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Abstract

A first-principles-based effective Hamiltonian scheme which incorporates coupling be-

tween ferroelectric (FE) and antiferrodistortive (AFD) motions is applied to Pb(Zr,Ti)O3

alloys. It validates the existence of two modes of E symmetry (rather than the single E(1TO)

soft mode) in the 50–75 cm−1 range for temperatures smaller than 200 K and for compo-

sitions falling within the Rhombohedral R3c phase. Coupling between long-range-ordered

FE and AFD motions is shown to be the cause of the additional mode and more insight

into its nature is provided. This scheme is further used to reveal a field-induced anticrossing

involving FE and AFD degrees of freedom for Ti composition of 45%.

Molecular dynamics (MD) simulations, across the morphotropic phase boundary (MPB)

of disordered Pb(Zr,Ti)O3 solid solutions at 10 K, confirms the existence of similar additional

modes in the the monoclinic Cc and tetragonal I4cm phases. Lifting of degeneracy of

E modes in the Cc phase each giving A′ +A′′ modes is seen in accordance with group

theory predictions. In particular, a compositional-induced anticrossing occurring within the

bridging Cc state is revealed, and the difference in frequency between A′ and A′′ modes

in the Cc state is linked to a quantity introduced here and termed the monoclinic depth.

Analytical models are further developed to reproduce and better understand characteristics

of these modes across the MPB.

Furthermore, a Fermi resonance (FR) emerging from the nonlinear coupling between

ferroelectric motions and tiltings of oxygen octahedra is exposed. This FR manifests itself

as the doubling of a nominally single FE mode in a purely FE phase, when the resonant

frequency of the FE mode is close to the first overtone of the tiltings. It is shown, through

the use of an analytical model (that captures the essence of the effect), that the FR is the



result of a nonlinear coupling that is proportional to the spontaneous polarization of the

material.

MD simulations incorporating a first-principles-based effective Hamiltonian scheme con-

sisting of FE and strain degrees of freedom, are conducted on (Ba,Sr)TiO3 (BST) bulks and

epitaxially strained SrTiO3 (STO) thick films at finite temperature. The appearance of a cen-

tral mode (CM) is confirmed and splitting of soft mode (SM) into out-of-plane and in-plane

modes is predicted for strained STO films and two CM’s are predicted for Ba0.5Sr0.5TiO3 in

FE phase. Symmetries of modes in FE phases originating from the soft-mode are discussed.

Electrostriction energy is shown to be governing the Curie temperature Tc and determine the

type of FE phase transition each system undergoes. The comparatively large electrostriction

energy in BST systems is also pointed to be behind the emergence of the CM in PE phase

of them.

Moreover, MD simulation are performed of BST bulks and epitaxially strained STO

thick films to obtain dielectric tunability τ (E), as a function of electric field applied along

the polarization. Landau-Devoshire theroy based fittings are shown to inaccurately describe

τ (E) in the low-field regime and the presence of strong CM in this regime is claimed to be

the cause of this discrepancy in these systems.
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CHAPTER 1

Introduction

Ferroelectrics, recognized only in the 20th century have been extensively researched and

much sought after ever since, due to their technological promise. Materials which possess a

spontaneous polarization, with two or more orientational states in the absence of an electric

field that can be shifted from one to another by the application of an electric field, are termed

ferroelectrics. Each of the two orientational states are identical in crystal structure, differing

only in the orientation of the electric polarization vector under conditions of zero electric

field.

Pyroelectricity, or the possession of temperature dependent polarization, in some materi-

als was known from ancient times and properties of pyroelectrics were investigated from the

early 1800s. The realization that thermal strain causes the polarity in pyroelectrics led the

Curie brothers to discover piezoelectricity in 1880 [1], which is the creation of electric polar-

ity by application of stress. However, the first known proper identification of ferroelectricity

was only made in 1921 in Rochelle salt by Valasek [2]. It is believed that the formation

of domains of differently oriented polarization resulting in a lack of any net polarization in

virgin single crystals was the reason for the much later discovery of ferroelectricity. Valasek

realized that the dielectric properties in Rochelle salt were in many aspects similar in nature

to the ferromagnetic properties of iron, in that there was a hysteresis in the field-polarization

curve (see1 Fig. 1.0.1), a transition Curie temperature Tc, and an extremely large dielectric

and piezoelectric response in and near the ferroelectric region. Such analogies with ferromag-

netism led to the coining of the term ’ferroelectricity’ to describe these phenomena, which is

a kind of misnomer since iron has nothing to do with them and is in fact absent from most

known ferroelectrics.

1Source: Dennis L. Polla and Lorraine F. Francis, Ann. Rev. Mat. Sci. 28, 563 (1998).
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Figure 1.0.1. Typical polarization–electric-field hysteresis curve for ferro-
electric materials (note that one should trace the curve in the anticlockwise
direction). Notation: Psat is the saturation polarization; Pr is the remnant
polarization; Ec is the coercive field; Esat is minimum field for saturation of
polarization.

Except for the subsequent discovery of ferroelectricity in a series of isomorphous crystals

of phosphates and arsenates, principal among them being potasium dyhydrogen phosphate

(KH2PO4) [3, 4], until the mid 1940’s no further discoveries of ferroelectrics were made. So

there was a growing conviction that ferroelectricity was one of the great accidents of nature.

All that changed with the discovery of ferroelectricity in BaTiO3 by Wul and Goldman

in 1945 [5]. This material was to become the forerunner of the largest single class of all

ferroelectrics - the oxygen octahedral ferroelectrics, constituent with BO6 building blocks

(see2 Fig. 1.0.2). More importantly, the simple 5 atom perovskite structure paved the way

for some theoretical progress at the microscopic level.

1.1. Crystallography and ferroelectrics

The subset of the full symmetry group of a Bravais lattice, that contains only operations

that leave a particular point fixed, is called the point group of the Bravais lattice. There

are seven such distinct point groups that a Bravais lattice can have. They define the seven

2 Source: T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, NTT Tech. Rev. 5, 9 (2007)
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Figure 1.0.2. Perovskite ABO3 structure with oxygen octahedral.

crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, trigonal (also termed rhom-

bohedral), hexagonal and cubic. Moreover, there are 32 distinct possible point groups that a

general crystal structure can have. They can be divided between the seven crystal systems,

based on the point group of the underlying Bravais lattice for the general structure concerned

(see3 Table 1.1.1) [6]. Amongst the 32 point groups, 11 possess a center of symmetry. They

are termed centrosymmetric and have no polar properties. For example, if a uniform stress

is applied to such a crystal, the resulting movement of charge is symmetrically distributed

about the center of symmetry in a way that the relative displacements are fully compensated.

All except one of the non-centrosymmetric groups displays electric polarity when subjected

to stress. The effect and its converse (i.e., the production of strain by application of electric

field) is linear, since reversal of the stimulus results in the reversal of the response and is

termed the piezoelectric effect. Of the 20 piezoelectric crystals, 10 have a unique polar axis

and they possess a spontaneous polarization (i.e., electric dipole moment per unit volume)

which is temperature dependent. Thus, crystals belonging to these 10 groups are termed

polar or pyroelectric. Some materials have polar crystals that have a spontaneous polariza-

tion, which can be shifted among two or more orientational states giving rise to the signature

field-polarization hystersis. These are the ferroelectric crystals.
3Source: M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials
(Clarendon Press, Oxford, 1977).
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Crystal System Point Groups Centro-symmetric Piezoelectric Pyroelectric
Triclinic 1, 1̄ 1̄ 1 1
Tetragonal 4, 4̄, 4/m, 422, 4mm, 4/m, 4/mmm 4, 4̄, 422, 4, 4mm

4̄2m, 4/mmm 4mm, 4̄2m
Hexagonal 6, 6̄, 6/m, 622, 6mm, 6/m, 6/mmm 6, 6̄, 622, 6, 6mm

6̄m2, 6/mmm 6mm, 6̄m2
Monoclinic 2, m, 2/m 2/m 2, m 2, m
Orthorhombic 222, mm2, mmm mmm 222, mm2 mm2
Trigonal 3, 3̄, 32, 3m, 3̄m 3̄, 3̄m 3, 32, 3m 3, 3m
Cubic 23, m3, 432, 4̄3m, m3m m3, m3m 23, 4̄3m –

Table 1.1.1. Crstallographic point groups classified based on polar properties.

1.2. The soft-mode theory of ferroelectricity

In 1960, Anderson [7] and Cochran [8] were the first to propose that to explain ferro-

electric behavior, theory at the microscopic level should be cast within the framework of

lattice dynamics and that one should focus on the lowest-frequency optical phonon mode at

the center of the Brillouin zone, better known as the ’soft mode’, for a particular system as

the primary ferroelectric instability. Initially, this soft mode description of ferroelectricity

was solely used for displacement systems, in which the static ferroelectric properties can

be explained by considering systems with small structural displacements from an prototype

(usually non-polar) phase. Later on, it evolved to include a fundamental model Hamiltonian

which was general enough to include various ferroelectric instabilities resulting in its broader

applicability across many different systems. An important aspect of the use of such a Hamil-

tonian was the inherent realization that ferroelectric and anti-ferroelectric (see section 1.3)

transitions are particular cases of the more general concept of structural phase transitions.

The recognition of the significance of the soft mode in describing ferroelectricity triggered

an explosion of experimental activity using techniques capable of measuring its frequency

and/or wave vector dependent characteristics. These were primarily scattering and resonance

techniques involving X-rays, neutrons, light, and ultrasound.

1.2.1. Representation of the vibrational modes. Factor group methods for calcu-

lation of symmetry properties leads to the irreducible representations of the Raman active
4



Crystal System Point Groups Representation of Raman active modes
Monoclinic 2 A(y), B (x,z)

m A′ (x,z), A′′ (y)
2/m Ag, Bg

Orthorhombic 222 A, B1 (z), B2 (y), B3 (x)
mm2 A1 (z), A2, B1 (x), B2 (y),
mmm Ag, B1g, B2g, B3g

Trigonal 3 A(z), E (x), E (y)
3̄ Ag, Eg, Eg
32 A1, E (x), E (y)
3m A1 (z), E (y), E (−x)
3̄m A1g, Eg, Eg

Tetragonal 4 A(z), B, E (x), E (y)
4̄ A, B (z), E (x), E (−y)

4/m Ag, Bg, Eg, Eg
422 A1 (z), B1, B2, E (x), E (y)
4mm A1, B1, B2, E (−y), E (x)
4̄2m A1, B1, B2 (z), E (y), E (x)

4/mmm A1g, B1g, B2g, Eg, Eg
Hexagonal 6 A(z), E1 (x), E1 (y), E2, E2

6̄ A(z), E′′, E′′, E′ (x), E′ (y)
6/m Ag, E1g, E1g, E2g, E2g
622 A1, E1 (x), E1 (y), E2, E2
6mm A1 (z), E1 (y), E1 (−x), E2, E2
6̄m2 A′1, E′′, E′′, E′ (x), E′ (y)

6/mmm A1g, E1g, E1g, E2g, E2g
Cubic 23 A, E, E, F (x), F (y), F (z)

m3 Ag, Eg, Eg, Fg, Fg, Fg
432 A1, E, E, F2, F2, F2
4̄3m A1, E, E, F2 (x), F2 (y), F2 (z)
m3m A1g, Eg, Eg, F2g, F2g, F2g

Table 1.2.1. Irreducible representations of Raman active modes for various
point groups

modes given in Table 1.2.14. Note that the component of phonon polarization for these

modes, which are also infrared active, is given in brackets after the symbol of the represen-

tation.

4Source: M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials
(Clarendon Press, Oxford, 1977).
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1.3. Structural phase transitions

Structural phase transitions associated with the condensation (in the Bose-Einstein sense)

of a zone center soft mode (SM) are generally termed ferrodistortive. Ferroelectric phase

transitions involve the condensation of the lowest polar mode, which causes the long-range

polar order. Therefore, in this view, ferroelectric transitions can be considered as a subgroup

of ferrodistortive transitions. If the phase transition has the signature of a mode condensation

that is located at a point other than at the center of the Brillouin zone, the transition

is called antidistortive or sometimes antiferrodistortive. More often than not, such off-

center condensation occurs at the Brillouin zone boundary of the high temperature phase,

accompanied by the doubling of the unit cell for the system. If the condensing zone boundary

mode is polar, the transition is called antipolar. In addition to being antipolar, if the system

exhibits large dielectric anomalies near Curie temperature Tc, and if it can be transformed

to an induced ferroelectric phase, by the application of an electric field, then the transition

is called antiferroelectric.

1.3.1. Ferroelectric phase transitions. In addition to lowest polar mode condensa-

tion that occurs at the zone center, as the temperature is reduced above the Curie point

Tc, often the approaching phase transition is signalled by a diverging differential dielectric

response or permittivity ε(0). The phase corresponding to this divergence for the region

of temperature, above Tc is generally named the paraelectric phase. Closer to Tc, zero-field

dielectric constant, ε(0) is found to vary in an approximate Curie-Weiss manner described

by:

(1.3.1) ε(0) = C

T −T0

where T0 is the Curie-Weiss temperature and C is the Curie-Weiss constant. T0 is equal

to the Curie temperature Tc only when the polarization changes continuously across the
6



transition. This type of phase transition is named a second-order phase transition. Con-

versely, if the polarization changes abruptly at Tc , such transitions are named first-order

phase transitions and for these, T0 is usually greater than Tc, as will be clear when we discuss

phenomenology of ferroelectric phase transitions in section (1.5).

If the transition is very strongly of first-order character, then condensation of the soft

mode may not be observed noticeably close to Tc, unlike in the case of continuous second-

order transitions. For such transitions, there is also the possibility that the large polarization

that sets in discontinuously at Tc may not be reversible, hence the low temperature phase

may only be pyroelectric.

Below Tc, in the absence of an electric field, there are at least two directions along

which a spontaneous polarization can develop. Hence, for some systems, it is found that

different regions of it are polarized in each of these available directions in order to minimize

the depolarizing field, that originates from accumulated surface charge. These regions of

uniform polarization are called domains and the resulting domain structure usually causes

the near total compensation of macroscopic polarization.

1.3.2. Order-disorder versus displacive ferroelectrics. Ferroelectrics can be cat-

egorized as either order-disorder or displacive based on the atomic displacements in the

paraelectric phase. If the paraelectric (PE) phase is microscopically non-polar, the system

concerned is termed a displacive ferroelectric, whereas if it is only macroscopically non-

polar but possesses disordered microscopic polarity in the PE phase, then it is termed a

order-disorder ferroelectric. With regard to the dynamics of the soft mode, displacive fer-

roelectrics have a propagating soft mode, while order-disorder ferroelectrics have a diffusive

(non-propagating) soft mode. In the order-disorder case, the soft mode in fact is not a

phonon at all, but corresponds to large amplitude hopping motions between the potential

wells of the system. Practically, many ferroelectrics are found to fall somewhere between

these two extremes, thus having features of both categories, a prime example being bulk

BaTiO3.
7



1.4. Complex dielectric function

For isotropic crystals, measurements of specular normal reflectivity spectra, R (ω), are

related to the complex dielectric function ε(ω), as follows :

(1.4.1) R (ω) =
∣∣∣∣∣∣
√
ε(ω)−1√
ε(ω) + 1

∣∣∣∣∣∣
2

In order to determine mode characteristics, the standard procedure is to use simple physically

acceptable models for the dielectric function ε(ω), and fit them directly to the reflectivity

spectrum, which has been found to be more accurate and convenient than the converse

approach of Kramers–Kronig analysis over a broad-enough frequency range of reflectivity

data. For a dielectric material, the dielectric function usually contains contributions from

polar phonons and electron-shell vibrations about the ionic cores. The frequency dependence

of ε(ω), in the low frequency infrared (IR) region can usually be modelled by considering both

polar phonon and electronic contributions as sums of simple damped harmonic oscillators.

The restoring forces for polar and electronic vibrations are of comparable magnitude, but

the much smaller electronic mass causes the electronic oscillations to occur at much higher

frequencies than polar resonant frequencies. Thus, the total electronic contributions in the

IR regime can be safely approximated by a constant. Therefore, the linear dielectric function

ε(ω), in this frequency regime can be given as follows:

(1.4.2) ε(ω) = ε∞+ εph = ε∞+
∑
j

Sjω
2
j

ω2
j −ω2− iωγj

where ωj ,γj and Sj are resonant frequency, damping constant and dielectric strength

of the j-th polar phonon mode, respectively. In modelling the dielectric function for some

materials, it is important to account for contributions from dielectric relaxations, which are

8



particularly important in some ferroelectrics, relaxors and all kinds of inhomogeneous mate-

rials (ceramics, composites) at lower frequencies. Considering each to be a Debye relaxation,

their contribution can be given as follows:

(1.4.3) εdr (ω) = Sr
1 + iω/ωr

where ωr and Sr are frequency and dielectric strength of the Debye relaxation. For some

spectra however, it is necessary to consider coupling between relaxation and the soft mode

when modelling the dielectric function. Methods for how this is done will be discussed in

section (4.1).

1.5. Phenomenological theory of ferroelectrics

In his now classic papers [9, 10] published in 1937, Landau notes that a system cannot

change smoothly between two phases of different symmetry and that the continuous path

a system can take between liquid and gaseous states is only possible because there is no

symmetry change involved. Furthermore, since two symmetrically distinct phases must share

the same thermodynamic state at their shared transition temperature, the symmetry of one

of them must be higher than that of the other. Landau characterized this transition in terms

of an order parameter–an internal physical property, that is zero in the high-symmetry phase

and non-zero in the low-symmetry phase, with a continuous transition between these phases

for the system concerned. For example, in the case of ferroelectric transitions, this order

parameter is the polarization P. The free energy Φ, in the vicinity of the transition, was

then given as a power series of the order parameter, where only terms compatible with

the symmetry for a particular system is retained. Landau’s approach is attractive since it

allows linking of the measurable thermodynamic quantities near phase transition (PT) via

coefficients of the series expansion.

Landau’s symmetry based treatment of PT’s was first applied to ferroelectrics by Devon-

shire [11, 12, 13]. In general, the thermodynamic state of any system in equilibrium can be
9



specified by the use of specific variables. For bulk ferroelectrics, they are the temperature

(T), polarization (~P ), electric field ( ~E) , strain (η) and the stress (σ). Using the free energy

Φ of the unpolarized and unstrained system as the reference, Landau-Devonshire theory

expresses Φ of a ferroelectric as a function of (η) and (~P ) as follows:

Φ(P,η) =1
2αijPiPj + 1

3δijkPiPjPk + 1
4βijklPiPjPkPl+

1
5ωijklmPiPjPkPlPm

+ 1
6γijklmnPiPjPkPlPmPn+ 1

2cijklηijηkl−aijkηijPk−
1
2qijklηijPkPl−

~P � ~E−σ �η(1.5.1)

where αij , βijkl, γijklmn, δijk and ωijklm are the phenomenological Landau-Devonshire co-

efficients and cijkl, aijk and qijkl are respectively, the elastic, piezoelectric and electrostatic

constant tensors. If the high symmetry parent phase is centrosymmetric, all odd terms are

removed :

(1.5.2)

Φ(P,η) = 1
2αijPiPj+ 1

4βijklPiPjPkPl+
1
6γijklmnPiPjPkPlPmPn+ 1

2cijklηijηkl−
1
2qijklηijPkPl−

~P � ~E−σ �η

suppose the polarization is directed only along one of the crystallographic axes, then we can

simplify further :

(1.5.3) Φ(P,η) = 1
2αP

2 + 1
4βP

4 + 1
6γP

6 + 1
2cη

2− 1
2qηP

2−PE−ση

now let’s consider a stress free state (i.e., σ = 0) at equilibrium:

∂Φ(P,η)
∂η

= 0⇒ η = qP 2

c

substituting in Eqn.(1.5.3) gives:

(1.5.4) Φ(P,η) = 1
2αP

2 + 1
4

(
β− 2q2

c

)
P 4 + 1

6γP
6−PE

10



Through experimental fittings of dielectric constant, ε(0), in the paraelectric phase, it is

assumed that in the Landau-Devonshire theory, α can be expressed as follows:

(1.5.5) α = α0 (T −T0)

Phase transition characteristics of clamped systems, such as epitaxially strained systems

which are forced to have in-plane lattice constants matched to that of the substrate and is

free to relax only in the out-of-plane direction can usually be described by Eqn.(1.5.4) given

the above mentioned requirements are met. Examining the coefficient of P 4 in this equation,

we can see how the phase transition characteristics are effected when a system is clamped.

For example, if the unclamped system has a first-order transition (β < 0), clamping can result

in making it even more first-order (i.e., enhanced discontinuity of P at Tc) and increase T0.

Furthermore, even the type of transition can be changed, for example if 2q2/c > β > 0, a

first-order transition can become second-order when the system is clamped.

1.6. Applications of ferroelectrics

Ferroelectrics are attractive candidates for a variety of device applications due to nu-

merous technologically important properties that they have. However, currently the great

majority of these applications use the inherent piezoelectric or pyroelectric properties rather

than the defining characteristic of switchable polarization of ferroelectrics. Some of the main

applications of these materials are described hereafter [6, 14].

1.6.1. Pyroelectric detectors and thermal imaging. Although at present, single

crystals of triglycine sulphate (TGS), LiTaO3 and (Sr,Ba)Nb2O6 are more widely used for

heat sensing applications, the use of ferroelectric thin films are more advantageous because

of the high cost of growing single crystals. Studies of ferroelectric PbTiO3, (Pb,La)TiO3 and

Pb(Zr,Ti)O3 have shown a lot of promise for such thin-film application. Ferroelectrics are

also used for infrared imaging, where polarization changes caused by thermal energy is the

principle mechanism of operation.
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1.6.2. Ultrasound device for medical imaging. The development of array trans-

ducers based on piezoelectric characteristics of ferroelectrics and their miniaturization to

increase resolution has been the key for modern high quality ultrasound imaging, which has

become invaluable in medical diagnosis and therapy. Crucially, piezoelectric materials enable

the transducer to perform both active (sound transmission) and passive (sound reception)

functions at the same time.

1.6.3. Ferroelectric memory. Presently, semiconductor memories such as dynamic

random access memories (DRAM) and static random access memories (SRAM) dominate

the market, despite being volatile. FLASH memory, even though highly successful, is not the

long term non-volatile memory of choice, because of limitations in endurance and scalability.

Ferroelectric random access memory (FeRAM) uses the switchability of the polarization via

an external electric field to store data, and more importantly it is non-volatile. However, in

FeRAM the read-out operation is destructive because, to determine the polarization state,

it is necessary to attempt to switch the polarization, which means the data stored is then

erased and must be re-written. Moreover, as ferroelectrics can suffer from fatigue with

repetitive cycling, this destructive read-out places a limitation on the reliability. Even though

over the years fatigue resistance has been improved by the use of oxide electrodes, further

advancements must be made if FeRAM is to take over as the non-volatile memory of choice.

1.6.4. Tunable capacitors. The high electric-field tunability due to the sensitive non-

linear dielectric constant of ferroelectrics close to Curie temperature makes them extremely

attractive candidates for tunable capacitors or varactors in the microwave regime. However,

the high loss, compared to that of semiconductor alternatives and mainly the high voltage

needed for tunning has limited the commercial use of ferroelectric varactors.

1.6.5. Microwave ferroelectric phase shifters. A phased array antenna consists of

thousands of radiating elements, which should be served by phase array shifters. The phase

shifters modify and control the width and angle of the steered radar beam. Currently, these

phase shifters are housed semiconductor modules. Nevertheless, the use of ferroelectric films
12



as alternatives is being thoroughly investigated, since these films enable the integration of

phase shifters with microwave circuits on one substrate leading to the substantial reduction

of the size, mass and cost of these antennas.

1.7. First-principles simulations of perovskite ferroelectrics

The most widely investigated FE materials are the perovskite oxides of form ABO3 (e.g.,

BaTiO3). In the paraelectric phase, they all have a simple cubic structure with metal A

at the cube corners, metal B (usually a transition-metal) at the cube center, and O atoms

at the cube faces (see Fig. 1.0.2). As the temperature is reduced, a ferroelectric phase

transition takes place, where the material develops a spontaneous electric polarization P,

mainly from the off-center displacement of B atom with respect to the surrounding oxygen

octahedron. For some materials (e.g., PbTiO3) there is a single such transition, while in

others (e.g., BaTiO3) there are multiple FE transitions, corresponding to different selections

of orientation for P as the temperature is reduced [6]. In addition, antiferrodistortive in-

stabilities, involving a rotation of the oxygen octahedra, can also occur in some of these

materials (e.g., PbZrO3, SrTiO3). Although structural phase transitions and ferroelectric

properties of perovskite ferroelectrics have been subjected to extensive experimental and

theoretical investigations, the theoretical studies have been mainly of an empirical charac-

ter. Until recently, a model Hamiltonian (such as an empirical lattice-dynamical model) was

typically fit to reproduce certain experimental features, and then used to broaden the under-

standing or predict new properties [6]. Even though this approach has been rather useful,

forms of these phenomenological Hamiltonians were constrained by available experimental

data. Thus, oversimplification of the Hamiltonian and ambiguity are major drawbacks. In

recent years, first-principles approaches have been developed and have been shown to be

valuable tools in expanding our understanding of ferroelectrics at the microscopic level. In

brief, these approaches are based on the solution for the quantum-mechanical ground state

of the system within the local density approximation (LDA) using the Kohn-Sham density-

functional theory (DFT) [15]. In principle, the atomic numbers of the constituent atoms are
13



the only inputs required for this method. The breakthrough that allowed the use of DFT for

ferroelectrics is the modern theory of the polarization [16, 17, 18]. Formulation of a proper

quantum mechanical approach for the calculation of the electronic polarization in periodic

solids was a challenging problem until the early 1990s. The modern theory of polarization

in which the polarization of continuous periodic electronic charge densities was mapped to a

Berry phase of the Bloch functions provided an elegant solution to this problem [16]. This

technique is now applied to access various quantities such as the spontaneous polarization,

the Born effective charges or the piezoelectric tensors. However, pure DFT approaches have

their limitations. The most important one is that considering explicitly the electronic degrees

of freedom, currently only a limited number of atoms (of the order of a hundred atoms) can

be handled in a first-principles calculation. This imposes serious restrictions on the applica-

tion of pure DFT calculations for the study of many technologically important ferroelectrics,

since many of them are complex solid solutions such as (Ba,Sr)TiO3 (BST), a leading can-

didate for dynamical random access memories (DRAMs), and Pb(Zr,Ti)O3 (PZT), which is

widely used in transducers and actuators. In spite of the rapid increase of computational

power, study of these complex materials is limited to a few artificially ordered supercells

which is inadequate for an accurate description. Furthermore, determination of structural

phase transitions and finite temperature properties are required for meaningful comparison

with experiment, which at the moment is unaffordable within DFT, mainly because the

simulation box is not large enough to properly describe random thermal vibrations. In this

context, the formulation of a microscopic effective Hamiltonian approach for ferroelectrics

was a significant breakthrough for predictions of finite temperature properties. Initially de-

signed by Rabe and Joannopoulos for GeTe [19], the technique was generalized and first

applied to ferroelectric perovskites by Zhong, Vanderbilt and Rabe [20]. In this approach,

the zone center soft mode is considered as the driving force for the phase transitions. The

Hamiltonian is constructed from a Taylor expansion of the energy around the paraelectric

phase in terms of the soft mode polar degree of freedom and the strains. All parameters that

appear in the expansion are determined from DFT total energy calculations. The effective
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Hamiltonian makes it possible to study the structural phase transitions of ferroelectrics and

the temperature dependence of their properties (dielectric, piezoelectric, and optical) [21]. It

provides also access to complex disordered solid solutions and to nanostructures via the alloy

effective Hamiltonian approach [22]. The effective Hamiltonian is subjected to Monte Carlo

(MC) or molecular dynamics (MD) simulations in order to determine the finite-temperature

ferroelectric properties of a particular perovskite. The effective Hamilton approach has been

remarkably successful in predicting finite-temperature properties in many perovskites. Ap-

plication to BaTiO3 for example, produced the exact phase transition sequence and gave

transition temperatures of 385 K, 280 K and 230 K that were in good agreement with the

experimentally known values of 400 K, 280 K and 180 K [23]. Moreover, molecular dynamics

simulations confirmed the relaxational central mode (CM) observed through spectroscopic

measurement and provided insight into the origin of this mode [24]. Alternative methods

have been reported for the study of ferroelectrics: shell-model calculations fitted on first-

principles results similarly allowed Tinte et al., to access their finite-temperature properties

with good accuracy [25], and a phenomenological model based on the chemical rules ob-

tained from DFT allowed Grinberg et al., to reproduce the behavior of PZT structures [26].

However, the effective Hamiltonian approach remains one of the most efficient and used

approaches.

1.8. Objectives

Pb(Zr,Ti)O3 (PZT) solid solutions are of immense technological importance primarily

due to the huge electromechanical coefficients they have for compositions across the mor-

photropic phase boundary (MPB), which is a narrow composition region centered at Ti 50%

at low temperature in the temperature-composition phase diagramm where many different

ferroelectric phases exist. Even though PZT has been thoroughly investigated, both through

numerous diffraction and spectroscopic approaches, the exact nature of the temperature-

composition phase diagram near its MPB is still disputed and origins of some of the low

frequency modes are unsubstantiated. Thus, the author attempts through a first-principles
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effective Hamiltonian molecular dynamics approach to resolve some of these issues and make

predictions, the verification of which can broaden the fundamental understanding of this

important material.

(Ba,Sr)TiO3 (BST) solid solutions are arguably the most widely examined materials

among ferroelectrics. Yet, solid fundamental understanding of some spectroscopic observa-

tions are still elusive, an example being the nature and origin of the central mode (CM) in

these systems. Epitaxially strained SrTiO3 (STO) films have been the subject to extensive

research in recent years, due to the discovery of room temperture ferroelectricity, which is

very promising for technological applications because STO single crystals are found to be

easier to synthesize. Appearance of a CM has also been reported for these films. More-

over, although both BST solid solutions and STO films are highly sought after for tunable

applications, currently little work has been done to extend the fundamental understanding

of dielectric tunability of these systems. Therefore, the author attempts, through a first-

principles effective Hamiltonian molecular dynamics scheme, to provide microscopic insight

into the origin and nature of the CM observed and extend the fundamental understanding

of dielectric tunability of these systems.

This work is organized as follows: In chapter 2, the first-principles effective Hamiltonian

schemes used to investigate both PZT and BST systems will be described; Results for PZT

systems will be discussed in chapter 3; Results for BST systems will be discussed in chapter

4; Summary and concluding remarks on the investigations will be given in chapter 5.
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CHAPTER 2

Methods of investigation

An alloy effective Hamiltonian is at the heart of the approach to investigate dynami-

cal properties of perovskite structures. It is composed of the degrees of freedom, and their

couplings, which are most relevant to the structure and properties under investigation. All

parameters of each Hamiltonian used have been derived from first-principles calculations on

relatively small cells (i.e., up to 40 atoms). The first-principles method used is the plane-wave

ultrasoft-pseudopotential method [27] within the local density approximation [28](LDA) us-

ing the Virtual Crystal Approximation (VCA) approach [29]. The effective Hamiltonian

is incorporated into a Monte Carlo (MC) scheme [30] to investigate static properties, for

instance, the ground state ferroelectric phase at low temperature. It is incorporated into a

molecular dynamics (MD) scheme in which Newton’s equations of motion are solved for all

the variables present in the effective Hamiltonian [31, 32] to investigate dynamical properties

like phonon frequencies. Both MC and MD codes are written in Fortran. The MC code is

designed for serial execution while the MD code used has been parallized using the message

passing interface (MPI) parallel programming model. Simulations were run on Linux super-

computers, Star and Razor at the University of Arkansas. Further details of the effective

Hamiltonian and simulations are given in the following subsections.

2.1. Disordered (Ba,Sr)TiO3 bulk and epitaxially strained

(BaTiO3)m/(SrTiO3)n superlattices

The Alloy effective Hamiltonian used to determine dynamical properties of (Ba,Sr)TiO3

(BST) has two main terms contributing to the total energy (Etot) and can be written as

follows [23]:
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(2.1.1) Etot = EV CA ({ui} ,{vi} ,{ηH}) +Eloc ({ui} ,{vi} ,{ηloc} ,{σj})

where {ui} denotes the Ti-centered local soft mode in the unit cell i (which is directly

proportional to the electric dipole at the cell and is associated with the lowest TO phonon

branch); {vi} are dimensionless displacement variables located at the cell corner and are

used to calculate the inhomogeneous strain tensor,{ηI} in cell i; {ηH} is the homogeneous

strain tensor which allows the simulation cell to vary in size and shape [20]; σj characterizes

the atomic configuration where σj=+1 or -1 corresponds to the presence of a Ba or Sr

atom, respectively, at the A-lattice site j and {ηloc} characterizes the strain resulting from

the difference in ionic size between Ba and Sr atoms, which is relatively large (∼ 2%) [23].

EV CA gives the total energy of Ba0.5Sr0.5TiO3 resulting from the application of the virtual

crystal approximation, in which an alloy of the form (A′,A′′)BO3 is replaced by a uniform but

composition dependent “virtual” <A>BO3 system [29, 33], so that the analytical expression

successfully used in Ref. [20] for simple ABO3 systems can be used in the case of an alloy.

EV CA thus consists of five parts: a local-mode self-energy that includes quadratic and quartic

terms in ui, a long-range dipole-dipole interaction, a short-range interaction between soft

modes which is quadratic in ui, an elastic energy which is quadratic in ηH and ηI , and

an interaction between the local modes and local strain{ηl} which is linear in strain and

quadratic in local modes [20]:

(2.1.2) EV CA = Eself ({ui}) +Edip({ui}) +Eshort({ui}) +Eelas({ηl}) +Eint({ui} ,{ηl})

Eloc can be thought of as the perturbation for the VCA term leading to the approximation

of the total energy for any alloy configuration of BST [23]. Eloc is made of three parts:

perturbation of local modes {ui} by configuration {σj}, perturbation of inhomogeneous

strain {vi} by configuration {σj}, and interaction between local modes {ui} and the strain

{ηloc} arising from the relatively large size difference between Ba and Sr ions.
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(2.1.3) Eloc = Eσu({σj} ,{ui}) +Eσv({σj} ,{vi}) +Eionic({ηloc} ,{ui})

Previous Monte Carlo (MC) simulations of BST based on this effective Hamiltonian have

produced phase transition temperatures and sequences in excellent agreement with experi-

mental observations [23]. Therefore MC simulations using Eqn. (2.1.1) are first conducted

to investigate an alloy with a specific Sr concentration in the following manner: a supercell

of dimensions nx×ny×nz (i.e., unit cells per side) is first generated and stored in file ‘BOX’.

Secondly, a random disordered alloy configuration for this supercell is generated and stored

in file ‘Alloy’. Third, matrices associated with long range dipole-dipole interactions for this

supercell are calculated and stored in file ‘DIP’. These files along with two additional files

(‘PARAMS’ and ‘MCINP’) are used as inputs for the MC code. The PARAMS and MCINP

files contain parameters for effective Hamiltonian and parameters for simulation respectively

[23].

In order to simulate epitaxially strained (BaTiO3)m/(SrTiO3)n superlattices, a suitably

configured Alloy file is generated by merging together Alloy files generated for (BaTiO3)m

and (SrTiO3)n in the appropriate order. Biaxial strain in the plane perpendicular to the

z-axis, growth direction, in each layer is forced to match that of the substrate, which is

accomplished by giving the substrate lattice constant in PARAMS file and by means of a file

’strainINHOSL’, which gives the biaxial strain in each layer (say layer i) due to deviation of

ηloc(i) from the ’ionic’ averaged strain of the whole system denoted, η′loc [34].

Simulations are conducted under a negative external pressure of -5.2 GPa to correct for

the underestimation of the lattice parameter from local density approximation [23]. When

executed, the MC code calculates the resulting energy change for a random displacement of

one of the degrees of freedom ({ui} ,{vi}or{ηH}). If the net energetic change is negative,

the change in the degrees of freedom is saved, otherwise the displacement is rejected, unless

another random call a gives a number that is less than e
∆E
kT , where k is the Boltzmann’s
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constant and T is the temperature in Kelvin. This process is repeated for each degree of

freedom and for each site.

MC simulations are first conducted at a temperature well above the Curie temperature

(Tc) for this alloy. Then reducing the temperature by small steps, simulations are conducted

for each temperature down to 10 K. The length of an individual simulation is 120000 steps.

The output of the MC simulation are the homogeneous strain tensor {ηH} and the local

mode vectors {ui}. Molecular dynamics (MD) simulations are then conducted, using all of

the input files of MC simulation except MCINP, which contain simulation parameters for

MC simulation, as inputs. Instead simulation parameters are given in file ’MDINP’ for MD

simulation. A brief description follows: first the alloy is equilibrated at a given temperature

through running NNPT MD steps with a thermostat and barostat activated in order to mimic

a canonical ensemble (NPT). The barostat is implemented by allowing the homogeneous

strain variables to relax, while the thermostat implemented is the Evans-Hoover thermostat

[35, 36, 37]. MD simulations within NPT ensemble are conducted for all of the temperatures

for which MC simulations were carried out beginning with the same initial temperature and

going down to 10 K. The output of the simulation are the homogeneous strain tensor {ηH}

and the local mode vectors {ui}as a function of time. Phase transition temperatures, phase

transition sequence, averaged local modes and averaged homogeneous strain obtained from

simulations were then checked with that obtained by MC simulation for consistency. Barring

any discrepancy, the thermostat and barostat are then switched off and NEQ MD steps are

conducted within the microcanonical ensemble (NVE) for the system to reach equilibrium at

a constant energy, E. Further NNV E MD steps are then conducted to derive time-dependent

properties of the alloy. Each MD step was chosen to be 0.5 fs. MD code is designed to

simulate systems subjected to an electric field by including a term for the energy of the

local dipoles in the external field, E in the effective Hamiltonian. To conduct simulations

when the system at a certain temperature is subjected to an electric field, the output NPT

configuration at this temperature is first obtained for zero field as described above, and then
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the electric field is gradually increased in magnitude along a direction of interest through

specification of the x, y and z components of the electric field in the MDINP file.

Once the NVE output of MD simulations are obtained for a temperature and electric

field of interest, complex dielectric response in the gigahertz /terahertz regime was derived

using the following formula as detailed in Ref. [31];

εαβ (ν)−1 = 1
ε0V kBT

[〈
dα (t)dβ (t)

〉
+ i2πν

ˆ ∞
0

dtei2πνt
〈
dα (t)dβ (0)

〉]
(2.1.4)

where ν is the frequency, α and β represent cartesian components, V is the volume in atomic

units, T is the temperature and t is time. dα is the α component of the dipole moment of the

supercell and is given by dα (t) = Z∗uα (t), where Z∗ is the Born effective charge associated

with the local mode uα. dα (t)dβ (0) is the dipole moment autocorrelation function (ACF),

where for simulation of (Ba,Sr)TiO3 (BST), it was set to a domain in which t varies from

0 to t0 in steps of 0.5 fs, value of t0 was set to capture all resonances arising from the local

soft mode. ’〈〉’represents thermal averaging. For simulation of BST averaging was done over

nave individual autocorrelation functions spread throughout NVE in order to obtain “well

behaved” dielectric response.

Peaks of complex dielectric response thus derived was fitted using classical damped har-

monic oscillators (DHO) of the form ε(ν) = Sν2
r/
(
ν2
r −ν2 + iγν

)
where νr, γ, and S are the

resonant frequency, damping constant and strength of the corresponding mode, respectively

(see section (1.4)). On occasions, when a peak resembled a relaxation, an overdamped os-

cillator Debye relaxation of the form εR (ν) = SRνR/(νR+ iν) was added to account for the

additional dispersion, where SR is the strength of the relaxation, and ωR is the relaxation

frequency. Form of dielectric function for such responses will be discussed in detail in section

(4.1), where we would encounter them.
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2.2. Disordered Pb(Zr,Ti)O3 bulk

The alloy effective Hamiltonian utilized to investigate finite-temperature, dynamical

properties near the morphotropic phase boundary (MPB) of disordered Pb(Zr,Ti)O3 solid so-

lutions includes, in addition to the ferroelectric (FE) degrees of freedom discussed in section

2.1, the antiferrodistortive (AFD) motions and their couplings with FE degrees of freedom.

Total energy of the structure given by the Hamiltonian is the one discussed in Ref. [38] and

has the following form:

(2.2.1)

Etot = EFE ({ui} ,{vi} ,{ηH} ,{σj}) +EAFD ({ωi} ,{vi} ,{ηH} ,{σj}) +EC ({ui} ,{ωi})

where ui, {vi}and {ηH}have their usual meaning (see section 2.1); σj characterizes the

atomic configuration where σj=+1 or -1 corresponds to the presence of a Zr or Ti atom,

respectively, at the B-lattice site j [39]; {ωi} is a (B-centered) vector characterizing the

direction and magnitude of the AFD motions in unit cell i [38]. EFE gathers the energy

terms solely involving the local mode, strain, atomic configuration and their mutual cou-

plings and is similar to the form of Etot for (Ba,Sr)TiO3 [23], except for the fact that Eionic

is omitted. EAFD gathers terms involving AFD motions and their couplings with strain and

atomic configuration. It consists of four parts: self-energy associated with AFD motions

{ωi}, the short-range interaction energy between AFD degrees of freedom, the interaction

energy between strain{ηl} and AFD motions, and interaction between AFD motions and

atomic configuration{σj}. Thus EAFD has the following form:

(2.2.2) EAFD = Eselfω({ωi}) +Eshortω({ωi}) +Eintω({ωi} ,{ηl}) +Eσω({ωi} ,{σj})

EC gives the interaction energy between local modes and AFD motions. It is of particular

relevance to our investigation since it characterizes the interaction between FE and AFD
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degrees of freedom, thus heavily influencing the low frequency modes arising from them. EC

is given by:

(2.2.3) EC ({ui} ,{ωi}) =
∑
i

∑
α,β,γ,δ

Dαβγδωi,αωi,βui,γui,δ

where i denotes an arbitrary unit cell and α,β,γ, and δ denote Cartesian components. The

first three terms of Eqn.(2.2.2) and EC are terms resulting from the use of the virtual crystal

approximation, VCA (via averaging of the Zr and Ti potentials) to mimic PbZr0.5Ti0.5O3

by a hypothetical simple Pb<B> O3 system [29].

Previous usage of this effective Hamiltonian in Monte Carlo (MC) simulations of PZT [38]

produced transition temperatures to FE phases which were compatible with experimental

observations [40, 41]. In addition, the phases P4mm, R3m, R3c, Cm, Cc and I4cm predicted

were in remarkable agreement with various spectroscopic measurements with respect to both

composition and temperature [40, 41, 42, 43, 44, 45, 46, 47, 48]. Thus to investigate

a Pb(Zr,Ti)O3 alloy of specific Ti concentration, Monte Carlo (MC) simulations are first

conducted on a supercell of dimentions 12×12×12 based on the total energy of Eqn. (2.2.1),

following the same procedure described in section 2.1. Key differences with respect to the

MC simulation using Eqn. (2.1.1) are: (1) since the local mode self energy has contributions

from alloying of the VCA hypothetical Pb<B>O3 system one needs to determine coupling

parameters α and γ for each alloy. (2) For each alloy one needs to determine two sets of α

and γ parameters-one for Ti and one for Zr. (3) Both MC, as well as, MD simulations are

conducted under negative external pressure of 4.68GPa to correct for the underestimation

of the lattice parameter from local density approximation (LDA). MC simulations are first

conducted at a temperature well above the Curie temperature (Tc) for this alloy. Then

reducing the temperature by small steps, simulations are conducted for each temperature

down to 10 K. The length of an individual simulation is 1000000 steps1. Outputs of the MC

procedure are the homogeneous strain tensor {ηH}, the 〈u〉 supercell average of the local

1A large number of MC steps was needed to obtain well converged results
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mode vectors {ui}, and the 〈ω〉R vector defined as 〈ω〉R = 1
N

∑
iωi (−1)nx(i)+ny(i)+nz(i), where

the sum runs over the N sites i and nx(i), ny(i) and nz(i) are integers locating the cell i (i.e.,

the B-site i is centered at
[
nx(i)̂i+ny(i)ĵ+nz(i)k̂

]
a, where a is the lattice constant of PZT

and î, ĵand k̂ are unit vectors along the Cartesian axes). Note that the magnitude of 〈ω〉R
corresponds to the angle of oxygen octahedra tilting and its direction is the axis of antiphase

tilting. A nonvanishing 〈u〉 indicates ferroelectricity while a nonzero 〈ω〉R characterizes an

AFD phase associated with the condensation of the R point of the cubic first Brillouin zone.

MD simulations are then conducted following the same steps described in section 2.1 as

follows: First the system with a certain Ti composition is equilibrated at a temperature and

pressure of interest by running 3× 105 MD steps of NPT (canonical ensemble) simulations

on a 12× 12× 12 supercell (8640 atoms). Each time step is 0.5 fs. The output of the

MD simulations are the local mode vector components, AFD components and strain tensor

components as a function of time. Phase transition temperatures, phase transition sequence,

space groups of the phases, average local modes, average AFD vector 〈ω〉R and average

homogeneous strain obtained from simulations were then checked with those obtained by

MC simulation for consistency. Barring any discrepancy, the thermostat and barostat are

then switched off and the system is equilibrated at constant energy by conducting 105 MD

steps of NVE (microcanonical ensemble) simulations. Subsequently, 6.8×106 NVE steps are

performed to obtain time-dependent properties of the structure. Note that MD simulations

were also conducted with applied electric field at a desired temperature as described in

section 2.1.

Two different complex responses were then computed, in the gigahertz /terahertz regime,

from the MD simulations. One of these is the dielectric response and was computed using

Eqn.(2.1.4) discussed in section 2.1. Formula for computing the other response is given below

[32];

(2.2.4) εAFDαβ (ν)−1 = 1
ε0V kBT

ˆ t0

0

dt
〈
ωRα (t)ωRβ (t)

〉
t0

+ i2πν
ˆ ∞

0
dtei2πνt

〈
ωRα (t)ωRβ (0)

〉
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where ωRα (t) is the α component of AFD motions at the R point of the cubic Brillouin zone

at time t and other parameters have their usual meaning (see section 2.1). εAFDαβ (ν) can be

thought as the response of ωR(t) to its alternating–current conjugate field [32, 49] and is

useful in identifying contributions to the phonon spectrum originating from AFD motions.

Each peak in these two responses is fit using classical damped harmonic oscillators of the

form ε(ν) = Sν2
r/
(
ν2
r −ν2 + iγν

)
where νr, γ, and S are the resonant frequency, damping

constant and strength of the corresponding mode, respectively.

2.3. Dielectric tunability of ferroelectric materials

In the previous chapter (see section 1.5) Landau-Devonshire phenomenological theory of

ferroelectric phase transitions was discussed and a formula for free energy, Φ(P,η), which

describes characteristics of uniaxial ferroelectric phase transitions of centro-symmetric bulk

systems with spatially uniform polarization was derived. Here we will proceed to derive

formulas for dielectric tunability, hereafter denoted by τ (E), where the electric field is applied

parallel to the direction of polarization for such systems.

Considering the three lowest order terms of P in free energy from Eqn. (1.5.4), we have:

(2.3.1) Φ(P,η) = 1
2aP

2 + 1
4βP

4−PE

The equation of state, ∂Φ(P,η)
∂P = 0 , gives:

(2.3.2) aP +βP 3 = E

and the dielectric constant, ε= 1
ε0
∂P
∂E , is:

ε(E) = 1
ε0 (a+βP 2)

In the paraelectric phase when E=0, and from Eqn.(1.5.5) we have:
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(2.3.3) ε(0) = 1
aε0

= 1
a0ε0 (T −T0)

Substituting back in ε(E), for the low-field linear limit (i.e., P = ε0ε(0)E) we obtain :

(2.3.4) ε(E) = ε(0)
1 +β (ε0ε(0))3E2

Therefore the tunability, τ (E) = ε(0)
ε(E) , gives :

(2.3.5) τ (E) = 1 +β (ε0ε(0))3E2

In the high-field non-linear limit this approach for obtaining the dielectric constant is no

longer practical. Alternatively at these fields Vendik [50, 51] has suggested a convenient

approach to obtain ε(E) and τ (E). Employing that approach yields :

(2.3.6) ε(E) = 1
3β 1

3E
2
3

(2.3.7) τ (E) = 3(ε0ε(0))β
1
3E

2
3

Note that this approach most reliably predicts the tunability at low frequency (i.e., up

to GHz) range for temperatures close to transition. Thus these formulas were only used to

analyze dielectric tunability at low frequency obtained from MD simulations.

Dielectric tunability from MD simulations for BST systems was found as follows: At a

specific temperature close to Curie temperature Tc in the paraelectric phase, the particular

system was subjected to a DC electric field of 0.1MV/m along an axis the system tends

to polarize (for example [001] for BaTiO3) below Tc and MD simulations were conducted.
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Gradually increasing this field along the axis up to the order of ∼ 102MV/m further MD

simulations were performed and the complex dielectric response obtained from Eqn.(2.1.4)

for each field was fit using suitable DHO’s as described previously (see section 2.1). The

fitting parameters were then used to obtain tunability at a frequency ν, for each electric

field, E using the following formula;

(2.3.8) τ (E,ν) = ε(0,ν)
ε(E,ν)

Dielectric tunability thus obtained as a function of ν, was thence fitted using Landau-

Devonshire theory based phenomenological formulas derived previously and analyzed. Note

that the induced polarization was plotted as a function of the applied electric field, and the

highest electric field where polarization was linearly proportional to the field E was chosen

as the upper limit of low-field fitting.
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CHAPTER 3

Disordered Pb(Zr,Ti)O3 Bulk: Results and discussion

In order to investigate the nature and origin of low frequency polar modes of Pb(Zr,Ti)O3

(PZT) near its morphotropic phase boundary (MPB), the approach described in section 2.2

was employed. MD simulations were conducted for preselected Ti compositions, based on the

phase diagramm (see1 Fig. 3.0.1) of PZT of Ref.[38] to represent different phase transition

sequences with temperature. Simulation parameters used were NNPT = 3×105, NEQ = 105

and NNV E = 6.8×106. Simulations were conducted for temperature in the interval 1100-10

K, starting from 1100 K and descending.

3.1. Temperature evolution of low frequency modes near the MPB

3.1.1. Low frequency modes of Pb(Zr0.55Ti0.45)O3. Figure 3.1.1 shows the temper-

ature evolution of the lowest resonant frequencies, νr, and the corresponding spectral weights
1Source: I. A. Kornev, L. Bellaiche, P.-E. Janolin, B. Dkhil, and E. Suard, Phys. Rev. Lett. 97, 157601
(2006).

Figure 3.0.1. Phase diagram of Pb(Zr,Ti)O3 near its MPB from first-
principles effective Hamiltonian approach.
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Figure 3.1.1. Temperature dependence of some dynamical characteristics
in the Pb(Zr0.55Ti0.45)O3 solid solution. (a) The νr resonant frequency of
the lowest-in-frequency dielectric peaks for any temperature as well as the
resonant frequency of εAFDxx (ν) for temperatures above 200 K (denoted AFD
mode) found in our simulations. The solid lines represent fittings by square-
root laws of the resonant frequency of the E(1TO) mode and of the soft mode
above Tc. (b) The electric dipole spectral weight of different modes.

[52], Sν2
r , derived through fittings of the frequency peaks of the dielectric responses from

simulations of Pb(Zr0.55Ti0.45)O3 at various temperatures. Just above the transition Curie

temperature Tc, condensation of the lowest optical mode can be seen, which is the signature

of a ferroelectric phase transition. Fittings of this mode by the expression νr = C |T −Tc|
1/2

above and below Tc, shows that it behaves in the experimentally observed Curie-Weiss man-

ner with C=2.62 cm−1K1/2 for T >Tc and C=2.24 cm−1K1/2 for T <Tc. Furthermore, below

Tc, calculations performed in a basis where the z-axis is parallel to the polarization indicates

that this mode corresponds to oscillations in a plane perpendicular to the polarization and

it is in fact the well-known E(1TO) mode (hereafter denoted E). Moreover, at room tem-

perature the predicted frequency of the E mode is around 49cm−1, which agrees rather well

with the measured value of 60cm−1 in a Pb(Zr0.55Ti0.45)O3 solid solution [53]. All these

observations highlight the accuracy of the method of simulation employed.
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Further reduction of the temperature results in the appearance of an additional mode in

the 50-75 cm−1 range below 200K coincident with the R3m to R3c phase transition, which

is an anti-ferrodistortive (AFD) phase transition [32]. Henceforth, these two modes are

denoted E(1) and E(2). Interestingly, through Raman experiments of Refs. [41] and [54], the

existence of two modes exactly within this frequency range and only for temperatures below

the R3m-R3c transition was previously reported. Bäuerle and Pinczuk [54] further observed

that the upper mode significantly increases in frequency as the temperature decreases, while

the lower mode only very slightly increases in frequency around 58cm−1, when the system

is cooled down. The predictions shown in Figs. 3.1.1 and 3.1.2 are in excellent agreement

with all these experimental findings. Bäuerle and Pinczuk [54] also believed that these two

modes have E(TO) symmetry and that the lower mode originates from the zone-boundary

AFD mode.

In order to verify these speculations and to better understand the reason behind the

existence of the E(1) and E(2) modes, let’s check the information provided by our simulations.

Computing the complex dielectric responses in a basis in which the new z-axis is parallel

to the polarization reveals that E(1) and E(2) indeed have E(TO) symmetry; that is, they

both correspond to oscillations of the electric dipoles perpendicularly to the spontaneous

polarization. Moreover, the sum of the electric dipole spectral weights of the E(1) and

E(2) modes just below 200 K is nearly equal to that of the E mode just above 200 K [see

Fig. 3.1.1(b)]. This fact hints at an interaction between the E mode and another dynamical

quantity as the reason for the existence of the E(1) and E(2) vibrations. εAFD (ν) for different

temperatures displayed in Fig. 3.1.2(c) reveals that the AFD degrees of freedom have two

natural frequencies in the 50–75cm−1 range, for any temperature below 200 K [32] that

exactly coincide with the frequencies of the E(1) and E(2) modes proving that, this dynamical

quantity is in fact the AFD distortions. On the other hand, only a single frequency around

50 cm−1 can be found for the AFD dynamics above 200 K, as indicated by Fig(s). 3.1.1(a)

and 3.1.2(c). These results imply that, in the R3c phase, the fluctuations of the AFD degrees

of freedom become coupled with the transverse fluctuations of the FE degrees of freedom.
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Figure 3.1.2. Complex responses of the Pb(Zr0.55Ti0.45)O3 solid solution in
the 20–100 cm−1 frequency range at different temperatures. The (a) real and
(b) imaginary parts of the εxx (ν) dielectric response. (c) The imaginary part
of the AFD-related εAFDxx (ν) function. The displayed data correspond to a fit
of the raw data by classical damped harmonic oscillators. The data for 50, 75,
100, 150, 200, and 300 K have been vertically shifted by 2500, 5000, 7500, 10
000, 12 500, and 15 000, respectively, in order to distinguish them from the 10
K data.
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The AFD mode acquires some polarity due to this coupling, which explains why it can

now be seen in the dielectric spectra (as the E(1) mode) below 200 K, while the “usual”

E dielectric mode loses some polar character due to that coupling, which explains why the

electric dipole spectral weight of E(2) decreases below 200 K [32] [see Fig. 3.1.1(b)]. In other

words, E(1) originates from the AFD motions (as correctly guessed by Bäuerle and Pinczuk

[54]) once these motions are allowed to dynamically couple with the FE distortions2, that

is, once the AFD and FE degrees of freedoms both adopt a long-range order [55, 56]. E(2)

is the remaining signature of the original E mode. Numerical computations further reveal

that E(1) and E(2) modes both mostly originate from the coupling between the E polar mode

and the oscillations of the AFD motions perpendicular to the polarization’s direction. More

insight into this coupling is provided in section 3.4.

3.1.2. Low frequency modes of Pb(Zr0.52Ti0.48)O3. Figure 3.1.3 displays the tem-

perature evolution of the lowest resonant frequencies, νr, and the corresponding spectral

weights, Sν2
r , from simulations of Pb(Zr0.52Ti0.48)O3 at various temperatures. Just as in Ti

45%, one can witness the condensation of the lowest optical mode above the Curie temper-

ature Tc as the temperature is decreased, and the appearence of the E(1TO) mode below

Tc. Intriguingly, upon further reduction of the temperature, the doubly degenerate E(1TO)

mode slightly softens just above 200 K and splits into two modes below 200K coincident with

the tetragonal (P4mm) to monoclinic (Cm) ferroelectric phase transition. Thus the lowering

of the ferroelectric symmetry results in the lifting of the degeneracy of the E(1TO) mode.

Calculations of dielectric tensor components done in a basis where the z-axis is aligned with

the polarization reveal that these two modes also represent dipole oscillations perpendicular

to the direction of polarization, and that the lower of the two has A′ symmetry and the other

has A′′ symmetry [57] in line with group theory predictions. Further cooling of the system

results in the appearance of a second pair of modes below 130 K coinciding with the Cm to

Cc (monoclinic) AFD phase transition. These modes originate from the coupling between

AFD motions and ferroelectric motions [57]. The origin and splitting of these modes will

2Only a single peak with E symmetry is found if one sets to zero the Dαβγδ matrix elements of Eqn.(2.2.3).
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Figure 3.1.3. Temperature dependence of some dynamical characteristics
in the Pb(Zr0.52Ti0.48)O3 solid solution. (a) The νr resonant frequencies of
the lowest-in-frequency dielectric peaks for any temperature. (b) The electric
dipole spectral weight of the corresponding low frequency modes.

be discussed in detail in sections 3.3 and 3.4. All these modes increase in frequency with

decreasing temperature, as similar to the behavior seen in the R3c of Pb(Zr0.55Ti0.45)O3

phase previously.

3.1.3. Low frequency modes of Pb(Zr0.48Ti0.52)O3. Figure 3.1.4 displays the tem-

perature evolution of the lowest resonant frequencies, νr, and the corresponding spectral

weights Sν2
r , from simulations of Pb(Zr0.48Ti0.52)O3 at various temperatures. Similar to

PZT with Ti 45% and 48%, one can witness the condensation of the lowest optical mode

above the curie temperature Tc, as the temperature is decresed and the appearence of the

E(1TO) mode below Tc. Upon further reduction of the temperature an additional peak

appears below 130K in the vicinity of the tetragonal, P4mm to I4cm (still tetragonal) AFD
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Figure 3.1.4. Temperature dependence of some dynamical characteristics
in the Pb(Zr0.48Ti0.52)O3 solid solution. (a) The νr resonant frequencies of
the lowest-in-frequency dielectric peaks for any temperature. (b) The electric
dipole spectral weight of the corresponding low frequency modes.

phase transition. These two modes are in fact similar to the E(1) and E(2) modes found

in R3c phase for PZT with Ti 45% except that E(1) softens with decreasing temperature

rather than hardening. Moreover the appearance of these modes in the I4cm phase have

been confirmed by recent various spectroscopic measurements [41, 44, 48]. Also coupling

between the modes are lessor than in R3c as indicated by the reversal of the spectral weight

magnitudes signifying lower polarity of the E(1) mode in the I4cm phase.

3.2. Effect of direct-current(DC) field

Let’s now use our scheme to simulate the effect of a direct-current electric field applied

along the polarization direction, on the E(1) and E(2) modes of disordered Pb(Zr0.55Ti0.45)O3.
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Figures 3.2.1(a) and 3.2.1(b) show the resonant frequencies and the relative square of the

oscillator strengths of these two modes extracted from the dielectric responses for DC electric

fields of different magnitudes at 10 K. Figure 3.2.1 reveals a text book example of a so-called

anticrossing [58]: the E(1) and E(2) modes exchange their character as the field increases

(i.e., the E(1) mode becomes less polar, while the E(2) mode gains significant polarity), while

their frequencies never cross. To gain further insight into these results, coupled dynamical

equations of FE and AFD distortions within the harmonic approximation were constructed

where the 2×2 dynamical matrix D(E), of these equations is given by Eqn. (3.2.1).

(3.2.1) D (E) =

 (ν(0)
u )2 +fE κ

κ (ν(0)
ω )2 +aE


In this matrix, the two diagonal terms are assumed to be linear functions of the mag-

nitude of electric field and the off diagonal terms represent coupling between distortions

and are considered to be independent of electric field. Resonant frequencies and the rela-

tive square of the oscillator strengths of the two modes from MD simulations were fitted by

means of eigenvalues and eigenvectors of this matrix. The fittings confirms the assumptions

incorporated in the dynamical matrix. The dashed lines in Fig. 3.2.1(a) are the uncoupled

resonant frequencies (i.e., diagonal terms of Eqn. (3.2.1)). The author is not aware of any

previously reported field-induced dynamical anticrossing involving FE and AFD degrees of

freedom. Note, however, that such anticrossings can be expected on symmetry grounds since

E(1) and E(2) have the same symmetry, namely, they are both E(TO) modes.

3.3. Composition evolution near MPB of low-frequency coupled modes

MD simulations are carried out for disordered PZT solid solutions, with Ti compositions

ranging from 45.2% to 56.0% in intervals of 0.2% and for a temperature of 10 K. Simulation

parameters used were NNPT = 3× 105, NEQ = 105 and NNV E = 6.8× 106. Figure 3.3.1(a)

provides the magnitude of the local mode vector (| 〈u〉 |) and its Cartesian components (〈ux〉,

〈uy〉, and 〈uz〉) –averaged over the MD steps and the supercell sites – as a function of
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Figure 3.2.1. (a) Resonant frequency and (b) relative square of the strength
of the oscillator of the E(1) and E(2) modes . Solid lines in (a) and (b) represent
fittings by the eigenvalues and eigenvectors of a 2 × 2 matrix, respectively.
Dashed lines in (a) are frequencies that linearly depend (off diagonal terms of
2 × 2 matrix) on the magnitude of the electric field.

composition in disordered PZT solid solutions. Note that the x-, y- and z-axes are chosen

along the pseudo-cubic [100], [010] and [001] directions, respectively. Figure 3.3.1(b) provides

similar information, but for the magnitude of the antiphase AFD vector (| 〈ωR〉 |) and its

Cartesian components (
〈
ωx,R

〉
,
〈
ωy,R

〉
, and

〈
ωz,R

〉
). For compositions in the 45.2%-47.5%

range, all components found for both local mode and AFD motions were non-zero with 〈ux〉=

〈uy〉= 〈uz〉 and
〈
ωx,R

〉
=
〈
ωy,R

〉
=
〈
ωz,R

〉
. This is indicative of the rhombohedral R3c phase,

as consistent with the measurements of Refs.[54, 41, 42]. Within the 47.5%-51.0% range,

all components found for both local mode and AFD motions were similarly non-zero, but in

this case 〈uz〉 was larger than 〈ux〉 and 〈ux〉= 〈uy〉, while
〈
ωz,R

〉
was larger than

〈
ωx,R

〉
and〈

ωx,R
〉

=
〈
ωy,R

〉
. Such equalities and inequalities are consistent with a monoclinic Cc phase.

Furthermore, since the ratio 〈uz〉/〈ux〉 is different from
〈
ωz,R

〉
/
〈
ωx,R

〉
, the axis of rotation

of the oxygen octahedra does not coincide with the direction of polarization in this Cc

state. Finally, for compositions varying between 51.0% and 56.0%, 〈uz〉 and
〈
ωz,R

〉
were the
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only non-zero components found for the local mode vector and AFD motions, respectively,

indicating the occurrence of a tetragonal I4cm phase. It is also interesting to realize that

Figs. 3.3.1(a) and 3.3.1(b) reveal that the magnitudes of both the local mode vector and the

antiphase AFD vector are nearly constant within the compositional range defining the Cc

state. Thus, we can conclude that both polarization and AFD vectors are “simply” rotating

from the [111] to the [001] pseudo-cubic direction as the overall Ti concentration increases

within the Cc phase.

Furthermore, Figures 3.3.1(c) and (d) display the composition dependence of the resonant

frequencies, νr, and the corresponding spectral weights Sν2
r , of low-frequency modes (i.e.,

below 100 cm−1), obtained through fittings of the frequency peaks of the dielectric responses

for the same temperature of 10 K. As previously indicated, the existence of two (double

degenerate) E(TO) modes – denoted by E(1) and E(2) – in the R3c state, are found as

consistent with experiments [41, 45, 48] conducted at low temperature. The origin of these

two modes was revealed to be the coupling between the AFD and FE degrees of freedom

and will be discussed in more detail in section 3.4 [32]. As the Ti composition increases

from 45%, both E(1) and E(2) modes’ frequencies slightly decrease (in agreement with the

measurements of Ref.[48]) and then undergo a clear splitting starting from 47.6%. This

splitting is exactly coincident with the advent of the Cc phase for PZT at 10K, as evidenced

from Figs. 3.3.1(a) and 3.3.1(b). Each E mode splits into A′+A′′ modes. Let’s denote

the two modes resulting from the splitting of E(1) as A′(1) and A′′(1). Similarly, the two

modes originating from E(2) are denoted by A′(2) and A′′(2). We numerically find that the

A′(1), A′′(1) , A′(2) and A′′(2) peaks observed in the dielectric response have corresponding

peaks (with identical resonant frequencies) in the εAFD
αβ (ν) AFD response. This proves that

these four modes all possess both FE and AFD characters, thanks to the couplings between

these two different structural degrees of freedom [57]. Moreover, computing the tensor

components of εαβ (ν) and εAFD
αβ (ν) in a new basis where the z-axis is along the polarization

reveals that all these modes correspond to electric dipole oscillations being perpendicular

to the direction of polarization in the Cc phase. Furthermore, Fig. 3.3.1(c) indicates that
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Figure 3.3.1. Predicted compositional dependency of some physical proper-
ties in disordered PZT at 10 K. Panel (a) shows the magnitude and Cartesian
components of the local mode. Panel (b) displays the same information than
Panel (a), but for the AFD vector. Panel (c) provides the resonant frequency
of the lowest optical phonon modes seen in the dielectric spectra. Panel (d)
gives the spectral weight of the E(1) and E(2) modes in the R3c and I4cm
states, as well as, the sum of the spectral weights of the A′(1) and A′′(1) modes
and the sum of the spectral weights of the A′(2) and A′′(2) modes for the di-
electric spectra of the Cc phase. Panel (e) is similar to Panel (d) but only for
the Cc state and for the εAFD

αβ (ν) AFD response. The solid lines in Panel (c)
provides the fitting of the resonant frequencies by Eqs. (3.4.5) in the R3c and
I4cm states and by Eqs. (3.4.6) in the Cc phase.

the frequency difference between the A′(1) and A′′(1) (and also between A′(2) and A′′(2)) is

relatively small in the Cc state. For instance, these differences are typically smaller than the

frequency difference between E(1) and E(2) in the R3c phase. Figure 3.3.1(c) further shows

that these frequency differences between the A′ and A′′ modes originating from E(1) and E(2),

to be denoted by ∆ν(E(1)) and ∆ν(E(2)), respectively, are largest near the compositional
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mid-point of the Cc phase (that is located around a Ti composition of 49.4 %) and decrease

to either side of it. To better understand and quantify this point, let’s introduce a parameter

quantifying how far away is a Cc state with respect to its delimiting R3c and I4cm “borders”.

Here, this parameter is denoted by mdep, is termed the “monoclinic depth”, and is defined

by [57]:

(3.3.1) mdep =

(
P̂ .m̂

)
(ω̂.m̂)(

P̂ .ω̂
) − cos2 θm

where m̂ is the unit vector along the direction that equally divides the [001] and [111]

pseudo-cubic directions. As a result, m̂ = î+ĵ+(1+
√

3)k̂√
2
√

3(1+
√

3)
, with î, ĵ and k̂ being the unit

vectors along the pseudo-cubic [100], [010] and [001] directions, respectively. In Eq.(3.3.1),

P̂ and ω̂ are the unit vectors along the direction of polarization and along the axis about

which the long-range-ordered oxygen octahedra tilt, respectively. θm is the polar angle of

m̂, therefore yielding cos2 θm = 1+
√

3
2
√

3 . Note that Eq.(3.3.1) ensures that mdep is zero in the

R3c and I4cm phases and equal to
√

3−1
2
√

3 if P̂ and ω̂ both lie along m̂. Figure 3.3.2 displays

∆ν(E(1)) and ∆ν(E(2)) versus mdep within the Cc compositional region and at 10K, as

well as their fittings by polynomials of first or second order. One can indeed see that

∆ν(E(1)) and ∆ν(E(2)) can be reasonably well fitted by these polynomials. Interestingly,

these polynomials are monotonically increasing functions of the “monoclinic depth”, which

therefore quantitatively confirms that the closer the Cc state is from its mid-point (between

the R3c and I4cm phases), the larger are the frequency splittings. In Fig. 3.3.1(d), the sum

of the spectral weights of A′(1) and A′′(1), and the sum of of the spectral weights of A′(2)

and A′′(2), are plotted in the Cc phase (along with the spectral weight of the E(1) and E(2)

modes in the R3c and I4cm phases), as a function of composition. Such figure reveals that,

at the rhombohedral “border” of this monoclinic phase, the strength of the E(1) mode is

larger than that of the E(2) mode, while the E(2) becomes much more polar with respect

to E(1) at the “tetragonal” compositional border of the Cc phase. This change in polarity

occurs via the gain in the sum of the spectral weights of A′(2) and A′′(2) at the expense of
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the sum of the spectral weights of A′(1) and A′′(1), when the Ti composition increases within

the Cc state. Figure 3.3.1(e) further shows that, conversely, the modes derived from E(2)

(i.e., A′(2) and A′′(2)) lose more and more their AFD character during that compositional

increase, while the modes that are originating from E(1) strengthen their AFD character.

Such features are indicative of a compositionally-induced anticrossing (between the “bare”

FE and AFD modes) occurring within the Cc phase. Note that an anticrossing between the

E(1) and E(2) modes were previously predicted for a specific composition in the R3c state

of PZT and discussed in section 3.2.1, but it was generated by an electric field [32]– which

contrasts with the presently discussed one which is induced by the composition in the Cc

phase of PZT [57].

Figure 3.3.1(c) further indicates that the splittings of both the E(1) and E(2) modes into

A′+A′′ modes start to disappear for a composition around 51%, which is coincidentally in

the vicinity of the Cc to I4cm phase transition at 10K [see Figs. 3.3.1(a) and 3.3.1(b)]. As a

result, in the I4cm phase and as consistent with symmetry, doubly-degenerated E(1) and E(2)

modes are again observed – exactly as in the (Ti-poorer) R3c phase and in agreement with

recent spectroscopic observations [41, 44, 48]. Thus the symmetry of these modes for all

low temperature phases across the MPB are consistent with predictions from group theory.

Nevertheless, the frequency difference between these two modes is larger in the I4cm phase

than in the R3c phase, and further increases when increasing the Ti composition within

the I4cm state (as also seen in the measurements of Ref.[48]). Furthermore, the spectral

weight of E(2) in the dielectric spectra increases while the spectral weight of E(1) significantly

reduces until almost vanishing when the Ti concentration increases in the I4cm phase [see

Fig. 3.3.1(d)].

3.4. Analytical models for coupled modes

To understand features found in previous sections via the use and analysis of our atomistic

effective Hamiltonian technique, let’s develop analytical models for structural phases (such

as R3c, I4cm and Cc) that exhibit both long-range ordered FE and AFD motions. In such
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Figure 3.3.2. Difference in frequency between the A′ and A′′ modes derived
from the E(1) (in blue) and E(2) (in red) modes, as a function of the monoclinic
depth (see text). The solid lines represent fit of these data by linear and
quadratic functions in case of ∆ν(E(2)) and ∆ν(E(1)), respectively.

cases, these motions at site i can be represented as:

(3.4.1)


ui (t) = 〈u〉+ ũi (t)

ωi (t) = 〈ωR〉+ ω̃i (t)

where t represents time, 〈u〉 and 〈ωR〉 are the equilibrium, spontaneous values of the FE

and AFD motions, respectively. Finally, ũi and ω̃i are the deviations of the FE motions and

AFD motions at site i, respectively, from their equilibrium values. It can be then shown

(see appendix A), by plugging Eq.(3.4.1) into Eq.(2.2.3), that the essential FE-AFD linear
41



coupling energetic term that influences the dynamics of ũi and ω̃i has the following form:

HFE-AFD '
∑
i

κ |〈u〉| |〈ωR〉| ũi ˜·ωi,(3.4.2)

where the “| |” symbol represents the magnitude of a vector, and where κ is a coupling

coefficient involving the Dαβγδ parameters of Eq.(2.2.3). Note that the precise combination

of the Dαβγδ coefficients yielding the κ parameter is different between the R3c, Cc and I4cm

states since it depends on the direction of the polarization.

3.4.1. In case of the R3c and I4cm states. Equation (3.4.2) implies that, for the

doubly-degenerate E modes of the R3c and I4cm states, the dynamical coupled equations

for ũi and ω̃i are given within the harmonic approximation by:


d2ũi
dt2 + 4π2ν2

uũi + κ|〈u〉|
mu
|〈ωR〉| ω̃i = Z∗E(t)

mu

d2ω̃i
dt2 + 4π2ν2

ωω̃i + κ|〈u〉|
mω
|〈ωR〉| ũi = 0

(3.4.3)

where νu and νω are natural frequencies of the “bare” FE soft mode and “bare” AFD

mode respectively. mu, mω are the effective masses of the “bare” FE mode and the “bare”

AFD mode, respectively. Z∗ is the Born effective charge associated with the FE soft mode

and E (t) is an applied ac electric field.

One important information resulting from Eq. (3.4.3) is that the dynamical coupling

between the FE and AFDmotions is reduced (respectively, vanishes) as the |〈ωR〉|magnitude

of the spontaneous AFD motion decreases (respectively, is annihilated). This explains why

the spectral weight of the E(1) mode diminishes in the dielectric spectra as the Ti composition

increases in the I4cm state (see Fig. 3.3.1(d)). In other words, the E(1) mode does not have

significant polarity anymore for large compositions in the I4cm state (and thus can not be

easily seen in the dielectric spectra) because the dynamical coupling between FE and AFD

motions is rather small there as a result of small |〈ωR〉|.
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Moreover, let’s assume that, within the R3c or I4cm phase, the compositional depen-

dencies of the natural frequencies of the “bare” FE and AFD modes are given by:
ν2
u = (ν(0)

u )2 +fx

ν2
ω = (ν(0)

ω )2 +ax

(3.4.4)

where x is the Ti composition, and where ν(0)
u , f , ν(0)

ω and a are composition-independent

parameters within the R3c or I4cm phase.

For small magnitude of the ac electric field, one can prove that combining Eqs. (3.4.3)

and (3.4.4) provides two resonant frequencies (whose associated peaks should be seen in both

the dielectric and AFD responses and that both correspond to doubly-degenerate E modes)

that are given by:

(3.4.5)


(ν1)2 = (ν(0)

u )2+(ν(0)
ω )2

2 +
(
a+f

2
)
x−

√(
(ν(0)
u )2−(ν(0)

ω )2

2 + (f−a)x
2

)2
+ (κ|〈u〉||〈ωR〉|)2

16π4mumω

(ν2)2 = (ν(0)
u )2+(ν(0)

ω )2

2 +
(
a+f

2
)
x+

√(
(ν(0)
u )2−(ν(0)

ω )2

2 + (f−a)x
2

)2
+ (κ|〈u〉||〈ωR〉|)2

16π4mumω

Interestingly and as shown by Fig. 3.3.1(c), Equations (3.4.5) can fit very well the

resonant frequency of the E(1) and E(2) modes for all the investigated compositions in the

R3c and I4cm phases – which validates the relevance of this analytical model based on the

coupling between FE and AFD degrees of freedom. Note that, as expected, a different set of

parameters (κ, ν(0)
u , f , ν(0)

ω , a) has to be used to fit the data of the R3c versus I4cm states.

3.4.2. In case of the Cc state. In the Cc state, the degeneracy of both E(1) and E(2)

modes has been lifted, giving A′(1) and A′′(1) from E(1) and A′(2) and A′′(2) from E(2), as

discussed previously. As indicated by our MD data (see Fig. 3.3.2), this lifting is related to

the monoclinic depth introduced earlier. As inferred from Fig. 3.3.2, we can thus assume
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that the frequencies of the A′(1), A′′(1), A′(2) and A′′(2) modes are given, respectively, by:

(3.4.6)



ν ′1 = ν1 +f1
(
mdep

)
ν ′′1 = ν1−f1

(
mdep

)
ν ′2 = ν2 +f2

(
mdep

)
ν ′′2 = ν2−f2

(
mdep

)
where ν1 and ν2 are given by Eqn.(3.4.5) – and are thus solutions of the coupled Eqns(3.4.3)

– and where f1 and f2 are second-order and first-order polynomials respectively, of mdep. As

can be seen in Fig. 3.3.1(c), these equations fit nicely the resonant frequencies of all A′(1),

A′′(1), A′(2) and A′′(2) modes in the Cc phase for a given set of parameters (κ, ν(0)
u ,f , ν(0)

ω , a)

and for given f1 and f2 functionals (note that the mdep value used is obtained from the MD

data for each Ti composition ranging within the Cc state). Such good fits further confirm

the validity of our analytical models, in general, and the role of the coupling between FE

and AFD motions on characteristics of low-optical phonon modes, in particular.

3.5. Non-linear dynamical coupling near MPB

So far nature and origin of dynamical phenomena related to low frequency modes at

low temperature, in phases possessing both long-range ordered FE and AFD motions near

MPB have been discussed. Close inspection of dielectric responses at higher temperature,

i.e., in purely FE phases near MPB leads to the uncovering of an intriguing phenomenon

too. Figures 3.5.1(a) and 3.5.1(b) display the real and imaginary parts of the isotropic

dielectric response – i.e., [εxx(ν)+εyy(ν)+εzz(ν)]/3 – of a Pb(Zr0.47Ti0.53)O3 system versus fre-

quency at 600 K and 400 K, respectively. The insets of these figures show the εzz (ν)

dielectric response, where z is along the direction of polarization. Figure 3.5.1(a) indicates

that Pb(Zr0.47Ti0.53)O3 behaves “normally” at 600 K, i.e. it possesses a doubly-degenerate

E mode at lower frequencies and a single A1 mode at higher frequencies. Note that the A1

mode corresponds to atomic vibrations parallel to the direction of the spontaneous polar-

ization. One important feature revealed by Fig. 3.5.1(b) is the “abnormal” existence of two
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A1 modes at 400 K [59]. These two modes are denoted as A(1)
1 and A(2)

1 hereafter and their

resonant frequencies are around 136 and 161 cm−1, respectively, at 400 K. It is important

to realize that the crystallographic phase is identical between 400K and 600K (i.e., P4mm).

In other words, the doubling of the A1 modes is not associated with a phase transition,

unlike the extra E mode that occurs at low temperature [32, 55]. Further simulations for

PZT systems with different compositions near the morphotropic phase boundary (MPB), as

well as using different supercell sizes, were also performed at 300 K and 400 K, and two A1

modes were also found in these systems. This doubling of the A1 mode thus appears to be

a general feature of PZT systems near their MPB. Moreover, to uncover the origin of this

phenomena, additional simulations were conducted in which alloying effects are switched off

in PZT. This was achieved by treating the studied solid solution as a simple Pb〈B〉O3 crystal

for which 〈B〉 represents a virtual atom that is intermediate between Ti and Zr atoms [29].

In that simplified case, the doubling of the A1 mode is still present at 300 K, which implies

that such doubling has nothing to do with the presence of two B-atoms in PZT (Ti and

Zr). Interestingly, one Raman experiment [60] previously reported an active mode with a

frequency of ≈125cm−1 while another infrared measurement indicated a resonant frequency

around 160cm−1 at room temperature in Pb(Zr0.55Ti0.45)O3 solid solution [53]. The fact

that these two experimental frequencies are very close to our predictions strongly hints to-

wards the possibility that one measurement determined the frequency of what we denoted

as the A(1)
1 mode while the other measurement “saw” the A(2)

1 mode – with none of them

suspecting that two modes with A1 symmetry can exist in PZT at room temperature within

the ≈ 100 - 170 cm−1 range3 .

More thoughtfully acquired MD simulation data will now be presented to gain insight

in to the origin and nature of this unusual doubling of the A1 mode. Figure 3.5.2 shows

the temperature dependence of the resonant frequencies for the A1 modes obtained from

the simulations for Pb(Zr0.47Ti0.53)O3. Just below Tc and down to 525K, only a single

3Such overlooking of these two modes likely arises from the broadness and thus overlap of the A
(1)
1 and A

(2)
1

modes in the Raman spectra. In this frequency range, there is also an E(LO) mode at 100 cm−1 (depending
on temperature), which creates some confusion in the symmetry assignment of Raman peaks.
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Figure 3.5.1. The isotropic dielectric response of the Pb(Zr0.47Ti0.53)O3
solid solution versus frequency, at (a) 600 K and (b) 400 K. The insets show the
εzz dielectric response, where z corresponds to the direction of the polarization.
Solid and dotted lines represent the real and imaginary parts, respectively, of
the complex dielectric responses.

A1 mode exists. The frequency of this mode follows the usual Curie-weiss behavior, i.e.,

νr = C |Tc−T |
1/2. On the other hand, for temperatures ranging between 500K and 100 K,

two modes of A1 symmetry exist, with evidently the A(1)
1 (respectively, A(2)

1 ) mode having a

frequency lower (respectively, higher) than that given by the Curie-Weiss law. Furthermore,

for temperatures below 100 K, the A(1)
1 and A

(2)
1 modes merge into a single mode of A1

symmetry that once again follow this square-root law. Interstingly Fig. 3.5.2 further reveals

that when cooling the system the A1 mode first disappears in favor of the A(1)
1 and A

(2)
1

modes, at a temperature where the frequency of this single A1 mode is nearly equal to

twice the main resonant frequency associated with the antiphase AFD motions4 (that are
4In fact, we found that there is another AFD resonant frequency, in addition to the main one shown in Fig.
3.5.2. For instance, at 500 K, this second frequency occurs at 105 cm−1 versus 58 cm−1 for the main AFD
frequency. Such a second AFD frequency has a peak that is much weaker than the one associated with
the main AFD resonant frequency and is caused by alloy effects. Note that, when using the virtual crystal
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associated with the R-point of the first-Brillouin zone [32]). This phenomena is further

confirmed [59] by additional calculations in which the resonant frequency of the AFD motions

is varied by hand, and strongly suggests that the coupling between the AFD and the soft

modes is responsible for the doubling of the A1 mode. This latter possibility is consistent with

the results of additional simulations in which we turned off the AFD motions or switch off the

D parameters of Eq. (2.2.3): in such cases, only a single A1 mode can be seen in the dielectric

spectra down to the lowest temperature. For symmetry reasons, only three different kinds

of D elements are nonzero and different from each other, namely, Dxxxx = Dyyyy = Dzzzz,

Dxxyy = Dyyxx = Dyyzz = Dzzyy = Dzzxx = Dxxzz, and Dxyxy = Dyxyx = Dyzyz = Dzyzy =

Dzxzx = Dxzxz. These three kinds of coefficients are hereafter denoted by D1, D2, and D3,

respectively. We also numerically found that the D2 parameter has a stronger effect than the

D1 coefficient on the doubling of the A1 modes, while the D3 parameter has essentialy no

effect on such doubling. It thus appears that the doubling of the A1 modes mostly originates

from an interaction between longitudinal FE displacement and transverse AFD motions.

The fact that the unusual A1 mode doubling requires an overtone of the AFD mode to

be close to the resonant frequency of the single A1 mode points towards a a Fermi resonance

(FR) associated with non-linear couplings [62]. Such phenomenon is well known in molecules

[63, 64], but much less documented in inorganic crystals, especially in perovskites [65, 66,

67]. Note that if the overtone of the AFD mode becomes too far away in frequency from the

“bare” single A1 mode (that can be assumed to coincide with the fitted, Curie-Weiss solid

line of Fig. 3.5.2) then the FR cannot occur anymore. This explains the disappearance of

the A(1)
1 and A(2)

1 modes in favor of a single A1 mode for temperatures below 100 K, as seen

in Fig. 3.5.2.

In order to confirm and further understand the proposed FR, let’s develop a analytical

model considering a structural phase that possesses a spontaneous polarization but in which

the AFD ωi’s do not organize themselves into a long-range order – exactly as in P4mm

approximation [29] to treat PZT, only one single AFD peak therefore exists, and two dielectric peaks of A1
symmetry also occur when twice the frequency of this single AFD mode is near the FE A1 frequency.
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Figure 3.5.2. Temperature dependence of the resonant frequency of the
A1 modes and of twice the resonant frequency of the AFD mode in
Pb(Zr0.47Ti0.53)O3. The thin black solid line represents the fitting of the single
A1 mode, for temperatures above 525 K and its interpolation down to 0 K by
the Curie-Weiss square-root law (see text). The crystallographic ferroelectric
phases of the system at different temperatures are also indicated.

phase5. To simplify the investigation of the dynamics of ui and ωi due to their non-linear

couplings, following section 3.4, ũi and ω̃i are introduced such as:

(3.5.1)


ui (t) = 〈u〉+ ũi (t)

ωi (t) = 〈ωR〉+ ω̃i (t) = ω̃i (t)

Since here 〈ωR〉= 0. Plugging Eqn. (3.5.1) into Eqn. (2.2.3), one finds that the essential

FE-AFD non-linear coupling term that governs the dynamics of ũi and ω̃i has the following

form (see Appendix A):

5Note that the present FR occurs well within the stability range of the P4mm phase, which implies that
phenomena that are strictly restricted to the vicinity of the ferroelectric phase transition are not fully relevant
here.
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HFE-AFD '
∑
i

κ |〈u〉| ũi(ω̃i)2,(3.5.2)

where ũi corresponds to the (small and long-range correlated) motion along the polariza-

tion direction, and ω̃i corresponds to (small and long-range correlated) AFD motions either

perpendicularly to the polarization direction (in that case, the parameter is related to the D2

parameter) or parallel to that direction (in that case, is proportional to D1). The dynamical

equation for ũi is thus:

(3.5.3) d2ũi
dt2

+ 4π2ν2
A1ũi+

κ |〈u〉|
mu

(ω̃i)2 = Z∗E (t)
mu

,

where νA1 is the natural frequency of the “bare” FE soft mode along the direction of

polarization, and mu is the soft mode effective mass. E(t) is an applied ac electric field.

Equation (3.5.3) further proves the existence of a coupling between the dynamical small

(long-range correlated) displacement of the square of the AFD motion and the dynamical

small (long-range correlated) displacement of the soft mode in a polar phase, which is con-

sistent with the proposed occurrence of FR involving AFD overtone. One can prove (see

Appendix A) that when νA1 is close to twice the AFD resonance frequency, Eqn. (3.5.3)

leads to two resonant frequencies for the A1 mode that are given by ν2
r = ν2

A1±Ω2, where Ω2

depends on the κ coupling parameter, as well as, on the value of the spontaneous polariza-

tion. As Eqn. ( 3.5.3) and ν2
r bear similarities to the analogous expressions for typical FR

(see e.g., Ref.[68] and references therein), simulations indeed predict that, as a consequence

of the coupled dynamics of the FE and AFD modes, a FR occurs in PZT and manifests itself

as the doubling of the A1 mode.
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CHAPTER 4

Disordered (Ba,Sr)TiO3 bulk and epitaxially strained SrTiO3

thick films: Results and discussion

In this section, the dielectric response of (Ba,Sr)TiO3 (BST) and epitaxially strained

SrTiO3 (STO) thick films at finite temperatures and for different Ba compositions will be first

examined to uncover/confirm new modes and their charactersitics will be discussed. Special

attention will be given to the central mode (CM) reported/speculated in these systems for

temperatures lying in the vicinity of the FE phase transition. Second, subjecting these

systems to direct-current (DC) electric fields, their dielectric tunability will be computed

and compared with Landau-Devonshire based phenomenological predictions formulated in

section 2.3.

4.1. Temperature evolution of low-frequency modes

4.1.1. SrTiO3 bulk. MD simulations of SrTiO3 (STO) bulk were carried out on 12×

12× 12 supercells. Simulation parameters used were NNPT = 100000, NEQ = 40000 and

NNV E = 7300000. Simulations were conducted for temperature in the interval 700-130 K,

starting from 700 K and descending. No ferroelectric (FE) phase transition (PT) occurred for

STO in this interval in agreement with experimental observations [69]. An example of the di-

electric response obtained through Eqn.(2.1.4) is shown in Fig. 4.1.1(a), where the imaginary

part of the isotropic dielectric response is given at 340 K. For all temperatures investigated, a

single classical damped harmonic oscillator (DHO) of the form ε(ν) = Sν2
r/
(
ν2
r −ν2 + iγν

)
,

where νr, γ and S are the resonant frequency, damping constant and strength of the cor-

responding mode, respectively, was sufficient to fit the dielectric response successfully. Soft

mode (SM) frequencies and their respective dielectric strengths found from such fittings for

each temperature are shown in Fig. 4.1.2.
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Figure 4.1.1. Imaginary part of the dielectric response as a function of fre-
quency at 340 K from MD simulations(in red) and its fitting(in blue) using an
appropriate oscillator model (see text). Panel (a) shows the isotropic dielectric
response, Im εiso of SrTiO3 bulk. Panel (b) displays the in-plane dielectric re-
sponse, Im εp (ν) of strained SrTiO3 film. Panel (c) displays the out-of-plane
dielectric response, Im εo (ν) of strained SrTiO3 film. Panel (d) shows the
isotropic dielectric response, Im εiso of Ba0.5Sr0.5TiO3 bulk.

4.1.2. Epitaxially strained SrTiO3 thick films. MD simulations of epitaxially strained

STO thick films were conducted on 14×14×14 supercells. Simulation parameters used were

NNPT = 160000, NEQ = 100000 and NNV E = 25500000. Substrate lattice constant (asub)

was chosen to be 7.577 Bohr so that it induces an epitaxial strain of ~+1.6% comparable

to that induced by DyScO3 on STO, which is known to be ~+1% [70]. Simulations were
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Figure 4.1.2. Temperature dependence of some soft mode (1TO) character-
istics. Panel (a) displays resonant frequency of soft mode. Panel (b) displays
dielectric strength.

conducted for temperatures in the interval 900-130 K, starting from 900 K and descend-

ing. FE phase transition to orthorhombic, Amm2 phase was seen at the Curie temperature

Tc~305 K, in accordance with the PT observed for STO grown on DyScO3 with a critical

temperature Tc~293 K or Tc~270 K [70, 71], proving the accuracy and reliability of the ap-

proach. An example of the imaginary part of the in-plane dielectric response obtained using

Eqn.(2.1.4) at 340 K is shown in Fig. 4.1.1(b). Unlike in Fig. 4.1.1(a) for STO bulk, one can

clearly see in this figure the presence of a lower frequency Debye-like mode in addition to the

higher frequency soft mode (SM). Spectroscopic measurements carried out by J. Hlinka et

al. [24] on BaTiO3 confirmed the existence of such a relaxational mode, which is generally

referred to as central mode (CM). These authors went on to show that hopping between
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potential minima is the cause of this central mode. This second peak is in fact visible for all

temperatures investigated in the interval of 500-180 K. To account simultaneously for SM

and CM appearing in the in-plane dielectric response ε(ω) - a model consisting of a damped

harmonic oscillator (DHO) and a Debye mode can be constructed as follows;

for two degrees of freedom :

ε(ω) =
[
S1 S2

] 1− iω/ωR δ

δ ω2
0−ω2− iωγ


−1 S1

S2


considering central mode (CM) to be a silent mode (i.e. S1=0) we obtain :

(4.1.1) ε(ω) = S2
2

ω2
0−ω2− iωγ− δ2/(1−iω/ωR)

where S2, ω0, γ are the dielectric strength, frequency and damping constant of the SM,

respectively; ωR and δ are the relaxation frequency of the CM and the coupling coefficient

between SM and CM, respectively. Successful and physically meaningful fits of the in-plane

dielectric response for all temperatures investigated in the interval of 500-180 K were obtained

using Eqn.(4.1.1). For temperatures above 500 K, a single damped harmonic oscillator was

sufficient to fit the in-plane dielectric response. In fact, three distinct peaks were visible in

the in-plane dielectric response for temperatures below 270 K. Examination of the dielectric

response along the direction of polarization [110] and perpendicular to it (i.e.,
[
1̄10

]
) shows

that the third mode arose because of the splitting of the in-plane SM in the FE phase

giving a lower frequency mode of B2 symmetry corresponding to oscillations in the (001)

plane and a higher frequency A1 mode with oscillations along [110]. Hence, this A1 mode was

accounted for, by fitting the response after the addition of an uncoupled DHO to Eqn.(4.1.1).

Interestingly for all temperatures investigated a single peak was visible in the out of plane

dielectric response (see Fig. 4.1.1(c)). This peak was fitted using the customary single DHO

model and it has B1 symmetry with oscillations along [001]. Symmetries of all these modes

are inline with that of group theory predictions. Mode frequencies, spectral weights, and the
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Figure 4.1.3. Temperature dependence of some properties of lowest-in-
frequency modes of strained SrTiO3 films. Panel (a) displays resonant fre-
quencies of modes. Panel (b) displays dielectric strength of modes. Panel
(c) shows coupling coefficient between CM and other modes from fitting (see
text). Solid vertical lines mark phase boundaries and FE phases are indicated.

coupling constants obtained through these fittings are shown in Fig. 4.1.3 as a function of

temperature. Data for ωR and SM are in remarkable agreement with those obtained from

Fourier transform infrared reflectence (FTIR) spectra in Ref.[71] for 100 nm thick STO films

grown on DyScO3. The coupling coefficient for the cubic phase as well as the FE phase was

found to be nearly constant in each phase, although in the FE phase, δ was slightly higher

with respect to that of the cubic phase.

4.1.3. Ba0.5Sr0.5TiO3bulk. MD simulations for Ba0.5Sr0.5TiO3(BST) bulk were car-

ried out on 12× 12× 12 supercells. Simulation parameters used were NNPT = 100000,
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NEQ = 40000 and NNV E = 13060000. Simulations were conducted for temperature in the in-

terval 700-130 K, starting from 700 K and descending. Cubic (Pm3̄m) to tetragonal (P4mm),

Tetragonal to Orthorhombic (Amm2), and Orthorhombic to Rhombohedral (R3m) phase

transitions occurred at transition temperatures that were in excellent agreement with ex-

perimental measurements [69, 72]. An example of imaginary part of the isotropic dielectric

response obtained using Eqn.(2.1.4) at 340 K is shown in Fig. 4.1.1(d). Similar to strained

STO films, here we can see an additional peak of Debye relaxation (CM) type. This peak was

observed for all temperatures investigated below 400 K, thus the model given by Eqn.(4.1.1)

was employed to fit these two peaks. It is noteworthy that, a recent first-principles-based

investigation [73] of BST using the effective Hamiltonian method also yielded similar output

but in this case the SM and CM were fitted using two uncoupled DHO’s, which the author

believe does not adequately account for the Debye like nature of the CM and more impor-

tantly neglects the important coupling between SM and CM. The present approach gives

CM frequencies in much better agreement with experiment [71], especially in the FE phase.

Below Tc, three peaks were observed in the dielectric response parallel to the direction of

polarization in both P4mm and Amm2 phases, which were fitted using an extra uncoupled

DHO added to Eqn.(4.1.1). The lowest is a relaxational mode and is denoted CM(f) and

the highest frequency peak is found to be of A1 symmetry while the other peak has B2

symmetry. Perpendicular to the direction of polarization two peaks are observed, of which

the lower is a relaxational mode, denoted CM(p) and was fitted using Eqn.(4.1.1). CM(p)

occurs due to transitions between ferroelectric phases while the other mode is found to have

B1 symmetry and it ’drives’ the transitions between ferroelectric phases as evidenced by

its softening approaching the phase boundaries and the spike in its spectral weight crossing

the phase boundaries (see Fig. 4.1.4(b)). Symmetries of all these modes in each FE phase

are compatible with group theory predictions. Mode frequencies, spectral weights and the

coupling coeffiecient obtained from these fittings are shown in Fig. 4.1.4. Similar to strained

STO films, coupling coefficients, δ are constant in each phase, but δ for CM(p) is lower to

that of CM(f) in FE phases.
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Figure 4.1.4. Temperature dependence of some properties of lowest-in-
frequency modes of Ba0.5Sr0.5TiO3 bulk. Panel (a) displays resonant frequen-
cies of modes. Panel (b) displays dielectric strength of modes. Panel (c) shows
coupling coefficient between CM and other modes from fitting (see text). Solid
vertical lines mark phase boundaries and FE phases are indicated.

Comparison of MD simulation results of Fig(s). 4.1.2, 4.1.3 and 4.1.4 confirms that

chemical substitution with Ba or epitaxial strain in STO can cause an increase in Curie

temperature and generate a relaxation mode not seen in STO bulk. Furthermore, effective

Hamiltonian approach predicts temperature evolution with striking accuracy for the CM

frequencies, observed through various measurements in strained STO and BST [71, 74].

Yet, it raises many important questions such as why does the transition temperature Tc,

change from system to system? what causes the CM? Why is the CM visible in BST systems

and not in some other perovskite systems such as PZT? Why is the range in paraelectric
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phase in which the CM appears different among these systems? Let’s attempt to answer

these questions with the aid of further information obtained from the MD simulations.

4.1.4. Mechanics of transition temperature, Tc, in BST systems. MD simula-

tions were performed for BST bulk systems with atomic Ba compositions that change by

steps of 10%. Simulation parameters are those of Ba0.5Sr0.5TiO3 described above. To an-

swer the first question above, the Curie temperatures (Tc) of these systems were found and

plotted against their respective low-temperture ferroelectric potential well depths φ, for each

system and are shown in Fig. 4.1.5(a). The linear relationship which has a proportionality

constant in the order of the Boltzmann constant (i.e. φ ∼ kTc) between Tc and φ proves

that chemical substitution or strain causes φ, to change which in turn causes a proportional

change in Tc.

In order to understand what causes φ to change among these systems we need to closely

examine the alloy effective Hamiltonian (Eqn.(2.1.1)). Terms involving the local soft mode

{ui} in this Hamiltonian are the ones that directly affects the dynamics of the local soft mode.

Moreover, among these terms Eionic given in Eqn.(2.1.3) and Eint given in Eqn.(2.1.2) are

the ones that are primarily affected by chemical substitution and/or strain and they can be

coalesced to give electrostriction energy, Estr as follows;

(4.1.2) Estr({ui} ,{ηl}) = Eionic+Eint = 1
2
∑
i

∑
lαβ

Blαβηtot,l (i)ui,αui,β

where i runs over all the unit cells, α and β denote Cartesian components, Blαβ are cou-

pling parameters [20, 22] and ηtot,l (i) = ηH,l (i)+ηI,l (i)+ηloc,l (i). The coefficient signifying

total harmonic contribution of the local soft mode, say is κ′α for the α cartesian component

of the local mode. Then from Eqn.(2.1.2) and Eqn.(4.1.2) κ′α can be given by;

(4.1.3)

κ′α = κ+ 1
2
[
B1ααηH,1 (i) +B2ααηH,2 (i) +B3ααηH,3 (i) + (B1αα+B2αα+B3αα)ηloc (i))

]
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Figure 4.1.5. Transition temperature charcteristics of BST bulk and epitax-
ially strained STO films as a function of potential well-depth φ. Panel (a)
displays Curie temperature Tc, and CM emergence temperature TR. Panel
(b) shows the temperature range in which the CM is visible in the paraelectric
phase (TR-Tc).

where κ is total harmonic contribution from Eself , Edip , and Eshort terms of Eqn.(2.1.2).

κ′α computed from Eqn.(4.1.3) for some of the systems investigated are shown in Table 4.1.1.

It is thus clear that the differences in Estr drives the change in κ′α which in turn affects the

well-depth, φ. Furthermore, one can see that the FE phase to which each system transforms

below Tc is also determined by how κ′x, κ′y, and κ′z compare with each other for a particular

system. That is κ′α has the highest values for STO bulk explaining the absense of PT in this

system. For epitaxially strained STO films κ′x = κ′y < κ′z, which explains why we observe an

Pm3̄m to orthorhombic Amm2 transition in this system. Moreover, the inequality between

the in-plane coefficients and out of plane cofficient is the cause of the splitting in the SM
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System κ′x κ′y κ′z
SrTiO3 -0.015303 -0.015303 -0.015303

Ba0.5Sr0.5TiO3 -0.026472 -0.026472 -0.026472
BaTiO3 -0.037641 -0.037641 -0.037641

Strained SrTiO3 -0.032388 -0.032388 -0.015303
Table 4.1.1. Cartesian components, κ′α of harmonic contribution of local soft
mode, {ui}, for different systems investigated.

in this system in the paraelectric phase. For Ba0.5Sr0.5TiO3 and BaTiO3, κ′x = κ′y = κ′z ,

but are lower than STO explaining the cause of Pm3m to P4mm transition and the closely

spaced other FE transitions down to R3m.

4.1.5. Origin of central mode (CM) in perovskites. As mentioned earlier, previ-

ous MD simulation of BaTiO3 supported by spectroscopic measurements [24] showed that

hopping between potential minima of the local mode is responsible for the appearance of

the CM in its ferroelectric phase. Time evolution of the local modes of an arbitrary site of

BST systems indicate that such hopping exists in both FE and PE phases of all systems

investigated. As an example, time evolution of an arbitrary Ba0.5Sr0.5TiO3 site is shown in

Fig. 4.1.6 for different temperatures (and thus for different phases). So what causes this

hopping?

The short answer is that strong Estr term is the cause of this hopping in BST. Estr prefers

the polarized state of a site, thus when tensile ηloc,l (i) increases due to Ba substitution or

when ηH,l (i) is increased due to epitaxial strain the local mode become increasingly unstable

in the PE phase. Let’s denote TR as the highest temperature at which the CM is visible,

TR−Tc is displayed as a function of well depth φ, in Fig. 4.1.5(b). The linear proportionality

clearly indicates that strengthening Estr results in the expansion of the temperature range

in which the CM appears in the PE phase, supporting the above claim.

But why does CM arise in BST and not in some of the other well known perovskites like

PZT, which have even higher Tc? A possible reason is that Estr is considerably weaker in

these systems. In PZT for instance, B1xx- by far the largest expansion parameter among

the Blαβ coefficients in both BST and PZT is an order of a magnitude smaller in PZT.
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Figure 4.1.6. Time evolution of the x-component of an arbitrarly selected
site of Ba0.5Sr0.5TiO3 bulk for different temperatures.

Furthermore, ηloc,l (i) is insignificant in the effective Hamiltonian of PZT. Thus, Estr is

much weakened in PZT and CM does not arise.

4.2. Dielectric Tunability of (Ba,Sr)TiO3 bulk and epitaxially strained SrTiO3

thick films

4.2.1. SrTiO3 bulk. Dielectric tunability τ (E), at ν=10 GHz of SrTiO3 bulk was ob-

tained following the method described in section 2.3, as a function of DC electric field applied

along [001] through MD simulations conducted at 320 K. Simulations were conducted up to

a maximum field of 240 MV/m. Figures 4.2.1(a), (b) and (c) display τ (E), the soft mode

frequency, and its corresponding strength determined from the complex dielectric response

as a function of the bias electric field. τ (E) and soft mode frequencies thus obtained were in
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Figure 4.2.1. Electric field dependence of dynamical properties of STO bulk
at 300 K. Panel (a) display low-field (green) and high-field (red) Landau-
Devonshire fittings of simulation data for tunability. Panel (b) shows resonant
frequency of soft-mode. Panel (c) shows dielectric strength of soft-mode.

remarkable agreement with spectroscopic measurements for SrTiO3 [75, 14] and shows the

low tunability of this system. Furthermore, the soft mode “hardened” with increased field-E

as speculated by measurements [75].

Fitting of τ (E) was accomplished as follows: first the zero-field dielectric constant ε(0)

at 10 GHz, obtained from MD simulations as a function of temperature in the PE phase,

was fitted (see Fig. 4.2.2) using Eqn.(2.3.3) and thence ε(0) at 300 K was determined.

Then, Eqn.(2.3.5) was used to fit the low-field tunability after substituting with this ε(0).

The fitting parameter β thus determined was thereafter substituted into Eqn. (2.3.7) for

high-field tunability and was plotted together with Eqn.(2.3.5) for low-field tunability (see

Fig. 4.2.1(a)). Apparently and as expected from Landau-Devonshire theory, the high-field
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Figure 4.2.2. Temperature dependence of zero-field dielectric constant ε(0)
at 10GHz for SrTiO3 (green), Ba0.5Sr0.5TiO3 (red) and strained SrTiO3 (blue).
Points are computations from MD simulations while lines represent fittings by
Curie-Weiss Law.

plot has roughly the same β value as that of the low-field plot. High-field tunability was

then fitted using Eqn. (2.3.7) and with β deduced from this fit, subsequently Eqn.(2.3.5) for

low-field tunability was plotted. Once again, we can see that the high-field fitting parameter

for β is similar that of low-field supporting the Landau-Devonshire theory. The β values

obtained in both instances as well as ε(0) at 300 K from the Curie-Weiss fit are in good

agreement with known experimental data [75, 14] for SrTiO3 and are given in Table 4.2.1.

4.2.2. Epitaxially strained SrTiO3 thick films. Now let’s examine the effect of

epitaxial strain on dielectric tunability. For this purpose the strained SrTiO3 thick film

discussed in section 4.1 was considered and τ (E) at ν = 10GHz was obtained, following

the method described in section 2.3 as a function of a DC electric field applied along [110],
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through MD simulations conducted at 320 K. Simulations were conducted up to a maximum

field of 100MV/m. Figures 4.2.3(a), (b) and (c) display τ (E), mode frequencies, and their

corresponding strengths determined from the complex dielectric response as a function of

the bias electric field. Recently SrTiO3 films grown on DyScO3 have been receiving a lot of

attention due to its enormous tunability close to room temperture [14, 77, 78]. The system

investigated here is similar and τ (E) displayed in Fig. 4.2.3(a) confirms the gigantic leap

in tunability of SrTiO3 when under epitaxial strain. Moreover the soft mode (SM) as well

as the central mode (CM) have frequencies shown in Fig. 4.2.3(b), which are in excellent

agreement with reported spectroscopic measurements [71, 78] and the SM hardens in a

strikingly similar manner with the applied electric field [78]. However, the CM somewhat

softens with increasing electric field especially in the low-field limit. This is in contrast to the

assumption held that CM is a constant of electric field, in fitting spectroscopic measurements

[78]. Next, τ (E) in the low-field limit and high-field limit was fitted using Eqns. (2.3.5)

and (2.3.7) respectively, following the same approach discussed for SrTiO3. It is found that

ε(0) for 320 K, obtained from the PE phase Curie-Weiss fit using Eqn.(2.3.3) is two order

of magnitude larger, to that of SrTiO3 bulk and has excellent agreement with experimental

measurements [78]. Unsurprisingly, β deduced from the high-field fit is of the same order as

of SrTiO3 bulk as expected from Landau-Devonshire theory. But intriguingly, β for low-field

is couple of orders of magnitude smaller comparatively. Hence, Landau-Devonshire theory

is no longer accurate in predicting tunability when SrTiO3 is epitaxially strained. Since the

CM softens considerably and is stronger in the low-field limit with respect to the high-field

range correlating with the descripancy of β values, the author believe’s that the appearance

of the CM causes β to lower drastically resulting in a much lower tunability at low-field

than predicted by Landau-Devonshire theory. Subsequent investigation of the tunability of

Ba0.5Sr0.5TiO3 bulk will substantiate this claim further.

4.2.3. Ba0.5Sr0.5TiO3bulk. Effect of chemical substitution on dielectric tunability will

now be examined by considering Ba0.5Sr0.5TiO3 bulk system. Dielectric tunability τ (E),

at ν = 10GHz was obtained following the method described in section 2.3, as a function
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Figure 4.2.3. Electric field dependence of dynamical properties of strained
STO thick film at 320 K. Panel (a) displays low-field (red) and high-field
(green) Landau-Devonshire fittings of simulation data for tunability. Panel
(b) shows resonant frequencies of peaks in dielectric response. Panel (c) shows
dielectric strength of modes and coupling coefficient (δ).

System Temperature(K) Dielectric constant,ε(0) Low-field β-βL High-field β-βH
SrTiO3 300 247 1.49E+10 2.38E+10

Strained SrTiO3 320 11230 1.75E+8 2.04E+10
Ba0.5Sr0.5TiO3 270 2216 2.71E+9 1.75E+11

Table 4.2.1. Comparison of zero-field dielectric constant and β from low-
field, βL and high-field, βH for systems from MD simulations.

of a DC electric field applied along [100] through MD simulations conducted at 270 K.

Simulations were conducted up to a maximum field of 100 MV/m. Figures 4.2.4(a), (b) and

(c) show τ (E), the mode frequencies, and their corresponding strengths determined from

the complex dielectric response as a function of the bias electric field. Ba0.5Sr0.5TiO3 has

been investigated extensively over a lengthy period of time due its high permittivity and
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tunability at room temperature [14]. Tunabilityτ (E), SM frequencies as well as the electric

field hardening of SM at low fields displayed in Figs. 4.2.4(a) and (b) are compatible with

spectroscopic measurments [79]. Just as in strained SrTiO3, the CM softens appreciably

with increasing field, noticeably in the low-field region. Dielectric tunability τ (E), in the

low-field limit and high-field limit was fitted using Eqns. (2.3.5) and (2.3.7) respectively,

following the same approach discussed before. Zero-field dielectric constant, ε(0) for 270 K

calculated from the PE phase Curie-Weiss fit using Eqn.(2.3.3) is two orders of magnitude

larger to that of SrTiO3 bulk and has excellent agreement with spectroscopic measurements

[14, 79]. Parameter β, deduced from the high-field fit is in good agreement with experimental

values reported in literature [79]. Moreover, as in strained SrTiO3 film, β for low-field is

couple of orders of magnitude smaller comparatively with SrTiO3 bulk. Peculiarly, similar to

strained SrTiO3 film the CM is stronger and soften considerably more in the low-field region

as opposed to the high-field region coincident with substantially lower tunability at low-field

than predicted by Landau-Devonshire theory. Therefore our claim that the CM in low-field

limit is causing the drastic drop in tunability than anticipated by Landau-Devonshire theory

is further strengthened.
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Figure 4.2.4. Electric field dependence of dynamical properties of
Ba0.5Sr0.5TiO3 bulk at 270 K. Panel (a) displays low-field (red) and high-field
(green) Landau-Devonshire fittings of simulation data for tunability. Panel
(b) shows resonant frequencies corresponding to peaks of dielectric response.
Panel (c) shows dielectric strength of soft-mode and coupling coefficient (δ).
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CHAPTER 5

Conclusions

5.1. Disordered Pb(Zr,Ti)O3 Bulk

In brief, MD simulations incorporating the first-principles alloy effective Hamiltonian

were performed for Pb(Zr,Ti)O3 bulk systems, at finite temperatures for each composition

investigated across the MPB. Resonant frequencies and spectral weights of the low frequency

modes were determined from the output of the simulations.

The appearance of an unknown low frequency mode in Pb(Zr0.55Ti0.45)O3 for temper-

atures below 200 K was confirmed. The origin of this mode was revealed to be the linear

coupling between FE motions and AFD motions, when both degrees of freedom adopt long-

range ordering within a R3c space group. Moreover, this additional low frequency mode

was shown to involve the R-point AFD mode and to have E(TO) symmetry giving credence

to speculations of Bäuerle and Pinczuk through Raman spectroscopic measurements [54].

Furthermore resonant frequencies and spectral weights of these two modes were obtained

as a function of bias electric field applied along the direction of polarization for this sys-

tem. Analysis by means of a 2× 2 dynamical matrix predicted an electric field induced

anti-crossing between the modes and provided more insight into the nature of the coupling.

Moreover, MD simulations conducted for various compositions of Pb(Zr,Ti)O3 at 10

K confirmed the appearance of additional low frequency polar AFD modes in the dielec-

tric spectra, in systems adopting to both the Cc and I4cm space groups. In particular, a

compositional-induced anticrossing is predicted to occur in the Cc state, and the polarity

of one mode is expected to significantly decrease and nearly vanish when increasing the Ti

composition within the I4cm state. Consistent with group theory, a lifting of degeneracy of

E modes into A′+A′′ modes is also occurring in the Cc state, with the resulting difference in

frequency being related to a quantity that we introduced and denote here as the monoclinic

67



depth and which involves the directions of the polarization and AFD vector. Analytical mod-

els were constructed that are based on the linear coupling between FE and AFD motions

in structural phases exhibiting both long-range-ordered polarization and oxygen octahedra

tiltings. Such analytical models accurately reproduced characteristics of the low-frequency

optical modes, and provided more insight into the significant role played by the coupling

between ferroelectric and AFD degrees of freedom on such characteristics.

Inspection of dielectric reponses purely in the FE phase derived from MD simulations

for compositions across the MPB revealed the existence of two A1 modes denoted as A(1)
1

and A(2)
1 , instead of the known single A1 mode. Raman measurements of Pb(Zr0.47Ti0.53)O3

validated the doubling of the A1 mode. It was shown that this doubling of the A1 modes

mostly originates from an interaction between longitudinal FE displacement and transverse

AFD motions and that the unusual A1 mode doubling requires an overtone of the AFD mode

to be close to the resonant frequency of the single A1 mode. Such charactersitics were shown

to be in line with the occurrence of a Fermi resonance. This hypothesis was substantiated by

the use of an analytical model involving non-linear coupling between FE and AFD motions

in a purely FE phase, which unveiled characteristics typical of a Fermi resonance.

The alloy effective Hamiltonian approach has been highly successful in confirming ob-

served phenomena both of static and dynamical nature in Pb(Zr,Ti)O3 near its MPB. More-

over, the nature and origin of such phenomena has been revealed. Therefore, the scheme

employed here can serve as a basis for predicting dynamical properties of systems (such as

BiFeO3) that exhibit couplings not only between ferroelectric and antiferrodistortive motions

but also between ferroelectric and other degrees of freedom (such as magnetic dipoles). In

this work, dynamical properties such as the lifting of degeneracy of the E modes in the Cc

phase, arising from ferroelectricity has been predicted, of which the occurrence of a Fermi

resonance has since been verified. The author thus hopes other predictions made here will

soon be verified through measurements, leading to a broadening of the fundamental under-

standing of this technologically important compound.
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5.2. Disordered (Ba,Sr)TiO3 Bulks and epitaxially strained SrTiO3 thick films

Dielectric responses as a function of Ba composition and temperature of (Ba,Sr)TiO3

bulk, and the dielectric response of epitaxially strained SrTiO3 films were probed. In strained

SrTiO3 films, occurrence of a Debye like relaxational mode (CM) near the Curie temperature

Tc, in both PE and FE phases is confirmed. Furthermore, splitting of the soft mode (SM)

into out-of-plane and in-plane modes as a result of epitaxial strain is predicted. Splitting

of the in-plane SM in the FE phase into two modes is corroborated and it was shown that

these modes possess A1 and B2 symmetry respectively, while the out-of-plane mode has B1

symmetry in the FE phase in conformity with group theory predictions.

Analysis of the dielectric response of Ba0.5Sr0.5TiO3 revealed a second CM mode in the

FE phase in addition to the reported single CM in BaTiO3. In both the ferroelectric (FE)

P4mm and Amm2 phases, modes originating from the soft-mode were shown to have A1,

B1 and B2 symmetries, where B1 corresponds to dipole oscillations perpendicular to the

polarization and A1 corresponds to oscillations parallel to the polarization.

The mechanics of the Curie temperature, Tc, in (Ba,Sr)TiO3 systems was investigated

through close inspection of the effective Hamiltonian of these systems. Microscopic elec-

trostrictive energy of these systems is shown to drive the mechanics of Tc and the type of FE

phase transition in these systems. The occurrence and characteristics of the CM in both PE

and FE phases were shown to depend on the variations of the strong electrostrictive energy

in these systems and the non-existence of CM in other perovskites such as Pb(Zr,Ti)O3 was

linked to the relatively weak electrostriction in these systems.

The dielectric tunability τ (E), the static dielectric constant ε(0) and the characteristics

of the modes at ν=10 GHz of SrTiO3 bulk, strained SrTiO3 films and Ba0.5Sr0.5TiO3 bulk

were obtained as a function of electric field applied along the polarization. SM frequen-

cies as well as CM frequencies for systems investigated were in excellent agreement with

spectroscopic measurements. The CM was found to soften somewhat with electric field, in

contrast to the common assumption that it is a constant of electric field. The dielectric

constant ε(0) and computations of tunability τ (E) were in agreement with measurements
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for all these systems. In particular, the high tunability resulting from chemical substitution

or epitaxial strain in SrTiO3 was confirmed. Fittings of low-field and high-field tunability of

SrTiO3 using respective Landau-Devonshire-theory-based formulas gave β values consistent

with measurements and showed the validity of the Landau-Devonshire theory. However,

similar fittings done for Ba0.5Sr0.5TiO3 and strained SrTiO3 films revealed that Landau-

Devonshire theory does not describe the tunabiliy satisfactorily in the low-field regime. In

fact, predicted tunability by Landau-Devonshire theory was a couple of orders of magnitude

higher than the ’actual’ computed tunability. It is claimed that the presence of a strong CM

in the low-field regime in these systems causes this discrepancy.

Finally, the alloy effective Hamiltonian scheme used here for BST systems has been

highly successful in verifying observations from measurement for dynamical as well as static

properties related to the FE soft mode. Such accuracy makes this approach very reliable in

uncovering the microscopic origin of observed phenomena as we have seen for the origin of

CM discussed here. As of now, although there is not much experimental work published on

the technologically important dielectric tunability of these systems, the author is confident

the predictions made here in this respect and with respect to mode characteristics will be

successfully verified in the near future. The author also believes the incorporation of other

degrees of freedom like AFD for example, can lead to deeper fundamental understanding of

these systems.
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APPENDIX A

In order to gain insight into the low frequency peaks appearing in the dielectric responses

of Pb(Zr,Ti)O3, one needs to determine the essential form of the contribution from FE-AFD

coupling term of the effective Hamiltonian, and examine the resulting dynamical equations

for the FE and AFD motions. The FE-AFD coupling, EC , is given by:

(A.0.1) EC ({ui} ,{ωi}) =
∑
i

∑
α,β,γ,δ

Dαβγδωi,αωi,βui,γui,δ

Linear Coupling

In structural phases that exhibit both long-range ordered FE and AFD motions (such as

R3c, I4cm and Cc), FE and AFD motions at site i can be represented as:

(A.0.2)


ui (t) = 〈u〉+ ũi (t)

ωi (t) = 〈ωR〉+ ω̃i (t)

where t represents time, 〈u〉 and 〈ωR〉 are the equilibrium, spontaneous values of the FE

and AFD motions, respectively. Finally, ũi and ω̃i are the deviations of the FE motions and

AFD motions at site i, respectively, from their equilibrium values. Plugging Eqn.(A.0.2) into

Eqn.(A.0.1) and expanding, for the essential form of the expression, we have:

(A.0.3)
EC = ∑

i
∑
α,β,γ,δ

(
Dαβγδ

〈
ωi,α,R

〉〈
ωi,β,R

〉)
ũi,γ ũi,δ +∑i

∑
α,β,γ,δ

(
Dαβγδ

〈
ωi,α,R

〉〈
ui,δ

〉)
ω̃i,βũi,γ

+∑i
∑
α,β,γ,δ

(
Dαβγδ

〈
ωi,α,R

〉
〈ui,γ〉

)
ω̃i,βũi,δ +∑i

∑
α,β,γ,δ

(
Dαβγδ

〈
ωi,β,R

〉〈
ui,δ

〉)
ω̃i,αũi,γ

+∑i
∑
α,β,γ,δ

(
Dαβγδ

〈
ωi,β,R

〉
〈ui,γ〉

)
ω̃i,αũi,δ +∑i

∑
α,β,γ,δ

(
Dαβγδ 〈ui,γ〉

〈
ui,δ

〉)
ω̃i,αω̃i,β
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where the first order terms of ũi,α and ω̃i,α disappears because equilibrium conditions

require that ∂EFE−AFD/∂ũi,α = 0 and ∂EFE−AFD/∂ω̃i,α = 0 . Although the first and last terms

in Eqn.(A.0.3) can influence the natural frequencies of the soft mode and AFD mode. The

remaining peaks are of particular significance, since they will give rise to new resonance peaks

in the dielectric response arising from AFD motions. They show that the linear coupling

between FE and AFD motions can be collectively taken to have the form:

HFE-AFD '
∑
i

κ |〈u〉| |〈ωR〉| ũi ˜·ωi,(A.0.4)

where κ is a constant depending on the Dαβγδ matrix.

Non-linear coupling [59]

In structural phases that exhibit only long-range ordered FE motions (such as R3m,

P4mm and Cm), FE and AFD motions at site i can be represented as:


ui (t) = 〈u〉+ ũi (t) ,

ωi (t) = 〈ωi〉+ ω̃i (t) = ω̃i (t) .

(A.0.5)

where 〈ωi〉= 0. The dynamic equation for ui (t) is given by

d2

dt2
ui,δ = . . .−2

∑
i,α,β,γ

Dαβγδωi,αωi,βui,γ + . . . ,(A.0.6)

where only the term due to the FE-AFD non-linear couplings is explicitly shown. Plugging

Eq. (A.0.5) into the above equation gives:

d2

dt2
ũi,δ (t) = . . .−2

∑
i,α,β,γ

Dαβγδω̃i,αω̃i,β 〈u〉γ

−2
∑

i,α,β,γ

Dαβγδω̃i,αω̃i,βũi,δ . . . .(A.0.7)
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Assuming ũi (t) is small compared to 〈u〉, we can neglect the last term in Eq. (A.0.7),

having

d2

dt2
ũi,δ (t)' . . .−2

∑
i,α,β,γ

Dαβγδω̃i,αω̃i,β 〈u〉γ .(A.0.8)

For ωi (t), there is a similar equation. We then find that, if we view ũi (t) and ωi (t) as

dynamic variables, the essential FE-AFD non-linear coupling term that governs the dynamics

of ũi and ω̃i has the following form

HFE−AFD =
∑
i

κ〈u〉 ũi (ω̃i)2 ,(A.0.9)

Analytical solution to the non-linear dynamical equations [59]

To better understand the non-linear coupling between the local mode and the antifer-

rodistortions (AFD) motions, let’s adopt a simplified model whose dynamics can effectively

represent that of the whole system, in which ũi and ω̃i are the two coupled dynamical vari-

ables and the coupling term is given in Eqn. (A.0.9).

The dynamical equations for ũ and ω̃ (we remove the subscript i hereafter to simplify

notations) are given, in the limit of small ac electric fields, by:
d2ũ
dt2 = −4π2

(
νFE
r

)2
ũ− κ〈u〉

mũ
ω̃,

d2ω̃
dt2 = −4π2

(
νAFD
r

)
ω̃− 2κ〈u〉ũω̃

mω̃
,

(A.0.10)

where νFE
r (respectively, νAFD

r ) is the frequency of the electric dipole (respectively, AFD

motions) that is related to the derivatives of the EFE (respectively, EAFD) energy term, and

mũ (respectively, mω̃) is the effective mass associated with the local soft mode (respectively,

AFD distortions).
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To further analyze Eqs. (A.0.10), which are coupled non-linear differential equations, we

Fourier-transform to the frequency representation and obtain, using the convolution theorem:
−ν2ρũ (ν) = −

(
νFE
r

)2
ρũ (ν)− κ〈u〉

4π2mũ

´∞
−∞ ρω̃ (ν ′)ρω̃ (ν−ν ′)dv′,

−ν2ρω̃ (ν) = −
(
νAFD
r

)2
ρω̃ (ν)− κ〈u〉

2π2mω̃

´∞
−∞ ρũ (ν ′)ρω̃ (ν−ν ′)dv′,

(A.0.11)

where ρũ (ν) =
´∞
−∞ ũ(t)exp(−i2πνt)dt and ρω̃ (ν) =

´∞
−∞ ω̃ (t)exp(−i2πνt)dt.

While the spectral densities ρω̃ (ν) and ρũ (ν) are in principle arbitrary, we know they

present their maximum values for frequencies around νAFD
r and νFE

r , respectively. This

implies that, for example, the product ρũ (ν ′)ρω̃ (ν−ν ′) will be significant only if ν ′ ' νFE
r

and ν−ν ′' νAFD
r , which results in the condition ν ' νFE

r +νAFD
r . This means that, according

to the second equation in Eq. (A.0.11), the FE-AFD coupling will modify the spectrum of the

AFD mode at frequencies νFE
r +νAFD

r that will be well separated from the main AFD spectral

feature at νAFD
r unless νFE

r ' 0. In our case, because νFE
r is large for the temperature range

of interest (cf. Fig. 3.5.2 in section (3.5)), the equation ρω can be approximately written as

−ν2ρω̃ (ν) =−
(
νAFD
r

)2
ρω̃ (ν) ,(A.0.12)

which represents a well defined harmonic oscillator in the frequency space.

A similar analysis shows that the non-linear coupling term in the equation for ρũ will

play a significant role for frequencies ν ' νFE
r ' 2vAFD

r . Hence, in this case, the FE-AFD

coupling affects the spectral density of the FE mode near its maximum, making it doubly-

peaked. Indeed, we can rewrite the first line in Eq. (A.0.11) and readily identify the resonant

frequencies for ũ. We have

[
ν2−

(
νFE
r

)2]
= κ〈u〉

4π2mũρũ (ν)

ˆ ∞
−∞

ρω̃
(
ν ′
)
ρω̃
(
ν−ν ′

)
dv′,(A.0.13)
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and, because ρω̃ (−ν) = ρ∗ω̃ (ν), we also have

[
ν2−

(
νFE
r

)2]
= κ〈u〉

4π2mũρ∗ũ (ν)

[ˆ ∞
−∞

ρω̃
(
ν ′
)
ρω̃
(
ν−ν ′

)
dv′
]∗
.(A.0.14)

Eqs. (A.0.13) and (A.0.14) can then be combined to yield

[
ν2−

(
νFE
r

)2]2
=Ω4,(A.0.15)

with

Ω2 '

∣∣∣∣∣∣
κ〈u〉ρ2

ω̃

(
νFE
r /2

)
∆ν

4π2mũρũ
(
νFE
r

)
∣∣∣∣∣∣(A.0.16)

where ∆ν is the range of frequency in which the integrand ρω̃ (ν ′)ρω̃ (ν−ν ′) has significant

values.

Thus, the resonance frequencies for the A1 ferroelectric mode(s) are doubled and given

by:

ν2 =
(
νFE
r

)2
±Ω2.(A.0.17)

To obtain an explicit expression for Ω2, we can assume that ρũ and ρω̃ have distribution that

describes damped harmonic oscillators, e.g., Lorentzian functions with damping coefficients.

As a result,

ρũ
(
νFE
r

)
' Sũ(

νFE
r

)2
−
(
νFE
r

)2
+ iγũνFE

r

= Sũ
iγũνFE

r
,(A.0.18)

ρω̃
(
νFE
r /2' νAFD

r

)
' Sω̃
iγω̃νAFD

r
.(A.0.19)

This results in

Ω2 '
∣∣∣∣∣ κ〈u〉π2mũ

γũ
γ2
ω̃

S2
ω̃

Sũ

∆ν
νFE
r

∣∣∣∣∣ .(A.0.20)
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let’s conclude by noting that the above argument and formulas differ in some ways from

the usual derivation of the Fermi-resonance frequency splitting that one can find in the liter-

ature. When discussing a Fermi resonance in molecules or molecular crystals, it is common

to solve the non-linear dynamical equations by assuming a strong resonance condition (i.e.,

νFE
r = 2νAFD

r ) and/or a single-frequency approximation for the spectral density of the oscil-

lators involved. However, such approximations are clearly incompatible with the results of

our simulations; we thus needed to consider a more general and complex scenario.
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