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 Abstract 

Nanostructures of noble metals show unique plasmonic behavior in the visible to near-

infrared light range. Gold nanostructures exhibit a particularly strong plasmonic response for 

these wavelengths of light. In this study we have investigated optical enhancement and 

absorption of gold nanorods with different thickness using finite element method simulations. 

This study reports on the resonance wavelength of the sharp-corner and round-corner rectangles 

of constant length 100 nm and width 60 nm. The result shows that resonance wavelength 

depends on the polarization of the incident light; there also exists a strong dependence of the 

optical enhancement and absorption on the thickness of gold nanorods. 
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1 Chapter: INTRODUCTION 

1.1 Motivation 

The conduction electrons of metal nanoparticles oscillate collectively when incident light 

illuminates the metal nanoparticles. This collective oscillation is known as a surface plasmon or 

simply just a plasmon. Local-field enhancements, light absorption and scattering occur at the 

resonant wavelength because of the large optical polarization [1]–[3]. Due to their small volume, 

gold nanorods exhibit little radiation damping as a result they show large local-field 

enhancement factors and large light scattering efficiency. Because of these characteristics 

nanorods prove interesting for optical applications [1].  

Nanorods can be used as nanoantennae. Nanoantenne have been shown useful for many 

applications such as in enhancing light-emitter interactions [4]–[6], high-resolution microscopy 

and spectroscopy [7], optical sensors [8]–[11], plasmonics in THz range [12], solar cells [13]–

[19], etc.   

Saylor et al. studied optical enhancement of gold nanowires and triple nanowire arrays 

using a two dimensional finite element method and they observed that increasing the width of the 

nanowire redshifted the resonance wavelengths [20]. Qiu et al. observed the plasmon resonance 

and saturable absorption of gold nanorods [21]. Jain et al. studied colloidal gold nanorods in 

different refractive index; they also studied plasmon coupling between gold nanodiscs. They 

found that the near-field coupling strength between two nanodiscs [22]. Plasmonic properties of 

metal nanostructures depend on their size, shape and dielectric environment. For the triangular 

silver prism, extinction spectra have been studied and multimode resonances have been found 

[23]. The light scattering from nanocuboid and rectangular cuboidal nanoantennae are calculated 
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by an analytical approach [24]. Using a quasistatic approximation, plasmon energy distribution, 

linewidth, resonant frequency of the nanostructures, and the effect of the optical gain were driven 

by Wang et al. [25]. Nanostructures can be made in many different ways; Shao et al. have shown 

that chemically grown nanostructures show larger scattering amplitudes than nanostructures 

created via electron beam lithography [26]. Langhammer et al. have studied Pt, Pd, Ag, and Au 

nanodiscs made by a hole-mask colloidal lithography process, and they observed that increasing 

the radius of the discs blue shifted, the scattering, absorption and extinction efficiency spectra 

shifts toward blue [27].  

Aluminum is also a promising candidate in plasmonic research because of its low cost and 

availability. It also shows versatile optical properties on optical frequencies. Knight et al studied 

Al nanostructures and they have calculated scattering spectra for normal incidence; they found 

that with increasing length of the nanoantenna, the resonant wavelength decreases toward the 

ultraviolet light regime [28], [29]. Extinction spectra were observed in Al nanospheres made by 

extreme ultraviolet lithography; increasing the diameter of the nanoparticles caused the plasmon 

resonance to shift toward red. For the same size of the nanoparticles of different metals such as 

gold, aluminum and silver show different peak resonances [30]. Lecarme et al. fabricated Al 

nanorods using electron beam lithography and observed absorption at near-infrared wavelengths 

[31].  

Giannini et al. fabricated gold nanoparticles of different shapes using electron beam 

lithography, and they have experimentally shown the scattering intensity and the resonance 

wavelengths of the nanoparticles. They have also calculated the depolarization factor as a 

function of cuboid length and ellipsoid length [32]. Zhang et al. studied substrate-induced Fano 

resonances of Ag nanocubes and found a strong substrate effect on localized surface plasmon 
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resonances [10]. Muskens et al. measured the scattering spectra of gold nanorods of various 

lengths, and they found, that increasing the length of the nanorods shifted the resonance 

wavelengths toward blue [33]. Polarization dependent plasmonic resonance was by Huang et al. 

using dark field microscopy, and they found that resonant modes strongly depend on the incident 

light polarization [34]. They also found multiple plasmon modes and near-field enhancement 

using surface-enhanced Raman scattering in closely spaced gold nanorod arrays [35].  

The full width half maxima (FWHM) of the absorption band of gold nanorods fabricated 

chemically were studied as a function of aspect ratio. The Drude model and quasi-static model 

were used to calculate FWHM, and it was found that the longitudinal absorption peak is wider 

than that of the transverse mode. It was also found, that increasing the aspect ratio nonlinearly 

increased the FWHM of longer wavelength absorption peaks [36]. Kooij et al. studied the 

influence of size and shape of randomly oriented nanorods on their optical properties using 

discrete dipole approximation (DDA). They observed that longitudinal plasmon resonance of the 

nanorods is affected by rod aspect ratio [37], [38]. Hill et al. investigated a computational 

electromagnetic analysis of GaAs photodetectors with gold interdigital electrodes and found 

photoresponse of the device depends largely on spacing between the electrodes and on the 

incident light polarization [39]. Abbey et al. studied the photocurrent generation and and the 

effect of the Ti adhesion layer used to adhere the gold nanostructures to the GaAs substrate [40]. 

Wu et al investigated angle-resolved plasmonic properties of single gold dimers [41].                   



4 

 

1.2 Finite element method (FEM) 

1.2.1 Principle of the finite element method: 

Converting partial differential equations into linear algebraic equation sets in order to 

produce approximate solutions for the boundary-value problems is known as the finite element 

method [42], [43]. So far, two methods are being used to formulate the finite element method: 

the variational method and the weighted residual method. The weighted residual method starts 

working from the partial differential equation of the boundary-value problem. The variational 

method starts from the variational representation of the boundary-value problem. Here, weighted 

residual method is discussed. 

Let us consider a partial differential equation 

 𝔗𝜑 = 𝑓 (1.1) 

here, 𝔗 known as the differential operator and 𝜑 is the unknown solution, and 𝑓 is called the 

source function. Now, 𝜑 is expressed as a set of basis functions. 

 𝜑 = ∑ 𝑐𝑗𝑣𝑗

𝑁

𝑗=1

 (1.2) 

where, 𝑐𝑗 represents the expansion coefficients corresponding to the basis functions 𝑣𝑗  where j = 

1, 2, 3… N. Substituting equation (1.2) into equation (1.1) and then integrating over the entire 

solution domain Ω, with a weighted function wi gives 

 ∫ 𝑤𝑖𝔗 (∑ 𝑐𝑗𝑣𝑗

𝑁

𝑗=1

) 𝑑Ω = ∫ 𝑤𝑖𝑓𝑑Ω (1.3) 
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From equation (1.3), 𝑐𝑗 can be determined by applying proper boundary conditions to the 

problem. By choosing wi = vi and formulating it like Galerkin’s method [44], equation (1.3) can 

be written as: 

 ∑ 𝑐𝑗 ∫ 𝑣𝑖𝔗(𝑣𝑗)𝑑Ω

𝑁

𝑗=1

= ∫ 𝑣𝑖𝑓𝑑Ω  (1.4) 

here, i=1, 2, 3, 4………..N.  

Let 𝑆𝑖𝑗 = ∫ 𝑣𝑖𝔗(𝑣𝑗)𝑑Ω and 𝑏𝑖 = ∫ 𝑣𝑖𝑓𝑑Ω then equation (1.4) can be written as: 

 ∑ 𝑆𝑖𝑗𝑐𝑗

𝑁

𝑗=1

= 𝑏𝑖 (1.5) 

𝑆𝑖𝑗 = 𝑆𝑗𝑖 for a self-adjoint problem, and the coefficient matrix that can be obtained from 

equation (1.5) is symmetric. In that case 

 ∫ 𝑣𝑖𝔗(𝑣𝑗)𝑑Ω = ∫ 𝑣𝑗𝔗(𝑣𝑖)𝑑Ω (1.6) 

The difficult part of the finite element method is to find a set of basis functions. To 

simplify the solution determined by the finite element method, one first needs to divide the 

domain into small subdomains, which are known as finite elements; then uses a simple function 

to approximate the unknown solutions for each element. These functions could be linear or 

quadratic.  
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1.2.2 Finite element method for electrodynamics  

Consider a domain with electric current density J, which has permittivity ε and 

permeability μ. Due to this current density the electric field intensity E can be calculated by the 

Maxwell’s equations. 

 ∇ × 𝑬 = −𝑗𝜔𝜇𝑯 (1.7) 

 ∇ × 𝑯 = 𝑗𝜔𝜀̃𝑬 + 𝑱 (1.8) 

 ∇. (𝜀̃𝑬) = −
1

𝑗𝜔
∇. 𝑱 (1.9) 

 ∇. (𝜇𝑯) = 0 (1.10) 

 

By eliminating H from equation (1.7) and (1.8), the equations can be combined as: 

 ∇ × (
1

𝜇𝑟
∇ × 𝑬) − 𝑘0

2𝜀𝑟𝑬 = −𝑗𝑘0𝑍0𝑱 (1.11) 

 ∇ × (
1

𝜇𝑟
∇ × 𝑬) − 𝑘0

2 (𝜀𝑟 −
𝑗𝜎

𝜔𝜀0
) 𝑬 = 0 (1.12) 

where 𝜇𝑟 =
𝜇

𝜇0
 is the relative permeability and 𝜀𝑟 =

�̃�

𝜀0
 is called relative permittivity. 

 Also 𝑘0 is called the free space wavenumber and 𝑍0is called the intrinsic impedance. 

 𝑘0 = 𝜔√𝜇0𝜀0 (1.13) 

 𝑍0 = √𝜇0
𝜀0

⁄  (1.14) 

Typically for a perfectly conducting surface, homogenous Dirichlet conditions are used, 

and mixed boundary conditions are used for the impedance surface. For these two conditions, the 

following are assumed. 

 �̂� × 𝑬 = 𝑷          on ΓD (1.15) 
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 �̂� × (
1

𝜇𝑟
∇ × 𝑬) +

𝑗𝑘0

𝜂𝑟
�̂� × (�̂� × 𝑬) = 𝑲𝑁     on ΓN (1.16) 

where P is the tangential value of the electric field on ΓD,  𝜂𝑟 is known as normalize surface 

impedance on ΓN, and KN is a known function representing a boundary source on ΓN. 

 Now equation (1.11) is multiplied by an appropriate weighting function Wi and integrated 

over the problem domain. 

 ∫ 𝑾𝑖 . [∇ × (
1

𝜇𝑟
∇ × 𝐸) − 𝑘0

2𝜀𝑟𝐸] 𝑑Ω = −𝑗𝑘0𝑍0 ∫ 𝑾𝑖 . 𝐽𝑑Ω  (1.17) 

By using the vector identity 

 ∇. [𝑾𝑖 × (
1

𝜇𝑟
∇ × 𝑬)] =

1

𝜇𝑟

(∇ × 𝑾𝑖). (∇ × 𝑬) − 𝑾𝑖 . [∇ × (
1

𝜇𝑟
∇ × 𝑬)] (1.18) 

and Gauss’s theorem 

 ∫ ∇. [𝑾𝑖 × (
1

𝜇𝑟
∇ × 𝑬)] 𝑑Ω = ∮ 𝑛.̂ [𝑾𝑖 × (

1

𝜇𝑟
∇ × 𝑬)] 𝑑Γ (1.19) 

we obtain the weak-form representation of equation (1.11) as 

 

∫ [
1

𝜇𝑟

(∇ × 𝑾𝑖). (∇ × 𝑬) − 𝑘0
2𝜀𝑟𝑾𝑖. 𝑬] 𝑑Ω

= ∫
1

𝜇𝑟

(�̂� × 𝑾𝑖). (∇ × 𝑬)𝑑Γ

− ∫ [
𝑗𝑘0

𝜂𝑟

(�̂� × 𝑾𝑖). (�̂� × 𝑬) + 𝑾𝑖 . 𝑲𝑁] 𝑑Γ

− 𝑗𝑘0𝑍0 ∫ 𝑾𝑖 . 𝑱𝑑Ω 

(1.20) 

after the boundary condition in equation (1.16) is applied.  

To get the numerical solution of equation (1.20) using the finite element method, the entire 

domain Ω is divided up into small finite elements. For a 2-D domain, triangular elements and for 

3-D domain tetrahedral elements need to be made. The method takes into account the tangential 
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components of the electric field at the edge of each element, and then interpolates E elsewhere 

using a vector basis function [42]. The electric field in a tetrahedral element is shown as 

 

𝐸(𝑒)(𝑥, 𝑦, 𝑧) = 𝑵12
(𝑒)(𝑥, 𝑦, 𝑧)𝐸12

(𝑒)
+ 𝑵13

(𝑒)(𝑥, 𝑦, 𝑧)𝐸13
(𝑒)

+ 𝑵14
(𝑒)(𝑥, 𝑦, 𝑧)𝐸14

(𝑒)

+ 𝑵23
(𝑒)(𝑥, 𝑦, 𝑧)𝐸23

(𝑒)
+ 𝑵24

(𝑒)(𝑥, 𝑦, 𝑧)𝐸24
(𝑒)

+ 𝑵34
(𝑒)(𝑥, 𝑦, 𝑧)𝐸34

(𝑒)
 

(1.21) 

where 𝐸𝑙𝑘
(𝑒)

 is known as the tangential components of the electric field at the edge of the element 

e that connects the node l and k. Also the interpolation function is defined by 𝑁𝑙𝑘
(𝑒)

, which is 

known as basis function. Now 𝑁𝑙𝑘
(𝑒)

 can be defined as 

𝑵𝑙𝑘
(𝑒)(𝐫) = [𝑁𝑙

(𝑒)
∇𝑁𝑘

(𝑒)
− 𝑁𝑘

(𝑒)
∇𝑁𝑙

(𝑒)
]𝑙𝑙𝑘

(𝑒)
         𝑙 < 𝑘 

here, 𝑁𝑙
(𝑒)

 and 𝑁𝑘
(𝑒)

 are the linear scalar interpolation functions associated with nodes l and k of a 

tetrahedral element and 𝑙𝑙𝑘
(𝑒)

is known as the signed length of the edge that connects the nodes l 

and k. Using interpolated tangential values of the electric field in each element, the total field E 

can be expressed as 

 𝑬 = ∑ 𝑵𝑗𝐸𝑗

𝑁𝑒𝑑𝑔𝑒

𝑗=1

+ ∑ 𝑵𝑗
𝐷𝐸𝑗

𝐷

𝑁𝐷

𝑗=1

 (1.22) 

here, 𝑁𝑒𝑑𝑔𝑒 is the total number of edges excluding those on ΓD, Ej denotes the tangential 

component of E at the jth edge and Nj is the corresponding vector basis function and total 

number of edges denoted by ND. Also 𝐸𝑗
𝐷and 𝑵𝑗

𝐷 are known as the tangential E- field and 

corresponding basis functions, respectively. Nj spans over nearer elements adjacent to edge j. 

Now equation (1.22) is plugged in the equation (1.20) and, we obtain 
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 ∑ 𝐾𝑖𝑗𝐸𝑗

𝑁𝑒𝑑𝑔𝑒

𝑗=1

= 𝑏𝑗 (1.23) 

where 

𝐾𝑖𝑗 = ∫ [
1

𝜇𝑟

(∇ × 𝑵𝑖). (∇ × 𝑵𝑗) − 𝑘0
2𝜀𝑟𝑵𝑖. 𝑵𝑗] 𝑑Ω + 𝑗𝑘0 ∫ [

1

𝜂𝑟

(�̂� × 𝑵𝑖). (�̂� × 𝑵𝑗)] 𝑑Γ 

and 

𝑏𝑖 = −𝑗𝑘0𝑍0 ∫ 𝑵𝑖. 𝑱 𝑑Ω − ∫ 𝑵𝑖. 𝑲𝑁 𝑑Γ − ∑ 𝐸𝑗
𝐷 ∫ [

1

𝜇𝑟

(∇ × 𝑵𝑖). (∇ × 𝑵𝑗
𝐷) − 𝑘0

2𝜀𝑟𝑵𝑖. 𝑵𝑗
𝐷] 𝑑Ω

𝑁𝐷

𝑗=1

 

The integral over ΓD in equation (1.20) vanishes because of �̂� × 𝑵𝑖 = 0 on ΓD. Then 

equation (1.23) can written as  

 [𝐾]{𝐸} = {𝑏} (1.24) 

where [𝐾], denotes a sparse and symmetric matrix which can be solved by a sparse matrix 

solver. When {E} is found then the electric field can be obtained all over the domain by equation 

(1.22).    
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2 Chapter: BACKGROUND 

2.1 Theoretical background 

2.1.1 Electrodynamics in matter 

In the low frequency regime, a small fraction of the electromagnetic waves penetrates 

matter when we consider the perfect or good conductor approximation. Field penetration 

increases in the metal at higher frequencies, i.e. near-infrared and visible light regions. In these 

regions, dissipation also occurs in the metal structures. In the ultraviolet frequencies metals 

obtain dielectric behavior, however in this region light waves can propagate through the metals. 

Noble metals such as gold, silver shows strong absorption at these wavelengths because of their 

interband transitions of the electrons. These dispersive properties of the metals can be described 

by the complex dielectric function ɛ (ω) [45]. Starting from the macroscopic electromagnetism of 

the Maxwell’s equations: 

 ∇. 𝑫 = 𝜌𝑒𝑥𝑡 (2.1) 

 ∇. 𝑩 = 0  (2.2) 

 ∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 (2.3) 

 ∇ × 𝑯 = 𝑱𝑒𝑥𝑡 +
𝜕𝑫

𝜕𝑡
 (2.4) 

These equations connect four macroscopic fields such as D, E, H and B, with the external 

charge and current densities 𝜌𝑒𝑥𝑡 and   𝑱𝒆𝒙𝒕. Here, D represents dielectric displacement, E is the 

electric field, H is the magnetic field and B is the magnetic induction of magnetic flux density. 

ρtot and Jtot can be defined as: 

 𝜌𝑡𝑜𝑡 = 𝜌𝑒𝑥𝑡 +  𝜌 (2.5) 
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  𝑱𝒕𝒐𝒕 = 𝑱𝒆𝒙𝒕 + 𝑱 (2.6) 

In equation (2.5) and (2.6) used ρ and J are known as internal charge and current 

densities. However, the external set (ρext,Jext) drives the system and internal the set (ρ, J)  

responds to the external set. 

 Inside the metal, the fields are connected via polarization P and magnetization M by 

 𝑫 = 𝜀0𝑬 + 𝑷 (2.7) 

  𝑯 =
𝑩

𝜇0
− 𝑴 (2.8) 

where, 𝜀0 is the electric permittivity of a vacuum and µ0 is the magnetic permeability of a 

vacuum. Considering the nonmagnetic case, polarization, internal charge density, ρ is linked with 

polarization, P (defined as electric dipole moment per unit volume inside the metals) by: 

 ∇. 𝑷 = −𝜌 (2.9) 

and charge conservation is defined by: 

 ∇. 𝑱 =
𝜕𝜌

𝜕𝑡
 (2.10) 

From equation (2.9) and (2.10), a relationship between J and P can be obtained. 

 𝑱 =
𝜕𝑷

𝜕𝑡
 (2.11) 

By putting equation (2.7) in equation (2.1), the relationship between the electric field and 

total charge density is obtained 

 ∇. 𝑬 =
𝜌𝑡𝑜𝑡

𝜀0
 (2.12) 

For a linear, isotropic and nonmagnetic medium, dielectric displacement (D) and 

magnetic flux density (B) can be defined as:  

 𝑫 = 𝜀𝑟𝜀0𝑬  (2.13) 
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and  

 𝑩 = 𝜇𝜇0𝑯 (2.14) 

here, 𝜀𝑟(𝜔) =
�̃�(𝜔)

𝜀0
  [46], εr is known as dielectric constant also known as relative permittivity 

and μ is known as the relative permeability of the magnetic medium, 𝜀0 is the vacuum 

permittivity and 𝜀̃(𝜔) is the complex frequency-dependent absolute permittivity of the material. 

However, there is a relationship between polarizations and the electric field described in [47]. 

 𝑷 = 𝜀0𝜒𝑬 (2.15) 

 

And  

 𝜀𝑟(ω) =
𝜀̃(𝜔)

𝜀0
= 1 + 𝜒 (2.16) 

here, 𝜒 is the electric susceptibility [46]. Also the current density has a relationship with the 

electric field [48], [46]: 

 𝑱 = 𝜎𝑬 (2.17) 

These equations are true for the linear media where it does not show temporal or spatial 

dispersion. The optical response of metals depends on the frequency. It also depends on the wave 

vector. We can generalize the linear relationship by taking account of the non-locality in time 

and space. 

 𝑫(𝒓, 𝑡) = 𝜀0 ∫ 𝑑𝑡′𝒅𝒓′𝜀𝑟(𝒓 − 𝒓′, 𝑡 − 𝑡′)𝑬(𝒓′, 𝑡′) (2.18) 

  𝑱(𝒓, 𝑡) = ∫ 𝑑𝑡′𝒅𝒓′𝜎(𝒓 − 𝒓′, 𝑡 − 𝑡′)𝑬(𝒓′, 𝑡′) (2.19) 

Applying the Fourier transformation we can decompose the fields into plane wave 

components as functions of K and angular frequency ω. Then we can get, 
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 𝑫(𝑲, 𝜔) = 𝜀0𝜀𝑟(𝑲, 𝜔)𝑬(𝐾, 𝜔) (2.20) 

 𝑱(𝑲, 𝜔) = 𝜎(𝑲, 𝜔)𝑬(𝑲, 𝜔) (2.21) 

Using these equations we get the final relationship between the dielectric constant and the 

conductivity. 

 𝜀𝑟(𝑲, 𝜔) = 1 +
𝑖𝜎(𝑲, 𝜔)

𝜀0𝜔
 (2.22) 

When the light interacts with metals, the dielectric constant εr (ω, K) can be simplified by εr 

(ω, K=0), it is assumed that the limit of a spatially local response. This simplification only works 

when the wavelength in the material is longer than the size of the unit cell or mean free path of 

the electrons. This simplification works well at ultraviolet frequencies [45]. 

At low frequencies, εr describes the response of the bound charges to the incident electric 

field and σ describes the contribution of free charges to the current flow. Dielectric function is a 

complex function and it can be obtained from the complex refractive index which is described in 

chapter 4. The real value of the refractive index can be defined as: 

 𝑛2 =
𝜀1

2
+

1

2
√𝜀1

2 + 𝜀2
2 (2.23) 

where, ε1 is knows as real part of the dielectric constant and ε2 is known as the imaginary part of 

the dielectric function. The imaginary value of the refractive index can be defined as: 

 𝜅 =
𝜀2

2𝑛
 (2.24) 

here, κ is called the extinction coefficient. Optical absorption inside the medium due to the 

electromagnetic wave can be determined by the κ. The absorption coefficient (α) is defined by in 

Beer’s law which describes the attenuation of beam intensity when it propagates through the 

medium (𝐼(𝑥) = 𝐼0𝑒−𝛼𝑥) by the relation 
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 𝛼(𝜔) =
2𝜅(𝜔)𝜔

𝑐
 (2.25) 

However, the amount of the absorption inside the medium can be determine by the 

imaginary part of the dielectric constant. From the Maxwell equation, travelling wave can be 

expressed as below in the time and Fourier domain, respectively. 

 ∇ × ∇ × 𝑬 = 𝜇0

𝜕2𝑫

𝜕𝑡2
 (2.26) 

  𝑲(𝑲. 𝑬) − 𝐾2𝑬 = −𝜀𝑟(𝑲, 𝜔)
𝜔2

𝑐2
𝑬   (2.27) 

here, 𝑐 =
1

√𝜀0𝜇0
 is the velocity of light in vacuum. Based on the direction of the polarization of 

the electric field vector, two cases need to be considered. 

For the transverse wave case: 𝑲. 𝑬 = 0 and we get the dispersion relationship 

 𝐾2 = 𝜀𝑟(𝑲, 𝜔)
𝜔2

𝑐2
 (2.28) 

For the longitudinal wave case: We get 

 𝜀𝑟(𝑲, 𝜔) = 0 (2.29) 

This equation explains the longitudinal collective oscillation can only occurs when the 

frequencies corresponding to zeros of εr (ω) [45].  
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2.1.2 Plasmonics 

There is a lot of interest at present in the plasmonic behavior of nanostructures. In order to 

discuss plasmonics, an understanding of plasmons is very important. A plasmon is the collective 

oscillation of the free electrons at the nanostructure surface. To get a clear picture about 

plasmons, suppose a metal conductor is placed inside an external electric field which is a 

constant value. Let us say that the electric field pointing to the right. Free electrons will move to 

the left side as a result the electric field inside the metal conductor goes to zero. If the external 

electric field is suddenly turned off; the electrons will move to the right towards the positive ions 

by the Coulomb force but they also repelled by each other because of the same charge. This will 

cause the electrons to start to oscillate and this oscillation is a damped oscillation. They oscillate 

at the plasma frequency and this oscillation lasts until the energy is dissipated [49], [50].  

Figure 2.1 illustrates the plasmon mechanism when an external electric field is applied on a 

bulk metal. This electron oscillation is called a bulk plasmon. 

  



16 

 

 
Figure 2.1: Static electric field across gold structure. 

 

Light is an electromagnetic wave. It has both electric and magnetic fields. The fields 

oscillate as they propagate. Metals behave differently when the light passes through them 

depending on their size, shape, and surrounding medium. Optical properties of the metal 

nanostructures are very different than those of bulk structures. When the light interacts with the 

material, its electric field can exert an oscillating force on the conducting free electrons. For 

conducting materials, free electrons are present at the surface. When light is incident upon the 

surface of a metal, tangential oscillating fields along the surface can move the electrons back and 

forth, and produce longitudinal charge density waves. These waves are surface plasmons. 

Surface plasmons can produce local electric fields around the surface. The strongest field 

enhancement occurs close to the edges or in gaps between the nanostructures. Surface plasmons 

show resonant behavior at specific incident light frequencies. This frequency or wavelength is 



17 

 

known as the surface plasmon resonance frequency or the surface plasmon resonance wavelength 

[49].  

2.1.3 Localized surface plasmon resonances (LSPR)   

In the visible to near-infrared (NIR) electromagnetic region, metal nanostructures show 

unique optical resonances. Electrons of the metal nanoparticles have resonant responses to the 

electric field of the light [22], [51], [52]. The Drude model describes the free electron response 

based on the dielectric function [2], [22].     

 𝜀𝐷𝑟𝑢𝑑𝑒 = 1 −
𝜔𝑝

2

𝜔2 + 𝑖𝛾𝜔
 (2.25) 

here ω is the incident light frequency, γ is the electron collision frequency in the bulk 

nanostructure, and ωp is the plasma frequency of the free electrons. Plasma frequency can be 

calculated using the free electron density N in the metal and the effective mass me of the 

electrons as: 

 𝜔𝑝 = √
𝑁𝑒2

𝜀0𝑚𝑒
 (2.26) 

Bound electrons have contribution to get the dielectric function. With the Drude model, a 

high frequency of the dielectric function part was added to get the good response for the 

electrons in the incident electromagnetic field [22], [53].  

 𝜀𝑟 = 𝜀∞ −
𝜔𝑝

2

𝜔2 + 𝑖𝛾𝜔
 (2.27) 

When the light illuminates the nanoparticles, the electric field induces waves of collective 

electrons oscillations on the surface. This phenomenona is called localized surface plasmon 

resonance (LSPR). Different order of resonance modes are included with this wave depending on 

the size and shape of the nanostructures. Each mode has a different frequency. If the size of the 
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particle is less than the light wavelength then it is considered that oscillation of the electrons is 

dipolar in nature [22], [54]. Using dipolar polarizability, α [22], [55], the collective oscillation of 

the electrons can be described. 

 𝛼 = (1 + κ)𝜀0𝑉
(𝜀𝑟 − 𝜀𝑚)

(𝜀𝑟 + 𝜅𝜀𝑚)
 (2.28) 

here V represents the volume of the nanostructure. The dielectric constant of the medium is 

defined by εm, the shape factor is defined by κ. Shape factor depends on the geometry of the 

surface where electrons are oscillating [11]. For different shapes, shape factors are different; for 

example, for a sphere κ =2. The case of maximum α means there is a strong resonance between 

the free electrons and the incident light. The condition at which polarizability gives maximum 

value at specific frequency is given by: 

 𝑅𝑒(𝜀𝑟(𝜔)) = −𝜅𝜀𝑚 (2.29) 

where Re represents the real part of the dielectric constant. This specific frequency denoted as 

ωsp, corresponds to the localized surface plasmon resonance (LSPR) frequency of the 

nanostructure. Finally, the localized surface plasmon resonance frequency can be determined by 

the bulk plasma frequency (ωp) of the free electrons, geometry of the nanostructure (κ) and 

dielectric constant of the surrounding medium (εm). 

 𝜔𝑠𝑝 = √
𝑁𝑒2

𝑚𝑒𝜀0(𝜀∞ + 𝜅𝜀𝑚)
 (2.30) 

The resonance frequency corresponding to the electron resonance frequency is 

determined by the real part of the dielectric function whereas imaginary part of the dielectric 

function contributes to the broadening and absorptive dissipation of the electron resonance [22].  
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2.1.4 An analytical approach of light scattering from the rectangular nanostructure  

An analytical approach is performed by Massa et al. to calculate the scattering, absorption 

and extinction coefficient. According to [24], a rectangular cuboid of volume V with length La = 

2a, width Lb = 2b, and Lc = 2c was considered. Its center is placed at the origin of the three 

dimensional coordinate system. The material properties of a rectangular cuboid are defined as a 

wavelength dependent, complex dielectric function ε, and the cuboid is surrounded by a 

background material with a dielectric constant εb. A plane electromagnetic wave,𝑬(𝒓) = 𝑬𝟎𝑒𝑖𝑘𝐵𝑧 

is used as an incident wave, and as a time varying field, 𝑒−𝑖𝜔𝑡is used. The polarization of the 

incident electric field is along the x direction, and the background wave vector is kB and it is 

expressed as: 

 𝑘𝐵 = √𝜀𝐵𝑘0 = √𝜀𝐵
𝜔

𝑐⁄  (2.31) 

Green function formalism [24] is used after the first analytical expression called the 

Meier-Wokaun approach[56]. The formalism is used from [57], [58] to get the expression for the 

scattered field in the far field. It is assumed that the field inside the cuboid is constant, and the 

field at the central point is obtained from the Meier-Wokaun formalism. By considering the 

depolarization effect in the volume and charges induced at the vertices, the field at the central 

point is calculated. The electric field inside the cuboid is calculated and can be expressed as 

 
𝐸𝑥 ,𝑖𝑛𝑡 =

𝐸0

1 −
𝜀𝑟 − 𝜀𝐵

4𝜋𝜀𝐵
[−2Ω − 𝛿 +

𝑘𝐵
2

2 𝛽 +
16
3 𝑖𝑘𝐵

3𝑎𝑏𝑐]

 
(2.32) 

where Ω is the solid angle subtended by the side perpendicular to the polarization axis of the 

rectangular cuboid. Ω is expressed as 

 Ω = 4 arcsin (
𝑏𝑐

√(𝑎2 + 𝑏2)(𝑎2 + 𝑐2)
) (2.33) 
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β, is the geometrical depolarization factor, expressed as 

 𝛽 = ∫ ∫ ∫
1

√𝑥2 + 𝑦2 + 𝑧2
(1 +

𝑥2

𝑥2 + 𝑦2 + 𝑧2
) 𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑎

−𝑎

𝑏

−𝑏

𝑐

−𝑐

 (2.34) 

δ, takes into account the polarization charges at the planar ends of the cuboid orthogonal to the x 

direction. It is expressed as 

 𝛿 =
8𝑎𝑏𝑐

(𝑎2 + 𝑏2 + 𝑐2)
3

2⁄

𝜀𝐵

𝜀𝑟
 (2.35) 

and the term 
16

3
𝑖𝑘𝐵

3𝑎𝑏𝑐 is used for the radiative correction to the field. The internal field 

can be used together with the dipolar expressions for the scattering and absorption cross sections: 

 𝜎𝑠𝑐𝑎 =
𝑘𝐵

4

6𝜋
|𝛼|2 (2.36) 

And 

 𝜎𝑎𝑏𝑠 = 𝑘𝐵ℑ(𝛼) (2.37) 

This polarizability, α, is obtained from the moment. 𝒑 = 𝜀0𝜀𝐵𝛼𝑬𝟎 and α can be defined 

as 

 

𝛼 = 8𝑎𝑏𝑐
(𝜀𝑟 − 𝜀𝐵)𝐸𝑥 ,𝑖𝑛𝑡

𝜀𝐵𝐸0

=
8𝑎𝑏𝑐

𝜀𝐵

𝜀𝑟 − 𝜀𝐵
−

1
4𝜋 [−2Ω − 𝛿 +

𝑘𝐵
2

2 𝛽 +
16
3 𝑖𝑘𝐵

3𝑎𝑏𝑐]

 

(2.38) 

Finally, the extinction cross section is defined as 

 𝜎𝑒𝑥𝑡 = 𝜎𝑠𝑐𝑎 + 𝜎𝑎𝑏𝑠 (2.39) 

Although using field inside the nanoantenna allows one to calculate the scattering, 

absorption and extinction cross section from dipolar formula, a more accurate result can be 
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obtained by considering scattering in the far field using the Green function formalism. Then, the 

scattering cross section is founded as 

 

𝜎𝑠𝑐𝑎 =
1

𝐸0
2 ∫ 𝑑𝑆 𝑟2|𝐸𝑠𝑐𝑎

𝐹𝐹 |2 

=
𝑘0

4|Δ𝜀|2

15𝜋𝐸0
2 {

8

63
𝑎2𝑏2𝑐2[1260 − 𝑘𝐵

2(84𝑎2 + 168𝑏2 + 168𝑐2)

+ 𝑘𝐵
4(3𝑎4 + 9𝑏4 + 9𝑐4 + 4𝑎2𝑏2 + 4𝑎2𝑐2

+ 6𝑏2𝑐2)]|𝐸𝑥 ,𝑖𝑛𝑡|
2

} 

(2.40) 

here, Δ𝜀 = 𝜀𝑟 − 𝜀𝐵. Also the extinction cross section expressed as 

 

𝜎𝑒𝑥𝑡 =
4𝜋

𝑘𝐵
2𝐸0

𝑅𝑒 [
−𝑖𝑘𝐵𝑟

𝑒𝑖𝑘𝐵𝑟
𝐸𝑥,𝑠𝑐𝑎]

= −
𝑘0

2

𝑘𝐵𝐸0
𝑅𝑒[𝑖∆𝜀𝐸𝑥,𝑖𝑛𝑡] (8𝑎𝑏𝑐 −

4𝑘𝐵
2

3
𝑎𝑏𝑐3) 

(2.41) 

where Re is the real part. The absorption cross section can be defines by equation (2.44) [5]. 
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3 Chapter: DEVICE FABRICATION 

3.1 Photolithography 

The sizes of the electronic devices are getting smaller day by day. The Very Large Scale 

Integration (VLSI) idea allow us to decrease the size of the devices and also increase the number 

of devices in a chip. In the micrometer range, photolithography plays an important role. Figure 

3.1 shows the principle of photolithography. The light source being used for this process will be 

ultraviolet light. UV rays are projected through the mask and focused by a lens on the 

photoresist, and making patterns on it. After exposure to the UV rays, a development process has 

to be performed.  

 

 
Figure 3.1: Photolithography process using patterned mask. 

Then metals are deposited on the sample by the evaporation process. After that, lift-off 

process is done. Finally, the desired structures are all that remains on the sample substrate.  
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Photolithography has a diffraction limit. To get a smaller size for the structure than the 

source light wavelength λ, the numerical aperture of the lens and light wavelength play an 

important role. From the Airy formula  

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑖𝑧𝑒, 𝑎 = 1.22 
𝜆

𝑁𝐴
 (3.1) 

where λ is the source light wavelength and NA is the numerical aperture of the lens. NA is 

defined as 

 𝑁𝐴 = 𝑛 𝑠𝑖𝑛𝜃 (3.2) 

where n is the refractive index of the surrounding medium and θ is the projection angle. 

Depending on the two equations, feature size can be decreased by reducing the value of the 

source light wavelength or increasing the value of the refractive index of the surrounding 

medium. Using near field lithography, the diffraction limit can be removed. But it is very hard to 

get sub-100 nm resolution by photolithography. The lower limit for the size of the structure 

created via photolithography is around 150 nm, which is large for the plasmonic nanostructures. 

People are using X-ray lithography with a source wavelength of 13.4 nm to get sub-100 nm 

lithography. But X-ray has some difficulties. It prevents working in transmission, multilayer 

coating needed for efficient reflective surface, and also it is not good for those are working with 

it continuously [59], [60], [61].    
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3.2 Electron Beam Lithography  

In 1936, accelerated electrons as an exposure source was proposed for microscopy instead 

of photons. Due to the lower wavelength value, for 100 keV of energy, the electron wavelength 

is around 3.9 pm which is smaller than the dimension of an atom [59]. As a result diffraction 

limit should not be an issue and we may get the images of the atoms. Aberrations and the beam 

size are fixed by the current probe which is defined by the number of electron per unit time. It 

can also produce precisly shape nanostructures [59]. 

De Broglie defines the wave-particle duality of the electrons and the wavelength of the 

electron is defined by 

 𝜆 =  
ℎ

𝑝
 (3.3) 

where, h is the Plank constant and p is the momentum of the electron. 

In the 1960s, Electron beam lithography based on the scanning electron microscopy (SEM) 

technology was proposed, where accelerated electrons are emitted by an electron gun. There are 

two types of electron guns normally used in the SEM, those being the thermionic emitter and 

field emission emitter [62]. For the thermionic emitter, electrons are excited by thermal energy 

and emit electrons by overcoming the barrier from the filament. In low vacuum, tungsten (W) is 

common thermionic emitter, while in high vacuum LaB6 is frequently used. For the field emitter 

gun, a large electric field is used for emitting the electron beam. Tungsten (W) or carbon 

nanotubes are commonly used for this emitter. Therefore, 10-50 keV is used between cathode 

and anode to emit the electron beam. Around 10-50 μm is the beam cross section for the 

thermionic emitter and 10-100 nm for the field emission emitter. This beam is demagnified by 

the magnetic lens. By varying the electric and magnetic field as a function of radial position, 
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electric and magnetic lenses can be made which controls the electrons. Magnetic lenses control 

the electron beam so that beam diameter makes small spot size.  

Unfortunately, these electron lenses have aberrations such as chromatic and spherical 

aberrations. Chromatic aberration is caused by different wavelength which in this case is 

different electron energies. Those aberrations cause huge problems for electron beam 

lithography. To get good size and shape of the nanostructures the aberrations need to be 

corrected. By reducing the value of the numerical aperture aberrations can be controlled. The 

resolution (R) is defined by the relation  

 𝑅 =  𝑘1

𝜆

𝑁𝐴
 (3.4) 

where k1 is the process dependent parameter in the range of 0.4-1.0, and NA is the numerical 

aperture [63]. From equation 3.4, if NA is very small the resolution becomes higher. Lower NA 

means lower aberration and higher NA causes higher aberration as well as lower resolution. This 

electron beam produces probe current 10-10 to 10-12 A on the sample surface.  

Electron beam lithography does not need a mask like photolithography to write a pattern on 

the photoresist. It can write directly on the photoresist. It has computer controlled beam blanking 

so that the beam can be controlled any time. It has various writing strategies such as raster scan, 

vector scan and variable shaped beam. Raster scan, scans back and forth and beam blanked is 

used where it is necessary. It is very easy but slow and here spot size can be adjusted. Using 

vector scan, beam can be taken where we want to write then performs raster scan and finally 

beam can come back to its original position. By this scan, only expected area can be exposed. It 

is relatively faster and used for the sparse patterns. For the case of variable shaped beam, a 

rectangle is projected to make the pattern.     
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However, beside all those benefits the electron beam lithography has some problems that 

limit the resolution of EBL. One of them is spot size, it can be controlled by the wavelength and 

numerical aperture typically from 0.5 nm to couple of nanometers. Sometimes spot size needs to 

be bigger for quick writing. Electron scattering inside the photoresist and substrate also can 

cause problems in writing. Additionally, if the current is too high then electron-electron 

repulsion can cause problems in resolution.    

In this system, the working distance between the final probe-forming lens and the specimen 

is kept relatively long so that magnetic effects on the sample can be kept at zero. This set-up can 

cause some problem for the size of the beam. 

Electron scattering is very important for the electron beam lithography. Electrons hit the 

photoresist and substrate and scatter causing a chemical change in the photoresist. Therefore, 

electron-material interactions play an important role in the electron beam lithography. The most 

important aspect of electron-material interactions is Rutherford scattering. Due to Rutherford 

scattering, electrons closer to the nucleus are deflected by the surrounding electron of the atoms. 

If the energy of the electron is low then it is deflected more than high energy electrons. When 

electrons are deflected straight back it is called backscattering. Also, when the electron hits the 

material it ionizes the atom and produces electrons called secondary electrons. These secondary 

electrons can also produce other secondary electrons. Finally, electrons can lose energy when 

they pass through the material and can be calculated by the Bethe formula [64].  

Scattering mechanisms were combined and modeled by a Monte Carlo simulation model. 

According to this model, low energy electrons can spread out when it travels down the 

photoresist. When they hit the high atomic number atom such as Ti / Cr or Si, many more 

backscattering events happen and electrons lose energy. If some of the electrons pass through the 
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Si layer they bounce around until they stop. For high energy electrons they pass through the 

photoresist with low radial spread out but back scattered electrons they travels longer with 

almost same as incident energy [65], [66].  Long backscatter range can cause problems for the 

resolution. It can expose features around the expected one. It is called the proximity effect. By 

controlling beam dose, proximity effect can be controlled. 

Figure 3.2 shows the working principle of the E-beam lithography. The electron gun emits 

the electron beam and the beam is controlled by the magnetic lenses. A focusing lens can focus 

the electron beam at a point on the specimen with a very low spot size of around 1 nm to couple 

of nanometers. When the beam strikes the sample it also produces different kinds of scattered 

electrons. It produces secondary electrons and secondary electrons which are detected by the 

detector. By controlling the beam spot position and stage positon, writing can be accomplished 

on the photoresist.                      
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Figure 3.2: Schematic diagram of the E-beam lithography. 

 

3.3 Sample preparation  

3.3.1 Wet bench stage: 

A silicon (Si) substrate with an oxide layer was chosen as the sample substrate. The 

substrate chip was cleaned by soaking in acetone for ten minutes. After that the sample chip was 

sonicated for two minutes. At this stage, the sample chip was rinsed with isopropanol (IPA) and 

blown dry with nitrogen gas. Then the sample was transferred into spin coater and the vacuum 
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was turned on in order to hold the sample safely. The sample was centered so that the photoresist 

distributed evenly over the sample. As a photoresist, Polymethylmethacrylate (PMMA) was 

used, which is being widely used for electron beam lithography. After centering the sample, two 

or three drops of A4 PMMA 495 was poured on the center of the sample so that it covers the 

sample. 3000 rpm speed was maintained for the spin coater for 40 seconds; at this speed PMMA 

distributes evenly on the sample.  

After being coated with PMMA, the sample was transferred to the hotplate. The 

temperature of the hotplate was maintained at 180°C and the photoresists coated sample was 

transferred to the hotplate. At 180°C temperature sample was baked for two minutes. The sample 

was then transferred to the Scanning Electron Microscopy (SEM) chuck. The sample was aligned 

and held in place with screw and washer. The corner of the sample was scratched by the scriber 

and numbered so that it can be tracked in the ESEM.   

 

 

Figure 3.3: Schematic diagram of photoresist coating on the sample 

substrate 
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Figure 3.3 demonstrates the sample after spin coating. The red layer is the photoresist on 

top of the sample substrate and the blue layer is the substrate.  

3.3.2 Electron beam lithography stage: 

For Electron beam lithography step, the FEI XL30 Environmental Scanning Electron 

Microscopy (ESEM) was used. In this step, the sample was exposed by the electron beam. For 

the fabrication process the ESEM was operated by 30 kV and the beam current was 10 ± 0.5 pA. 

 In the ESEM, the electron beam is being focused into the smallest cone possible so that it 

can expose the sample surface nicely. Here, electron beam dose plays an important role for 

controlling the size and shape of the structure. Beam dose exposes the resist area; if the beam 

dose is larger it will expose a larger area and eventually a large structure will be formed. Dose 

tests were performed with different wire widths and an optimal area beam dose was determined 

to be 400 μC/cm2. At this facility the minimum size for structures that this ESEM is capable of 

producing is around 60 nm [49].   
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Figure 3.4: Plot of measured structure width vs. electron beam area dose for different 

nanowire design widths [49]. 

Figure 3.4 illustrates how the wire width changes with the beam dose. As the beam dose 

increases, wire-width also increases. Beam doses higher than 400 μC/cm2 produce larger than 

expected sizes of the wires. For wire width of 400 nm, 350 μC/cm2 is the ideal beam dose. As the 

dose increases, the width also increases. Similar behavior is noticed for 200 nm, 100 nm, and 50 

nm. For 50 nm wire width, beam dose less than 740 μC/cm2 cannot create any structure, only 

around 100 nm width structure found at the beam dose 740 μC/cm2. Due to the results from the 

dose tests, 400 μC/cm2 was used as the beam dose for the whole fabrication process [49].  

Figure 3.5 shows the photoresist being exposed photoresist by the electron beam. 

Depending on the beam dose and structure size, the electron beam will exposed the desired area.  
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Figure 3.5: Diagram of photoresist exposed by the electron beam. 

   

3.3.3 Development stage: 

At this stage, the exposed sample was developed by a developer. To make the developer 

methyl-isobutyl-ketone (MIBK) solution was mixed with isopropanol. The ratio of developer to 

solution was 1:3 methyl-isobutyl-ketone (MIBK): isopropanol (IPA) solution.  

The exposed sample was put into the developer solution for 40 seconds. After that, it was 

rinsed with IPA and dried with N2 gas and the sample readied for the electron beam evaporation 

stage.  

Figure 3.6 is the schematic diagram of the sample after developing with MIBK developer. 

As shown in the figure, exposed photoresist is washed off by the developer and unexposed resist 

remains on the top of the sample substrate. The whole idea is to deposit desired materials in the 

expected shape on the substrate.  
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Figure 3.6: Schematic diagram of the sample after sample development. 

 

3.3.4 Electron beam evaporation stage: 

At this stage, metals were deposited onto the sample by the electron beam evaporator. 

Figure 3.7 shows the schematic diagram of the electron beam evaporator. It has a tungsten 

filament which is heated inside the electron gun. When the tungsten filament gets sufficient hot, 

it started to emit electrons. Emitted electrons produce a beam and are deflected by the magnet 

and directed towards the evaporated material holder. The accelerated electron beam strikes the 

material surface. This results in a large amount of thermal energy being created. Huge numbers 

of electron strike the material surface and produce more than a million of watt power per square 

inch. For controlling high heat in the crucible, a water cooling system is installed around it. A 

high voltage D.C. power supply of around 10 to 30 kilovolts is needed for this operation. When 

the material surface is struck by the electron beam, the beam vaporizes the target material. 

Finally metal is deposited on the sample surface. For the whole procedure, high vacuum is 

mandatory. For our case, system pressure was 1.5x10-7 Torr and the temperature was kept as 

room temperature.       
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Figure 3.7: Working principle of the electron beam evaporator. 

 

For the whole procedure evaporation rate was maintained 0.5 Å/s and the substrate rotation 

speed was 16 rpm during the deposition. First, 1.5 nm of titanium (Ti) was deposited as an 

adhesive layer. An adhesive layer needs to be used because it attaches the material to the sample 

substrate. As a plasmonic material, gold (Au) was chosen because of its nice response in the 

visible to near-infrared light regime. Gold thicknesses ware varied from 8 nm to 60 nm. 

Figure 3.8 demonstrates the schematic of the sample after gold was deposited by the 

electron beam evaporator. The thickness of the gold was fixed value for a specific sample. After 

metal deposition, the sample is ready for cleaning. 
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Figure 3.8: Sample after depositing gold by the electron beam evaporator. 

 

3.3.5 Sample cleaning stage: 

At this stage, the sample was cleaned by the acetone. First, the sample was put in a vial of 

acetone and soaked for 10 minutes. During this time, the sample was swirled inside the acetone 

so that PMMA can be removed easily. After lift-off, the sample was put into IPA and blown dry 

with N2 gas. After all those processes, the sample was examined with the microscope to observe 

the overall quality of the fabricated sample.  

Figure 3.9 (a) shows the schematic diagram of the lift-off process. Here, PMMA was 

removed by the acetone. However, acetone cannot remove the structures attached by the 

adhesive layer to the substrate. As a result, only metals deposited on the PMMA are removed and 

the desired nanostructures will stay on the sample substrate, as shown in Figure 3.9(b).  



36 

 

 

Figure 3.9: Schematic diagram of sample (a) PMMA lift-off stage and (b) fabricated 

nanostructure. 

3.3.6 Sample Imaging: 

At this stage, the sample is ready for imaging with the SEM. To get images from the 

sample, a scanning electron microscopy with FEI Nova Nanolab 200 machine was used. It is an 

ultra-high resolution low voltage imaging with very low vacuum capabilities.  Figure 3.10 (a) 

shows the SEM images of the nanodisks and nanorods with 20 nm gold thickness. Figure 3.10 

(b) and (c) show two nanorods with different lengths and widths.  
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Figure 3.10: SEM images of the EBL fabricated sample 
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4 Chapter: SIMULATION MODEL  

4.1 Model description 

Plasmonic studies have been performed on gold nanorods of constant length and width with 

different thicknesses using finite element method (FEM, COMSOL) simulations. The 

simulations are performed in three dimensional (3-D) space, where the length of the nanorod is 

100 nm, the width is 60 nm and the thickness varies from 8 nm to 60 nm. The dimension of the 

nanostructure below 100 nm can show very good plasmonic properties. Saylor et al. showed by 

2-D FEM simulation, that for a thickness 15 nm and width 60 nm gold nanorod can produce the 

highest optical enhancement [20]. The substrate effect was approximated by an effective medium 

neff  = 1.25 around the nanorod which is comparable with a nanorod made by electron beam 

lithography on a silicon substrate with a silicon dioxide layer [20], [67]–[69]. For the gold 

nanorods, a Lorentz-Drude wavelength dependent dielectric function has been used. The data for 

the dielectric function are obtained from Johnson and Christy [70].  

A normally incident light was incident onto the surface of the nanorod with the electric 

field polarized along either the longitudinal or transverse direction. Electric field distribution 

(EFD), is defined as the ratio of local electric field (E) and incident electric field (E0). The 

electric field distribution, E/E0, was plotted at the resonant wavelength for each thickness. The 

optical enhancement, defined as the ratio of the local electric field to the incident electric field 

squared (E2 /E0
2), was studied. This optical enhancement is related to the local intensity, as 

intensity is proportional to the electric field squared. For the simulation, two types of rectangular 

nanorods, sharp-corner and round-corner, were investigated. Absorption of the nanorods was 

calculated using the heat loss in the volume of the nanorods. Finally, three dimensional charge 

distributions were calculated according to the Gauss’s law in Figure 5.3 and Figure 5.4.  
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Figure 4.1 illustrates the model cross section. Here, the light has normal incident and the 

polarization is along the long axis of the sample. Longitudinal and transverse polarizations were 

used depending on the study. The yellow rectangle represents the gold sample. The size of the 

sample is 100 nm x 60 nm x t nm. In this study, thickness (t) is varied from 8 nm to 60 nm. 

Around the sample an integration space has been defined as the near-field region where most of 

the enhancement occurs. The radius of the integration space is 125 nm. In this integration space 

the enhancement of the nanorod was calculated.   

 

 
Figure 4.1: Schematic diagram of a cross-section of the simulation 

geometry of the model. 
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Around the sample, a 400 nm radius sphere was drawn as an effective medium. The value 

of the effective medium was approximated by neff = 1.25 [20], [67], [68]. The effective medium 

was approximated to create the same environment as the Si substrate with a SiO2 layer on the top 

of it. A perfectly matched layer (PML) layer with a 400 nm thickness was used at the boundary 

of the model. This layer acts as an absorber and should absorb almost all of the outgoing light 

[71]. 

Material properties are very important in plasmonic research. The dielectric constant of 

the gold material depends on the frequency of the light. The dielectric constant also known as 

relative permittivity, is denoted as ε(ω). 

 𝜀𝑟(ω) =  
𝜀̃(ω)

𝜀0
 (4.1) 

where 𝜀̃(ω)is the absolute permittivity which depends on the frequency; it has a real and 

imaginary part. The dielectric constant is defined as,   

 𝜀𝑟(ω) =  𝜀1(ω) + 𝑖𝜀2(ω) (4.2) 

where ε1 (ω) is the real part and ε2 (ω) is the imaginary part of the dielectric function. 

Experimentally, the dielectric constant can be determined by the reflectivity and the complex 

refractive index. The refractive index 𝑛 ̃(𝜔) of the medium can be defined as  

 𝑛 ̃(𝜔) = 𝑛(𝜔) + 𝑖𝑘(𝜔) (4.3) 

From this frequency dependent refractive index at the optical frequency, the dielectric 

constant can be determined using the relationship between refractive index and dielectric 

constant. 

 
𝜀𝑟(ω) =  �̃�2 = (𝑛(𝜔) + 𝑖𝑘(𝜔))

2
 

 

(4.4) 
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 𝜀1(ω) = 𝑛2 − 𝑘2 (4.5) 

 𝜀2(ω) = 2𝑛𝑘 (4.6) 

Using equations (4.5) and (4.6), the optical frequency dependent real and imaginary 

values of the dielectric function were calculated [45], [72]–[75]. Using data from Johnson et al 

[70], the dielectric constant is reproduced and plotted in Figure 4.2. The vertical axis represents 

the imaginary part in (a) and the real part in (b) of the dielectric function. The horizontal axis 

represents the wavelength. This wavelength dependent dielectric function has been used for the 

whole simulation. 

 

Figure 4.2: Complex dielectric function of gold as a function of 

wavelength (a) Imaginary and (b) real parts reproduced using data from 

Johnson et al [70], [76]. 
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Meshing is very important for the finite element method. A smaller mesh sizes can improve 

the results. For this simulation, three different sizes of mesh size were used.  For the perfectly 

matched layer (PML) and the effective medium the minimum mesh size used was 18 nm and the 

maximum mesh size for both cases was 80 nm. For the integration space, the minimum mesh 

size used was 1 nm and maximum mesh size used was 10 nm. Finally, for the nanostructure the 

minimum and maximum mesh sizes used were 1 nm and 5 nm respectively. Figure 4.3 shows the 

different mesh sizes for the different layers of the simulation model.  Figure 4.3(a) shows the 

meshing in the perfectly matched layer (PML). Figure 4.3(b) demonstrates the meshing in the 

effective medium. Figure 4.3(c) shows the meshing in the integration space And Figure 4.3(d) 

shows the meshing in the sample.        

 

Figure 4.3: Mesh size for (a) Perfectly matched layer (PML) 

(b) Effective medium (c) Integration space (d) Sample. 
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The total absorbed energy calculated using the heat loss inside the nanostructures as 

 𝑊𝑎𝑏𝑠 = ∭ 𝑄𝑎𝑏𝑠𝑑𝑉 =
1

2
∭ 𝑅𝑒[(𝜎𝑬 + 𝑗𝜔𝑫). 𝑬∗ + 𝑗𝜔𝑩. 𝑯∗]𝑑𝑉 (4.7) 

And total scattered energy 

 𝑊𝑠𝑐𝑎 =  ∯ 𝒫𝑠𝑐𝑎. 𝒏 𝑑𝑠 =
1

2
∯ 𝑅𝑒[𝑬𝑠𝑐𝑎 × 𝑯𝑠𝑐𝑎

∗ ] (4.8) 

Also the absorption and scattering cross-section can be defined as  

 𝜎𝑎𝑏𝑠 =
𝑊𝑎𝑏𝑠

𝒫𝑖𝑛𝑐
 (4.9) 

and 

 𝜎𝑠𝑐𝑎 =
𝑊𝑠𝑐𝑎

𝒫𝑖𝑛𝑐
 (4.10) 

The enhancement calculated as 

 = ∫ 𝐸2𝑑𝑉 (4.11) 
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4.2 Model comparison 

4.2.1 Model compared with Giannini et al. 

The simulation model was tested with experimental results by creating a similar 

environment as that discussed by Giannini et al [32]. They have made their sample (rectangular 

nanorod) using electron beam lithography and physical vapor deposition. Computational results 

were obtained using the same parameters as [32]. Figure 4.4 shows experimental and simulation 

results for the gold nanostructures. The scattering resonant wavelength was plotted as a function 

of the long-axis length where the width and height of the nanostructures are 123 nm and 13 nm, 

respectively.  

 
Figure 4.4: Simulation results comparison with the experimental 

results [32]. 

From Figure 4.4, it is clear that the simulation results closely match with experimental 

results.  
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4.2.2 Model compared with Langhammer et al  

Experimental results from Langhammer et al. also reproduced by simulation [27]. Figure 

4.5 (a) shows the simulated result and Figure 4.5 (b) shows the experimental result from [27]. 

Both plots show that the resonant peak energy closely matches. After normalization, it is clear 

that they have some intensity mis-match, but it is normal because experimental procedure causes 

some loss of intensity.      

 

Figure 4.5: Scattering, absorption and extinction efficiency for gold nanodisc 

with 76 nm diameter, 20 nm thickness (a) simulation result and (b) measured result 

[27]. 
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5 Chapter: SIMULATION RESULT AND DISCUSSION  

The absorption of the nanorods was determined with thickness variation. The absorption 

spectra of various thicknesses were plotted as a function of incident light wavelength. Figure 5.1 

(a) shows the absorption spectra when the polarization is aligned along the longitudinal axis. 

Each line on the plot indicates the spectrum of a single nanorod with a particular thickness. The 

nanorods lengths and widths were kept constant at 100 nm and 60 nm respectively and the 

thicknesses ware varied from 8 to 60 nm. The plot shows that for both polarizations the 

absorption resonance peak shifts toward blue as the thickness increases. Figure 5.1(b) shows the 

absorption for the transverse polarization using the same parameters; the observed trend is the 

same but the amplitude is reduced compared to the longitudinal polarization. The resonance peak 

value comparing the two polarizations for the same geometrical parameters gives different 

position.  For longitudinal polarization the resonance wavelength value is larger than for the 

transverse polarization because plasmonic response depends on the coupling effect of surface 

plasmons [77]. The shape or FWHM of the spectrum also increases with increasing thickness. 

Figure 5.2 shows the optical enhancement spectra for nanorods of constant length and width with 

different thicknesses. Optical enhancement was plotted as a function of incident light wavelength 

for both longitudinal and transverse polarizations. Figure 5.2 (a) indicates that the enhancement 

peak shifts towards blue with increasing thickness as shows in Figure 5.1 for the absorption. 
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For a thickness of 8 nm and longitudinal polarization the resonance peak at 970 nm 

whereas for transverse polarization the resonance peak is at 740 nm. Peak resonance wavelength 

has different values for the same nanorod with different polarizations. However, the value of the 

optical enhancement decreases with increasing thickness for both polarizations. Electric field 

distributions (EFD) of different thickness for the sharp-corner and round-corner rectangular gold 

nanorods shown in Figure 5.3(a) and figure 5.4(a) respectively. 

 

 

 

Figure 5.1: Calculated absorption spectrum of 100 nm length and 60 nm width sharp-

corner rectangular gold nanorod with different thickness for (a) longitudinal polarization and 

for (b) transverse polarization. In both cases light is normally incident and the value of the 

effective medium used, neff = 1.25. 
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Figure 5.2: Calculated average enhancement (E2/E0
2) spectrum in the integrated volume of 

sharp-corner rectangular gold nanorod for normal light incidence in the effective medium (neff = 

1.25) with different thickness for (a) longitudinal polarization (b) transverse polarization. 

 

For sharp-corner rectangular nanorod, Figure 5.3 (a) shows that at top and bottom surfaces 

electrons are tend to gather toward the corner of the nanorod because the electric field of the 

incident light applies a force on the electrons. The electric field distribution behaves like a 

quadrupole distribution. For round-corner rectangular nanorod, Figure 5.4 (a) shows that surface 

electrons are evenly distributed and look more like a dipole distribution. The amplitude of 

electric field distribution decreases as the thickness increases.  
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Figure 5.3: (a) Electromagnetic field distributions (EFD) for top, middle and bottom 

surfaces at resonance wavelengths for sharp corner Au nanorods of length 100 nm and width 60 

nm for different thickness when polarization is aligned along the long axis and normal incidence. 

 

 

Figure 5.4: (a) Electromagnetic field distributions (EFD) for top, middle and bottom 

surfaces at resonance wavelengths for round corner Au nanorods of length 100 nm and width 60 

nm for different thickness when polarization along the long axis and normal incidence. (b) 

Schematic of round corner nanorod. 

 

Figure 5.5 (a) shows maximum enhancement of sharp and round corner structures with 

longitudinal and transverse polarizations as a function of thickness. Maximum enhancement 

decreases with increasing thickness. For sharp corner and round corner structures the maximum 
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enhancement has a definite difference. For longitudinal polarization, maximum enhancement 

decreases quickly and tends to stable value at higher thickness. For transverse polarization and 

for both shape, maximum enhancement decreases quickly up to 20 nm thickness after that it does 

not change so much and get constant value. For both polarizations and shapes the maximum 

enhancement has a tendency to decrease its amplitude nonlinearly. 

 

 

Figure 5.5: (a) Normalized maximum enhancement at resonant incident wavelength as a 

function of thickness for sharp and round corner nanorods for longitudinal and transverse 

polarization (b) Peak resonance wavelength as a function of thickness for sharp and round corner 

nanorods for both longitudinal and transverse polarization. 

 

Figure 5.5 (b) indicates the peak resonance wavelength for the enhancement spectrum as a 

function of thickness. Peak resonance wavelength shifts toward blue when the thickness 

increases for the both polarizations for both and sharp and round corner shapes of nanorods.  



51 

 

 

Figure 5.6: Surface charge distributions at peak resonance wavelength when thickness (a) 8 

nm (b) 20 nm and (c) 50 nm. 

 

Figure 5.6 demonstrates the surface charge distributions at their resonance modes for three 

different thicknesses. Using Gauss’s law surface charge density was calculated. From the 

Gauss’s law 

 𝛷𝐸 =  
𝑄

𝜀0
=  ∯(𝒏. 𝑬)𝑑𝑆 =  ∯(𝒏𝒙 . 𝑬𝒙 + 𝒏𝒚. 𝑬𝒚 + 𝒏𝒛. 𝑬𝒛) 𝑑𝑆 (5.1) 

Where ΦE is the electric flux is passes through the metal surface S [35]. For our case neff
2 

was multiplied to get the actual surface charge distribution because the value of the effective 

medium is neff
2. Figure 5.6 demonstrates the plasmon modes at different resonance wavelength. 
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Figure 5.6(a) shows the surface charge distribution for 8 nm thickness; there exists, one mode at 

wavelength 580 nm which clearly shows as quadrupole mode and another mode at wavelength 

value 970 nm which is a perfect dipole mode. Similar behavior is found for 20 nm and 50 nm 

thickness.  

 

 

Figure 5.7: Full width half maximum as a function of thickness for (a) enhancement 

spectrum and (b) absorption spectrum. 

 

Figure 5.7 plots the full width half maximum (FWHM) of the broadening of the 

enhancement and absorption spectra as a function of thickness. For both cases, plots show that 

FWHM increases linearly as thickness. Enhancement and absorption spectrum broaden with the 

thickness of the structure. A larger FWHM value means that the oscillation wavelength is larger. 

As the thickness increases the absorption resonance wavelength also increasing. Similar behavior 

exhibited by the enhancement spectrum. Figure 5.8 describes FWHM as a function of resonance 
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energy. For absorption and enhancement the figure shows nonlinear behavior with resonance 

energy. For the plasmonic nanostructure, two types of decay occurs for the electrons those being 

radiative decay and nonradiative decay. Radiative decay produces photons and nonradiative 

decay occurs as intraband excitation and interband excitation [1] . For gold nanorods, dephasing 

time (T2) plays an important role. Dephasing time (T2) is defined as 𝑇2 = 2ħ/𝛤  , where Γ is the 

linewidth. It varies widely for different shapes and sizes of nanostructures [1],[21].  

 

 

Figure 5.8: Full width half maximum as a function of thickness for (a) absorption spectrum 

and (b) enhancement spectrum. 

 

Figure 5.8 provides an interesting result as thickness was changed. Here plasmon resonance 

width (FWHM) was changed for both absorption and enhancement for the nanorods where 

thickness was varied instead of length and width. It shows a similar trend to that Y-H Qiu et al. 

[21] where plasmon width was plotted as a function longitudinal surface plasmon resonance (L-

SPR) energy where gold nanorod length was changed. From Figure 5.8 (a), it indicates clearly 
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that as the thickness increases and the surface plasmon resonance energy increases around 1.8 eV 

the FWHM increases. This broadening is because of interband excitation induced damping 

where the interband transition threshold energy for gold is around 1.8eV [21]. In plasmon 

relaxation dynamics, a three level system was introduced by Y-H Qiu et al. According to this 

system, a fixed frequency is used to excite the electron from ground state to the second excited 

state where the probability of transition is σₒ and plasmon absorption cross-section was indicated 

by intensity I. A two-steps process is used by electrons to go to the ground state; first the electron 

transition from second excited state to the first excited state then from first excited state to the 

ground state. From the second excited state to the first excited state goes through a process called 

electron-phonon relaxation, and from the first excited state to the ground state the electron 

transitions with decay rate representing the phonon-phonon relaxation process. 

 

Figure 5.9: Quality factor Q = Eres/Γ of single nanorods with various thickness as a function 

of resonance energy (a) absorption and (b) enhancement. 
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Figure 5.9 describes the quality factor which is defined as the enhancement of the 

oscillation amplitude of a driven oscillation system with respect to the driving amplitude [1],with 

different thicknesses of gold nanorods as a function of resonance energy for both absorption and 

enhancement. The Quality factor in our case is the local-field enhancement. Figure 5.9 (a) for 

absorption and Figure 5.9 (b) for enhancement. As the thickness and the resonance energy 

increase the amplitude of the quality factors decrease for both absorption and enhancement. 

Similar behavior is observed for both cases. Local field enhancement of the oscillation amplitude 

of a plasmonic system with respect to the driving amplitude is defined as the quality factor, Qf = 

Eres/Γ [1]. Figure 5.9 shows high quality factors around 24 for absorption and 27 for 

enhancement because of suppressed interband damping.    
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6 Chapter: DARK FIELD SPECTROSCOPY 

6.1 Procedure  

Samples were fabricated and images were taken by the SEM; then samples were used for 

dark field spectroscopy measurement. Figure 6.1 is a schematic diagram of the working principle 

of dark field spectroscopy. White light with a polarization is used to illuminate the sample, and 

then scattered light from the sample is collected by the 50x microscope objective (NA = 0.55, f = 

200 nm) [78]. 

 

 
Figure 6.1: Working principle of the dark field spectroscopy 

A flip-mounted mirror is used to direct the scattered light to the CMOS camera to take 

color images of the sample. To get the spectra, a Princeton Instrument Insight: 100B 

spectrometer system with a PIXIS 100B image sensor was used. Inside the spectrometer, a 

reflection grating with150 grooves/nm and a blaze angle of 800 nm was used, and the center 

wavelength was set at 750 nm. In this study, the CCD was exposed to the scattered light for 3500 

ms. 
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6.2 Measurements 

Preliminary experimental results are shown in Figure 6.2. Generally, it shows that the 

spectra from each nanorod are similar. There is small resonance peaks shifting for different 

nanorods but those are not significant. More work needs to be done optimizing the system to 

obtain more accurate result. 

 
Figure 6.2: Measured scattering intensity of the gold nanorods. 
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7 Chapter: CONCLUSION 

In this study, plasmonic properties of gold nanorods with various thicknesses were 

analyzed by finite element method. Sharp-corner and round-corner rectangular nanorods were 

studied. The length and width of the nanorods were kept constant and only thicknesses were 

varied thought the whole study. Many researchers have analyzed plasmonic properties of 

nanorods with different aspect ratio (ratio between major axis lengths over minor axis length), 

different substrates, different surrounding medium, chemically produced nanorods, electron 

beam lithography produced nanorods and different metals etc. 

Plasmonic properties have strong dependence on the incident light polarization. For two 

different polarizations (longitudinal and transverse), absorption and enhancement spectra show 

significant difference in nature. Using two different incident light polarizations, absorption and 

enhancement spectra were studied. Resonance peaks of the spectra shifted toward blue for both 

absorption and enhancement spectra with increasing thicknesses of gold. For small thickness, the 

electrons confined and oscillate in a relatively larger space than larger thickness and as a result 

their peak resonance wavelength is larger. For higher thickness, the electrons confined and 

oscillate in a relative smaller space in corners of the nanorods as we see from the surface charge 

distributions plot. As a result their resonance frequency is relatively higher as well as their peak 

resonance wavelength lower than smaller thicknesses, which is very interesting because many 

people studied increasing length of the nanorods and they have found with increasing the length 

of the nanorod resonance peaks shifts towards red. For the same gold thickness, the peak 

resonance wavelength and normalized amplitude has a significant difference for both absorption 

and enhancement for both polarization. For polarization along the long axis, electrons oscillate in 

a larger space and as a result the peak resonance wavelength is longer than polarization along the 
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short axis of the nanorods. From the electric field distributions, it was found that with increasing 

the gold thicknesses the intensity decreases, because in larger thickness the electrons confined in 

corners as a result the electric field gets weaker inside the nanorods results lower absorption and 

enhancement. Surface charge distributions have shown in this work. From the distributions it is 

obvious that at the resonant wavelength the surface charge distributions show dipolar character 

while at other wavelengths it shows more quadrupole character.   

In this study, Full width half maximum (FWHM) of the absorption and enhancement 

spectra were analyzed, and found strong dependence on the thicknesses of the gold nanorod. As 

the thickness increases, the FWHM of the spectrum also increases. The quality factor for the 

nanorods are higher that indicates it can show large local-field enhancement in the optical regime 

and making nanorods interesting for a range of optical application [1]. Sample was fabricated 

using electron beam lithography and preliminary data for the scattering spectra were taken by 

dark field spectroscopy.  
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