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Abstract 
 
Myxomycetes (plasmodial slime molds) are abundant amoeboid predators of bacteria and other 

microorganisms. They are found worldwide, largely in association with decaying plant material 

in terrestrial habitats. Their consumption of bacterial prey puts microbial predators such as 

myxomycetes in a key position in various ecosystem processes wherein they help regulate the 

flow of nutrients (e.g., N and C) through the ecosystem. The importance of microbial predators 

in nutrient cycling and plant productivity is well established. Given the extent to which tropical 

ecosystems influence global nutrient fluxes, along with the ecologically significant role that 

myxomycetes play in these processes, there is a pressing need to learn more about this 

understudied community.  

 This dissertation comprises an important first step toward developing an understanding of 

the ecological role of myxomycetes, with two major contributions. Identifying species is a 

fundamental step toward characterizing the diversity of a community. Given the unique 

challenge of identifying species of myxomycetes imposed by their unique biology, this 

dissertation begins in chapter two with a review of the myxomycete species concept. The various 

species concepts used (or potentially used) to identify species of myxomycetes are discussed.  

In chapter three, the challenges that myxomycete identification pose are described in the context 

of an ecological study. Therein, the use of a long-term nutrient fertilization experiment is 

described within which the effects of three major macronutrients, N, P and K on the myxomycete 

community in a lowland tropical forest of Panama are investigated. Interestingly, very little 

evidence supports the presence of a nutrient limitation to the myxomycete community, despite 

the many limitations that have been identified for other groups in this ecosystem (e.g., plants). 

The unexpected results provide the opportunity to again discuss the complications of species 



identification and enumeration of myxomycetes for in-depth studies. The results also highlight 

the unique biology of myxomycetes and provide new insights into their ecology. Finally, in 

chapter four, a holistic approach is employed to describe a species new to science that was 

discovered during the course of this dissertation work in Panama. Overall this dissertation 

highlights the importance of myxomycete taxonomy in an ecological framework. 
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I. Introduction and the motivation behind this dissertation research 
 
Myxomycetes (also known as plasmodial slime molds or myxogastrids) are a monophyletic 

group of microbial eukaryotes in the supergroup Amoebozoa (Cavalier-Smith 1998; Fiore-

Donno et al. 2005; Shadwick et al. 2009; Fiore-Donno et al. 2010; Adl et al. 2012). Their life 

cycle usually involves two trophic stages—one consisting of microscopic uninucleate 

amoeboflagellates and the other of a multinucleate plasmodium—along with a reproductive stage 

somewhat similar to the spore-producing fruiting bodies of certain macrofungi, albeit much 

smaller. Due to their resemblance to fungi and because they commonly occur in similar 

microhabitats (e.g., decaying plant material), myxomycetes were traditionally studied by 

mycologists (Martin and Alexopoulos 1969). In fact, the name myxomycete was derived from 

the words “myxa” (meaning slime) and “mycetes” (referring to fungi) (Link 1833). Anton de 

Bary (1859) was the first to provide a formal description of myxomycetes and it appears that he 

was also the first to recognize that myxomycetes are more closely related to amoeboid protists 

than they are to fungi. Now, in all phylogenies, myxomycetes are well recognized as protists 

belonging to the supergroup Amoebozoa (Cavalier-Smith 1998). 

Myxomycetes, together with the Dictyostelia (dictyostelids) and members of the genus 

Ceratiomyxa, form a larger clade referred to as the Macromycetozoa (Fiore-Donno et al. 2010). 

The myxomycetes are the most speciose group within the Macromycetozoa, with more than 900 

described morphospecies (Lado 2005–2015, which is the source of the nomenclature used 

throughout this dissertation). Molecular data have confirmed the division of myxomycetes into 

two clearly defined groups, historically distinguished by spore color and still commonly referred 

to as the dark-spored and bright-spored clades (Fiore-Donno et al. 2005), or more recently 

recognized as the superorders Columellidia and Lucisporidia, respectively (Cavalier-Smith 
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2013). Within the two main groups of myxomycetes five orders are traditionally recognized. The 

dark-spored clade is comprised of the orders Echinosteliales, Physarales and Stemonitales, while 

the orders Liceales and Trichiales are located in the bright-spored clade (e.g., Martin and 

Alexopoulos 1969; Olive 1970). Traditional myxomycete taxonomy (including the afore 

mentioned five orders) is entirely based upon a morphological species concept, wherein 

morphological features of mature fruiting bodies are used to delimit species (note that the 

fruiting body is the only stage of the life cycle that can be used for species level identification). 

Despite currently accumulating molecular data indicating that the morphological species concept 

does not accurately reflect the evolutionary relationships within the group at this time, it is still 

the most commonly used method of species identification and delimitation for practical 

purposes. The debate over the most appropriate species concept in the myxomycetes is quite 

complex and is therefore covered in considerable detail in chapter two of this dissertation. 

The generalized life cycle of a typical myxomycete, as first described by de Bary (1887) 

and recently illustrated in a number of monographs and papers (e.g., Stephenson and Stempen 

1994; Walker and Stephenson 2016), usually involves two strikingly different trophic stages. The 

first trophic stage is a uninucleate amoeba with or without flagella (the term “amoeboflagellate” 

encompasses both types) and the second is a distinctive multinucleate structure called a 

plasmodium. Plasmodia are mobile and may range in size from a few micrometers to more than a 

meter across in some species. Given appropriate stimuli, the plasmodium gives rise to one or to 

many spore-containing fruiting bodies (or sporophores). Fruiting bodies range in size between 

0.5 and 4.0 mm in height and across the whole group display a very wide range of shapes and 

colors. 
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Amoeboflagellate cells and plasmodia of myxomycetes are typically recognized as 

predators of bacteria and, to a lesser extent, fungi (Stephenson 2011). However, plasmodia are 

also known to feed upon larger prey such as yeasts and filamentous fungi (Stephenson and 

Stempen 1994) as well as algae (Lazo 1961). Myxomycetes can be found worldwide, largely in 

association with plant material in terrestrial environments (Stephenson and Stempen 1994). 

Some of the most commonly recognized myxomycete substrata or microhabitats include, leaf 

litter on the forest floor, leaf litter that is still attached or has fallen but not yet reached the floor 

(aerial litter), decaying woody tissues, the bark of living trees and soil. Although most widely 

recognized in terrestrial environments, myxomycetes have also been reported to occur in both 

natural and manmade aquatic habitats (Page 1988; Walker et al. 2003; Walochnik et al. 2004; 

Lindley et al. 2007), as well as in some even less expected microhabitats such as in the coelomic 

cavity of sea urchins (Dyková et al. 2007). Because myxomycetes have been found in virtually 

every major terrestrial habitat examined to date, they are generally considered to be 

cosmopolitan organisms (Stephenson et al. 2008). Some groups of myxomycetes however, like 

many other protists, display a moderate level of endemicity (Foissner 2006), and patterns in their 

biogeographic distributions are recently becoming more apparent (e.g., Estrada-Torres et al. 

2012; Aguilar et al. 2013). Some major factors known to drive distribution patterns are 

temperature and moisture (Alexopoulos 1963) and pH of the substratum (e.g., Härkönen 1977; 

Stephenson 1989; de Basanta 2000). At the landscape level, too, several trends have been 

identified. For example, despite the general trend of many organisms to increase in diversity with 

decreasing latitude (Hillebrand 2004), myxomycete biodiversity appears to be higher in 

temperate forests as compared to tropical forests (Stephenson et al. 1993). Different ecosystems 

tend to support different assemblages of myxomycetes as well. For example, members of the 
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genera Physarum and Didymium appear to be among the most abundant myxomycetes 

encountered in tropical regions, while species of Cribraria and Trichia are some of the more 

predominant taxa in temperate regions (Stephenson et al. 1993; Stephenson et al. 2000). The 

melting snowbanks in alpine and subalpine zones host a distinct assemblage of myxomycetes 

representing approximately 100 species, largely from the dark-spored clade (Novozhilov et al. 

2013). Large-scale trends such as these are likely to be attributed to niche preference at the 

microhabitat level and can limit myxomycete distribution. Diachea arboricola, for example, is 

considered truly corticolous (living on the bark of living trees) as it has been found only on this 

substrate (Keller et al. 2004). Another distinct assemblage of myxomycetes of approximately 100 

species are coprophilous (occurring on dung), and as many as 16 of these species have either 

been reported to occur only on dung or have been rarely reported on other substrates and 

therefore may be truly coprophilous (Eliasson 2013). Not surprising, within substrate types an 

even finer scale niche preference can be observed, such as in the lignicolous myxomycetes 

(living in association with dead woody tissues) upon which different assemblages are 

consistently found in association with particular stages of woody decay (Liu et al. 2015 and 

references therein).  

 Most of our knowledge concerning myxomycetes has been obtained through either 

laboratory culture or field observations. Both of these methods of study, however, have their own 

set of difficulties that can at times, greatly alter the interpretation of results and thereby bias our 

understanding of myxomycetes, particularly in natural settings. Anyone who has carried out a 

field survey of myxomycetes knows that finding fruiting bodies is sometimes incredibly 

painstaking and is in no way complete for any given locality. The vast majority of myxomycete 

fruiting bodies are only one to two millimeters in height, and 20 to 40% are less than 0.5 mm in 
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height (Novozhilov et al. 2000). Given their small size and the knowledge that at least some 

species can be found fruiting everywhere from the underside of a leaf on the forest floor, to the 

top of the forest canopy, and everywhere in between, in addition to their fragile and ephemeral 

nature, a truly complete survey would be incredibly difficult. Many myxomycete surveys also 

include a laboratory culture component such as moist chamber culture (Martin and Gilbert 1933) 

as a supplement to field surveys, largely for this reason (Novozhilov et al. 2000). Many species, 

however, rarely (if ever) form fruiting bodies in natural settings, while still others may not form 

fruiting bodies in moist chambers for various reasons (e.g., the size limitation imposed by the 

size of the Petri dish). Taken together, these difficulties make in-depth quantitative studies of 

natural populations of myxomycetes exceedingly difficult. Consequently, an accurate and 

complete picture of myxomycete habitat preference, community structure and life history 

strategies is not yet available. 

 The use of molecular data in myxomycete classification and study has occurred rather 

late (Fiore-Donno et al. 2005) compared to its use in other groups of organisms. Yet, already 

several examples exist of molecular studies revealing information that was never before possible 

to obtain. Consider, for example, the soil microhabitat from which myxomycete isolations are 

particularly difficult and within which enumeration of myxomycetes was previously possible 

only by tedious culture methods such as the most probable number technique (MPN). Recently, 

however, transcriptomic approaches have identified macromycetozoans (the group comprised of 

myxomycetes, Dictyostelia and Ceratiomyxa) to be the most abundant amoeboid predators in 

some soils (Urich et al. 2008; Geisen et al. 2015). And with the use a targeted environmental 

sequencing approach, Fiore-Donno et al. (2016) confirmed the abundance of myxomycetes in 

particular in the soil and also revealed an unprecedented level of genetic diversity in that 
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microhabitat. Feest and Campbell (1986) reported numbers >20,000 cm3 in samples of temperate 

soils. Other than abundance, culture based studies have also suggested that myxomycetes 

actually spend the majority of their lives as amoebae in soil (Feest 1987; Stephenson and Feest 

2012). Because myxomycetes were previously identifiable only through morphology of the 

fruiting body, specimens enumerated or isolated from the soil (or any microhabitat) that could 

not be brought to formation of fruiting bodies in culture, could not be identified. However, now 

armed with molecular approaches such as high-throughput sequencing of target genes (e.g., 

small subunit rDNA), it is now possible to also identify species diversity at a level that was never 

before possible. 

 In addition to the ways that molecular data will confirm and enhance existing knowledge, 

in other cases these data will surely overturn or transform our current understanding of 

myxomycetes. A recent study by Clissmann et al. (2015) investigating the bright-spored 

myxomycetes associated with decaying beech logs, simultaneously employed molecular analyses 

with both moist chamber and field observation methods. From the same logs, these authors found 

only two species that were identified with both the moist chamber culture and targeted 

sequencing of the SSU rDNA gene. Upon deeper investigation of the gene sequences, the authors 

noted the abundance of sequences from large myxomycete species such as Reticularia 

lycoperdon, Lycogala epidendrum and Fuligo septica that presumably due to their size, very 

rarely occur in moist chambers. These authors also identified a number of sequences from 

species that fruit extremely rarely, such as Prototrichia metallica, Arcyodes incarnata, Calomyxa 

sp. and Cornuvia sp. In addition, these and other molecular data identify the presence of 

numerous sequences that do not correlate to known myxomycete sequences and may represent 

completely new species yet to be described (Clissmann et al. 2015; Fiore-Donno et al. 2016). 
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 The possibilities that molecular data can provide are sure to greatly expand upon our 

knowledge of myxomycetes. However, it is crucial that these data can be incorporated into the 

already available knowledge in order to build upon that foundation. To do so requires that there 

is agreement between the traditional morphological identification of species (as used with moist 

chamber or observational studies) and newly emerging concepts that identify species using 

molecular data. At a time when molecular data are accumulating at ever-faster rates, and in many 

cases challenging the longstanding concepts of species, this is an urgent matter. This is the 

subject of chapter two of this dissertation entitled, The species problem in myxomycetes revisited. 

 Identification of species is an important task as species arguably represent one of the 

most basic units used to study ecology and particularly to measure biodiversity. Measuring 

components of biodiversity (e.g., species abundance and richness) within and between 

communities helps us understand the world around us. Given the importance of this topic, in 

chapter two several species concepts will be discussed, highlighting their strengths and 

weaknesses when applied to myxomycetes. The chapter includes a thorough background 

describing myxomycete life history strategies as well as the most recently available data 

regarding the myxomycete phylogeny. Due to the increasing use and application of molecular 

sequence data, chapter two represents a timely reassessment of the species concepts in 

myxomycetes. 

 Evidence documenting the importance of protozoan predators to ecosystem health, with 

the fact that myxomycetes are among the most abundant being well established, indicates that 

myxomycetes are essential components of terrestrial food webs (e.g., Ekelund and Ronn 1994; 

Adl and Gupta 2006). The majority of data concerning the ecological role of myxomycetes are 

based upon studies of temperate ecosystems. Given the extent to which tropical ecosystems 
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contribute to global nutrient cycling and ecosystem health, and because the tropics are likely to 

be more threatened by global change, the matter is arguably more urgent in tropical forests (Zhou 

et al. 2013). Therefore, there is a vital need to characterize and document this important 

community, its composition, and its response to changes in nutrient status. The overarching goal 

is ultimately to understand the role of myxomycetes in nutrient cycling and ecosystem function 

in tropical forests. Chapter three of this dissertation, entitled, The response of myxomycete 

communities to 14 years of N, P and K addition in a lowland tropical rain forest is a first step 

toward that goal. 

 Chapter three describes the use of a long-term nutrient fertilization to investigate 

myxomycete ecology in a lowland tropical forest of Panama. In collaboration with the 

Smithsonian Tropical Research Institute (STRI), a large, fully factorial NPK fertilization 

experiment was utilized, allowing a first glimpse into this litter-inhabiting myxomycete 

community while simultaneously gathering baseline data relating to possible nutrient limitations. 

Continuously fertilized since 1998, these plots represent an extremely valuable resource for 

elucidating possible nutrient limitations and foundational concepts in patterns and dynamics of 

myxomycete diversity in the litter microhabitat. 

 To characterize the effects of nutrient fertilization on the litter-inhabiting myxomycete 

community, samples of leaf litter and small woody debris were collected on two separate 

occasions one year apart. Utilizing traditional moist chamber cultures, the following hypotheses 

were tested: (1) myxomycete abundance and diversity will be greater on the P plots as compared 

to other treatment and control plots due to a previously identified limitation of this nutrient to 

both the above and below-ground communities at this site (Wright et al. 2011; Turner and 

Wright 2013), and (2) that myxomycete abundance and diversity will be significantly lower on 
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the N plots compared to the other plots due to a decreased soil pH and the apparent lack of N 

limitation to this community.  

 The NPK fertilization experiment used herein represents the longest running nutrient 

addition study in any old-growth lowland tropical forest in the world (Wright et al. 2011). This is 

also the first example of a K fertilization experiment in any old-growth tropical forest and is now 

also the very first to incorporate protozoans. The information derived from this project should 

spur further ecological research on myxomycetes and other protozoans, in Panama and around 

the world. 

 The final chapter of this dissertation is entitled Perichaena longipes, a new myxomycete 

from the Neotropics and it contains the description of a new species of myxomycete that was 

found in abundance during the course of the dissertation research being conducted in Panama. In 

line with the guidelines proposed in chapter two of the dissertation, the description includes a 

detailed morphological description and comparison with other morphologically similar species of 

Perichaena. Additionally, in order to verify the molecular distinctness of this taxon, a 5' portion 

of the nuclear small subunit rDNA from this and several closely related species, were sequenced. 

Finally, the description concludes by providing a new dichotomous key for morphological 

identification of all currently recognized stipitate and sub-sessile species of Perichaena. 

 The goal of the dissertation research described herein is to expand our knowledge of 

myxomycetes in two major respects. First, by providing an updated and timely discussion 

concerning myxomycete taxonomy and classification and second by providing a first time 

glimpse into the ecology of litter-inhabiting myxomycetes in the nutrient-poor lowland tropical 

forests of Panama. Taken together, this work highlights the importance of taxonomy in the 
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framework of ecology for myxomycetes. The dissertation closes with concluding remarks that 

summarize the major contributions that have been made herein and suggest future directions.  
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II. The species problem in myxomycetes revisited 
 

Walker LM, Stephenson SL (2016). The species problem in myxomycetes revisited. Protist 

 167:319–338. 

Abstract 

 Species identification in the myxomycetes (plasmodial slime molds or myxogastrids) 

poses particular challenges to researchers as a result of their morphological plasticity and 

frequent alternation between sexual and asexual life strategies. Traditionally, myxomycete 

morphology has been used as the primary method of species delimitation. However, with the 

increasing availability of genetic information, traditional myxomycete taxonomy is being 

increasingly challenged, and new hypotheses continue to emerge. Due to conflicts that 

sometimes occur between traditional and more modern species concepts that are based largely on 

molecular data, there is a pressing need to revisit the discussion surrounding the species concept 

used for myxomycetes. Biological diversity is being increasingly studied with molecular 

methods and data accumulate at ever-faster rates, making resolution of this matter urgent. In this 

review, currently used and potentially useful species concepts (biological, morphological, 

phylogenetic and ecological) are reviewed, and an integrated approach to resolve the 

myxomycete species problem is discussed. 

 

Introduction 

 “A particular kind of biological entity" is the definition of a species as proposed by Nixon 

and Wheeler (1990), and this conforms to the general concept used by most modern biologists. 

However, a debate has been ongoing since the time of Linnaeus as to the “best” definition of 

what truly constitutes a species. Haldane (1956) defined a species as "a name given to a group of 
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organisms for convenience, and indeed of necessity." For practical reasons, the recognition of 

species is necessary for communication and the general exchange of knowledge and, to be most 

effective, a species should be defined in a way that is universally accepted yet subject to change 

as additional data become available (Adl et al. 2007; Cavalier-Smith 1998). Defining a species is 

of monumental importance because species are the fundamental units of ecology, carrying out 

unique roles in their particular niches, communities and ecosystems (Cohan and Perry 2007). 

Therefore, it is not surprising that reaching an agreement on just how to define a species has 

proven to be so problematic. Over the years, this debate has led to the creation of more than two 

dozen different species concepts (Wilkins 2006), ranging from the biological species concept 

initially proposed by Mayr (1942) to more recent concepts based largely or completely on 

molecular data (Vasilyeva and Stephenson 2010).  

 The definition of a species in the myxomycetes (plasmodial slime molds or 

myxogastrids) has presented particular challenges. With a complex life cycle, several different 

life strategies, varying levels of phenotypic plasticity and genetic variation, the myxomycetes 

challenge every major species concept that has been put forward. In this paper, the species 

concepts currently used for myxomycetes will be discussed. Other potential concepts that could 

be used, the problems associated with each, the implications of these problems on a larger scale 

and suggestions that might yield a possible solution also will be considered.  

 

Background 

The myxomycetes form a single well-supported clade within the supergroup Amoebozoa (Adl et 

al. 2012; Fiore-Donno et al. 2010a; Lahr et al. 2011a). Myxomycetes, together with the 

Dictyostelia (dictyostelids) and members of the genus Ceratiomyxa, form a larger clade referred 
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to as the Macromycetozoa (Fiore-Donno et al. 2010a). Although the members of the 

Macromycetozoa are defined on the basis of their macroscopic fruiting bodies, this is not an 

apomorphic character, since the formation of fruiting bodies has many origins and is widespread 

throughout the eukaryotes (e.g., Adl et al. 2012; Brown et al. 2012; Shadwick et al. 2009). The 

myxomycetes, along with their sister group Ceratiomyxa, are generally defined by the presence 

of a flagellated stage in their life cycle and an often relatively large acellular plasmodial stage 

(Fiore-Donno et al. 2010a).  

 The myxomycetes are the most speciose group within the Macromycetozoa, with more 

than 900 described morphospecies (Lado 2005–2015, which is the source of the nomenclature 

used herein). Myxomycetes are traditionally recognized as predators of bacteria and (to a lesser 

extent) fungi that occur in association with decaying plant material (Stephenson 2011). As a 

whole, myxomycetes are cosmopolitan organisms and have been found in virtually every major 

terrestrial habitat examined to date. However, recent work indicates that some groups of 

myxomycetes (Aguilar et al. 2013; Estrada-Torres et al. 2013), like many other protists (Foissner 

2006), display a moderate level of endemicity, and patterns in their biogeographic distributions 

are becoming ever more apparent. Myxomycetes commonly occur in all types of forests, where 

they have been isolated from all of the microhabitats found in forest ecosystems (e.g., the bark 

surface of living trees, coarse woody debris, ground litter and aerial litter). Myxomycetes also 

appear to be among the more abundant organisms in soil. In fact, recent evidence indicates that 

macromycetozoans are the most abundant amoeboid predators in some soils (Urich et al. 2008; 

Geisen et al. 2015), and their importance in that habitat is no longer questioned.   

The generalized life cycle of a typical myxomycete, as first described by de Bary (1887) 

and recently illustrated in a number of monographs and papers (e.g., Stephenson and Stempen 
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1994; Everhart and Keller 2008), encompasses two strikingly different trophic stages. The first is 

a uninucleate amoeba with or without flagella (the term “amoeboflagellate” encompasses both 

types) (Fig. 1, C1) and the second is a distinctive multinucleate structure, the plasmodium (Fig. 

1, H1). Plasmodia are motile and range in size from a few micrometers to more than a meter 

across in some species. Plasmodia often contain many thousands of synchronously dividing 

nuclei. Given appropriate stimuli, the plasmodium gives rise to one or more (as many as several 

hundred or even a few thousand is some species) spore-containing fruiting bodies (also referred 

to as sporophores), most of which range between 0.5 and 4.0 mm in height (Fig. 1, A). Most of 

what is known about the myxomycete life cycle has been derived from studies of just two species 

(Physarum polycephalum and Didymium iridis), but current evidence suggests that most other 

species follow a similar general pattern (citations). 

Bacteria appear to represent the main food resource for both trophic stages 

(amoeboflagellate cells and plasmodia) in the myxomycete life cycle, but plasmodia are also 

known to feed upon larger prey such as algae (Lazo 1961), yeasts and the spores, hyphae and 

fruiting bodies of filamentous fungi (Stephenson and Stempen 1994). Interestingly, plasmodia 

are also capable of engulfing amoeboflagellates and small plasmodia of the same or other species 

of myxomycetes (Clark and Haskins 2012). 

Under adverse conditions such as drying of the microhabitat, a drop in temperature and/or 

a lack of suitable food organisms, a plasmodium may convert into a hardened, resistant structure 

called a sclerotium (Fig. 1, G), which can quickly revert to the active stage upon the return of 

favorable conditions (Stephenson and Stempen 1994). Similarly, amoeboflagellate cells1 can 

                                                
1 The term "amoeboflagellate" encompasses both amoeboid and flagellate forms. The two forms 
are reversible but it is unclear if the flagellated form is able to directly form a microcyst or if the 
flagellum must first be resorbed. However, flagellates can develop directly from microcysts. 
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undergo a reversible transformation to dormant structures called microcysts (Fig. 1, C1). All 

three of these resting stages, sclerotia, microcysts and spores, are capable of resisting relatively 

harsh conditions and remain viable for various periods of time. This is likely an important 

strategy for survival of myxomycetes in the often environmentally dynamic habitats (e.g., 

deserts) in which some species tend to occur.  

 The above represents a very generalized model of the life cycle in a “typical” 

myxomycete (Fig. 1), but there are a number of important variations of this basic model that 

complicate things. Examples of sexual and asexual, heterothallic (possessing mating types) and 

non-heterothallic (not possessing mating types) life cycles are found (Table 1). In some 

instances, a single lineage has been characterized by more than one reproductive strategy, and 

can even switch from one strategy to another and then back again (e.g., Clark 1995). Clark and 

Haskins (2010) reported that 14 of the 51 morphospecies (largely overrepresented by members 

of the order Physarales) of myxomycetes in which the reproductive system had at that time been 

subjected to detailed examination were documented as displaying both heterothallism and non-

heterothallism. Twenty-nine of the same 51 morphospecies investigated were found to display 

only a non-heterothallic reproductive system, thus suggesting that the 'typical' myxomycete life 

cycle is probably over simplistic.  

 Heterothallic myxomycetes generally follow the basic life cycle outlined above, with a 

single locus multi-allelic mating system controlling the fusion of two haploid amoeboflagellate 

cells, first to form a diploid zygote which then matures into a coenocytic plasmodium. Meiosis is 

assumed to take place in the maturing spores, which then germinate to produce the next 

generation of uninucleate (haploid) amoeboflagellate cells. Heterothallic lineages can possess as 

many as 16 mating types in a single morphospecies, as reported for Physarum polycephalum by 
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Moriyama and Kawano (2010). Mating types may be considered to represent a situation similar 

to that of separate sexes, in that they block the fusion of “like” gametes (i.e. they are presumed to 

promote out-crossing). However, the application of the term “sexes” is best reserved for 

organisms with anisogamous life cycles. Therefore, many myxomycete morphospecies with a 

heterothallic mating system are composed of a number of biological sibling species. As a result, 

although they may be identical in morphology, they are unable to interbreed (due to mating type 

incompatibility) and are therefore on separate evolutionary trajectories (Clark 1995). Groups of 

such sibling species appear to be common and have been thoroughly investigated and 

documented in at least 10 morphospecies, including Arcyria cinerea, Didymium iridis, and D. 

squamulosum (e.g., Betterley and Collins 1983; Clark and Collins 1976; Clark et al. 2002; El 

Hage et al. 2000). Identifying sibling species in natural populations of myxomycetes is more 

difficult, but with newly available molecular methods, evidence has been obtained to support the 

occurrence of sibling species in natural populations of Trichia varia in Germany (Feng and 

Schnittler 2015) and some species in the Stemonitales and Physarales associated with the 

snowbank habitat in northwestern Russia (Novozhilov et al. 2013b).  

 Myxomycetes with non-heterothallic modes of reproduction, which are not known to 

possess mating types, are largely apogamic (non-sexual, no ploidal change) (Fig. 1, C3) rather 

than homothallic (sexual, ploidal cycle) (e.g., Clark and Haskins 2010). These apogamic lines are 

able to convert directly from amoeboflagellates into plasmodia without ploidal change or the 

need for fusion with other amoeboflagellates (Clark 1997; Collins 1980; Therrien et al. 1977), 

allowing formation of essentially immortal clonal lines (Clark 1992). Although observed 

numerous times in laboratory cultures, the first evidence to suggest asexual clonal lineages of 
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myxomycetes occurring in natural populations was only recently documented for several 

morphospecies within the genus Lamproderma (Fiore-Donno et al. 2011).  

Further complicating things, a number of the aforementioned apogamic, diploid (non-

heterothallic) isolates (all members of the Physarales or Stemonitales) have been reported to 

revert to heterothallism in culture (Collins and Therrien 1976; Collins 1980, Collins et al. 1983; 

Collins and Gong 1985; Collins and Tang 1988; Yemma et al. 1980). According to Clark and 

Haskins (2013) the most reasonable explanation for these revertant cultures is that they were the 

product of a form of heterothallic reproduction called automixis, for which incomplete meiosis 

resulted in the production of genetically identical diploid descendants. This would explain the 

common overlap of heterothallic and non-heterothallic isolates in a single population and also 

supports the concept that most myxomycete morphospecies are complexes composed of a 

sexually reproducing core of biological sibling species and a cluster of asexual, isolated clonal 

lines (Clark 2000). Presumably, apogamic isolates can more successfully colonize a new habitat 

than sexual isolates (Schnittler and Tesmer 2008). The former appear better adapted to efficiently 

exploit new and especially ephemeral habitats due to their smaller size and faster sporulation 

times (Betterley and Collins 1983; Clark and Haskins 2013). Exploiting new habitats in isolation 

could (and probably does) allow genetic and/or morphological divergence to take place due to 

niche specific adaptation (Schnittler and Mitchell 2000), but the ability to revert back to 

heterothallism should maintain the cohesion of the species complex and be advantageous for the 

survivability of the species overall. However, it seems possible that these apogamic clonal lines 

could also accumulate mutations, ultimately causing them to lose the ability to revert back to 

heterothallism (Collins et al. 1983; Clark and Haskins 2010). With an inability to revert to 

heterothallism, the genetic isolation would presumably be permanent and lead toward continued 
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divergence of the two lineages. Lending strength to this concept, morphologically distinct, 

reproductively isolated, non-heterothallic isolates are occasionally collected from ephemeral 

habitats such as aerial leaf litter and inflorescences. These collections conform to the general 

morphospecies description except for their miniature size, and when grown in culture, a number 

of these collections have been shown to retain their miniature form (e.g., D. iridis [Clark et al. 

2001] and P. pusillum [Clark et al. 2004]).  

Other variations on the reproductive cycle in myxomycetes include rarely seen “selfing” 

(Collins 1961), in which heterothallic amoeboflagellates are able to produce haploid plasmodia 

without crossing. There also appear to be rare sterile reproductive systems that cannot form 

fruiting bodies at all, examples of which have been observed for some isolates of Didymium 

iridis (Collins 1961), Physarum flavicomum (Henney 1967), P. rigidium (Henney and Henney 

1968) and Stemonitis flavogenita (Collins et al. 1983). However, just because fruiting bodies are 

not recorded for a particular isolate does not mean that the isolate in question cannot fruit, only 

that fruiting has not been observed. The lack of fruiting body formation could be the result of 

inappropriate growth conditions, the absence of genetically compatible amoeboflagellates (in 

heterothallic isolates), or a genetic mutation (Collins et al. 1983). Alternatively, it is possible that 

these isolates have lost the ability to form fruiting bodies, suggesting that their life cycle could 

consist entirely of the amoeboflagellate2 stage (Fig. 1, C2). Consider for example the previously 

recognized genus Hyperamoeba, all members of which have been shown to belong to the dark-

spored clade of myxomycetes (Fiore-Donno et al. 2010b). Isolates once assigned to this genus 

have never been observed to form fruiting bodies, which is one reason they were not initially 

                                                
2 Division of amoeboflagellates occurs only in the non-flagellated form. Because these forms are 
reversible, this means the flagellum must first be resorbed before the cell undergoes division. 
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regarded as myxomycetes. To more fully understand the lack of fruiting in some myxomycetes 

will require further study. 

Another intriguing potential departure from the ‘typical’ myxomycete life cycle is a 

possible form of asexual reproduction via the formation of amoeboid cells directly from a 

plasmodium (Fig. 1, H2). Indira (1964 and 1969) first described this phenomenon with detailed 

drawings of what she observed in cultures of Stemonitis herbatica and Arcyria cinerea. Later, the 

phenomenon was also described and presented along with photographic evidence in a species of 

Physarum (Ross and Cummings 1967) and S. flavogenita (Haskins 1991). Repeatedly, under 

controlled conditions, tiny pseudopods were first observed to swell up and then have a 

constriction form behind them; the constriction continued to deepen until a uninucleate amoeboid 

mass was “cut off” from the larger multi-nucleate plasmodium. It is possible that these amoeboid 

masses are only an abnormal response to the culture environment and that this phenomenon may 

not be common in nature, if it occurs at all. These amoeboid masses could be plasmodial 

fragments formed to allow a plasmodium to increase in size to maximize the use of available 

resources and increase spore production (Haskins 1991) or they could be a means of releasing 

unwanted materials, neither of which would have genetic implications. However, a more 

compelling hypothesis is that these amoeboid cells are true amoeboflagellate cells capable of 

propagation, thus representing a novel form of asexual reproduction. In A. cinerea, Indira (1969) 

reported that the newly independent cells became flagellated within just a few minutes and swam 

away, although the ultimate fate of those cells was unknown. The formation of flagella on such 

cells has not been witnessed in any other species nor is there photographic evidence of this 

occurring. Although intriguing and seemingly possible, more work is needed to assess just how 

common this phenomenon is in myxomycetes, to verify whether or not it ever occurs in nature 
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and to determine what these cells are actually capable of doing (i.e. fusing with other 

amoeboflagellates or directly producing new plasmodia). 

 

Currently Used and Potential Species Concepts 

Understanding the complexities of the myxomycete life cycle and the various modes of 

reproduction as described above, is crucial for understanding the problems associated with 

delimiting species in the myxomycetes. These life cycle complexities and variations have 

bearing on all of the commonly used species concepts, the four most common of which 

(biological, morphological, phylogenetic and ecological) are described in the sections below, 

followed by a discussion of their use (or potential use) in myxomycetes. 

 

The Biological Species Concept 

The biological species as proposed by Ernst Mayr (1942) defines a species as a group of 

“actually or potentially interbreeding natural populations which are reproductively isolated from 

all other such groups.” Based on the information outlined above, the biological species concept is 

clearly difficult to apply to myxomycetes, particularly with respect to lineages that may be 

exclusively asexual. This important flaw in the concept, particularly when applied to protists, 

was first pointed out more than a half century ago by Sonneborn (1957), a prominent 

protistologist working with Paramecium (another protist). Nonetheless, attempts to apply this 

species concept to protists persist. 

 In order to discuss the potential application of a biological species concept to 

myxomycetes, it is important to first define what is meant by use of the term sex. Herein we use 

the definition of sex put forth by Lahr et al. (2011b), which involves the presence of both meiotic 
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reduction of the genome and subsequent fusion of nuclei during karyogamy. As discussed 

previously, a single myxomycete morphospecies often contains multiple biological sibling 

species that are reproductively isolated from one another, as well as a swarm of asexual clonal 

lines (Clark 1995). In addition, many taxa demonstrate multiple modes of reproduction, often 

within the same lineage, as is the case for Echinostelium minutum, Fuligo septica and Physarum 

pusillum (Clark and Haskins 2010 and references cited therein) to name a few, and it is possible 

that strictly asexual lineages exist (Clark and Haskins 2011). Hence, the variation that exists 

within the myxomycete life cycle limits the ability to use a biological species concept outright.  

 Another problem with the use of the biological species concept in the myxomycetes is the 

need for direct evidence of sex, which is available only through isolation and laboratory culture. 

Currently, only about 10% of all known myxomycete morphospecies can be cultured, placing a 

severe constraint on taxon sampling in reproductive studies (Haskins and Wrigley de Basanta 

2008). In addition, some reliance on morphology is still required initially to identify possible 

mating pairs to test. However, morphology is not always correlated with reproductive isolation; 

morphologically distinct populations sometimes can interbreed, while other morphologically 

similar populations cannot. If the biological species concept is to be used to test a hypothesis, 

then many biological species could be overlooked or over identified. To avoid these obvious 

constraints, most protistologists (including myxomycetologists) have historically relied on a 

morphological species concept (Clark 2000; Finlay 2004). 

 

The Morphological Species Concept 

Traditionally, as already noted, myxomycete taxonomy has delimited species using 

morphological features of the fruiting body. The characters used include the general structure 
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and appearance of the fruiting body (Fig. 2) and its component parts (e.g., stalk, peridium, 

capillitium, etc.), the presence or absence of lime, and the color and ornamentation of the spores 

(e.g., Martin and Alexopoulos 1969). This morphological species concept assumes that a 

speciation event is always accompanied by a morphological change, when in fact this may not 

always be the case (Andersen 1998). Therefore, a single morphospecies may represent a range of 

distinct genotypes which may or may not be able to interbreed. This may explain why protist 

morphology seems to remain relatively constant for very long periods of time. Indeed, the few 

myxomycete fossils that have been found (e.g., species of Arcyria and Stemonitis) from Baltic 

amber dating from the Eocene [Dörfelt and Schmidt 2006]) show no apparent differences from 

modern forms (Keller 2012; Stephenson 2011). The morphological species concept also assumes 

that distinct morphological features reflect shared evolutionary history and isolation from other 

groups. However, molecular analyses have revealed that discordance between morphology and 

evolutionary relationships are common in microbial lineages throughout the tree of life (Lahr et 

al. 2014), and the myxomycetes are no exception. Numerous examples exist of convergent 

morphologies in the myxomycetes. Examples include the repeated loss and gain of stalk 

formation across the entire myxomycete clade (Fiore-Donno et al. 2012; Shadwick et al. 2009) or 

the repeated evolution of fruiting bodies bearing compound fruiting bodies such as in the 

distantly related genera of Lycogala (bright-spored clade) and Brefeldia (dark-spored clade) 

(Schnittler and Tesmer 2008). It should be noted that even for myxomycetes which appear to 

share most other characters, those species with compound fruiting bodies have almost invariably 

been placed in different genera from those with solitary fruiting bodies. Such a dramatic change 

in morphology is likely to be under the control of a very small set of genes (citations), but this 

has yet to be investigated to any real extent.  
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 Another assumption of the morphological species concept is that the characters used to 

distinguish different taxa show only slight variation within a species (Clark 2000). However, the 

characters used to identify myxomycetes, like many protists, can at times be extremely variable, 

blurring the lines between morphospecies and even genera. There are several examples of 

species that consistently bridge gaps between genera, containing features characteristic of more 

than one genus such as Hemitrichia leiocarpa, which could just as easily be assigned to the 

genus Arcyria, which was the case in earlier monographic treatments of the myxomycetes (e.g., 

Martin and Alexopoulos 1969). Moreover, the morphological species concept assumes that the 

characteristics used for identification are stable. However, the conditions under which 

myxomycetes form fruiting bodies can greatly affect the morphology of the mature fruiting body 

(Schnittler and Mitchell 2000). For example, in moist chamber culture, fruiting bodies that form 

upside down on the lid of the Petri dish (a common occurrence) regularly have reduced or even 

absent stalks, which can conceal important morphological features (Novozhilov et al. 2013a). In 

nature too, variation among fruiting bodies is common and readily observed by collectors 

working across a range of habitats or even a range of microhabitats or substrata within one 

locality. Although such plasticity is widely acknowledged, its full extent is unknown for the vast 

majority of myxomycetes. In order to quantify the level of variation that normally can be 

expected for a particular taxon requires spore-to-spore culture under controlled laboratory 

conditions (Keller 1996). As one example, in their description of Didymium annulisporum, 

Keller and Schoknecht (1989) established cultures on four different substrata (sterile and 

unsterile dung and two types of agar) and recorded substrate specific fruiting body morphology 

in terms of lime content, overall size and general shape, number of fruiting bodies and variations 
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in the peridium. Quantification of morphological variation in this manner is a valuable 

supplement to any new species description. 

 One final problem with use of the morphological species concept in myxomycetes, is the 

requirement of mature, intact fruiting bodies available for study. Morphological identifications in 

myxomycetes cannot be made using any of the other life stages such as the amoeboflagellate 

cells or plasmodia (Clark 2000; Lado 2005–2015; Stephenson and Stempen 1994). Therefore, 

when fruiting body material is limited or nonexistent, such as when spores or amoebae are 

isolated from environmental samples and cannot be cultured (or if fruiting body formation does 

not result from culture), a strictly morphological identification is not possible. 

 Since 1965, the number of newly described myxomycete taxa has skyrocketed, in part 

due to increased sampling from diverse new habitats and localities, along with an increasing 

trend toward splitting genera and species into smaller groups (Keller and Everhart 2008). With 

this increase in the number of species of myxomycetes being described, there is also an 

increasing number of new taxa named on the basis of limited information. Lado (2001) estimated 

that monotypic myxomycete genera (i.e. those containing only a single species) account for 14 of 

59 (or 24%) of all genera. Meanwhile Schnittler and Mitchell (2000) compiled a database 

containing 1012 subgeneric taxa, of which only 866 were classified at the species level and 305 

taxa were described from only a single type locality. The amount of variation that can be 

observed in a single, localized, clonal population clearly indicates caution should be used in 

defining new taxa based on just one or even a few type specimens that differ in only minor 

respects from already described species. Instead, multiple specimens from multiple geographic 

locations should be thoroughly examined before a decision is made to recognize a species as new 

to science.  
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 Although the morphological species concept has been the taxonomic standard for 

centuries, it is now clear that this approach to myxomycete species identification is in need of 

revision. One particularly noteworthy example in which the morphological species concept is not 

reliable for species identification is in the Didymium iridis species complex, the first 

myxomycete species complex (or group of sibling species) to be investigated extensively 

(Betterley and Collins 1983; Clark and Stephenson 1990; Clark et al. 1991; Clark and Landolt 

1993; Collins 1976). This work showed that D. iridis has at least three non-interbreeding sets of 

mating types in the heterothallic lines and also contains multiple non-heterothallic, apogamic 

lines. Because the three heterothallic mating types are reproductively isolated from one another, 

and the non-heterothallic lines are also reproductively isolated, at least nine biological sibling 

species comprise this one morphospecies. In addition, detailed observations have shown that 

there is considerable overlap in the morphology of D. iridis and other stalked species in the same 

genus. Examples include D. bahiense, D. nigripes, D. pertusum, D. ovoideum, D. 

melanospermum, D. megalosporum and D. verrucosporum (El Hage et al. 2000; Clark et al. 

2001). In fact, Lado (2001) suggested that there are actually as many as 30 morphospecies 

contained within the D. iridis complex, all of which may overlap with respect to the columella 

and/or stalk coloration, diameter of the sporotheca, total height of the fruiting body, color of the 

capillitium or plasmodium, the amount of lime present, and general shape (Fig. 2). As such, the 

D. iridis complex, one of the best studied of all morphospecies of myxomycetes, is particularly 

in need of detailed taxonomic revision. 
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The Phylogenetic Species Concept 

Phylogeny, particularly when based upon molecular sequences, is a powerful tool that can be 

used to predict species boundaries as well as to test biological and morphological species 

concepts (Andersen 1998, Caron 2013). A phylogenetic species concept relies on the use of 

phylogenetic trees, where the least inclusive cluster is considered a species (or phylospecies) 

(Mishler and Theriot 2000). Ideally, this also corresponds to the smallest biologically important 

unit deemed worthy of recognition (e.g., Cracraft 1983; Mishler 2010; Nixon and Wheeler 

1990).  

In lieu of whole genome sequencing, which is still not feasible for most taxa, a phylogenetic 

species concept therefore requires the selection of an appropriate gene(s) with which to construct 

the phylogeny. The most widely used gene for phylogenetic reconstruction in amoebozoans in 

general (Nassonova et al. 2010) and for myxomycetes in particular, is the ribosomal small 

subunit RNA gene [SSU], and a number of new species have already been identified and 

renamed based in large part on SSU sequences (Fiore-Donno et al. 2010b).  

 Although extremely slowly evolving across many major taxa, SSU can be a highly and 

sporadically variable phylogenetic marker in other groups, particularly in the myxomycetes, 

which also contain a high load of group I introns of variable lengths (Fiore-Donno et al. 2010a 

and 2012; Nandipati et al. 2012; Pawlowski et al. 2012; Shadwick et al. 2009). In lieu of full-

length SSU sequences, which can be a challenge to obtain due to the aforementioned introns and 

sequence variation, Fiore-Donno et al. (2011) identified an intron-free region of ca. 700bp in the 

5' SSU that can be amplified with a single pair of PCR primers that has proven powerful in the 

context of both phylogenetic and ecological studies (e.g., Fiore-Donno et al. 2012; Fiore-Donno 

et al. 2016; Novozhilov et al. 2013b). Intraspecific SSU sequence variation can vary significantly 
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between clades and even between multiple isolates of a single myxomycete morphospecies from 

a single population. When assessing myxomycete diversity with SSU sequence data parallel to 

morphology, one could find identical SSU sequences for multiple collections of a single 

morphospecies (Fiore-Donno et al. 2011) or alternatively one may find that SSU sequence 

diversity is twice as great as morphological diversity (Novozhilov et al. 2013b). Therefore, it is 

valuable to examine multiple molecular markers when constructing phylogenetic trees, 

particularly in the absence of other supporting data (e.g., Parfrey et al. 2006; Taylor et al. 2000).  

 Elongation factor-1α [EF-1α] is another commonly sequenced gene used for constructing 

myxomycete phylogenetic trees (e.g., Feng and Schnittler 2015; Fiore-Donno et al. 2005; Fiore-

Donno et al. 2010a). Due to its role in protein synthesis EF-1α is highly conserved and abundant 

in actively growing cells (Baldauf 1999). Furthermore, the nearly complete sequence can be 

amplified with a single pair of universal primers (Baldauf and Doolittle 1997). Two additional 

markers that have been used to construct myxomycete phylogenetic trees are the more rapidly 

evolving ribosomal internal transcribed spacer [ITS] and mitochondrial cytochrome c oxidase 

[COI] genes, although with varying levels of success. Unlike the successful use of ITS 

sequencing in fungi (White et al. 1990; Schoch et al. 2012) and some other groups, the power of 

ITS for phylogenetic reconstruction in the myxomycetes is rather limited. Myxomycete ITS 

sequences are extremely variable and in many cases cannot even be aligned among closely 

related taxa (Fiore-Donno et al. 2011; Martin et al. 2003). The high level of sequence variation 

limits its ability to resolve evolutionary relationships in the myxomycetes although when used as 

a supplementary marker it can be valuable for differentiating between some species (Baba et al. 

2015; Winsett and Stephenson 2008). Similarly, when COI is used as a supplemental tool it has 

proven successful for some amoebae (Nassonova et al. 2010), ciliates (Barth et al. 2006; 
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Chantangsi et al. 2007), diatoms (Evans et al. 2007) and numerous other non-protistan groups 

(e.g., Hebert et al. 2004; Pawlowski et al. 2012). In myxomycetes however, success with use of 

the COI gene sequence has been limited due to the high levels of sporadic variation among 

lineages. Even with primers specifically designed to amplify the first half of the myxomycete 

COI, sequences can be difficult to obtain and provide varying results (e.g., Feng and Schnittler 

2015; Walker et al. 2011). Therefore, both ITS and COI can be valuable as supplementary 

markers to distinguish between closely related species but are not reliable markers to use for 

reconstructing deeper evolutionary relationships among myxomycetes. 

 

Integrating molecules with morphology 

Although molecular sequences from a few laboratory-cultured species have been used to 

confidently place myxomycetes as a whole in the larger eukaryotic tree (e.g., Cavalier-Smith et 

al. 1996; Baldauf 1999), DNA had not been successfully recovered from field-collected material 

until 2003 (Martin et al. 2003). The ability to use field-collected myxomycetes as a source of 

DNA greatly increased opportunities in molecular phylogeny, due to the great abundance of 

available herbarium specimens and the limited number of species that can be cultured for DNA 

isolation (Clark 2000). This increased availability of molecular data has led to an increased 

awareness of the ecological roles of myxomycetes and an increasingly sophisticated 

understanding of morphological evolution in myxomycetes. 

 Fiore-Donno and colleagues have resolved a number of important questions relating to 

myxomycete phylogeny, primarily by building trees from concatenated SSU and EF-1α sequence 

data (e.g., Fiore-Donno et al. 2005). Unlike the situation with the dictyostelids (Schaap et al. 

2006), these and other molecular data have revealed some level of congruence between 
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molecules and morphology in myxomycetes (Myxogastria). Molecular data have confirmed the 

monophyly of the myxomycetes and its division into two clearly defined groups commonly 

referred to as the dark-spored and bright-spored clades, more recently recognized as the 

superorders Columellidia and Lucisporidia, respectively (Cavalier-Smith 2013). As their names 

suggest, the dark-spored and bright-spored clades are historically distinguished on the basis of 

spore color, and the taxonomic distribution of this character is largely consistent with molecular 

phylogeny (Fiore-Donno et al. 2005). Meanwhile, within these two clades the traditionally 

recognized five orders—Echinosteliales, Physarales and Stemonitales in the dark-spored clade 

and Liceales and Trichiales in the bright-spored clade (e.g., Martin and Alexopoulos 1969, Olive 

1970) do not seem to hold together. In fact, molecular phylogenetic data indicate that the current 

taxonomy (based on morphology) does not accurately reflect the phylogenetic relationships that 

exist within both the dark-spored clade (Fiore-Donno et al. 2008; Fiore-Donno et al. 2012) and 

the bright-spored clades (Fiore-Donno et al. 2013), and many of these relationships are currently 

being revised. Figure 3 reflects this newly emerging myxomycete phylogenetic tree, based upon 

currently available data. 

Current molecular data indicate that within the dark-spored clade (Columellidia), the 

monophyletic order Echinosteliales is the earliest diverging clade and branches as a sister group 

to a taxonomic assemblage consisting of the orders Stemonitales and Physarales (Kretzschmar et 

al. 2015). The genus Barbeyella, with its capillitium adhering to peridial plates, may represent 

the transitional form between Echinosteliales and the rest of the dark-spored clade. Members of 

the Stemonitales and Physarales do not sort into two clearly distinct groups as current 

traditionally used taxonomic concepts have suggested. Instead, there are three main branches 

including (1) the "Meriderma group" (from the Stemonitales), (2) the traditional Physarales 
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together with the "Lamproderma group" (also from the Stemonitales) and (3) the rest of the 

Stemonitales (except for the Meriderma and Lamproderma groups) (Fiore-Donno et al. 2010a; 

Fiore-Donno et al. 2012). Within the bright-spored clade (Lucisporidia), there are two main 

branches, the first consisting of a monophyletic Cribrariaceae (from the Liceales) and the second 

composed of the Reticulariaceae (also from the Liceales) and three other clades that consist of 

various members of the orders Trichiales and Liceales (Clissmann et al. 2015; Fiore-Donno et al. 

2013). The recently re-erected genus Alwisia (Liceales, Reticulariaceae) may represent the form, 

closest to the last common ancestor of the second clade referred to above (Leontyev et al. 2014b; 

Leontyev et al. 2014c). It is readily apparent that the traditionally used morphological species 

concept is no longer appropriate for many of the taxa that have been considered to make up the 

Trichiales and Liceales (Fiore-Donno et al. 2013; Leontyev et al. 2014a; Walker et al. 2015). As 

such, it would seem that there exist examples of incongruence between morphology and 

molecular data throughout myxomycete phylogeny, particularly at the ranks of genus and 

species.  

At the genus level, let us first consider the genus Lamproderma in the dark-spored clade. 

Traditionally regarded as morphologically distinct, the monophyly of Lamproderma is rejected 

by molecular phylogenetic analyses, which indicate instead that “Lamproderma” appears to 

consist of several clades intermingled with species from three other genera (Diacheopsis, 

Colloderma and Elaeomyxa) (Fiore-Donno et al. 2012). Consequently, the stalk, columella, 

spotted (or not) peridium and the presence of “white splinters” in the peridium, which are 

characters previously used to identify members of genus, are shown by SSU phylogeny and 

further comparative morphology to be labile at the species level. Instead, a more reliable 

character for delimiting species of Lamproderma appears to be the presence of a shining 
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peridium. The example mentioned above and numerous others exemplify how molecular data 

can guide morphological studies and lead to an increasingly sophisticated understanding of the 

mode and tempo of morphological evolution, which in turn will lead to a better understanding of 

the significance of various morphological characters used in myxomycete taxonomy. For 

example, the combination of molecular and morphological data indicate that the stalk of the 

myxomycete fruiting body is far less reliable as a taxonomic marker than has long been thought 

to be the case. A stalked fruiting body appears to be the ancestral state for myxomycetes because 

the earliest diverging groups in both the dark-spored (Echinosteliales) and bright-spored 

(Cribrariaceae) clades are almost always stalked. However, the stalked condition of fruiting 

bodies also appears to be readily lost and can encompass considerable variability in length, even 

within a single population (Martin and Alexopoulos 1969), which makes the stalk unreliable at 

many taxonomic levels (e.g., Shadwick et al. 2009). Two other characters traditionally 

considered important for species delimitation in various myxomycete genera—spore color and 

ornamentation (Kalyanasundaram 2004)—have been revealed by molecular data to be unreliable 

in at least some cases, such as for Lamproderma puncticulatum and L. columbinum, which show 

a great deal of variation in spore morphology among isolates (Schnittler et al. 2010; Fiore-Donno 

et al. 2011). 

 Understanding the surprising evolutionary instability of such morphological characters 

may explain why the placement of a number of species currently do not seem to agree with 

traditional taxonomy. For example, the lack of a capillitium is the major character used to 

distinguish between the traditional orders Liceales and Trichiales in the bright-spored clade. 

However, the phylogenetic significance of this character has been under scrutiny for quite some 

time (Alexopoulos 1976) because the lack of a capillitium (or any other single character) is not 
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universal among or uniquely restricted to the Liceales. Not only are there species within the 

Liceales that undeniably have a true capillitium, such as Listerella paradoxa (Eliasson 1977) or 

Alwisia bombarda (Leontyev et al. 2014a), but some species of Perichaena (Ramírez-Ortega et 

al. 2009 and references cited therein) in the Trichiales and even some members of the dark-

spored clade of myxomycetes also lack a capillitium. An example of the latter is Didymium 

eremophilum (Blackwell and Gilbertson 1980). Although the dark-spored clade has been studied 

to a much greater depth and seems to be more clearly delimited, there are also morphological 

characters used in classical identifications within this clade that are in need of molecular analyses 

to verify their significance. For example, the color of lime found in fruiting bodies has been used 

to distinguish between several species pairs in the genus Physarum (e.g., P. globuliferum and P. 

bilgramii) (Aldrich 1982; Stephenson 2003). Another character that should be investigated in the 

dark-spored clade is the form of the capillitium. Although the presence or absence of capillitial 

lime being used to separate the Didymeaceae from Physaraceae is supported by molecular data 

(Fiore-Donno et al. 2009; Nandipati et al. 2012), the use of capillitial structure (calcareous 

tubules versus nodules) being used as a character to separate the genera Badhamia and Physarum 

has not been supported by molecular phylogenic data. However, the form of the capillitium or 

the overlap of other characters used to distinguish between these two genera may not be 

surprising, given those same molecular data indicate that the genus Physarum is polyphyletic, 

containing at least three clades interspersed with members of the genus Badhamia (Nandipati et 

al. 2012).  

The first use of SSU phylogeny to reclassify a "species" of myxomycete was in 2010, 

when the genus Hyperamoeba (mentioned earlier) was shown to be invalid and the species 

formerly assigned to the genus were transferred to various genera in the dark-spored clade of 
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myxomycetes (Fiore-Donno et al. 2010b). Species of Hyperamoeba traditionally had not been 

recognized as belonging to the Macromycetozoa because they never formed fruiting bodies and 

occupied habitats extraordinarily different from those of most Macomycetozoa. For example, 

"hyperamoebae" have been found in human feces (Zaman et al. 1999), the coelomic cavity of sea 

urchins as endosymbionts (Dykova et al. 2007), freshwater sediments (Walker et al. 2003), 

physiotherapy water baths and water treatment plants (Walochnik et al. 2004). However, the 

“hyperamoeba” SSU sequences clearly cluster within the dark-spored clade of myxomycetes 

(e.g., Fiore-Donno et al. 2010b; Walochnik et al. 2004). Subsequently, a more rigorous 

morphological examination uncovered the overlooked second flagellum, a character that strongly 

places these taxa among the myxomycetes (Dykova et al. 2007; Fiore-Donno et al. 2010b; 

Walochnik et al. 2004). 

Yet another example of the power of an integrative approach to taxonomy to modify the 

placement of particular taxa is the myxomycete Kelleromyxa fimicola. This taxon was described 

initially in 1929 as Licea fimicola due to its apparent resemblance to members of the genus Licea 

in the bright-spored clade (Dearness and Bisby 1929). However, upon re-evaluation of the type 

specimen and other collections consisting of numerous fully matured fruiting bodies, Eliasson et 

al. (1991) concluded that its assignment to the genus Licea could not be supported and that, in 

fact, this taxon shares more characters (e.g., dark spores, phaneroplasmodium, and the presence 

of a capillitium) in common with members of the Physarales in the dark-spored clade. Noting its 

similarities to members of the order Physarales, a new genus was erected within the order for its 

temporary placement, and the taxon was renamed Kelleromyxa fimicola (Eliasson et al. 1991). 

This was finally confirmed by Erastova et al. (2013) using an SSU phylogeny that clearly placed 
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Kelleromyxa fimicola within the dark-spored myxomycete clade, confirming the significance of 

the Physarales-like morphological characteristics noted by Eliasson et al. (1991). 

Morphology is not always able to distinguish molecular differences however. Therefore, 

in situations where a single gene molecular phylogeny delimits two groups but there is no 

corroborating evidence (e.g., additional gene markers, ecology or morphology) to support the 

existence of two groups, the researcher must consider whether or not there is an urgency to 

separate them. Over-naming taxa is a longstanding problem that can lead to undue confusion and 

misinformation, with the potential to slow the scientific process (Dayrat 2005). To avoid this 

problem, until more data are available to support further delimitation, the two isolates potentially 

could be accepted as two haplotypes that represent variation within the morphospecies. 

Numerous examples exist in the literature of cases in which molecular data from single gene 

analyses suggests delimitation but the authors cannot justify the split without further 

investigation. For example, during their revision of the Tubifera ferruginosa complex Leontyev 

et al. (2015) identified four out of their 10 18S sequences of Lycogala epidendrum that appeared 

to represent four new species. Inspection of the fruiting bodies, however, showed no 

morphological variation, so rather than describe these specimens as new taxa based on partial 

SSU sequences, the authors instead identified the need to investigate more material and in 

greater detail. Similarly, Aguilar et al. (2013), who studied 125 specimens of Badhamia 

melanospora from 91 localities, identified two groups strongly distinguished by SSU sequence 

divergence, morphology and biogeography. However, none of the characters (morphology or 

geography) could a priori distinguish between the two groups, so the authors instead concluded 

at that time that they were likely to be cryptic species. 
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The Ecological Species Concept  

The ecological species concept is grounded in Gause's theory of competitive exclusion (1934), in 

which organisms must differentiate in order to avoid having exactly the same role in the 

environment and thus occupy the same ecological niche. This differentiation of groups to exploit 

different resources requires each group to locally adapt and eventually leads to an irreversible 

separation into ecologically distinct groups or 'ecotypes'. Ecotypes are thus considered to equate 

to species in the traditional sense and are defined as populations of closely related organisms 

which share adaptations to the local niche and whose genetic divergence is capped by one or 

more mechanisms (e.g., reproductive isolation) (Cohan 2002).  

 Due to the nature of how they are formed, ecotypes should directly represent biologically 

significant taxa because each one is carrying out a unique ecological role, thereby making the 

ecological species concept an intuitive and natural way of delimiting taxa (Ward 1998). The 

ecological species concept assumes that the characters which allow the occupation of a particular 

niche will be reflected in physiology, morphology or sequence divergence (Fenchel 2005; Kopac 

et al. 2014; Palys et al. 1997). However, just as with the concepts previously discussed, the 

thresholds used to delimit clades in this way (e.g., physiology, morphology or sequence 

divergence) do not always reflect distinct ecotypes (Finlay 2004; Finlay et al. 2006; Cavalier-

Smith 2010; Knowles and Carstens 2007). 

 For the myxomycetes and many other groups of protists, an ecological species concept is 

not yet feasible, simply because their ecology remains poorly understood and cannot be linked 

reliably to physiology, morphology or genetics. Until we know more, ecological information is 

valuable only as a complement to other forms of data. A few hypotheses have been proposed 

which would link myxomycete ecology to some aspects of their morphology although not at the 
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species level. For example, aphanoplasmodia, which are unique to the Stemonitales, lack a 

protective slime sheath such as that found in phaneroplasmodia (the plasmodial type typical of 

many other myxomycetes). This has led to the suggestion that members of the Stemonitales or 

any myxomycetes with aphanoplasmodia are unlikely to be found in particularly dry 

environments. In fact, most taxa with aphanoplasmodia are thought to spend the majority of their 

plasmodial existence within substrates such as woody tissues, where they are protected from 

desiccation (Clissmann et al. 2015; Stephenson and Stempen 1994). In line with this hypothesis, 

members of the Stemonitales are almost entirely lignicolous (associated with wood). However, 

there are some notable exceptions such as Lamproderma scintillans and Stemonitis herbatica 

which are almost invariably associated with non-woody substrates (Martin and Alexopoulos 

1969). Another hypothesis that could relate ecology to morphology has been proposed for some 

coprophilous (inhabiting dung) myxomycetes. Although the occurrence of myxomycetes on 

dung is not uncommon (more than 100 species have been reported to occur on dung), there are 

only 16 species that have either been reported to occur only on dung or that have been rarely 

reported on other substrates and therefore may be truly coprophilous (Eliasson 2013). Three of 

these possibly obligate coprophilous species (Licea alexopouli [Blackwell 1974], Kelleromyxa 

fimicola [Eliasson et al. 1991] and Trichia brunnea [Eliasson and Keller 1999]) display unique 

thick-walled spores that could represent an adaptation to passing through the digestive tract of 

herbivores. However, once again more research is needed to test this hypothesis. 

 Given the difficulties involved in working with protists such as myxomycetes, obtaining 

a more accurate picture of habitat preference or niche specialization will require the 

enhancement of traditional culture methods and the increased utilization of rapidly developing 

molecular tools such as metagenetics, metagenomics and single-cell genome sequencing. These 
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and other emerging molecular methods should potentially allow greater depth and breadth in 

detection of myxomycete diversity in a given sample, thereby avoiding, at least in part, the 

inherent biases associated with finding, identifying and culturing myxomycetes. The use of these 

techniques in conjunction with detailed environmental studies and information on temporal, 

geographic and chemical gradients will allow a far greater understanding of the ecological roles 

of myxomycetes (and other protists) than previously possible, and this is likely to affect our 

understanding of their taxonomy. 

 

Moving Towards a Solution 

The problems associated with species delimitation are, of course, not limited to the protists or the 

myxomycetes but are widespread across the tree of life. The complications of rampant lateral 

gene transfer obscuring phylogenetic signals appear to be restricted largely to prokaryotes 

(Keeling and Palmer 2008) and thus, are not considered in the present discussion. However, it 

will be exceedingly useful to integrate an understanding of other groups of eukaryotes in which 

similar challenges exist, such as guidelines proposed by protistologists and those studying some 

other amoebozoans (e.g., Adl et al. 2007; Finlay 2004; Smirnov et al. 2011). 

 To improve our understanding of the evolution and biology of the myxomycetes and 

other eukaryotic microbes, as well as identify a suitable way to delineate taxa, it is important that 

molecular data be considered in conjunction with traditional taxonomic methods especially since 

the latter represents the foundation for the classification used in all monographs of the group 

published to date. The combined use of multiple types of data (e.g., morphological, molecular, 

and ecological) provides a natural approach to species delimitation which has been referred to as 

an integrative taxonomic approach (Dayrat 2005; Will et al. 2005). Based on the limited number 
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of studies in which an effort has been made to apply an integrative approach to myxomycete 

taxonomy (e.g., Feng and Schnittler 2015), developing an understanding of the entire subject of 

myxomycete taxonomy at the level of species and below (e.g., cryptic species and haplotypes) 

will require an enormous amount of research on the part of the individuals who work with these 

organisms. 

 Due to their morphological plasticity, genetic variability and the presence of several 

alternative reproductive strategies (sometimes within a single lineage), all of which complicate 

traditional species concepts, an integrated approach to myxomycete taxonomy should be 

particularly beneficial. This has led to the recommendation (e.g., Keller and Everhart 2008; 

Schnittler and Mitchell 2000) that any description of a myxomycete species should, when 

feasible, include (1) investigation of multiple specimens from multiple localities and associated 

microhabitats, (2) detailed description of the collection locality, microhabitat or substrate, and 

associated abiotic conditions at the time of the collection, (3) detailed information on the 

comparative morphology of fruiting bodies, including microscopic images, (4) spore-to-spore 

culture to verify the consistency of morphological and physiological traits, and (5) molecular 

phylogenetic trees based on multiple independent markers. A few recent and noteworthy 

examples of an integrative approach to myxomycete species delimitation include the description 

of Physarum pseudonotabile by Novozhilov et al. (2013a) and the revision of the Tubifera 

ferruginosa complex by Leontyev et al. (2015). Of course, some of the recommended 

components of this “ideal” species description are not possible in every instance. For example, 

the revision of the Tubifera ferruginosa complex by Leontyev et al. (2015) did not involve spore-

to-spore culture since T. ferruginosa has not yet been successfully cultured. Detailed descriptions 

of the collection locality, microhabitat and associated abiotic conditions at the time of collection 
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may not always be available for every specimen. In other cases, fruiting body material may be 

limited, forcing the researcher to choose between the destruction of fruiting body material for 

DNA extraction or its preservation for microscopic and culture methods. In still other cases, 

obtaining high quality sequence data from specimens may not be possible, regardless of the 

amount of time and effort involved.  

 

Conclusions 

The myxomycetes challenge many of the currently recognized taxonomic systems, largely due to 

their morphological plasticity, genetic variability and the presence of several alternative 

reproductive strategies (sometimes within a single lineage). At present, not everyone who works 

with this group shares the same concepts for species recognition, even for some of the more 

common morphospecies that have long been recognized. Furthermore, myxomycetes face a 

problem that is common in protistology, that of an old and extensive set of literature (more than 

3000 papers before 2001) focused solely on reporting species inventories from particular 

localities (Schnittler and Mitchell 2000). With such a wealth of available data, it is crucial that 

the research community reach some kind of agreement on an approach to species delimitation 

and taxonomy that can be used to simultaneously exploit the information contained in those data 

as well as build upon them without great complication. 

 Undoubtedly, the concept of a species for the myxomycetes as well as other groups of 

protists will remain the subject of debate well into the future. The review presented herein is 

certainly not intended to be the final word on the subject, and more detailed discussions 

concerning the species debate at broad are readily available in the published literature (e.g., 

Mishler 2010; Pigliucci 2003; Podani 2010). Instead, our objective was to examine the biological 
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side of the debate as it relates to the myxomycetes as there are clearly different issues with 

respect to other groups of organisms.    
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Glossary 

Amoeboflagellate - A uninucleate cell that represents one of the two trophic stages in the life 

 cycle of a myxomycete. The term is used to describe both amoeboid and flagellate forms; 

 in myxomycetes, the two forms are reversible, although division occurs only in the 

 amoeboid form, meaning the flagellum must first be resorbed before undergoing division. 

 

Aphanoplasmodium - A type of plasmodium that is flat, transparent, lacks a protective slime 

 sheath and is difficult to observe in nature; characteristic of the Stemonitales. 

 

Apogamic - A form of non-heterothallic reproduction that does not involve the fusion of 

 amoeboflagellates (gametes) and lacks a haploid-diploid cycle. 
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Automictic - A form of heterothallic reproduction in which the fusion of haploid 

 amoeboflagellates (gametes) results in the production of a diploid plasmodium. 

 

Capillitium - A system of sterile elements (takes numerous forms) found within the spore mass 

 of many myxomycetes (Fig. 2D). 

 

Columella - A structure that extends into the spore mass from below; in stalked fruiting bodies 

 the columella appears to represent an extension of the stalk (Fig. 2E). 

 

Fruiting body - A general term for the spore-producing structure or reproductive stage in the 

 myxomycete life cycle; the structure within which (or in one case, on the surface of 

 which) the spores are produced; also referred to as a fructification or sporocarp. 

 

Heterothallic - Possessing mating types and having a haploid-diploid sexual reproductive cycle. 

 

Homothallic - A form of non-heterothallic reproduction in which the fusion of haploid  

 amoeboflagellates (gametes) results in the production of a diploid plasmodium. 

 

Hypothallus - Thin layer deposited by the plasmodium onto the substrate at the time of fruiting. 

 The hypothallus when present has many forms and may connect multiple fruiting bodies. 

 (Fig. 2A)  

 

Lignicolous - Living on or within wood. 
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Macromycetozoa - The monophyletic group composed of the Dictyostelia, Myxogastria and 

 Ceratiomyxa 

 

Microcyst - A dormant, resistant structure formed by an amoeboflagellate cell under adverse 

 conditions. 

 

Myxogastria - The plasmodial slime molds which produce macroscopic fruiting bodies 

 (although excluding the other slime molds, Dictyostelia, protostelids and Ceratiomyxa. 

 

Non-heterothallic - Not possessing mating types; non-heterothallic myxomycetes may be either 

 homothallic (sexual, ploidal cycle) or apogamic (non-sexual, no ploidal cycle). 

 

Peridium - The covering over the spore mass of a fruiting body (Fig. 2C). 

 

Plasmodium - An acellular, multinucleate mass of protoplasm that represents one of the two 

 trophic stages in the life cycle of a myxomycete. 

 

Phaneroplasmodium - A type of plasmodium that may be relatively large and conspicuous 

 enough to be observed in nature. Typically composed of a network of vein-like strands 

 containing the streaming protoplasm within, protected by a slime sheath. 

 

Sclerotium - A dormant, resistant structure formed by a plasmodium under adverse conditions. 
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Stipe (or stalk) - A structure supporting the spore mass; often elevated some distance above the 

 substrate (Fig. 2F). 

 
 



 

 

Tables and Figures 

Table 1. Mating systems in myxomycetes. The table does not include the complications of polyploidy or mutations. 

 Heterothallic Non-heterothallic 

Mating System  Sexual Selfing c Automictic  Apogamic a Homothallic b 
Mating types Yes Yes Yes No No 
Syngamy required to produce plasmodia Yes No Yes No Yes 
Meiosis Yes No Incomplete No Yes 
Ploidy:          

Spores and amoeboflagellates 1n 1n 1n 1n or 2n 1n 
Zygote 2n  - 2n   - 2n 
Plasmodia 2n 1n 2n 1n or 2n 2n 
Resultant spores and amoeboflagellates 1n 1n 2n 1n or 2n 1n 

Mating system of resultant 
amoeboflagellates Sexual Sexual, facultatively 

apogamic d 
Apogamic until 

reversion to sexual Apogamic Homothallic 
a Apogamic clonal lines can be produced by several different mechanisms, from heterothallic and non-heterothallic lines 
b True homothallism has not been confirmed in myxomycetes 

   c Selfing occurs secondary to a normal sexual cycle; sexuality is not lost in the isolate 
d Amoeboflagellates retain their sexuality but lack mating types; they can produce plasmodia with or without crossing 
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Figure 1. Life cycle (not drawn to scale) of a "typical and simplified" heterothallic myxomycete, 
with a few possible alternate cycles also indicated. Ploidy level is indicated only for the "typical" 
heterothallic life cycle and is placed in parentheses throughout this figure caption (for a list of 
alternative mating cycles and associated ploidy levels see Table 1). (A) Spores dispersing from a 
mature fruiting body. (B) Uninucleate amoeboflagellate (haploid) emerging from a spore. (C1) 
Depending upon the environmental conditions, amoeboflagellates may or may not have flagella; 
under adverse conditions, amoeboflagellates may convert into a resistant structure called a 
microcyst. (C2) The non-flagellated form is able to undergo cellular division. The dotted line 
from the dividing cell (C2) back to the general amoeboflagellate stage (C1) represents a 
hypothetical alternative life cycle in which a lineage no longer forms plasmodia or fruiting 
bodies. (C3) Representation of an apogamic life cycle in which the amoeboflagellate is able to 
directly form a plasmodium without the need for fusion with other amoeboflagellates. (D) Fusion 
of two compatible amoeboflagellates (haploid) to form an amoeboid zygote (diploid). (E) The 
zygote (diploid) will feed and grow by undergoing multiple rounds of mitosis without  
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Figure 1. (Cont.) cytokinesis, first to create a single large multinucleate cell (F) and then a 
plasmodium (diploid). (H1) Plasmodium displaying a vein-like network in which the cellular 
contents are shuttled throughout. Given appropriate stimuli, the plasmodium gives rise to mature 
fruiting bodies (A). During the formation of fruiting bodies, meiosis occurs to produce four 
spores (haploid). (H2) Another hypothetical alternate life cycle in which amoeboflagellates are 
produced by the plasmodium and could potentially act as gametes. (G) Under adverse conditions, 
a plasmodium may convert into a hardened, resistant structure called a sclerotium. (Drawing 
courtesy of Angela Mele.)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 61 

 
 
 
 
 
 
 

 
 
Figure 2. Structural components of a typical fruiting body. (A) Hypothallus (B) Spore mass and 
capillitium (C) Peridium (D) Capillitium (E) Columella (F) Stalk (or stipe)  (Drawing adapted 
from Stephenson [2003]). 
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Figure 3. Illustrated representation of myxomycete SSU phylogeny. Tree topology was derived 
from SSU phylogenies in the literature (e.g., Cavalier-Smith et al. 2013; Clissmann et al. 2015; 
Fiore-Donno et al. 2010a; Fiore-Donno et al. 2012; Fiore-Donno et al. 2013; Kretzschmar et al. 
2015; Leontyev et al. 2014a; Leontyev et al. 2015; Walker et al. 2015). The tree is rooted by the 
last common ancestor (LCA). Because the SSU phylogeny does not completely correspond to 
traditionally recognized taxonomy for the group based largely on morphological data, each taxon 
named on the tree is followed by a letter in parentheses that corresponds to the order from which 
the taxon is currently ascribed [(E) Echinosteliales, (S) Stemonitales, (P) Physarales, (L) 
Liceales, (T) Trichiales]. (Drawing courtesy of Dmitry Leontyev.) 
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III. The response of myxomycete communities to 14 years of N, P and K addition in a 
lowland tropical rain forest  
 

Abstract 

Myxomycetes (plasmodial slime molds) are abundant protozoan predators that feed on bacteria 

and other microorganisms. In doing so, these organisms help mediate the flow of nutrients, 

playing a critically important role in the functioning of global ecosystems. Nutrient availability is 

a primary constraint on the productivity and distribution of organisms in tropical forests. As 

global temperatures rise and atmospheric CO2 increases, nutrient availability will become 

increasingly important in lowland tropical forests. The extent to which nutrient limitation affects 

the myxomycete community is unknown. To increase our understanding of myxomycete ecology 

and possible nutrient limitations, this project took advantage of a long-term nutrient fertilization 

experiment in the lowland forests of Panama in order to investigate the impacts of increased 

levels of nitrogen (N), phosphorus (P) and potassium (K) on the litter-inhabiting myxomycete 

community. Two hypotheses were tested herein. The first hypothesis, that myxomycete 

abundance and diversity would increase with an increase in available P and NPK, was only 

marginally supported. The second hypothesis that myxomycete abundance and diversity would 

decrease in response to N fertilization was not supported at all. A large number of previous 

studies have identified multiple nutrient limitations to various members of this forest community; 

therefore, the lack of response for the myxomycete community was unexpected. Further work is 

needed to resolve whether the myxomycete community is indeed unaffected by nutrient 

fertilization at this site or if the experimental methods employed herein were unable to strongly 

and consistently support the hypotheses due to the unique biology and ecology of myxomycetes. 
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Introduction 

 Tropical forests are major contributors to the global cycling of nutrients, accounting for 

approximately one-third of global terrestrial net primary production (NPP), and they contain up 

to 55% of global carbon stocks (Cleveland et al. 2011; Pan et al. 2011). The cycling and storage 

of nutrients in tropical forests is largely dependent upon the decomposition of plant materials, 

and the layer of litter on the forest floor represents what is presumably the largest and most labile 

source of nutrients. Hence, the microbial community that is responsible for decomposition of the 

plant litter on the forest floor plays a significant role in global nutrient cycling. Recent evidence 

suggests that changes in the microbial decomposer community can have significant effects on the 

rate of decomposition, altering available nutrient ratios and thereby immediately impacting 

carbon cycling (Cornelissen et al. 2007). Given the importance of tropical forests and nutrient 

cycling, it is urgent that we gain an understanding of the factors underlying rates of primary 

production and decomposition in these ecosystems. Our understanding of the role microbial 

communities in these processes is particularly limited. Given that the microbial community is 

largely responsible for regulating the flow of nutrients through forest ecosystems via 

decomposition of organic matter, this is an especially urgent priority. 

 The macronutrients nitrogen (N), phosphorus (P) and potassium (K), are a necessity for 

growth and metabolism; therefore, all forest ecosystems are largely dependent upon their 

availability (Sterner and Elser 2002; Hartman and Richardson 2013). The availability of these 

and other nutrients in soil is largely a product of their modes of formation. P and K are primarily 

derived from underlying bedrock over the course of soil development and are lost as soils age, 

largely due to erosion and leaching (Walker and Syers 1976). In contrast, N is largely absent 

from bedrock and is instead generated via biological fixation and is accumulated from the 
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atmosphere over time (Vitousek et al. 1986; Hedin et al. 2009). Therefore, the old and highly 

weathered soils in tropical forests are generally considered to be rich in N but poor in P and other 

rock-derived nutrients such as calcium (Ca) and K (Vitousek 1984; Vitousek and Sanford 1986; 

Townsend et al. 2007; Vitousek et al. 2010). However, the soil nutrient pool is not always a 

direct reflection of nutrient availability to plants, as evidenced by studies indicating that despite 

large pools of soil N, tropical forest productivity can still be limited by N (LeBauer and Treseder 

2008). Therefore, it is possible that N rich but P and K poor soils in tropical forests are actually 

limited by N in addition to P and K. Nutrient limitation can occur independently, although 

multiple nutrient limitation is probably most often the case (Vitousek et al. 2010 and references 

therein). Not surprisingly, trees have species-specific nutrient requirements and respond 

differently to nutrient limitation (Mayor et al. 2014). Moreover, the alleviation of one nutrient 

limitation is likely to lead quickly to another (Davidson and Howarth 2007; Vitousek et al. 

2010). 

 Scientists have long pondered how tropical ecosystems are able to maintain such high 

rates of NPP when growing upon such nutrient limited soils. Furthermore, in light of currently 

increasing levels of atmospheric CO2, rising temperatures and nutrient deposition, primary 

production in lowland tropical forests will be increasingly limited by the availability of nutrients 

(Vitousek 1984, Cleveland et al. 2011; Wright 2013). And at a time when much research effort is 

being invested into predicting the effects of anthropogenic change to the global ecosystem, it is 

crucial that we fill in the gaps in our knowledge regarding nutrient cycling in tropical forests.  

 Attempts at understanding nutrient cycling have led to numerous nutrient fertilization 

experiments which generally identify process-limiting nutrients as those that increase the rate of 

some biological process such as growth or decomposition after fertilization (Chapin et al. 1986; 
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Vitousek et al. 2010). From meta-analyses of these nutrient fertilization studies, some 

generalities concerning nutrient limitation have emerged, including (1) the widespread limitation 

of K to tree growth (Tripler et al. 2006), (2) that regardless of latitude, N limits NPP 

aboveground (LeBauer and Treseder 2008) and, (3) a co-limitation of N and P often limits plant 

biomass or productivity (Elser et al. 2007). Unfortunately, however, of the many nutrient 

fertilization studies, very few of these studies have focused on lowland tropical forests 

(Cleveland et al. 2011; Wright et al. 2011).  

 To help fill this void, in 1998 S. Joseph Wright and colleagues, in collaboration with the 

Smithsonian Tropical Research Institute (STRI), established a large-scale NPK factorial 

fertilization experiment in an old-growth, lowland tropical forest in Panama. Since it's 

establishment the experiment has been continually fertilized and monitored and was still 

underway when this dissertation was being prepared. Established primarily to investigate how 

plants cope with nutrient limitation in nutrient-poor tropical soils, these plots represent an 

extremely valuable opportunity to evaluate numerous other components of a tropical forest 

ecosystem as well, such as, the litter-inhabiting microbial community. Indeed, various nutrient 

limitations and co-limitations have been demonstrated to the plant and, to a lesser extent, the 

microbial communities at this study site (e.g., Wright et al. 2011; Sayer et al. 2012; Turner and 

Wright 2013).  

 The bulk of research that has focused on the microbial decomposer community has 

largely focused on the fungal communities as well as bacteria. While fungi do represent the 

largest pool of decomposer microbes, there is often a tendency of the research community to 

consider all 'microbes' as a single unit, disregarding the importance of other members of this 

trophic system with which they are less familiar. Protozoan predators such as myxomycetes are 
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one such group that is often overlooked in the context of the decomposer food web and the 

"microbial loop" (Clarholm 1985). 

 The importance of diversity in the microbial community as a whole, however, is 

becoming increasingly apparent. For instance, research has shown that closely related strains of 

some protist predators have significantly different effects on bacterial community structure (e.g., 

Ronn et al. 2002; Glücksman et al. 2010). It has also been recognized that increased diversity in 

the soil microbial community increases rates of decomposition and other essential processes 

(e.g., Stout 1980; Gessner et al. 2010; Wilkinson et al. 2012). Given the importance of amoeboid 

grazers of bacteria such as myxomycetes, to plant performance (Bjørnlund et al. 2012) and 

organic matter decomposition (Wang et al. 2009) in the nutrient-limited tropics, there is a critical 

need to develop an understanding of the myxomycete community and its possible nutrient 

limitations. 

 The myxomycetes (plasmodial slime molds) form a monophyletic group within the 

amoebozoan supergroup (Adl et al. 2012). Together with the Dictyostelia (dictyostelids) and 

members of the genus Ceratiomyxa, they form a larger clade called Macromycetozoa (Fiore-

Donno et al. 2010). Macromycetozoans (the most speciose of which are the myxomycetes) are 

often the dominant soil protozoans (Adl and Gupta 2006; Urich et al. 2008), with myxomycetes 

alone exceeding 20,000 cells per cm3 in some temperate soils (Feest and Campbell 1986; Feest 

1987). In addition to their abundance in the soil, they are also abundant and more commonly 

studied in the overlying litter layer, decaying wood, bark of living trees and numerous other 

microhabitats associated with plant materials (Stephenson 2011). As a whole, myxomycetes are 

cosmopolitan organisms and have been found in virtually every major terrestrial habitat 
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examined to date. However, finer-scale understanding of myxomycete community structure and 

ecology is greatly needed. 

 Through the consumption of bacteria, fungi and other microbes, myxomycetes and other 

protozoan and nematode predators (Rønn et al. 2012), are responsible for mediating the flow of 

nutrients from decomposers to the soil to plants and higher trophic levels. Nutrients immobilized 

in microbial biomass are released through predation and made available for plant and higher 

trophic level uptake (Bonkowski and Clarholm 2012). The positive effects of protozoan grazers 

are well established and include increases in plant growth, organic matter decomposition and soil 

fertility (Ekelund and Rønn 1994; Adl and Gupta 2006; Anderson 2012). Protozoans such as 

myxomycetes are therefore a critical component of terrestrial ecosystems (Adl and Gupta 2006) 

and, as such, they deserve greater attention. 

 

Research Objectives and Hypotheses 

To understand the role of myxomycetes (or any group of organisms) in any ecosystem process, it 

is fundamental first to identify the players involved and then to characterize their diversity 

(Anderson 2012; Crotty et al. 2012). This was the main goal of the study described herein, to 

generate a body of data on the myxomycete community associated with forest litter in a lowland 

tropical rain forest in Panama and to investigate how it is affected by changes in nutrient status. 

Utilizing a long-term nutrient fertilization study allowed the investigation of possible limitation 

and co-limitation of three major macronutrients N, P and K and how these nutrients affect the 

litter-inhabiting myxomycete community. 

 Two main hypotheses were investigated. The first hypothesis was that myxomycete 

abundance and diversity will be greater on the P plots as compared to other treatment and control 
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plots. Tropical soils are commonly low in available P (Vitousek 1984) and indeed a limited 

supply of available P (<1 mg P kg-1) has been shown to exist for control plots at this site (Turner 

et al. 2012). Furthermore, fast growing microbes are commonly considered to be limited by the 

supply of P (Elser et al. 1996). In line with this hypothesis, Turner and Wright (2013) reported a 

significant increase in total microbial carbon (13%), N (21%) and P (49%) and a concurrent 

decrease in phosphatase activity (by 65%) with the addition of P but not N or K, dramatically 

demonstrating P as a limiting factor to the soil microbial community at this site. Additionally, 

aboveground, P and NPK fertilization increased decomposition of organic matter (Kaspari et al. 

2008; Sayer et al. 2012). Where decomposition is increased, myxomycete abundance and 

diversity is also expected to increase due to the presumed increase in the number and diversity of 

microbial decomposer prey (Feest and Madelin 1988; Stephenson and Landolt 1996). In fact, 

Kaspari et al. (2008) suggested that the increased decomposition identified on these plots is 

directly enhanced by the fertilization of the microbial community, and these authors have 

reported that bacterial community composition does shift in response to the various treatments 

(Kaspari et al. 2010). Also, in temperate forests, which are not typically limited by available P, 

soil myxomycete abundance consistently and positively correlates with increased concentrations 

of soil P (Feest and Campbell 1986; Feest 1987; Feest and Madelin 1988). 

 The second hypothesis was that myxomycete abundance and diversity would be 

significantly lower on the N plots as compared to the other plots. Substrate pH is one of the main 

factors determining myxomycete abundance and distribution patterns in nature (Stephenson 

1989), with most species demonstrating a relatively strict pH tolerance range between 5 and 8 

(Martin and Alexopoulos 1969). The soil pH on the N plots is on average 0.5 units lower than on 

other plots (Sayer et al. 2012). This lower pH often falls well below the lower tolerance limit of 
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pH 5, thereby presumably limiting myxomycete occurrence. Also, the tropics are generally 

thought to be rich in N and no limitation to the aboveground plant community (Wright et al. 

2011) or the soil microbial community (Turner and Wright 2013) has been identified at this site. 

 

Materials and Methods 

Study Site 

Experimental plots are located on the Gigante Peninsula of Lake Gatun, which forms the Panama 

Canal Waterway within the Barro Colorado Nature Monument in the Republic of Panama. 

Situated approximately 1 km inland from Lake Gatun (9°6'30.7" N, 79°50'36.9" W), the 

elevation at the study site grades from 25 m in the southwest to 61 m in the northeast corner 

(Yavitt et al. 2009). The annual rainfall is approximately 2.5 m/yr, 90% of which falls during the 

rainy season from May through mid-December (Windsor 1990). Mean monthly temperature is 

81°F in April and 79°F in the other 11 months of the year. Relative humidity is >75%. The plant 

species composition and structure (canopy heights > 40 m) are typical of seasonally evergreen 

old-growth (>200 years) lowland tropical forests. The dominant tree species are members of the 

Leguminaseae and Bombacaceae; overall, approximately 18% of the tree species are deciduous 

(Condit et al. 1996). 

 

Experimental Design  

The factorial NPK nutrient fertilization experiment includes eight treatments (2 x 2 x 2) 

replicated four times. Due to a gradient in soil properties and plant community composition (S. J. 

Wright, unpublished data) the four replicates were placed perpendicular to the afore-mentioned 

36 m elevation gradient with which they are associated (Yavitt et al. 2009). The eight treatments 
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were blocked within each replicate to contrast the N, P, K and NPK against the NP, NK, PK and 

control treatments to create a balanced incomplete-block design in order to decrease the error 

associated with the spatial variation (Winer et al. 1971). 

 Experimental plots are situated on a north to south rectangular quadrat of approximately 

38.4 ha, with each plot measuring 40 x 40 m with a distance between each plot of 30 to 40 m 

(Yavitt et al. 2011). Fertilization of the experimental plots has been conducted here since 1998 

under the direction of S. Joseph Wright at STRI. Nutrients (dry, granular fertilizers) were added 

by hand four times per year, with N as coated urea ((NH2)2CO), P as triple superphosphate 

(Ca(H2PO4)2.H20), and K as potassium chloride (KCl), in annual concentrations of 125 kg N.ha-

1.yr-1, 50 kg P. ha-1.yr-1, and 50 kg K. ha-1.yr-1, respectively (Wright et al. 2011). The N addition 

is equal to 69% of annual input from fine litter-fall at a nearby site and 470% of the P (Yavitt et 

al. 2004). Although soil nutrient content was not measured in the research described herein, other 

sources detail the significant increases in extractable soil nitrate and phosphate as a result of N 

and P additions and indicate that the nutrient treatments are indeed increasing the availability of 

the respective nutrients (e.g., Yavitt et al. 2009; Turner et al. 2013). The experiment also 

includes a micronutrient treatment that will not be addressed herein. Each of the four yearly 

nutrient additions (in equal amounts) were added in the wet season, with six to eight weeks 

between each application. The nutrients were applied by casting handfuls of the dry fertilizer 

while systematically walking through each plot. To ensure the most homogeneous application, a 

different systematic pattern was followed at each of the four applications for each plot in a given 

year. Most of the above detail concerning the experimental design is drawn from Yavitt et al. 

(2009, 2011). 
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Sampling  

Samples of both leaf litter (LL) and small pieces of woody debris (SWD) were collected in 

triplicate and from three sites within each of the 32 experimental plots. The three sites were the 

center of the plot, and two sites approximately 10 m to the northeast and southwest from the 

center point. At each of these sites, samples of leaves and small woody debris were haphazardly 

collected by hand and placed into separate paper bags where they were allowed to air-dry before 

being shipped to the University of Arkansas for use in preparing moist chamber culture. 

Sampling was performed twice, in late summer and during the rainy season of both 2012 and 

2013. The sampling procedure was identical between years, although not all of the treatments 

were sampled in both years. In 2012, due to the preliminary nature of the project, only five of the 

eight treatments were sampled (N, P, K, NPK, and an untreated control), whereas in 2013, all 

eight factorial NPK treatments (above treatments plus NK, NP and PK) were included. The M 

treatments were also sampled in 2013, but they will not be discussed herein. 

 

Moist Chamber Culture 

From each of three sampling sites per plot, three moist chamber cultures were prepared for each 

type of substrate (LL or SWD), so that each plot was represented by 18 moist chamber cultures 

(9 per substrate) for a total of 360 in 2012 and 576 in 2013. Moist chamber cultures are a simple, 

reliable and cost effective method for isolating myxomycetes from leaf litter and similar 

substrates (Stephenson and Stempen 1994) and represent the standard protocol for ecological 

studies of litter-inhabiting myxomycetes (e.g., Stephenson 1989). In brief, each bag of dried 

substrate was emptied onto a clean piece of paper and placed by hand into a Petri dish previously 

fitted with a filter paper lining (to absorb and retain moisture). Each Petri dish was filled with 
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approximately equal amounts of tissues (judged visually). Although in the field an effort was 

made to haphazardly sample from the forest floor without inserting personal bias, at this step in 

the protocol, bias was intentionally applied in order to ensure thorough representation of the 

sample between the three replicate plates. To do so, while the entire sample was laid out upon 

the clean paper, the contents were visualized and an attempt was made to equally represent the 

different types of tissue and different leaves of substrate in each sample (no attempt was made to 

identify the plant materials beyond such things as the color, shape or size of the dry tissues). In 

the majority of cases, leaves and twigs or bark were broken apart by hand as required to get them 

to fit into the Petri dish. After filling all of the Petri dishes with dry substrate, deionized water 

was liberally applied and allowed to incubate at room temperature overnight. On day two, the pH 

of the water was recorded with a pH meter, and a surface electrode before draining all of the 

excess water. Moisture within the moist chambers was then maintained relatively constant via 

the filter paper; more deionizedwater was added throughout the incubation period as needed. 

Moist chambers were incubated under ambient light at room temperature (ca. 70 - 72 F) and 

monitored using a steromicroscope at least once per week for the following three to six months.  

 

Identification of Myxomycetes 

Fruiting bodies collected from moist chamber were identified on the basis of morphology (e.g., 

Martin and Alexopoulos 1969); nomenclature follows Lado (2005 - 2015). These records were 

then used to calculate myxomycete abundance and diversity. All fruiting bodies collected were 

deposited in the herbarium (UARK) of the University of Arkansas (Fayetteville, AR 72701). 
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Data Collection 

For the first three months of moist chamber incubation, during weekly microscopic inspection, 

all fruiting bodies were collected and prepared as herbarium specimens, and the presence of 

plasmodia was noted (through visualization of a plasmodium, plasmodial tracks or an encysted 

form of plasmodium called a sclerotium). The plates were then monitored bi-weekly until 

fruiting body formation occurred. In plates in which fruiting bodies were never observed but 

plasmodia were present, the plate was recorded to be positive for myxomycetes but with an 

abundance of only one, and the taxonomy was recorded as unknown (plasmodia can not be used 

to identify myxomycete species and therefore cannot be identified nor quantified).  

 After the first three months in which all fruiting bodies were collected and retained for 

the herbarium, if the plates were still producing either fruiting bodies or if plasmodia were still 

present, the plates were monitored for up to another 3 months. During this extended period of 

monitoring, however, fruiting bodies were recorded and collected from a plate only if they 

represented a species not previously recorded for that plate. 

 Due to the complex nature of the myxomycete life cycle, if any particular species was 

found more than one time in one plate, it could not be ruled out that (i) the two separate fruitings 

were not initially derived from the same plasmodium that had fragmented during moist chamber 

incubation, thereby representing a single collection or individual (Eliasson 1981; Stephenson 

1988), or (ii) that they were clones of apogamic lineages (which is common in myxomycetes) 

and therefore not representative of true abundance in the sample at the time of collection. In this 

situation, apogamic spores that were shed within the plate from a single fruiting body would be 

able to form new plasmodia and fruiting bodies without sexual fusion. 
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 Due to the complications that myxomycete life history strategies impose on cultural 

studies, two separate data files were generated (for each year and each substrate). The first data 

set (DS1) contains all recorded fruitings or the presence of plasmodia if fruiting bodies were not 

formed. Therefore, DS1 includes the total number of fruitings observed during the entire period 

of incubation. This file contains all records and the total number of fruitings that occurred in a 

plate for each species (ignoring the potential bias of clonality and plasmodial separation). Data 

set two (DS2) was prepared for analyses in accordance with traditional methods; collections that 

were not assigned a positive morphological identification were removed unless they represented 

the only record of any myxomycete presence on the plate (allowing their inclusion to count 

toward abundance but not to alter the measurement of diversity), and all duplicate records for 

any one species per plate were also removed (to account for the biases of clonality and 

plasmodial separation). Unless noted otherwise, all analyses and results presented herein were 

generated using DS2. 

 

Data Analysis 

Litter and small woody debris represent remarkably different microhabitats, and commonly 

support distinct microbial communities (Novozhilov et al. 2000; Liu et al. 2015). To confirm this 

pattern at the study site and to determine whether the two substrates should be analyzed together 

or separately in order to test our hypotheses, coefficient of community (CC) and percent 

similarity (PS) indices were calculated (Ellenberg and Mueller-Dombois 1974; Gauch 1982). 

The CC considers the presence or absence of each species calculated with Equation 1, where a 

and b are the number of species total between the two communities and c is the number of 

species in common between the two communities. 
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(1) 𝐶𝐶   =    !!
(!  !  !)

 

The CC index ranges from 0 (no species are shared) to 1.0 (all species are shared). The PS 

considers the relative abundance of each species in addition to its presence or absence and is 

calculated with Equation 2, where min is the lesser of the two relative abundances of each 

species (a, b, . . .x) in the two communities.  

(2) 𝑃𝑆   =   𝛴𝑚𝑖𝑛(𝑎, 𝑏, . . . 𝑥) 

The PS index ranges between 0 (no species shared) to 1.0 (all species shared and in equal relative 

abundances). EstimateS Software (Colwell 2006) was used to evaluate completeness of the 

survey by assessing the relationship between the numbers of species identified and sampling 

effort for each substrate in each year. The same software was also used to estimate total richness 

with the non-parametric Chao 2 estimator (Chao 1987) for each treatment. Species richness was 

used as a proxy for species diversity to analyze the effect of fertilization treatments. Three-way 

analysis of variance (ANOVA) was performed for each response variable and each substrate in 

the 2013 data set to evaluate the effect of fertilization to the myxomycete community (one-way 

ANOVA was used for 2012 data). A critical P value of 0.05 was employed for all statistical tests 

in this study. The blocks were included as a factor for the 2013 data but not for the 2012 data, 

due to the incomplete sampling in that year. Significant ANOVAs  (p < 0.05) were followed by 

multiple pairwise comparisons of means with a Tukey's test to control for Type I error otherwise 

associated with the use of multiple tests (Quinn and Keough 2002). Repeated-measures (RM) 

ANOVA were performed for each response variable to evaluate temporal variation between the 

two years (only the five treatments that were included in both years of sampling, were included 

in this analysis). The three-way ANOVAs for treatment effects were carried out with R Studio v. 
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0.99.447 (2015); all remaining analyses were carried out in JMP® Pro 12.1.0 (SAS Institute Inc, 

Cary, NC). 

 Nonmetric multidimensional scaling (NMDS) was used to visualize the Bray-Curtis 

dissimilarity matrix of community compositions among the fertilization plots and the 

significance of treatment effect on the ordination was tested with a PERMANOVA. Both the 

NMDS and PERMANOVA were conducted using the Vegan package (Dixon 2003; Oksanen et 

al. 2007) in R Studio v. 0.99.447 (2015). 

 

Results 

Moist Chamber Cultures 

Over 90% of the 936 moist chamber cultures that were prepared over the two-year sampling 

period were positive for myxomycetes (the presence of plasmodia or fruiting bodies were 

recorded). Species accumulation curves (Fig. 2) indicate that sampling was nearly complete in 

both years for the small woody debris (SWD) but considerably less so for the leaf litter (LL) 

moist chamber cultures. A total of 3,432 records (occurrences) were made in DS1, but after 

removing all duplicates, DS2 contains just 1,939 records (Table 1); over 2,000 collections of 

fruiting bodies were deposited into the herbarium of the University of Arkansas. 

 A total of 91 morphospecies were identified throughout the study (Table 3), comprising a 

wide diversity of the entire group, including 29 genera, 11 families and all 5 orders traditionally 

recognized by Olive (1970). Species rank abundance curves (Fig. 2) show a trend that is 

characteristic of microbial communities (Caron and Countway 2009), wherein the large majority 

of records are rare or singletons. Thirty-four of the species recorded had not previously been 

reported to occur in Panama, bringing the list of species records for that country to 151 
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(according to lists published by Piepenbring [2006] and Myxotropic [www.myxotropic.org, 

accessed on 12-1-2015]) (Table 4). At least one of these species, Perichaena longipes, was 

completely new to science and has been formally described (Walker et al. 2015).  

 

Substrate Comparison 

To determine whether or not the two substrates (SWD and LL) should be analyzed together or 

separately, the coefficient of community (CC) and percent similarity (PS) values of the two 

myxomycete communities were calculated using only the larger 2013 data set. The CC 

calculated herein was 0.642 on an index that ranges from 0 (no species are shared) to 1.0 (all 

species are shared). The PS, which also takes the relative abundance of each species into 

account, was 0.548 on an index that ranges from 0 (no species shared) to 1.0 (all species shared 

and in equal relative abundances). The cumulative richness was 112, but only 53 of those were 

shared in common between LL and SWD substrates; the other 59 species were unique to one 

substrate or the other.  

 Furthermore, the community compositions were quite different between the two 

substrates. Considering only the 10 most abundant species found on each substrate in 2013 

(Table 2), which represent 63% and 53% of all records found on LL and SWD substrates, 

respectively, only five of these species were shared (Arcyria cinerea, Diderma effusum, 

Lamproderma scintillans, Perichaena chrysosperma and Cribraria microcarpa). When this 

subset of data, which accounts for the majority of all records but includes only the 10 most 

abundant species for each substrate, was used to calculate the PS, the PS value drops to just 

0.446. Narrowing in on only the most abundant species in this manner highlighted some well-

known patterns in niche specificity. For example, Lamproderma scintillans, which is commonly 
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associated with the LL substrate, was identified 71 times on LL samples herein, accounting for 

16% of all records for that substrate. In the SWD samples, however, L. scintillans is not ranked 

among the 10 most abundant, as it was only recorded 10 times (from a total of 766 records) on 

that substrate during moist chamber culture, accounting for just 1.0% of all records for SWD 

samples. Similarly, the SWD moist chamber cultures were dominated by species commonly 

associated with woody tissues, such as Stemonitis fusca. 

 In 2012, the LL and SWD substrate pH differed significantly (albeit, barely) (p = 

0.0447), with a higher average pH of LL of 6.4 compared to an average of 6.2 for SWD. Because 

the sampling in 2013 included eight treatments versus only five in 2012, the difference in pH 

between substrates was tested for the full dataset with all eight treatments and also on a dataset 

that included only the five treatments (as in the 2012 dataset). In both cases, however, the 

substrate pH in 2013 did not significantly differ between LL and SWD.  

 

Treatment Effects  

Surprisingly, the only significant effect of nutrient fertilization to the myxomycete community 

was identified in the SWD samples, and only during the preliminary study in 2012, wherein, 

myxomycete abundance (Fig. 4A) and richness (Fig. 4B) were significantly different among 

treatments in the SWD community (p = 0.0308 and p = 0.0372, respectively). The ad hoc 

Tukey's test identified a marginally significant difference in myxomycete abundance, where the 

average increased from 17.5 occurrences on the N plots to 32.25 on the P plots (p = 0.0466). 

Species richness was significantly different between the N and NPK plots (p = 0.0299), where 

average richness was 8.25 species on the N plots and 17.25 on the NPK plots. No treatment 
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effect to myxomycete abundance or richness was identified in 2012 LL (Fig. 4) or in either 

substrate in 2013 (Fig. 5). 

 There was no statistically significant difference in substrate pH among the fertilization 

treatments (Fig. 6) for either year of this study, nor was there any significant correlation between 

substrate pH and species abundance or richness. The pH for both LL and SWD substrate samples 

did not differ by replicate in 2012 (Fig. 7A), however, it did differ significantly among the four 

replicates in 2013 (p < 0.001) (Fig. 7B).  

 The NMDS plots (Fig. 8) of 2013 myxomycete community compositions did not indicate 

divergence in response to fertilization, and this was supported by a lack of significance of the 

PERMANOVA. To investigate the treatment effect at the species level, the ten most abundant 

species for each substrate were compiled to generate Figure 9. One observation that stands out in 

Figure 9B is the complete lack of both Stemonitis fusca and Comatricha tenerrima on the N 

plots, despite the fact that these two species represent the second and fifth most abundant species 

occurring on the SWD substrate at this site. Chi-square tests were then used to test for 

significantly different distributions of each of the top 10 species across all 8 treatments for each 

substrate. In the LL, Perichaena longipes (the species newly described during the course of this 

dissertation project) is the only species among the top 10 that is distributed significantly different 

(p = 0.02118) among the treatment plots. In the SWD, only Arcyria denudata had a significantly 

different (p = 0.0039) distribution among the fertilization treatments. Despite the absence of S. 

fusca and C. tenerrima on the N plots, they did not significantly differ among all eight treatments 

in SWD. 
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Temporal Effects 

Myxomycete species abundance (Fig. 10) and richness (Fig. 11) were compared for the five 

nutrient treatments (N, P, K, NPK and untreated control) that were sampled in both 2012 and 

2013 with a RM ANOVA. The only significant temporal effect of nutrient fertilization was 

identified for myxomycete species richness in the LL microhabitat (p = 0.0288). There was no 

temporal effect of fertilization to myxomycete abundance in the LL nor was a temporal effect 

identified for species richness or abundance in the SWD. 

 A marginally significant temporal effect of nutrient fertilization to substrate pH (Fig. 12) 

was identified in the SWD samples (p = 0.0434), for which the overall average pH rose from 6.2 

in 2012 to 6.6 in 2013. There was no temporal effect of nutrient fertilization to substrate pH in 

the LL samples, where the pH also rose, although to a lesser degree, from an average of 6.4 in 

2012 to 6.6 in 2013. 

 

Discussion 

Being directly responsible for the decomposition of the vast majority of the earth’s organic 

matter, microbes are recognized as drivers of numerous terrestrial ecosystem processes (e.g., 

global C cycle and N mineralization) with the potential to moderate and/or accentuate global 

change (Treseder et al. 2011; Anderson 2012; Crotty et al. 2012). Protist grazers such as 

myxomycetes play a pivotal role in these processes by regulating the flow of nutrients to higher 

trophic levels (Bonkowski 2004; Adl and Gupta 2006). Quantifying the abundance and species 

composition of this community is the first step towards integrating the role of these organisms 

into our conceptual understanding of ecosystem processes (Crotty et al. 2012; Anderson 2012). 

Tropical forests contribute significantly to the global cycling of nutrients (Vitousek and Sanford 
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1986; Cleveland et al. 2011), making them especially important in this regard. Given this fact 

and in view of current climatic scenarios, understanding the role of protozoans in global cycling 

of nutrients is of utmost importance and necessary in order to accurately incorporate them into 

predictive models of global biogeochemical cycles (Caron et al. 2009; Treseder et al. 2012; Yang 

et al. 2013). 

 The goal of this project was to identify correlations between the myxomycete community 

and nutrient status, in order to allow the formulation of directly testable hypotheses and the 

predictability of relationships that exist between myxomycetes and nutrient status (Cleveland et 

al. 2011; Fierer et al. 2011). The effects of trophic cascades on resource consumption can be 

strong, and the species diversity within and among different trophic levels can be a powerful 

influence on both top-down and bottom-up effects (Srivastava et al. 2009). Furthermore, the 

interconnectedness of organisms and processes within and among each thread of the food web 

increases the difficulty of elucidating a specific role for any one group and is beyond the scope 

of this research. Instead, the data generated herein were intended to serve as a first step towards 

developing a more complete understanding of myxomycete ecology in the tropics, particularly in 

terms of their response to nutrient availability, one of the key constraints on the productivity and 

distribution of above and below ground organisms in tropical forests (Cleveland et al. 2011). 

 The nutrient fertilization experiment utilized in this study has been ongoing since 1998, 

and over the years has been the focus of a large number of research studies, most of which were 

focused on the above-ground plant community. From these studies, a great deal of information 

regarding this forest ecosystem and its response to nutrient addition has been obtained and it is 

with these data that the hypotheses relating to myxomycetes were formed. The plant 

communities at this site are limited by multiple nutrients. The P fertilization plots saw a 
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substantial increase in leaf litter fall (Wright et al. 2011; Turner et al. 2015) and an increase in 

decomposition with P alone, or P with N and K (NPK) was noted after ten years of nutrient 

addition (Kaspari et al. 2008; Sayer et al. 2012). Also, the addition of K alone or in combination 

with N (NK) significantly increased seedling growth rates (Wright et al. 2011). The addition of 

N alone, however, had no significant effects on the aboveground plant community, although it 

did significantly decrease the average soil pH (Sayer et al. 2012). Also belowground, the 

addition of K alone or with N (NK) reduced fine root biomass after ten years of fertilization 

(Wright et al. 2011).  

 Less work at this site has focused on the microbial community although according to 

Turner and Wright (2013), the soil microbial community is also strongly limited by P. After ten 

years of fertilization those authors identified significant increases in total microbial carbon 

(13%), N (21%) and P (49%), and a concurrent decrease in phosphatase activity (by 65%) with 

the addition of P but not N or K. Phosphatase increases the available pools of P when that 

nutrient is limiting (Marklein and Houlton 2012), therefore the strong decrease in phospatase 

activity with P fertilization indicates an aleviation from P limitation. Together those results 

dramatically demonstrated P as a limiting factor to the soil microbial community at this site. This 

may not be surprising since the control soils at this site are reportedly low in available P (Turner 

et al. 2012).  

 Given all of the effects of nutrient addition that have been identified at this site to above- 

and belowground communities, the data generated herein indicating that myxomycetes are not 

greatly affected by nutrient fertilization was quite surprising. The hypotheses relating to 

myxomycetes were grounded upon the previously demonstrated nutrient limitations identified at 

this site as described above. For instance, the first hypothesis, that myxomycetes would increase 
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in abundance and diversity with P addition, is based on the assumption that the increased plant 

growth on these plots will have cascading effects throughout the ecosystem, such as through an 

increase in available C and N in the soil due to increased exudate production and higher tissue 

nutrient contents. Similarly, where decomposition is increased on the P and NPK plots, the 

hypothesis that myxomycete abundance and diversity will also increase is largely based upon the 

assumption that the increased decomposition means an increase the availability of microbial 

prey. This first hypothesis, however, was only marginally supported, and only in the 2012 SWD 

dataset. 

 The second hypothesis, that myxomycete abundance and diversity would decrease on the 

N plots due to a significantly lower soil pH on the N plots, that often falls below the 

myxomycete tolerance range of between 5 and 8 (Martin and Alexopoulos 1969), was not at all 

supported. Substrate pH is well recognized as a major factor that determines the distribution of 

myxomycetes (Stephenson 1989). Furthermore, N limitation has not been identified at this site 

for other plant (Wright et al. 2011) or microbial communities (Turner and Wright 2013). This 

hypothesis, however, could only be based upon the incorrect assumption that the decreased soil 

pH on the N plots would be mirrored in the overlying litter layer (i.e., the microhabitats being 

studied herein). The litter substrate pH recorded in the present project does not does not have a 

significantly different pH than the other treatments however. It does seem likely, however, that 

the soil and litter myxomycete communities are highly connected. If true, it would be expected 

that the low pH of the soil on N plots might in fact decrease the myxomycete abundance and 

diversity in the litter but that the actual treatment effect is occurring in the soil. Although there 

are no data to indicate that this is the case, and it could not be directly tested herein, the 

following anecdotal observations have lead to the author's assumptions. In tropical forests 



 

 85 

frequent rains (especially in the wet tropics) continually return spores, microcysts or other above 

ground sources of myxomycetes, back into the soil. Also, work from temperate soils indicates 

that myxomycetes spend the majority of their lives in the soil as amoebae (Feest 1987; 

Stephenson and Feest 2012). Soil pore space does not allow enough room for fruiting body 

formation; therefore, myxomycetes in the soil would need to emerge to or above the soil surface 

in order to form fruiting bodies and complete their life cycle (for sexual strains). The litter 

microhabitat just above the soil surface would provide such a location, substrate and the space 

necessary to produce spore-bearing fruiting bodies. Although the connectedness of the soil and 

litter microhabitats has yet to be explicitly demonstrated, it is worth noting that despite their 

presence in soil as identified by amoebae or plasmodia on agar or in traditional moist chamber 

cultures (wherein soil is the substrate), it is notoriously difficult to obtain fruiting bodies. 

However, Rollins and Stephenson (2013) described a modified moist chamber method, in which 

sterile straw was placed over the soil to serve as a substrate (and perhaps also serving as a 

moisture gradient) on which to fruit. These authors were able to obtain fruiting bodies from 56% 

the modified soil moist chambers, a rate much higher than expected for traditional agar-based 

culture methods, illustrating the ability of myxomycetes to exit the soil and form fruiting bodies. 

The direct testing of this hypothesis would be a very valuable contribution to the current 

understanding of myxomycete ecology. 

 

Species Composition 

The hypotheses mentioned above were tested by measuring total myxomycete community 

abundance and species richness. However, due to the distribution pattern of the myxomycete 

data, which is composed of just a few abundant species and many rare or single species, it is 
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possible that treatment effects may have been present but that they were being masked due to the 

distribution patterns of the species present. Several additional analyses using the larger and 

experimentally complete dataset from 2013 were performed in order to rule out the possibility of 

a treatment effect being concealed by the distribution pattern. First, NMDS (Fig. 9) and 

PERMANOVA were performed to investigate overall shifts in the total community composition 

in response to nutrient fertilization. However, these analyses did not identify any community 

composition divergence in response to fertilization. Next, to investigate treatment effects at the 

individual species level, Figure 10 was generated to visually inspect the distribution of only the 

ten most abundant species for each substrate. One interesting pattern stood out, the complete lack 

of Stemonitis fusca and Comatricha tenerrima on the N plots from SWD, despite their large 

abundance on all other treatments. Finally, to ensure that the high abundance of Arcyria cinerea, 

which accounts for 18% and 17% of all records for 2012 and 2013, respectively, was not 

masking treatment effects, all analyses were repeated using a dataset in which all of the A. 

cinerea occurrences were removed. As one of the most abundant and cosmopolitan species of 

myxomycetes worldwide, Arcyria cinerea likely has a wide niche tolerance and is therefore less 

sensitive to shifts in various environmental parameters or resources. The removal of A. cinerea, 

however, did not statistically alter the results of any analyses, indicating that the high abundance 

of A. cinerea is not concealing a treatment effect.  

 

Temporal Effects 

Very little is known regarding temporal variation in myxomycete community composition. The 

data reported herein were collected from in-depth sampling conducted over two years using the 

same procedures, and thus provided a novel opportunity to investigate inter-annual variation in 
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the litter-inhabiting myxomycete community. Analysis of inter-annual variation between two 

years is something that has not been done in the tropics and only rarely in other ecosystems 

(Stephenson and Stempen 1994). 

 Using a RM ANOVA for the five nutrient treatments (N, P, K, NPK and untreated 

control) the effect of nutrient treatment to myxomycete abundance and richness between the two 

years of sampling was tested. The effect of nutrient treatment significantly differed only between 

the two years for myxomycete richness in the LL (p = 0.0288). There was no temporal effect of 

fertilization to myxomycete abundance in the LL nor was a temporal effect identified for species 

richness or abundance in the SWD.  

 

Possible Effect Detection Error 

Experimental design.—The balanced incomplete-block design utilized herein attains greatest 

statistical power when sampled in full (i.e., to include all eight treatments). Due to the 

experimental design, only when sampled in full, can the model account for the spatial variation 

associated with the 36 m elevation gradient, thus reducing the statistical error and thereby 

increase the power. So it is surprising that the only treatment effect identified in this study, was 

in the 2012 dataset, and no treatment effect was identified in the 2013 dataset with which the full 

experimental power of the design is harnessed. The error associated with the elevation gradient is 

due to a shift in plant community composition and varying soil chemical properties, especially 

pH, across the gradient (Yavitt et al. 2009; Wright et al. 2011). Those authors noted a pH 

gradient from the Southwest to Northeast corners, with the average soil pH shifting from 4.5 to 

7.5, respectively. Although the blocking factor cannot be applied for the incomplete sampling in 

2012, when applied to the statistical model in 2013, the power of the ANOVAs did indeed 



 

 88 

increase as evidenced by significant P values for the blocking factor in each test and also by the 

decrease in the residual error when the blocks were added into the models. 

 Because of the dense lowland tropical forest present at the experimental site, wind is not 

likely to be a predominant mechanism of spore dispersal for myxomycetes. Therefore, the 

possibility that easily wind-borne spores have been exchanged throughout the experimental area 

too readily to detect any treatment effect is probably not a factor. Furthermore, the distance 

between each treatment plot is no less than 20 m at any point. Within each plot, samples were 

collected from a central location and 10 m in two directions; therefore, the closest any two 

collection sites could have been is approximately 40 m. Although wind is not likely to be 

dispersing spores, there is of course a great deal of movement of ground water, which may 

disperse spores. In addition to other natural mechanisms such as animals serving as vectors, there 

is also a great deal of human traffic at this study site that could potentially be moving spores 

between all of the plots as well. 

 

Separate analysis of substrates.—The two substrates, LL and SWD host distinct myxomycete 

communities as indicated by the low PS and CC values (0.548 and 0.642, respectively); and 

therefore, the data generated from each substrate were analyzed independently. The two 

communities together, however, do represent the forest floor litter habitat as a whole. Therefore, 

all analyses of treatment effects were also performed on datasets in which the two substrates 

were combined. The outcome of the analyses containing both substrates, however, always 

identified the same pattern as was observed in the SWD dataset when analyzed by itself, and in 

no instances affected the statistical outcome of the test, perhaps due to the comparatively large 
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number of records for the SWD compared to the LL samples. Therefore, analysis of the dataset 

that contained the two substrates together (LL and SWD) will not be discussed further. 

  

Experimental limitations.—The traditional methods of moist chamber culture and morphological 

identification of species, together represent the standard protocol for ecological studies of 

myxomycetes (Stephenson and Stempen 1994). Moist chamber culture is a simple, and cost 

effective method for isolating and identifying myxomycetes from forest floor litter and many 

other substrates (e.g., Stephenson 1989). However, each of these methods also comprise their 

own portion of difficulty and bias that could have potentially limited the ability to detect a 

treatment effect herein. Some of the biases associated with the use of moist chamber cultures for 

ecological study are inherent and unavoidable, including the unnatural setting of a Petri dish in a 

laboratory, and the associated alteration of the original ecological niche, which likely favors 

some species while simultaneously discouraging others. For example, some large species 

commonly observed in the field such as Lycogala epidendrum rarely, if ever, form fruiting 

bodies in moist chambers due to the size restriction imposed by the chamber (Novozhilov et al. 

2000). Another important complication in the ecological study of myxomycetes is their complex 

life cycle, which is further compounded by the use of moist chamber cultures. For any particular 

species that is found more than one time in the same plate, it can not be ruled out (i) whether the 

two fruitings were initially derived from the same plasmodia that has previously fragmented 

during moist chamber incubation or (ii) that they were clones from apogamic lineages. Being 

unable to distinguish whether or not two or more occurrences of the same species represent an 

abundance of one or of more remains problematic for ecological studies that rely on the counts of 

abundance. Due to this complication in moist chamber analyses, in the present study two data 
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sets were generated. In the initial dataset (DS1) containing 3,432 records, every occurrence of 

every species was recorded, regardless of any previous occurrence of the same species (ignoring 

the potential bias of clonality and plasmodial separation). The second dataset (DS2) was then 

generated by removing any duplicate occurrences for each particular species in each plate, 

thereby limiting the abundance of each species on any one plate, to one, despite the number of 

times it was observed in that plate decreasing the number of records to 1,939. Because DS2 

represents the traditional handling of myxomycete data, all analyses described herein were 

performed with DS2. However, after the surprising results were obtained, that of no treatment 

effect, and to ensure that the traditional data handling method was not obscuring a treatment 

effect, all analyses were repeated using DS1 but otherwise as described in the Materials and 

Methods section of this chapter. The use of this larger dataset, however, did not alter any of the 

statistical outcomes of analyses. Again, only marginally significant treatment effects were 

identified, and only in 2012 SWD. Given the depth of this research project, which possibly 

comprises the largest dataset of myxomycetes from any one locality, this could be considered an 

encouraging result as it supports the use of traditional methodologies in data colection because 

the inclusion of multiple occurrences of a particular species from one moist chamber culture did 

not significantly alter the results. 

 Despite the controversy surrounding the use of a morphological species concept to 

identify species of myxomycetes (e.g., Walker and Stephenson 2016), it was determined to be 

the most effective approach for this study for several reasons. At the time of this study, the 

traditional morphological species concept was still the most commonly employed method of 

myxomycete identification. In light of this and given that the myxomycete taxonomy at that time 

was still based almost entirely upon a morphological concept, incorporating data obtained herein 
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with the very large set of data in the publicly available literature would be the most 

straightforward and meaningful. A molecular phylogenetic approach using environmental 

sequencing is the only other method that could have potentially been considered for use in this 

project. Environmental sequencing shows immense potential for use in the study of myxomycete 

ecology; however, the amount of sequencing required for this large-scale, in-depth ecological 

study made this option cost prohibitive. In addition, because such an approach in the 

myxomycetes was still in its infancy, the resources available (e.g., reference sequence databases) 

were still limited, which would have limited the possible resolution of taxa and weakened 

interpretation of results. Because there was no evidence available at that time to indicate that a 

sequencing approach (or any other approach for that matter) would be a more accurate or 

thorough assessment of diversity, no approach other than that used herein could be justified. 

 It is unclear, however, whether or not the moist chamber culture method and 

morphological identification of species were able to fully capture a myxomycete response to 

fertilization (if present). The addition of a field observation survey would have been a valuable 

addition to this work as it would have captured more of the diversity at this site by avoiding 

culture bias. However, given the large size of this experiment, the addition of such observational 

work would have been cost and time prohibitive. It is very possible that moist chamber culture 

was unable to provide an accurate enough view of the true myxomycete abundance and diversity 

to be used for quantitative analyses; however, it is unlikely that the morphological identification 

of species has affected the outcome of the study to any large extent. Furthermore, all specimens 

were independently identified by two people. These were the author of this dissertation, and the 

author's advisor, Dr. Steven L. Stephenson (in situations where the lead author was unable to 

complete the identification, then the specimens were identified only by her advisor). As a leading 
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expert in the field of myxomycete taxonomy, Dr. Stephenson confirmed the identification of 

every specimen before it was placed into the herbarium at the University of Arkansas. Although 

some errors have certainly been made, given the expertise of those making the identifications 

and the large number of records, it is unlikely that any errors made in morphological 

identification contributed to the overall outcome of analyses. The possible implications of 

morphology concealing cryptic diversity is not addressed herein. 

 According to the literature, the level of sampling conducted herein should be adequate for 

evaluating the myxomycete community. Novozhilov et al. (2000) suggested that for an area of 

0.1 ha, the species accumulation curve typically flattens out around 30 samples subjected to 

moist chamber cultures, and therefore this should be sufficient to capture the more common 

species. Each of the treatment plots in this experiment are slightly smaller at just 0.08 ha and 

from each plot, three samples of each substrate (LL and SWD) were collected and each sample 

was used to establish three moist chamber cultures for a total of 18 moist chambers per plot (nine 

of each substrate). Although slightly less than the recommendation, each plot herein was 

replicated four times; therefore, the total number of moist chambers for each treatment was 72. 

When all nine treatments were sampled in 2013 this meant a total of 648 moist chambers were 

established. This is a large number of moist chambers for one to manage and was only possible 

by partitioning the samples into two groups to incubate separately. Indeed, this level of sampling 

seems to be appropriate for the SWD samples, which according to the Chao2 richness estimator 

were sampled to 76% of completion in 2012 and 85% in 2013. The LL samples on the other 

hand do not appear to have captured the true richness. The Chao2 richness estimator 

hypothesizes that in 2012 the LL samples were only sampled to 52% of completion and 44% in 

2013. 
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Conclusions 

The work presented herein does not strongly support the hypothesis of a nutrient treatment effect 

on the litter-inhabiting myxomycete community at this site. The only detected effect of nutrient 

limitation to the myxomycete community was detected in the 2012 data and only in the SWD 

microhabitat. However, when repeated exactly in 2013, no significant effect was identified 

which leads to the question of whether or not the effect in 2012 was real?  Furthermore, the RM 

ANOVA testing for a temporal effect did not detect a significant difference between the two 

years, for either the SWD or the LL. The experimental design and level of sampling conducted 

appear to be within an appropriate range to test the hypotheses, but it is possible that the moist 

chamber culture method may not be a suitable method for use in such quantitative studies, 

especially on the small experimental area considered in the present study (36 ha). Despite the 

treatment effects identified in numerous other studies for other groups of organisms (as cited 

throughout this chapter), the myxomycetes do not seem to follow the same pattern of treatment 

effects, or at least not to the same intensity.  

 Microbial populations have been shown to increase in abundance and level of activity as 

well as shifting in community composition in response to fertilization at this site (Kaspari et al. 

2008; Kaspari et al. 2010; Turner and Wright 2013). The lack of a strong response in the 

myxomycete community, which is intimately linked with the total microbial community, would 

suggest that the myxomycetes have some mechanism of survival making them less prone to 

nutrient limitation. Myxomycetes are generally considered to feed on a wide variety of bacteria, 

mycelial fungi, detritus, and yeast (Martin and Alexopoulos 1969; Stephenson and Stempen 

1994). Perhaps their diet is general enough that despite changes in the available microbial prey 

(due to the afore mentioned shifts in the microbial community in response to treatments), 
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myxomycetes remain unaffected as long as prey or other resources are available. Selective 

predation has been identified in many protist predators, including some amoebae (e.g., Rønn et 

al. 2002; Rosenberg et al. 2009; Bell et al. 2010). However, similar data for individual 

myxomycete amoebae (the stage which myxomycetes appear to spend the majority of their lives) 

were not found in the literature review herein. A great deal of research is available, however, 

highlighting the ability of myxomycete plasmodia (the multinucleate, trophic stage) to alter their 

foraging strategy in order to maintain a preferred nutrient balanced diet (e.g., Dussutour et al. 

2010). Furthermore, of the three species of myxomycete whose plasmodia have been 

investigated thus far (Didymium iridis, Didymium bahiense and Physarum polycephalum), each 

species appears to use a different foraging strategy which the authors suggest is an adaptive 

response to different preferred food sources (Yip et al. 2014; Latty and Beekman 2015). Whether 

a similar situation exists for the uninucleate, amoeboid stage is not clear. Moreover, because in 

moist chamber culture it is largely unclear whether the species present were initially in an 

amoeboid or plasmodial form at the time of collection, it is unclear how this information can be 

applied to the data generated in the present study. There are currently approximately 900 

described myxomycete morphospecies (Lado 2005–2015), if indeed a wide diversity of food 

preference and foraging strategies are present, that could also help explain the maintenance of 

such a high diversity for the group as well as the common coexistence of numerous species in the 

same microhabitat. 

 The data reported herein for myxomycete ecology are rather inconclusive at this stage, 

yet the observations made are very intriguing and should certainly warrant further investigation. 
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Tables and Figures 

Table 1. Species richness and abundance (number of occurrences) by substrate (LL = leaf litter, 
SWD = small woody debris) for each year of the study. Data set 1 is the original data recorded 
before removing duplicate species occurences by plate to generate Data Set 2. 
 

 Data set 2 (DS2) Data set 1 (DS1) 

 Richness Abundance Abundance 

2012     
LL (n = 20) 43 195 444 

SWD (n = 20) 69 509 961 
2013     

LL (n = 32) 75 469 845 
SWD (n = 32) 86 697 1182 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 103 

Table 2. The ten most abundant species for each substrate in 2013 (LL = leaf litter, SWD = 
small woody debris). 
 

Species LL SWD 
Arcyria cinerea 76 123 
Diderma effusum 52 29 
Lamproderma scintillans 71 0 
Perichaena chrysosperma 14 35 
Perichaena depressa 10 35 
Cribraria microcarpa 11 27 
Stemonitis fusca var. nigrescens 0 37 
Comatricha tenerrima 0 33 
Collaria arcyrionema 0 30 
Arcyria denudata 0 29 
Arcyria leiocarpa 0 26 
Didymium nigripes 22 0 
Perichaena longipes 15 0 
Comatricha pulchella 13 0 
Diderma hemisphaericum 13 0 
   
Total number of records 297 404 
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Table 3. List of all species recorded in the present study, including both years of data 
 

Arcyria afroalpina Didymium effusum  Physarum aeneum 
Arcyria cinerea Didymium iridis  Physarum album 
Arcyria denudata Didymium nigripes Physarum bivalve 
Arcyria insignis Didymium ochroideum Physarum cinereum  
Arcyria leiocarpa Didymium squamulosum Physarum compressum 
Arcyria marginoundulata Echinostelium minutum Physarum crateriforme 
Arcyria pomiformis Enerthenema papillatum Physarum decipiens 
Badhamia affinis Hemitrichia calyculata Physarum galbeum 
Calomyxa metalica Hemitrichia leiocarpa Physarum globuliferum 
Ceratiomyxa fruticulosa Hemitrichia pardina Physarum lakhanpalii 
Clastoderma debaryanum Hemitrichia serpula Physarum lateritium 
Collaria arcyrionema Lamproderma arcyrionema Physarum melleum 
Collaria sp. A Lamproderma scintillans Physarum nigripes 
Comatricha ellae Licea belmontiana Physarum oblatum 
Comatricha laxa Licea biforis Physarum pusillum 
Comatricha lurida Licea eleanorae Physarum roseum 
Comatricha nigra Licea kleistobolus Physarum superbum 
Comatricha pulchella Licea operculata Physarum tenerum 
Comatricha sp. A Licea rufocuprea Physarum virescens 
Comatricha tenerrima Lycogala conicum Physarum viride 
Comatrichia pulchella Macbrideola decapillata Pysarum superbum 

Comatrichia tenerrima Macbrideola ovoidea 
Stemonitis fusca var. 
nigrescens 

Craterium aereum Macbrideola sp. A Stemonitis herbatica 
Cribraria microcarpa Macbrideola sp. C Stemonitopsis typhina 
Cribraria tenerrima Macbrideola synsporus Trichia favoginea 
Cribraria violacea Metatrichia vesparia  

Diachea bulbillosa Paradiacheopsis fimbrata  

Diachea leucopodia Perichaena chrysosperma  

Diderma effusum Perichaena depressa  

Diderma hemisphaericum Perichaena longipes  

Didymium anellus Perichaena pedata  

Didymium difforme Perichaena vermicularis  
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Table 4. An updated species list for The Republic of Panama. Species identified herein are in 
column A, column B contains the records compiled by Piepenbring et al. (2006) and column C 
represents the species records on Myxotropic [www.myxotropic.org, accessed on 12-1-2015]) 
 
Species A B C 
Arcyria afroalpina   1     
Arcyria cinerea 1 1 1 
Arcyria denudata 1 1 1 
Arcyria insignis 1 1   
Arcyria leiocarpa 1 1   
Arcyria marginoundulata 1     
Arcyria pomiformis 1 1   
Badhamia affinis 1 1   
Calomyxa metalica 1     
Ceratiomyxa fruticulosa 1   1 
Clastoderma debaryanum 1   1 
Collaria arcyrionema 1   1 
Collaria sp. A 1     
Comatricha ellae 1     
Comatricha laxa 1 1   
Comatricha lurida 1     
Comatricha nigra 1 1   
Comatricha pulchella 1 1   
Comatricha sp. A 1     
Comatricha tenerrima 1     
Comatrichia pulchella 1     
Comatrichia tenerrima 1     
Craterium aereum 1     
Cribraria microcarpa 1 1 1 
Cribraria tenerrima 1     
Cribraria violacea 1 1 1 
Diachea bulbillosa 1 1   
Diachea leucopodia 1     
Diderma effusum 1 1 1 
Diderma hemisphaericum 1     
Didymium anellus 1     
Didymium difforme 1     
Didymium effusum 1     
Didymium iridis 1 1   
Didymium nigripes 1 1   
Didymium ochroideum 1     
Didymium squamulosum 1 1   
Echinostelium minutum 1     
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Table 4. (Cont.)    
Species A B C 
Enerthenema papillatum 1     
Hemitrichia calyculata 1 1 1 
Hemitrichia leiocarpa 1     
Hemitrichia pardina 1     
Hemitrichia serpula 1 1 1 
Lamproderma arcyrionema 1     
Lamproderma scintillans 1 1   
Licea belmontiana 1     
Licea biforis 1     
Licea eleanorae 1     
Licea kleistobolus 1     
Licea operculata 1 1   
Licea rufocuprea 1     
Lycogala conicum 1 1   
Macbrideola decapillata 1     
Macbrideola ovoidea 1     
Macbrideola sp. A 1     
Macbrideola sp. C 1     
Macbrideola synsporus 1     
Metatrichia vesparia 1     
Paradiacheopsis fimbrata 1     
Perichaena chrysosperma 1 1   
Perichaena depressa 1 1 1 
Perichaena longipes 1     
Perichaena pedata 1     
Perichaena vermicularis 1 1   
Physarum aeneum 1     
Physarum album 1   1 
Physarum bivalve 1 1   
Physarum cinereum 1 1   
Physarum compressum 1 1   
Physarum crateriforme 1     
Physarum decipiens 1     
Physarum galbeum 1     
Physarum globuliferum 1 1 1 
Physarum lakhanpalii 1     
Physarum lateritium 1     
Physarum melleum 1 1   
Physarum nigripes 1     
Physarum oblatum 1 1 1 
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Table 4. (Cont.) 
Species A B C 
Physarum pusillum 1 1 1 
Physarum roseum 1     
Physarum superbum 1     
Physarum tenerum 1 1 1 
Physarum virescens 1     
Physarum viride 1 1 1 
Pysarum superbum 1     
Stemonitis fusca var. nigrescens 1     
Stemonitis herbatica 1     
Stemonitis nigrescens 1 1   
Stemonitopsis typhina 1 1 1 
Trichia favoginea 1 1 1 
Willkommlangea reticulata 1 1   
Arcyria magna   1   
Arcyria minuta   1 1 
Arcyria nutans   1   
Arcyria oerstedii   1  1 
Badhamia gracillis   1   
Brefeldia maxima   1   
Ceratiomyxa fruiticulosa   1   
Ceratiomyxa morchella   1   
Ceratiomyxa sphaerosperma   1 1 
Clastoderma debaryanum    1   
Collaria acrcyionema   1   
Comatricha afroalpina   1 1 
Cornuvia serpula     1 
Craterium leucocephalum   1   
Craterium paraguariense   1   
Cribraria argillacea    1   
Cribraria aurantiaca   1 1 
Cribraria cancellata    1   
Cribraria intricata   1 1 
Cribraria languescens   1 1 
Cribraria pachydictyon   1   
Cribraria piriformis   1   
Cribraria tenella   1 1 
Diachea leucopoda   1   
Diachea radiata   1   
Dictydiaethalium plubeum   1   
Diderma hemispaericum   1   
Diderma rugosum   1 1 
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Table 4. (Cont.)    
Species A B C 
Diderma spumarioides   1   
Didymium clavus   1 1 
Didymium intermedium   1   
Didymium verrucosporum   1   
Echinostelium minutum    1   
Enteridium lycoperdon   1   
Enteridium splendens   1   
Fuligo septica   1   
Hemitrichia clavata   1 1 
Hemitrichia minor   1   
Licea minima   1   
Licea pedicellata   1 1 
Licea pusilla   1   
Licea tuberculata   1   
Lycogala epidendrum   1   
Lycogala exiguum   1   
Lycogala flavofuscum   1   
Metatrichia vesparium   1   
Perichaena corticalis   1   
Physarella oblonga   1 1 
Physarum auriscalpium   1   
Physarum bogoriense   1   
Physarum didermoides   1 1 
Physarum echinosporum   1   
Physarum fulgens   1   
Physarum leucopus   1   
Physarum nutans   1   
Physarum penetrale   1 1 
Physarum psittacinum   1 1 
Physarum pulcherripes   1   
Physarum serpula   1   
Physarum stellatum   1 1 
Stemonaria longa     1 
Stemonitis axifera   1 1 
Stemonitis flavogentia   1   
Stemonitis fusca   1 1 
Stemonitis pallida   1 1 
Stemonitis splendens   1   
Stemonitis virginiensis   1 1 
Stemonitopsis aequalis   1   
Stemonitopsis hyperopta   1 1 
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Table 4. (Cont.)    
Species A B C 
Symphytocarpus longus   1   
Tubifera ferruginosa   1   
Tubifera microsperma   1   
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Figure 1. A. Layout of the nutrient fertilization plots, total area 38.4 ha. Each plot is labeled 
according to the nutrient treatment(s) (N = Nitrogen, P = Phosphorus, K = Potassium, M = 
Micronutrient, C = Control). The four replicates are identified along the right side of this 
diagram. B. Each plot, 40 x 40 m, sampled at three sites, 10 m apart C. Leaf litter and small 
woody debris sampled at each site D. Litter samples are used to establish three moist chamber 
cultures for each substrate E. Myxomycete identification and community analysis using the 
morphological species concept of recovered fruiting bodies. 
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A. 

 

B. 

 

Figure 2. Species accumulation curves for A. 2012 small woody debris, B. 2012 leaf litter, C. 
2013 small woody debris and D. 2013 leaf litter 
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C. 

 

D. 

 

Figure 2 (Cont.). Species accumulation curves for A. 2012 small woody debris, B. 2012 leaf 
litter, C. 2013 small woody debris and D. 2013 leaf litter 
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A. 

 

B. 

 

Figure 3. Total number of records of each species (leaf litter and small woody debris substrates 
are combined) for A. 2012 and B. 2013 
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A. 

 

B. 

 

Figure 4. Distribution of average myxomycete (A) abundance and (B) richness by substrate and 
among treatments in 2012. Bars represent standard error of the average for each treatment (LL = 
leaf litter, SWD = small woody debris). 
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A. 

 

B.  

 

Figure 5. Distribution of average myxomycete (A) abundance and (B) richness by substrate and 
among treatments in 2013. Bars represent standard error of the average for each treatment (LL = 
leaf litter, SWD = small woody debris). 
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A. 

 

B. 

 

Figure 6. Distribution of average substrate pH in (A) 2012 and (B) 2013 by substrate and among 
treatments. Bars represent standard error of the average for each treatment (LL = leaf litter, SWD 
= small woody debris). 
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A.  

 

B. 

 

Figure 7. Distribution of average substrate pH in (A) 2012 and (B) 2013 for each replicate, by 
treatment. Bars represent standard error of the average for eachreplicate (LL = leaf litter, SWD = 
small woody debris). 
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A. 

  
B. 

 
Figure 8. NMDS plot illustrating the divergence in community composition of myxomycetes 
between in (A) leaf litter and (B) small woody debris in nutrient treatments and the control for 
the 2013 dataset. The plot was produced using Bray-Curtis measure of simmilarity. Replicate 
plots for each nutrient treatment are connected by bars and each treatment is labeled at its 
centroid. 
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B.  

 

Figure 9. The distribution of the ten most abundant species in 2013 for (A) leaf litter and (B) 
small woody debris. 
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A. 

 

B. 

 

Figure 10. Distribution of average species abundance in (A) LL and (B) SWD by year and 
among treatments. Bars represent standard error of the average for each treatment. (LL = leaf 
litter, SWD = small woody debris). 
 
 

 

 

0 

5 

10 

15 

20 

C K N NPK P 

Av
er

ag
e 

Sp
ec

ie
s A

bu
nd

an
ce

 

Treatment 

Average Species Abundance in LL by Year 

 2013_ABUN 

2012_ABUN 

0 
5 

10 
15 
20 
25 
30 
35 
40 

C K N NPK P Av
er

ag
e 

Sp
ec

ie
s A

bu
nd

an
ce

 

Treatment 

Average Species Abundance in SWD by Year 

2013_ABUN 

ABUN 



 

 122 

A. 

 

B. 

 

Figure 11. Distribution of average species richness in (A) LL and (B) SWD by year and among 
treatments. Bars represent standard error of the average for each treatment. (LL = leaf litter, 
SWD = small woody debris). 
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A.  

 

B.  

 

Figure 12. Distribution of average substrate pH in (A) LL and (B) SWD by year and among 
treatments. Bars represent standard error of the average substrate pH for each treatment. (LL = 
leaf litter, SWD = small woody debris). 
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IV. Perichaena longipes, a new myxomycete from the Neotropics 
 
Walker LM, Leontyev D, Stephenson SL (2015) Perichaena longipes, a new myxomycete from 

 the Neotropics. Mycologia 107:1012–1022. 

 
Abstract  

A new species of myxomycete, Perichaena longipes, is described from 56 sporocarp specimens 

that appeared in moist chamber cultures prepared with samples of decaying plant materials 

collected in Panama, Costa Rica and Brazil. This new species is distinguished from the 

morphologically similar species P. pedata on the basis of the much longer stipe, lighter peridium 

and the unique ornamentation of the capillitium. The nuc 18S ribosomal DNA sequences 

obtained from four specimens of P. longipes support the distinction of this new taxon and its 

separation from P. pedata. Furthermore, maximum likelihood phylogeny supports earlier 

evidence that species currently within the genus Perichaena do not form a monophyletic clade. 

Instead they appear to form three separate branches within the bright-spored clade. The first 

clade includes P. longipes together with several species of Trichia and Metatrichia, the second 

includes P. pedata and P. chrysosperma, and the third clade is composed of  

P. corticalis, P. depressa and P. luteola. 

 

Introduction  

 The genus Perichaena (order Trichiales, Myxomycetes) was erected by E.M. Fries in 

1817 and currently encompasses 32 species (Lado 2005–2014). The genus is represented by both 

sporocarpic and plasmodiocarpic forms generally characterized by a thick, persistent peridium 

and spores that are yellow to red-brown in mass. Other than a few exceptions, members of the 

genus have a well-developed, typically branched capillitium, which is roughened, warted or 
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spiny to minutely annulate and lacks spiral bands (Poulain et al. 2011). The capillitial elements 

are normally irregular and when viewed by scanning electron microscopy (SEM) are sometimes 

covered by pits (Lado et al. 2009). Some species in the genus appear to have either a very wide 

or a very restricted distribution, whereas still others are known from only a single type locality. 

Examples of the latter, describedsolelyonthe basisof morphology, are Perichaena frustrifilaris Q. 

Wang, Y. Li and J.K. Bai (Wang et al. 2000), P. grisea Q. Wang, Y. Li and J.K. Bai (Wang et al. 

2000) and P. membranacea Y.Li,Q. Wang and H.Z.Li(Liet al. 1990). 

 The genus Perichaena is currently assigned to the order Trichiales and is usually placed 

within the family Arcyriaceae, members of which are characterized by a tubular capillitium with 

no spiral bands (Neubert et al. 1993, Poulain et al. 2011). However, some authors place all forms 

with a tubular capillitium, including Perichaena, within the Trichiaceae, irrespective of capillitial 

ornamentation (Martin and Alexopoulos 1969, Nannenga-Bremekamp 1991). 

 A recent phylogeny of the bright-spored myxomycetes, based on a study of the full length 

nuc 18S ribosomal DNA (18S) and elongation factor (EF1 a) genes, indicated that three species 

of Perichaena (P. corticalis [Batsch] Rostaf., P. depressa Lib. and P. luteola [Kowalski] Gilert) 

fall into the same cluster as Trichia Haller, Metatrichia Ing and Oligonema Rostaf., whereas 

species of Arcyria F.H. Wigg. represent another phylogenetic branch (Fiore-Donno et al. 2013). 

Therefore the placement of the genus Perichaena in the family Arcyriaceae definitely was not 

supported by molecular data. However, the validity of the genus Perichaena itself did seem to 

hold because the three species included in that study did form a monophyletic clade (Fiore-

Donno et al. 2013, Clark and Haskins 2014). All three species included are characterized by 

sessile, spherical sporocarps, minutely warted capillitium and similarly ornamented spores. Other 

species of Perichaena with stipitate or plasmodiocarpic sporocarps or other types of capillitium 



 

 126 

and spore ornamentation hitherto had not been included in molecular phylogenetic analyses. 

 During a larger project by the first author within the Barro Colorado Nature Monument in 

Panama, a large series of stipitate specimens of Perichaena were collected, initially considered 

to be unusually long-stiped representatives of Perichaena pedata (Lister and G. Lister) G. Lister 

ex E. Jahn (Jahn 1919) but differing from the latter by the long stipe and distinctive 

ornamentation of the capillitium and spores. Later additional specimens of the same morphotype 

were identified from material collected in Costa Rica and Brazil. The unique set of 

morphological features and their stability between substrates and geographical regions suggested 

that the specimens probably represented a new species of Perichaena. However, it is commonly 

recognized that some morphological characters of myxomycetes, such as the length of the stipe, 

may be only the result of phenotypic plasticity (Nannenga-Bremekamp 1991). Therefore we 

wished to substantiate these taxonomic combinations with a comparison of the genetic variation 

within the group before erecting a new taxon.  

 The main purpose of this study was to confirm the distinctness of the proposed new 

species and also to understand its approximate phylogenetic position within the bright-spored 

clade of myxomycetes. To this end we sequenced a 59 region of the 18S gene, recently 

demonstrated as a useful barcode marker for myxomycetes (Fiore-Donno et al. 2012, 2013). This 

same locus also was sequenced in two other morphologically distinct species, Perichaena pedata 

(a stipitate form) and P. chrysosperma (Curr.) Lister (a plasmodiocarpic form). In addition, we 

generated sequences from four specimens of Arcyria cinerea (Bull.) Pers. and one from A. 

leiocarpa (Cooke) Massee to be included in the phylogeny. The publicly available sequences of 

three other species of Perichaena and another 14 species of Trichiales were included in the 

alignment to generate a more representative phylogeny.  
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Materials and Methods  

Field Sampling 

The initial (and largest) series of specimens were obtained from moist chamber cultures prepared 

with samples of dead plant material collected in the Barro Colorado Nature Monument (BCNM) 

in the Republic of Panama (9°06'31"N, 79°50'37"W). The site is a typical old-growth (>200 y), 

lowland (25–61 m) moist tropical forest (Wright et al. 2011) with a 4 mo dry season, an average 

annual rainfall of approximately 2600 mm and a mean monthly temperature of 26 C (Yavitt et al. 

2011). Soils at this locality are Endogleyic Cambisols, which are highly weathered, moderately 

acidic and have a high clay content (Koehler et al. 2012). 

 Later several collections of the new morphotype from nearby Costa Rica were obtained 

from the UARK herbarium. These specimens from also were recovered from moist chamber 

cultures of samples of dead plant material 2 y prior, also by the first author. The collection site is 

in the Sarapiquí region, at the La Selva Biological Research Station (10°25'52"N, 85°59'47"W). 

Forests at this site are primarily old-growth, lowland, tropical wet forests with an average annual 

rainfall of approximately 4000 mm and temperatures of 19–31 C. 

 Finally a single specimen of the new morphotype was obtained from a third locality in 

Brazil (01°45'N, 61°08'W). This specimen appeared in a moist chamber culture of aerial leaf 

litter collected by I.L. Coehlo in a tropical wet forest in Caracaraí, Roraima, Brazil, as part of a 

separate survey underway in the laboratory of the third author.  

 

Moist Chamber Cultures 

Culture methods are described here in detail only for those samples collected in Panama; 

equivalent methods were used in the two other surveys that also yielded specimens of this 
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putative new species. The sample materials (forest floor leaf litter and pieces of small woody 

debris) used to prepare the moist chamber cultures were collected in Jun 2012 and Aug 2013 by 

the first author. All samples were placed in small paper bags in the field, returned to the 

laboratory and air-dried. Afterward they were shipped to the University of Arkansas at 

Fayetteville for processing with the use of the traditional moist chamber culture technique 

(Stephenson and Stempen 1994). Over 2 y a total of 1008 moist chamber cultures were 

established and monitored 3–6 mo each. The total number of fructifications was more than 3500, 

46 of which represent the putative new species. From Costa Rica we obtained an additional nine 

herbarium specimens, along with the one from Brazil. Therefore the putative new species is 

represented by a total of 56 specimens. 

 

Microscopy 

Air-dried specimens were studied with a Zeiss Axioskop 2 Plus dissecting stereomicroscope. 

Temporary water slides and permanent slides prepared with polyvinyl lactophenol were studied 

with a Leica MSV226 light microscope (LM) equipped with differential interference contrast. 

The freeware program CombineZP (Hadley 2010) was used to create a composite digital image 

from several stacked images. Microscopic measurements were made with the program Axio 

Vision 4.8.0.0 (Carl Zeiss Imaging Solutions GmbH). Scanning electron microscopy (SEM) was 

carried out with an FEI Nova Nanolab 200 FIB/SEM microscope. Air-dried sporocarps were 

sputter-coated with gold-palladium to form a 5 nm cover and studied at 5–15 kV. All microscopy 

was carried out at the University of Arkansas. 

 Twenty-five spores and capillitial threads from five sporocarps were measured to 

estimate the range of variation. Size of the sporotheca, stipe and hypothallus were measured for 
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15 sporocarps. The range of variation for these main parameters is given as (minimum–) mean 

minus standard deviation–mean plus standard deviation (–maximum). Colors are according to 

the Munsell scale (Munsell 1905).  

 

DNA Sequencing 

DNA was extracted from 5–6 sporocarps with the Invitek Spin Food Kit II (Stratec Molecular 

GmbH, Germany). Sporocarps were frozen at -80 C in 1.5 mL centrifuge tubes containing acid-

washed glass beads 0.7–1.1 mm diam (Sigma Chemicals, USA). Frozen samples were vortexed 1 

min at 30 Hz with a Wig-L-Bug grinding mill (Reflex, USA). We followed the protocol 

recommended by the manufacturer except for the final step, where DNA was eluted in 50 mL 

buffer (instead of 200 mL). 

 Partial sequences of the 18S (ca. 550 bp intron-free segment of the 59 end) were 

amplified with various primer combinations as proposed by Fiore-Donno et al. (2013). The 

primary primers used were S1F: AACCTGGTTGATCCTGCC (forward) and SU19R: 

GACTTGTCCTCTAATTGTTACTCG (reverse) although in some cases, such as if the initial 

primer pair was not working favorably, other primers and primer combinations were used. All 

primers and the combinations used for obtaining each sequence are provided (Supplementary 

material I). 

 The PCR reaction was carried out in 40 cycles (95 C, 2.5 min; 52 C, 30 s; 72 C, 1 min), 

regardless of primers. Results of the PCR were verified by electrophoresis in an agarose gel in 

TA buffer stained with GelRed
TM 

Nucleic Acid Gel Stain (Biotium, Hayward, California). The 

amplicons were purified with MSB Spin PCRapace (Stratec Molecular GmbH, Germany) 

following the manufacturer’s protocols except for eluting in 20 mL elution buffer (instead of 10 
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mL) in the final step. The amplification of the product for sequencing was carried out in 40 

cycles (96 C, 70 s, 53 C, 5 s, 60 C, 4 min) with the same primers used for the initial PCR 

reaction of each specimen. Sequencing was performed on an Applied Biosystems 3130xl Genetic 

Analyzer at the University of Arkansas DNA Resource Center. Sequences were generated bi-

directionally, assembled with the automatic function in Sequencher®5.2 (Gene Codes Corp., Ann 

Arbor, Michigan) and manually inspected before alignment. 

 Four partial 18S sequences were obtained from the alleged new species—two from 

Panamanian specimens (LMW 2574 [UARK 54115]; LMW 2869 [UARK 54447]) and two from 

Costa Rican specimens (LMW 26151 [UARK 47993]; LMW 26264 [UARK 48715]). To 

compare the sequences of the new taxon with those of closely related taxa, we also sequenced 

the partial 18S of four specimens of Arcyria cinerea, one specimen of A. leiocarpa, one 

specimen of P. chrysosperma and three specimens of P. pedata (Supplementary material I). 

Although a total of 13 sequences were generated, only nine appeared to be unique. The other 

four sequences were identical to a sequence obtained from the same species, thus representing 

the same 18S genotype (see below) and were eliminated from analyses. All of the new sequences 

were deposited in GenBank under accession numbers (GBa) KP241117– KP241129.  

 

Sequence Alignment 

The nine newly obtained sequences were aligned with 18 sequences of other members of the 

Trichiales studied by Fiore-Donno et al. (2013). These sequences represented the following taxa: 

A. cinerea, A. denudata (L.) Wettst., A. globosa Schwein., A. incarnata (Pers. ex J.F. Gmel.) 

Pers., A. marginoundulata Nann.-Bremek. and Y. Yamam., A. stipata (Schwein.) Lister, 

Hemitrichia calyculata (Speg.) M.L. Farr, Metatrichia floriformis (Schwein.) Nann.-Bremek., M. 
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vesparia (Batsch) Nann.-Bremek. ex G.W. Martin and Alexop., P. corticalis,  P. depressa, P. 

luteola, Trichia alpina (R.E. Fr.) Meyl.,  T. decipiens (Pers.) T. Macbr. (two different 

genotypes),  T. sordida Johannesen, T. persimilis P. Karst. and T. varia (Pers. ex J.F. Gmel.) 

Pers. Two representatives of the family Reticulariaceae (Tubifera applanata Leontyev and 

Fefelov and T. ferruginosa [Batsch] J.F. Gmel.) by Leontyev et al. (2014) were used as outgroup. 

An alignment of the 29 sequences was generated in MEGA 5.1 (Hall 2011, Tamura et al. 2011) 

with the automatic procedure implemented in multiple sequence comparison by log-expectation 

(MUSCLE). Minor changes in the automatic alignment were made by hand in BioEdit (Hall 

1999). The alignment is available on TreeBASE, submission 17633 (treebase.org).  

 

Phylogenetic Analyses 

We used 434 positions (out of a total of 791) that were aligned unambiguously; most portions of 

the variable helices did not align. Analyses of the aligned sections were carried out with 

maximum likelihood (ML) algorithm using MEGA 5.1 (Hall 2011, Tamura et al. 2011). The 

evolutionary model was chosen in MEGA 5.1 option find best dna/protein model as GTR with 

gamma-distributed rate variation across sites with a proportion of invariable sites. Branch 

support was estimated with 1000 bootstrap replicates.  

 

Results  

Twenty-seven 18S sequences from members of the Trichiales, including the nine obtained in the 

present study, were used to construct the ML phylogeny. The topology appeared stable and was 

not dependent on  (i) the inclusion or exclusion of sequences (ii) the usage of different alignment 

algorithms (Clustal W, MUSCLE or MAFFT) or (iii) the use of whole length sequences (when 
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available) or only the unambiguously aligned positions. The main purpose of the study was to 

confirm the genetic distinctiveness of the putative new species and its approximate position 

within the bright-spored clade. All other conclusions relating to the topology of the tree should 

be considered as preliminary. 

 Our phylogeny revealed that all studied representatives of the Trichiaceae form a 

monophyletic clade with full bootstrap support. This clade is subdivided on three branches. The 

first branch represents the genera Trichia (except for T. decipiens), Metatrichia and Perichaena, 

which at this time cannot be cannot be clearly held together by any single morphological 

character(s). The second branch corresponds to the genus Arcyria, which can be defined by 

mostly stalked sporocarps with “cellulate” stalks (stalks filled with spore-like cells), and a net-

forming capillitium without spiral bands. The third branch consists of T. decipiens and H. 

calyculata, both of which are defined by stalked cellulate sporocarps and a capillitium with spiral 

bands. This branching pattern within the Trichiaceae corresponds fully to the phylogeny based 

on full-length sequences of both 18S and EFI a in the bright-spored myxomycetes (Fiore-Donno 

et al. 2013). This branching pattern indicates that among the main genera of the Trichiaceae only 

Arcyria seems to be monophyletic, with all other genera distributed among different branches 

and thus presumably characterized as para-or polyphyletic.  

 The five sequences of Arcyria cinerea included in this study (four generated in the lab of 

the third author and one derived from Fiore-Donno et al. [2013]) did not form a single cluster. 

Instead three of them clustered with A. denudata, A. leiocarpa and A. marginoundulata; another 

clustered with A. stipata and A. globosa; and the last one formed its own subbasal branch. 

 The putative new species appeared to be represented by two similar yet unique partial 

18S genotypes (p distance 0.08, the calculation is explained below), each of which was 
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represented by two specimens from the same locality (Panama or Costa Rica). Together these 

two genotype sequences form a monophyletic group within the Trichia-Metatrichia-Perichaena 

clade. However, the putative new species did not cluster with the other species of Perichaena, 

including the morphologically similar P. pedata. Instead the six species of Perichaena included 

in this study formed three independent branches, one consisting of the sessile sporocarpic species 

(P. corticalis, P. depressa, P. luteola), another by the stipitate P. pedata and the (usually) 

plasmodiocarpic P. chrysosperma and the third by the proposed new stipitate species.  

 

Taxonomy   

Perichaena longipes L.M. Walker, Leontyev and S.L. Stephenson, sp. nov. FIG.1 MycoBank 

MB810916   

Typification: PANAMA. PANAMA: Barro Colorado Nature Monument, Gigante Peninsula, 

(9°06'31"N, 79°50'37"W), 50 m. Old-growth tropical moist forest, on forest floor leaf litter in 

moist chamber culture (pH 6.7), 10 Aug 2013, L.M. Walker LMW 2574 (HOLOTYPE. UARK 

54007; GBa KP241126).  

 

Etymology: The name longipes (from the Latin longus – long, pes – leg) refers to the stipe, the 

most conspicuous feature of the new species.  

  

Diagnosis: Sporocarps stipitate, 0.5–0.8 mm tall, solitary or sometimes scattered in small loose 

groups (Fig. 1a–e). Stipe long, straight or slightly inclined, plicate, dark brown (2.5R1/2) to 

black, ocher-yellow to yellow-brown (2.5Y6/8) in transmitted light (Fig.1f), 0.3–0.7mm long, 

25–80 mm diam. Hypothallus discoid, concolorous with the stipe, 0.1–0.4mm diam (Fig. 1c). 
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Sporotheca globose, 0.15–0.25 mm diam, light yellow to tan (7.5–10Y7/4–6), darker at the base, 

smooth, sometimes with a weak iridescent shimmer (Fig. 1a, b). Columella absent. Peridium 

single, tough and persistent, warted on the inner surface (Fig.1g, h). Capillitium bright yellow in 

transmitted light (7.5Y8/8–10), tubular, (2.6–)3.2–5.8(–6.2) mm diam, branched and 

anastomosed (Fig.1i, j), densely covered with papillate, branched, coral-like projections (Fig. 

1k–n), free ends scanty, short, obtuse, sometimes with a short acuminate tip on a swollen base 

(Fig. 1j), the small pits (ca. 0.5 mm) sometimes are present between papillae as observed under 

SEM (Fig. 1l). Spores free, (7.5–)7.8–9.1(–10.7) mm, light yellow to tan in mass (7.5–10Y8/6), 

almost hyaline in transmitted light (Fig. 1g, i, j), as observed under LM spores appear smooth, 

whereas under SEM they are verrucose, with a flat cap on the tip of each wart, these caps are 

star-like as observed from above (Fig. 1p, q).  

 

Habitat and distribution: Sporocarps of Perichaena longipes appeared primarily on forest floor 

leaf litter (47) but also occurred on small pieces of coarse woody debris (7) or on aerial leaf litter 

(1) in moist chamber cultures. Considering that it was recorded from localities extending from 

Costa Rica to Brazil, the species seems to occur in similar microhabitats throughout the 

Neotropics. Sporocarps of P. longipes always appeared in moist chamber cultures relatively late, 

usually after at least 4 wk of continuous culture, and sporocarps were either solitary or scattered 

(but never gregarious). The average pH of the moist chamber cultures in which P. longipes 

appeared was 6.5(5.0–8.1). These values are fairly typical for the substrates upon which most 

myxomycetes occur in nature (Stephenson and Stempen 1994). 
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Other specimens examined: PANAMA: same location, substrate and date as HOLOTYPE, L.M. 

Walker LMW 268 (UARK 53971), LMW 1850 (UARK 53985), LMW 2007 (UARK 51762), 

LMW 2754 (UARK 54115), LMW 2777 (UARK 54129). COSTA RICA: Sarapiquí, La Selva 

Biological Research Station, (10°25'52"N, 85°59'47"W), 100 m. Primary tropical wet forest, on 

leaf litter and pieces of small woody debris in moist chamber culture (pH 6.2), 21 Jan 2012, L.M. 

Walker LMW 26151 (UARK 47993; GBa KP241120); same location, substrate and date as 

previous, L.M. Walker LMW 26264 (UARK 48715; GBa KP241121). BRAZIL: Caracaraí, 

Roraima, (01°45'N, 61°08'W), 233 m. Primary Amazon forest, on aerial litter in moist chamber 

culture (pH 5.3), 1 Feb 2014, I.L. Coelho ILC 30961 (UARK 54507). All of the 47 remaining 

specimens were also deposited at UARK, although they have not necessarily been examined with 

the same degree of detail as those listed above.  

 

Discussion   

Limitations 

This study may be considered limited by the use of partial gene sequences of only one gene and 

by the limited number of sequences used in building the phylogeny. However, the topology of 

the tree presented is stable (see above) and fully corresponds to the topology obtained by Fiore-

Donno et al. (2013), who used full-length sequences of two genes (18S, EF1a). This provides 

additional evidence of the validity of the 59 domain of 18S rDNA as a molecular barcode for 

species delimitation in myxomycetes. However, we still consider the phylogeny presented here 

as preliminary.  
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Validity of the Genus 

Our 18S phylogeny clearly supports the separation of Perichaena longipes from all other species 

of myxomycetes. However, P. longipes appeared to be much closer to Trichia alpina, T. varia 

and Metatrichia floriformis than to other species of Perichaena, and this relationship is 

supported by a high bootstrap value (0.95). This fact calls into question the appropriateness of 

classifying P. longipes as a member of the genus Perichaena. However, the new species cannot 

be assigned to Trichia or Metatrichia because both genera are characterized by having mostly 

unbranched capillitial threads that are ornamented with spirals (Martin and Alexopoulos 1969). 

Our species has a branched and anastomosed capillitium ornamented with coral-like papillae and 

small pits; a type of ornamentation considered to be typical for the genus Perichaena (see 

above). Therefore we observe here the evident contradiction between morphology and 

phylogeny. The situation becomes even more complicated when we acknowledge that all studied 

genera of the Trichiaceae, except Arcyria, do not appear to be monophyletic in this phylogeny. 

Instead Perichaena appears to be paraphyletic, represented by three different clades. Members of 

the genus Trichia are found in two of the three main branches of the Trichiales and therefore 

appear to be polyphyletic, as was indicated by Fiore-Donno et al. (2013). Finally, two members 

of the genus Metatrichia reveal varying results, either appearing to be sister or not sister to 

members of Trichia (results of Fiore-Donno et al. [2013] and the phylogeny generated herein, 

respectively). Therefore, based on the phylogenetic data, it appears that numerous divisions 

within the Trichiaceae should be re-evaluated, although not in the context of this study due to the 

small sampling and the inclusion of only a partial gene sequence from a single gene. Such a 

revision should only be carried out with a multiple gene phylogeny that includes a significant 

number of specimens for each species. Instead, with the information available herein, we can 
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only follow the current morphological concept for genera within the Trichiaceae, which assigns 

our new species to the genus Perichaena.  

 

One or Two Species? 

Sequences of the 18S were generated from four different specimens of P. longipes. The two 

specimens collected in Panama appear to have an identical 18S genotype, as do the two 

specimens collected in Costa Rica; however, there is an 8% sequence divergence between the 

two genotypes. This brings us to question whether these two 18S genotypes represent one or two 

different species. To answer similar questions in another group of Lucosporideans, Leontyev et 

al. (2015) proposed an approach for calculating the p distances between all 18S genotypes. This 

distance index is calculated as the proportion (p) of nucleotide sites at which two sequences are 

different and varies from 0 (sequences are identical) to 1 (sequences share no common 

nucleotides) (Hall 2011, Tamura et al. 2011). It was shown that there exists a natural gap 

betweenpvalues when comparing specimens of the same species (low p values) to those of 

different species (high p values) (Leontyev et al. 2015). We could not carry out these 

calculations in the present study because most of the species are represented only by one 

specimen. We, however, can compare our data with the natural threshold values proposed by 

Leontyev et al. (2015) to distinguish among species within the bright-spored myxomycetes. The 

value proposed for distinguishing species within the bright-spored myxomycetes is P = 0.11–

0.15, indicating that if the difference between two partial 18S genotypes is lower than 0.11 then 

they both belong to the same species whereas if the calculated p value is higher than 0.15 they 

belong to different species (Leontyev et al. 2015). Therefore the value P = 0.08 obtained by 

comparing sequences of Perichaena longipes from Panama and Costa Rica corresponds to only 
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intraspecies genetic diversity and does not suggest the separation into separate species. This 

conclusion is supported by analyses reported herein that showed no morphological differences 

between specimens from Panama and Costa Rica. 

 When the same analysis is applied to the morpho-species A. cinerea the results are 

different. Herein, A. cinerea is represented by five specimens, each of which corresponds to its 

own 18S genotype (see FIG. 2). All of them have p distances much higher than mentioned 

species threshold (p 0.37–0.62). This in addition to the morphological diversity often seen in this 

morphospecies (not examined in great detail here) is further evidence to a proposed idea that A. 

cinerea not a single species but instead may be a species complex (Clark et al. 2002).  

 

Morphological Analysis 

The distinctive set of morphological characters together with the unique 18S sequences indicate 

that P. longipes is a species of myxomycete new to science. It is assigned to thegenus 

Perichaena on the basis of the thick and persistent peridium along with the presence of a well-

developed, irregular, branching and ornamented capillitium lacking spiral bands, the surface of 

which is covered by pits when viewed by SEM (Novozhilov et al. 2008, Lado et al. 2009, 

Poulain et al. 2011). The bright yellow spores also validate the placement of P. longipes into the 

higher-level, bright-spored clade of the myxomycetes (Fiore-Donno et al. 2013).  

 As noted in the taxonomic diagnosis, the single most notable feature of P. longipes is the 

long stipe of the sporocarp. Although a stipitate sporocarp is not the most common expression 

for species of Perichaena, it is by no means unusual. At least six other species of Perichaena are 

characterized by a well-developed stipe. These are P. heterospinospora Novozhilov, 

Zemlyanskaya, Schnittler and S.L. Stephenson (Novozhilov et al. 2008), P. papulosa C.H. Liu 
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and J.H. Chang (Liu et al. 2007), P. pedata, P. polygonospora Novozhilov, Zemlyanskaya, 

Schnittler and S.L. Stephenson (Novozhilov et al. 2008), P. pulcherrima Petch (Petch 1909) and 

P. reticulospora H.W. Keller and D.R. Reynolds (Keller and Reynolds 1971). Four other 

species—P. areolata Rammeloo (Rammeloo 1984), P. calongei Lado, D. Wrigley and Estrada 

(Lado et al. 2009), P. chrysosperma, and P. stipitata Lado, Estrada and D. Wrigley (Estrada-

Torres et al. 2009)—have reduced or short stipes. However, it should be noted that the latter are 

not always stipitate but instead may display a variety of sporocarp types, even within a single 

fruiting. In contrast, P. longipes appears to form only erect, stipitate sporocarps, because there 

was never any evidence of sessile or plasmodiocarpic forms in our collections. Therefore in 

many instances P. longipes may be distinguished from other species of Perichaena simply on the 

basis of the much greater length of the stipe. When comparing stipe lengths to the two most 

morphologically similar species (P. pedata, P. stipitata), the stipe in P. longipes is commonly 

more than twice the length found in either of these other species. Moreover, the stipe of P. 

stipitata usually has a frosting of lime and thus appears white (Estrada-Torres et al. 2009). It is 

noteworthy that in the wet tropics, a number of species of myxomycetes have been observed to 

possess longer stipes when compared to the same species found in temperate regions of the 

world, presumably because the greater height above the substrate may aid in more effective 

drying of spores (Schnittler and Stephenson 2000). This is another reason that multiple 

characters should be evaluated to support the status of a separate species for P. longipes. Because 

of the general morphological similarities between P. longipes, P. pedata and P. stipitata 

although to a lesser extent in the second instance. A quick reference (Table I) is included herein 

for morphological comparison between the three species.  

 The sporotheca of P. longipes is similar to those of many other stipitate species of 
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Perichaena, excluding the sporocarp of P. polygonospora, which is much smaller (0.05–0.1 

mm), lacks a capillitium and has a unique polygonal spore shape (Novozhilov et al. 2008). The 

sporocarp of P. longipes is light yellow to tan, darker at the base, and the peridium is smooth, 

sometimes with a weak iridescence (Fig. 1a, b). Most other stipitate species of Perichaena are 

darker and/or do not have a smooth peridia surface. For instance, the sporotheca of P. papulosa 

is brownish orange and has an apical wart (Liu et al. 2007), P. polygonospora is buff or buff-

yellow and covered with orange-brown protuberances (Novozhilov et al. 2008) and P. calongei 

is yellow to dark brown, with dark lines marking the edges of the peridia plates of dehiscence 

(Lado et al. 2009). Another stipitate species, P. areolata, although more similar in color (light 

brown to yellow) to P. longipes differs in that the peridium has a mottled appearance and 

consists of two layers versus the single layer in P. longipes (Lado et al. 2009).  

 A peridium with a single layer also occurs in P. pedata, P. stipitata, P. polygonospora, P. 

heterospinospora and P. papulosa. However, in P. longipes the peridium is relatively tough, 

persistent and the inner surface is densely and irregularly verrucose. None of the other stipitate 

species of Perichaena have a similar peridium. Perichaena pedata and P. stipitata do have a 

peridium in which the inner surface is ornamented, but the ornamentation is different in all three 

instances (Table I). The inner peridium of P. pedata consists of a few low, rounded ridges, 

whereas in P. stipitata the ornamentation is composed of large ocellate elements (Estrada-Torres 

et al. 2009). Perichaena areolata, P. chrysosperma and P. polygonospora also have a verrucose 

inner surface of the peridium, but they are distinctly different in overall morphology. The 

published descriptions of P. papulosa, P. reticulospora, P. heterospinospora and P. pulcherrima 

do not include any information on the structure of the inner peridial surface. 
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The capillitium of P. longipes, av. 3.2–5.8 mm diam, is among the largest found in any of the 

stipitate species of Perichaena. The relatively large size is explained in part by the well-

developed ornamentation, which cannot be confidently excluded from consideration when the 

diameter is measured. In addition to the large size of the capillitium, the ornamentation is unlike 

that of any other described species in the Trichiaceae. The surface of the capillitium in P. pedata 

is irregularly and densely ornamented with papillate, branched, coral-like projections that are 

separated by pits (ca. 0.5 mm diam) visible only by SEM (Fig. 1k–n). In both of the species (P. 

pedata, P. stipitata) that are the most morphologically similar to P. longipes (Table I), the 

ornamentation is very different. In P. pedata the capillitium is ornamented with regularly and 

sparsely distributed spines and there are no pits between them (Estrada-Torres et al. 2009). 

Perichaena stipitata has a capillitium characterized by ornamentation consisting of large craters 

(3.8–6.8 mm) when viewed by SEM (Estrada-Torres et al. 2009) and there are no spines or other 

projections. 

 The difference between P. longipes and the other stipitate species with respect to spore 

size and ornamentation is not strong. However, for each pair of species being compared it is easy 

to find at least one distinguishing character. The spores of P. pedata are only sparsely warted, 

whereas those of P. stipitata and P. longipes are densely warted. This causes the spores of P. 

stipitata to be similar to those of P. longipes; however, they are considerably larger, 12.0–15.0 

mm vs. 7.8–9.1 m min P. longipes (Poulain et al. 2011).  

 The morphology of the warts covering the spores of the new species is a noticeable 

feature because these structures have flattened, star-shaped tips when viewed by SEM (Fig. 1p, 

q). Flat tips like this are unknown in other stipitate species except for P. papulosa, P. 

chrysosperma and P. calongei. However, they are common in the genus Trichia (T. contorta, T. 
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munda [Lister] Meyl., T. sordida, T. varia), a taxon to which our new species seems to be closely 

related. 

 The stipitate species of Perichaena discussed in this paper are included in the key. 

 

Key to the Stipitate and Subsessile Species of Perichaena 

1 Spores polygonal ..................................................................................... P. polygonospora 

1´ Spores globose or subglobose to ovate .............................................................................. 2 

2  Spores banded-reticulate ............................................................................ P. reticulospora 

2´  Spores not banded-reticulate but with ornamentation ....................................................... 3 

3  Spores ornamented with scattered tall pyramidal spines ..................... P. heterospinospora 

3´  Spores densely ornamented with warts or spines, but less than 0.5 µm high .................... 4 

4  Spore diam 12–18 µm .................................................................................................. 5 

4´  Spore diam 7–12 µm ......................................................................................................... 6 

5  Stipe calcareous, grayish or brown to black, spore diam 12–15 µm ................. P. stipitata 

5´  Stipe not calcareous, brown or red brown, spore diam 14.5–18 µm ........... P. pulcherrima 

6  Peridium single .................................................................................................................. 7 

6´  Peridium double ................................................................................................................. 9 

7  Sporocarp with apical protuberance, dehiscence leaving a cup-like base ........ P. papulosa 

7´  Sporocarp without an apical protuberance......................................................................... 8 

8  Peridium with irregular dehiscence, capillitial tubules less than 3.5 µm diam with 

 scattered small spines ........................................................................................... P. pedata 

8´  Peridium persistent, capillitial tubules between 3.2 and 5.8 µm and densely 

 ornamented with papillate, branched, coral-like projections …........................ P. longipes 
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9  Sporocarp subsessile to sessile or plasmodiocarpic, capillitial tubules with long spines, 

 2.9–5.5 µm long ....................................................................................... P. chrysosperma 

9´  Sporocarp subsessile to sessile but not plasmodiocarpic, capillitial tubules with spines 

 less than 3 µm long .......................................................................................................... 10 

10  Peridium marked with dark lines along edges of the plates of dehiscence, capillitial 

 tubules with spines, granules, or pits ................................................................. P. calongei 

10´  Peridium not marked with dark lines, dehiscence not along plates, capillitial tubules with 

 regularly distributed spines ................................................................................ P. areolata 
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Tables and Figures  

Table 1. Morphological characters of three stipitate species of Perichaenaa3 

 
 Perichaena longipes Perichaena pedata Perichaena stipitata 
Total height (mm) 0.5–0.8 0.2–0.8 0.08–0.38 
Diam of sporocarp 

(mm) 
0.15–0.25 0.2–0.5 0.1–0.5 

Color of sporotheca Bright yellow to 
ochraceous 

Ochraceous or fawn Orange yellow to 
dark brown 

Shape of sporotheca Globose to 
subglobose 

Subglobulose Subglobose to 
subhemispheric 

Color of stipe Dark brown to 
blackish 

Dark brown to 
blackish 

Calcareous and 
white, or brown 
to black without 
calcium 

Length of stipe 
(mm) 

0.3–0.7 0.45–0.60 0.1–0.5 

Diam of stipe (mm) 0.25–0.80 1/2 to twice the 
diam of the 
sporophore 

0.05–0.38 

Structure of stipe Plicate Stout and 
roughened 

Filled with 
crystalline 
deposits and 
refuse matter, 
sometimes 
striated 

General structure of 
capillitium 

Branching, tubular, 
free ends are scanty 
and obtuse  

Profuse and 
branching 

Scanty, branching, 
tubular, few free 
ends 

Color of capillitium Yellow Yellow Yellow 

Ornamentation of 
capillitium 

Densely ornamented 
with irregular 
spines and warts 

Small, regular, 
scattered spines 

Irregular with large 
holes (3.8–6.8 
µm) 

Ornamentation of 
capillitium by 
SEM (µm) 

Pits (~ 0.5 µm) Not reticulate or 
pitted 

Holes (3.8–6.8) 

Diam of capillitium 
(µm) 

3.2–5.8 1.5–3.5 1.4–3.6 

 
Spore size (µm) 

 
7.8–9.1 

 
9.0–11.0 

 
12.0–15.0 

                                                
4a Characters of P. longipes are given according to available herbarium material, whereas 
characters of P. pedata and P. stipitata are given according to Estrada-Torres et al. (2009) in 
conjunction with Poulain et al. (2011).  
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Table 1. (Cont.). 
 Perichaena longipes Perichaena pedata Perichaena stipitata 
    
Color of spore mass Bright yellow Bright yellow Orange yellow 
Spore 

ornamentation 
Prominent and 

abundant warts, 
flattened at apex 
and resembling a 
star shape  

Minutely warted Very flattened warts 

Peridium Single, thick, 
persistent  

Single, thick, 
persistent  

Single, 
membranous,  

Inner peridial 
ornamentation  

Densely verrucate  Short, rounded 
ridges and various 
sparce verrucate 
elements 

Ocellate and weakly 
wrinkled 



 

 149 

 

                  
 
Figure 1. Perichaena longipes. a–e. General view of sporocarps. f. Stipe and the base of 
sporotheca as viewed in transmitted light. g. Peridium and spores in transmitted light. h. Inner 
surface of the peridium. i–j. Capillitium and spores. k. Optical section of a capillitial thread. l–n. 
Details of the ornamentation of capillitial threads. o. Spores and capillitium as viewed under 
SEM. p. Spore. q. Detail of spore ornamentation; bar. Specimens: a, b, h, j–q. LMW 2574 
(UARK 54007); c–g, i. LMW 1850 (UARK 53985). Bars: a–e = 200 µm; f = 500 µm; g = 30 µm; 
h = 5 µm; i = 50 µm; j = 10 µm; k = 2 µm; l–n = 2 µm; o = 20 µm; p = 2 µm; q = 0.5 µm. 
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Figure 2. Phylogenetic position of Perichaena longipes within the Reticulariaceae. The tree is 
based on partial 18S sequences (791 bp, 434 aligned positions retained) constructed with 
MEGA5.1 and rooted with the genus Tubifera. ML bootstrap replicates are shown for each 
branch. Each species name is accompanied by the GBa number of the 18S rDNA gene sequence 
used in the phylogeny (one representative for each genotype if more than one). Green (or dark) 
circles mark representatives of the genus Perichaena and the blue (or light) ones, the 
morphospecies Arcyria cinerea. Sequences obtained in this study are shown in bold. The number 
of identical 18S genotypes (obtained in this study) are given in parentheses (if present). 
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Supplemental Material 1. Identifications, 18S genotypes, GenBank accession numbers and 
localities of the specimens examined in the present study. 
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V. Concluding Remarks 
 
The research described herein has greatly expanded our knowledge of myxomycetes in two 

major respects, first by providing an updated and timely discussion concerning myxomycete 

taxonomy and classification including a much needed outline to present the various myxomycete 

life history strategies and their potential impacts on the biology of and research relating to 

myxomycetes and second, allowing, for the first time, a glimpse into the ecology of litter-

inhabiting myxomycetes in the nutrient-poor lowland tropical forests of Panama and their 

response to nutrient addition. This research together highlights the importance of taxonomy in 

the framework of ecology. Within each of the three chapters in this dissertation, specific 

contributions to the field of myxomycete research were made.  

 Chapter two of this defense titled The species problem in myxomycetes revisited (Walker 

and Stephenson 2016) is a review of species concepts that may be applied to the myxomycetes. 

Because of the numerous alternative life history strategies and morphological plasticity 

commonly observed in the group, the myxomycetes challenge every proposed species concept to 

date. It has been several years since the last thorough discussions of this topic were written (e.g., 

Clark 2000; Keller and Everhart 2008) but more important than the amount of time that has 

passed is the technological advances that have taken place since that time. Traditional 

taxonomists are dwindling in numbers while molecular microbiologists are taking their place 

across the research landscape. There is now one fully sequenced myxomycete genome, which is 

that of the model organism Physarum polycephalum (Minx et al. 2015) and it is now possible to 

directly target myxomycetes from environmental samples to sequence in a high-throughput 

manner (Clissmann et al. 2015; Fiore-Donno et al. 2016). As our reliance on these technologies 

increase it is important that the discussion concerning the concept of a species continues and 
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ensure that the definition of a species remains compatible with new sources of data, at least to the 

extent that the great deal of historical data (based upon morphological information) remains 

relevant and can be built upon. 

 Furthermore, chapter two provides several specific, physical contributions to the 

literature. One is a newly generated figure of the myxomycete life cycle (courtesy of Angela 

Mele, Ch. 2, Figure 1) which not only describes a 'typical' myxomycete life cycle, but it also 

includes several alternative strategies as well as a hypothetical life cycle that to my knowledge 

has not before been included in any life cycle figure. This hypothetical cycle first described by 

(Indira 1964, 1969) is the generation of amoeboid cells directly from a plasmodium which could 

potentially act as gametes. Additionally, a table was generated (Ch 2, Table 1) to summarize the 

many years of tedious culture and microscopic research (cited throughout the text), which has led 

to a better understanding of myxomycete life history strategies. This table details numerous 

potential life history strategies (but without the potential complications of polyploidy or 

mutation), which will be a valuable resource for researchers in numerous areas of myxomycete 

research. Finally, chapter two ends by supplying an updated list of ideal components to include 

for new species descriptions going forward. Although not entirely different from previous 

recommendations (e.g., Schnittler and Mitchell 2000; Keller and Everhart 2008), the discussion 

surrounding molecular phylogenetics and molecular markers were enhanced herein based upon 

technologies that had emerged since the publication of those earlier works). 

 Chapter three of this dissertation titled The response of myxomycete communities to 14 

years of N, P and K addition in a lowland tropical rain forest, described the first long-term 

nutrient fertilization experiment in the tropics to include protists. The data collected during that 

study which included over 3,500 records and over 2,000 fruiting body collections, comprises 
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what may be the largest data set of its kind for any one site. In collaboration with the 

Smithsonian Tropical Research Institute in Panama, a large, fully factorial NPK fertilization 

experiment was utilized allowing for the investigation of the litter-inhabiting myxomycete 

community at this site, and also the possible limitation of three major macronutrients (N, P and 

K) to that community. That nutrient fertilization experiment is a significant contribution to the 

broader research community as it represents the longest running nutrient addition study in any 

old-growth lowland tropical forest in the world (Wright et al. 2011). This was also the first 

example of a K fertilization treatment experiment in any old-growth tropical forest and is the 

very first to incorporate protozoans. Experiments such as these derive their ultimate value from 

the accumulation of large amounts of data.  

 Indeed, a large amount of information is available for various communities (e.g., trees, 

arthropods, fungi) that have been studied at this site. Despite the abundance of evidence that 

numerous other communities at the experimental site are limited by the supply of various 

nutrients (e.g., Wright et al. 2011; Sayer et al. 2012; Turner et al. 2013) no consistently 

significant effect of nutrient addition to the litter-inhabiting myxomycete community was 

identified. Only a marginal treatment effect was identified and only in one of two datasets 

generated in the context of that study. In 2012 myxomycete abundance and richness in small 

woody debris increased in response to P addition alone and P in combination with N (NP) as 

well as K (PK) although to a slightly lesser degree. The addition of N or K alone, however, did 

not appear to increase abundance or richness in the myxomycete community. Although both of 

those findings were in line with the hypotheses, when repeated in 2013, no treatment effects 

were identified in the myxomycete litter-inhabiting community. Furthermore, the nutrient 

fertilzations did not appear to effect the myxomycete species composition in the litter. The 
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surprising and unexpected results obtained in that study raised numerous valuable questions 

concerning myxomycete ecology and biology as well as more fundamental questions 

surrounding the methologies employed for myxomycete studies. Furthermore, the data generated 

therein holds many possibilities for further study. The large amount of publicly available data for 

other communities and systems at the experimental site could be analyzed in combination with 

data obtained herein to test new hypotheses (e.g., myxomycete response to various soil 

characteristics, plant communities, etc.). Additionally, due to the very large number of fruiting 

bodies collected at the field site (> 2,000), which are securely stored in the herbarium at the 

University of Arkansas, many opportunities await further morphological and genetic studies. In 

fact, I have already utilized these collections to generate a small subunit rDNA sequence 

database. This database was generated for use in my ongoing high-throughput, environmental 

targeted sequencing research approach to investigate the soil-inhabiting myxomycete community 

at this site. 

 The final chapter of this dissertation is titled Perichaena longipes, a new myxomycete 

from the Neotropics and describes a new species found during the dissertation research in 

Panama (Walker et al. 2015). This species was abundant in samples from Panama and was also 

identified in Costa Rica as well as Brazil, indicating that it has a relatively wide distribution 

throughout the Neotropics further supporting the significance of this contribution to the 

literature. Additional contributions from this chapter include a new dichotomous key for 

morphological identification of the stipitate and sub-sessile species of Perichaena. Nine small 

subunit rDNA sequences were also generated therein and made publicly available. And the 

phylogeny produced within that study combined with the unique morphology of P. longipes, 

provided insight into the evolution and taxonomy of myxomycetes and more specifically 
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provided support for the non-monophyly of Perichaena within the Trichiales as first indicated by 

(Fiore-Donno et al. 2013). 

 All together my dissertation provides interesting new information about tropical litter-

inhabiting myxomycetes. This work proposes intruiging new questions regarding myxomycete 

biology and evolution and also highlights other long-standing and fundamental questions. In-

depth ecological study of myxomcyetes is only recently becoming a possibility as new 

technologies continually emerge. Therefore, throughout this dissertation, discussions concerning 

the species concept in myxomycetes as well as those challenging the traditional methods of study 

are quite timely and should aid in future research of myxomycetes. 
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