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SUMMARY

The Coarse-Mesh Transport Method (COMET) is a method developed by the Com-

putational Reactor and Medical Physics Group at Georgia Tech. Its original application

was neutron transport for nuclear reactor modeling. COMET has since been shown to

be effective for coupled photon-electron transport calculations where the goal is to de-

termine the energy deposition of a photon beam. So far COMET can simulate a mono-

directional, mono-energetic, spatially-flat photon beam. The goal of this thesis will be to

extend COMET by adding a generalized source treatment. The new source will be able to

simulate beams that vary in intensity as a function of position, angle, and energy. EGSnrc

will be used to verify the accuracy of the new method for 3D photon kerma calculations.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Radiation therapy is an important tool in cancer treatment. For a successful treatment, it is

important to be able to precisely control the radiation dose. Ideally, 100% of the dose would

be deposited inside the tumor volume and 0% outside. Unfortunately this is not possible

in general. Realistically a compromise must be made in any radiation therapy plan. The

opposing goals then become:

• Maximize dose to tumor volume

• Minimize dose to normal tissue

Modern techniques such as 3-Dimensional Conformal Radiotherapy, Intensity Modulated

Radiotherapy, and Helical Tomotherapy are used to take this balance to the edge. In

practice, the uncertainty associated with dose calculation is a limiting factor. Boyer and

Shultheiss concluded that a reduction in dose uncertainty of 1% would result in an increase

in the complication-free tumor control (refered to by the authors as cure) rate of 2% [6].

The need for accurate dose calculation is clear.

1.2 Current Methods

There is currently a great divide in dose calculation algorithms. On one end of the spectrum,

there is the Monte Carlo (MC) method. The MC method is capable of simulating dose using

detailed physical models in complex geometry, but these capabilities come at the cost of

speed. At present, the MC method is too computationally intensive to be used in treatment

planning. It does, however, serve as a benchmark for new dose calculation algorithms [3].

1



On the more practical side is the Convolution-Superposition (CS) class of methods.

In general, this type of method is based on a photon interaction kernel within an infinite,

homogeneous water phantom. Depending on the method, this kernel is either a point kernel

or a pencil kernel. The methods differ mainly in their strategies for distributing energy

from the primary photon interaction site while correcting for heterogeneity. In general, CS

methods are very fast, and this is their main utility [2].

There are also a few researchers who have attempted to solve the Boltzmann Transport

Equation (BTE) directly using the discrete ordinates method. Such solutions, while theo-

retically rigorous, tend to be nearly as computationally intensive as the MC method, and

are thus not used in practice [7].

1.3 A New Method

In this text, a novel method to solve the steady-state, linear BTE for photons will be pre-

sented. The method is based on a combination of the Method of Characteristics (MOC)

and of the heterogeneous coarse-mesh transport method (COMET). The MOC is used to

decompose the solution into collided and uncollided components. This decomposition al-

lows the method to handle source terms that are applicable to medical physics. The un-

collided component is solved for by analytically inverting the streaming-collision operator.

The collided component is solved using the COMET method. The COMET method was

originally developed for nuclear reactor computations [9]. It has since been shown to be

effective in coupled photon-electron transport using a spatially flat source [20]. By making

use of precomputation the new method is able to achieve results comparable to MC in a

fraction of the time. In the text that follows, the details of this method are explained fully.

Additionally, the method is implemented, and a comparison is made with the EGSnrc MC

code.
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CHAPTER II

PREVIOUS WORK

2.1 Current Methods
2.1.1 Monte Carlo

The EGSnrc code system is used extensively in this work [11]. User codes are developed

to calculate reference solutions, volume-source response functions, and surface-boundary

response functions.

2.1.2 Convolution-Superposition

Convolution-Superposition methods get their name from the way they calculate dose. In

general, a relationship of the form

D(~r) =

∫
V

d~r′Φ(~r′)k(~r, ~r′) (1)

is used where D is dose, Φ is the primary photon fluence (or some closely related quantity

such as terma), and k is the so-called convolution kernel or “dose spread array”. k(~r, ~r′)

gives the dose that results at a point ~r from a unit primary fluence at point ~r′.

Mackie et al. calculated this kernel with an MC method by tallying dose in a cartesian

grid about a single point of photon interaction in an infinite water phantom. By approxi-

mating the kernel as spatially invariant, that is k(~r, ~r′) = k(~r−~r′), the Fast Fourier Transform

can be used to quickly perform this convolution. Corrections are then made for beam di-

vergence and heterogeneity [13].

In the general case, where one does not assume a spatially invariant kernel, the compu-

tation becomes much more difficult. In this case, the calculation is a superposition rather

than a convolution. For an array of N3 voxels, O(N6) work is required to compute the dose.

As a faster alternative, Ahnesjö et al. introduced a pencil beam model. In this case, a 2-D
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kernel of the form

k(r, z) =
Aze−azr

r
+

Bze−bzr

r
(2)

is used where r is the radius from the pencil beam axis, z is the depth, and Az, az, Bz, and

bz are z-dependent parameters found by fit to Monte Carlo calculation. Az and az character-

ize the relatively long-range secondary photon transport while BZ and bz characterize the

transport of electrons and low-energy photons. This is a good approximation for photons,

but difficult to justify theoretically for electrons.

The Collapsed Cone Convolution (CCC) is similar [1]. Rather than a 2D pencil kernel,

CCC uses a 3D point kernel of the form

k(r,Θ) =
AΘe−aΘr

r2 +
BΘe−bΘr

r2 (3)

combined with a discrete ordinates approximation. The main drawback associated with

this method is similar to that of the pencil beam superposition. That is the empirical ap-

proximation of electron “attenuation” is not rigorously justified. Additionally the solutions

obtained with CCC may exhibit ray effects. The rays tend to cancel one another when the

terma distribution is smooth. For more on the class of superposition-convolution methods,

especially techniques for heterogeneity correction, see the review by Ahnesjö [2].

2.1.3 Deterministic

Some attention has been given to discrete-ordinates based deterministic methods for dose

calculation [2, 18, 19]. In general these methods take time on the order of Monte Carlo, but

struggle with deterministic approximations to electron transport.

2.2 COMET

The Coarse Mesh Transport method has been previously applied to photon-only transport

[15] and to coupled photon-electron transport [5]. Extensive testing has been performed

and good agreement with Monte Carlo has been shown. All previous testing, however, has

4



been for 2D phantom geometry with a spatially-flat, perpendicularly-incident, monoener-

getic source. This limits its applicability to clinical treatment planning. The current work

extends the COMET method to handle more general source terms for problems with 3D

phantom geometry.
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CHAPTER III

METHOD

3.1 Quantities of Interest

Before we get into the details of the method, we must define the quantities we will use to

describe the radiation field.

3.1.1 Angular Flux

We shall use angular flux, ψ, to describe the distribution of photons as follows:

ψ(~r, E, Ω̂) dV dE dΩ̂ dt = the expectation value of the total track length of all

photons in the volume element dV about point~r

with energies between E and E + dE moving in the

cone of directions dΩ̂ about Ω̂ during dt.

The point~r will be defined in cartesian coordinates (x, y, z), and the direction vector Ω̂ will

be defined by the polar and azimuthal angles (θ, φ) respectively. The incremental solid

angle, dΩ̂, will be defined dΩ̂ = sin θ dθ dφ ; this yields the normalization
∫

dΩ̂ = 4π. The

units of angular flux are ψ(~r, E, Ω̂) =
[
photons · cm−2MeV−1sr−1s−1

]
. This is equivalent to

the differential flux density or differential fluence rate[4].

3.1.2 Kerma Rate

In radiation therapy, dose is deposited by charged particles. Since this work concerns only

photon transport, the dose rate cannot be calculated. Instead the kerma rate, K, will be

calculated from the angular flux as

K(~r) =

∫ ∞

0
dE

∫
4π

dΩ̂
µtr(~r, E)
ρ(~r)

E · ψ(~r, E, Ω̂). (4)
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µtr/ρ is the mass energy-transfer coefficient, which has units of [cm2g−1]. This gives kerma

rate units of
[
MeV · g−1s−1

]
[4].

3.2 Collided-Uncollided Transport Equations

Photons obey the steady-state Boltzmann Transport Equation (BTE) which can be written

Ω̂ · ~∇ψ(~r, E, Ω̂) + σt(~r, E)ψ(~r, E, Ω̂) = (5)∫ ∞

0
dE′

∫
4π

dΩ̂′ σs(~r, E′ → E, Ω̂′ · Ω̂)ψ(~r, E′, Ω̂′) + q(~r, E, Ω̂)

with the boundary condition

ψ(~r, E, Ω̂) = 0 for ~r ∈ ∂V and n̂ · Ω̂ < 0. (6)

σt(~r, E) is the photon interaction cross section or attenuation coefficient. σt has units of[
cm−1

]
. σs(~r, E′ → E, Ω̂′ · Ω̂) is the photon scattering cross section; it describes the prob-

ability per distance that a photon moving with energy and direction (E′, Ω̂′) undergoes

a scattering interaction and emerges with energy and direction (E, Ω̂). σs has units of[
cm−1MeV−1sr−1

]
. q(~r, E, Ω̂) is an inhomogeneous source term with units[

photons · cm−3MeV−1sr−1s−1
]

[12]. For the purpose of this paper, q will represent the

fluence of photons from the linear accelerator (linac) head. This problem is defined in the

region V with boundary ∂V . n̂ is defined as an outward normal unit vector on ∂V . For the

sake of brevity, it is convenient to rewrite equation (5) in operator notation as

(L + C)ψ(~r, E, Ω̂) = Sψ(~r, E, Ω̂) + q(~r, E, Ω̂) (7)

where

Lψ(~r, E, Ω̂) = Ω̂ · ∇ψ(~r, E, Ω̂),

Cψ(~r, E, Ω̂) = σt(~r, E)ψ(~r, E, Ω̂), and

Sψ(~r, E, Ω̂) =

∫ ∞

0
dE′

∫
4π

dΩ̂′ σs(~r, E′ → E, Ω̂′ · Ω̂)ψ(~r, E′, Ω̂′)

7



are the leakage, collision, and scattering operators respectively. We can write ψ as the sum

ψ(~r, E, Ω̂) = ψu(~r, E, Ω̂) + ψc(~r, E, Ω̂)

where ψu is the uncollided angular flux, which represents photons that have not undergone

any collisions since being emitted from the source, and ψc is the collided angular flux,

which represents photons that have undergone at least one collision. With this substitution,

equation (7) separates into the pair of equations

(L + C)ψu(~r, E, Ω̂) = q(~r, E, Ω̂) (8)

(L + C)ψc(~r, E, Ω̂) = Sψc(~r, E, Ω̂) + qc(~r, E, Ω̂) (9)

where qc(~r, E, Ω̂) ≡ Sψu(~r, E, Ω̂) is the once-collided source term. At first glance it ap-

pears that this decomposition does little to help solve for the angular flux, ψ, since solving

equation (9) for ψc appears to be just as difficult as solving equation (7) for ψ; that is with-

out even considering the need to solve equation (8). The key difference between solving

the BTE (equation (7)) and the system of equations (8 and 9) is related to the difference

between the respective source terms q and qc.

3.3 Integral Transport

Solving equation (8) for ψu results in the relationship ψu(~r, E, Ω̂) = (L+C)−1q(~r, E, Ω̂). The

operator T ≡ (L + C)−1 is the integral transport operator, which can be defined by

Tq(~r, E, Ω̂) ≡
∫

V

e−τ(~r,~r′,E)∣∣∣~r − ~r′∣∣∣2 δ
Ω̂ · ~r − ~r′∣∣∣~r − ~r′∣∣∣

 q(~r′, E, Ω̂) dV ′ (10)

where dV ′ is the volume element about ~r′, and the directional Dirac delta function is defined

as δ(Ω̂ · Ω̂′) ≡ δ(θ − θ′)δ(φ − φ′). τ is the optical depth

τ(~r,~r − RΩ̂, E) =

∫ R

0
dR′ σt(~r − R′Ω̂, E) for R > 0 (11)

[18, 12]. Since it is straightforward to calculate ψu, the challenge becomes solving equa-

tion (9) for ψc.
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3.4 COMET Method

Recall equation (9)

(L + C)ψc(~r, E, Ω̂) = Sψc(~r, E, Ω̂) + qc(~r, E, Ω̂)

defined on V . This equation shall be referred to as the global problem. The first step

in application of the COMET method is division of the domain, V into a set of I coarse

meshes, {Vi}, such that

V =

I⋃
i=1

Vi. (12)

On each coarse mesh, a local transport problem is defined by

(L + C)ϕi(~r, E, Ω̂) = Sϕi(~r, E, Ω̂) + qi(~r, E, Ω̂). (13)

If the local problem source term and boundary conditions satisfy

qi(~r, E, Ω̂) = qc(~r, E, Ω̂) for ~r ∈ Vi (14)

ϕi(~r, E, Ω̂) = ψc(~r, E, Ω̂) for ~r ∈ ∂Vi and n̂i · Ω̂ < 0 (15)

then the set of local solutions, {ϕi}, form an exact solution to the global problem [9, 14].

Let Λi denote the full phase space within the mesh Vi. Let ω−i denote the portion of

phase space such that~r ∈ ∂Vi and n̂i · Ω̂ < 0, and let ω+
i denote the portion of phase space

such that~r ∈ ∂Vi and n̂i · Ω̂ > 0. Further, let ω±is denote the restriction of ω±i to surface s.

Let the volume-source response function, Qm
i , be defined as the solution to the local

problem

(L + C)Qm
i (~r, E, Ω̂) = SQm

i (~r, E, Ω̂) + ηm(~r, E, Ω̂) (16)

with the boundary condition

Qm
i (~r, E, Ω̂) = 0 for (~r, E, Ω̂) ∈ ω−i (17)

where ηm represents the mth function of a complete set of orthonormal functions defined on

Λi. An arbitrary collided source term, qc, can thus be approximated by

qc(~r, E, Ω̂) ≈
M∑

m=0

am
i η

m(~r, E, Ω̂) (18)

9



where

am
i =

∫
Λi

ηm(~r, E, Ω̂)qc(~r, E, Ω̂). (19)

Similarly, let the surface-boundary response function, Rn
is, be defined as the solution to

the local problem

(L + C)Rn
is(~r, E, Ω̂) = SRn

is(~r, E, Ω̂) (20)

with the boundary condition

Rn
is(~r, E, Ω̂) =


Γn(~r, E, Ω̂), (~r, E, Ω̂) ∈ ω−is

0, (~r, E, Ω̂) ∈
(
ω−i − ω

−
is

) (21)

where Γn represents the nth function of a complete set of orthonormal functions defined on

ω−is. This means that arbitrary incoming boundary conditions, ψc(~r, E, Ω̂) = f (~r, E, Ω̂) for

(~r, E, Ω̂) ∈ ω−is, can be approximated by

f (~r, E, Ω̂) ≈
N∑

n=0

bn
isΓ

n(~r, E, Ω̂) (22)

with

bn
is =

∫
ω−is

Γn(~r, E, Ω̂) f (~r, E, Ω̂) (23)

By superimposing linear combinations of Qm
i and Rn

is, the solution of any fixed source

problem can be created. The local solutions are coupled by requiring that the angular flux

be continuous across mesh boundaries, and the global problem can be solved by iteratively

enforcing this coupling. The only approximations made in this approach are that the series

{am
i } and {bn

i } are truncated at finite values of m and n respectively.

10



CHAPTER IV

NUMERICAL IMPLEMENTATION

In this work, all kerma calculations are performed on a regular array of cube-shaped voxels.

This is common in radiation therapy because the patient geometry is defined by a voxelized

CT dataset. The coarse meshes are defined to coincide with these voxels for simplicity.

4.1 Calculation of Uncollided Angular Flux, ψu

For the sake of simplicity, assume that the linac photon beam is well-approximated by a

point source. That is

q(~r, E, Ω̂) = δ(~r − ~rs)q(~rs, E, Ω̂). (24)

This may seem to be a severe restriction, but note that any arbitrary source term may be

constructed by superposition of point sources. Using equation (10), ψu can be written

ψu(~r, E, Ω̂) = Tq(~r, E, Ω̂)

=
e−τ(~r,~rs,E)∣∣∣~r − ~rs

∣∣∣2 δ
Ω̂ · ~r − ~rs∣∣∣~r − ~rs

∣∣∣
 q(~rs, E, Ω̂). (25)

By discretizing the energy variable into bins, equation (25) becomes

ψu
g(~r, Ω̂) =

e−τg(~r,~rs)∣∣∣~r − ~rs

∣∣∣2 δ
Ω̂ · ~r − ~rs∣∣∣~r − ~rs

∣∣∣
 qg(~rs, Ω̂) (26)

where

τg(~r, ~rs) = τ(~r, ~rs, Eg) (27)

qg(~rs, Ω̂) =
1
Eg

∫ Eg+1/2

Eg−1/2

dE′E′q(~rs, E′, Ω̂). (28)

τg can be evaluated using the Siddon Algorithm or similar [17, 10, 21].

Finally, define

wi,g =

∫
4π

dΩ̂

∫
Vi

dV σt(Eg)ψu
g(~r, Ω̂). (29)

11



4.2 Calculation of Volume-Source Response Functions, Qm
i

Recall equation (16)

(L + C)Qm
i (~r, E, Ω̂) = SQm

i (~r, E, Ω̂) + ηm(~r, E, Ω̂).

Choose

ηm(~r, E, Ω̂) ≡ S
[
δ(E − Em)δ(Ω̂ · ẑ)

]
. (30)

The physical interpretation of this source is that photons with energy Em, moving in the pos-

itive z-direction, are forced to make their first collisions uniformly throughout the volume

of the voxel. Since this approximation forces all photons to move parallel to the beam’s

central axis, it works best for small field sizes and large source-to-surface distances (SSDs).

The solutions, Qm
i , are calculated with an EGSnrc user code. Tallies were scored for

k[Qm
i ] =

∫
Vi

dV
∫ ∞

0
dE

∫
4π

dΩ̂
µtr(~r, E)
ρ(~r)

E · Qm
i (~r, E, Ω̂) (31)

and

jn
s[Q

m
i ] =

∫
ω+

is

Γn(~r, E, Ω̂)Qm
i (~r, E, Ω̂). (32)

Let Mη denote the number of terms in the source expansion. In other words

m ∈
{
0, 1, . . . ,Mη − 1

}
.

4.3 Calculation of Surface-Boundary Response Functions, Rn
is

Recall equation (20) and equation (21)

(L + C)Rn
is(~r, E, Ω̂) = SRn

is(~r, E, Ω̂)

Rn
is(~r, E, Ω̂) =


Γn(~r, E, Ω̂), (~r, E, Ω̂) ∈ ω−is

0, (~r, E, Ω̂) ∈
(
ω−i − ω

−
is

)
.

Choose Γn to be a product of 5 orthornormal basis functions scaled by the factor 1
cos θ

Γn(~r, E, Ω̂) ≡
(

1
cos θ

) (
side`s(~r)

)
U [umin,umax]
`u

(u)· (33)

U [vmin,vmax]
`v

(v)U [Emin,Emax]
`E

(E)U [0,1]
`θ

(cos θ)V [−π,π]
`φ

(φ).
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In the above equation, n is a composite index that results from flattening the 6 indices

`s, `u, `v, `E, `θ, and `φ into a single index. Each term in the expansion can be factored

into 5 independent terms, each a function of one variable, each corresponding to a single

dimension of the phase space. The 2-vector (u, v) describes the local coordinates on surface

`s, and function, side`s , restricts the expansion to surface `s; that is:

side`s(~r) ≡


1 ,~r is a coordinate on surface `s

0 , otherwise.

U [ξmin,ξmax]
`ξ

(ξ) is a shifted and normalized Legendre polynomial defined by

U [ξmin,ξmax]
`ξ

(ξ) ≡

√
2`ξ + 1

ξmax − ξmin
P`ξ

(
2
ξ − ξmin

ξmax − ξmin
− 1

)
where Pn is a Legendre polynomial with the standard normalization Pn(1) = 1. The new

polynomial U [ξmin,ξmax]
`ξ

is orthonormal on the interval [ξmin, ξmax] as is easily shown:∫ ξmax

ξmin

dξV [ξmin,ξmax]
m (ξ)V [ξmin,ξmax]

n (ξ)

=

√
(2m + 1)(2n + 1)
ξmax − ξmin

∫ ξmax

ξmin

dξPm

(
2
ξ − ξmin

ξmax − ξmin
− 1

)
Pn

(
2
ξ − ξmin

ξmax − ξmin
− 1

)
=

√
(2m + 1)(2n + 1)

2

∫ 1

−1
dxPm(x)Pn(x)

=

√
(2m + 1)(2n + 1)

2

[
2

2n + 1
δnm

]
= δnm

where δnm is the Kroenecker delta. V [ξmin,ξmax]
`ξ

(ξ) is a shifted and normalized trigonometric

polynomial defined by

V [ξmin,ξmax]
`ξ

(ξ) ≡
1

√
ξmax − ξmin


1 , `ξ = 0

√
2 sin

(
(`ξ + 1)π ξ−ξmin

ξmax−ξmin

)
, `ξ is odd

√
2 cos

(
`ξπ

ξ−ξmin
ξmax−ξmin

)
, `ξ is even and `ξ , 0.

The trigonometric polynomial V [ξmin,ξmax]
`ξ

is orthonormal on the interval [ξmin, ξmax]:∫ ξmax

ξmin

dξV [ξmin,ξmax]
m (ξ)V [ξmin,ξmax]

n (ξ) = δnm.
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Note that the trigonometric expansion is chosen for treating the azimuthal angle. If a Leg-

endre expansion had been used, there would be an artificial discontinuity in the expansion.

Since angular flux as a function of φ is periodic, a basis that preserves this periodicity is

important. The factor of 1
cos θ in equation (33) makes Γn an expansion of the partial current

passing through surface `s. If this were left out, the expansion would be an expansion of

angular flux instead.

The solutions, Rn
is, are calculated with an EGSnrc user code. Tallies were scored for

k[Rn
is] =

∫
Vi

dV
∫ ∞

0
dE

∫
4π

dΩ̂
µtr(~r, E)
ρ(~r)

E · Rn
is(~r, E, Ω̂) (34)

and

jn′
s′ [R

n
is] =

∫
ω+

is′

Γn′(~r, E, Ω̂)Rn
is(~r, E, Ω̂). (35)

Let NΓ denote the number of terms in the surface expansion. In other words

n ∈ {0, 1, . . . ,NΓ − 1}.

4.4 Iteration on Boundary Conditions

Define ~J0 to be the (6NΓNvoxels)x1 vector

~J0 =

Mη−1∑
m=0



w0,m j0
0[Qm

0 ]

w0,m j1
0[Qm

0 ]

. . .

w0,m jNΓ−1
0 [Qm

0 ]

w0,m j0
1[Qm

0 ]

w0,m j1
1[Qm

0 ]

. . .

w0,m jNΓ−1
5 [Qm

0 ]

w1,m j0
0[Qm

1 ]

. . .

wNvoxels−1,m jNΓ−1
5 [Qm

Nvoxels−1]



. (36)
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This vector describes the partial current exiting each voxel, i, that results directly from

primary photon interactions within that voxel. Let Rj
(i,s)←(i′,s′) be the NΓxNΓ matrix

Rj
(i,s)←(i′,s′) =




j0
(s+3)mod6[R0

i′s′] . . . j0
(s+3)mod6[RNΓ−1

i′s′ ]
...

. . .

jNΓ−1
(s+3)mod6[R0

i′s′] jNΓ−1
(s+3)mod6[RNΓ−1

i′s′ ]

 , (i′, s′)→ i

0, otherwise.

(37)

The condition [(i′, s′)→ i] is met if and only if the current out of surface s′ of voxel i′

enters voxel i. Let Rj be the matrix with (6Nvoxelsx6Nvoxels) blocks defined by

Rj =



Rj
(0,0)←(0,0) Rj

(0,0)←(0,1) . . . Rj
(0,0)←(Nvoxels−1,5)

Rj
(0,1)←(0,0) Rj

(0,1)←(0,1)

...
. . .

Rj
(Nvoxels−1,5)←(0,0) Rj

(Nvoxels−1,5)←(Nvoxels−1,5)


. (38)

Note that most entries of Rj are zero as a consequence of the condition in equation (37).

Let ~J∗ be the current vector that describes the exact solution of the global problem. With

this definition in place, one can see that

~J∗ = Rj~J∗ + ~J0 (39)

or equivalently (
I − Rj

)
~J∗ = ~J0. (40)

This linear system can be solved with a variety of methods. For the results in this work, a

Jacobi iteration is used

~Ji+1 = Rj~Ji + ~J0. (41)

Define ~K0 to be the Nvoxelsx1 vector

~K0 =

Mη−1∑
m=0



w0,m k[Qm
0 ]

w1,m k[Qm
1 ]

. . .

wNvoxels−1,m k[Qm
Nvoxels−1]


. (42)
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This vector describes the kerma in each voxel, i, that results directly from the interaction of

primary photons within voxel i and also from any collisions of resultant photons that have

not yet left voxel i.

Let Rk
i←(i′,s′) be the 1xNΓ matrix

Rk
i←(i′,s′) =


(

k[R0
i′s′] . . . k[RN−1

i′s′ ]
)
, (i′, s′)→ i

0, otherwise.
(43)

Let Rk be the matrix with (Nvoxelsx6Nvoxels) blocks defined by

Rk =



Rk
0←(0,0) Rk

0←(0,1) . . . Rk
0←(Nvoxels−1,5)

Rk
1←(0,0) Rk

1←(0,1)

...
. . .

Rk
Nvoxels−1←(0,0) Rk

Nvoxels−1←(Nvoxels−1,5)


. (44)

For any given iterate, ~Ji, one can calculate a corresponding kerma vector

~Ki = Rk~Ji + ~K0. (45)

The iteration is terminated when
∥∥∥∥ ~Ki − ~Ki−1

∥∥∥∥
2
≤ ε

∥∥∥∥ ~K0

∥∥∥∥
2
.
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CHAPTER V

RESULTS

A simple benchmark problem is used for the first test case. A 20x20x20cm water phan-

tom with 1x1x1cm voxels is irradiated with photons from a polyenergetic point source.

The phantom is placed at source-to-surface distance (SSD) of 80cm. The field size at the

phantom surface is 10x10cm. The beam’s energy spectrum is given by the piecewise linear

PDF

f (E) =


2(E−Emin)

(Emax−Emin)(Epeak−Emin) , Emin ≤ E ≤ Epeak

2(Emax−E)
(Emax−Emin)(Emax−Epeak) , Epeak < E ≤ Emax

0 , otherwise

with Emin = 0.01 MeV, Epeak = 0.5 MeV, and Emax = 8 MeV depicted in Figure 1 on the

following page. This spectrum is fictional, but it captures much of the character of a generic

8MV linac spectrum [16]. The source term for the beam is

q(~r, E, Ω̂) =


4π f (E) δ(~r−[0,0,−80])
cos θ

∫ 5
−5

∫ 5
−5

dx′dy′

x′2+y′2+802

,
|tan θ cos φ| ≤ 5

80 and

|tan θ sin φ| ≤ 5
80

0 , otherwise

(46)

where θ is the angle with respect to the beam’s central axis. The beam’s space-angle de-

pendence is constructed so that the current entering the phantom is a spatially-flat, unit

current.

The reference solution was calculated with EGSnrc. All kerma values in the reference

solution have statistical uncertainty of 1σ < 0.5%. Because the errors in the COMET so-

lution are significantly higher than this value, propagation of statistical uncertainty through

the error analysis is not shown. The COMET solution was calculated with the parameters

listed in Table 1 on the next page.
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Figure 1: Beam Energy Spectrum, f(E)

Table 1: Parameters Used for COMET solution
parameter abbreviation value

number of u-coordinate expansion terms Nu 3
number of v-coordinate expansion terms Nv 3

number of energy expansion terms NE 3
number of polar expansion terms Nθ 3

number of azimuthal expansion terms Nφ 3
number of energy bins G 32

lower energy bound Emin 0.01 MeV
upper energy bound Emin 8.0 MeV

convergence parameter ε 10−3
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Table 2: Summary of COMET Solution’s Accuracy. error ≡ KCOMET − Kre f .
quantity value comment

max |error| 2.05x10−5 occurs at depth=9.5cm within the
beam.

max |error|
max(Kre f ) 3.30%

rms(error)
max(Kre f ) 1.45%

avg|error|
max(Kre f ) 1.16%

max
∣∣∣∣ error

Kre f

∣∣∣∣ 208% occurs inside a voxel near the phan-
tom’s edge at depth=7.5cm.

rms
∣∣∣∣ error

Kre f

∣∣∣∣ 69.3%

average
∣∣∣∣ error

Kre f

∣∣∣∣ 46.3%

Figures 2 to 9 on pages 20–27 depict the reference solution, the COMET solution,

and the differences between them. Table 2 contains a summary of the COMET solution’s

accuracy. In terms of relative error, the new method did well inside the boundaries of the

beam and did poorly outside these boundaries. This can be seen in Figure 3(b) on page 21.

The maximum relative error of 208% occurs on the edge of the phantom at a depth of

7.5cm in a voxel that received just 0.37% of Kmax. A more relevant picture of the error

is provided by looking at the absolute error in units of Kmax because this scale is typically

used in clinical decision making. In this scale, all errors are ≤ 3.3% of Kmax. This can be

seen in Figure 3(a) on page 21. The maximum absolute error occurs in a voxel within the

beam at a depth of 9.5cm.

Run times for various calculations are given in Table 3 on page 26. Note that the

COMET solution runtime was dominated by the Jacobi iteration; the calculation of the

uncollided flux, the initial current vector ~J0, and the initial dose vector ~D0 typically took

less than 1 minute combined.
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Figure 2: Specific kerma [MeV g−1 photon−1] on the plane defined by x = 10cm. The
black line denotes the beam edge.
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Figure 3: Error in kerma on the plane defined by x = 10cm. The black line denotes the
beam edge.
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(c) depth=19.5cm

Figure 4: Axial kerma distributions at various depths from the reference solution
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(c) depth=19.5cm

Figure 5: Axial kerma distributions at various depths from the COMET solution
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Figure 6: Error [units of Kmax] for the axial kerma distributions at various depths
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Figure 7: Relative error for the axial kerma distributions at various depths
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Table 3: Running time comparison. The unit of time measure is defined as core-hours ≡
(# of cpu cores)*(# of hours on each). All calculations were performed on nodes with dual
quad-core AMD Opterons clocked at 2 GHz.

task runtime number of histories
reference solution 84 core-hours 8x109

COMET solution 0.27 core-hours -
source response calculation 5.4 core-hours 6.4x109

surface response calculation 128 core-hours 1x108
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Figure 8: Percent Depth Kerma (PDK)

26



−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

0

1

2

3

4

5

6

7

8
x 10

−4

x−coordinate (cm)

sp
ec

ifi
c 

ke
rm

a 
(M

eV
 g

−
1  p

ho
to

n−
1 )

 

 
reference solution
COMET solution

(a) depth=0.5cm

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

x−coordinate (cm)

sp
ec

ifi
c 

ke
rm

a 
(M

eV
 g

−
1  p

ho
to

n−
1 )

 

 
reference solution
COMET solution

(b) depth=9.5cm

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1

2

x 10
−4

x−coordinate (cm)

sp
ec

ifi
c 

ke
rm

a 
(M

eV
 g

−
1  p

ho
to

n−
1 )

 

 
reference solution
COMET solution

(c) depth=19.5cm

Figure 9: Beam profiles at various depths

27



CHAPTER VI

DISCUSSION

The COMET method clearly needs some work before it is ready to compete with Monte

Carlo in accuracy. In this chapter, sources of error in the COMET calculation are identified,

suggestions are made for future work, and concluding remarks are made.

6.1 Sources of Error

Three main sources of error exist in the COMET calculation. These are:

• source-response approximation error

• truncation error

• statistical uncertainty

The choice of a delta function as a basis for the source-response expansion is probably

too weak for a couple of reasons. The first of these is that it does not capture any variation

over space or angle of the source. That is, it ignores 5 out of 6 dimensions of the numerical

phase space within each voxel. Since all of the photons are treated as if they are traveling

parallel to the beams axis, there is an approximation error of 5.1◦at the corner of the beam.

Both the source-response functions and the surface-response functions contain trun-

cated expansions, and thus both are subject to truncation error. Previous work has sug-

gested that an expansion to 3rd order in energy and azimuthal angle and to 2nd order space

and polar angle is sufficient for near 1% error for a 2D photon-only geometry. This corre-

sponds to (4∗4∗3∗3)2 ∗4 = 82, 944 coefficients per coarse mesh surface response function

[15]. In the current work, with all second order expansions, (3∗3∗3∗3∗3)2 ∗6 = 354, 294

coefficients per coarse mesh surface response function were calculated. Another difference
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between this work and the above-mentioned benchmarking is the source term used. In pre-

vious work, there was no part of the phantom that was outside of the beam. The current

work demonstrates that this is the most numerically difficult region for kerma calculation.

Since the response functions are calculated using Monte Carlo, statistical uncertainty

inherently contributes to the error in a COMET calculation. However, based on past expe-

rience with 2D calculations, statistical error is not an important factor in the current work.

6.2 Suggestions for Future Work

The most important improvement to make for future work is to increase the expansion order

of the both the volume-source response functions and the boundary response functions.

This will result in a better transport approximation and will almost certainly improve the

results. Closely related with this is the search for an optimal basis set. Since the response

functions must be truncated at finite order, it is important to find efficient basis sets; that

is basis sets that capture the important characteristics of the underlying distributions while

using only a few terms.

The optimal selection of basis sets should be further investigated. Specifically, the

balance of continuous and discrete approximations should be studied. For each dimension

of the phase space, one must choose a continuous basis, a discrete basis, or a hybrid basis.

Tools that automatically search the space of basis sets would be useful and instructive.

The effects of high-order statistical noise in response functions are not well understood

at this point. Statistical theory should be developed along the lines of [8] to deal with the

overall balance of statistical/truncation error in the COMET method.

Once the implementation is improved, it should be benchmarked with heterogeneous

phantoms to simulate real-world treatment planning. Beyond this, addition of electron

transport to the new method is the next logical step in development of COMET for medical

physics applications. Aside from the uncollided flux calculation, all of the methods in this

work have direct application to electron transport.
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6.3 Conclusion

The COMET method for photon transport was theoretically extended to handle more gen-

eral source terms, and a specific implementation of the new method was tested. The new

test scenario is unprecedented in two ways:

• It is the first implementation of a 3D COMET method for photon transport.

• It is the first implementation of a photon COMET without the constraint of a flat

source approximation.

The test implementation presented here is instructive in many ways, but more develop-

ment is required. The theoretical foundation is laid, but this theory leaves many choices

for its application. The key for future development lies in sorting through these choices to

develop an efficient, accurate implementation.
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