
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

8-2016

Stream Microbial Communities as Potential
Indicators of River and Landscape Disturbance in
North-Central Arkansas
Wilson Howard Johnson
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Fresh Water Studies Commons, Terrestrial and Aquatic Ecology Commons, and the
Water Resource Management Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Johnson, Wilson Howard, "Stream Microbial Communities as Potential Indicators of River and Landscape Disturbance in North-
Central Arkansas" (2016). Theses and Dissertations. 1624.
http://scholarworks.uark.edu/etd/1624

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F1624&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1624&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1624&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/189?utm_source=scholarworks.uark.edu%2Fetd%2F1624&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/20?utm_source=scholarworks.uark.edu%2Fetd%2F1624&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=scholarworks.uark.edu%2Fetd%2F1624&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/1624?utm_source=scholarworks.uark.edu%2Fetd%2F1624&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


 

 

Stream Microbial Communities as Potential Indicators of River and Landscape Disturbance in 
North-Central Arkansas 

 

 
 

A thesis submitted in partial fulfillment  
of the requirements for the degree of 

Master of Science in Biology 
 
 
 

by 
 
 
 
 

Wilson H. Johnson 
University of Arkansas 

Bachelor of Science in Biology, 2013 
 
 
 

August 2016 
University of Arkansas 

 
 
 

 
This thesis is approved for recommendation to the Graduate Council. 
 
 
 
 
 

_____________________________________        _____________________________________ 

Dr. Michael E. Douglas                                            Dr. Jeffrey A. Lewis  

Thesis Director                                                         Co-Thesis Director 

 
 
 
 

_____________________________________      _____________________________________ 
Dr. Marlis R. Douglas                                              Dr. Franck Carbonero 
Committee Member                                                Committee Member



 

 

Abstract  

 

 

 In the past decade, 29 shale basins have been actively developed across 20 states for 

extraction of natural gas (NG) via horizontal drilling/hydraulic fracturing (=fracking). This 

includes ~5000 wells within the Fayetteville shale of north-central Arkansas. Development often 

impacts both river- and landscapes, and management requires catchment-level evaluations over 

time, with organismal presence/absence as indicators. For this study next-generation sequencing 

was used to identify/characterize microbial communities within biofilm of eight Arkansas River 

tributaries, so as to gauge potential catchment influences. Streams spanned a gradient of 

landscape features and hydrological flows, with four serving as ‘potentially impacted catchment 

zones’ (PICZ) and four as ‘minimally impacted catchment zones’ (MICZ). Overall, 46 bacterial 

phyla and 141 classes were identified, with 24 phyla (52%) and 54 classes (38%) extending 

across samples. A principal coordinate analysis arrayed samples according to stream order, 

suggesting a relationship between communities and gradients. With regard to river- and 

landscape disturbance, three preliminary indicators emerged: (1) Synechococcophycideae and 

Oscillatoriophycideae (=Cyanobacteria that act as primary producers exhibiting a positive 

correlation with increased nitrogen and phosphorus) were significantly more abundant at PICZ 

sites (P<0.049), suggesting elevated nutrient availability; (2) Spartobacteria (a heterotroph 

negatively associated with salinity) was significantly more abundant at MICZ sites (p<0.01), 

suggesting lower concentrations of brine; (3) Actinobacteria, a bioremediator capable of complex 

and far-ranging removal of toxic pollutants, was significantly more prevalent at PICZ sites 

(p<0.039). Our results suggest that hydrology and location of NG well pads are potential 



 

covariates in defining microbial communities in study streams. However, long-term follow-up 

studies are needed to substantiate estimates and provide greater confidence in defining suggested 

impacts. 
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Abbreviations and Definitions 

 

1. AOA/AOB ratio – Ammonia oxidizing archaea versus ammonia oxidizing bacteria ratio as 

indicator of ecosystem health, with ratio >1 indicating general health. 

2. Epilithic – Organic organisms growing on surface materials, such as rocks 

3. MICZ – Minimally impacted catchment zone  

4. OGIPfree – Original free natural gas in place (in BCF): Indicates potential gas production 

5. OTU – Operational taxonomic unit, an operational definition of a group of species, genera, or 

other qualifying identity used in sequence analysis 

6. Periphytic – Subsurface microbial populations commonly attached to substrate or sediment 

7. PICZ – Potentially impacted catchment zone   

8. UNG – Unconventional natural gas (i.e. hydraulic fracturing, hydrocarbon extraction using 

high pressure liquids in shale rock) 
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Introduction  

 

The quality of water was an early focus of aquatic studies (Duncan and Hoppe-Seyler 

1893, Winterstein 1908), with dissolved gases and their effects on aquatic biodiversity an 

emphasis (Ball 1922, Gutsell 1929). Subsequent work often focused on biodiversity aspects as 

barometers for ecosystem health, with presence (or absence) of focal species as a driver for 

appropriate water quality metrics (Cairns et al. 1993). Larger aquatic organisms such as fishes, 

mussels, and aquatic insects most often served as sentinel species for these studies (Ball 1922, 

Gutsell 1929, Armitage 1958), given the relative ease with which they could be collected and the 

taxonomic databases available for their identification (Wiggins and Mackay 1978, Karr 1981). 

It is apparent from many of these monitoring studies that aquatic environments are often 

impacted by agricultural land use (Tong and Chen 2002). These impacts include enhanced 

nutrient content from fertilizer applications, presence of pesticides, and increased turbidity from 

soil erosion (Gilliom et al. 2006, Bernot et al. 2006).  

Another anthropogenic impact to groundwater and stream environments is an industrial 

activity, termed ‘fracking.’ This process extracts trapped hydrocarbons from sedimentary shale 

formations generally several thousand feet below the surface by injecting fluids at high pressures 

to fracture and release the trapped elements (Colborn et al. 2011). Fracking has developed into a 

rapidly growing industry that offers potential economic development and a relatively clean 

energy source (Springer 2011). However, this industry is largely unregulated and its 

environmental risks are numerous and well documented (Vidic et al. 2013), to include: 

accidental spills, release of fracking chemicals into groundwater, wastewater discharge, induced 
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seismic activity, gas migration, and altered drainage conditions leading to unintended sediment 

discharge (Lange et al. 2013).  

Ecological studies have been conducted in the wake of this burgeoning industry in an 

attempt to assess potential impacts (Colborn et al. 2011, Austin et al. 2015). The recognition that 

aquatic microbial communities often form sessile attachments, known as biofilm (Geesey et al. 

1978), provides a component to stream monitoring that allows large numbers of OTUs 

(operational taxonomic units) to be assayed in toto (Edgar 2013). The identification and 

characterization of biofilms provide attractive aspects: an ability to colonize submerged surfaces 

in a symbiotic composition, a long term exposure to the variability inherent in flowing water, and 

a means to efficiently evaluate primary production from epilithic or subsurface attached species 

(Haack and McFeters 1982, Stock and Ward 1989, Proia et al. 2012).  

Biofilm communities have primarily been characterized with regards to species 

diversities and abundances, but their intimate association with environmental factors in streams 

adds a critical but less studied aspect to their role in ecosystem dynamics (Battin et al. 2003). 

These associations may include the correspondence of biofilm community structure with a 

variety of impacts, such as: anthropogenic waste and pollution (Allan et al. 2012), extreme 

weather events (Pandey and Soupir 2012), natural erosion and alterations (Moslemi et al. 2012), 

and spatial geography and catchment land-use (Clapcott et al. 2012, Coles et al. 2012). Others 

studies have suggested effective methods for interpreting and utilizing these data (Poff 1997, 

Cooper et al. 1998).   

Microbial communities in aquatic ecosystems were largely ignored as recently as a 

decade ago, and for obvious reasons, despite their critical role in decomposing suitable biological 

substrates and recycling nutrients (Xu et al. 2006). For example, the photosynthetic components 



3 
 

of these communities, such as cyanobacteria, can contribute greater than 80% of primary 

production, while other components can remediate harmful substances through complex 

metabolic pathways (Gadd 2010). Microbial communities (sensu lato) are thus a vital component 

of aquatic ecosystems (Cohen 2006).   

The primary reason for a dearth of research on the microbial component of aquatic 

biodiversity was largely due to technical aspects, in that identifications were done optically and 

with much effort, and the compilation and annotation of community structure(s) for monitoring 

purposes was quite laborious (Henrici 1933, Karl 1986, Geesey and White 1990). In addition, 

many constituents of biofilm are difficult or currently impossible to culture in a laboratory (Chiu 

et al. 2014). These issues have been ameliorated of late with the onset of molecular advances in 

genomics (Tringe et al. 2005), transcriptomics (Poretsky et al. 2009), and proteomics (Ram et al. 

2005), that now provide in tandem the necessary window into the composition and complexities 

of aquatic microbial communities within biofilms. Genomic approaches can now be used not 

only to characterize microbial communities but also to interpret their community dynamics. 

Ribosomal RNA has been the primary molecular marker used to identify species (Pace et 

al. 1986), and the 16S ribosomal RNA region has been particularly favored, as it contains both 

conserved and hyper-variable regions that amplify easily and yield specific identifications 

(Schütte et al. 2008, Pham et al. 2009, Chiu et al. 2014). Furthermore, next generation 

sequencing technology such ‘sequencing by synthesis,’ developed by Illumina for its MiSeq® 

platforms, reduces the cost of these methods and improves their accuracy (Bokulich 2012, 

Zarraonaindia 2013).  

 The current project utilizes a molecular genetic approach to assay biofilm communities in 

selected streams found within a 360 square mile region located within the Fayetteville shale 
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region of northwest Arkansas (Bai et al. 2013). Stream reaches are within the foothills of the 

Boston Mountains, a limestone-based karst topography containing prolific ground and spring-fed 

streams (Adamski et al. 1995). The objectives of the study were to characterize the microbial 

biofilm communities in these streams and compare species-composition against a series of 

abiotic factors that are characteristic of the watershed. Knowledge of resident microbial 

communities and their abiotic environment will identify links between land-use and stream 

environmental conditions that are necessary prerequisites for monitoring of aquatic ecosystems. 

In this sense, alterations of stream conditions can dramatically alter microbial community 

composition and promote disturbances in higher trophic levels, leading to community 

disintegration (Schwarzenbach et al. 2006). These data will also provide insight into the manner 

by which water quality and changing land use impact stream conditions and ecosystem 

functioning.  
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Hypotheses and Objectives 

 

 Hypotheses for this study are: (a) there are no differences in microbial communities 

between the potentially impacted catchment zone streams (PICZ) and minimally impacted 

catchment zone streams (MICZ), and (b) spatial or abiotic factors are not significantly correlated 

with microbial community composition.  

 To accept or reject these hypotheses the following objectives will be addressed in this 

study. First, accurately sample the identified sites in a manner that minimizes bias, strives to 

limit any introduced errors, and utilizes the best practices as determined by the relevant previous 

research. Second, extract the collected biofilm samples using a protocol (experimentally 

determined with additional samples) which maximizes both purity and coverage of DNA 

sampled. Third, utilize Next Generation Sequencing (Glenn 2011) to accurately target and 

sequence the hyper-variable V4 region of 16S rRNA to allow for culture-independent 

characterization of the various microorganisms and their community composition. Fourth, 

employ a bioinformatics pipeline using tested and reliable software to explore parameters that 

may determine accurate assessments of community metrics. This pipeline will provide 

parameters required for determining statistical significance, where possible, using diversity 

analyses, multivariate statistical analysis, and taxonomic assignments. 
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Materials and Methods 

 

Sampling Sites and Spatial (GIS) data 

Eight sites were chosen from a group that formed part of an ongoing stream ecology 

research project (Evans-White et al. 2013) (Figures 2, 3, and 4). Global Information System 

data (GIS) was provided for each sample site by the Nature Conservancy (TNC; Fayetteville). 

From these, six traditional landscape-scale variables were computed (Table 1), as well as three 

relating to Unconventional Natural Gas (UNG) activity [i.e., Well Density, Inverse Flow Length 

(IFL) and Impact]. ‘Well Density’ is number of UNG well sites within a square kilometer of 

each sample site. ‘IFL’ was calculated in ArcGIS for all well sites upstream of each sampling 

location by using the flow length tool in the ‘Spatial Analyst Tool’ toolbox within ArcGIS and 

(corrected for slope) to determine the length of flow from each well site to the stream channel. 

The inverse of each flow length was summed across all well sites for each catchment area, with 

wells more proximal having a higher value and thus a greater potential effect. For ‘Impact,’ a 

site was scored as ‘1’ based on an IFL value ≥0.25 and a Well Density (no. /km2) ≥0.5, 

otherwise ‘0.’ A Ward hierarchical clustering dendrogram (Ward 1963) was employed to 

determine the relatedness of each site based upon the GIS variables, save Impact (Figure 1).  

 

Sample collection 

 Two pools were selected at each site peripheral to the greatest stream flow and sampled 

at their upstream and downstream boundaries (Figure 5). 

Once a suitable pool was identified, the following measures were then collected 

sequentially so as to replicate coverage and promote an accurate assay: (1) Canopy coverage; (2) 

horizontal location of sample within pool (i.e., 30% in from bankside pool edge); (3) depth 
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below the surface (standardized according to the first sample collected); and (4) substrate 

composition. Two biofilm samples were then obtained from each location, at each site, for a total 

of four samples per stream.  

The sampling site in each pool was approached from downstream, and the biofilm-

covered rock lifted by (nitrile-gloved) hand and sampled with a sterile Nasco Whirl-Pak Speci-

Sponge™. Previous studies have extracted biofilms by simply scraping surfaces, yet this can 

promote contamination as well as inconsistent recovery rates (Gagnon and Slawson 1999). 

Samples were immediately returned to the Whirl-Pak, sealed, placed on dry ice in a cooler, 

transported to the lab, and stored at -80ᵒC. Photographs were taken of each site and sampling 

location, as well as data on ambient air temperature, water temperature, weather conditions, 

depth and size of sample rock, and time of sampling (Table 2).  

 

Biofilm extraction from Nasco Whirl-Pak Speci-Sponges™ 

 Previous studies (Gagnon and Slawson 1999) employed a ‘stomacher’ (i.e., paddle mixer) 

to separate biofilm from sponges and suspend it within a solvent. This study instead employed a 

single wash with a standard PBS buffer solution coupled with five minutes of hand mixing (to 

simulate the action of a paddle mixer) for extraction of biofilm from sample sponges. Subsequent 

repetitions (i.e., centrifugation, removal of supernatant, weighing extract) did not yield additional 

materials. Biofilm was weighed to determine per-sample yield prior to DNA extraction (protocol 

summarized in Appendix 1). 
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DNA extraction 

 Three different protocols were evaluated: (1) a standard phenol-chloroform with ethanol 

extraction; (2) a commercial kit from Qiagen (QIAamp DNA Stool Mini Kit®); and (3) a 

commercial kit from MOBIO (PowerBiofilm® DNA Isolation Kit). DNA was quantified using 

the Thermo Scientific NanoDrop UV-Vis Spectrophotometer and the Life Technology Qubit® 

2.0 Fluorometer.  

Extractions were subjected to PCR and tested for amplification using four sets of primers 

(Appendix 1). Amplifications were confirmed using a 1% agarose gel and 1X TBE with a 1K 

ladder to observe expected fragments (supplemental Figure 1). The MOBIO Kit and included 

protocol (Appendix 1) were then used to extract the 16 samples. 

  

Sequencing (Illumina MiSeq®) 

 Amplicon libraries were produced by PCR (Polymerase Chain Reaction). Primers were 

chosen to amplify the hyper-variable V4 region of the 16S structural subunit rRNA gene as 

designed by Caporaso et al. (2012b). These primers allow a dual-index and bi-directional 

sequencing setup on the Illumina® MiSeq sequencer that greatly improves the quality score of 

each assigned nucleotide and thus increases confidence in a correct sequence assignment.           

Amplicons were gel extracted, pooled, and then re-amplified using Solexa primers as 

described by Klindworth et al. (2012). The raw reads were de-multiplexed with MiSeq Reporter 

software™ installed within the MiSeq® platform. The de-mulitplexed reads were stored in 

FASTQ format and made available on the BaseSpace® cloud application (Illumina 2011) for 

downloading and additional third party processing. 
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Bioinformatics 

     The 16 samples yielded 32 FASTQ files (i.e., forward sequence and index [R1], plus 

reverse sequence and index [R2]). Initial processing and filtering of raw sequences was done 

with USEARCH v8.0 (Edgar 2015). Forward and reverse paired reads were merged and renamed 

according to their respective sample site and location (upper or lower pool), using 

fastq_mergepairs. These single contiguous sequences were filtered and converted to FASTA 

files (fastq_filter) using default parameters. Expected errors were set to 0.4, as this is a better 

measure of sequence quality than quality scores alone (Edgar 2013). Both replicates from each 

site were combined into one contiguous FASTA file so as to increase sampling depth and 

improve coverage.  

For downstream analyses with QIIME (Caporaso et al. 2012b), the sample ID, metadata, 

and sequential sequence number were first added to the header of each FASTA file by 

implementing a custom Perl script (headerMod.pl-Appendix 2). Additionally, a mapfile was 

constructed in Excel using abiotic site data and relevant metadata for each sample site. Both were 

validated in QIIME using validate_mapping_file.py and validate_demultiplexed_fasta.py, 

respectively.  

Sequencing the 16S ribosomal RNA structural unit produces a significant number of 

exact sequence replicates and their removal greatly improves the efficiency of downstream 

analyses. Thus, each FASTA file was concatenated to create a sequence pool and de-replicated in 

USEARCH (derep_fulllength) with default parameters. Singletons (i.e., sequences found but 

once in the pooled data) are far more likely to result from sequencing error than are sequences 

found at least twice. Thus, removal of singletons represents a second quality-control step. 
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Sequences sorted by abundance using the command sortbysize and the option [-minsize 2]. This 

step also determined the size of each cluster. 

 Sequencing errors can also stem from ‘chimeric sequences’ (i.e., hybrid products between 

multiple parental sequences produced during the PCR reaction) that can be potentially 

interpreted downstream as novel organisms, thus inflating diversity estimates (Haas et al. 2011).  

OTUs (Operational Taxonomic Unit) were first generated in USEARCH using cluster_otus, with 

chimeric sequences subsequently identified and eliminated. An additional filtering step was 

performed in USEARCH using uchime_ref to match and eliminate additional chimeras by 

comparison to a reference FASTA database (rdp_gold.fa). The script fasta_formatter (FASTX 

toolkit; Hannon Lab 2011) was then used to create a single continuous line for proper 

downstream analysis. 

 A pipeline developed by the Brazilian Microbiome Project (BMP; Pylro et al. 2014) was 

employed to solve formatting issues that occur when Illumina data are analyzed with QIIME 

v1.7 that was originally developed to analyze sequences generated by the Life Sciences 454 

Pyrosequencing platform (Roche 2007). Each platform utilizes a different adapter and indexing 

strategy, as well as a different sequencing technology, and the BMP pipeline corrects these 

incompatibilities by applying several custom Python scripts (Van Rossum and Drake 2001). The 

OTUs were renamed so as to be compatible with QIIME by applying the BMP script bmp-

otuName.pl. Reads were mapped back to the original fasta file containing the assigned OTUs by 

implementing the USEARCH script usearch_global.  

 OTU taxonomy was assigned with the UCLUST method, as implemented in QIIME 

(assign_taxonomy.py). A representative set of sequences from the GREENGENES database 

(DeSantis et al. 2006), as well as a separate set of GREENGENES database reference sequences 
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were used to align sequences (via align_seqs.py) via the NAST alignment algorithm (Caporaso et 

al. 2010). Common gaps and non-conserved regions were removed (filter_alignment.py), and a 

reference tree generated (make_phylogeny.py). USEARCH output file (map.uc) was then 

converted into an OTU table file via a BMP script (python map2qiime.py), then into “.biom 

format” (McDonald et al. 2012) using QIIME (make_otu_table.py), with error-free and sampling 

depth validated (biom summarize-table).  

 

Alpha and Beta Diversity analyses 

Ecological and phylogenetic results were produced from a series of QIIME scripts that 

were amalgamated into a pipeline. These were: “core_diversity_analyses.py -i otu_table.biom -m 

smap.txt -c Impact, Slope, Watershed, InvFlowLength, WellDensity, Forest, Pasture, Urban, 

StrahlerSO -t rep_set.tre -e 29829 -o core_output”. The –c parameter allowed each abiotic factor 

to be included and also initiated parametric and multivariate statistical analyses. This QIIME 

pipeline involves the following QIIME scripts: alpha_rarefaction.py, 

beta_diversity_through_plots.py, summarize_taxa_through_plots.py, plus the (non-workflow) 

scripts make_distance_boxplots.py, compare_alpha_diversity.py, and group_significance.py. 

A measure of alpha diversity (or within community diversity) termed Shannon Entropy 

(Shannon and Weaver 1948) was computed so as to take into account the number of unique taxa 

(= richness) of the community and the evenness of its distribution. Using genera-level 

classifications, Shannon entropy (H') and evenness (J') indices were determined in QIIME© with 

a rarefaction sampling depth of 29,829 sequences per sample.  

Multivariate statistical analysis was conducted to examine alpha diversity at each sample 

site. All abiotic variables were contrasted against species richness to generate rarefaction curves 
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based on the number of taxa present in each stream. Chao1, or species richness based upon the 

amount of rare classes (OTUs) found within a sample (Hortal et al. 2006), was calculated in 

QIIME and plotted as rarefaction curves that determine whether sampling depth or the number of 

sequences acquired for each sample was sufficient to capture and accurately characterize the 

community (Schloss and Handelsman 2005). Repeated subsampling (10 times) of 10 to 29,820 

sequences, with steps of 2,981 sequences was conducted to generate rarefaction curves. Analyses 

were carried out with the default number of Monte-Carlo permutations (=999) and a standard p-

value of 0.05. 

The QIIME script beta_diversity_through_plots.py was used with weighted and 

unweighted UniFrac analyses to generate beta diversity, or between sample diversity. UniFrac 

measures phylogenetic distances among various taxa in a data set and can, through ordination 

and clustering, simultaneously compare several communities concomitant with their landscape 

scale geographic data (Lozupone and Knight 2005).  

 

Microbial biological indicators 

 The key role and the quick metabolic processing provided by microbial organisms for 

chemicals in stream ecosystems makes them ideal to serve as bioindicators (Sims et al. 2013), 

defined as an organism whose presence, absence, or abundance can reflect a specific 

environmental condition (Foissner and Berger 1996). To identify potential bioindicator species, 

two heat maps, one for the four MICZ sites and one for the four PICZ sites, were generated from 

the most abundant 20 taxonomic classes found at each site (Figure 11). Classes that could serve 

as bioindicators were then examined at the genus level to specifically identify potential 

metabolites. 
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UniFrac neighbor-joining tree  

 To visualize how sample sites relate to one another according to their identified microbial 

communities, UniFrac distance matrices were clustered with a neighbor-joining algorithm 

(Saitou and Nei 1987).  Weighted UniFrac phylogenetic distance matrices were generated during 

QIIME analysis.  The UniFrac distance matrices were then clustered in T-REX, a neighbor-

joining algorithm available online (Boc et al. 2012), generated with a Kimura 2-parameter 

substitution model (Kimura 1980) and validation by bootstrapping, and visualized with a 2-

dimensional neighbor-joining tree (Figure 12). 
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Results 

 

Spatial and local data; biofilm and DNA extractions 

Rock Creek and Driver Creek, classified as MICZ sites, were most similar based on 

abiotic variables (Figure 1). Two PICZ-classified sites, Hogans Creek and East Fork Point 

Remove, were the next most closely related. The remaining four sites clustered together by type, 

with the two PICZ sites, Black Fork and Sunnyside Creek being slightly more similar to each 

other than the two remaining MICZ sites, SIS Hollow and Low Cedar. Although sample sites 

were standardized across drainages, local ecological characteristics varied slightly (Table 2). 

Water temperature increased as sampling progressed temporally, as did air temperature. Three 

sites recorded a higher percentage of canopy cover, while site elevation ranged from 353 m (Sis 

Hollow) to 135 m (Black Fork).  

Biofilm averaged 153 mg/sample, with significantly greater amounts from lower sections 

of pools (average upper pool=131.1 mg; average lower pool=174.4 mg; one-way ANOVA 

F(1,14)=7.09, P=0.0105; Table 3). DNA averaged 39.8 ng/µl, and did not differ by site or pool 

(average upper pool=35.8 ng/µl; average lower pool=43.8 ng/µl). 

 

Initial processing of Illumina MiSeq sequencing data 

 Similar results were obtained among samples for the following: Percent sequences 

converted during merging of paired-end reads; percentage of exact overlaps (forward and reverse 

reads match exactly); and percentage of reads passing quality filtering threshold for maximum 

allowable errors (i.e., 0.4 = 99.999% probability of a correct nucleotide call) (Table 4). Means 
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and variances for merged sequence conversion, and numbers of filtered reads are also provided 

(Table 4).            

 De-replication condensed sequences from 682,688 to a unique set of 72,226 (a 90.4% 

reduction). Elimination of singletons further reduced the total to 33,483 (a 63.6% reduction). 

Removal of chimeric sequences during clustering eliminated an additional 3,740 (11.2%) with 

the remaining 29,743 clustered into 6,959 unique OTUs. Replicates within OTUs (22,784 

sequences) were also discarded during clustering. A comparison of sequences against a reference 

database also eliminated an additional 50 chimeric sequences (0.7%). Alignment of sequences 

with the core set database (DeSantis et al. 2006) also excluded an additional 345 sequences, thus 

yielding a final total of 6,564 unique OTUs. 

 

Shannon diversity statistics  

The number of unique OTUs ranged from 1,048 (East Fork Point Remove) to 547 (Rock 

Creek) (Table 5). Shannon entropy (H') and evenness (J') were: Highest for East Fork Point 

Remove (H'=3.22, J'=0.46) and lowest for Black Fork (H'=2.470, J'=0.359) amongst PICZ 

streams; and highest for Cedar Creek (H'=2.986, J'=0.443) and lowest for Driver Creek (H'=1.88, 

J'=0.29) amongst MICZ streams. Although the mean values for identified OTUs, Shannon 

entropy, and Shannon evenness were greater for PICZ sites (OTUs µ=945; H'µ=2.712; J'=0.398) 

versus MICZ sites (OTUs µ=723; H'µ=2.467; J'=0.375), the differences were not statistically 

significant.  
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Taxonomic identifications 

 The pooled data yielded 141 taxonomic classes, with 54 represented across all samples. 

The major classes (>2% average abundance) were: Alphaproteobacteria, Betaproteobacteria, 

Planctomycetia, Oscillatoriophycideae, Synechococcophycideae, Cytophagia, Saprospirae, and 

Gammaproteobacteria. Of the 14 most abundant (>1%) classes, the most dominant was 

Alphaproteobacteria, averaging 18.9% across samples, with Betaproteobacteria averaging 8.4% 

(Figure 6).  

Abundances of Oscillatoriophycideae and Synechococcophycideae (Cyanobacteria) were 

significantly greater at the PICZ sites when compared with MICZ sites (PICZ: t (3) =3.06, 

P=0.027; MICZ: t (3) = 2.37, P= 0.049). On the other hand, Verrucomicrobiae was significantly 

more abundant at MICZ sites (t (3) = 3.07, P=0.027).   

Gloeobacter sp. (Cyanobacteria) was most abundant across all sites, averaging 26.86%. 

Nitrosopumilus sp. (Archaeon) was the second-most abundant, averaging 4.45%. Both Black 

Fork and East Fork Point Remove had second-most abundant genera that differed: Microcystis 

(5.54%) in the former instance, and Zymomonas (4.86%) in the latter.  

Average relative abundance for the top 25 genera was 2.14% and ranged from 0.22% 

(Rhodobacter) to 26.86% (Table 6), with six different phyla represented. These were: 

Proteobacteria (40%), Bacteroidetes (28%), Cyanobacteria (12%), Plantomycetes (8%), 

Verrucomicrobia (4%), and Deferribacteres (4%).   

 

Alpha diversity 

 A total of 46 phyla were represented in the study. Average number per sample was 36 

(range: 32 to 39), with 24 found across all samples. Although this represents an excellent 
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diversity estimate for a substrate biofilm sample (Lyautey et al. 2005, Rundell et al. 2014), 

several phyla still dominated across all samples (encompassing 86% of samples). These were: 

Cyanobacteria (37.4%); Proteobacteria (31.7%); Bacteroidetes (7.6%); Planctomycetes (5.3%); 

Actinobacteria (4%). A total of 310 genera were found across all samples, with 116 (37%) at 

each, and 297 (95.8%) found in at least 4 or more. 

 When pooled by sample ID, several rarefaction curves approached asymptotes (Figure 7), 

suggesting sampling depth was sufficient to capture rare microbes. That being said, more diverse 

samples (i.e., Black Fork, Sunnyside Creek, and Sis Hollow) displayed a gradually elevating 

trajectory that suggested the potential for insufficient sampling depth (Figure 7). Samples pooled 

by impact differed between MICZ and PICZ sites, but not significantly (Figure 8). 

 

Beta diversity 

 Results from a principal coordinate analysis (PCoA) clustered samples according to site 

type, either MICZ or PICZ (Figure 8). In the weighted UNIFRAC analysis, MICZ sites clustered 

along the top of the second PC axis, while PICZ sites clustered along the bottom, with this axis 

accounting for 18% of the variation within the data (Figure 9). In a weighted UNIFRAC PcoA 

plot based on Strahler stream order, samples fell in a linear array along the first axis, from 

highest stream order (Point Remove) at the bottom, to lowest stream order (Driver Creek) at the 

top. This axis accounted for 56% of the variation within the data (Figure 10). 

 

Microbial biological indicators 

 Sites were not significantly different when compared across the top five identified 

taxonomic classes, and the bottom three identified classes also show remarkable similarities 
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across all sites (Figure 11). However, significant differences between site types exist for the sixth 

(Synechoccophycideae) and ninth (Oscillatoriophycideae) most abundant classes (PICZ: t (3) 

=3.06, P=0.027; MICZ: t (3) = 2.37, P= 0.049). Synechoccophycideae was represented by six 

genera (in descending abundance) Arthronema, Acaryochloris, Leptolyngbya, Pseudanabaena, 

Paulinella, and Synechococus. Oscillatoriophycideae was represented by seven genera (in 

descending abundance) Microcystis, Chroococcus, Cyanobacterium, Chroococciddoipsis, 

Phoridium, and Planktothrix. Microcystis, was substantially more abundant across PICZ sites 

and was found particularly high in Black Fork (5.54%). Both species are primary producers 

(phylum Cyanobacteria) and were more abundant in PICZ sites. The class Spartobacteria, a 

heterotrophic microbe (Herlemann et al. 2013) commonly associated with cyanobacteria and 

negatively associated with high salinity, was significantly more abundant at MICZ sites 

(M=0.02, SD=1.9E-04) versus PICZ sites (M=0.0048, SD=6.6E-06) t(3)=9.37, p = 0.01. The 

class Nostocophycideae, a filamentous cyanobacteria containing heterocysts (Ward et al. 1985), 

was significantly more abundant at MICZ sites (M=0.007, SD=1.15E-05) versus PICZ sites 

(M=0.0008, SD=5.1E-07) t(3)=9.28, p = 0.015. The class Actinobacteria, commonly reported as 

a bioindicator and bioremediation capable species (Lewis et al. 2012, Yergeau et al. 2012, 

Pascault et al. 2014), was significantly more abundant at PICZ sites (M=0.0186, SD=4.1E-04) 

versus MICZ sites (M=0.0177, SD=3.67E-05) t(3)=1.08, p = 0.039. Actinobacteria was 

represented by five genera across all sites (in descending abundance) Rothia, Streptomyces, 

Nocardioides, Rhodococcus, and Catellatospora. 
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UniFrac neighbor-joining tree  

 Rock Creek and Driver Creek are MICZ sites that were identified as most similar on 

abiotic variables in the Ward tree (Figure 1). They also shared the same branch with the other 

two MICZ sites, Sis Hollow and Low Cedar Creek in the neighbor-joining tree (Figure 12). Two 

PICZ-classified sites, Black Fork and East Fork Point Remove, were the next most closely 

related and were also more closely related to the four MICZ sites than the more distantly related 

PICZ sites, Hogans Creek and Sunnyside Creek. 
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Discussion 

 

 The links between land-use and stream environmental conditions provide insight into the 

manner by which anthropogenic activities impact stream conditions and potentially alter 

ecosystem function (Tong and Chen 2002, Gilliom et al. 2006). In this sense, the study area was 

primarily used for hay fields, cattle farming, or was undeveloped prior to industrial activity 

(http://www.nass.usda.gov). It has now experienced expansive growth of Unconventional 

Natural Gas (UNG) wells, and subsequent changes in land use that potentially impact the 

catchment zones near well sites (Entrekin et al. 2011). Subsequent research (as above) now 

examines the effects of this new industry, and the potential alterations it may have initiated in 

catchment zones and associated streams. The current study continues this exploration by utilizing 

next generation sequencing to characterize fresh water microbial biofilm communities within the 

Fayetteville Shale region. 

  Nationwide, freshwater streams have already experienced impacts that have altered and 

threatened ecosystem health, with over half (55%) in poor condition (Paulsen et al. 2008). The 

accelerated pursuit of shale resources in previously untapped regions has the potential to likewise 

exacerbate this decline (Gillen et al. 2012). However, baseline data is either insufficient or 

unavailable to determine if and where UNG activities have resulted in habitat alterations 

(Brittingham et al. 2014). One issue is that more conventional anthropogenic impacts on 

freshwater microbial communities must be compared to those found in streams potentially 

impacted by UNG activities (Brittingham et al. 2014). Once sufficient data has been generated 

across varied landscapes and conditions, then potential alterations can be properly quantified, 

identified, and related back to their most likely sources (Vidic et al. 2013). 
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 Spatial data 

 Comparisons based solely on landscape scale data (Figure 1) depicted environmental 

relationships among sites without designated impacts being considered. This, in turn, permitted 

benchmark species composition metrics to be developed that potentially relate to specific 

landscape scale catchment variables. These data separated streams into four groups, each 

containing two sites. Although six landscape-scale variables were utilized, elevated associations 

among them resulted in a single variable primarily separating sites from one another (Table 1, 

Figure 1). For example, Rock Creek and Driver Creek reflected the highest percentage of 

forestation, whereas Hogans Creek and East Fork Point Remove have substantially larger 

watersheds. 

 

Biofilm and DNA extractions 

 The significantly greater amounts of biofilm (Table 3) sampled from lower- versus upper-

pool sites was not an unexpected result, particularly given the flashy nature these streams display 

(Johnson et al. 2015), as well as proximity of the upper pool to the upstream riffle. However, 

these differences did not significantly impact the amounts of DNA extracted. 

During the initial optimization steps, substantial quantities of humic substances and 

polysaccharides, commonly referred to as extracellular polymeric substances (EPS) (Donlan 

2002), were found in most samples, again a typical biofilm result (Vu et al. 2009). This aspect 

also suggested that cyanobacteria and microbial diversity would be elevated in these samples, an 

aspect subsequently confirmed in taxonomic and diversity analyses (below). Interestingly, 

samples with high biofilm levels but with unexpectedly lower levels of DNA occurred in three 
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streams with high levels of microbial alpha diversity (i.e., East Fork Point Remove, Black Fork, 

and Sis Hollow – Figure 7). Increased microbial diversity, and presence of rare taxa that can 

metabolize a wider range of substrates, are deemed ecological strategies that counter 

environmental stress (Pholchan et al. 2013). Thus, greater turnover within diverse biofilms 

would be expected under conditions of increased stress and increased metabolite availability. 

 East Fork Point Remove, a PICZ stream, is most likely to have experienced these 

conditions, given its high inverse flow length value and second-highest well density (Table 1). 

Black Fork, also a PICZ stream, could be similarly affected. However, Sis Hollow is not 

impacted with an inverse flow length and well density of zero, and therefore presents an 

unexpected deviation in this case. Stress and increased variability in metabolites may not be 

necessary to generate an increased turnover in community diversity as increased nutrient 

availability can also promote less dominant but rapidly growing species to bloom (Yooseph et al. 

2010). Sis Hollow has the highest percentage of pasture among MICZ sites, and the second 

highest percentage of urbanization. Both are well-documented anthropogenic impacts known to 

increase freshwater eutrophication (Gilliom et al. 2006). This would also directly increase 

autotrophic species such as cyanobacteria, which in turn could explain high levels of 

polysaccharides within samples (Legendre and Rassoulzadegan 1995). Each of these streams is 

experiencing significantly higher turnover within their resident biofilms—a result which points 

to anthropogenic pollution in the form of diverse metabolites, stress inducing chemicals, and 

nutrient enrichment for the two PICZ streams, and nutrient enrichment likely from agriculture for 

the MICZ stream. 
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Shannon diversity statistics 

  Streams with higher numbers of OTUs did not consistently reflect higher H'-values, 

which in turn suggests the presence of several numerically dominant species in these 

populations, with many others in much fewer numbers. Microbes most commonly found in these 

freshwater environments are selected for (Zwart et al. 2002), and therefore evenness is 

depressed, particularly when compared with soil ecosystems. The streams with lowest evenness 

for each type [i.e. Driver Creek (MICZ) and Black Fork (PICZ); Table 5] are also most likely to 

have biological and chemical drivers pushing these results. Driver Creek is a headwater stream 

(stream order =<1) with the highest percentage of forestation in the study (=95.76%), and thus 

with an elevated leaf litter input. This promotes competition among bacteria and hyphomycetes 

(stream fungi) and reduces microbial diversity (Gulis et al. 2003). Black Fork has the highest 

percentage of pasture in the study (50%) and this in turn elevates available phosphates and 

nitrates in the stream, again promoting proliferation of a few dominant species (Lear and Lewis 

2009). The two least diverse streams in an environmental sense (i.e., Rock Creek and Driver 

Creek; Figure 1) also had low values for OTUs, suggesting a potential reduction of available 

niches in these streams.  

 

Taxonomic identifications 

 Microbial taxa identified in this study predominantly fell within the two most abundant 

classes of bacteria found within freshwater ecosystems, the Alphaproteobacteria and 

Betaproteobacteria (Fazi et al. 2005). However, the third most abundant in this study, the 

Planctomycetia, normally occurs at significantly lower abundances. It has distinctive 

morphological, metabolic, and genomic characteristics (Youssef and Elshahed 2014), with a 
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recognized capacity to act as an ammonia-oxidizer. In this sense, the health of an aquatic 

ecosystem is often reflected by the ratio of ammonia-oxidizing archaea (AOA) to ammonia-

oxidizing bacteria (AOB), with an elevated abundance of AOA and thus a ratio-number > 1, 

reflecting ecosystem health (Sims et al. 2012, Sonthiphand et al. 2013). The presence of 

Planctomycetia (AOB) at higher than normal abundances for a typical freshwater system lowered 

the AOA/AOB ratio and may be an indication of deteriorating conditions with respect to 

ecosystem health and water quality. However, the second most abundant genus in this study was 

Nitrosopumilus, an AOA microbe and the only archaeon identified within the top 100 genera. 

The presence of this AOA genus when compared to all AOB genera present across sites 

maintains the AOA/AOB ratio across sites (i.e. lowest=>1.405 (EFPR)) such that streams are 

still deemed ‘healthy.’ 

 

Alpha diversity 

 Freshwater streams are highly diverse microbial ecosystems (Lear et al. 2008), and this 

translates to their biofilms as well, despite limits on mobility (Lyautey et al. 2005). Stream 

biofilms herein also reflected this, with alpha diversity elevated across all sites. In the rarefaction 

plot of species richness (Chao1) versus sequences per sample (Figure 7), most curves (i.e., five 

of eight samples) approached asymptotes, suggesting that our sampling regime was sufficient to 

capture most rare microbes.  

 The greater diversity found in PICZ sites versus MICZ sites (Figure 8) suggests that 

several diversification factors may be at work in these streams. Most primary is the increased 

availability and diversity of metabolites (Gibbons et al. 2014), followed by elevated evenness 

levels (Wittebolle et al. 2009), and lower levels of pollution-induced stress (Girvan et al. 2005). 
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Given the limited spatial variation demonstrated by the microbial communities in this study 

(Lear et al. 2013), those streams with similar landscape catchments would be expected to have 

similar initial evenness values. This in turn suggests that diverse and abundant metabolites and 

low-level stress may be elevated factors in PICZ sites versus MICZ sites. 

  

Beta diversity 

The majority of landscape scale variables did not significantly alter phylogenetic 

distances or species-metrics among sites. Only two variables, Impact designation and Strahler 

stream order, yielded a consistent pattern in this regard. Figure 9 suggests that species abundance 

is impacted by proximity to UNG well activity. It also reflects variability amongst sites, with 

those identified as PICZ sites more similar to one another than MICZ sites. Because of this 

segregation along with each PICZ site changing their closest neighbor in the final tree as a result 

of increased species abundance in those sites with the highest potential impact, it is hypothesized 

that factors specifically relating to UNG activity have promoted the composition of its biofilm 

communities. 

The linear pattern seen in Figure 10 suggests variation of beta diversity across sites is 

predominantly influenced by stream order at each sample site, and that taxon richness and 

diversity are promoted by greater numbers of tributaries feeding study streams. Typically, 

streams with higher orders (i.e., >5) and larger watershed areas (i.e., >71km2) yield lower 

microbial diversity at their confluences (Besemer et al. 2013), whereas those with greater slopes 

and reduced watershed areas do not (Gillett et al. 2011). Most streams in the current study, 

despite being mid-level with respect to stream order, have comparably reduced watersheds, 

steeper slope, and are flashy with predictable dry periods (Johnson et al. 2015). These conditions 
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can generate surprisingly rich and distinctive microbial communities (Fazi et al. 2013, Meyer et 

al. 2007). Additionally, catchment areas in our study reflect elevated land-use (Entrekin et al. 

2011), and in fact, a catchment area with elevated land-use will positively influence microbial 

diversity (Lear et al. 2009). The land-use/ flow regime conditions (above) offer anecdotal 

support for higher diversities at confluences of tributaries, especially with regard to streams 

within PICZ areas. Streams in the current study have unique landscape scale properties which 

may have served as mild stressors (i.e. intermittent dry periods and rapid influx of flood waters) 

leading to increased stress tolerance (Gasith et al. 1999), thus aiding in initial diversity and 

preservation of enhanced diversity following additional stress.  

Although the remaining landscape variables differed among streams, they did not yield 

consistent patterns. This was somewhat surprising, considering that previous studies have 

identified catchment land-use as impacting bacterial richness (Winter et al. 2007, Lear et al. 

2013), more so than spatially determined gradients such as elevation, latitude, or longitude 

(herein). Typically greater impacts were found in streams affiliated with greater pasture or 

grassland areas, which positively correlated with taxon richness. Given this, differences in slope, 

watershed, and especially land use would be expected to yield consistent patterns of microbial 

diversity. However, similar studies of benthic invertebrates and bacteria suggest land-use 

variables must be strongly pervasive before bacterial communities are demonstrably impacted 

(Lear et al. 2009).  

Three sites showed significant environmental differences, but only at single variables. 

These were: diminished watershed area (Sis Hollow), and greater percentage of forestation 

(Rock Creek, Driver Creek). The latter also demonstrated a consistent relationship between 

abiotic and biotic metrics (Figures 1, 12). Both revealed diminished microbial populations that 
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associated with significantly higher percentage of forested land within their catchments (Table 

1). As explanation, natural landscapes with few anthropogenic impacts limit the amount of 

reduced and dissolved organic matter (DOM) in constituent streams, where DOM serves as a 

critical substrate for bacterial communities (Kirchman et al. 1991, Williams et al. 2010). Any 

factor that limits or enhances a potent food source, especially for sessile biofilm, will also impact 

both community metabolism and composition (Docherty et al. 2006). Although percentage of 

forestation did not yield a consistent pattern for beta diversity across sites, where it was highest 

and therefore indicating reduced anthropogenic land-use, there was a correlative reduced 

diversity (Figure 7). The results from the current study strengthen the hypothesis that landscape 

scale variables must be significantly divergent to drive consistent and significant differences 

within microbial biofilm communities (Lear et al. 2009).  

In this study, the variability among catchment areas was insufficient to significantly alter 

the composition of biofilm communities. However, primary drivers in this context are impact 

designation and stream order. Clearly, additional inputs from upstream tributaries could also 

promote impact-related conditions in higher-order streams, in this sense both factors could be 

coinciding for a more substantial influence. 

    

Microbial biological indicators 

 Many microbial taxa are considered ‘biomarker species,’ and thus their presence or 

absence can be a useful criterion for classifying metabolic substrate within a given ecosystem 

(Foissner and Berger 1996). PICZ and MICZ sites differ significantly with regard to several 

constituent microbial taxa (Table 7 and Figure 11). Two cyanobacterial classes, 

Synechococcophycideae and Oscillatoriophycideae, were significantly more abundant at PICZ 
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sites, suggesting the potential for increased phosphorus and nitrogen inputs, and thus 

eutrophication, and is consistent with a recent algal biomass study in the study region (Austin et 

al. 2015). Typically phosphorus would be the dominant nutrient, but the elevated abundances of 

non-nitrogen fixing cyanobacteria such as Microcystis within PICZ catchments (Paerl et al. 

2013) (Table 6), suggest the presence of elevated nitrogen, an aspect often associated with 

anthropogenic land use (Tong and Chen 2002), particularly at/ near UNG well sites (Mouser et 

al. 2012). Both cyanobacterial classes are effective primary producers capable of surviving in 

highly varied environments (Rothschild and Mancinelli 2001), and their dominance at PICZ sites 

suggests anthropogenic alterations in water quality.  

Synechococcophycideae can utilize unique metabolic pathways, and often persist with 

marine sponges in highly acidic environments at volcanic seeps (Morrow et al. 2015). 

Oscillatoriophycideae is equally diverse and also serves as a bioindicator for organic pollutants 

(Tanimu et al. 2011). Microcystis, for example, utilizes polycyclic aromatic hydrocarbons for 

growth and metabolism, and these often stem from ongoing pollution. Impressively, Microcystis 

reflects this ability even in the absence of preferred nutrients such as phosphorus and nitrogen 

(Zhu et al. 2012). Its presence at high levels at PICZ sites, and specifically in Black Fork, may 

point to elevated polycyclic aromatic hydrocarbons in the water column. These in turn are 

fracking contaminants found in water sources at close proximity to well pads (Witter et al. 2008). 

A Verrucomicrobia class, Spartobacteria, was significantly more abundant at MICZ sites. 

It is often positively associated with cyanobacteria, but negatively associated with higher salinity 

(Herlemann et al. 2013). Given the increased abundance of cyanobacterial microbes at PICZ 

sites, the elevated presence of Spartobacteria would also be expected. However, their significant 
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decrease could also indicate potentially elevated levels of brine at PICZ sites, in that brine-

contaminated waters are also associated with UNG well activity (Myers 2012). 

Finally, Actinobacteria (a well-known bioremediator and an additional biomarker class) 

was also significantly more abundant at PICZ sites, in particular at East Fork Point Remove. 

Each of the Actinobacterial genera listed in Table 7 is a bioremediator of hydrocarbons, heavy 

metals, halides, polycyclic aromatic compounds, or other common chemical contaminants (Byss 

et al. 2008, Chikere et al. 2009, Maldonado et al. 2011, Polti et al. 2011). Although the 

significant presence of Actinobacteria at PICZ sites could indicate higher levels of contamination 

due to UNG well activities, it may also be a response to naturally- or agriculturally-introduced 

contaminants (Villeneuve et al. 2011), in that Actinobacteria are opportunistic and heterotrophic 

(Berg et al. 2009). Regardless, differences among sites represent important distinctions, as 

microbial community structure is shaped by environmental factors (Gibbons et al. 2014) that 

produce a level of ‘habitat filtering’ (Pontarp et al. 2012). The bioindicator species identified at 

sites in this study suggest that niche partitioning, or selective competition for diverse resources 

(Macalady et al. 2008) is also occurring in response to the alteration of available resources.  

 

Conclusions 

 The current study sought to utilize a reliable method in order to examine the ecosystem 

health of fresh water streams, namely identifying and characterizing microbial biofilm 

communities. Based on published research, this is the first study to examine associations of UNG 

activity occurring within the study area watersheds on biofilm communities and also represents 

one of a relatively few number of studies examining biofilm communities in fresh waters streams 

in general. The null hypotheses were rejected by the results, indicating significant differences 
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were found in resident biofilms, and in most cases these differences seem to be driven by 

proximity to UNG well activities. Additionally, biofilm communities within two streams were 

shaped by significantly higher forestation and resulting lower anthropogenic influences. Taken 

together, the results suggest biofilm communities can serve as reliable indicators for landscape 

scale perturbations or pollution based impacts within fresh water systems, and increased UNG 

activities within catchments are either directly or indirectly promoting alterations of these water 

filtering communities. 

 Natural conditions involved in this study prevent the possibility of removing unwanted 

variation, particularly with regard to landscape scale metrics. Additionally, the relatively small 

sample size involved reduced statistical resolving power. Expanding the available sample sites 

and increasing the overall quantity of samples examined from these sites would generate higher 

degrees of confidence in the statistical veracity of results. Future studies will benefit from 

existing data and could lead to increased appreciation of the critical role that biofilms serve 

within these important ecosystems. Establishing a biofilm “fingerprint” for healthy streams could 

serve as an early warning system for the occurrence of significant alterations, such as those from 

UNG activity or other anthropogenic influences that could threaten the food chain and hence lead 

to catastrophic collapse. 
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Table 1: Landscape (GIS) data for each study site in the Fayetteville Shale region of north-central Arkansas, as acquired in 2013 prior 
to sampling. Stream = sampling location; Forest = % forested land within catchment area; Pasture = % pasture within 
catchment area; Urban = % urbanization within catchment area; Slope = % stream gradient; Strahler = Stream Order; 
Watershed area = in km2; Well density = wells/ km2; IFL = Inverse flow length; Impact = 0 (MICZ) or 1 (PICZ).  

 

 

 Forest Pasture Urban Slope Strahler Watershed area Well Density IFL Impact 

Stream (%) (%) (%) (%) (stream order) (km2) (no./ km2) (∑1/k)

m 
 

          

Rock Creek 94.49 4.25 1.02 6.3 2 16.11 0.124 0.177 0 

Driver Creek 95.76 2.27 1.02 8.59 1 12.28 0 0 0 

Low Cedar Creek 89.33 9 0.77 17 5 27.18 0.04 0 0 

Sis Hollow 80.94 14 0.89 19 3 6.67 0 0 0 

East Fork Point Remove  64 24 2 8 6 68.56 2.32 2.345 1 

Sunnyside Creek 49 40 1 6 4 14.41 3.64 0.305 1 

Hogans Creek 73 23 3 8 5 55.28 1.773 1.7 1 

Black Fork 39 50 2 6 5 32.16 0.69 1.299 1 
 
 

         

4
2
 

 



 
 

Table 2: Local data acquired at time of sampling for each site located in the Fayetteville Shale region of north-central Arkansas, with 
Elevation derived from ArcGIS data. Stream = sampling location; Air Temp = ambient air temperature; Water Temp = 
temperature of water at sample location; CC = % canopy coverage at site; Time = sampling time; Elevation = elevation above 
sea level at sampling site; Substrate Depth = depth below water surface of acquired biofilm substrate; SS = length of substrate; 
Substrate type = composition of substrate (sandstone and siltstone differ only in grain size).  

 

 Air Temp Water Temp CC Time Elevation Substrate Depth SS Substrate type 

Stream (ᵒC) (ᵒC) (%) (24h) (m) (cm) (cm)  

         

Rock Creek 28 19.8 64 8:57 256 29 9 Siltstone 

Driver Creek 28 21.2 57 9:59 231 27 8.5 Siltstone 

Low Cedar Creek 29 23.0 51 11:15 264 30 10 Sandstone 

Sis Hollow 29 22.6 67 12:35 353 23 8.1 Siltstone 

East Fork Point Remove  30 22.4 78 2:10 218 33 9.1 Sandstone 

Sunnyside Creek 30 22.8 68 3:01 182 43 8.6 Sandstone 

Hogans Creek 30 23.6 63 4:13 158 41 9.5 Sandstone 

Black Fork 31 21.4 74 5:11 135 31 9.8 Siltstone 

         

4
3
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Table 3: Biofilm and DNA gathered at study sites located in the Fayetteville Shale region of 
north-central Arkansas. Stream = sampling location; Sample ID = Site and pool location 
identification; Biofilm extracted = quantity (mg) extracted from each Nasco Whirl-Pak 
Speci-Sponge™; DNA extracted = quantity (ng/µl) extracted from each biofilm sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Sample ID Biofilm extracted DNA extracted 

Stream  (mg) (ng/µl) 

    
Rock Creek RCu 78 5.5 

 RCl 129 14.7 

Driver Creek DCu 92 6.5 

 DCl 199 22.6 

Low Cedar Creek LCu 108 8.9 

 LCl 166 45.0 

Sis Hollow SHu 140 41.6 

 SHl 143 28.6 

East Fork Point Remove  PRu 155 49.6 

 PRl 216 36.6 

Sunnyside Creek SSu 146 61.8 

 SSl 156 82.8 

Hogans Creek HCu 156 35.6 

 HCl 199 63.0 

Black Fork BFu 174 77.2 
 
 

BFl 187 57.0 
    



 
 

Table 4: Values for raw sequences, merged reads, filtered reads by stream sample, as derived from study sites located in the 
Fayetteville Shale region of north-central Arkansas. Sample ID = abbreviation assigned to each sample based on site and 
location of sample from its respective pool; Total raw reads (#) = those sequenced from each sample; Paired-end merging 
results (%) = reads successfully merged into a contiguous sequence; Paired-end merging (#) = Those successfully merged; 
Quality Score Filtering (%) = Those passing quality filtering; Quality Score Filtering Discards = Those below <0.001% chance 
of miscalled nucleotide; Quality Score Filtering (#) reads passed = final number of sequences passed to downstream analysis. 

        

                            

 

 

 

 

 

 

 

 

 

 

 Total raw reads  Paired-end merging   Quality Score Filtering 

Sample ID (#)  (%) (#)  (%) Discards (#) Reads passed 
         

RCu 11676  99.4 11608  89.3 1238 10370 

RCl 22641  99.6 22547  88.9 2513 20034 

DCu 11363  99.5 11309  90.7 1049 10260 

DCl 38462  99.2 38152  91.3 3337 34815 
20542 LCu 23230  99.5 23113  89.9 2571 20542 

LCl 30183  99.4 30007  88.0 3605 26402 

SHu 72246  99.7 72009  91.0 6453 65556 

SHl 48337  99.7 48171  90.3 4687 43484 

PRu 31482  99.6 31353  89.0 3460 27893 

PRl 53447  99.6 53232  88.6 6058 47174 

SSu 56612  99.8 56478  90.0 5634 50844 

SSl 63502  99.8 63371  89.3 6780 56591 

HCu 26650  99.7 26558  89.2 2869 23689 

HCl 71207  99.7 70987  89.2 7699 63288 

BFu 109950  99.7 109671  91.1 9781 99890 

BFl 90926  99.7 90671  90.2 8918 82008 

         

4
5
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Table 5: Values for Shannon Entropy, total identified species, and Shannon Evenness at each site 
located in the Fayetteville Shale region of north-central Arkansas. Stream = sampling 
location; Shannon Entropy (H') = Value based on OTUs at each site; Total Identified 
OTUs = Number at each site; Shannon Evenness (J') = Values range from (0) = total 
dominance to (1) = total evenness; Impact Factor = MICZ (0) or PICZ (1). 

 

Stream  Shannon 
Entropy (H') 

Total Identified 
OTUs 

Shannon 
Evenness (J') 

Impact 
Factor 

     

Rock Creek  2.372 547 0.376 0 

Driver Creek  1.881 639 0.291 0 

Cedar Creek  2.986 843 0.443 0 

Sis Hollow  2.629 861 0.389 0 

East Fork Point Remove  3.221 1048 0.463 1 

Sunnyside Creek  2.520 800 0.377 1 

Hogans Creek  2.737 847 0.406 1 

Black Fork  2.470 978 0.359 1 

     

 



 
 

Table 6: Top 25 Genera (by abundance) identified across all 8 sample sites located in the Fayetteville Shale region of north-central 
Arkansas. RC=Rock Creek; DC=Driver Creek; CC=Low Cedar Creek; SH=Sis Hollow; PR=East Fork Point Remove; 
HC=Hogans Creek; BF=Black Fork; RA=Relative Abundance. 

 

Phylum Genus RC DC CC SH PR SC HC BF RA 

Cyanobacteria Gloeobacter 32.680% 49.246% 11.020% 34.014% 13.739% 31.099% 16.535% 26.569% 26.863% 

Crenarchaeota Nitrosopumilus 5.180% 5.740% 3.449% 2.683% 2.203% 6.760% 4.644% 4.947% 4.45% 

Proteobacteria Sphingobium 3.986% 3.753% 1.998% 1.895% 2.513% 1.249% 2.449% 2.220% 2.51% 

Proteobacteria Methylibium 2.726% 1.587% 3.086% 1.828% 1.357% 3.753% 1.994% 1.763% 2.26% 

Bacteroidetes Sediminibacterium 1.837% 1.548% 2.640% 2.816% 3.645% 1.577% 1.831% 1.943% 2.23% 

Proteobacteria Zymomonas 0.976% 1.474% 1.900% 2.082% 4.859% 0.788% 0.990% 3.827% 2.11% 

Cyanobacteria Arthronema 1.505% 0.384% 0.352% 0.289% 2.796% 5.258% 3.289% 0.901% 1.85% 

Proteobacteria Balneimonas 1.177% 0.542% 1.352% 0.729% 2.429% 1.052% 1.741% 1.305% 1.29% 

Bacteroidetes Fluviicola 0.168% 0.726% 0.784% 1.748% 0.324% 2.631% 1.379% 1.763% 1.19% 

Planctomycetes Planctomyces 0.583% 0.225% 1.206% 1.309% 1.170% 0.553% 1.094% 1.225% 0.92% 

Proteobacteria Novispirillum 1.535% 0.694% 2.804% 0.594% 0.808% 0.218% 0.534% 0.378% 0.95% 

Bacteroidetes Leadbetterella 2.246% 1.247% 1.219% 0.683% 0.250% 0.429% 0.758% 0.280% 0.89% 

Proteobacteria Dok59 1.720% 0.701% 1.321% 0.552% 0.387% 0.427% 0.402% 0.539% 0.76% 

Planctomycetes Nostocoida 0.178% 0.348% 0.710% 0.600% 0.587% 0.649% 0.985% 0.476% 0.57% 

Bacteroidetes Saprospira 0.409% 0.276% 0.983% 0.996% 0.284% 0.258% 0.466% 0.554% 0.53% 

Bacteroidetes Chryseobacterium 0.238% 0.101% 0.590% 0.770% 0.326% 0.912% 0.656% 0.691% 0.54% 

Cyanobacteria Microcystis 0.003% 0.000% 0.002% 0.000% 0.001% 2.063% 0.005% 5.539% 0.95% 

Proteobacteria Rhodoferax 1.167% 0.978% 0.454% 0.245% 0.402% 0.307% 0.542% 0.186% 0.54% 

Verrucomicrobia Prosthecobacter 0.057% 0.022% 0.723% 0.805% 0.471% 0.177% 0.312% 0.450% 0.38% 

Bacteroidetes Dyadobacter 0.258% 0.546% 0.413% 0.331% 0.302% 0.629% 0.465% 0.608% 0.44% 

Deferribacteres Mucispirillum 0.275% 0.521% 0.140% 0.230% 0.244% 0.431% 0.567% 0.391% 0.35% 

Proteobacteria Luteimonas 0.013% 0.049% 0.199% 0.365% 0.472% 0.328% 0.169% 0.413% 0.25% 

Bacteroidetes Sporocytophaga 0.694% 0.090% 0.360% 0.405% 0.007% 0.008% 0.420% 0.007% 0.25% 

Proteobacteria Ramlibacter 0.500% 0.144% 0.210% 0.099% 0.177% 0.019% 0.527% 0.030% 0.21% 

Proteobacteria Rhodobacter 0.144% 0.072% 0.297% 0.319% 0.133% 0.221% 0.152% 0.393% 0.22% 
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Table 7: Microbial biological indicator and remediator OTUs identified at sample sites. Phylum = representative phylum; Class = 
representative class; Genus = identified genus; Biomarker type = reported type of biological indicator, either (I) = indicator or 
(R / I) = remediator / indicator; Remediated substrate or bio-indication = substrate indicated as present, or remediated. 
 

Phylum Class Genus Type Remediated substrate or bio-indication 

 
Cyanobacteria Synechococcophycideae Arthronema I Eutrophication (enhanced Phosphates and Nitrates) 

  Acaryochloris I Eutrophication (enhanced Phosphates and Nitrates) 

  Leptolyngbya I Eutrophication, hydrocarbon presence 

  Pseudanabaena I Eutrophication (enhanced Phosphates and Nitrates) 

  Paulinella I Eutrophication (enhanced Phosphates and Nitrates) 

  Synechococus I       Eutrophication (enhanced Phosphates and Nitrates) 
     

Cyanobacteria Oscillatoriophycideae Microcystis I Polycyclic aromatic hydrocarbons 

  Chroococcus I Heavy metals, especially lead, high salinity  

  Cyanobacterium I Organic pollution, increased fecal coliform concentration 

  Chroococciddoipsis * * = Undefined 

  Phoridium R / I Heavy metals, alkenes, eutrophication 

  Planktothrix R / I Ammonia, hydrocarbons, eutrophication 
     

Verrucomicrobia Spartobacteria Chthoniobacter I Polysaccharides and low salinity 
     

Actinobacteria Actinobacteria Rothia R / I Phenol and petroleum pollutants 

  Streptomyces R / I Heavy metals 

  Nocardioides R / I Herbicides 

  Rhodococcus R / I Benzene 

  Catellatospora R / I Arsenic 

     

 

 

4
8
 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1: Ward hierarchical dendrogram based on the unweighted pair-group method with arithmetic means (UPGMA) algorithm and 

derived from eight abiotic variables gathered at study sites located in the Fayetteville Shale region of north-central Arkansas. 
Driver Creek and Rock Creek were the most similar of all sites, and these MICZ sites clustered with two MICZ sites, SIS 
Hollow and Low Cedar Creek. The remaining four sites, all PICZ sites, clustered together with Hogans Creek and East Fork 
Point Remove being most similar. 
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Figure 2: Map of Arkansas showing the Fayetteville Shale region and drill sites. The majority of sites are located in a seven county 

region of north-central Arkansas: Pope, Conway, Van Buren, Faulkner, Cleburne, White, and Independence. All sites are 
within in the Arkansas River drainage basin.  
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Figure 3: North-central Fayetteville Shale Play with color-coded estimates of ‘original natural gas in place’, referring to the estimated 

natural gas that can be extracted from the shale deposit (Browning et al. 2014). White box depicts sample area (Figure 4).
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Figure 4: Current study area within the Fayetteville Shale Play region of north-central Arkansas. 
Site abbreviations are: (RC) Rock Creek, (DC) Driver Creek, (LC) Low Cedar Creek, 
(SH) Sis Hollow, (SS) Sunnyside Creek, (HC) Hogans Creek, and (BF) Black Fork. Sites 
marked with (▲) are within the minimally impacted catchment zone (MICZ) and those 
marked with (▼) fall within potentially impacted catchment zones (PICZ). The Arkansas 
River, as the primary drainage basin, is seen in the extreme southwest corner. 

 



 
 

 

 
 
 
Figure 5: Sampling regime and normalization at Rock Creek in the Arkansas River drainage of Arkansas. Site length was 

approximately 66m, with average bankfull width = 6m and average wetted width = 5m. Samples were first taken from 
downstream (right side) then upstream (left side) at each pool, at a distance approximately 30% from edge into transect. 
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Figure 6: Top 14 classes relative abundance based on percentage of total identified classes at each site with hierarchy determined by 

an averaged total, as derived from study sites located in the Fayetteville Shale region of north-central Arkansas. Stacked 
columns have the most abundant at the base and proceed generally to least abundant. Alphaproteobacteria were most abundant 
(18.9%), Betaproteobacteria were second most abundant (8.45%), and Planctomycetia were third most abundant (4.63%). 
Overall average abundance was 4.19%.
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Figure 7: Alpha diversity Chao1 species richness calculated on rarefied samples at a sampling 
depth of 29,800 for study sites located in the Fayetteville Shale region of north-central 
Arkansas. Samples were pooled by Sample ID.  
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Figure 8: Alpha diversity Chao1 species richness calculated on rarefied samples at a sampling 
depth of 29,800 for study sites located in the Fayetteville Shale region of north-central 
Arkansas. Samples were pooled by impact factor. PICZ sites exhibited greater richness 
than MICZ sites, but this result was not statistically significant. 
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Figure 9. Weighted Unifrac Principal Coordinate plot depicting the relationships among four 

PICZ sites (in red) and four MICZ sites (in blue) located in the Fayetteville Shale region 
of north-central Arkansas. Axis1 and Axis2 accounted for 74% of the variation in the 
data (56% and 18% respectively). MICZ sites cluster together along the top of the second 
axis, while PICZ sites cluster along the bottom of the second axis. 
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Figure 10. Weighted Unifrac Principal Coordinate plot of each sample site according to Strahler 

Stream Order (SSO), as derived from study sites located in the Fayetteville Shale region 
of north-central Arkansas. MICZ sites are labeled in red and PICZ sites are labeled in 
blue. Colors of each ball are established by each sample site’s SSO, and the size of each 
ball represents its relative position along the second axis. A straight gradient is found 
along the first axis, from the highest SSO (6 – Point Remove) at the bottom to the lowest 
SSO (1 – Driver Creek) at the top.



 
 

  
 
 
Figure 11. Heat maps of top 20 identified classes based on abundance of microbes at each site located in the Fayetteville Shale region 

of north-central Arkansas. The heat map on the left side represents the four MICZ sites, and the heat map on the right 
represents the four PICZ sites.  

Taxonomic Class 
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Dendrogram based on taxonomic UniFrac weighted distances 
 

 
 
 
Figure 12: Neighbor-joining tree based on UniFrac weighted phylogenetic distance matrix.  All four MICZ sites (in red) cluster 

together in a clade, with Sis Hollow and Cedar Creek being most similar. Two PICZ sites (in blue), Black Fork and East Fork 
Point Remove, are sister to the MICZ sites, with the remaining PICZ sites (Hogans Creek and Sunnyside Creek) sister to the 
previous PICZ sites. 
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Appendix 1 – supplemental 

 

Final optimized Biofilm extraction protocol from Nasco Whirl-Pak Speci-Sponges™ 

The final biofilm protocol was as follows: Remove each Nasco Whirl-Pak Speci-

Sponges™ sample from the -80ᵒC freezer and thaw. Prepare 500ml of standard PBS buffer 

(400ml dH2O, 0.1g KCl, 0.89g NaHPO4∙H2O, 0.135g KH2PO4, thoroughly mixed then brought 

up to 500ml) and vacuum filter in a 1000ml capacity 0.2µ pore. Pour 35ml of PBS buffer into 

Whirl-Pak with sponge, reseal top opening and place flat on counter and apply alternating 

pressure by hand for five minutes, inducing a forced swirling of PBS into and out of the sponge 

to solubilize the biofilm material. Pipette resultant elution into two sterile 15ml tubes and 

centrifuge @ 5000 x G for five minutes. Remove supernatant, resuspend each pellet in a minimal 

amount of supernatant and place into a 1.5ml Eppendorf tube, previously weighed so as to allow 

for determination of pellet mass, and centrifuge @ 1000 x G for one minute. Remove supernatant 

and weight pellet. The process is repeated until ~ 0.2g of pellet is obtained with no remaining 

supernatant 

 

The MOBIO Kit protocol used to extract the 16 samples 

 Sample pellets were suspended in 350µl of BF1 and transferred to PowerBiofilm® Bead 

Tube, then 100µl of BF2 was added, briefly vortexed, and incubated at 65ᵒC for five minutes, 

with the bead tube labeled on top and side for clarity. 

  We used a BioSpec® Mini-Beadbeater 16 (30 seconds @ 3500) to lyse cells. The sample 

was then centrifuged @ 13000 X G for one minute and the supernatant was transferred to a fresh 

1.5ml tube.  



62 
 

After bead beating, the supernatant remained pigmented, so an additional 100µl of 

solution BF3 was added (where BF3 is designed to remove humic and PS co-precipitates). This 

was vortexed then centrifuged @ 13000 X G for one minute and the ~400µl of supernatant was 

transferred to a fresh 1.5ml tube. Solution BF4 (900µl) was then added and briefly vortexed. 

Solution BF4 was kept in a water bath at 37ᵒC to prevent precipitation prior to use, and 650µl of 

this solution was added to a spin-filter column then centrifuged @ 13000 X G for 1 minute. The 

flow-through was discarded and this process was repeated once to completely load all 

supernatant onto the filter. The filter was placed into a clean collection tube and solution BF5 

was vortexed, with 650µl loaded onto the filter and centrifuged @ 13000 X G for one minute. 

The flow-through was discarded and 650µl of BF6 was loaded on the filter and centrifuged @ 

13000 X G for one minute. The flow-through was discarded. The spin filter was then centrifuged 

@ 13000 X G for five minutes to completely dry the membrane. The filter was then placed in a 

clean collection tube and 50µl of BF7 (elution buffer), which was heated to 42ᵒC, was carefully 

added to the center of the filter and allowed to incubate at room temp for two minutes, then 

centrifuged @ 13000 X G for 1 minute to elute. Each sample DNA extraction was quantified 

using Life Technologies Qubit® 2.0 Fluorometer. 

 

Primers used 

Four sets of primers used for testing and optimizing extractions: (1) universal bacterial – 

27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R (5'-

TACGGYTACCTTGTTACGACTT-3') which amplifies 97.3% of the full length (1541 

nucleotide) bacterial 16S rRNA gene; 27F (spans positions 8 to 27 in Escherichia coli rRNA 

coordinates) and 1492R (spans positions 1492 to 1507) (Weisburg et al. 1991); (2) broad range 
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fungal – 5.8sF (5'-GTGAATCATCGARTCTTTGAA-3') and ITS1fR (5'-

TCCGTAGGTGAACCTGCGG-3') which amplifies basidiomycete ITS sequences from 

mycorrhiza samples commonly used for molecular systematics at the species level (Gardes and 

Bruns 1993); (3) universal eubacterial – Eub338F (5'-ACTCCTACGGGAGGCAGCAG-3') and 

Eub518R (5'-ATTACCGCGGCTGCTGG-3') which amplifies a partial universal subset of the 

bacterial 16S rRNA gene; Eub338F (spans positions 320 to 338 in Escherichia coli rRNA 

coordinates) and Eub518R (spans positions 518 to 537) (Fierer et al. 2005); and (4) Firmicutes 

Lgc353F (5'-GCAGTAGGGAATCTTCCG-3') and Eub518R (5'-ATTACCGCGGCTGCTGG-

3') which amplifies a partial subset of the bacterial 16S rRNA gene of Firmicutes; Lgc353F 

(spans positions 334 to 353) (Guo et al. 2008). 
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Appendix 2 – custom Perl script convert_cls.pl 

 

#!/usr/bin/perl 

# convert comma separated file to tab delimited 

# author Wil Johnson 

# simple script to do the conversion 

 

use strict; 

use warnings; 

 

system ("clear"); 

system ("ls *.csv"); 

print "\n"; 

print 'What is the comma separated file you need to convert? '; 

chomp (my $csv_file = <> ); 

print 'What shall I name the new file? '; 

chomp (my $tabd_file = <> ); 

system ("< $csv_file tr \",\" \"\t\" > $tabd_file"); 

exit; 

 

Figure A1. Perl script designed to elicit user response to modify a comma separated txt file into a 

tab delimited file regardless of the size or complexity of the file. 
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Appendix 2 – custom Perl script headerMod.pl 

 

#!/usr/bin/perl 

 

use strict; 

use warnings; 

use Bio::SeqIO; 

=head1 Name 

headerMod.pl 

=head1 Usage 

headerMod.pl  <fastaFile> 

=head1 Synopsis 

This scripts takes an Illumina generated fasta file with a QIIME incompatible header and 

converts it to work with QIIME. 

Generally your header will be in some format such as: 

#>M02146:10:000000000-A51MH:1:1101:13422:1525 

A new fasta file will be written out containing the sequence(s) with new headers of the form: 

#>'SampleID_1' 'uniqueSeqIdentifier' orig_bc='AGTCGTGCCTCC' 

new_bc='AGTCGTGCCTCC' bc_diffs=0 

like so 

#>up.Rock_6 1101:12437:2258 orig_bc=AGTCGTGCCTCC new_bc=AGTCGTGCCTCC 

bc_diffs=0 

note the 3 numbers separated by ":" are still intact (these are not homogenous and will serve as 

the uniqueSeqIdentifier 

The script substitutes the arbitrary unchanging initial header (M02146:10:000000000-

A51MH:1:) with your matching ID (must be identical to mapfile ID) and adds the sequence 

number (QIIME required), retains the uniqueSeqIdentifier, and inserts the remaining QIIME 

requirements-the supplied barcode will be used for both "orig" and "new" so bc_diffs=0 will also 

be set 

 



66 
 

USING THIS SCRIPT:  

1 - run script with FASTA file as single argument (headerMod.pl  <fastaFile>) 

2 - choose new modified FASTA file name (prompted) 

3 - provide matching mapfile (prompted) > mapfile will be diplayed as will the original header 

from target Fasta file 

4 - copy arbitrary header to be replaced and paste it accordingly (leave '>' character out of match 

to replace) 

5 - choose SampleID to replace arbitrary run header (prompted) 

6 - copy and paste correct barcode for specific sampleID 

7 - inspect results for accuracy     

You can use 'head' and 'tail' unix commands on your fasta file (if more than one sequence/header 

is within) to ensure all headers were matched and replaced 

Another check: If your Illumina header is shorter than your QIIME compatible (likely) your new 

file should be larger, otherwise your pasted match did not match throughout your FASTA file 

Check and rerun to be sure you only remove what doesn't change throughout your multiple fasta 

sequences. ENJOY! 

=head1 Author 

Wil H. Johnson, UofA 

=cut 

unless (@ARGV ==1){ die "Usage:  headerMod.pl  fastaFileName";}  

my $oFile = shift;   

system ("clear"); 

print "When running a 'white space' warning will appear-ignore this as white space is required 

for QIIME compatibility\n"; 

print "\nYour original Illumina fasta file name: $oFile\n"; 

print 'New QIIME compatible   fasta file name: '; 

chomp (my $newFile = <> ); 

my $seq_in  = Bio::SeqIO->new( -format => 'fasta', -file => $oFile); 

my $seq; 

my $seq_out = Bio::SeqIO->new('-file' => ">$newFile", '-format' => 'fasta'); 
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system ("clear"); 

system ("ls *.txt"); 

print "\nWhat is the mapfile associated with this sample? "; 

chomp (my $mapfile = <> ); 

open(DATA, $mapfile) or die "Couldn't open file $mapfile, $!"; 

print "\nPartial mapfile $mapfile  with barcodes shown\n"; 

while(<DATA>){ print substr($_, 0, 48); 

    print "\n";  

} 

print "\nIllumina header of original FASTA file     "; 

system ("head -n1 $oFile"); 

print 'Copy & Paste characters to match & replace: '; 

chomp (my $seq_char = <> ); 

print "working file: $oFile\nWhat is the new label (SampleID) to attach? "; 

chomp (my $label = <> ); 

print 'What is the original barcode? '; 

chomp (my $b_code = <> ); 

my $seqnumber=1; 

open (STDERR, '>>', "log_$newFile"); 

while( $seq = $seq_in->next_seq() )  

{ 

 my $seqName = $seq->id; 

  $seqName =~ s/$seq_char/$label\_$seqnumber /g; #replace arbitrary with new label and 

seqeunce count number globally 

        $seqName =~ s/(gi\.\w*)\..*/$1/; 

 $seqName=$seqName . " orig_bc=$b_code new_bc=$b_code bc_diffs=0"; #add in 

remaining QIIME dependencies  

        $seq->id($seqName); 

 $seq_out->write_seq($seq); 

 $seqnumber=$seqnumber+1; 

} 
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system ("clear");; 

print "\nYour sequences have been renamed and are in the file $newFile\n\n"; 

system ("ls -lF -1 $oFile $newFile"); 

print "\n\nOriginal header\n"; 

system ("head -n1 $oFile"); 

print "\n\nNew header\n"; 

system ("head -n1 $newFile"); 

my $headernumber=$seqnumber-1; 

print "\nTotal number of modified headers= $headernumber\n\n"; 

my $filename = "log_$newFile"; 

my $filesize = -s $filename; 

my $nfilesize = -s $newFile; 

my $errornum = substr($filesize/$nfilesize,0,3); 

if ($errornum = 1.3) { 

 print "The error log only contains 'white space warnings' and will be deleted"; 

 system ("rm log_$newFile"); 

} else { 

 print "There were errors check head and tail of log_$newFile!"; 

} 

print "\n\n"; 
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