader as 𝑝 was increased. For a–e 𝑝 = 0.001. 
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Similar coarse graining schemes have been used in previous work on deep learning (Hinton and 

Salakhutdinov, 2006). 

To quantify the change in the dynamical rules due to coarse-graining, we define a 

parameter 𝜁 

𝜁 = ∑|𝜙𝑛
𝑏 − 𝜙𝑛

𝑏+1|                                                                  

5

𝑛=0

3-3 

where 𝜙𝑛
𝑏 is the activation probability estimate at scale 𝑏 and 𝜙𝑛

𝑏+1 is the activation probability 

estimate at the coarser scale 𝑏 + 1. Note that root mean squared differences or any other 

monotonic function of the differences of 𝜙𝑛
𝑏 and 𝜙𝑛

𝑏+1 would not change our following 

conclusions. We ran the model for a range of coupling strengths 0.15 < 𝐶 < 0.35, simulating 

104 timesteps for each 𝐶. In line with expectations from critical phenomena in physical systems, 

we found that 𝜁 was minimized for 𝐶 near 𝐶∗ = 0.23 (Figure 3-2c).  This result was obtained 

using transformation parameters 𝑘 = 76, 𝑥0 = 0.22, and block size 𝑟 × 𝑟 × 𝜏 = 8 × 8 × 1 

(Figure 3-2c, inset). This means that the dynamical rules governing the network activity are least 

changed at  𝐶∗. 

However, some caution is appropriate; if a different transformation function 𝑓 was used, 

perhaps the minimum 𝜁 would occur at a different 𝐶.  Therefore, to draw a more definitive 

conclusion, we next systematically searched the two-dimensional space of all possible 𝑓 

functions, seeking the function that minimizes 𝜁 for each 𝐶 independently. We found that, when 

using such optimal 𝑓 functions, the dynamical rules remained most scale invariant (i.e. lowest 𝜁) 

for 𝐶  near 𝐶∗ (Figure 3-2d, e). Thus, our first conclusion is that scale invariance of the 

governing laws at criticality - one of the most fundamental concepts of critical phenomena in 

physical systems - can also manifest in neural systems.  
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We also verified our results for coarse graining blocks with different spatial sizes 𝑟 =

4, 8, 16 (Figure 3-2d, e), and durations 𝜏 = 1, 2, 4, 8 (Figure 3-2d, e), and different levels of 

noise 𝑝 = 10−2, 10−3, 10−4 (Figure 3-2f). Optimal x0 increased with C and r; optimal k 

increased with r and was lowest near C = C* (Figure 3-2d). Changes in 𝑟, 𝜏, and 𝑝 did not 

qualitatively change our conclusion that coarse graining causes the least change in the dynamical 

rules near criticality.  However, increasing 𝑝, decreasing 𝑟, and increasing τ all had the effect of 

broadening the minimum in 𝜁𝑚𝑖𝑛 and shifting the minimum towards slightly smaller values of C.  

For increasing p, this shift in the minimal C may be due to the phase transition becoming 

‘smeared out’, less sharp with increased noise (Williams-García et al., 2014), but further 

investigation is needed to test this possibility.  We chose a range of 0.15 < 𝐶 < 0.35 because at 

lower values (𝐶 < 0.15) the rates of activity became so small that our estimates of the 𝜙𝑛 

became poor due to subsampling, which made 𝜁𝑚𝑖𝑛 an unreliable measure (see supplementary 

materials SM Figure 3-2).  A skeptical reader may note that 𝜻 is not zero at criticality for our 

model; the scale-invariance we observe is imperfect. Why might this be?  In the calculation of 𝜁, 

we found that the largest contribution to 𝜁  came from the 𝜙0 term in the sum, which represents 

spontaneous activation of a node.  This is because the coarse graining procedure tends to cause 

periods with very low S at scale b to become 𝑆 = 0 at scale 𝑏 + 1, thus creating excessive 

apparent spontaneous activation at scale 𝑏 + 1.  When 𝜁 is calculated by excluding 𝜙0 it still 

minimizes for 𝐶 near 𝐶∗ but with a much lower value of 𝜁 indicating higher degree of scale 

invariance for the dynamical rules governing interactions, i.e. those with 𝑛 > 0 (see 

supplementary materials SM Figure 3-3). 
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3.2.3 Realistic Model 

The abstract binary model we have discussed so far is simple to interpret and directly 

comparable to previous work on critical phenomena in neural systems using similar models.  

Moreover, it is relatively similar to models of spreading dynamics in previous renormalization 

group studies (e.g. sand piles (Vespignani, Zapperi and Pietronero, 1995) and forest fires (Loreto 

et al., 1995)).  In this sense, it is not terribly surprising that our simple conformed to scale-

change symmetry of governing rules, which is expected from theory of critical phenomena.  

However, our simple binary model is not very biologically realistic.  For example, the dynamics 

of real cerebral cortex never exhibit a sustained high firing regime as we see in the simple model 

with 𝐶 > 𝐶∗.  In reality, if the excitability of real cortex is enhanced (or other parameters 

analogous to 𝐶 are enhanced) the dynamics tend to exhibit large, repetitive bursts of activity that 

are suppressed by depressive adaptive mechanisms before reaching a sustained high firing 

regime (Shew et al., 2009; Gautam et al., 2015).  Indeed, activity-dependent adaptive effects can 

act to make the critical regime more robust (Levina, Herrmann and Geisel, 2007; Shew, 

Clawson, Pobst, Karimipanah, Nathaniel C. Wright, et al., 2015), which could make the 

possibility of scale invariant dynamical rules even more plausible in real brains.  Next, we set out 

to test our ideas in a more realistic model of a neural network that generates more realistic 

network activity.  Similar to other recent model studies (Gautam et al., 2015; di Santo et al., 

2018), the phase transition we examine in our more realistic model separates an asynchronous 

phase from an oscillatory ordered phase, which better matches experimental observations. 

Building on our simple model; we kept binary, probabilistic, integrate-and-fire neurons 

on a two-dimensional square lattice (𝐿𝑋𝐿 = 160𝑋160), but now we introduced inhibitory 

neurons (20% of all neurons), spike-frequency adaptation, refractoriness, and different distance-
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dependent connectivity for excitatory and inhibitory neurons.  At each time 𝑡, the binary state 

𝑋𝑖(𝑡) = 1 with probability 𝑝𝑖(𝑡), where 

𝑝𝑖(𝑡) =  {

1   𝑓𝑜𝑟   𝜒𝑖(𝑡)ℎ𝑖(𝑡)
−1 ≥ 1

𝜒𝑖(𝑡)ℎ𝑖(𝑡)
−1  𝑓𝑜𝑟  0 ≤ 𝜒𝑖(𝑡)ℎ𝑖(𝑡)

−1 < 1 

0  𝑓𝑜𝑟  𝜒𝑖(𝑡)ℎ𝑖(𝑡)
−1 < 0

                              3-4 

Input from other neurons is 𝜒𝑖(𝑡) = ∑ 𝑊𝑖𝑗𝑋𝑗(𝑡 − 1)𝑗≠𝑖  and the activity-dependent adaptation is 

modeled by ℎ𝑖(𝑡) = ∑ 𝑋𝑖(𝑡′)
𝑡
𝑡′=𝑡−𝜏  where 𝜏 = 80. If this sum is zero, we set ℎ to 1. At each time 

step a neuron can also be activated due to external sources with probability 𝑝𝑒𝑥𝑡 = 0.001 (treated 

independently of 𝑝𝑖). After a neuron fires, its state is set to 0 for a refractory period of 1 time 

step.  The default synaptic weight matrix 𝑊 is constructed with long-range inhibition relative to 

Figure 3-3 Scale-Invariance of Dynamical Rules Peaks at Phase Transition in a More 

Biologically Plausible Model. a. Each panel shows the two-dimensional lattice of neurons at 

a single time step. Each pixel represents one neuron (yellow, active; blue, inactive). The 

spatio-temporal dynamics was limited to small scales for strong inhibition (𝐼 = 2.0, bottom 

row), exhibited massive propagating waves and oscillations for weak inhibition (𝐼 = 0.01, 

top row), and had more complexity near the transition between these extremes (𝐼 = 0.65, 

middle row). b. Time series of network activity reveals the prominent oscillatory activity of 

the weak inhibition regime (red). c. As inhibition is increased, the boundary of the oscillatory 

regime near 𝐼 = 0.65 (dashed line) is revealed by the drop in mean pairwise correlations. d. 

Scale-invariance of dynamical rules peaked (𝜁𝑚𝑖𝑛 is minimal) near the onset of the 

oscillatory regime. This held for blocks with different spatial sizes and durations (see 

legend). 
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shorter-range excitation.  Weights of inhibitory synapses were 𝑊𝐼(𝑑) =  −𝐼 ∗ exp (−
𝑑

𝐶𝐼
)
2

 and 

excitatory synapses were 𝑊𝐸(𝑑) =  𝐸 ∗ exp (−
𝑑

𝐶𝐸
)
2

 where 𝑑 is the distance from the 

presynaptic neuron to the postsynaptic neuron.  We consider 𝐶𝐼 = 3 and 𝐶𝐸 = 2  (in units of 

lattice spacing) and fixed excitatory input strength 𝐸 = 1. By tuning the inhibitory input strength 

oscillatory firing state (high mean pairwise correlation) from asynchronous low firing (low mean 

pairwise correlation) regime (Figure 3-3Error! Reference source not found.a, b, c). 

Like the simple model, we found that 𝜁𝑚𝑖𝑛 is minimized near the phase transition (Figure 

3-3Error! Reference source not found.d).  We emphasize that this more realistic model is 

outside the bounds of well-understood critical phenomena in physics.  While it shares some 

features with simple models of spreading dynamics (e.g. excitable nodes with refractory 

periods), the presence of inhibition and nonlocal connectivity make it quite different from these 

previously studied models.  Thus, there is no guarantee that the phase transition we consider here 

has anything to do with criticality.  In this sense, it is substantially more surprising that we 

observe minimal scale-change of dynamical rules near this phase transition.  For the results in 

Figure 3-3Error! Reference source not found.d, we only considered 𝜙𝑛 with  𝑛 = 1, 2, 3, 4 for  

𝜁 calculation, because 𝜙0 tended to be most prone to error as discussed above (see 

supplementary materials SM Figure 3-3).  We did not include 𝜙5 because the refractory period 

precluded the occurrence of 𝜙5 at scale b. 

So far, we have applied our approach to spike data from our two models. However, many 

experimentally measured signals are continuous and more closely related to membrane potential, 

particularly at the larger spatial scales (e.g. LFP, fMRI, EEG, voltage imaging, wide-field 

calcium imaging). How might we apply our approach to such continuous signals? To address this 
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question, here, we first used our more realistic model. We generated a continuous signal from the 

model, using the ‘membrane potential’ from the model neurons. We defined the membrane 

potential of the ith neuron to be 𝜒𝑖(𝑡)ℎ𝑖(𝑡)
−1, as defined above. Next, we binarized the 

continuous membrane potential signal. Following a previously established approach 

(Tagliazucchi et al., 2012; Scott et al., 2014), we defined time points of activation when the 

voltage imaging time course crossed above a threshold of 0.5 standard deviations (SD) beyond 

the mean from below (results consistent for different thresholds 0.25 SD and 1 SD) (Figure 3-4). 

We found that, like the spike data presented above, this binarized continuous signal also 

supported our main claim: minimal 𝜁𝑚𝑖𝑛 near the phase transition. 

3.2.4 Mouse cerebral cortex 

One advantage of our approach is that it can readily be applied to experimental data, 

provided the data has sufficient spatial resolution and coverage.  Here, we demonstrate this for 

measurements of cerebral cortex in a mouse awakening from anesthesia.  Previous work (Scott et 

al., 2014) with this data suggested that as the mouse awakens the cortical dynamics transitioned 

from a supercritical regime, similar to the oscillatory regime in our realistic model, towards 

Figure 3-4 Applying Our Approach to Continuous Synaptic Input. a. Mean pairwise 

correlations of binarized membrane potential for the realistic model. b. Change in dynamical 

rules 𝜁𝑚𝑖𝑛 governing the binarized membrane potential as a function of inhibition strength 𝐼 
for 𝑟 = 8 (left), 𝑟 = 16 (right), and different binarization thresholds (color). For all the cases 

shown 𝜏 = 1 and network size, 𝐿 𝑋 𝐿 = 160𝑋160. 
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criticality.(See supplementary materials section 3.4.2 for experimental methods) The brain 

activity was measured over the dorsal surface of nearly an entire hemisphere of mouse cortex 

with high spatial resolution using genetically-encoded voltage-sensitive fluorescence imaging.  

Each dataset was acquired during 1 min with 50 Hz sample rate and 33 × 33 μm2 per pixel 

spatial resolution.  Multiple such 1 min recordings were performed over a period of 200 minutes 

as the mouse awoke.  Each pixel represents the aggregate activity of many neurons within 

cortical layers 2 and 3. This voltage imaging signal is a continuous signal.  To apply our 

approach, we followed the same binarization approach described above for the membrane 

Figure 3-5 Increase in Scale-Invariance of Cortical Dynamical Rules as Mouse Awakens a. 

Genetically encoded voltage-sensitive fluorescence imaging was done to measure the 

spatiotemporal dynamics across one hemisphere of mouse cortex as it awoke from 

anesthesia. Each panel shows a snapshot of binarized activity (yellow, active; blue, inactive). 

The signal of each pixel arises from many neurons within 33𝑋33 𝜇𝑚2 area. b. Time series of 

binary network activity datasets. Under anesthesia (red), the dynamics exhibited relatively 

large-scale bursts, whereas the awake dynamics (blue) tended to be more diverse. c. Mean 

pairwise correlation decreases as the mouse awakens. d. Scale-invariance of dynamical rules 

increases (𝜁𝑚𝑖𝑛 decreases) as the mouse awakens. Results were qualitatively consistent for 

three different binarization thresholds (yellow, red, and blue) and two different coarse 

graining block sizes (𝑟 = 8 and 16). 
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potential analysis of the realistic model (Figure 3-4).  We converted each pixel voltage time 

series into binary form (Figure 3-5a). For each pixel and each 1 min recording, time points of 

activation were defined at times when the voltage imaging time course crossed above a threshold 

of 0.5 standard deviations (SD) beyond the mean from below (results consistent for different 

thresholds 0.25 SD and 1 SD). 

Under the effect of anesthesia, we found that the mouse exhibited synchronous burst 

firing, similar to the oscillatory regime of our realistic model.  As the mouse woke up, more 

asynchronous firing was observed (Figure 3-5b), similar to the activity near the onset of the 

oscillatory regime of our realistic model.  This change manifested as a decrease in pairwise 

correlations as the mouse awoke from anesthesia (Figure 3-5c).  Next, we assumed nearest 

neighbor interactions among pixels and proceeded to estimate the activation probabilities 𝜙𝑛
𝑏. 

Then, we applied our course-graining procedure and estimated 𝜙𝑛
𝑏+1. As with our analysis of the 

realistic model only 4 activation probabilities, 𝑛 = 1, 2, 3 4 were used to estimate 𝜁𝑚𝑖𝑛.  We 

found that 𝜁𝑚𝑖𝑛 decreased as the mouse awoke from anesthesia.  This finding demonstrates that 

the rules governing cerebral cortex dynamics approach scale-change symmetry during the 

transition from anesthetized to awake. 

We note that, for higher values of τ, there was increased noise in the trend relating 𝜁𝑚𝑖𝑛 

to time since drug delivery.  As τ increases, we are left with fewer time points with which we 

estimate the rules 𝜙𝑛 and calculate 𝜁𝑚𝑖𝑛.  This decrease in samples may be responsible for poorer 

estimates of the rules 𝜙𝑛 and a noisier  𝜁𝑚𝑖𝑛 versus time trend.  Future studies with longer 

duration experimental recordings could better test this possibility. 
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3.2.5 Relating rules to dynamics 

The approach we have developed here offers a new way to learn about whether a system is 

operating near criticality by examining how the rules governing dynamics change with scale.  In 

contrast, the traditional way to assess whether a system is near criticality is by examining the 

dynamics, rather than the rules.  For instance, the experimental data we analyze here (Figure 3-5) 

has previously been shown to exhibit dynamics that are consistent with an approach to criticality 

as the mouse wakes up (Scott et al., 2014; Fagerholm et al., 2016).  This claim was largely based 

on examining cascades of propagating neural activity, often called neuronal avalanches.  At 

criticality, theory predicts that different sizes of avalanches occur with probability that is related 

to size according to a power law with exponent near -1.5.  In contrast, in the ordered phase (like 

the oscillatory phase in our realistic model) avalanche sizes are expected to deviate from a power 

law distribution, with very large cascades becoming more prominent.  When Scott et al. analyzed 

our experimental data, they found that the anesthetized state was consistent with an ordered 

phase, while the awake state was more consistent with criticality.  This finding is consistent with 

our conclusion that scale-change symmetry increases as the mouse wakes up.  However, we 

emphasize that a power law distribution of avalanche sizes is certainly not equivalent to our 

finding of scale-change symmetry of rules.  Indeed, power law distributions of observed 

dynamics can arise due to mechanisms that are totally unrelated to criticality (Sornette, 1998; 

Reed and Hughes, 2002; Mitzenmacher, 2003; Beggs and Timme, 2012; Stumpf and Porter, 

2012).  If criticality is responsible for a power law distribution of an observable, then we would 

expect to also find scale-change symmetry of rules.  To clarify how scale-change symmetry of 

rules is related to power law avalanche size distributions, we studied our models further.  We 

examined avalanche size distributions for the simple model as C was tuned through C* and for 
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the more realistic model as inhibition (I) was tuned from strong (I = 2) to weak (I = 0.01).  We 

used the previously developed measure κ to quantify deviation from a power law (Shew et al., 

2009; Scott et al., 2014).  In brief, κ = 1 for a perfect match to the reference power law with 

exponent -1.5, κ > 1 when large avalanches become prominent (as expected in the ordered 

phase), and κ < 1 when large avalanches become rare (as expected in the asynchronous phase).  

Further description of κ is given in the supplementary materials section 3.4.3. 

As expected for the simple model, we found that the distribution of avalanche sizes was 

close to a power law (κ near 1) when C was tuned near C* (Figure 3-6a, b).  Thus, in this case, 

𝜁𝑚𝑖𝑛 was also smallest near κ = 1 (Figure 3-6c).  Comparing κ and 𝜁𝑚𝑖𝑛, we found that κ is more 

Figure 3-6 Scale-Invariance of Rules Versus Avalanche Size Distributions. a. Shown are 

avalanche size distributions obtained from the simple model with different values of 

coupling, c. The probability for large avalanches is prominent for strong coupling and 

dramatically lower for weak coupling. Distributions are shifted vertically for visual 

comparison. Black dashed line indicates a power law with exponent 1.5. b. The parameter 𝑘 

measures deviation between a measured avalanche size distribution and 1.5 power law. Near 

𝐶 = 𝐶∗, we found minimal deviation from power law (𝑘 = 1). c. We found minimal change 

in rules 𝜁𝑚𝑖𝑛 near 𝑘 = 1.  d. For the realistic model, avalanche size distributions exhibited 

high probability for large avalanches when inhibition was small (blue) and approximate 

power law distributions for stronger inhibition. e. Near the onset of the oscillatory phase, we 

found the smallest deviation from power law (𝑘 near 1). f. Change in rules 𝜁𝑚𝑖𝑛 was minimal 

near 𝑘 = 1. 
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sensitive to changes in C for C > C*, while 𝜁𝑚𝑖𝑛 is more sensitive for C < C*.  For the more 

complex model, the oscillatory regime (low inhibition) showed a clear bump in the tail of the 

avalanche distributions similar to previous studies of dynamics in the ordered (supercritical) 

phase (Figure 3-6d).  As inhibition was tuned from weak to strong, the avalanche size 

distributions did approach approximate, but rather imperfect power laws.  The changes in 

avalanche distributions  we observed for increasing inhibition is similar to what has been shown 

previously for our experimental data as the mouse wakes up (Scott et al., 2014).  Despite the 

imperfect power laws found in the realistic model, we computed κ and found a clear tendency for 

minimal 𝜁𝑚𝑖𝑛 near κ = 1 (Figure 3-6e, f).  These results demonstrate a close relationship between 

avalanche statistics and the scale-change symmetry of rules governing a neural system.    

3.3 Discussion 

Here we have shown that in neural network models, the rules that govern the system 

behavior obtain a degree of scale-change symmetry that is most pronounced when the system 

operates near criticality.  In the spirit of renormalization group theory in physical systems, our 

approach offers a potential explanation of why diverse neural systems can exhibit very similar 

critical phenomena.   

Another useful outcome of our work is that the tools we develop provide a way to assess 

whether a change in system dynamics takes the system closer to or further from criticality.  Our 

approach complements traditional approaches for seeking evidence for criticality based on 

power-laws and scaling relations.  Such power-law distributions constitute necessary, but 

insufficient evidence for the criticality hypothesis (Klaus, Yu and Plenz, 2011; Beggs and 

Timme, 2012; Stumpf and Porter, 2012).  Our results suggest that a change towards criticality 

should be accompanied by an increase in scale invariance of effective dynamical rules.  To be 
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more specific, considering our model work (both models, Figure 3-2Figure 3-3 andFigure 3-4), it 

is clear that, for a wide range of parameters (C or I) around criticality, a decrease in 𝜁 does not 

happen unless the parameters have been tuned toward criticality – tuning C towards C* (Figure 

3-2) or tuning I towards the value that corresponds to the onset of oscillations (FigureFigure 3-3 

andFigure 3-4).  However, for a given observed decrease in 𝜁𝑚𝑖𝑛, we cannot make precise 

conclusions about how much closer to criticality the system has shifted.  This is not possible 

considering the quantitative differences in the shape of the 𝜁𝑚𝑖𝑛 vs C and 𝜁𝑚𝑖𝑛 vs I curves and 

how they depend on the details of analysis parameters (e.g. block size).  The stronger 

conclusions that can be made are about 1) the direction of change, and 2) about the relative size 

of changes within one system.  For example, our methods could be used to ascertain which kinds 

of pharmacological manipulations result in a bigger shift away or towards criticality in a single 

system with consistent measurement tools.  This is an important value of our approach – 

measuring relative changes in proximity to criticality. 

  Limitations of study.  One limitation of our approach is that it currently requires binary 

data (Figure 3-1, Figure 3-2 andFigure 3-3) or binarization of continuous data (Figure 3-4 and 

Figure 3-5).  Although spike data is well suited to a binary approach, it would be useful for 

future work to generalize the approach to continuous data, which is more common in 

experiments.  However, we emphasize that our results based on binarization of continuous data 

from our realistic model (Figure 3-4) were qualitatively consistent with our results based on 

spikes.  This suggests that the binarization of continuous data provides a useful strategy for 

studying scale-change symmetry of dynamical rules. 

Another limitation of our approach is that we have based our assessment of scale-change 

symmetry 𝜁𝑚𝑖𝑛 on one step of renormalization.  Renormalization group theory, in contrast, 



39 

 

emphasizes that many steps of renormalization may be required before true scale invariance is 

found.  Each step of renormalization is thought to remove irrelevant details that could corrupt 

scale invariance.  This fact may contribute to why our scale-change measure 𝜁𝑚𝑖𝑛 is not very 

close to zero even when our simple model is at criticality.  However, the fact that we do find a 

prominent minimum in 𝜁𝑚𝑖𝑛 near criticality indicates that we can detect the scale-change 

symmetry in spite of only performing one step of renormalization.  This is important, because, 

when working with real data from finite systems, it is not plausible to do many steps of coarse 

graining especially with a large block size.   

We also note that there are some trivial types of scale-change symmetry that we are not 

interested in and have not highlighted in our results above.  For instance, for a completely 

saturated system – all neurons firing at every time step – the dynamics and rules would be 

identical upon coarse graining.  The coarse level would still be completely saturated.  Likewise, a 

completely silent network would also exhibit such trivial scale-invariance.  These trivial types of 

invariance are not the subject of our work but should be noted for completeness. 

Our initial application of our approach to experimental data provided interesting results. 

We showed that scale-invariance of the rules governing cortical network dynamics increased 

during the transition from unconsciousness to consciousness. This finding is in line with other 

recent work that suggests the anesthetized cortex deviates from critical dynamics and approaches 

criticality as it wakes up (Scott et al., 2014; Bellay et al., 2015; Fagerholm et al., 2016) .  A 

recent coarse-graining study of experimental data obtained in hippocampus also revealed 

interesting scaling, in line with the scale-change symmetry we report here (Meshulam et al., 

2018).  Our finding raises interesting questions about the functional consequences of scale 

invariant rules.  What does it mean that local interactions, say among cortical columns, are 
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governed by the same rules as larger scale interactions, say among cortical regions?  We expect 

that our approach will be useful for future studies of these questions and how the dynamical rules 

governing brain dynamics differ across scales and brain states. 

3.4 Supplementary Materials 

3.4.1 Figures 

In SM Figure 3-1Error! Reference source not found.Error! Reference source not 

found. we show the accuracy of estimating rules 𝜙 (Related to Figure 3-2 in Section 3.2.2). To 

test the accuracy of estimation of 𝜙𝑛 we took network activity data for 104 timesteps after 102 

transient timesteps at coupling strength 0.15 < 𝐶 < 0.35. We compared the activation 

probability estimated from the simulation 𝜙𝑛
𝑠𝑖𝑚 to analytically calculated 𝜙𝑛

𝑡ℎ = 1 −

SM Figure 3-1. Estimation accuracy of dynamical rules by comparing ϕ estimated from 

simulation data vs analytically calculated value. ϕ estimated from network activity data for 

104 timesteps after 102 transient timesteps at coupling strength 0.15 < C < 0.35. All 

calculations done for Network size, L X L = 400 X400 and p = 0.001. 
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(1 − 𝐶)𝑛(1 − 𝑝) at each 𝐶 value. Our accuracy is better than 2% for all 𝜙𝑛 in the range 0.15 <

𝐶 < 0.35 except 𝜙0 where the accuracy is around 2% for 𝐶 > 0.3.  

In SM Figure 3-2 we show the dependency of rule-change 𝜁𝑚𝑖𝑛 on simulation timesteps. 

(Related to Figure 3-2 in the Section 3.2.2) Shown are 𝜁𝑚𝑖𝑛 values calculated using data from 

simulations with varying numbers of timesteps at coupling strengths, 𝐶 = 0.1 (yellow), 𝐶 =

0.15 (green), 𝐶 = 0.17 (cyan). When the network activity is too low, the estimation of a 

consistent 𝜁𝑚𝑖𝑛 require data from increased simulation timesteps 

SM Figure 3-2 dependency of rule-change ζmin on simulation timesteps. ζmin values 

calculated using data from simulations with varying numbers of timesteps at coupling 

strengths, 𝐶 = 0.1 (yellow), 𝐶 = 0.15 (green), 𝐶 = 0.17 (cyan). All calculations done for 

Network size, 𝐿 𝑋 𝐿 = 400 𝑋 400, 𝑟 = 8 𝑎𝑛𝑑 𝑝 = 0.001. 
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In SM Figure 3-3 we show the alternative estimation of 𝜁𝑚𝑖𝑛 by excluding 𝜙0. (Related 

to Figure 3-2 in Section 3.2.2) Shown is the change in dynamical rules 𝜁𝑚𝑖𝑛 based on excluding 

𝜙0. 𝑟 = 4 (blue); 𝑟 = 8 (green); 𝑟 = 16 (red). All calculations are done for network size, 𝐿𝑋𝐿 =

400𝑋400, 𝑟 = 8 and 𝑝 = 0.001. A major contribution to 𝜁𝑚𝑖𝑛 comes from the difference in 𝜙0 

when the network activity is transformed from observational length scale 𝑏 to 𝑏 + 1. The main 

reason behind this are the cases when the transformation scheme probabilistically transforms a 

partially active block of nodes to an inactive node at one timestep and at next timestep partially 

active block of nodes do changes only slightly but is transformed to an active node. Even with 

the 5 activation probabilities 𝜙𝑛 for 𝑛 = 1,2,3,4,5, 𝜁𝑚𝑖𝑛 still minimize at 𝐶 near the critical point 

𝐶∗. 

3.4.2 Experimental Methods 

Animal experiments were performed in accordance with the National Institutes of Health 

guidelines for animal research and were approved by the Institutional Animal Care and Use 

SM Figure 3-3 Change in dynamical rules 𝜁𝑚𝑖𝑛 based on excluding 𝜙0. 𝑟 = 4 (blue); 𝑟 = 8 

(green); 𝑟 = 16 (red). All calculations are done for network size, 𝐿𝑋𝐿 = 400𝑋400, 𝑟 = 8 

and 𝑝 = 0.001. 
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Committees of the RIKEN Wako Research Center (Japan).The following methods for obtaining 

the experimental data in Error! Reference source not found. have been reported in previous 

publications as described previously (Akemann et al., 2012; Scott et al., 2014). We describe 

them again here. In utero electroporation was performed on the mouse (day E15) with the 

pCAG-VSFP Butterfly 1.2 plasmid. This resulted in expression of the voltage indicator Butterfly 

1.2 in pyramidal cells in cortical layers 2/3 of one hemisphere. For imaging, the skull was 

thinned and a head-post implanted 2-6 months following electroporation. Three days following 

head-post implantation the imaging measurements reported here were performed. The mouse 

was first anesthetized (pentobarbital 0.9 g/kg i.p.), then head-fixed, and imaged with a dual 

emission wide-field epifluorescence microscope (halogen excitation). The voltage imaging signal 

was the ratio of mKate2 to mCitrine fluorescence, taken after offset subtraction and equalization 

of heartbeat- related modulation of fluorescence. Between consecutive 1 min imaging periods 

were 1 min pauses. Preprocessing of voltage signals included baseline normalization by the 

average over the duration of each recording, spatial and temporal smoothing, and high-pass 

filtering at 0.5 Hz. 

3.4.3 Avalanche size distributions and 𝜥 calculation 

The following methods for defining avalanches and computing κ (Figure 3-6) have been reported 

in previous publications (Tagliazucchi et al., 2012; Scott et al., 2014; Fagerholm et al., 2016). 

First, avalanches were defined as spatiotemporally contiguous clusters of active pixels. Clusters 

of active pixels were identified in each frame, based on the detection of connected pixels in a 

coactive first neighbors graph. Avalanches were then defined as starting with the activation of a 

previously inactive cluster, continuing while 1 contiguous cluster was active in the next time 

point. Avalanche size probability density distributions (Figure 3-2a, d) were calculated by 
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counting the number of avalanches in each size bin and normalizing by the total number of 

avalanches and bin size. Avalanche size probability distributions were compared with a power 

law with exponent -1.5 using a measure called Κ, first developed in our previous work (Shew et 

al., 2009). First, the measured distribution is recast as a cumulative density function (CDF), 

called 𝐹(𝛽), which specifies the fraction of measured cluster sizes 𝑠 < 𝛽. Then a reference CDF 

is created corresponding to a perfect -1.5 power law, called 𝐹𝑁𝐴(𝛽) 

𝐹𝑁𝐴(𝛽) = (1 − √
1

𝐿
)

−1

(1 − √
1

𝛽
)                                                    3-5                                                                        

for 𝑙 < 𝑠 < 𝐿, where 𝑙 is the smallest avalanche size considered and 𝐿 is the largest. A 

nonparametric measure, Κ, is defined to quantify the difference between the measured avalanche 

size CDF, 𝐹(𝛽), and the theoretical reference CDF, 𝐹𝑁𝐴(𝛽), as 

𝛫 = 1 +
1

𝑚
∑ (𝐹𝑁𝐴(𝛽𝑘) − 𝐹(𝛽𝑘))                                           
𝑚
𝑘=1 3-6                                          

where 𝛽𝑘 are 𝑚 = 10 avalanche sizes logarithmically spaced between 𝑙 and 𝐿. When computing 

Κ, avalanches below a minimum size, 𝑥𝑚𝑖𝑛, were excluded. The rationale for this is that some 

measurement noise is inevitable and likely to be uncorrelated across pixels, resulting in some 

small “noise cascades.” 
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CHAPTER 4 INHOMOGENEITY IN INHIBITORY SYNAPSES LEADS TO 

PARADOXICAL CHANGE IN NEURONAL ACTIVITY 

4.1 Introduction 

In mammals, brain regions such as cortex and hippocampus, consist of subpopulations of 

excitatory and inhibitory neurons. (Jones, 1986; Amaral and Witter, 2004). The inhibitory 

neurons release neuro-transmitter GABA and comprise approximately 20% of cortical neuronal 

population.(Meinecke and Peters, 1987). The rest of the neuronal population in cortex are 

excitatory. The interplay of excitation and inhibition is crucial in shaping  spontaneous (Haider, 

2006; Okun and Lampl, 2008; Atallah and Scanziani, 2009) and sensory-evoked cortical activity. 

(Swadlow, 1988; Anderson, Carandini and Ferster, 2000; Monier et al., 2003; Wehr and Zador, 

2003; Tan et al., 2004; Wilent and Contreras, 2005; Wu et al., 2008; Poo and Isaacson, 2009; 

Isaacson and Scanziani, 2011). The balance between excitatory and inhibitory stimulus has been 

proposed to underlie learning and adaptation dependent changes in stimulus driven responses. 

(Froemke, 2015; Shew, Clawson, Pobst, Karimipanah, Nathaniel C Wright, et al., 2015).  Here 

we present a study where we manipulate the excitation-inhibition (E/I) balance in motor cortex 

of awake mice by pharmacologically altering inhibitory interactions. 

What do we expect to happen if we alter inhibition?  On one hand, there are many 

experiments where pharmacologically enhanced inhibition (GABA agonists) results in low firing 

rates and decreased inhibition (GABA antagonists) often leads to high firing rates.(Mao et al., 

2001; Shew et al., 2011; Gautam et al., 2015; Fagerholm et al., 2016). But there are other studies 

that show that this might not always be true. Theoretically, it has been shown that, if the 

recurrent connections among the excitatory neurons are strong enough to make the excitatory 

network unstable when feedback inhibition is removed, then, selectively, increasing the direct 
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external inhibitory input to the inhibitory neurons can lead to increase in their firing 

rates.(Tsodyks et al., 1997)  This was referred to as a paradoxical response, because it is opposite 

of the change expected based on most previous experiments.  A recent experiment showed using 

optogenetic manipulation that suppressing/activating inhibition and excitation can sometimes 

produce paradoxical changes in neural activity and corresponding differences in behavior of 

different individual animals.(Briguglio et al., 2018).  In another study researchers have shown 

that the external activation of a population that directly inhibits a second population can trigger a 

positive response or a negative response of the latter depending on the sensory input. These 

counterintuitive phenomena rely on the presence of multiple populations of inhibitory 

interneurons and nonlinear responses to input.(Garcia Del Molino et al., 2017) 

 In our experiments, we observed that pharmacological manipulations of inhibition with 

low drug concentrations can lead to paradoxical changes neural dynamics.  We found that the 

overall population firing rate remained largely constant, while the individual neurons had diverse 

changes in firing rate.  A fraction of neurons (increase/decrease) firing rate when the inhibition 

(decrease/increase), i.e. a non-paradoxical, expected change.  However, certain other neurons 

had a paradoxical change in their firing rates.  By paradoxical change we mean that these 

neurons actually (decrease/increase) in response to (decrease/increase) in overall inhibition in the 

neural system.  Here we examined both experimental data and a computational model to quantify 

and understand this paradoxical change in neural activity. 

Based on our model, we argue that the reason behind the paradoxical behavior might be 

due to differences among neurons and synapses.    In particular, inhomogeneity in the strength of 

inhibitory synapses seems to be an important feature.  Based on previous work, it is not 

surprising that such inhomogeneity should exist.  For example, researchers have used 
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comprehensive large-scale profiling of cortical neurons to differentiate 15 major types of 

inhibitory neurons, each with its own characteristic input-output connectivity profile.(Jiang et al., 

2015).  It has also been shown that the local cortical circuity differs significantly from a random 

network.  Especially, the distribution of synaptic connection strength can be fitted by a 

lognormal distribution. (Song et al., 2005). In fact, at many physiological and anatomical levels 

in the brain, the distribution of numerous parameters such as synaptic weights, neuronal firing 

rates and number of synaptic contacts between neurons,  is strongly skewed with a heavy 

tail.(Buzsáki and Mizuseki, 2014) Recent mouse brain network studies(Wang, Sporns and 

Burkhalter, 2012; Oh et al., 2014) and retrograde labelling studies in macaques(Markov et al., 

2014) have shown that that, in a given cortical area, a minority of strong inputs are mixed with 

large numbers of weak inputs. Thus, inhomogeneity of neural properties is not controversial.  

However, it is less obvious how inhomogeneity of network properties might lead to paradoxical 

response to changes in inhibition.  We will explain this new result below. 

The outline of this study is as follows. First, we first analyzed how the neuronal activity 

recorded from motor cortex of awake mice change under the effect of drugs which alter 

inhibitory signaling, namely, bicuculine (suppresses inhibition) and muscimol (enhances 

inhibition). We show that under low drug concentration, for certain neurons the dynamical 

activity changes paradoxically, opposite to rest of the neurons. Next, we present a computational 

model consisting of integrate-and-fire neurons with excitatory and inhibitory synapses. In this 

model we successfully simulated the paradoxical neural behavior as we see in the experiments. 

Finally, we analyzed the network motifs in the computational model that lead to the paradoxical 

change in some neurons. We found that these neurons are connected to pre-synaptic neurons via 

strong inhibitory synapses. Thus, when the presynaptic neuron behaves non-paradoxically (e.g. 
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decreasing firing when inhibition is increased), the post synaptic neuron experiences much less 

inhibition and paradoxically increases its firing.   

4.2 Results 

4.2.1 Experimental Results 

The results of our study are based on interesting observations from electrophysiological 

recordings from motor cortex in awake rats (see supplementary materials 4.4.2). We recorded 

Figure 4-1 Diverse response to inhibition modulation in motor cortex. a) Single neuron and 

population spike rate as a function of time.  Each row of the image represents a single neuron 

spike rate time series.  Spike rate calculated over 5 seconds bin. b) Neuronal and Population 

Delta ∆. Data for a) and b) taken from Rat#3, with bicuculine 20uM concentration and 

muscimol 40uM concentration. c) Probability distribution of Delta ∆, as a function of 

concentration. The zero concentration Delta ∆ is calculated by splitting the ‘sham’ reading in 

two halves and 𝑟1 and 𝑟0 calculated over them. Similarly, the low and high concentration 

Delta ∆ values are calculated by splitting the ‘drug’ reading in two halves and thus 𝑟1 is 

calculated from drug readings and 𝑟0 from ‘no drug’ reading. The probability distribution of 

Delta ∆ for zero concentration is calculated using all the experiments. For the low and high 

concentration, probability distribution of Delta ∆ is calculated over experiments as mentioned 

in supplementary materials Section 4.4.2. Number of Neurons: Low concentration 

bicuculline- 747; muscimol- 633. High concentration bicuculline- 697; muscimol- 568. 
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neural spiking activity for 30 min before and 30 min after administering bicuculine (muscimol) 

to inhibit (promote) the GABA receptors, responsible for inhibitory input to neurons.  We note, 

there is was a break between recordings to give the drugs time to reach a steady state.  Inhibiting 

(promoting) GABA receptors to decrease (increase) inhibitory signals to neurons lead to diverse 

range of changes in neural dynamical activity. We quantify the spiking activity of neurons by 

calculating the spike rate, 𝑟 which is the count of number of times a neuron spikes in a given 

time interval (5 seconds, for current analysis). 

In Figure 4-1 we show the change in the neuronal and population spike rate under the 

effect of Inhibitory signal modulating drugs. We can see that under the effect of bicuculine 

(20𝜇𝑀 concentration) a fraction of neurons show increase in their spike rate whereas under 

muscimol (40𝜇𝑀 concentration) a fraction of neurons show decrease in spike rate. This 

dynamical behavior is an expected outcome for the corresponding inhibitory signal modulation. 

As an intuitive explanation, one would expect the neurons to fire more if more of its inhibitory 

input signals are blocked and vice-versa. But, interestingly for a fraction of neurons, increasing 

(decreasing) inhibitory signaling leads to increase (decrease) in their spike rate. Due to these 

paradoxically behaving neurons the overall population spike rate for these neurons remains 

largely unchanged. To quantify the changes in spike rate, we defined a parameter Δ calculated as,  

𝛥 =
𝑟1 − 𝑟0
𝑟1 + 𝑟0

                                                                          4-1 

where 𝑟1 is mean spike rate calculated after a change in inhibitory signaling. And 𝑟0 is mean 

spike rate calculated before the change in inhibition. Δ will be > 0(< 0) if the spike rate 

increases (decreases) under the effect of the drug. In Figure 4-1b we show the Δ calculated for 

the spike rates shown in Figure 4-1a.  We see that for the population the Δ value is close to 0 
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under both kind of drugs, whereas for individual neurons, a diverse range of  Δ values are seen 

from -1 to 1.  

It is important to mention that the results presented till now are with low drug concentrations. 

We went ahead to estimate the Δ values from a total of 49 experiments in 3 rats for a range of 

drug concentrations both for bicuculine and muscimol. To get statistically consistent results, we 

calculated the probability of a neuron or population of neurons to have a particular Δ value from 

many recordings done over low drug concentrations (≤ 80 μM) and high drug concentrations (> 

80 μM). Since firing rates also change in time without any drug manipulations, we also did a 

control analysis to obtain zero concentration Δ values by splitting the sham recording into two 

halves and then calculating Δ using them. In Figure 4-1c We present the results for the estimated 

Δ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 as a function of drug concentration. A key finding from this analysis was that as 

we increase the drug concentration the paradoxical change in neuronal spike rate gets less 

prominent, i.e. neurons behave in the traditionally expected way for large drug concentrations. 

Consequently, for large drug concentrations, the overall population spike rate does not remain 

steady; it increases (decreases) considerably under bicuculine (muscimol). These experimental 

findings motivated us to find what makes these cortical neurons to behave paradoxically. We 

simulated a model of neural network to answer this question. 

4.2.2 Computational Model 

We built upon a simple model, studied previously in Ref. (Larremore, Shew and 

Restrepo, 2011). The model consists of a network of N stochastic binary neurons, indexed 𝑖 =

1,2… ,𝑁.  The state of neuron i at time t is denoted by 𝑥𝑖(𝑡), which can take the values 𝑥𝑖(𝑡) =

0  if the neuron is resting and 𝑥𝑖(𝑡) = 1 if the neuron is spiking. Time is assumed to evolve in 
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discrete steps 𝑡 = 0,1,2…. The evolution of each neuron’s state is stochastic and depends on the 

states of other neurons at the previous time step, 

𝑥𝑖(𝑡) =  

{
 

 
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜎 ([𝜂 +∑𝑤𝑖𝑗𝑥𝑗(𝑡 − 1)

𝑁

𝑗=1

]) 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                     4-2 

where σ(x) constrains x to be between 0 and 1; 𝜎(𝑥) = 0 𝑓𝑜𝑟 𝑥 ≤ 0, 𝜎(𝑥) = 1 𝑓𝑜𝑟 𝑥 ≥

1, 𝑎𝑛𝑑 𝜎(𝑥) = 𝑥 𝑓𝑜𝑟 0 < 𝑥 < 1. The sum represents input from other neurons which fired at 

time 𝑡 − 1 and external input to the network is represented by the constant 𝜂 = 0.8. 

The 𝑁𝑋𝑁 matrix 𝑊 models the network structure and synapse weights. The strength of 

the synapse from neuron 𝑗 to neuron 𝑖 is, 𝑤𝑖𝑗 = 𝑤𝐸 > 0 for excitatory synapse, 𝑤𝑖𝑗 = 𝑤𝐼 < 0 for 

inhibitory synapse and 𝑤𝑖𝑗 = 0 if neuron 𝑗 does not connect to neuron 𝑖.  The matrix 𝑊 was 

constructed in four steps.  First, an 𝑁𝑋𝑁  matrix of numbers was drawn from a uniform 

distribution with entries between 0 and 1.  Second, inhibitory neurons were designated by 

multiplying 20% of the columns of 𝑊 by -1.  Third, 99% of the inputs for each neuron were set 

to zero (i.e. disconnected), to provide sparse connectivity of 1%. The entire matrix was divided 

by a constant such that the largest eigenvalue of the matrix was 1, which ensures that the network 

dynamics are stable (neither growing, nor decaying in time, on average), as studied in previous 

work(Larremore, Shew and Restrepo, 2011; Larremore et al., 2014).  To mimic the inhibitory 

signal modulation in the network model, we multiply the inhibitory weights by inhibitory signal 

modulation factor, 𝐼. Thus, transforming inhibitory weights as follows: 𝑤𝐼 → 𝑤𝐼 ∗ 𝐼.  Similar 

effects as bicuculine administration (block inhibitory signals) are recreated by choosing 𝐼 < 1 

and as muscimol administration (promote inhibitory signals) by choosing 𝐼 > 1. To calculate the 

Δ probability for a fixed inhibitory modulation factor Δ values are generated for 100 random 

network realizations. 



52 

 

We found that this simple model did not result in any paradoxical changes in firing rate 

(Section 4.4.1 SM Figure 4-1).  To obtain paradoxical changes we found that we needed greater 

inhomogeneity among the neurons and synapses.  We create heterogeneity in the inhibitory 

synapses across the network by increasing the strength of synapse for a randomly selected 

fraction of inhibitory neurons. Inhibition is modeled as the negative entries 𝑤𝐼 of weight matrix 

𝑊. We randomly select α ∗ N inhibitory columns in 𝑊 and set the entries to be 𝛽 ∗ 𝑤𝑖𝑗, α = 0.5 

and 𝛽 = 50. The model was run for 104 time steps. Spike rate time series were constructed using 

time bins of duration 500 timesteps. 

Figure 4-2 Diverse responses to inhibition modulation in neural network model. For two kinds 

of inhibition modulation, weakened, I = 0.5 and strengthened, I = 5, a) neuronal and 

population Spike rate, b) neuronal and population Delta ∆, and c) probability distribution of 

Delta ∆, as a function of concentration. Probability is calculated using Delta ∆ values from 

100 random network realizations at each Inhibitory Signal Modulation factor. Spike rate is 

calculated using spike data over 500 timesteps bin. All calculations are done for network size 

N=1000, connection probability p=0.01 and external noise η=0.8. 
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After adding this inhomogeneity, we obtained model behavior similar to the experimental 

results.  The spike rate change under inhibitory signal modulation is diverse at neuronal level. 

The overall population spike rate is balanced out and undergo only slight change for low degree 

of modulation (Figure 4-2a, b). A fraction of neurons behaves conventionally and increase 

(decrease) the spike rate when the inhibitory signal in the network is weakened (strengthened) 

and a fraction of neurons have paradoxically opposite change in their spike rate. In Figure 4-2c 

we show the  Δ probability as a function of inhibitory modulation factor. In accordance to the 

experimental findings we see that for 𝐼 closer to 1 i.e. weak inhibitory signal modulation 

paradoxical change in neuronal spiking activity is prominently seen which declines at very low 

or very high values of 𝐼. Consequently, significant change in population spike rate only occur at 

strong inhibitory signal modulation. We also estimated Δ probability as a function of 𝐼 by 

considering other variations of the computational model parameters. In supplementary materials 

Section 4.4.1 Error! Reference source not found. we show models with dense connectivity, 

low noise or homogeneous inhibitory weights. Results for all the variations verified that the 

model discussed above has the best agreement with the experimental results. 

4.2.3 Network Motifs 

We showed that paradoxical change in the neural dynamics can be achieved through 

network connectivity that has inhomogeneity in the strength of inhibitory synapses. But we did 

not yet explain why such connectivity gives rise to spike rate increase (decrease) on increasing 

(decreasing) the overall inhibitory signal strength. We address this question by asking what is 

different about the input to the paradoxically behaving neurons compared to any randomly 

chosen neuron in the network. To do so, we first define the network motifs of two-level inputs to 

a target neuron. We define the target neuron to be one that undergoes a strong paradoxical 
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change and satisfies, Δ > 0.5 𝑓𝑜𝑟 𝐼 = 5  or Δ < −0.5 𝑓𝑜𝑟 𝐼 = 0.5. We define the network motif 

as follows, 

𝐼𝑛𝑝𝑢𝑡 𝑁𝑒𝑢𝑟𝑜𝑛 2 → 𝐼𝑛𝑝𝑢𝑡 𝑁𝑒𝑢𝑟𝑜𝑛 1 → 𝑇𝑎𝑟𝑔𝑒𝑡 𝑁𝑒𝑢𝑟𝑜𝑛 

We characterize 6 properties in a network motif represented as (𝑁1; Δ1;𝑊1; 𝑁2; Δ2;𝑊2), where 

𝑁𝑖 is the type of input neuron, inhibitory (Inh) or excitatory (Ext); Δi is the Delta value of the 

input neuron, positive (+) or negative(-); and 𝑊𝑖 is the strength of the input synapse, Strong (s) 

or Weak (w). The superscript 𝑖 = 1 represents the presynaptic neuron to the target neuron, Input 

Neuron 1.  Superscript 𝑖 = 2 represents the presynaptic neuron to Input Neuron 1. Since all 6 

Figure 4-3 a) All possible Input Motifs. b) Considering 1000 realizations of our model, 

paradoxical neurons showed a distribution of motif probabilities.  Shown here are 

distributions for two such motifs: Input1(Inh: ∆+: Strong weight)-Input2(Ext: ∆-: weak 

weight) 𝐼 = 0.5 [top] and Input1(Inh: ∆-: Strong weight)-Input2(Ext: ∆-: weak weight) 𝐼 = 5 

[bottom]. c)  Each bar represents the difference (Kullback–Leibler (KL) divergence) in motif 

probability averaged over 1000 model realizations.  Shown are a subset of all 64 possible 

motifs, including those that account for the top 95% of the Motif probabilities. Motif 

Probabilities are estimated for 1000 random trials. 
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properties each can have 2 possible states, we have 64 network motifs that will describe all the 

possible inputs into a neuron (see Figure 4-3aError! Reference source not found.).  

 Next, we quantified how often each motif occurred for paradoxical neurons and 

compared this to the motif occurrence probability for any randomly chosen neuron, keeping the 

number same to avoid sampling bias. 

For one realization of our model, we typically found about 10% paradoxically behaving 

neurons.  We ran simulations for 1000 random network realizations to gain statistical 

significance. In Error! Reference source not found.b we show motif probability count 

distribution for 2 example network motifs, one for each kind of inhibitory signal modulation.  It 

can be seen that for inhibitory signal modulation 𝐼 = 0.5 the network motif  

(𝐼𝑛ℎ1; +1; 𝑠1; 𝐸𝑥𝑐2; −1; 𝑤2)  has count distributions with very low overlap for target neurons 

and randomly selected neurons. This indicate that this particular network motif is specifically 

associated to neurons that show paradoxical dynamical change, i.e. have Δ < 0. Similarly, for the 

case of, 𝐼 = 5 kind of modulation the network motif we show (𝐼𝑛ℎ1; −1; 𝑠1; 𝐸𝑥𝑐2; −1; 𝑤2) 

network motif being specifically associated to neurons that have Δ > 0. 

To estimate the difference in inputs to target neurons and any random neuron in the 

network, we calculate Kullback–Leibler (KL) divergence for each possible motif, 

𝐷𝐾𝐿 (𝑃1 || 𝑃0) =  𝑃1 𝑙𝑜𝑔
𝑃0
𝑃1
                                                           4-3 

where 𝑃1 and 𝑃0 are mean motif probabilities for target neurons and randomly selected neurons 

respectively. In Figure 4-3c we show the KL-divergence for the most important network motifs 

(those that constitute 95% of all inputs to target neurons). It can be clearly seen that the network 

motifs that has highest KL-divergence are (𝐼𝑛ℎ1; +1; 𝑠1; 𝐸𝑥𝑐2; −1; 𝑤2)  and 

(𝐼𝑛ℎ1; −1; 𝑠1; 𝐸𝑥𝑐2; −1; 𝑤2) for inhibitory signal modulations 𝐼 = 0.5 and 𝐼 = 5, respectively. 
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One key observation from these motifs is that the strong inhibitory input is essential to the 

paradoxical change in target neurons. Consider, 𝐼 = 0.5, the spike rate of the presynaptic neuron 

with strong inhibitory input to the target neuron increases. Since this input is much larger than 

any other input, it immediately decreases the spike rate for target neuron. Hence, the 

inhomogeneity in inhibitory synapse becomes a key factor in target neurons changing spike rate 

paradoxically different to rest of the neurons. Similarly, on 𝐼 = 5, the strong inhibitory input 

neuron gets shut down by increased inhibition. This will allow the target neuron to increase its 

spike rate based on the rest of its inputs.  

We also performed t-test between motif probabilities for target neurons and randomly 

selected neurons to test which network motifs are differ with statistical significance. (see 

Supplementary Materials Section 4.4.1 Error! Reference source not found.Error! Reference 

source not found.)  We found that many motifs had statistically significant differences in 

occurrence probabilities.  But the motifs with the most extreme differences had strong inhibition 

presynaptic to the paradoxical neuron. 

4.3 Discussion 

Here we have shown that inhibitory modulation in neural network leads to paradoxical 

dynamical activity in a fraction of neurons. If the overall strength of inhibitory signal is 

(increased/decreased), most of the neurons (decrease/increase) their neural activity, as one would 

expect in a uniformly connected network. But a fraction of neurons responds in opposite 

direction and (increase/decrease) their neural activity.  This paradoxical behavior is less common 

for strong inhibitory modulation. Moreover, the population spike rate only changes at high 

strength inhibitory modulation. The paradoxical behavior in some neurons acts as a balancing 

mechanism to maintain fixed population firing rate.  
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One interesting implication of these observations relates to homeostasis of network level 

activity(Turrigiano, 2011; Hengen et al., 2013) .  This is the idea that various mechanisms in the 

brain may act to maintain the firing rate of the neural population within certain healthy bounds.    

Our findings suggest that paradoxical changes in firing may serve as such a homeostatic 

mechanism in response to small changes in the balance of excitation and inhibition.  To our 

knowledge this mechanism of population firing rate homeostasis has not previously been 

reported. 

   Going beyond our experimental measurements, our modeling efforts reveal a more 

detailed possible explanation of the paradoxical changes in firing rate.  We have presented a 

network model of integrate and fire neurons with inhibitory and excitatory synapses. We model 

the connections between the neurons as Erdős-Rényi random network.  Each link in the network 

represents a synapse from an (excitatory/inhibitory) pre-synaptic neuron to a post-synaptic 

neuron. The weight of the link of the link represents the synaptic strength. The dynamical 

behavior of the network model is qualitative similar to the behavior in the experimental 

recordings.  We altered the inhibitory signals by multiplying all the inhibitory weights by a 

constant factor, which was > 1, for increase in inhibition and < 1, for decrease in inhibition. The 

key components of this network model are sparse connectivity, high external noise and 

inhomogeneity in inhibitory synaptic strength. Apart from these conditions, we follow 80:20 

ratio of inhibitory and excitatory neurons as seen in many real neural systems. The excitatory 

weights are drawn from a uniform random distribution with limits [0,1]. This shows that the 

neurons can exhibit paradoxical dynamical behavior with homogenous excitatory weights.  The 

sparse connectivity along with inhomogeneous inhibitory weights spanning multiple orders of 
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magnitude were essential for the neurons the ability to change their dynamics paradoxically and 

maintain the overall population firing rate.  

Do these structures favor certain kind of network motifs? We address this question by 

estimating the network motif counts for all possible two-level input to neurons in the network. 

For a given neuron, the first level is the direct input by a pre-synaptic neuron. The spiking rate of 

this neuron is directly or indirectly proportional to the input depending on whether it’s inhibitory 

or excitatory in nature. The second level is the pre-synaptic neuron to first level input and it 

indirectly affects the activity of the neuron. The second level neuron affects the spiking activity 

of first level input neuron which in turn affect spiking activity of the given neuron. We compared 

the neuron with strong paradoxical change to a random neuron in the network. We looked at 

two-level input motifs for both cases and estimated the probabilities of different two-level input 

motifs present in the network. To quantify the difference between paradoxical neurons and other 

neurons, we computed the Kullback–Leibler (KL) divergence between their motif probabilities. 

Our results clearly indicated that the neurons that undergoes paradoxical dynamical change have 

a strong inhibitory input neuron.  We see that increasing network level inhibition reduced the 

spiking activity of this strong inhibitory input neuron. Similarly, decreasing network level 

inhibition leads to the strong inhibitory neuron increase its spiking rate. Since, this inhibitory 

input is much stronger than the rest of inputs, it becomes the deciding factor. If this strong input 

neuron fires the post-synaptic neuron will definitely not fire. Hence, the post-synaptic neuron 

exhibits the paradoxical change in spiking activity when the rest of the network not. 

The results of our model suggest a new role for inhomogeneous network structure, 

particularly among inhibitory neurons, in firing rate homeostasis of cortical neural networks. 
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4.4 Supplementary Materials 

4.4.1 Figures 

In SM Figure 4-1 we show the Δ probability as a function of Inhibitory signal modulation factor 

(Related to Section Computational Model4.2.2). We show 4 different model that are same as the 

model presented in Section 4.2.2 except for one parameter. a. This model has all-to-all 

SM Figure 4-1  𝛥 probability as a function of Inhibitory signal modulation factor. a. This 

model has all-to-all connectivity instead of sparse connectivity (1%). b. This model has 

weaker noise of 0.1 instead of 0.8. c. In this model all of the inhibitory neurons have their 

strength increased by a factor of 100 instead of having a fraction of them having strong 

weight and rest with weak weights. d. In this model all inhibitory neurons homogeneously 

have weak weights. Model parameters: N: 1000; 80%:20% ratio of Excitatory: Inhibitory 

neurons; 100 network realizations used to calculate probability at each Inhibitory signal 

modulation factor. 
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connectivity instead of sparse connectivity (1%). b. This model has weaker noise of 0.1 instead 

of 0.8. c. In this model all of the inhibitory neurons have their strength increased by a factor of 

100 instead of having a fraction of them having strong weight and rest with weak weights. d. In 

this model all inhibitory neurons homogeneously have weak weights. Model parameters: N: 

1000; 80%:20% ratio of Excitatory: Inhibitory neurons; 100 network realizations used to 

calculate probability at each Inhibitory signal modulation factor. 

In Error! Reference source not found. we show the network motifs and the 

corresponding mean motif probabilities for both target neurons and randomly chosen neurons. 

SM Figure 4-2 network motifs and the corresponding mean motif probabilities for both target 

neurons and randomly chosen neurons. We show results for both kinds of inhibitory signal 

modulation factor 𝐼 = 5 and 𝐼 = 0.5. We consider 1000 random network realizations and 

calculate motif probabilities. Further we performed t-test for all the network motifs to check 

motif probabilities for target neurons and randomly chosen neurons are different with 

statistically significance (𝑝 < 10−3). 
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(Related to the section 4.2.3). We show results for both kinds of inhibitory signal modulation 

factor 𝐼 = 5 and 𝐼 = 0.5. We consider 1000 random network realizations and calculate motif 

probabilities. Further we performed t-test for all the network motifs to check motif probabilities 

for target neurons and randomly chosen neurons are different with statistically significance (𝑝 <

10−3).  

4.4.2 Experimental Methods 

Animals: All procedures were carried out in accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and 

approved by University of Arkansas Institutional Animal Care and Use Committee (protocol 

#14048). We studied adult male rats (𝑛 = 3, Rattus Norvegicus, Sprague-Dawley outbred, 

Harlan Laboratories, TX, USA).  Given the animal-to-animal variability and complexity of the 

data analysis, there is no feasible way to pre-specify either an effect size or a good number of 

experiments.  We found that 3 animals (approximately 40 recordings per animal) for each 

condition were sufficient to obtain significant results, accounting for multiple comparisons. 

Electrophysiology: Microelectrode array were chronically implanted with shank tips at a 

depth of 1300 𝜇𝑚 from the pia, thus targeting most electrodes to deep cortical layers of primary 

motor cortex. We used (Buzsaki32-CM32, Neuronexus), which has electrodes that are spaced 

more densely in space.  The electrode arrays were oriented such that the plane of electrodes was 

perpendicular to the dorsal surface and parallel to the midline.  The electrodes spanned 1.4 𝑚𝑚 

in the rostrocaudal direction, centered at a point 0.5 𝑚𝑚 caudal from bregma and 2 𝑚𝑚 lateral 

from midline.  The probe position was chosen deliberately to sample from neurons that are 

associated with a wide range of different body motions.  Considering previous intracortical 

micro-stimulation studies the region we sampled is involved in many aspects of body movement 
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including hip flexion, trunk movements, pronation, wrist extension, elbow flexion, neck 

movement, and vibrissa movement(Kolb and Tees, 1990).  The Buzsaki type probes were chosen 

for with the goal of improving spike sorting(Rossant et al., 2016).  In addition, the rats had a 

microcannula included in the chronic implant for local drug delivery (26GA guide cannula, 

33GA injection cannula, Plastics One, Roanoke, VA, USA).  The guide cannula was implanted 

with its tip touching, but not penetrating the cortical surface about 500 𝜇𝑚 from the point where 

the electrodes were inserted.  Broadband recordings (30 𝑚𝑖𝑛 duration) of extracellular voltage 

fluctuations were performed with 30 𝑘𝐻𝑧 sample rate (Cerebus, Blackrock Microsystems).  

Signals were digitized by a lightweight circuit (1 𝑐𝑚 from implant) and then transmitted via a 

commutator to the recording system.  The wire between the rat and the commutator was spring-

supported, such that minimal vertical forces were applied to the rat when the rats head was at a 

natural height relative to the stage, thus facilitating free movement of the rat.  

Pharmacology: Small volumes (1 − 2 𝜇𝐿, 2𝜇𝐿/𝑚𝑖𝑛 for 5 𝑜𝑟 10 𝑚𝑖𝑛) of drug (muscimol 

or bicuculline methiodide) dissolved in sterile saline or just saline (sham condition) was injected 

through the microcannula.  The injection was done using a syringe pump (Bioanalytical Systems, 

Inc., IN, USA).  Bicuculline is a GABAA antagonist(Curtis et al., 1970) and, Muscimol is a 

GABAA agonist(Frølund et al., 2002).  Multiple concentrations were tested for both muscimol 

and bicuculline including 20, 40, 80, 160, 320, 640 𝑎𝑛𝑑 1280 𝜇𝑀 μM. A ‘sham’ reading was 

taken along with each ‘drug’ recording. In Error! Reference source not found.c, the low drug 

concentration includes 20, 40 𝑎𝑛𝑑 80 𝜇𝑀 (reading taken over 20 experiments) for both 

muscimol and bicuculline methiodide. The high drug concentration includes 

160, 320, 640 𝑎𝑛𝑑 1280 𝜇𝑀 (reading taken over 23 experiments) for both muscimol and 

bicuculline methiodide. 
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4.4.3 Data-analysis and Spike Sorting 

Spike sorting was done with the kilosort software (https://github.com/cortex-

lab/KiloSort), which was developed for electrode arrays with many closely spaced recording 

sites, like our Buzsaki style probes, as described recently(Rossant et al., 2016). The spike sorting 

to convert electrophysiological recording to spike times data is done using MATLAB software. 

Each set of ‘control’ and ‘drug’ recording files were merged before spike sorting was performed.  

The files are in ‘.ns5’ format and ‘mergeNSxNeV(‘x’,’y’)’ command is used to merge 

files located at paths ‘x’ and ‘y’. Next, the ‘.ns5’ file is converted to ‘.dat’ file using code 

‘make_dat_file.m’. Following 3 files are copied to the current working directory; 

‘config_patrick.m’, ‘make_patrickChannelmap.m’ and ‘master_patrick.m’. In codefile 

‘config_patrick.m’ datafile name is added to variable ‘opsfbinary’. Next, in codefile 

‘master_patrick.m’ datafile paths are added to variables ‘fpath’ and ‘pathtoConfigfile’. At last we 

run the ‘master_patrick.m’ code. 

   At this point the spikes are sorted and we are ready to perform manual curation step to 

assess the quality of spikes. For this we open ‘Anaconda prompt window’ and go to the working 

directory. Next enter commands ‘activate phy’ and ‘phy template-gui params.py’. This will open 

a Template-GUI (Graphic user interface) where we look at the spike events. The Template-GUI 

consist of several interactive plotting windows called Views. The manual curation step is guided 

by following link: https://github.com/kwikteam/phy-contrib/blob/master/docs/template-gui.md. 

The aim of manual curation step is a) See if the activity is noise, then deselect them b) Identify 

cases when the algorithm thought the spikes came from two neurons but are really from same 

neuron, then merge them, c) Identify cases when the algorithm thought the spikes came from one 

neuron but in reality, they are from different neurons, then split them.  

https://github.com/cortex-lab/KiloSort
https://github.com/cortex-lab/KiloSort
https://github.com/kwikteam/phy-contrib/blob/master/docs/template-gui.md
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To perform these tasks, we use these different views, ‘ClusterView’, ‘WaveformView’, 

‘FeatureTemplateView’, ‘SimilarityView’, ‘CorrelogramView’, ‘AmplitudeView’.   

The ‘ClusterView’ gives the ‘cluster id’, number of spikes ‘n_spikes’, channel with largest 

amplitude events ‘channel’ and depth of that channel ‘depth’. We select a cluster by clicking on 

it, the different views will show the properties corresponding to that cluster. The first thing to 

check is that is this cluster noise or not. A complete give-away would be ‘WaveformView’ 

showing all channels having same symmetrical bump. Along with that the ‘AmplitudeView’ will 

have vertical concentrated streak of points rather than a more uniform distribution. These clusters 

are directly marked as noise, either by ‘Ctrl+Alt+n’ or from the Wizard option in the toolbar. 

 If not noise, we need to identify if any of the channels in ‘WaveformView’ has a 

waveform that looks like a typical spike (hyperpolarization and then depolarization). This would 

require some practice on part of the user, so it is advisable to look through different clusters to 

get a feeling for a good waveform. In many cases there might not be a good spike on any of the 

channel. Since the implant we used had vertical channels close by and horizontal channels far 

apart, so a spike activity recorded at a given channels might also show at nearby channels but 

with reduced amplitude but not at horizontally next channels. One can toggle between the 

average waveform to individual waveform by the key ‘W’. Since, this step is highly subjective, it 

is advisable to be try two different strategies on same dataset, once be conservative in choosing 

good spike and once be quite open to select. One should go over all the clusters to first sort out 

noise and not noise clusters and then go back to first one for further analysis.  

 Next, we have to check for clusters that are wrongly ‘split’ or ‘merged’ by the automatic 

sorting step. First let’s see if any wrongly merged clusters, in the CorrelogramView if the central 

bin is not zeros then it’s an indicator that two clusters are merged together. The reason being if a 



65 

 

neuron fires then it cannot fire again during the refractory period. If one sees a spike in the 

cluster during this time it is coming from another neuron. To split the cluster in two look at the 

‘FeatureView’, the different panels show the different principal components of the cluster of 

spikes. Go to the panel that shows two distinct groups most clearly, encircle one of the groups by 

holding down ‘Ctrl and left click’. It will create a polygon around the group you would like to 

isolate. Once happy with the selection press ‘K’, this will successfully separate the two 

waveforms into two separate clusters. You can undo your selection ‘Ctrl + right click’ will undo 

your selection. Next, we look for clusters that are split wrongly by the sorting algorithm. For, this 

once we select a cluster from ‘ClusterView’, we go on to select one from ‘SimilarityView’ as 

well. In similarity view the similarity score will also be given and any cluster with score above 

0.8 would be a candidate for merging. After selecting the two clusters, the judgement for 

merging them would be made by looking at the ‘CorrelogramView’, ‘WaveformView’ and the 

‘FeatureView’. The ‘CorrelogramView’ now will also have a cross-correlogram that shows the 

cross correlation between the cluster from ‘ClusterView’ and its similar cluster selected from 

‘SimilarityView’. A zero in central bin would be an indicator that the two split clusters might 

come from same neuron. Next, we look at the ‘FeatureView’ and ‘WavefromView’ and if get 

convincing proof that the two clusters are sufficiently overlapping in terms for both coming from 

same channels and having similar principle components plots, then we can merge them. To 

merge the two clusters, we go to the toolbar option ‘Wizard’ or press ‘G’. 

The final check that is an optional step but might be important when doing further 

analysis using the data is to clean out the noisy components. While looking at the 

‘AmplitudeView’ and ‘WaveformView’ for good clusters one might find cases where there is 

noise mixed as well. This might happen if there some disturbance while recording the data. In 
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FeatureView these noises would show up as separate groups that can be easily seen. We cut out 

those groups by procedure described above for splitting, to clean the good clusters as much as 

possible. If for any cluster that you marked as noise and you want it to be in Good spikes 

category, then select it and press ‘Ctrl+G’. It is highly advisable to keep saving the progress 

either through the option in toolbar or by pressing ‘Ctrl+S’.  The final data is saved in the 

files, ‘spike_times.npy’, ‘spike_clusters.npy’ and ‘cluster_group.tsv’.  Run ‘check_spikes.m’ to 

get the final datasets containing label of neurons and corresponding time of spikes. This data is 

used to calculate the spike rate for different neurons for further analysis. 
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CHAPTER 5 CONCLUSION 

In conclusion I would like to summarize all the 3 projects discussed above. Further, I will 

describe some of the main limitations and possible future directions one can take from each of 

the studies.  

 In the first project, we studied the impact of E/I balance on the entropy of ongoing or 

spontaneous spiking activity of network of neurons. We presented a model of a sparse random 

network of neurons with excitatory and inhibitory connections. We show that high entropy 

neural network dynamics requires balance of excitatory and inhibitory synaptic strength. This 

point is near the tipping point of the network dynamics, one side of which lies the excitation 

dominant high activity regime and other side lies the low-activity inhibition dominant regime. 

The entropy is high for any balanced configuration of excitatory and inhibitory weights that can 

be achieved either by changing the number of connections or by changing the strength of 

connections. However, the stability to fluctuations in synaptic strength varies for different 

configurations. We show that strong synaptic weights lead to robust entropy which need not be 

the highest, and weak weights lead to higher but fragile entropy neural dynamics. In the 

evolutionary context this becomes an interesting question as the robustness to excitatory and 

inhibitory parameter changes may be important.   

This leads to two important predictions regarding the state of the cortex. First, if the cortex 

operates at the high entropy surface regime then change of excitation or inhibition will lead to 

less fluctuating firing rates, either high or low. On the other hand, if the fluctuations in firing 

rates increase after excitatory or inhibitory manipulation then the cortex is not operating on the 

high entropy surface regime. Also, if the drop in entropy is larger (smaller) after excitatory or 

inhibitory manipulations then, the cortex might be operating with weak (strong) synapse E/I 
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balance. A possible limitation of this work is that we presented a binary model of integrate-and 

fire neurons where the network dynamics is analytically well-defined. A more realistic model 

would be required to further test this idea that matches real cortical dynamics. Further, 

experimental testing is required to test our results.  Both of these points also potential directions 

one can take. There are possible challenges in finding a realistic model as there is no certainty 

that dynamics could be as well defined and also the synaptic strengths might not be constant. 

Experimentally, one would test these ideas by acute pharmacological manipulation of excitatory 

or inhibitory synapses and measure the changes in firing rate fluctuations. 

In the second project, we tested a well-known phenomenon of scale-invariance of 

dynamical rules, but in the context of neuroscience. Scale invariance has been widely studied in 

many equilibrium and non-equilibrium physical systems. The most famous example is the Ising 

Model where the network activity was scale-invariant and so was the Hamiltonian that governed 

it.  This was shown under the framework of mathematical tool known as Renormalization Group. 

Motivated by this example and others, we presented a coarse-graining scheme applied to 2-

dimenisioal lattice and estimated the change in the dynamical rules that govern the dynamics of 

the neural system. We found the scale-change symmetry is most prominent near the critical point 

that divides the high-activity and low-activity dynamical regime. 

 We further verified our hypothesis in a more realistic model of neural system that include 

features such as adaptation and distance dependent connectivity. For this model, the tipping point 

was between a highly- correlated oscillating neural activity and low-correlation low level 

activity. The cortical activity is usually recorded as a continuous signal rather than a binary state 

(active or inactive) signal. So, we simulated continuous signal by measuring the synaptic input 

and created binary data by point-processing the continuous signal. This procedure was in line 
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with previous studies that recorded large scale cortical activity. Here also, we found similar 

results as seen for binary spiking activity data.  

Finally, we extended the transformational scheme to spontaneous activity recorded from 

mice cortex as it wakes up from anesthesia. Other results indicate that as the mouse wakes up the 

rules that govern its cortical dynamics achieve higher scale-symmetry. This was in line with 

previous studies. In a way our coarse-graining scheme presents an alternative method to test the 

critical hypothesis in real cortical system. We verified this fact by comparing our scale-symmetry 

parameter to existing methodology used by researchers. A possible limitation to this study is that 

we only test data collected from one mice study. Cortical data that on which such coarse-graining 

scheme can be applied are rare. This opens doors for both experimentalist and physicists to 

further explore this idea. Further, the coarse-graining scheme we devised is only limited to 

binary data. This would make for an interesting challenge for researchers to try and devise a 

coarse-graining scheme directly applied to continuous signal that can further be used on 

experimental data. 

In the third project, we explored an interesting observation in spontaneous cortical activity 

in mice, after pharmacological manipulations of inhibition. The status quo response to an 

inhibition manipulation is to have an inverse effect on neural activity. We found that on 

increasing the inhibitory signal the spiking rate for some neurons also increased and vice-versa. 

Interestingly, the overall population level spiking rate was more or less constant, this point 

towards an internal defense mechanism in neural systems by which it keeps the neural state the 

same under small fluctuations in inhibition. On further analysis we found that this paradoxical 

behavior was more prevalent for low concentration of drug that manipulates inhibition, than for 

higher concentrations.  
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 We simulated a network model of integrate-and-fire neurons with sparse and random 

connectivity, along with excitatory and inhibitory connections. We aimed at simulating 

qualitatively similar paradoxical change in neurons under manipulation of inhibitory signaling. 

We found that paradoxical behavior was due to inhomogeneity in network structure, more 

precisely in the distribution of inhibitory weights. The presence of few strong inhibitory 

connections in a network of weak excitatory and inhibitory connections created network motifs 

that lead to some neurons behave paradoxically compared to the rest of the network. Observing 

paradoxical behavior in one series of experiments is, understandably, not enough. But it does 

present a new perspective to look at the paradoxical response to signal manipulation seen in 

other studies. Further, experimentation is required to measure the strength of signals received by 

neurons that show paradoxical behavior.   
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APPENDIX 

This section contains all relevant MATLAB scripts written in analysis of the projects mentioned 

in Error! Reference source not found., Error! Reference source not found.and Error! 

Reference source not found. 

Codes for Chapter 2 

Functions 

% function name-> Neural_activity 
% Inputs-> N: size of network; T: Time duration of simulation 
% trans: transient time steps; randlist: list of random numbers 1 to N  
% alpha: fraction of inhibitory neurons, I,E: inhibitory and excitatory 

weights 
% B_in: Connectivity Matrix; sponr: rate of spontaneous activation 
%Output: S, network activity time-series 
function S=Neural_activity(N,T,trans,alpha,randlist,I,E,B_in,sponr) 
imask1=randlist<=alpha*N; % logical indexing columns for inhibitory neurons 
B_in(:,imask1)=-1*B_in(:,imask1);%set outgoing connection from inhibitory 

neurons to be negative 
B_in(:,imask1)=I*B_in(:,imask1); 
B_in(:,~imask1)=E*B_in(:,~imask1); 
nev=false(N,T);  %initialize matrix for storing activity 
%%%%%%%% compute the activity of the network %%%%%%%%%% 
%initial condition: activate Ni neurons in first timestep 
nev(1:N/2,1)=1; 
%evolve dynamics: probabilistic spike propagation 
t=1; 
while t<T  %stop computing if we reach T steps 
    %determine which neurons fire in the next time step 
    nev(:, t+1) = B_in*nev(:,t)>rand(N,1); 
    %random activation at rate of one spike among all neurons every 100 

timesteps 
    nev(rand(N,1)<sponr,t+1)=1; 
    t=t+1; 
end 
sumwtrans =sum(nev,1);% complete spike count series 
S=sumwtrans(trans+1:end);% removing 1000 time steps of transience data 

  
%To calculate the network entropy 
% function: Entropy  
% input-> Prob_den: Probability distribution of network activity S 
% output-> H: Shannon Entropy 
function H=Entropy(Prob_den) 
H = - sum(Prob_den(Prob_den>0).*log2(Prob_den(Prob_den>0)));% shannon entropy 

 
%To calculate the network entropy 
% function: Connectivity_matrix 
% input-> N: Network size; k: mean degree; randlist: random numbers from 1-N 
% output-> B: connectivity matrix 
function B=Connectivity_matrix(N,k,randlist) 
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% Setting up Connectivity Matrix 
B=rand(N); % initialize as random matrix 
imask=randlist<=0.1*N;       %setting fraction to set connectivity matrix at 

criticality 
B(:,imask)=-1*B(:,imask);   %set outgoing connection from inhibitory neurons 

to be negative 
B(rand(N)>k)=0;             %set mean degree 
B=B/max(abs(eig(B)));       %enforce largest eigenvalue = 1 

Main code 

task=1;% Set 1 for figure 1 data; 2 for figure 2 and 3 for figure 3 
rng('shuffle'); % randomize initial seed 
N=10000;  %total number of neurons 
T=21000; %duration of simulation 
trans = 1000; % transient steps 
%spontaneous activation rate 
sponr=1/N/100; %one spike per 100 time steps among all neurons 
k=0.01;%mean degree N*k 
bins = linspace(0,1/N,1);% defining bin size for histogram of neural activity 
[~,randlist] = sort(rand(1,N));% initiate random number list, preferably keep 

it same 
B=Connectivity_matrix(N,k,randlist); % Connectivity Matrix 
B=abs(B); %make B non-negative to run inside alpha loop 
if task==1 
alphalist= 0.09:0.01:0.11;% list of alpha(fraction of inhibitory neurons) 
Ifac= 1.25;% W_E(mean excitatory weight) 
Efac= 1.25;%W_I(mean inhibitory weight) 
for a=1:length(alphalist) 
% Neural acitivity, S 
S(:,a)=Neural_activity(N,T,trans,alphalist(a),randlist,Ifac,Efac,B,sponr)/N; 
h = histc(S(:,a),bins); % make histogram to get S distribution 
Prob(:,a) = h/(T-trans); % Probability P(S) 
end 
elseif task==2 
% list of alpha(fraction of inhibitory neurons) 
alphalist= [0.1,0.2]; % 0.01:0.01:0.36; 
Efac= 1.25:0.25:3.25; % [1.5,2.5]; % W_E(mean excitatory weight)  
Ifac= 1.25:0.25:3.25; % [1.5,2.5]; %W_I(mean inhibitory weight) 
for a=1:length(alphalist) 
for i=1:length(Ifac) 
for e=1:length(Efac) 
% Neural acitivity, S                

S=Neural_activity(N,T,trans,alphalist(a),randlist,Ifac(i),Efac(e),B,sponr)/N; 
h = histc(S,bins); % make histogram to get S distribution 
Prob = h/(T-trans);% Probability P(S) 
H(a,i,e) = Entropy(Prob); % Shannon entropy 
end 
end 
end 
elseif task==3 
alphalist= 0.01:0.01:0.7; 
Efac= 1.25:0.25:3.25;    % W_E(mean excitatory weight) 
Ifac= 1.25:0.25:3.25;     %W_I(mean inhibitory weight) 
for i=1:length(Ifac) 
for e=1:length(Efac) 
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for a=1:length(alphalist) 
% Neural acitivity, S                

S=Neural_activity(N,T,trans,alphalist(a),randlist,Ifac(i),Efac(e),B,sponr)/N; 
h = histc(S,bins); % make histogram to get S distribution 
Prob = h/(T-trans);% Probability P(S) 
H(a) = Entropy(Prob); % Shannon entropy 
end 
[MaxH(e,i),Max_idx] = max(H); % maximum entropy at fixed W_E and W_I 
Alpha_crit(e,i) = alphalist(Max_idx);%critical alpha where entropy maximize 
end 
end 
[Igrid,Egrid] = meshgrid(Efac,Ifac); % make grid-points 
[nx,ny,nz] = surfnorm(Egrid,Igrid,A_crit);% normal vector at each grid point 
%points normal*constant,c distance away 
c=0.01; 
% above normal 
E1 = Egrid + nx*c; % excitatory weight 
I1 = Igrid + ny*c; % inhibitory weight 
A1 = A_crit + nz*c; % fraction of inhibitory neurons 
% below normal 
E2 = Egrid - nx*c; % excitatory weight 
I2 = Igrid - ny*c; % inhibitory weight 
A2 = A_crit - nz*c;% fraction of inhibitory neurons 
% entropy values at both normal distances 
for e=1:length(Efac) 
for i=1:length(Ifac)            

S=Neural_activity(N,T,trans,A1(e,i),randlist,I1(e,i),E1(e,i),B,sponr)/N; 
h = histc(S,bins); % make histogram to get S distribution 
Prob = h/(T-trans);% Probability P(S) 
H1(e,i) = Entropy(Prob); % Shannon entropy            

S=Neural_activity(N,T,trans,A2(e,i),randlist,I2(e,i),E2(e,i),B,sponr)/N; 
h = histc(S,bins); % make histogram to get S distribution 
Prob = h/(T-trans);% Probability P(S) 
H2(e,i) = Entropy(Prob); % Shannon entropy 
end 
end 
% fragility calculated at all W_E and W_I values 
for e=1:length(Efac) 
for i=1:length(Ifac) 
Fragility(e,i)=((MaxH(e,i)-H1(e,i))+(MaxH(e,i)-H2(e,i)))/2; 
end 
end 
else 
disp('Enter 1, 2 or 3 only') 
end 

Codes for Chapter 3 

Functions 

%To calculate the dynamics of simple model 
%Input-> l,b: lattice dimensions, Time: simulation time 
%C: Coupling strength, p: probability of external activation 

%Output-> lat: Lattice activity data as time series 
%spkcnts: Spike counts time series 
function [lat,spkcnts]=SimpleDynamics(l,b,Time,C,p) 
nb_Con=[0 1 0; 1 1 1;0 1 0]; % Nearest-neighbor Connectivity 
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lat=false(l,b,Time); % neural network on 2D lattice (lXb) evolve over time 
lat(:,:,1) = rand(l,b)<1; % initialize neural activity data matrix 
spkcnts = single(zeros(l,b,Time)); % variable to store total spike input to a 

neuron 
for t=1:Time-1 
% active neighbors based on the network activity 
spkcnts(:,:,t)=conv2(squeeze(single(lat(:,:,t))),nb_Con,'same'); 
lat(:,:,t+1)=(1-(1-C).^spkcnts(:,:,t)*(1-p))>rand(l,b); % activation step 
end 

 
%To calculate the connectivity matrix for realistic model 
%function: RealConnect 

%Input-> l,b, dimensions of network lattice 
%Output-> B: Connectivity Matrix 
function B=RealConnect(l,b) 
N=l*b; % Number of neurons 
% short-range inhibition and long range excitation 
xpos=[]; for i=1:l; xpos=[xpos; ones(l,1)*i]; end %x positions 
ypos=[]; for i=1:b; ypos=[ypos; (1:b)']; end %y positions 
dmat=squareform(pdist([xpos ypos])); %pairwise distances 
Ilist = rand(N,1)<0.2;% 20% neurons set to inhibitory 
C_E=2;C_I=3; %sigma for (ext./inh.) gaussian weight dist. 
B=single(zeros(N)); 
B(:,~Ilist)=exp(-(dmat(:,~Ilist)/C_E).^2);% exct. weights 
B(:,Ilist)=-exp(-(dmat(:,Ilist)/C_I).^2);% inh. weights 
for bi=1:N 
    B(bi,bi)=0;% no self-activation 
end 

 
%To calculate the dynamics of Realistic Model 
%Input-> N: network size, Time: simulation time 
%B: Connectivity Matrix 
%Output-> nev: neural activity data as time series 
%spkcnts: synaptic input time series 
function [nev,syn_input]=RealisticDynamics(N,Time,B) 
p_ext=5e-6;% external noise 
Tau=80;% adaptation time constant 
ref_parameter=1e-3; % refractory parameter 
% Initialize variables 
nev = false(N,Time); % variable to store neuronal activity 
h=zeros(N,Time);% history time-series 
syn_input = zeros(N,Time-1); % variable to store total spike input to a 

neuron 
nev(:,1) = rand(N,1)<1; % 1% activity 
% initial simulation without adaptation 
for t=1:490 
syn_input(:,t)=(B*nev(:,t))+p_ext; % estimate synaptic input 
nev(:,t+1)=syn_input(:,t)>rand(N,1); % activation based on synaptic input 
end 
% adaptation introduced after sufficient history is present 
for t=491:Time-1 
s_tau=sum(nev(:,t-Tau+1:t),2);  
h(:,t)=s_tau+(s_tau==0); % estimate history of a neuron 
syn_input(:,t)=((B*nev(:,t))./h(:,t))+p_ext; % synaptic input with adaptation 
syn_input(nev(:,t),t)=ref_parameter*syn_input(nev(:,t),t); % refractory-ness 
nev(:,t+1)=syn_input(:,t)>rand(N,1); % activation based on synaptic input 
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end 

 

%To convert 1D neuron data to 2D lattice form 
%Input-> nev: 1D time series; l,b: dimensions 
%Output-> Lattice: 2D lattice time series 
function lat = nev_to_lattice(nev,l,b) 
for len=1:l 
    for bre=1:b 
        nev_pos = (len-1)*l + bre; 
        lat(len,bre,:) = nev(nev_pos,:);% activity data in form of a lattice                          
    end 
end 
 

%PPMAKER Transform data into a point process 
%   data is an (x,y,t) timeseries 
%   zthresh is the number of SD to threshold above or below 
%  Returns a thresholded version and a point process version. 
%  NOTE: if zthresh is negative ALL DATA WILL BE INVERTED (data=-data) 
%  to facilitate thresholding and also subsequent calculations of  
%  magnitude 
%  NOTE: amended by Greg to be more flexible 
%  NOTE: "point process" has subtly different meaning in Enzo's paper, 
%  i.e. whether a voxel is 'on' if it CROSSES from < to > 1SD, or whether 
%  we just mean >1SD 
function [ pp, thresh ] = ppmaker( data, zthresh ) 
if nargin <2 
    zthresh = 1; 
end 
thresh = zeros(size(data)); 
zimg = zscore(data, 0, 3); % transform to zstats voxelwise     
for t=1:size(data,3) 
if zthresh < 0 
thresh(:,:,t) = (zimg(:,:,t) < zthresh);  
else 
thresh(:,:,t) = (zimg(:,:,t) > zthresh);  
end 
end    
% point process forces only the 'moment' threshold crossing occurs to be on 
pp=cat(3, thresh(:,:,1), ... 
    and( thresh(:,:,2:end), not(thresh(:,:,1:(end-1)))));  
end 

 
%To get data from expt readings and convert to lattice data 
%function-> ExptData 
%Input-> ExptNum, Experiment number 2 to 10, 
%fileNum, file number for each expt.; zthresh: threshold on voltage signal 
%Output-> lattice and (nev) 1D time series of point-process neural data 
function [lattice,nev]=ExptData(ExptNum,fileNum,zthresh) 
if exist('brainWindow')==0 
    load('brain_window.mat'); 
end 
fname = sprintf('%s%03d%s%d%s','Exp',ExptNum,'_',fileNum,'Data.mat'); 
load(fname); 
% point process binary data and thresholded binary data 
[ pp, thresh ] = ppmaker( ratioSequenceFiltered, zthresh); 
pp=single(pp(:,:,201:end)); 
l=192;b=128; 
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Time=size(pp,3); 
lattice=false(l,b,Time); 
nev=false(l*b,Time); 
% filtering the data by brain window 
for t=1:Time 
    pp_step1=logical(pp(:,:,t).*brainWindow); 
    pp_step2=pp_step1(21:212,100:227);%; 
    lattice(:,:,t)=pp_step2; 
    % converting lattice to 1D data 
    nev(:,t)=pp_step2(:); 
end 

 
% To estimate zeta_min and k,x0 corresponding to it 
% function-> Zeta_calculation 
% Input-> h_nume, h_deno: fine scale spike counts 
% h_nume_k1, h_deno_k1: course scale spike counts 
% k,x0: arrays for transformation scheme parameters 
% task: choose option for simple model or others 
function 

[Zeta_min,k_zetamin,x0_zetamin]=Zeta_calculation(h_nume,h_deno,h_nume_k1,h_de

no_k1,k,x0,task) 
bins=linspace(0,5,6); % n-counts bins 
% activation probability at fine scale 
for nn=1:length(bins) 
if h_deno(nn)==0 
phi(nn)= 0; 
else 
phi(nn)= h_nume(nn)/h_deno(nn); 
end 
end 
% activation probability at coarse scale for different transformational 
% scheme(different (k,x0) value combinations) 
for ii=1:length(k) 
for jj=1:length(x0) 
for nn=1:length(bins) 
if h_deno_k1(nn,ii,jj)==0 
phi_k1(nn,ii,jj)= 0; 
else 
phi_k1(nn,ii,jj)= h_nume_k1(nn,ii,jj)/h_deno_k1(nn,ii,jj); 
end 
end 
% zeta calculations from phi and phi_k1 
for nn=1:length(bins) 
zeta_n(nn) = abs(phi(nn)-phi_k1(nn,ii,jj)); 
end 
if task==4 
zeta(ii,jj) = sum(zeta_n);   
else 
zeta(ii,jj) = sum(zeta_n(2:end-1)); 
end  
end 
end 
% minima of zeta  
Zeta_min=min(min(zeta)); 
for ii=1:length(k) 
for jj=1:length(x0) 
if zeta(ii,jj)==Zeta_min 
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k_zetamin = k(ii); % k for zeta min 
x0_zetamin = x0(jj); % x0 for zeta min 
end 
end 
end 

 
function [ dilatedvoxels ] = dilator2(voxels, sz) 
% Faster version of dilator   
    [x, y] = ind2sub(sz,voxels'); 
    xs = [ x-1, x, x+1, x-1,  x+1, x-1, x, x + 1]; 
    ys = [ y-1, y-1, y-1, y,  y, y+1, y+1, y+1]; 
    inx = (xs > 0) & (xs <= sz(1)); 
    iny = (ys > 0) & (ys <= sz(2)); 
    in = inx & iny; 
    dilatedvoxels = unique([voxels', sub2ind(sz, xs(in), ys(in))])'; 
end 

 
function C = fastintersect(A,B) 
if ~isempty(A)&&~isempty(B) 
   P = zeros(1, max(max(A),max(B)) ) ; 
   P(A) = 1; 
   C = B(logical(P(B))); 
else 
    C = []; 
end 

 

function [ ava cl ] = avalanche(pp) 
%LOCALAVALANCHEFINDER Compute cluster and avalanche data from a point process 
% pp is a (x,y,t) point process timecourse 
% 
% This function returns a description of clusters (cl) 
% and avalanches (av) detected in pp 
% 
% cl.C is a cell array of clusters (connected components) at each t 
% cl.AV is a cell array of active voxel ids at each t 
% cl.Lab is a 4D timecourse where (x,y,z,t) is a cluster label 
% cl.N is a vector of the number of clusters at each t 
% cl.A is a vector of the number of active voxels at each t 
% cl.P is a vector of the order parameter (size of the largest cluster) at 
% each t 
% cl.Pmag is a vector of the order parameter (size of the largest cluster) 
% at each t based on MAGNITUDE of the values within it 
% cl.S is a vector of the frequency of cluster sizes 1..(x*y*z) 
% cl.D is a cell array of the fractal dimensions of clusters at each t 
%   ** D is EXPERIMENTAL ** 
% ava.N is the number of avalanches detected in total 
% ava.O is a vector of time of onset of each avalanche 
% ava.L is a vector of the duration of each avalanche 
% ava.S is a vector of the size of each avalanche 
% ava.St is a cell array of the size of each avalanche over time 
% ava.M is a vector of the maximum size 
% ava.A{i}{t} is a cell array of the voxel ids belonging to each avalanche i 

% at each time point for that avalanche 
% by Gregory Scott (gregory.scott99@imperial.ac.uk) 
% based on Tagliazucchi et al, Frontiers in Physiology, 2012 
%------------------------------------------------------------------------- 
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% Cluster analysis 
cl.ImageSize = [ size(pp,1) size(pp,2) ]; 
cl.S = zeros(size(pp,1) * size(pp,2),1); % create a frequency table for 

cluster sizes in VOXELS 
clusterim = zeros(size(pp(:,:,1))); % create a volume for box counting 
for t=1:size(pp, 3) % iterate over pp timecourse 
im = squeeze(pp(:,:,t)); % pull out image at this time point 
ConComp = bwconncomp(im); % find connected components     
cl.C{t} = ConComp; % store the clusters (connected components) 
cl.N(t) = ConComp.NumObjects; % number of clusters 
cl.A(t) = nnz(im); % number of active sites 
cl.AV{t} = vertcat(ConComp.PixelIdxList{:}); % list of voxel ids 
%cl.P(t) = 0; % size of largest cluster by VOXELS (start at zero) 
%cl.Pmag(t) = 0; % size of largest cluster by AMPLITUDES 
%cl.D{t} = []; % fractal dimensions 
labelim = zeros(size(pp(:,:,1))); % create a volume for labelling     
% iterate over each cluster, recording the statistics 
for i=1:ConComp.NumObjects 
sz = length(ConComp.PixelIdxList{i}); % size of cluster in VOXELS         
% calculate size of cluster in MAGNITUDE 
clMag{t,i} = sum(im(ConComp.PixelIdxList{i})); 
cl.S(sz) = cl.S(sz) + 1; % update frequency counts for size 
%cl.P(t) = max(cl.P(t), sz); % update size of largest cluster by VOXELS 
%cl.Pmag(t) = max(cl.Pmag(t), clMag{t,i}); % update by MAGNITUDE 
labelim(ConComp.PixelIdxList{i}) = i; % light up labels 
%if(sz == 1) % box counting unnecessary if single voxel 
%cl.D{t} = [ cl.D{t} 2 ]; % assume dimension = 3 (?) 
%else % box counting and fractal dimension 
%% light up voxels for this cluster in a temporary image 
%clusterim(ConComp.PixelIdxList{i}) = 1; 
%% fd = boxcounterik(trimmask(clusterim)); % box count 
%clusterim(ConComp.PixelIdxList{i}) = 0; % turn off the cluster 
%%   cl.D{t} = [ cl.D{t} fd ]; % store the fractal dimension 
%end 
end 
cl.Lab(:,:,t) = labelim; % store cluster labelling for this time point 
end  
%------------------------------------------------------------------------- 
% Avalanche analysis v2 - working backwards  
%Let Cti be the ith cluster at time t. We consider a cluster i0 starting an 

%avalanche at time t0 if for all j, 
%Ct0?1j n Ct0i0 = 0 (i.e., no clusters were present in that region at the 

previous timestep) 
% An id is assigned to this avalanche and the same id is assigned to all 

%clusters intersecting this cluster at the following time,this is all 

%clusters i such that 
%     Ct0i0 ? Ct0+1i != ?. 
%The same procedure is applied recursively to all clusters satisfying the 

%former condition until no more intersections are found. When this happens, 

%all clusters labeled with this id constitute the avalanche. 
ava.N = 0; % avalanche counter (and identifier) 
for t=2:size(pp,3) 
for i = 1:cl.C{t}.NumObjects  

% iterate over clusters at this time point is this cluster the start of a new 

%avalanche? to be one, all the voxels in the cluster must have been off in 

%the previous time point AND ALL VOXELS ADJACENT TO THE CLUSTER (ELSE THEY 

%WOULD HAVE BEEN IN THE AVALANCHE AND SO NOT MARK THE START OF A NEW AVA)       
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% Get the voxels in the cluster 
voxels = cl.C{t}.PixelIdxList{i};         
% dilate the cluster by one voxel 
voxels2 = dilator2(voxels, cl.ImageSize); 
% Test whether the cluster intersects with no active voxels at the previous 

time point. TO DO: might be faster just to do something like 
% img=pp(:,:,t-1); img(voxels) == 0; 
if(isempty(fastintersect(voxels2, cl.AV{t-1}))) 
% this must be a new avalanche to track 
ava.N = ava.N + 1; % increment avalanche counter 
id = ava.N; 
ava.O(id) = t; % record time of onset 
ava.S(id) = length(voxels); % record number of VOXELS 
%ava.Smag(id) = clMag{t,i}; % record size in MAGNITUDE 
%ava.St{id}(1) = length(voxels); 
%ava.L(id) = 1; % record duration (start at 1) 
% TO DO: uncomment this if ever required (slow!) 
% ava.A{id, 1} = voxels; % record ids of voxels at avalanche onset 
% ava.Voxels{id} = voxels;            
% track this avalanche through time and see which clusters intersect it and 

%when it comes to an end 
for t2 = (t+1):size(pp,3)                 
% see if there is any intersection of the voxels of the avalanche from the  

%previous time point with any active voxels in the present dilate the 

%avalanche by one voxel before checking for intersections 
voxels = dilator2(voxels, cl.ImageSize);                 
% use the labelling lookup volume to find intersecting clusters 
labelim = squeeze(cl.Lab(:,:,t2)); 
intersectingids = labelim(voxels);                 
% are any labels non-zero (i.e. clusters)? 
if(any(intersectingids)) 
% the avalanche has survived this time point! 
% ava.L(id) = t2 - t; % record new duration                    
% remove zeros (shouldnt be any) and duplicate labels 
intersectingids = unique(intersectingids(intersectingids > 0)); 
%intersectingids is a list of unique clusters ids which have contiguity with 

%the (dilated) avalanche, so we extend the avalanche to include all voxels in 

%these clusters (i.e. the avalanche propagates) 
newvoxels = vertcat(cl.C{t2}.PixelIdxList{intersectingids});                     
% TO DO: uncomment this if ever required (slow!) 
% ava.A{id, (t2-t) + 1} = newvoxels; % store the new voxels 
% ava.Voxels{id} = [ ava.Voxels{id}; newvoxels ];                     
% AVA SIZE USING NUMBER OF ACTIVE PIXELS IN AVA AT EVERY TIME POINT 
ava.S(id) = ava.S(id) + length(newvoxels);                     
% Calculate new size in magnitude 
%ava.Smag(id) = ava.Smag(id) + sum([clMag{t2,intersectingids}]); 
% store the progression in size over time 
% TO DO: this is duplicating the role of ava.A 
% ava.St{id}((t2-t) + 1) = length(newvoxels);     
voxels = newvoxels; % update the voxels for the next time point                     
else 
%% NEW 
%Calculate new ava S AVA SIZE USING UNIQUE PIXELS IN AVA AT ANY TIME POINT 
%ava.S(id) = length(unique(ava.Voxels{id})); 
%  ava.Voxels{id} = unique( ava.Voxels{id} ); 
break; 
end 
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end 
end 
end 
end 
if ava.N == 0 
ava.O = [];  
ava.S = [];  
% ava.St = [];  
% ava.L = [];  
ava.Voxels = [];    
end 
end 

 

Main Code 

task=1; 
subtask=1; 
rng('shuffle'); 
nb_Con=[0 1 0; 1 1 1;0 1 0]; 
if task==1 
% Simple Model Avg S 
% for spatiotemp. activity data call SimpleDynamics at C=0.2;0.23;0.3 
C=0.15:0.01:0.35; 
dim=400;%200 
Time =1.6102e4; % simulation time 
Trans=100; 
%dimensions of initial lattice 
l = dim; b = dim; N= l*b; 
%Dynamical parameters 
p = 0.001; 
for Cstep=1:length(C) 
[lattice,Spike_Counts]=SimpleDynamics(l,b,Time,C(Cstep),p); 
AvgS(Cstep)=sum(sum(lattice(:,:,Trans+1:end)))/N; 
end 
elseif task==2 
% Realistic Model mean correlation 
% for spatiotemp. activity data call RealisticDynamics at I=0.01;0.65;2.0 
Time = 1.65e4; % simulation time 
dim=160; 
l=dim;b=dim;N=l*b; 
% Connectivity Matrix for realistic Model 
B=RealConnect(l,b); 
I=0.01:0.1:2.01; 
for Istep=1:length(I) 
% tuning inhibition 
B_prime=B; 
B_prime(:,Ilist)=I(Istep)*B_prime(:,Ilist); 
[nev,synaptic_input]=RealisticDynamics(N,Time,B_prime); 
subNev_spk=nev(:,501:end)'; 
CorrNev_spk=corr(subNev_spk); 
MeanCor(Istep)= nanmean(abs(CorrNev_spk(:))); 
S_spk(Istep)=mean(nev,1); 
end 
elseif task==3 
% Expt Data lattice and mean correlation 
% ExptNum: experiment number runs from 2 to 10; increasing time till drug 
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% FileNum: Multiple readings recorded at each ExptNum 
ExptNum=2;FileNum=1; 
load('brain_window.mat'); 
[lattice,nev]=ExptData(ExptNum,fileNum,zthresh,brainWindow); 
S=squeeze(sum(sum(lattice,1),2)); 
% point process data correlation 
subNev=nev'; 
CorrNev=corr(subNev); 
CorrNev(isnan(CorrNev))=0; 
MeanCor= nanmean(abs(CorrNev(:))); 
elseif task==4 
if subtask==1 
% renormalization step 
% done at each point in parameter space over 100 random realizations 
% use the following piece to create data for 100 runs of same code 
% combine all the data by running Zeta_calculation.m 
% final answer calculated as zeta See equation. 
dim=400;%200 
Time =1.6102e4; % simulation time 
Trans=100; 
%dimensions of initial lattice 
l = dim; b = dim; N= l*b; 
% renormalization block length 
%Dynamical parameters 
p = 0.001;%0.01;0.0001; 
C=0.23;%0.15:0.01:0.35; 
% transformational scheme parameters 
r=8;%4;16; % spatial dimension of transformational block 
time_r=1;%2;4;8;16; % temporal dimension of transformational block 
k=1:5:101; % steepness of transformation function f(S_b) 
x0=0.01:0.02:1; % mid point of transfromation function f(S_b) 
h_nume_k1=zeros(length(bins),length(k),length(x0)); 
h_deno_k1=zeros(length(bins),length(k),length(x0)); 
[Lattice,Spike_Counts]=SimpleDynamics(l,b,Time,C,p); 
elseif subtask==2 
Time = 1.65e4; % simulation time 
dim=160; 
l=dim;b=dim;N=l*b; 
nb_Con=[0 1 0; 1 1 1;0 1 0]; % connectivity nearest-neighbor for activation 

probability 
%Dynamical parameters 
I=0.6;%0.01:0.1:2.01 
% transformational scheme parameters 
r=8;%4;16; % spatial dimension of transformational block 
time_r=1;%2;4;8;16; % temporal dimension of transformational block 
k=1:5:101; % steepness of transformation function f(S_b) 
x0=0.01:0.02:1; % mid point of transfromation function f(S_b) 
% Connectivity Matrix for realistic Model 
B=RealConnect(l,b); 
% tuning inhibition 
B(:,Ilist)=I*B(:,Ilist); 
% initial simulation without adaptation 
[nev,synaptic_input]=RealisticDynamics(N,Time,B); 
% to use the spiking data for zeta calculation 
Lattice=nev_to_lattice(nev(:,501:end),l,b); % convert data dimensions 
% to use the continous synaptic data for zeta calculation 
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% %Syn_Lattice=nev_to_lattice(synaptic_input(:,501:end),l,b); % convert data 

dimensions 
% %zthresh=0.5; 
% %Lattice=ppmaker(Syn_Lattice , zthresh); 
% active neighbors based on the network activity 
Spike_Counts=convn(squeeze(single(Lattice(:,:,1:end-1))),nb_Con,'same'); 
elseif subtask==3 
ExptNum=2;FileNum=1; 
load('brain_window.mat'); 
[Lattice,nev]=ExptData(ExptNum,fileNum,zthresh,brainWindow); 
Spike_Counts=convn(squeeze(single(Lattice(:,:,1:end-1))),nb_Con,'same');  
end 
[h_nume,h_deno]=nt_counts(Spike_Counts(:,:,Trans+1:end-

1),Lattice(:,:,Trans+2:end)); 
for ii=1:length(k) 
for jj=1:length(x0)            

[h_nume_k1(:,ii,jj),h_deno_k1(:,ii,jj)]=Renormalization(lattice(:,:,Trans+1:e

nd),r,time_r,k(ii),x0(jj),nb_Con); 
end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%zeta_min calculation%%%%%%%%%%%%%%%% 
mean_h_nume=squeeze(mean(h_nume,2)); 
mean_h_deno=squeeze(mean(h_deno,2)); 
mean_h_nume_k1=squeeze(mean(h_nume_k1,2)); 
mean_h_deno_k1=squeeze(mean(h_deno_k1,2));    

[Zeta_min,k_zetamin,x0_zetamin]=Zeta_calculation(mean_h_nume,mean_h_deno,mean

_h_nume_k1,mean_h_deno_k1,k,x0,task); 
elseif task==5 
% avalanche distribution and kappa calculation 
% for realistic model model resuse the second half 
% with Lattice generated from codes already explained 
C=0.15:0.01:0.25; 
dim=400;%200 
Time =1.6102e4; % simulation time 
Trans=100; 
%dimensions of initial lattice 
l = dim; b = dim; N= l*b; 
% renormalization block length 
%Dynamical parameters 
p = 0.001; 
for Cstep=1:length(C) 
[lattice,~]=SimpleDynamics(l,b,Time,C(Cstep),p); 
%%% %%%%%%%%%Second half: avalanche distribution%%%% size and duration%%%%% 
data=lattice(:,:,Trans+1:end); 
[avalanche,~]=avalanche(data); 
avsz=avalanche.S; 
nav=avalanche.N; 
xmin=min(avsz); 
xmax=max(avsz); 
dat=avsz(avsz>=xmin); 
n=length(dat); 
expon=1.5; 
refcdf=((xmin:xmax).^(1-expon)-xmin^(1-expon))/(xmax^(1-expon)-xmin^(1-

expon)); %reference CDF 
datcdf = cumsum(hist(dat,xmin:xmax)./n); %data CDF 
ndiff=10; 
xlist=round(logspace(log10(xmin*1.1),log10(xmax/1.1),ndiff)); 
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kappa=1+sum(refcdf(xlist-xmin+1)-datcdf(xlist-xmin+1))/ndiff; 
%plot avalanche size PDF        

binv=unique(round(logspace(log10(xmin),log10(xmax),20*log10(xmax/xmin)))); 
nb=length(binv)-1; 
num=histc(avsz,binv); 
Avalanche_data{Cstep}=avsz; 
Kappa_data(Cstep)=kappa; 
if Cstep==1            

loglog(binv(1:nb)+diff(binv),num(1:nb)./diff(binv)/nav,'k') 

hold on; 
elseif Cstep==2            

loglog(binv(1:nb)+diff(binv),num(1:nb)./diff(binv)/nav,'r') 

hold on; 
elseif Cstep==3            

loglog(binv(1:nb)+diff(binv),num(1:nb)./diff(binv)/nav,'b') 
hold on; 
elseif Cstep==4            

loglog(binv(1:nb)+diff(binv),num(1:nb)./diff(binv)/nav,'g') 
hold on; 
elseif Cstep==5            

loglog(binv(1:nb)+diff(binv),num(1:nb)./diff(binv)/nav,'c') 
hold on; 
end 
clear avalanche 
end 
else 
    disp('Enter between 1 to 6 only'); 
end 

Codes for Chapter 4 

Experimental data-analysis code 

load('SpikeData.mat'); 
load('FirstHalfEndTime.mat') 
for i=1:20 
    if i~=15 
       r0= sum(Spike_bicd_Rat3{i}(:,1:floor(TimeSecRat3(i,1))),2); 
       r1= sum(Spike_bicd_Rat3{i}(:,ceil(TimeSecRat3(i,1))+1:end),2); 
       Delta.Rat3.bicd.SpikeRate{i}=(r1-r0)./(r1+r0); 
       Delta.Rat3.bicd.TotalSpikeRate{i}=(sum(r1)-

sum(r0))./(sum(r1)+sum(r0));        
    end 
end 
for i=1:20 
       r0= sum(Spike_muscd_Rat3{i}(:,1:floor(TimeSecRat3(i,2))),2); 
       r1= sum(Spike_muscd_Rat3{i}(:,ceil(TimeSecRat3(i,2))+1:end),2); 
       Delta.Rat3.muscd.SpikeRate{i}=(r1-r0)./(r1+r0); 
       Delta.Rat3.muscd.TotalSpikeRate{i}=(sum(r1)-

sum(r0))./(sum(r1)+sum(r0));        
end 
for i=1:12 
       r0= sum(Spike_bicd_Rat4{i}(:,1:floor(TimeSecRat4(i,1))),2); 
       r1= sum(Spike_bicd_Rat4{i}(:,ceil(TimeSecRat4(i,1))+1:end),2); 
       Delta.Rat4.bicd.SpikeRate{i}=(r1-r0)./(r1+r0); 
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       Delta.Rat4.bicd.TotalSpikeRate{i}=(sum(r1)-

sum(r0))./(sum(r1)+sum(r0));        
end 
for i=1:12 
       r0= sum(Spike_muscd_Rat4{i}(:,1:floor(TimeSecRat4(i,2))),2); 
       r1= sum(Spike_muscd_Rat4{i}(:,ceil(TimeSecRat4(i,2))+1:end),2); 
       Delta.Rat4.muscd.SpikeRate{i}=(r1-r0)./(r1+r0); 
       Delta.Rat4.muscd.TotalSpikeRate{i}=(sum(r1)-

sum(r0))./(sum(r1)+sum(r0));        
end 
for i=1:11 
       r0= sum(Spike_bicd_Rat1{i}(:,1:floor(TimeSecRat1(i,1))),2); 
       r1= sum(Spike_bicd_Rat1{i}(:,ceil(TimeSecRat1(i,1))+1:end),2); 
       Delta.Rat1.bicd.SpikeRate{i}=(r1-r0)./(r1+r0); 
       Delta.Rat1.bicd.TotalSpikeRate{i}=(sum(r1)-

sum(r0))./(sum(r1)+sum(r0));        
end 
for i=1:11 
    if i~=6 
        r0= sum(Spike_muscd_Rat1{i}(:,1:floor(TimeSecRat1(i,2))),2); 
        r1= sum(Spike_muscd_Rat1{i}(:,ceil(TimeSecRat1(i,2))+1:end),2); 
        Delta.Rat1.muscd.SpikeRate{i}=(r1-r0)./(r1+r0); 
        Delta.Rat1.muscd.TotalSpikeRate{i}=(sum(r1)-

sum(r0))./(sum(r1)+sum(r0)); 
    end 
end 
Concentrations=[20,40,80,160,320,640,1280]; 
%%%%%%%%%%%%%%%%%%%%%%%Delta calculations using quarter of spike data 
% Delta for Nodrug 1st half and Nodrug 2nd half 
for i=1:20 
    if i~=15 
       

T1=TimeSecRat3(i,1)/2;T2=TimeSecRat3(i,1);T3=TimeSecRat3(i,1)+(size(Spike_bic

d_Rat3{i},2)-ceil(TimeSecRat3(i,1)))/2;  
       r0_1q= sum(Spike_bicd_Rat3{i}(:,1:floor(T1)),2); 
       r0_2q= sum(Spike_bicd_Rat3{i}(:,ceil(T1):floor(T2)),2); 
       r1_3q= sum(Spike_bicd_Rat3{i}(:,ceil(T2):floor(T3)),2); 
       r1_4q= sum(Spike_bicd_Rat3{i}(:,ceil(T3):end),2);        
       Delta.Rat3.bicd.SpikeRate13{i}=(r1_3q-r0_1q)./(r1_3q+r0_1q); 
       Delta.Rat3.bicd.SpikeRate23{i}=(r1_3q-r0_2q)./(r1_3q+r0_2q); 
       Delta.Rat3.bicd.SpikeRate14{i}=(r1_4q-r0_1q)./(r1_4q+r0_1q); 
       Delta.Rat3.bicd.SpikeRate24{i}=(r1_4q-r0_2q)./(r1_4q+r0_2q); 
       Delta.Rat3.bicd.TotalSpikeRate13{i}=(sum(r1_3q)-

sum(r0_1q))./(sum(r1_3q)+sum(r0_1q));        
       Delta.Rat3.bicd.TotalSpikeRate23{i}=(sum(r1_3q)-

sum(r0_2q))./(sum(r1_3q)+sum(r0_2q));        
       Delta.Rat3.bicd.TotalSpikeRate14{i}=(sum(r1_4q)-

sum(r0_1q))./(sum(r1_4q)+sum(r0_1q));        
       Delta.Rat3.bicd.TotalSpikeRate24{i}=(sum(r1_4q)-

sum(r0_2q))./(sum(r1_4q)+sum(r0_2q));        
    end 
end 
for i=1:20 
    

T1=TimeSecRat3(i,2)/2;T2=TimeSecRat3(i,2);T3=TimeSecRat3(i,2)+(size(Spike_mus

cd_Rat3{i},2)-ceil(TimeSecRat3(i,2)))/2; 
    r0_1q= sum(Spike_muscd_Rat3{i}(:,1:floor(T1)),2); 
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    r0_2q= sum(Spike_muscd_Rat3{i}(:,ceil(T1):floor(T2)),2); 
    r1_3q= sum(Spike_muscd_Rat3{i}(:,ceil(T2):floor(T3)),2); 
    r1_4q= sum(Spike_muscd_Rat3{i}(:,ceil(T3):end),2); 
    Delta.Rat3.muscd.SpikeRate13{i}=(r1_3q-r0_1q)./(r1_3q+r0_1q); 
    Delta.Rat3.muscd.SpikeRate23{i}=(r1_3q-r0_2q)./(r1_3q+r0_2q); 
    Delta.Rat3.muscd.SpikeRate14{i}=(r1_4q-r0_1q)./(r1_4q+r0_1q); 
    Delta.Rat3.muscd.SpikeRate24{i}=(r1_4q-r0_2q)./(r1_4q+r0_2q); 
    Delta.Rat3.muscd.TotalSpikeRate13{i}=(sum(r1_3q)-

sum(r0_1q))./(sum(r1_3q)+sum(r0_1q)); 
    Delta.Rat3.muscd.TotalSpikeRate23{i}=(sum(r1_3q)-

sum(r0_2q))./(sum(r1_3q)+sum(r0_2q)); 
    Delta.Rat3.muscd.TotalSpikeRate14{i}=(sum(r1_4q)-

sum(r0_1q))./(sum(r1_4q)+sum(r0_1q)); 
    Delta.Rat3.muscd.TotalSpikeRate24{i}=(sum(r1_4q)-

sum(r0_2q))./(sum(r1_4q)+sum(r0_2q)); 
end 
for i=1:12 
    

T1=TimeSecRat4(i,1)/2;T2=TimeSecRat4(i,1);T3=TimeSecRat4(i,1)+(size(Spike_bic

d_Rat4{i},2)-ceil(TimeSecRat4(i,1)))/2; 
    r0_1q= sum(Spike_bicd_Rat4{i}(:,1:floor(T1)),2); 
    r0_2q= sum(Spike_bicd_Rat4{i}(:,ceil(T1):floor(T2)),2); 
    r1_3q= sum(Spike_bicd_Rat4{i}(:,ceil(T2):floor(T3)),2); 
    r1_4q= sum(Spike_bicd_Rat4{i}(:,ceil(T3):end),2); 
    Delta.Rat4.bicd.SpikeRate13{i}=(r1_3q-r0_1q)./(r1_3q+r0_1q); 
    Delta.Rat4.bicd.SpikeRate23{i}=(r1_3q-r0_2q)./(r1_3q+r0_2q); 
    Delta.Rat4.bicd.SpikeRate14{i}=(r1_4q-r0_1q)./(r1_4q+r0_1q); 
    Delta.Rat4.bicd.SpikeRate24{i}=(r1_4q-r0_2q)./(r1_4q+r0_2q); 
    Delta.Rat4.bicd.TotalSpikeRate13{i}=(sum(r1_3q)-

sum(r0_1q))./(sum(r1_3q)+sum(r0_1q)); 
    Delta.Rat4.bicd.TotalSpikeRate23{i}=(sum(r1_3q)-

sum(r0_2q))./(sum(r1_3q)+sum(r0_2q)); 
    Delta.Rat4.bicd.TotalSpikeRate14{i}=(sum(r1_4q)-

sum(r0_1q))./(sum(r1_4q)+sum(r0_1q)); 
    Delta.Rat4.bicd.TotalSpikeRate24{i}=(sum(r1_4q)-

sum(r0_2q))./(sum(r1_4q)+sum(r0_2q)); 
end 
for i=1:12 
    

T1=TimeSecRat4(i,2)/2;T2=TimeSecRat4(i,2);T3=TimeSecRat4(i,2)+(size(Spike_mus

cd_Rat4{i},2)-ceil(TimeSecRat4(i,2)))/2; 
    r0_1q= sum(Spike_muscd_Rat4{i}(:,1:floor(T1)),2); 
    r0_2q= sum(Spike_muscd_Rat4{i}(:,ceil(T1):floor(T2)),2); 
    r1_3q= sum(Spike_muscd_Rat4{i}(:,ceil(T2):floor(T3)),2); 
    r1_4q= sum(Spike_muscd_Rat4{i}(:,ceil(T3):end),2); 
    Delta.Rat4.muscd.SpikeRate13{i}=(r1_3q-r0_1q)./(r1_3q+r0_1q); 
    Delta.Rat4.muscd.SpikeRate23{i}=(r1_3q-r0_2q)./(r1_3q+r0_2q); 
    Delta.Rat4.muscd.SpikeRate14{i}=(r1_4q-r0_1q)./(r1_4q+r0_1q); 
    Delta.Rat4.muscd.SpikeRate24{i}=(r1_4q-r0_2q)./(r1_4q+r0_2q); 
    Delta.Rat4.muscd.TotalSpikeRate13{i}=(sum(r1_3q)-

sum(r0_1q))./(sum(r1_3q)+sum(r0_1q)); 
    Delta.Rat4.muscd.TotalSpikeRate23{i}=(sum(r1_3q)-

sum(r0_2q))./(sum(r1_3q)+sum(r0_2q)); 
    Delta.Rat4.muscd.TotalSpikeRate14{i}=(sum(r1_4q)-

sum(r0_1q))./(sum(r1_4q)+sum(r0_1q)); 
    Delta.Rat4.muscd.TotalSpikeRate24{i}=(sum(r1_4q)-

sum(r0_2q))./(sum(r1_4q)+sum(r0_2q));       
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end 
for i=1:11 
    

T1=TimeSecRat1(i,1)/2;T2=TimeSecRat1(i,1);T3=TimeSecRat1(i,1)+(size(Spike_bic

d_Rat1{i},2)-ceil(TimeSecRat1(i,1)))/2; 
    r0_1q= sum(Spike_bicd_Rat1{i}(:,1:floor(T1)),2); 
    r0_2q= sum(Spike_bicd_Rat1{i}(:,ceil(T1):floor(T2)),2); 
    r1_3q= sum(Spike_bicd_Rat1{i}(:,ceil(T2):floor(T3)),2); 
    r1_4q= sum(Spike_bicd_Rat1{i}(:,ceil(T3):end),2); 
    Delta.Rat1.bicd.SpikeRate13{i}=(r1_3q-r0_1q)./(r1_3q+r0_1q); 
    Delta.Rat1.bicd.SpikeRate23{i}=(r1_3q-r0_2q)./(r1_3q+r0_2q); 
    Delta.Rat1.bicd.SpikeRate14{i}=(r1_4q-r0_1q)./(r1_4q+r0_1q); 
    Delta.Rat1.bicd.SpikeRate24{i}=(r1_4q-r0_2q)./(r1_4q+r0_2q); 
    Delta.Rat1.bicd.TotalSpikeRate13{i}=(sum(r1_3q)-

sum(r0_1q))./(sum(r1_3q)+sum(r0_1q)); 
    Delta.Rat1.bicd.TotalSpikeRate23{i}=(sum(r1_3q)-

sum(r0_2q))./(sum(r1_3q)+sum(r0_2q)); 
    Delta.Rat1.bicd.TotalSpikeRate14{i}=(sum(r1_4q)-

sum(r0_1q))./(sum(r1_4q)+sum(r0_1q)); 
    Delta.Rat1.bicd.TotalSpikeRate24{i}=(sum(r1_4q)-

sum(r0_2q))./(sum(r1_4q)+sum(r0_2q));     
end 
for i=1:11 
    if i~=6 
        

T1=TimeSecRat1(i,2)/2;T2=TimeSecRat1(i,2);T3=TimeSecRat1(i,2)+(size(Spike_mus

cd_Rat1{i},2)-ceil(TimeSecRat1(i,2)))/2; 
        r0_1q= sum(Spike_muscd_Rat1{i}(:,1:floor(T1)),2); 
        r0_2q= sum(Spike_muscd_Rat1{i}(:,ceil(T1):floor(T2)),2); 
        r1_3q= sum(Spike_muscd_Rat1{i}(:,ceil(T2):floor(T3)),2); 
        r1_4q= sum(Spike_muscd_Rat1{i}(:,ceil(T3):end),2); 
        Delta.Rat1.muscd.SpikeRate13{i}=(r1_3q-r0_1q)./(r1_3q+r0_1q); 
        Delta.Rat1.muscd.SpikeRate23{i}=(r1_3q-r0_2q)./(r1_3q+r0_2q); 
        Delta.Rat1.muscd.SpikeRate14{i}=(r1_4q-r0_1q)./(r1_4q+r0_1q); 
        Delta.Rat1.muscd.SpikeRate24{i}=(r1_4q-r0_2q)./(r1_4q+r0_2q); 
        Delta.Rat1.muscd.TotalSpikeRate13{i}=(sum(r1_3q)-

sum(r0_1q))./(sum(r1_3q)+sum(r0_1q)); 
        Delta.Rat1.muscd.TotalSpikeRate23{i}=(sum(r1_3q)-

sum(r0_2q))./(sum(r1_3q)+sum(r0_2q)); 
        Delta.Rat1.muscd.TotalSpikeRate14{i}=(sum(r1_4q)-

sum(r0_1q))./(sum(r1_4q)+sum(r0_1q)); 
        Delta.Rat1.muscd.TotalSpikeRate24{i}=(sum(r1_4q)-

sum(r0_2q))./(sum(r1_4q)+sum(r0_2q)); 
    end 
end 
DeltaLowConc.bicd.SpikeRate=Delta.Rat1.bicd.SpikeRate13{1}; 
DeltaLowConc.muscd.SpikeRate=Delta.Rat1.muscd.SpikeRate13{1}; 
DeltaLowConc.bicd.TotalSpikeRate=Delta.Rat1.bicd.TotalSpikeRate13{1}; 
DeltaLowConc.muscd.TotalSpikeRate=Delta.Rat1.muscd.TotalSpikeRate13{1}; 
for i=2:8 
    

DeltaLowConc.bicd.SpikeRate=[DeltaLowConc.bicd.SpikeRate;Delta.Rat1.bicd.Spik

eRate13{i}]; 
    

DeltaLowConc.muscd.SpikeRate=[DeltaLowConc.muscd.SpikeRate;Delta.Rat1.muscd.S

pikeRate13{i}]; 
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DeltaLowConc.bicd.TotalSpikeRate=[DeltaLowConc.bicd.TotalSpikeRate;Delta.Rat1

.bicd.TotalSpikeRate13{i}]; 
    

DeltaLowConc.muscd.TotalSpikeRate=[DeltaLowConc.muscd.TotalSpikeRate;Delta.Ra

t1.muscd.TotalSpikeRate13{i}]; 
end 
for i=1:8 
    

DeltaLowConc.bicd.SpikeRate=[DeltaLowConc.bicd.SpikeRate;Delta.Rat1.bicd.Spik

eRate14{i};Delta.Rat1.bicd.SpikeRate23{i};Delta.Rat1.bicd.SpikeRate24{i}]; 
    

DeltaLowConc.muscd.SpikeRate=[DeltaLowConc.muscd.SpikeRate;Delta.Rat1.muscd.S

pikeRate14{i};Delta.Rat1.muscd.SpikeRate23{i};Delta.Rat1.muscd.SpikeRate24{i}

]; 
    

DeltaLowConc.bicd.TotalSpikeRate=[DeltaLowConc.bicd.TotalSpikeRate;Delta.Rat1

.bicd.TotalSpikeRate14{i};Delta.Rat1.bicd.TotalSpikeRate23{i};Delta.Rat1.bicd

.TotalSpikeRate24{i}]; 
    

DeltaLowConc.muscd.TotalSpikeRate=[DeltaLowConc.muscd.TotalSpikeRate;Delta.Ra

t1.muscd.TotalSpikeRate14{i};Delta.Rat1.muscd.TotalSpikeRate23{i};Delta.Rat1.

muscd.TotalSpikeRate24{i}]; 
end 
for i=1:6 
    

DeltaLowConc.bicd.SpikeRate=[DeltaLowConc.bicd.SpikeRate;Delta.Rat4.bicd.Spik

eRate13{i};Delta.Rat4.bicd.SpikeRate14{i};Delta.Rat4.bicd.SpikeRate23{i};Delt

a.Rat4.bicd.SpikeRate24{i}]; 
    

DeltaLowConc.muscd.SpikeRate=[DeltaLowConc.muscd.SpikeRate;Delta.Rat4.muscd.S

pikeRate13{i};Delta.Rat4.muscd.SpikeRate14{i};Delta.Rat4.muscd.SpikeRate23{i}

;Delta.Rat4.muscd.SpikeRate24{i}]; 
    

DeltaLowConc.bicd.TotalSpikeRate=[DeltaLowConc.bicd.TotalSpikeRate;Delta.Rat4

.bicd.TotalSpikeRate13{i};Delta.Rat4.bicd.TotalSpikeRate14{i};Delta.Rat4.bicd

.TotalSpikeRate23{i};Delta.Rat4.bicd.TotalSpikeRate24{i}]; 
    

DeltaLowConc.muscd.TotalSpikeRate=[DeltaLowConc.muscd.TotalSpikeRate;Delta.Ra

t4.muscd.TotalSpikeRate13{i};Delta.Rat4.muscd.TotalSpikeRate14{i};Delta.Rat4.

muscd.TotalSpikeRate23{i};Delta.Rat4.muscd.TotalSpikeRate24{i}]; 
end 
for i=1:6 
    

DeltaLowConc.bicd.SpikeRate=[DeltaLowConc.bicd.SpikeRate;Delta.Rat3.bicd.Spik

eRate13{i};Delta.Rat3.bicd.SpikeRate14{i};Delta.Rat3.bicd.SpikeRate23{i};Delt

a.Rat3.bicd.SpikeRate24{i}]; 
    

DeltaLowConc.muscd.SpikeRate=[DeltaLowConc.muscd.SpikeRate;Delta.Rat3.muscd.S

pikeRate13{i};Delta.Rat3.muscd.SpikeRate14{i};Delta.Rat3.muscd.SpikeRate23{i}

;Delta.Rat3.muscd.SpikeRate24{i}]; 
    

DeltaLowConc.bicd.TotalSpikeRate=[DeltaLowConc.bicd.TotalSpikeRate;Delta.Rat3

.bicd.TotalSpikeRate13{i};Delta.Rat3.bicd.TotalSpikeRate14{i};Delta.Rat3.bicd

.TotalSpikeRate23{i};Delta.Rat3.bicd.TotalSpikeRate24{i}]; 
    

DeltaLowConc.muscd.TotalSpikeRate=[DeltaLowConc.muscd.TotalSpikeRate;Delta.Ra
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t3.muscd.TotalSpikeRate13{i};Delta.Rat3.muscd.TotalSpikeRate14{i};Delta.Rat3.

muscd.TotalSpikeRate23{i};Delta.Rat3.muscd.TotalSpikeRate24{i}]; 
end 
DeltaHighConc.bicd.SpikeRate=Delta.Rat1.bicd.SpikeRate13{9}; 
DeltaHighConc.muscd.SpikeRate=Delta.Rat1.muscd.SpikeRate13{9}; 
DeltaHighConc.bicd.TotalSpikeRate=Delta.Rat1.bicd.TotalSpikeRate13{9}; 
DeltaHighConc.muscd.TotalSpikeRate=Delta.Rat1.muscd.TotalSpikeRate13{9}; 
for i=10:11 
    

DeltaHighConc.bicd.SpikeRate=[DeltaHighConc.bicd.SpikeRate;Delta.Rat1.bicd.Sp

ikeRate13{i}]; 
    

DeltaHighConc.muscd.SpikeRate=[DeltaHighConc.muscd.SpikeRate;Delta.Rat1.muscd

.SpikeRate13{i}]; 
    

DeltaHighConc.bicd.TotalSpikeRate=[DeltaHighConc.bicd.TotalSpikeRate;Delta.Ra

t1.bicd.TotalSpikeRate13{i}]; 
    

DeltaHighConc.muscd.TotalSpikeRate=[DeltaHighConc.muscd.TotalSpikeRate;Delta.

Rat1.muscd.TotalSpikeRate13{i}]; 
end 
for i=9:11 
    

DeltaHighConc.bicd.SpikeRate=[DeltaHighConc.bicd.SpikeRate;Delta.Rat1.bicd.Sp

ikeRate14{i};Delta.Rat1.bicd.SpikeRate23{i};Delta.Rat1.bicd.SpikeRate24{i}]; 
    

DeltaHighConc.muscd.SpikeRate=[DeltaHighConc.muscd.SpikeRate;Delta.Rat1.muscd

.SpikeRate14{i};Delta.Rat1.muscd.SpikeRate23{i};Delta.Rat1.muscd.SpikeRate24{

i}]; 
    

DeltaHighConc.bicd.TotalSpikeRate=[DeltaHighConc.bicd.TotalSpikeRate;Delta.Ra

t1.bicd.TotalSpikeRate14{i};Delta.Rat1.bicd.TotalSpikeRate23{i};Delta.Rat1.bi

cd.TotalSpikeRate24{i}]; 
    

DeltaHighConc.muscd.TotalSpikeRate=[DeltaHighConc.muscd.TotalSpikeRate;Delta.

Rat1.muscd.TotalSpikeRate14{i};Delta.Rat1.muscd.TotalSpikeRate23{i};Delta.Rat

1.muscd.TotalSpikeRate24{i}]; 
end 
for i=7:12 
    

DeltaHighConc.bicd.SpikeRate=[DeltaHighConc.bicd.SpikeRate;Delta.Rat4.bicd.Sp

ikeRate13{i};Delta.Rat4.bicd.SpikeRate14{i};Delta.Rat4.bicd.SpikeRate23{i};De

lta.Rat4.bicd.SpikeRate24{i}]; 
    

DeltaHighConc.muscd.SpikeRate=[DeltaHighConc.muscd.SpikeRate;Delta.Rat4.muscd

.SpikeRate13{i};Delta.Rat4.muscd.SpikeRate14{i};Delta.Rat4.muscd.SpikeRate23{

i};Delta.Rat4.muscd.SpikeRate24{i}]; 
    

DeltaHighConc.bicd.TotalSpikeRate=[DeltaHighConc.bicd.TotalSpikeRate;Delta.Ra

t4.bicd.TotalSpikeRate13{i};Delta.Rat4.bicd.TotalSpikeRate14{i};Delta.Rat4.bi

cd.TotalSpikeRate23{i};Delta.Rat4.bicd.TotalSpikeRate24{i}]; 
    

DeltaHighConc.muscd.TotalSpikeRate=[DeltaHighConc.muscd.TotalSpikeRate;Delta.

Rat4.muscd.TotalSpikeRate13{i};Delta.Rat4.muscd.TotalSpikeRate14{i};Delta.Rat

4.muscd.TotalSpikeRate23{i};Delta.Rat4.muscd.TotalSpikeRate24{i}]; 
end 
for i=7:20 
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DeltaHighConc.bicd.SpikeRate=[DeltaHighConc.bicd.SpikeRate;Delta.Rat3.bicd.Sp

ikeRate13{i};Delta.Rat3.bicd.SpikeRate14{i};Delta.Rat3.bicd.SpikeRate23{i};De

lta.Rat3.bicd.SpikeRate24{i}]; 
 

DeltaHighConc.muscd.SpikeRate=[DeltaHighConc.muscd.SpikeRate;Delta.Rat3.muscd

.SpikeRate13{i};Delta.Rat3.muscd.SpikeRate14{i};Delta.Rat3.muscd.SpikeRate23{

i};Delta.Rat3.muscd.SpikeRate24{i}]; 
    

DeltaHighConc.bicd.TotalSpikeRate=[DeltaHighConc.bicd.TotalSpikeRate;Delta.Ra

t3.bicd.TotalSpikeRate13{i};Delta.Rat3.bicd.TotalSpikeRate14{i};Delta.Rat3.bi

cd.TotalSpikeRate23{i};Delta.Rat3.bicd.TotalSpikeRate24{i}]; 
    

DeltaHighConc.muscd.TotalSpikeRate=[DeltaHighConc.muscd.TotalSpikeRate;Delta.

Rat3.muscd.TotalSpikeRate13{i};Delta.Rat3.muscd.TotalSpikeRate14{i};Delta.Rat

3.muscd.TotalSpikeRate23{i};Delta.Rat3.muscd.TotalSpikeRate24{i}]; 
end 
bins=linspace(-1,1,11); 
h.LowConc.bicd.SpikeRate=hist(DeltaLowConc.bicd.SpikeRate,bins)/length(DeltaL

owConc.bicd.SpikeRate); 
h.LowConc.muscd.SpikeRate=hist(DeltaLowConc.muscd.SpikeRate,bins)/length(Delt

aLowConc.muscd.SpikeRate); 
h.LowConc.bicd.TotalSpikeRate=hist(DeltaLowConc.bicd.TotalSpikeRate,bins)/len

gth(DeltaLowConc.bicd.TotalSpikeRate); 
h.LowConc.muscd.TotalSpikeRate=hist(DeltaLowConc.muscd.TotalSpikeRate,bins)/l

ength(DeltaLowConc.muscd.TotalSpikeRate); 
h.HighConc.bicd.SpikeRate=hist(DeltaHighConc.bicd.SpikeRate,bins)/length(Delt

aHighConc.bicd.SpikeRate); 
h.HighConc.muscd.SpikeRate=hist(DeltaHighConc.muscd.SpikeRate,bins)/length(De

ltaHighConc.muscd.SpikeRate); 
h.HighConc.bicd.TotalSpikeRate=hist(DeltaHighConc.bicd.TotalSpikeRate,bins)/l

ength(DeltaHighConc.bicd.TotalSpikeRate); 
h.HighConc.muscd.TotalSpikeRate=hist(DeltaHighConc.muscd.TotalSpikeRate,bins)

/length(DeltaHighConc.muscd.TotalSpikeRate); 
subplot(2,2,1) 
Column(:,1)=h1stHalf.All.bicd.SpikeRate; 
Column(:,2)=hLC160.LowConc.bicd.SpikeRate; 
Column(:,3)=hHC160.HighConc.bicd.SpikeRate; 
imagesc(1:1:3,bins,Column); 
title('bicd-Single Neuron Spike Rate') 
subplot(2,2,2) 
Column(:,1)=h1stHalf.All.muscd.SpikeRate; 
Column(:,2)=hLC160.LowConc.muscd.SpikeRate; 
Column(:,3)=hHC160.HighConc.muscd.SpikeRate; 
imagesc(1:1:3,bins,Column); 
title('muscd-Single Neuron Spike Rate') 
subplot(2,2,3) 
Column(:,1)=h1stHalf.All.bicd.TotalSpikeRate; 
Column(:,2)=hLC160.LowConc.bicd.TotalSpikeRate; 
Column(:,3)=hHC160.HighConc.bicd.TotalSpikeRate; 
imagesc(1:1:3,bins,Column); 
title('bicd-Total Neuron Spike Rate') 
subplot(2,2,4) 
Column(:,1)=h1stHalf.All.muscd.TotalSpikeRate; 
Column(:,2)=hLC160.LowConc.muscd.TotalSpikeRate; 
Column(:,3)=hHC160.HighConc.muscd.TotalSpikeRate; 
imagesc(1:1:3,bins,Column); 
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title('muscd-Total Neuron Spike Rate'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
subplot(2,2,1) 
Column(:,1)=h1stHalf.All.bicd.SpikeRate; 
Column(:,2)=hLC80.LowConc.bicd.SpikeRate; 
Column(:,3)=hHC80.HighConc.bicd.SpikeRate; 
imagesc(1:1:3,bins,Column); 
title('bicd-Single Neuron Spike Rate') 
subplot(2,2,2) 
Column(:,1)=h1stHalf.All.muscd.SpikeRate; 
Column(:,2)=hLC80.LowConc.muscd.SpikeRate; 
Column(:,3)=hHC80.HighConc.muscd.SpikeRate; 
imagesc(1:1:3,bins,Column); 
title('muscd-Single Neuron Spike Rate') 
subplot(2,2,3) 
Column(:,1)=h1stHalf.All.bicd.TotalSpikeRate; 
Column(:,2)=hLC80.LowConc.bicd.TotalSpikeRate; 
Column(:,3)=hHC80.HighConc.bicd.TotalSpikeRate; 
imagesc(1:1:3,bins,Column); 
title('bicd-Total Neuron Spike Rate') 
subplot(2,2,4) 
Column(:,1)=h1stHalf.All.muscd.TotalSpikeRate; 
Column(:,2)=hLC80.LowConc.muscd.TotalSpikeRate; 
Column(:,3)=hHC80.HighConc.muscd.TotalSpikeRate; 
imagesc(1:1:3,bins,Column); 
title('muscd-Total Neuron Spike Rate') 

  
[~,bic_idx]=sort(Delta.Rat3.bicd.SpikeRate{2},'descend'); 
[~,musc_idx]=sort(Delta.Rat3.muscd.SpikeRate{3},'descend'); 
subplot(1,2,1) 
imagesc(5:5:5*size(Spike_bicd_Rat3{2},2),1:1:size(Spike_bicd_Rat3{2},1),Spike

_bicd_Rat3{2}(bic_idx,:)/5) 
subplot(1,2,2) 
imagesc(5:5:5*size(Spike_muscd_Rat3{3},2),1:1:size(Spike_muscd_Rat3{3},1),Spi

ke_muscd_Rat3{3}(musc_idx,:)/5) 

  

  
subplot(2,1,1) 
imagesc(5:5:5*size(Spike_bicd_Rat3{2},2),1,mean(Spike_bicd_Rat3{2})/5) 
subplot(2,1,2) 
imagesc(5:5:5*size(Spike_muscd_Rat3{3},2),1,mean(Spike_muscd_Rat3{3})/5) 

  
subplot(1,2,1) 
plot(sort(Delta.Rat3.bicd.SpikeRate{2},'descend'),1:1:length(Delta.Rat3.bicd.

SpikeRate{2})); 
hold on; 
plot(ones(length(Delta.Rat3.bicd.SpikeRate{2}),1)*Delta.Rat3.bicd.TotalSpikeR

ate{2},1:1:length(Delta.Rat3.bicd.SpikeRate{2}),'--r'); 
subplot(1,2,2) 
plot(sort(Delta.Rat3.muscd.SpikeRate{3},'descend'),1:1:length(Delta.Rat3.musc

d.SpikeRate{3})); 
hold on; 
plot(ones(length(Delta.Rat3.muscd.SpikeRate{3}),1)*Delta.Rat3.muscd.TotalSpik

eRate{3},1:1:length(Delta.Rat3.muscd.SpikeRate{3}),'--r'); 

 
for i=1:20 
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     if i~=15         

plot(1/length(Delta.Rat3.bicd.SpikeRate{i}):1/length(Delta.Rat3.bicd.SpikeRat

e{i}):1,sort(Delta.Rat3.bicd.SpikeRate{i},'descend')); 
         hold on; 
     end 
end 

  
for i=1:20 
plot(1/length(Delta.Rat3.muscd.SpikeRate{i}):1/length(Delta.Rat3.muscd.SpikeR

ate{i}):1,sort(Delta.Rat3.muscd.SpikeRate{i},'descend')); 
         hold on; 
end 

  
for i=1:20 
    Delta.Rat3.bicd.NeuronCount(i)=length(Delta.Rat3.bicd.SpikeRate{i}); 
    Delta.Rat3.muscd.NeuronCount(i)=length(Delta.Rat3.muscd.SpikeRate{i}); 
end 
for i=1:11 
    Delta.Rat1.bicd.NeuronCount(i)=length(Delta.Rat1.bicd.SpikeRate{i}); 
    Delta.Rat1.muscd.NeuronCount(i)=length(Delta.Rat1.muscd.SpikeRate{i}); 
end 
for i=1:12 
    Delta.Rat4.bicd.NeuronCount(i)=length(Delta.Rat4.bicd.SpikeRate{i}); 
    Delta.Rat4.muscd.NeuronCount(i)=length(Delta.Rat4.muscd.SpikeRate{i}); 
end 

 

Model analysis-Function 

%To simulate model dynamics for paradoxical change 
%function: Connectivity_Matrix 
%Input->N: size of network; p: connection probability 
%Weights of "Inh_subfrac" fraction of inhibitory neurons  are increased  
%by factor of Inh_Incre 
%Output-> B: Connectivity matrix 
function B=Connectivity_Matrix(N,p,Inh_subfrac,Inh_Incre) 
Xe=[rand(N*N*0.8*p,1);zeros(N*N*0.8*(1-p),1)]; % random ext. weights 
Xi=-[rand((N*N*0.2*p),1);zeros(N*N*0.2*(1-p),1)];% random inh. weights 
Xe=Xe(randperm(N*N*0.8)); %reaarranging exct. entries 
Xi=Xi(randperm(N*N*0.2)); %reaarranging inh. entries 
Ye=reshape(Xe,[N,0.8*N]); % reshape 1D to 2D 
Yi=reshape(Xi,[N,0.2*N]); 
Y=[Ye,Yi]; % combine Exct. and Inh. columns 
B=Y./max(abs(eig(Y))); % set max eigenvalue 1 
B(:,800:800+Inh_subfrac)=Inh_Incre*B(:,800:800+Inh_subfrac);% create 

inhomogeneity in inh. Weights 

 
%To simulate model dynamics for paradoxical change 
%function: ModelDynamics 
%Input->T: simulation time; Trans: transient steps 
%Del_I: change in inhibition factor; B: connectivity matrix 
%Output-> nev: 1D Model time-series 
function nev=ModelDynamics(T,Trans,extr,Del_I,B) 
N=size(B,1);% size of network 
imask=sum(B,1)<0; % index array for inhibitory neurons 
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nev=false(N,T); 
%evolve dynamics 
for t=1:Trans+(T-Trans)/2 
    inp = B*nev(:,t)+extr; % synaptic input 
    nev(:,t+1)= inp>rand(N,1); % activation step 
end 
B(:,imask)=B(:,imask)*Del_I; % changing all inhibitory weights 
for t=1+Trans+(T-Trans)/2:T-1 
    %determine who spikes at time t+1 
    inp = B*nev(:,t)+extr; % synaptic input 
    nev(:,t+1)= inp>rand(N,1); % activation step 
end 

 

%To calculate Delta from spike counts data 
%function Delta 
%input-> spkcnt: spike counts 
%output-> delSpike,delTSpike: Delta values for neurons and population 
function [delSpike,delTSpike]=Delta(spkcnt) 
r1=sum(spkcnt(:,round(size(spkcnt,2)/2)+1:end),2); 
r0=sum(spkcnt(:,1:round(size(spkcnt,2)/2)),2); 
delSpike=(r1-r0)./(r1+r0); 
delTSpike=(sum(r1)-sum(r0))./(sum(r1)+sum(r0)); 

 
%To generate Motif data from connectivity and delta data 
%function Ilist_gen 
%Input-> B: connectivity matrix, D: Delta values of neurons 
%dset: index of target neurons 
%Output-> Ilist_new: raw Motif data  
function Ilist_new=Ilist_gen(dset,B,D) 
Ilist=false(0,6); 
q1=1; 
wthresh=0.5; %threshold for deciding if a synapse is weak or strong 
for i=dset 
    inset=find(B(i,:)~=0); 
    for j=inset 
        inset2=find(B(j,:)~=0); 
        for k=inset2 
            Ilist(q1,1:2)=[B(i,j) B(j,k)]>0; %E or I (1 or 0)synapse weights 
            Ilist(q1,3:4)=D([j k])>0; %delta + or - (1 or 0) 
            Ilist(q1,5:6)=abs([B(i,j) B(j,k)])>wthresh; %synapse strong or 

weak (1 or 0) 
            q1=q1+1; 
        end 
    end 
end 
% readjusting Motif Matrix 
Ilist_new(1)=Ilist(1); 
Ilist_new(2)=Ilist(3); 
Ilist_new(3)=Ilist(5); 
Ilist_new(4)=Ilist(2); 
Ilist_new(5)=Ilist(4); 
Ilist_new(6)=Ilist(6); 

 

%To estimate motif probabilities based on raw motif data 
%function MotifP_calculation 
%Input-> Ilist: raw motif data; All_Motifs: All possible motifs 
%ens_count: number of realizations 
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function MotifProb=MotifP_calculation(Ilist,All_Motifs,ens_count) 
MotifProb=zeros(64,ens_count); 
for trials=1:ens_count 
    [C,~,IC]=unique(Ilist,'rows'); 
    PMotif=histc(IC,1:max(IC))/sum(histc(IC,1:max(IC))); 
    for i=1:64 
        for j=1:size(C,1) 
            if C(j,:)==All_Motifs(i,:) 
                MotifProb(i)=PMotif(j); 
            end 
        end 
    end 
end 

 
%Transform All_Motif matrix to fit the figure representation 
function All_Motif_new=AllMotif_transform(All_Motifs) 
All_Motif_new(:,1)=All_Motifs(:,6); 
All_Motif_new(:,4)=All_Motifs(:,5); 
All_Motif_new(:,2)=All_Motifs(:,4); 
All_Motif_new(:,5)=All_Motifs(:,3); 
All_Motif_new(:,3)=All_Motifs(:,2); 
All_Motif_new(:,6)=All_Motifs(:,1); 
All_Motif_new=double(All_Motif_new); 
All_Motif_new((All_Motif_new(:,1)==1),1)=2; 
All_Motif_new((All_Motif_new(:,1)==0),1)=1; 
All_Motif_new((All_Motif_new(:,4)==1),4)=2; 
All_Motif_new((All_Motif_new(:,4)==0),4)=1; 
All_Motif_new((All_Motif_new(:,2)==0),2)=3; 
All_Motif_new((All_Motif_new(:,2)==1),2)=4; 
All_Motif_new((All_Motif_new(:,5)==0),5)=3; 
All_Motif_new((All_Motif_new(:,5)==1),5)=4; 
All_Motif_new((All_Motif_new(:,3)==0),3)=5; 
All_Motif_new((All_Motif_new(:,3)==1),3)=6; 
All_Motif_new((All_Motif_new(:,6)==0),6)=5; 
All_Motif_new((All_Motif_new(:,6)==1),6)=6; 

Main Code 

rng('shuffle'); 
N=1000;% size of network 
extr=0.8; %probability of firing due to random external input 
times=50; %factor by which subset of inhibitory neuron weights are increased 
T=1.1e5; %simulation time 
Trans=1e4; % transient steps 
p=0.01; %connection probability 
InhNeuronEnhc=100; % subset of inhibitory neuron whose weights are increased 
tbins=1:500:(T-Trans); % bins of 500 time steps over which spike count is 

calculated 
if task==1 
Del_I=5;%0.5 %Overall network's Inhibitory signal modulation 
B=Connectivity_Matrix(N,p,InhNeuronEnhc,times); % create connectivity matrix 
nev=ModelDynamics(T,Trans,extr,Del_I,B); % simulate the dynamics 
% estimate spike counts in 500 steps of timebins 
spkcnt=zeros(N,length(tbins)); 
for i=1:N 
spkcnt(i,:)=histc(find(nev(i,Trans+1:end)),tbins); 
end 
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[deltaSpike,deltaTotalSpike]=Delta(spkcnt);% calculate delta values 
% Plotting data for single cases 
[~,idx]=sort(deltaSpike,'descend'); 
subset=(sum(isnan(deltaSpike))+1):1:1000; 
subplot(2,1,1) 
imagesc(500:500:500*tbins,subset-

sum(isnan(deltaSpike)),spkcnt(idx(subset),:)); 
subplot(2,1,2) 
imagesc(500:500:500*tbins,1,sum(spkcnt(:,1:199))/N); 
figure 
plot(sort(deltaSpike,'descend'),1:1:1000); 
hold on; 
plot(ones(length(deltaSpike),1)*deltaTotalSpike,1:1:N,'--r'); 
elseif task==2 
Del_I=[1,5,25,125];%[1,0.5,0.2,0.04,0.008];% 
Deltabins=linspace(-1,1,11);% bins for Delta values to estimate probabilities 
ens_count=100;% number of random network realizations 
for trials=1:ens_count 
B=Connectivity_Matrix(N,p,InhNeuronEnhc,times); 
for j=1:length(Del_I) 
nev=ModelDynamics(T,Trans,extr,Del_I(j),B); 
spkcnt=zeros(N,length(tbins)); 
for i=1:N 
spkcnt(i,:)=histc(find(nev(i,Trans+1:end)),tbins); 
end 
[deltaSpike(:,trials,j),deltaTotalSpike(trials,j)]=Delta(spkcnt); 
end 
end 
% estimating delta probabilities for neurons and populations 
for j=1:length(Del_I) 
DeltaSpikeList=deltaSpike(:,:,j); 
DeltaSpikeList=DeltaSpikeList(~isnan(DeltaSpikeList));        

h_SpikeRate(:,j)=hist(DeltaSpikeList,Deltabins)/length(DeltaSpikeList); 
DeltaTotalSpikeList=deltaTotalSpike(:,j); 
DeltaTotalSpikeList=DeltaTotalSpikeList(~isnan(DeltaTotalSpikeList)); 
        

h_TotalSpikeRate(:,j)=hist(DeltaTotalSpikeList,Deltabins)/length(DeltaTotalSp

ikeList); 
end 
subplot(2,1,1) 
imagesc(Del_I,Deltabins,h_SpikeRate); 
title('Delta neuron spike rate'); 
subplot(2,1,2) 
imagesc(Del_I,Deltabins,h_TotalSpikeRate); 
title('Delta Population spike rate'); 
elseif task==3 
%64 possible motifs (binary representation) 
% 1 : EE, D=++, W=ss 
% 2 : EE, D=++, W=sw 
% 3 : EE, D=++, W=ws 
% 4 : EE, D=++, W=ww 
% 5 : EE, D=+-, W=ss 
% 6 : EE, D=+-, W=sw 
% 7 : EE, D=+-, W=ws 
% 8 : EE, D=+-, W=ww 
Del_I=5;%0.5 
Deltabins=linspace(-1,1,11); 
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ens_count=1000; 
for trials=1:ens_count 
B=Connectivity_Matrix(N,p,InhNeuronEnhc,times); 
nev=ModelDynamics(T,Trans,extr,Del_I,B); 
spkcnt=zeros(N,length(tbins)); 
for i=1:N 
spkcnt(i,:)=histc(find(nev(i,Trans+1:end)),tbins); 
end 
[deltaSpike(:,trials),deltaTotalSpike(trials)]=Delta(spkcnt); 
%delta vector 
D=deltaSpike(:,trials)'; 
dset=find(D>0.5); 
%dset=find(D<-0.5); 
randlist=randperm(N); 
dset_random=randlist(1:length(dset)); 
Ilist{trials}=Ilist_gen(dset,B,D);% generate Input motif data from 

paradoxical neurons 
Ilist_rand{trials}=Ilist_gen(dset_random,B,D);% generate Input motif data 

from randomly selected neurons 
%find unique motifs and count them 
for i=1:64 
All_Motifs(i,:)=logical(de2bi(i-1,6)); % all possible input motifs cases 
end 
All_Motifs=flipud(All_Motifs);% adjustment of matrix 
All_Motifs=fliplr(All_Motifs); 
% calculate motif probabilities for Input to paradoxical neurons        

MotifProb(:,trials)=MotifP_calculation(Ilist{trials},All_Motifs,ens_count); 
% calculate motif probabilities for Input to randomly selected neurons        

MotifProb_rand(:,trials)=MotifP_calculation(Ilist_rand{trials},All_Motifs,ens

_count); 
end 
% mean motif probabilities 
meanMotifProb=mean(MotifProb,2); 
meanMotifProb_rand=mean(MotifProb_rand,2); 
%Kullback–Leibler KL Divergence using motif probabilities 
KL_value=-meanMotifProb.*log(meanMotifProb_rand./meanMotifProb); 
% ttest rejects the null hypothesis at the 5% significance level or p-value 

<0.05. 
% null hypothesis is for ttest(x,y) mean(x)=mean(y) without assuming equal 
% variances 
for i=1:64       

[hvalue(i),pvalue(i)]=ttest2(MotifProb(i,:),MotifProb_rand(i,:),'Vartype','un

equal'); 
end 
% Plotting data for top 95% of motif probabilites that exist in network 
[Sorted,SortedLabel]=sort(abs(meanMotifProb),'descend'); 
for i=1:length(Sorted) 
if (sum(Sorted(1:i))>=0.95) 
i_final=i-1; 
break; 
end 
end 
meanMotifProb_Plot=meanMotifProb(SortedLabel(1:i_final)); 
meanMotifProb_rand_Plot=meanMotifProb_rand(SortedLabel(1:i_final)); 
KL_value_Plot=KL_value(SortedLabel(1:i_final)); 
All_Motifs_Plot=All_Motifs(SortedLabel(1:i_final),:); 
SortedLabel_Plot=SortedLabel(1:i_final); 
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p_Plot=pvalue(SortedLabel(1:i_final)); 
All_Motif_new=AllMotif_transform(All_Motifs); 
All_Motif_new_Plot=AllMotif_transform(All_Motifs_Plot); 
figure 
map=([1 0 0;0.4 0 0; 0 1 0;0 0.4 0;0 0 1;0 0 0.4]); 
figure 
subplot(2,1,1) 
bar([meanMotifProb,meanMotifProb_rand]); 
subplot(2,1,2) 
imagesc(All_Motif_new'); 
colormap(map) 
figure 
subplot(2,1,1) 
bar(KL_value_Plot); 
subplot(2,1,2) 
imagesc(All_Motif_new_Plot'); 
colormap(map) 
else 
disp('Enter 1,2 or 3 only') 
end 


