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Abstract

We have studied morphological and genomic variations occurring in a mesophilic bacterium

Escherichia coli (E. coli) in a wide range of continuous and fluctuating hydrostatic pressures.

For all the studies here the temperature is maintained at 37◦C, the optimal growth tem-

perature of E. coli at atmospheric pressure. Cell division is inhibited at high hydrostatic

pressures resulting in an increase of cell length. The increase of cell-length depends on the

extent and duration of the stress applied on bacterial cells. We have studied the effect of

high pressure stress in three different conditions – (i) Wild-type cells (almost no genetic

mutations), (ii) cells cloned with a plasmid DNA containing mreB gene under lac promoter

(but no induction of the gene expression), and (iii) cells cloned with a plasmid DNA con-

taining mreB gene with induction of the gene expression. We find that, the cellular response

of the cells is different in the three cases studied here. Specifically, we find that, the wild-

type bacteria with no addition of a plasmid DNA are stressed the least at high pressure as

compared to bacterial cells containing plasmid DNA. Moreover, our results suggest that, the

cells containing a plasmid DNA upon induction of the gene expression are stressed the most

and exhibit higher propensity of lack of cell division at high pressure. We have quantified

the propensity of lack of cell division in different conditions by quantifying the probability

distribution of the cell length. We find that, the probability distribution of the length of

bacterial cells with a plasmid DNA show multiple peaks whereas wild-type bacterial cells

show single peaked distribution. Next, we applied the oscillatory pressure. We find that,

the average cell-length of bacteria decreases with τ suggesting that, the elongation of cells

at high pressure is reversible. It is observed that the average length (< ` >) of the bacte-

rial cells revert back to the length of the bacterial cells at atmospheric pressure for τ ≈ 20

minutes for all the cases studied here.
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Introduction

Living organisms can live and thrive in different environmental conditions. Prokaryotes like

archaea and bacteria can live and grow in diverse environmental conditions. For example, a

large number of bacteria and archaea can thrive at high hydrostatic pressure, under the deep

sea surface [1, 2], under the subsurface of rocks [3]. Those bacteria that can only grow at

high pressures are called obligatory barophiles [4]. Bacteria can also live and thrive in a wide

range of temperature. Bacteria that grow at moderate temperature are called mesophiles

(30−47◦C). Thermophiles grow at high temperatures (50−60◦C). Bacteria that grow at low

temperatures (15-20◦C) are termed as psychrophiles. Beside temperature and pressure, there

are different environmental conditions in which bacteria can grow and survive. Acidophiles,

alkaliphiles, xerophiles, radiotolerant are examples of bacteria and archaea that grow in low

pH, high pH, low water, high radiation respectively [5, 6, 7, 8, 9].

Organisms typically exhibit an optimality of cellular processes and life activities at specific

environmental conditions. For example, Escherichia coli (E. coli), a mesophilic bacterium,

exhibits optimal cellular activities at 37◦C temperature and atmospheric pressure, resulting

into the maximum growth rate [10] at these conditions. Organisms encounter environmental

fluctuations including the fluctuations in nutrients, temperature, pressure, pH, salt concen-

trations, radiation. The environmental fluctuations may give rise to deviation in charac-

teristics of an organism. The deviation in characteristics of an organism can broadly be

classified under two categories namely genotypic and phenotypic. Those species that can

adapt themselves in a given environmental fluctuations survive whereas others vanish from

the nature. Pressure and temperature can change the time scales of cellular process since

both pressure and temperature affect the not only the stability and hence the functional-

ity of biomolecules but can also change the rate of different chemical processes inside the

cell. One important question that arises is if the cells are exposed to non-optimal conditions

(stresses) what time-scales over which they come back to normal state when those stresses

are removed. In order to probe the time-scale of reversibility of bacterial cells upon applica-
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tion and removal of non-optimal environmental conditions, we have investigated the cellular

response of a mesophilic bacterium to fluctuations in hydrostatic pressure.

Below, we describe the model bacteria used for these studies. We also briefly summarize the

earlier results of the response of the cells to high pressure and extremes of temperature.

Escherichia coli (E. coli) as a model organism

an E. coli cell

growth phase

cell division by binary fission

time

Figure 1: Schematic of cell division of Escherichia coli.

E. coli is the most studied bacteria and hence serves as a good prokaryotic model organism.

Fast population doubling and growth in a wide range of temperatures and pressures have

made E. coli an ideal candidate for studying prokaryotic cellular processes in laboratory

settings. E. coli reproduces asexually, by the method of binary fission. A mother cell grows

in length about twice its original length. Then the mother cell divides into two identical

daughter cells. A schematic of the cell division process is shown in Fig. 1.

Growth rate of bacterial cells is concentration dependent. The concentration of bacteria in

a media can be determined using optical density (OD). So the curve obtained by plotting

OD versus time is a growth curve. Growth curve of bacteria has three distinct regions: an

early phase where growth is very small called lag phase, an intermediate phase where cellular

activities are maximum resulting in a maximum growth rate is known as exponential phase,

a late phase at which the growth rate of bacteria almost stops and even may start to die due
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Figure 2: A typical growth curve of bacterial cell. Optical density of the sample is shown as
a function of time on a linear-log plot. The data were obtained at P=1atm and T=37◦

.

to starvation termed as saturation phase [11]. The growth rate of bacteria tells us the rate

of increase of bacterial biomass.

During the growth part of the cell division, the genomic DNA within the cell is replicated

which are acquired by the two daughter cells at the end of the division process. Other

macromolecules such as RNA, proteins, and other regulatory molecules available in the

mother cell are distributed more or less evenly between two daughter cells [12]. Cell division

process is an interesting process as a cell undergoes many changes during this phase. When

a cell is ready to divide it forms a partition, the site for cell division. Recent studies suggest

that the partition may not occur exactly at the mid point of the cell. The process of

partitioning is a stochastic process [13, 14, 15, 15, 16, 17, 18, 19, 20]. So far nine different

genes (ftsA, ftsI, ftsL, ftsN, ftsO, ftsW, ftsZ and zipA) localize at the site of the division in

E. coli [21, 22, 23, 24, 25, 26, 27, 28] and regulate the cell division in one way or another. The

role of all these genes in cell division still unclear. Among these, ftsZ plays a very important

role in the cell division. division [29]. The aggregation of the proteins and capability of ftsZ
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to GTPase activity and hydrolysis of GTP causes the formation of Z-ring [30]. ftsZ protein

itself can apply the contractile force to the ring to such that constriction occurs in the cell

resulting into division [31]. Under high pressures ftsZ protein polymerizes to form filament

resulting no formation of the Z-ring. So at high pressures there is inhibition of the cell

division [32]. The formation of Z-ring decreases on increasing hydrostatic pressure results in

higher inhibition of cell division at high hydrostatic pressures [13].

E. coli exhibits maximum cellular activity and growth rate at atmospheric pressure and 37◦ C.

When the environmental condition deviates from from the optimal growth conditions, the

cellular activity of E. coli decreases resulting in a decrease of growth rate of the cells. For

example growth rate of E. coli decreases upon increasing or decreasing the temperature from

37◦C. The effect of temperature on growth and morphology of E. coli is well known. Effect

of pressure is relatively less explored. Cellular activities of the bacteria decrease at high hy-

drostatic pressures resulting in smaller growth rate [33, 34]. This indicates that the survival

rate of the bacteria becomes lower upon increasing the pressure. Cellular activities of the

cells depend on magnitude and time of the stress (non-optimal or unfavorable environmental

conditions) applied. E. coli cells can grow and divide when pressure is less than 250 atm [33].

The growth rate inhibits and elongation of cells occurs at the pressure of 300−500 atm, cells

do not grow and divide at pressures higher than 600 atm and cell death results at pressures

higher than 1500 atm [34, 35]. While the effect of continuous pressure on the growth and

cell morphology is explored to some extent, the effect of fluctuating pressure on the bacterial

cells is relatively unknown.

E. coli growth rate decreases upon deviations in temperature and pressure from optimal

growth pressure-temperature condition. Decrease in growth rate is proportional to the mag-

nitude and duration of fluctuation of temperature and pressure. The growth rate of the

bacterial cells is defined by the time at which the number of bacteria simply doubles. This

population doubling time (T ) is constant for a bacteria in same environmental conditions.
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Inhibition of growth rate is one of the responses of bacteria at high pressures. At optimal

growth condition E. coli have population doubling time (T )≈30 minutes. The population

doubling time increases on increasing pressure. Doubling time has sharp jump at pressure de-

pending on the temperature. The growth rate of E. coli also inhibits at temperature different

from 37◦C. The decrease in growth rate depends upon the extent of deviating temperature

from 37◦C and pressure from an atmosphere [13].

Plasmid DNA

A plasmid is an extrachromosomal DNA capable of dividing inside the host cell. Plasmid

DNA contains three main parts. (i) The origin of replication which initiates the replication.

(ii) The selection site which makes bacterial cells capable of antibiotic resistance. (iii) The

cloning site where the genes and marker are inserted according to use of the plasmid DNA

[36]. We used a plasmid DNA having green fluorescent protein (GFP) fused with mreB gene

[37].
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Origin of Replication

A plasmid
DNA

Figure 3: Schematic of a plasmid DNA.

Motivation

Bacterial cells encounter fluctuations in different physicochemical stresses and respond to

such fluctuations. The response of the cells depends on the extent and type of the stresses

applied. The response of bacterial cells to the fluctuating stress is relatively unknown.

Here, we have studied the response of wild type Escherichia coli (E. coli) under fluctuating

hydrostatic pressures ranging from 1 atm to 500 atm. High pressure acts as a stress to E. coli

since these bacteria are adapted to grow optimally at atmospheric pressure. Cell division of

E. coli is inhibited at high pressures resulting in increase in the length of the cells. It is also

shown that the cell-length is reversible, in other words – bacterial cells revert back to normal

size on a time scale that is proportional to the strength and time of continuous pressure

applied upon relaxing the high pressure condition [Kumar, Libchaber, 2015]. Here we have

explored the dynamics of reversibility of cellular phenotype with fluctuating pressure. Since
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random fluctuations in pressure is hard to create in experiments, we have studied the cellular

response in case of oscillatory pressures.

Research objective

The goal of these experiments is to establish the time-scale of cellular responses to a novel

stress such as high hydrostatic pressure. Specifically, we have explored phenotypic variations

occurring in E. coli at high pressures. Phenotypic studies include the morphological changes

occurring in wild-type bacteria and wild-type bacteria cloned with a plasmid DNA at high

continuous and oscillatory pressures.

Thesis outline

This thesis is divided into three chapters. Introduction of the problem is discusses with a

brief description and development basis for further topics. This chapter mainly reviews the

literature and establishes the framework for the research with definition of key points based

on the previous works. We also describe briefly the studies related to this work carried out

earlier.

Second chapter describes the experimental setup and molecular biology protocols used in

the work.

Third chapter discusses the results. The response of wild-type bacteria and bacteria cloned

with a plasmid DNA at high pressures is discussed thoroughly and how the morphology

fluctuates in bacterial cells at high oscillating pressures. The morphological fluctuations of

bacteria with plasmid are explained with and without the induction of gene expression.

The last chapter introduces a two population model of the bacterial cells based on the model

developed in earlier research work to describe the experimental data. This chapter also

summarizes the most important results of the research work.
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Experimental Setup and Microbiology Protocols

Bacterial Strain

E. coli strain MC4100 was used for all the experiments performed in this work. MC4100

was cloned with a plasmid DNA containing mreB gene fused with green fluorescent protein

(gfp). Two different variants namely –(i) wild-type MC4100 cells, (ii) MC4100 cloned with a

plasmid DNA were used to probe the cellular response to high pressure. Cell culture and

media

Bacteria are cultivated in Luria Broth (LB) [38]. which contains rich nutrients for the

bacterial cells. The pH of the media is maintained at 7. Petri dishes containing ∼ 25 mL are

prepared adding 1.5% agar to the liquid medium. Carbenicillin of 50 µg per liter is added

to grow the bacterial cells with a plasmid DNA. The bacterial stock is inoculated in solid

media and incubated at 37 ◦C for ∼16 hours. A single colony from solid media is dissolved

in 4 mL of liquid media. Then the bacterial sample is grown at 37◦C on a shaker at 200

rpm until OD reaches to 0.4 − 0.6. Then the sample is diluted to OD ∼ 0.05 and loaded

into the high pressure cell. Sample is kept at high pressure system at desired pressure and

temperature of 37◦C till growth reaches to the saturation regime.

High pressure setup

Schematic diagram for the growth of bacteria at high pressure is shown in Fig. 4. Bacterial

sample in LB medium is loaded into a rectangular cuvette (vol: 400 µL Spectrocell, Oreland,

PA,). The cuvette is closed with a teflon cap (E. I. DuPont de Nemours, Paris, France) . The

cuvette is then loaded into the high pressure cell (ISS, Champaign, IL). Pressure is controlled

by using a piston and is measured using a pressure gauge. Temperature is regulated using a

circulating water bath (Neslab RTE7,Thermo Scientific, , Waltham, MA) containing water.

Bacterial growth is obtained by measuring the intensity of the forward scattered light using a

light detector(PDA 100A, Si amplified detector,Thorlabs inc, Newton, New Jersey, USA).The

8



intensity of the scattered light is converted into voltage and recorded with the aid of lab view

(National nstruments, Austin, TX) software.

 

Water 

Band-pass Filter 
(585±25nm) 

Water Circulation Pipes 

Circulating Water Bath 

Cuvette  Focusing Lens 

White Light Source 
Lid 

Focusing Lens 

Optical Window 

Optical Detector 

Piston Pressure Gauge 

Figure 4: Schematic diagram of the experimental setup to grow bacteria at high pressures.

Imaging and analysis of the images

Bacterial sample is taken out at the end of the pressure experiment. We prepared the slides

and images of the cells are acquired using a SPOT camera (Spot Imaging Solutions, MI)

mounted on a Nikon EFD-3 microscope with 40X objective (both from Nikon corporation,

Shinagawa, Tokyo, Japan). Images are acquired in ≈ 20 minutes to ensure there is no

significant change in morphology. Images thus acquired are converted into binary images

using imageJ. Cell length of each bacteria is extracted using MATLAB.

9



Phenotypic changes of Bacterial Cells with Continuous and Oscillatory Pressure

In this chapter, we describe the cellular changes in bacterial cells with continuous and oscil-

latory pressures in three different cases:

• Wild-type cells.

• Cells cloned with a plasmid DNA but no induction of gene expression.

• Cells cloned with a plasmid DNA and induction of gene expression.

Introduction of the additional DNA inside the cells leads to larger metabolic load on the

cells because cells now have to replicate the addition DNA. Moreover, induction of gene

expression introduces even larger metabolic load on the cells because cells will require energy

(from metabolism) to carry out these additional functions. We find that, the presence or

absence of these factors that require the cells to perform additional functions lead to different

cellular responses to the stress (high hydrostatic pressure). Below, we summarize the results

for the three cases explained above.

Response of wild-type cells (E. coli strain MC4100)

Comparison of morphology at normal and at high continuous pressures

Application of high hydrostatic pressure results in a decrease of growth rate. Moreover,

high pressure is shown to inhibit cell division, resulting in an increase of the bacterial cell

length. Furthermore, it was shown recently that, the lack of cell division at high pressures

is stochastic in nature. While at atmospheric pressure, the probability that, a cell lacks a

cell division is negligible the probability of lacking a cell division increases with pressure for

DH5α-strain of E. coli[13].
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Figure 5: Bacterial cells at different continuous pressures. Representative images of the
bacterial cells grown at T=37◦ C and continuous pressures of: (A)1 atm, (B) 400 atm. P (`)
of bacterial cell lengths at T=37◦ C and pressures: (C), 1 atm, (D) 400 atm.
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Figs. 5 (A) and (B), we show representative images of the bacterial cells at P = 1 atm and

P = 400 atm. The data shows that, bacteria has high propensity of lacking cell division

at high pressure condition as compared to bacterial cells at atmospheric pressure condition.

The probability distribution, P (`), of bacterial cell length, ` ,for P = 1 atm and P = 400 atm

are shown in Figs 5 (C) and (D) respectively. While P (`) at P = 1 atm is narrow centered

around the mean length, < ` >≈ 2µm of bacterial cells, P (`) at P = 400 atm is long-tailed

centered around the mean length of ≈ 3µm. Hence these results suggest that, the wild-type

strain of E. coli, MC4100, studied here shows similar behavior of lack of cell division at high

pressure however the probability of cell division to occur at high pressure is much larger

as compared to DH5α strain of E. coli. We next studied the response of bacterial cells to

oscillating pressures. A schematic of the experiments is shown in Fig 6 (A). We apply a high

pressure of 400 atm for 1 hour and let the system relax at atmospheric pressure over a time-

scale τ . We performed these experiments for P = 400 atm where we observe a significant

lack of cell division, and four different values of τ = 5 min, 10 min, 15 min, and 20 min.

Comparison of morphology at different relaxation time (τ)

We studied the effect of oscillatory pressure to the morphology of the bacterial cells keeping

at constant temperature (37◦C). We oscillate the pressure for five different cycles. Then the

images are taken as quickly as possible without being biased. The images thus obtained are

quantified and individual length data are extracted. In figs 6 (B), (C), (D) and (E) we show

the probability distribution, P (`), of the length of bacterial cells for the values of τ = 5,

10, 15 and 20 minutes respectively. We found that, the P (`) is quite different compared

to MC4100 wild-type. The tail of P (`) is longest at τ=0 minute as observed in wild-type

MC4100. We further show that, the heterogeneity of the bacterial cell is much higher for

bacteria cultivated at high pressure compared to bacteria cultivated at atmospheric pressure.

Furthermore, the tail of the distribution decreases on increasing τ . Which is in agreement

with the wild-type MC4100. The decrease in tail with increasing τ is much more faster
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compared to wild-type MC4100. Moreover, the peak of the distribution shifts toward the

smaller average length of the bacterial cells. These results imply that, the heterogeneity of

the bacterial cells is smaller at higher τ ’s. The P (`) of the bacterial cells at τ = 20 minutes

is similar to the P (`) of the bacterial cells grown at atmospheric pressure. < ` >of the

bacterial cell revert back to < ` > at atmospheric pressure with τ . We observe that, when

τ = 20 minutes the heterogeneity and < ` > revert back and comparable to the bacterial

cells as grown at atmospheric pressure. The revert back of the cell length at oscillating

pressure suggests that, the bacterial cells which are elongating due to application of the

high pressure start to divide during the relaxation time. Relaxation of the pressure is more

favorable condition for the bacterial cells to divide comparing to high continuous pressure.

Bacterial cells respond to the relaxation and start to divide however the relaxation time

is smaller compared to the time of high pressure applied. Bacterial cells show immediate

response to the relaxation of the pressure. Application of τ to the bacterial cells grown

at high pressure shows that, bacterial population with longer length decreases and revert

back to bacteria with shorter length. This can be represented as bacteria with longer length

phenotype switch to shorter length phenotype. The phenotypic switching is time dependent.

We find the critical time of phenotypical switching is 20 minutes. Beyond this critical time,

it does not incur any significant changes in P (`) and < ` > of the bacterial cells.
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Figure 6: (A) Schematic diagram for the oscillatory pressure applied to the bacterial cells.
P (`) of bacterial cell length at T = 37 ◦ C, P = 400 atm and relaxed for different scales of
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Fig. 7 shows the τ dependence < ` > of the bacterial cells. We fit the second order polynomial

through experimentally observed < ` >. < ` > decreases quadratically with τ . The length

data are in agreement with P (`) as described in Fig. 6. At τ = 20 minutes < ` > is found

as 2.7µm which is close to the bacterial average length at atmospheric pressure=2.5µm. We

next explored the response of the bacterial cells to the fast oscillation followed by growing

the sample till saturation regime. We start the oscillatory pressure when bacterial cells are

at saturation regime. First the bacterial cells are grown at high pressure of 450 atm for 5

hours. The pressure is continuously applied to 450 atm to bring the sample to saturation

regime where is significant lack of cell division. Pressure of 450 atm is applied for an hour

and released to 1 atm for different time scales. The application and relaxation of the pres-

sure is applied for five different cycles. The duration of pressure applied and relaxed is made

same with different time scales of τ = 5, 10, 15, and 20 minutes.

Response of wild-type MC4100 to fast oscillations in pressure

Comparison of morphology at different relaxation time after growing to satura-

tion regime(τ)

A schematic of the experiments is shown in Fig. 8 (A). Figs. 8 (B), (C), (D), (E) and (F)

are P (`) at τ = 5, 10, 15, and 20 minutes respectively at constant temperature (37◦C). We

observe that, the tail of P (`) and heterogeneity of probability distribution of bacterial cells

decreases significantly when τ = 5 minutes and again starts to increases till τ = 12 minutes.

There is no significant difference of < ` > on further increasing τ . However, Fig. 8 shows

that, the tail of the P (`) of cell length decreases till τ = 5 minutes and starts to increase

further until the relaxation time reaches to 15 minutes. Beyond 15 minutes tail of P (`)

decreases. We further observe that, number of bacterial cells having length more than 8µm

is very small for τ beyond 10 minutes. Hence, we conclude that, the sample is saturated

beyond 12 minutes and there are no significant changes in P (`) and < ` >. For the fast

oscillatory pressure followed by the continuous pressure to bring the sample to saturation
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regime, bacteria show two irregular phenotypic switching in their cell length.
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Figure 8: Bacterial cells are grown for five hours till they reach to the saturation regime at
T=37◦ C and P=450 atm, then the time for applying pressure and relaxation is made same
with varying scales. (A) Schematic diagram of application and relaxation of the pressures.
P (`) of bacterial cells at different scales of relaxation times: (B) τ=0 minute, (C) τ=5
minutes, (D) τ=10 minutes, (E) τ=15 minutes and (F) τ=20 minutes.
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Figure 9: τ dependence average length of bacterial cells extracted from Fig 8. Red dots
are experimental data-points and red dotted line is interpolated curve to the experimental
data-points.
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Fig. 9 shows the τ dependence < ` > of the bacterial cells. We observe that, < ` > is

minimum when τ is 5 minutes. The minimum < ` > is 2.7µm at τ = 5 minutes, which

is similar length as the minimum < ` > of the bacterial cells at τ = 20 minutes for the

oscillatory pressure started from the beginning which we discussed in previous section. < ` >

increases when τ is increased on increasing τ up to 15 minutes. Beyond 15 minutes < ` >

decreases. When τ = 20 minutes < ` > is comparable to < ` > when the sample grown in

an oscillated pressure from the beginning.

Response of MC4100 cloned with a plasmid DNA

Comparison of morphology of at normal and at high continuous pressures

In Figs. 10 (A) and (B), we show representative images of the bacterial cells at P = 1 atm

and at P = 400 atm. A comparison of Figs. 10 (B) and Figs. 5 (B) tells us that, the average

length of the bacterial cells at 400 atm is significantly different between two samples–wild-

type MC4100 and wild-type MC4100 cloned with a plasmid DNA. Furthermore, we find that,

the lack of cell division of bacterial cells cloned with a plasmid DNA at 400 atmospheric

pressure is much higher than the bacterial cells without a plasmid DNA. P (`), of bacterial

cell length, ` for P = 1 atm and P = 400 atm are shown in Figs 10 (C) and (D) respectively.

While P (`) at P = 1 atm is narrow centered around the mean length, < ` >≈ 2.8µm of

bacterial cells. P (`) at P = 400 atm is long-tailed. P (`) for the bacterial cells at atmospheric

pressure is similar for both samples cloned with a plasmid DNA and without a plasmid DNA.

The tail of the distribution at 400 atm is much higher compared to MC4100. Furthermore,

the tail of the distribution is smooth in wild-type strain, the tail is multiple peaked in

wild-type bacterial cells cloned with a plasmid DNA. Hence these results suggest that, the

wild-type strain of E. coli, MC4100 cloned with a plasmid DNA shows similar behavior to

the wild-type strain at atmospheric pressure but at 400 atm their behavior is significantly

different.

19



B.

0 5 10 15 20 25 30
l(µm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
(l

)

T=37° C, P=400 atm

D.C.

A.

1 2 3 4
l(µm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P(
l)

T=37 °C, P=1 atm

Figure 10: Bacterial cells cloned with a plasmid DNA at different continuous pressures.
Representative images of the bacterial cells grown at T=37◦ C and continuous pressures of:
(A)1 atm, (B) 400 atm. P (`) of bacterial cell lengths at T=37◦ C and pressures: (C)1 atm,
(D) 400 atm.
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We next studied the response of bacterial cells to oscillating pressures. A schematic of the

experiments is shown in Fig 11 (A). We apply a high pressure of 400 atm for 1 hour and let the

system relax at atmospheric pressure over a time-scale τ . We performed these experiments

for P = 400 atm, where we observe a significant lack of cell division and four different values

of τ = 5 min, 10 min, 15 min, and 20 min.

Comparison of morphology at different relaxation time (τ)

To investigate how the morphology of the wild-type bacterial cells cloned with a plasmid DNA

deviates from wild-type MC4100, we oscillate the pressure keeping at constant temperature

(37◦C). At the end of 5 cycles of oscillating pressure, we analyzed the images taken after

pressure and relaxation cycles and quantify the cell length data. In figs 6 (B), (C), (D) and

(E) we show the probability distribution, P (`) of the length of bacterial cells for the values

of τ = 5, 10, 15 and 20 minutes respectively. We found that, the tail of the distribution

decreases on increasing the τ . Furthermore, the peak of the distribution shifts toward the

smaller length of the bacterial cells. The results imply that, the heterogeneity of the bacterial

cells is smaller at higher τ ’s. The P (`) of the bacterial cells at τ = 20 minutes is comparable

to the P (`) of the bacterial cells grown at atmospheric pressure. < ` >of the bacterial cell

revert back to < ` > at atmospheric pressure with τ . We observe that, when τ = 20 minutes,

the < ` > as well as P (`) are comparable to the bacterial sample harvested at atmospheric

pressure. These results are similar to wild-type MC4100 described in previous section. The

tail of the bacterial cell cloned with a plasmid DNA is longer than the wild-type bacterial

cell. Both samples decrease their tail at higher values of τ ’s. Interestingly, the tail of the

bacterial cell with a plasmid DNA decreases much faster compared to wild-type cell and tails

become comparable when τ = 20 minutes to P (`) of wild-type bacteria with no plasmid.

The critical time for phenotypic switching is also found to be 20 minutes, exactly same as

observed in wild-type cell.
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Figure 11: (A) Schematic diagram for the oscillatory pressure applied to the bacterial cells.
P (`) of bacterial cell length at T=37◦ C, P=400 atm and relaxed for different scales of time:
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Fig. 12 shows τ dependence < ` > of the bacterial cells cloned with a plasmid DNA. We

fit a second-order polynomial through experimentally observed < ` >. < ` > decreases

quadratically with τ . The length data are in agreement with P (`) as described in figs 11.

At τ = 20 minutes < ` > is found to be 2.6µm, which is close to the bacterial average length

at atmospheric pressure and comparable to the length obtained for wild-type under similar

conditions.

Comparison of < ` > at different τ for different strains of bacterial cells

Fig. 13 shows the linear-log plot of phenotypic reversibility of different MC4100 samples

under oscillatory pressure. Circles, squares and diamonds represent reversibility of wild-type

MC4100, wild-type MC4100 cloned with a plasmid DNA without induction and MC4100

cloned with a a plasmid DNA and with induction respectively. Solid lines are corresponding

guide to the eyes. Wild-type bacterial cells do not incur any additional metabolic stress,

MC4100 cloned with a plasmid DNA have a moderate additional load as the plasmid DNAs

are replicated as bacterial cells undergo cell division. Induction of gene expression in the

cells with a plasmid DNA gives rise to a severe metabolic load arising due to replication of

a plasmid DNA and production of the proteins. The production of proteins require energy

which is supplemented to the cell by metabolic process. Which in turn, imposes higher

stress to the bacterial cells at continuous high pressure. Wild-type MC4100 cells with no

added metabolic load are stressed the least at high pressures. < ` > of the bacterial cell is

stress dependent. The most stressed bacterial strain exhibit the maximum average length

(35.42 µm) at continuous high pressure of 400 atm. The least stressed wild-type strain of

bacterial cell has minimum average length. Interestingly, the cells revert back to the average

cell length comparable to average cell length at atmospheric pressure over τ=20 minutes.

These results indicate that, bacterial cells exhibiting higher stress under the effect of con-

tinuous pressure also exhibit higher average length. The bacterial cells which are elongated

longer revert back to the same average length with the cells that are elongated smaller due
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to application of high pressure at the same scale of time. The reverting back to the same

< ` >, irrespective of < ` > at continuous pressure indicates that, bacterial cells show elastic

property at oscillatory pressures.
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Figure 13: Phenotypic reversibility of bacterial cells at oscillatory pressures. Circles, squares
and diamonds represent the reversibility of wild-type MC4100, wild-type MC4100 cloned
with a plasmid DNA without induction and MC4100 cloned with a plasmid DNA and with
induction. Solid lines are respective guides to the eye.

We next compared the morphology of wild-type MC4100 and MC4100 cloned with A plasmid

DNA at continuous pressure of 400 atm. Fig. 14 (A) and (B) are the P (`) of wild-type

MC4100 and MC4100 cloned with a plasmid DNA.
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Comparison of morphology of wild-type MC4100 and MC4100 cloned with a

plasmid DNA at continuous high pressure

In Figs. 14 (A) and (B), we show the P (`) of bacterial cells for wild-type MC4100 and

MC4100 cloned with a plasmid DNA respectively. Both wild-type sample and a sample

cloned with a plasmid DNA exhibit similar behavior at atmospheric pressure (fig. 5 (C) and

fig. 10 (C).
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Figure 14: P (`) at continuous pressure of 400 atm.(A), wild-type MC4100, (B),MC4100
cloned with a plasmid DNA.

However, the behavior of MC4100 cloned with a plasmid DNA is significantly different

compared to wild-type MC4100 at high continuous pressure of 400 atm. P (`) of wild-

type cell is a long tailed Gaussian distribution with a single peak. We find that, P (`) of

MC4100 cloned with a plasmid DNA has longer tail compared to wild-type. Furthermore,

the distribution exhibits multiple peaks. These results imply that, bacterial cells cloned with

a plasmid DNA behave differently than the bacterial cells without a plasmid DNA. Moreover,

the multiple peaks of P (`) gradually decrease with τ . When τ is 20 minutes multiple peaked

distribution turns to single peak long tailed distribution.

We next study the cause of the variability of cell length in wild-type MC4100 cloned with a
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plasmid DNA. The stochastic cell division of two bacterial population is taken into account

and P (`) is described using an existing model. Fig. 15 and Fig. 16 describe the stochastic

cell division of two populations and theoretical model to explain the morphological deviation

of wild-type MC4100 cloned with a plasmid DNA from wild-type bacterial cell at continuous

pressure of 400 atm respectively.
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Theoretical model to explain cell-length variability

Fig. 14 shows the deviation of P (`) of MC4100 cloned with a plasmid DNA from the wild-

type MC4100. We describe the results by extending an existing model for a single population

to two sub-population model. Our experimental results are described reasonably well by

theoretical model.

Stochastic cell division of two populations

Fig. 15. shows the stochastic cell division of bacterial cell with two populations. The

rectangles represent the bacterial cells. α1 and α2 represent the probability of dividing a

bacterial cell dividing into two identical cells of two populations respectively. β1=(1- α1)

and β2=(1-α2) are respective switching probabilities for the elongation of bacterial cells.

Here, we assume that, the two populations behave differently and have different switching

probabilities. Green rectangles represent bacterial cells dividing normally with probability α

and purple rectangles represent bacterial cells switching to elongated cells with probability

β. During the application of high pressure, once a cell does not divide in a given generation,

it does not divide in any of the following generations. Cell morphology is irreversible process

during the application of the continuous high pressure. [13].
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Figure 15: Schematic of stochastic cell division of two populations.

Theoretical model with two sub-populations

We further look at the existing model developed for bacterial cell division at continuous high

pressure. We applied the model with an assumption of two sub-populations. We calculated

the variance (σ0) and average length (`0) of the bacterial sample grown at atmospheric

pressure. The probability distribution at the end of n generation of a single population

model reads as,

Pn(`) =
n∑
a=0

((
β

2(1− β)
)a

1− 3
2
β

(1− β)[1− ( β
2(1−β))

n+1]

1√
2πσ2

022a
e
− (1−2a`0)

2

2.2
2aσ20 (1)

Where, β is the switching probability of bacterial cells, n is number of generations, `0 and

σ0 are the average length and standard deviation of P (`) of the bacterial cells cultivated

at atmospheric pressure [13]. We further extended the model to two sub-populations. The

probability distribution at the end of n generation of the bacterial growth at high continuous
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pressure can be written as,

Pn(`) =
n∑
a=0

((
β1

2(1− β1)
)a

1− 3
2
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(1− β1)[1− ( β1
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n+1]
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022a
e
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2

2.2
2aσ20

+(
β2

2(1− β2)
)a

1− 3
2
β2

(1− β2)[1− ( β2
2(1−β2))

n+1]

1√
2πσ2

022a
e
− (1−2a`0)

2

2.2
2aσ20 )

(2)

We next fit Eq. (2) with our experimental data for MC4100 cloned with a plasmid DNA.

The multiple peaked distribution suggests that, there are two sub-populations dividing with

different switching probabilities. f1 and f2 are the fractions of two populations respectively.

In Fig. 16, blue histogram is experimental data and magenta curve is the model fit through

the histogram. From fitting, we found that, β1=0.1, β2=0.5, f1=0.58, f2=0.42 and n=5. The

theoretical curve fits well with experimental histogram. This fitting shows that, the deviation

of morphology of MC4100 cloned with a plasmid DNA from the wild-type MC4100 is due

to two sub-populations of bacterial cells at high continuous pressure arising from different

switching probabilities.
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Figure 16: Theoretical model from equation (2), fitting to the experimental data, obtained
for MC4100 with a plasmid DNA at high continuous pressure. Blue histogram is the experi-
mental data, magenta curve is the theoretical curve with two switching probabilities 0.1 and
0.5 for five generations.
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Discussion

The < ` > of the rod shaped bacterial cells is proportional to the extent and duration of hy-

drostatic pressure applied. At high pessures of 500 atm, the bacterial cells not only elongate

but also divide resulting into larger heterogeneity of bacterial population. The elongation

and division of the bacterial cells depend on the continuous pressure applied. Continuous

hydrostatic pressure causes bacterial cells to increase in length if the cells do not divide at

a given generation. Our results show similar elongation behavior of the cell as observed for

DH5α strain, however the switching probability(β) is smaller [13]. β varies from strain to

strain of the bacterial cells even though they have same genome. The addition of extracellu-

lar plasmid DNA results in a higher stress and larger propensity of lack of cell division during

the application of continuous high pressure. Average bacterial length is τ dependent under

the effect of an oscillating pressure. For the bacterial strain studied here and the oscillation

starting from the beginning of the application of high pressure, the critical time for bacterial

cells to revert back is found as τ ≈ 20 minutes. The behavior of the bacterial cells at

oscillating pressure applied after the sample is grown to the saturation regime at continuous

pressure is different from the same sample under the application of an oscillatory pressure

from the beginning. Bacterial cells has minimum < ` > and small heterogeneity at τ = 5

minutes. Both the < ` > and heterogeneity increase further until τ reaches 12 minutes.

The P (`) and < ` > saturate on further increasing τ . Bacterial morphology reverts back

in time when the continuous pressure applied on the sample is removed [Kumar, Libchaber,

2015] implies that, Pressure relaxation or release is more favorable for bacterial cell division.

Hence, the < ` > and heterogeneity decrease with an oscillatory pressure and depend on τ .

Bacterial cells that, are elongated during the application of continuous high pressure divide

during the relaxation of pressure. The time scale of the relaxation of pressure and bacterial

cell division time are important to determine the fraction of sub-populations dividing while

the pressure is relaxed. The population doubling time of E. coli in laboratory condition is

≈ 20 minutes. After the relaxation time scale of ≈ 20 minutes, cells divide more or less
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completely. Both P (`) and < ` > of bacterial cell for τ = 20 minutes are comparable. The

process of cell division and the role of the genes and their interaction are related to the

process of phenotypic dynamic reversibility studied here. We have studied the response at

cellular level. To understand the effect of cell at genomic level, it needs further experiments.

These results are helpful in understanding the response of cells to the fluctuations in environ-

ments and hence a better understanding reason of sustaining and vanishing of the organisms

from nature.

Conclusion

We have studied the response of bacterial cells in fluctuating pressures. Bacteria tend to

lack cell division at high pressure resulting in an increase of their average length at continu-

ous high pressure. The application of the oscillatory pressure cause the elongated bacterial

cells to divide ensuring a decrease in average length of the bacterial sample. The wild-type

MC4100 cells cloned with a plasmid DNA without induction of gene expression are stressed

and hence elongate more as compared to the wild-type MC4100. When the gene expression

is induced, the stress as well as elongation is much higher. Response of bacterial cells cloned

with a plasmid DNA is similar to the response shown by wild-type cells at atmospheric

pressure. However, the response is significantly different at high pressure. We find two dif-

ferences at pressure of 400 atm. (i) the average length is longer for the bacterial cells cloned

with a plasmid DNA. (ii) the probability distribution of the bacterial cells cloned with a

plasmid DNA show multiple peaks but the wild-type cells show a single peak. The multi-

ple peaked distribution gradually changes to a single peaked distribution on increasing the

relaxation time. The distribution is single peaked when the relaxation time is 20 minutes.

The bacterial sample sample cloned with a plasmid DNA acts as two sub-populations with

different switching probabilities at continuous high pressure. Two different switching prob-

abilities govern multiple peak seen in the probability distribution of cells at high continuous

pressure.
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Relaxation time of the oscillatory pressure plays an important role in the average length

of the bacterial cells. The average length of the bacterial population reverts to the length

close to average length of bacterial sample cultivated at an atmospheric pressure when the

relaxation time is ≈ 20 minutes. All the samples we studied here has average length

≈ 2.8µm irrespective of the average length at continuous high pressures.

34



Bibliography

[1] A Aristides Yayanos, Allan S Dietz, and R Van Boxtel. Obligately barophilic bacterium
from the mariana trench. Proceedings of the National Academy of Sciences, 78(8):5212–
5215, 1981.

[2] Chiaki Kato, Lina Li, Yuichi Nogi, Yuka Nakamura, Jin Tamaoka, and Koki Horikoshi.
Extremely barophilic bacteria isolated from the mariana trench, challenger deep, at a
depth of 11,000 meters. Applied and environmental microbiology, 64(4):1510–1513, 1998.

[3] Karsten Pedersen. Microbial life in deep granitic rock. FEMS Microbiology Reviews,
20(3-4):399–414, 1997.

[4] Claude E Zobell and Richard Y Morita. Barophilic bacteria in some deep sea sediments.
Journal of Bacteriology, 73(4):563, 1957.

[5] Christa Schleper, G Pühler, B Kühlmorgen, and Wolfram Zillig. Life at extremely low
ph. Nature, 375(6534):741–742, 1995.
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Appendix

Below, we list the MATLAB code, which was used to quantify the binary images to obtain
the cell length data. We selected the lower cut-off and upper cut-off lengths to be 0.5 and
40 µm respectively. We used the pixel of each image and fit a polynomial through the
curvature of the bacterial cells in both x-axis and y-axis. We further take into account of the
largest curvature among both axes. Finally, the length of the curvature is extracted. The
length of the curvature provides us the length data. The length data are analyzed to get the
probability distribution and the average length for respective experiments.

clear all
%choose a cutoff length for the bacteria
cutoffL2=40;
cutoffL1=0.5;
scale100x=8;
%Number of real bacteria detected for each image files
nBacFound=1;
%Loop for images
for nimage=1:129
nimage
imfile = sprintf('Image%d.tif', nimage);
BW=imread(imfile);
BW=1−BW;

[B,L,N,A] = bwboundaries(BW,'noholes');

arcL = zeros(1,N);
for i=1:N
d=cell2mat(B(i));
minY = min(d(:,1));
maxY = max(d(:,1));
maxX = max(d(:,2));
minX = min(d(:,2));
dX = maxX−minX;
dY = maxY−minY;

if(dX>=dY & dX>2)
lengthX = maxX−minX+1;
meanYvals = zeros(lengthX,1);
n=1;
for k=minX:maxX
idx = find(d(:,2)==k);
yVals = d(idx);
diam(n) = length(min(yVals):max(yVals));
meanYvals(n) = sum(min(yVals):max(yVals))/(length(min(yVals):max(yVals)));
% take the average y−values for a given x
n=n+1;
end

% now we have y as a function of x for each connected component of the
% image.
X = minX:maxX;
X=X';
Y = meanYvals;
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%determine the order of polynomial
nOrder = floor(dX/200)+2;
parFit = polyfit(X,Y,nOrder);
derL=0;
func = 0;
for np=1:nOrder

derL = derL+(nOrder−np+1)*parFit(np)*X.ˆ(nOrder−np);
end

for np=1:nOrder+1
func = func + parFit(np)*X.ˆ(nOrder−np+1);

end

arcL(i) = sum(sqrt(1+derL.*derL));
arcL(i) = arcL(i)/scale100x;
meanDiam(i) = mean(diam)/scale100x;
end

if(dY>dX & dY>2)
lengthX = maxY−minY+1;
meanYvals = zeros(lengthX,1);
n=1;
for k=minY:maxY
idx = find(d(:,1)==k);
yVals = d(idx,2);
meanYvals(n) = sum(min(yVals):max(yVals))/(length(min(yVals):max(yVals)));
% take the average y−values for a given x
diam(n) = length(min(yVals):max(yVals));
n=n+1;

end
% now we have y as a function of x for each connected component of the
% image.

X = minY:maxY;
X=X';
Y = meanYvals;
%determine the order of polynomial
nOrder = floor(dY/200)+2;
parFit = polyfit(X,Y,nOrder);
derL=0;
func = 0;
for np=1:nOrder

derL = derL+(nOrder−np+1)*parFit(np)*X.ˆ(nOrder−np);
end

for np=1:nOrder+1
func = func + parFit(np)*X.ˆ(nOrder−np+1);

end

arcL(i) = sum(sqrt(1+derL.*derL));
arcL(i) = arcL(i)/scale100x;
meanDiam(i) = mean(diam)/scale100x;
end
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end

% arcL contains the length of all the bacteria. Now choose only the
% bacteria which are properly oriented. For that we will choose a cutoff
% length (unless otherwise one is looking at a different bacteria).
n=1;
for k=1:length(arcL)

if(arcL(k)>cutoffL2)
imfile
break;

end
if(arcL(k)>cutoffL1 && arcL(k)<cutoffL2)
realL(n)=arcL(k);
bacLength(nBacFound)=realL(n);
nBacFound = nBacFound+1;
n=n+1;
end

end
end
% fill the array of lengths with the length found for each image files

%fill the connected components with different color
imshow(label2rgb(L, @jet, [.5 .5 .5]))
hold on
%outline the boundaries only for the bacteria larger than cutoffL

% for k = 1:length(arcL)
% if(arcL(k)>cutoffL1)
% boundary = B{k};
% plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2)
% end
% end
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