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ABSTRACT 

  Oxidative stress may play a role in the phenotypic expression of feed efficiency 

(FE). The transcription factor NFE2L2 (nuclear factor erythroid-derived 2-like 2) coordinates 

antioxidant response to oxidative stress and its activity is tightly regulated in part by KEAP1 

(Kelch like-ECH protein 1) and the E3 ligase CUL3 (Cullin3).  Thus, one objective was to 

determine mRNA expression of NFE2L2, KEAP1, and CUL3 as well as three antioxidant targets 

[glutathione peroxidase (GPx-1), superoxide dismutase 1 (SOD1), and superoxide dismutase 2 

(SOD2)] in breast muscle of immature pedigree broiler males (8 wk), immature Japanese quail 

males (4 wk) divergently selected for high or low susceptibility to restraint stress, and mature 

Japanese quail (30 wk) exhibiting high or low FE. The second objective was to determine effects 

of 4-hydroxy 2-nonenal (4-HNE, a secondary lipid peroxide), on NFE2L2, KEAP1, CUL3, 

SOD1, SOD2, and GPx-1 mRNA expression in an avian muscle cell line (Quail Muscle 7, 

QM7).  High FE pedigree broiler males exhibited increased KEAP1 and SOD1 mRNA 

expression in breast muscle compared to the low FE phenotype Quail from the HS (high stress) 

with low FE exhibited increased mRNA expression in all the genes except SOD1.  In contrast, 

the immature high FE quail from the LS (low stress) line had higher levels of NFE2L2, SOD2, 

and GPx-1.  The mature high FE Japanese quail had higher mRNA expression of SOD1, SOD2 

and GPx-1 compared to the low FE phenotype, but there were no differences in mRNA 

expression of NFE2L2, KEAP1 and CUL3 between the high and low FE mature quail. The 

effects of 4-hydroxynonenal (4-HNE) (0, 10, and 20 µM) on mRNA expression in QM7 cells 



 
 

 
 

was determined at 30, 120, and 240 min post 4-HNE treatment.  After 30 min, NFE2L2, SOD1, 

and GPx1 mRNA expression was lower and KEAP1 levels higher (P < 0.07) in 20 µM compared 

to 0 M 4-HNE.  At 120 min, CUL3 was higher in 10 µM compared to 0 and 20 µM 4-HNE 

treated cells; SOD1 expression was lower and GPx-1 expression higher in 20 µM treated 

compared to controls. There were no differences in mRNA expression at 240 min of treatment 

with the exception that 20 µM 4-HNE raised CUL3 mRNA expression compared to the 10 µM 

4-HNE treated cells.  
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CHAPTER 1 

 
I. Overview of NFE2L2’s Diverse Roles and Regulation 

To maintain cellular homeostasis, eukaryotic cells must coordinate defense mechanisms 

that protect against stressors or toxins.  Eukaryotic cells have developed diverse and complex 

signaling pathways to metabolize potentially harmful molecules and maintain cellular redox 

homeostasis.  Cellular oxidative stress cascades have been the topic of many diabetic, cancer, 

and ageing research studies (Yu et al., 1994).  This is mainly due to the pathways ability to 

release certain cellular components such as detoxifying enzymes or antioxidant proteins. A key 

transcription factor involved in coordinating the cellular antioxidant response is NFE2L2 

(Nuclear factor, erythroid 2-like 2).   

NFE2L2 is a basic leucine zipper (bZIP) transcription factor (Moi et al., 1994) that is 

ubiquitously expressed with highly conserved domains known as NFE2L2-ECH homology (Neh) 

domains.  Deficiency of NFE2L2 can result in embryonic lethality and severe oxidative stress 

(Leung et al., 2003). Many different stimuli have the ability to induce this protein, such as 

oxidative, inflammatory, xenobiotic, and hypoxic stress on a cell (Osburn et al., 2008).  There 

are also many different molecules that have the ability to induce and activate this protein (i.e. 

polyenes, heavy metals, peroxides, and quinones) (Li et al., 2012).  NFE2L2 has the ability to 

induce cytoprotective proteins and enzymes that help maintain adequate or appropriate 

antioxidant protection, thus protecting the cellular components that are sensitive to oxidative 

state changes (i.e. DNA) (Hayes et al., 2000).  

 Following Hayes et al. (2000), Miao et al. (2005) determined that NFE2L2 can initiate 

direct cross talk between phase I and II drug metabolizing enzymes such as cytochrome P450s. 

While cytoprotection is considered to be a primary role of NFEL2, it is also linked to many other 
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cellular processes such as cellular differentiation, proliferation, growth, and death (apoptosis) (Li 

et al., 2012).  While some roles of NFE2L2 are not clear (e.g. mitochondria morphology), it is 

possible that some of the roles may differ from species to species.  Itoh et al. (1995) 

demonstrated that NFE2L2 is highly regulated in chicken hematopoietic cells, suggesting that it 

could have originally played a crucial role in erythropoiesis in an avian system but not 

necessarily in a mammalian system.  Although Chan et al. (1996) reported that NFE2L2 was not 

essential for the erythropoiesis in mammalian cells, it does not mean that the amount of reactive 

oxygen species (ROS) in circulation and production by red blood cells are not impacted by 

NFE2L2 activation, or lack thereof, in mammalian cells.  The NFE2L2 protein also has been 

shown to regulate various proteins involved in the lipid and fatty acid metabolism.  The NFE2L2 

pathway can be induced by certain triterpenoids such as CDDO-lm and CDDo-Me [imidazole 

and methyl ester derivative of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO)] , 

that have been shown to reduce the amount of fatty acid accumulation in the livers of mice on a 

high fat diet (Shin et al., 2009). 

As shown below in Fig. 1.1, NFE2L2 is regulated by proteosomal degradation when there 

is no cellular stress, or it can be transactivated to the nucleus in response to oxidative stress.  

Among the conserved Neh domains found in NFE2L2, the Neh2 domain mediates the cytosolic 

suppression of NFE2L2 when it binds to KEAP1 (Kelch-like-ECH protein 1) and forming a 

homodimer (Itoh et al., 1999).  KEAP1 is a cysteine rich protein that attaches to the actin 

cytoskeleton (Kang et al., 2004) to anchor the NFE2L2 protein in the cytosol, thus preventing 

activation. The human KEAP1 protein has 27 cysteine residues that are highly reactive towards 

electrophiles and ROS. 
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Fig. 1.1: Cellular Regulation of NFE2L2: A simple depiction of regulation of NFE2L2 in the 

cell is provider in Fig. 1 and discussed in detail below.  

 

  One proposed model indicates that two important peptide regions are involved in Neh2 

and KEAP1 binding: namely 129DLG31 and 79ETGE82 respectively (Kobayashi et al., 2006). 

These protein motifs within the Neh2 domain of NFE2L2 are thought to be able to approach an 

alpha helix region of KEAP1 (known as the DGR site) that contains multiple lysine residues and 

attach. It is thought that 79ETGE82 amino acid sequence (motif) has a higher affinity for the 

KEAP1 subunit than the 29DLG31 motif, thus allowing it to act as somewhat of a “hinge” while 

29DLG31 acts as a “latch” (Kobayshi et al., 2006).  This allows KEAP1 to act in various redox 

states of the cell.  KEAP1 has the primary responsibility of sequestering NFE2L2 in the absence 

of stress stimuli, but it does not do this without aid from another protein: Cullin-3 (CUL3).  

                                                        
129DLG31, 79ETGE82, and DGR denote single letter abbreviations for amino acids and respective position within 

the protein. 
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KEAP1 facilitates the degradation of NFE2L2 via the 26s proteasome by serving as an adapter 

protein for CUL3 (Kobayashi et al., 2004). 

 CUL3 is a subunit of the E3 ligase complex that interacts with KEAP1 in vivo (Geyer et 

al., 2003).  KEAP1 is one of many different cellular proteins that interact with CUL3, all of them 

using the CUL3 protein as a tag for degradation by the 26S proteasome (Geyer et al., 2003).  

Because CUL3 acts as a crucial degradation “tag” at times for multiple proteins (involved in 

different cellular pathways), it has made it a novel target in combating diverse pathologies.  The 

association between KEAP1 and CUL3 is crucial for NFE2L2 ubiquitination, but the details of 

how the proteins interact is still not completely understood (Eggler et al., 2009).  Various 

molecular interactions of KEAP1 and CUL3 have been proposed and studied.  In response to 

stimuli (e.g. ROS) the cysteine residue(s) in KEAP1 undergo a conformation change and the E3 

ubiquitin ligase CUL3 is unable to attach to KEAP1. This important covalent modification is 

happening primarily at the Cys151 residue of KEAP1 (Rachakonda et al., 2008; Eggler et al., 

2009). This triggers NFE2L2 to detach from KEAP1 and translocate to the nucleus, thus 

preventing a polyubiquitin tag for proteosomal degradation.  Another proposed mechanism states 

that when KEAP1 does not have the CUL3 ubiquitin tag attached, it will simply become 

saturated with NFE2L2, thus allowing newly synthesized NFE2L2 to accumulate and translocate 

to the nucleus (Katoh et al., 2001). Once NFE2L2 reaches the nucleus, the Neh4 and Neh5 

domains are responsible for the transactivation of NFE2L2, and the Neh1 domain will bind to the 

antioxidant response element (ARE) within the DNA (Katoh et al., 2001).  This binding to the 

ARE is made possible by NFE2L2 heterodimerization with small Maf proteins (transcriptional 

activating proteins) (Itoh et al., 1995) and induces the expression of various cell defense genes 

that will work to restore the cell to its basal state.  
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Figure 1.2: Conserved Domains of KEAP1 and NFE2L2: Structures of Kelch-like ECH-

associated protein 1 (Keap1) and nuclear factor E2-related factor 2 (Nrf2). BTB, Bric-a-Brac 

domain; IVR, intervening region; CUL3, Cullin E3 ubiquitin ligase; ROS, reactive oxygen 

species; DLG and ETGF, binding sites for Keap1. 

 

It has been shown that a lack of the KEAP1 protein can cause hyperactive signaling and a 

decreased half-life of NFE2L2 (McMahon et al., 2003) but the exact mechanisms and roles of 

KEAP1 are still heavily debated.  KEAP1 itself has shown to be affected by the autophagy 

related protein Sequestosome1 (p62) (Fan et al., 2010).  Sequestosome1 acts as a scaffold protein 

that activates the NFE2L2 stress response by inactivation of KEAP1 (Copple et al., 2010).  There 

are theories that KEAP1 may have either an independent or dependent mechanism of regulation 

for NFE2L2.  The independent regulation theories suggest that while KEAP1 plays an important 

role in the regulation, it can also be heavily regulated by factors at the transcriptional and post-

transcriptional level.  Multiple proteins have been identified as NFE2L2 binding partners, and 

each could affect binding affinity, localization, or degradation.  In 2008, Jain et al., reported that 

phosphorylation plays a role in the nuclear export of NFE2L2.  In vivo proof that modification of 

one of the critical cysteine residues in KEAP1 automatically acts as a biological trigger of 
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NFE2L2 to translocate to the nucleus has not been demonstrated (Eggler et al., 2005).  However, 

KEAP1 has a significant number of sulfhydryl groups from its cysteine residues that collectively 

play a role in conformational changes and function.  There is no doubt that KEAP1 acts as a 

fundamental sensor of oxidative or electrophilic stress for the NFE2L2 pathway, but by varying 

degrees depending on conditions in the cell.  The many cysteine residues of KEAP1 lower the 

predicted pKa value of NFE2L2 by binding with more basic amino acids that are a part of the 

NFE2L2 inducers.  Dinkova-Kostova et al. (2002) noticed that the majority of NFE2L2 inducers 

react with thiol groups even though they are structurally dissimilar.  Cysteine modification as 

one of the primary means of NFE2L2 transactivation is not clear, as the Neh2 region of NFE2L2 

does not contain cysteine residues itself. This could be a result of a chain reaction of various 

cysteine residues in KEAP1 started by the Bric-a-Brac region of KEAP1 that is responsible for 

the dimerization of two KEAP1 molecules (Stogios et al., 2005).  This Bric-a-Brac region 

dimerization is required to sequester NFE2L2 in the cytoplasm and has been the key feature of 

many models that try to explain NFE2L2 stabilization (Zipper et al., 2002).  Upon induction, the 

BTB (Broad complex, Tramtrack, and Bric-a-Brac) region of KEAP1 may undergo covalent 

modification and create somewhat of a steric hindrance when it tries to interact with CUL3.  

 Recently, microRNAs have emerged as new players in managing redox homeostasis 

(Cheng et al., 2013) and may be related to the age of the cell or organism.  A factor to consider 

when it comes to the expression and activation of NFE2L2 is the age of the organism in which 

NFE2L2 is being studied.  NFE2L2 protein expression in tissues declines with age (Suh et al., 

2004). This decrease in NFE2L2 expression has been demonstrated in mouse liver, which 

coincides with a decrease in glutathione synthesis (Suh et al., 2004).  This decrease, however, 

may have more to do with translation, rather than by KEAP1- mediated inhibition.  Recently 
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Smith et al. (2015) demonstrated that KEAP1 expression also declines with age.  This suggests 

that NFE2L2 degradation is not to blame for this age-related decreased expression, and the 

decrease in KEAP1 expression might even be a way that the cell mechanistically copes with a 

lack of the NFE2L2 protein being synthesized.  In general, a decrease in protein translation 

appears to be a trait of aging.  Given that NFE2L2 has a relatively short half-life compared to 

other cellular proteins, it may be particularly sensitive to the adverse effects that come with 

aging.  These direct mechanisms that contribute to the age-related decline in NFE2L2 expression 

are still not yet defined but it could be in part due to the expression of specific microRNAs such 

as miRNA-144, 153, 27a, and 142-5p (Cheng et al., 2013).  These specific miRNA binds to 

NFE2L2 mRNA to attenuate the amount of NFE2L2 and its activity.  Likewise, miRNA-200a 

has shown to cause attenuation of the KEAP1 protein, as shown by using miRNA mimicking 

techniques (Yang et al., 2014).  With both NFE2L2 and KEAP1 showing signs of declining that 

correlate with certain mi-RNA, more studies are clearly needed to define which mi-RNAs can 

inhibit or promote the translation of these proteins.   

II. Antioxidants and Oxidative Stress 

 Upon NFE2L2 activation of ARE, there follows a first line of antioxidant defense that 

sets out in the cell to metabolize ROS.  In this first line of defense are superoxide dismutases 

(SODs) that are a family of enzymes that work to catalyze the dismutation of superoxide anions 

(Liochev et al., 2007).  There are multiple isoforms of SODs that have been molecularly 

characterized.  CuZn-SOD or superoxide dismutase 1 (SOD1), is a copper and zinc-containing 

homodimer that is found almost exclusively in the cytoplasm (Parge et al., 1992).  CuZn-SOD 

converts naturally occurring, but harmful superoxide radicals to hydrogen peroxide (H202).  After 

this has occurred, the H202 can then be metabolized by the enzyme catalase (Alscher et al., 2002).  
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Within the SOD1 protein, the Cu/Zn site that holds the superoxide ion is crucial for the 

conversion of superoxide to H202.  It has been implicated that SOD1 plays an important role in 

apoptotic signaling and cell death by means of its regulation of the amount of ROS within the 

cytoplasm (Liang et al., 2009).  Another family member of the superoxide dismutases is Mn-

SOD or superoxide dismutase 2 (SOD2).  This protein will bind one manganese ions per subunit 

and is found predominately in the mitochondria.  Mn-SOD serves to protect the electron 

transport chain from superoxide produced by electron leak during oxidative phosphorylation.  

Like SOD1, SOD2 also plays a role in apoptotic signaling and protection against ischemia-

reperfusion injury (Schneider et al., 2010).  Given that it has tremendous cytoprotective effects, 

overexpression of SOD1 or SOD2 has been linked to increased tumor metastasis (as has 

NFE2L2). 

This first evidence of a relationship between NFE2L2 and SOD1 was reported by Kirby 

et al. (2005) who showed that the presence of a mutated SOD1 caused a reduction in NFE2L2 

mRNA expression.  Milani et al. (2013) reported that SOD1 was shown to converge in the 

NFE2L2 pathway with the DJ-1 (Parkin7) protein.  DJ-1 is a ubiquitously expressed protein that 

is activated by the NFE2L2 pathway and translocates from the cytoplasm to the mitochondria or 

nucleus hours after the cell is exposed to oxidative stress.  The essential role of DJ-1 is to protect 

the cell from apoptotic death triggered by high levels of ROS by activating other genes such as 

SOD1. DJ-1 is considered to be a crucial protein in protecting against neurodegeneration and 

thus is the focus of numerous Parkinson’s disease studies (Hiroyoshi et al., 2013).  This crosstalk 

between the antioxidant and apoptosis pathway helps maintain mitochondrial integrity, thus 

further proving NFE2L2’s importance to an array other antioxidant defenses that interact with 

different cellular pathways.  
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 The glutathione peroxidase family also plays a big role in fighting ROS.  Glutathione 

peroxidase 1 (GPx-1) is another oxidative stress related enzyme found in the mitochondria.  

GPx-1 is one of only a few proteins in higher vertebrates that contains selenocysteine moieties. 

Selenocysteine is the 21st proteogenic amino acid and is coded by UGA, which normally 

functions as a translation termination codon (Lubos et al., 2011).  GPx-1 catalyzes the reduction 

of H202 to water.  Unlike SOD, GPx-1 will also reduce other organic hydroperoxides such as 

lipid peroxides, to alcohols, thus making it one of the most important antioxidant enzymes with 

respect to lipid peroxides and H2O2 metabolism in eukaryotic organisms (Lubos et al., 2011).  

Another notable difference is the fact catalase has a much higher Km for H2O2 than GSH 

peroxidase, so often catalase functions in a pathophysiological environment as to where GSH 

peroxidase will act at physiological basal levels (Chrissobolis et al., 2008).  The link between 

NFE2L2 to GPx-1 activity is due in part to NFE2L2 mediated-induction of GSH.  However, it 

has been shown that NFE2L2 knockout mice can still retain some GPx-1 function (Zhu et al., 

2005).  These enzymes, SOD1, SOD2, and GPx-1 are all crucial antioxidant enzymes that can be 

affected by NFE2L2 activity.   

III. 4-HNE and QM7 Cells 

A consequence of oxidative stress in lipids is lipid peroxidation that can result in the 

formation of a stable secondary lipid peroxide.  The α,β-unsaturated hydroxyalkenal, 4-hydroxy-

2-nonenal (4-HNE), is a stable secondary lipid peroxide that is produced during the oxidative 

lipid breakdown of biological membranes.  The deleterious effects of 4-HNE are related to 

amounts and the ability of the cell to metabolize or succumb to it once a critical threshold is 

reached: making it a double edged sword.  Lower intracellular concentrations of 4-HNE can be 

beneficial to cells promoting pathways concerning differentiation, proliferation, and antioxidant 
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defense (Chen et al., 2005).  In mitochondria formation of 4-HNE has been shown to induce 

uncoupling that lowers superoxide production (Schulechev et al., 1996; Miwa et al., 2003).  

Higher concentrations, however, induce caspase enzymes and trigger apoptosis or necroptosis 

pathway in various cell lines. The threshold at which 4-HNE induces cellular death varies from 

cell to cell.  4-HNE has shown to be a NFE2L2 inducer at sublethal concentrations, thus allowing 

NFE2L2 to activate and exert its cytoprotective effects (Chen et al., 2005).     

IV. Feed Efficiency and Stress in Relation to NFE2L2 

 NFE2L2 has been shown to be an ortholog gene between many different species, 

meaning it has evolved from a common ancestral gene.  It is believed to share many of the same 

functions between mouse, chicken, and even aquatic animals such as the zebrafish (Gacesa et al., 

2015). Recently, Zhou et al. (2015) reported that NFE2L2 was predicted to be activated in 

commercial broilers exhibiting high feed efficiency (FE).  In recent years, the scientific 

community has been able to use invaluable bioinformatic tools such as pathway analysis 

software to assess biological differences between two groups of interest.  Kong et al. (2016) have 

also observed that NFE2L2 was predicted to be activated in male broilers with high FE based on 

expression of downstream target molecules in a proteomics dataset.  Thus, NFE2L2 could play a 

role in the phenotypic expression of FE by orchestrating antioxidant protection within cells.   

 Previous studies have revealed a link between mitochondrial function and FE in broiler 

chickens. Lower electron transport chain coupling and greater H2O2 production were observed in 

mitochondria of low feed efficient birds (Bottje et al., 2002). Recently, NFE2L2 disruption led to 

decreased oxidative phosphorylation efficiency (Holmstrom et al., 2013).  Despite its role in 

antioxidant response to oxidative stress, little is known about NFE2L2 in avian species.  Perhaps 

what makes it such an attractive gene or protein to study is its ability to impact so many different 
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factors concerning the mitochondria including biogenesis, fatty acid oxidation, and integrity 

(Dinkova-Kostova et al., 2015).  

Given the different conditions broilers are raised in, it is important to examine the 

connection NFE2L2 might have with an animals phenotypic expression of FE.  It has been 

proposed that the NFE2L2/ARE signaling pathway is activated under times of cold stress to aid 

liver cells in fatty acid storage to protect the cell against the cold environment (Chen et al., 

2015).  During cold stress, increased free radical production can cause oxidation of 

polyunsaturated fatty acids and compromise the integrity of the cell membrane.  The cell protects 

against this by means of up-regulating the expression of L-FABP (Fatty acid-binding protein 1) 

to shut down lipid peroxidation of the cell membrane (Tanaka et al., 2008). L-FABP has shown 

to be directly involved in the NFE2L2/ARE downstream signaling pathway (Chen et al., 2015).  

Interestingly, Kong et al. (2016) showed that FABP was upregulated in high FE broilers.  Heat 

stress in poultry has not shown to up-regulate of NFE2L2 without the addition of certain dietary 

supplements such as lycopene (Sahin et al., 2016). This is somewhat intuitive as heat stress also 

can produce oxidative stress on the cell, but at the same time damage the transcription and 

translation going on within the cell to combat this stress.  

V. Objectives 

  Understanding the relationship that oxidative stress plays in the phenotypic expression of 

FE will be crucial in moving forward with selective breeding for future generations to insure that 

the global population has a sustainable amount of food.  Given that NFE2L2 plays a crucial role 

in activating the ARE and thus many phase II detoxifying enzymes, it is important to understand 

what is occurring with this gene at the transcriptional level.  Thus, the first major objective of 

this study is to examine NFE2L2 mRNA expression as well as its regulators (e.g. KEAP1 and 
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CUL3) and three downstream targets (e.g. SOD1, SOD2, and GPx-1) in avian breast muscle that 

has been phenotyped for low and high FE.   

The second objective will be to examine the mRNA expression of the genes listed above 

in Quail muscle clone 7 (QM7) cells that have been treated with sub lethal concentrations of 4-

HNE for different time periods.  QM7 cells is an immortal cell line derived from Japanese quail 

muscle tissue with fibrosarcoma.  Moscovici et al. (1977) originally isolated tumor cells that 

developed in a bird treated with methylcholantherene.  These cells replicated as myoblasts in 

medium containing serum, and form large multinucleated myotubes when switched to a medium 

without serum.  QM7 cells are commonly used in studies due to their ability to transfect with 

high efficiency, and express consistent phenotypes through many passages.  These traits make 

them a novel cell line for studying gene expression.  To our knowledge, no definitive relationship 

has been established between NFE2L2 and SOD1, SOD2, or GPx-1 in avian breast muscle.    
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CHAPTER 2 
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ABSTRACT 

   Oxidative stress may play a role in the phenotypic expression of feed efficiency 

(FE). The transcription factor NFE2L2 (nuclear factor erythroid-derived 2-like 2) coordinates 

antioxidant response to oxidative stress and its activity is tightly regulated in part by KEAP1 

(Kelch like-ECH protein 1) and the E3 ligase CUL3 (Cullin3).  Thus, one objective was to 

determine mRNA expression of NFE2L2, KEAP1, and CUL3 as well as three antioxidant targets 

[glutathione peroxidase (GPx-1), superoxide dismutase 1 (SOD1), and superoxide dismutase 2 

(SOD2)] in breast muscle of immature pedigree broiler males (8 wk), immature Japanese quail 

males (4 wk) divergently selected for high or low susceptibility to restraint stress, and mature 

Japanese quail (30 wk) exhibiting high or low FE.  The second objective was to determine 

effects of 4-hydroxy 2-nonenal (4-HNE, a secondary lipid peroxide), on NFE2L2, KEAP1, 

CUL3, SOD1, SOD2, and GPx-1 mRNA expression in an avian muscle cell line (Quail Muscle 

7, QM7).  High FE pedigree broiler males exhibited increased KEAP1 and SOD1 mRNA 

expression in breast muscle compared to the low FE phenotype Quail from the HS (high stress) 

with low FE exhibited increased mRNA expression in all the genes except SOD1.  In contrast, 

the immature high FE quail from the LS (low stress) line had higher levels of NFE2L2, SOD2, 

and GPx-1.  The mature high FE Japanese quail had higher mRNA expression of SOD1, SOD2 

and GPx-1 compared to the low FE phenotype, but there were no differences in mRNA 

expression of NFE2L2, KEAP1 and CUL3 between the high and low FE mature quail.  The 

effects of 4-hydroxynonenal (4-HNE) (0, 10, and 20 µM) on mRNA expression in QM7 cells 

was determined at 30, 120, and 240 min post 4-HNE treatment.  After 30 min, NFE2L2, SOD1, 

and GPx1 mRNA expression was lower and KEAP1 levels higher (P < 0.07) in 20 µM compared 

to 0 M 4-HNE.  At 120 min, CUL3 was higher in 10 µM compared to 0 and 20 µM 4-HNE 
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treated cells; SOD1 expression was lower and GPx-1 expression higher in 20 µM treated 

compared to controls. There were no differences in mRNA expression at 240 min of treatment 

with the exception that 20 µM 4-HNE raised CUL3 mRNA expression compared to the 10 µM 

4-HNE treated cells.  

Key Words: broiler, quail, feed efficiency, NFE2L2, antioxidants 

INTRODUCTION 

 

The projected doubling of the human population by 2060 will require a 100% increase in 

food production coming from plants and animals with most of this increase coming from new 

technology and greater efficiency (Simmons, 2010).  In animal production agriculture, feed is the 

highest input cost (50 to 70% of total) in raising an animal to market weight and feed costs can 

spike as was observed in drought conditions in the central US in 2012 (Nixon et al., 2012).    

Great strides have been made in animal agriculture production efficiency by selecting animals for 

feed efficiency (FE, gain to feed), feed conversion ratio (FCR, feed to gain), or residual feed 

intake (RFI, the actual amount of feed intake that is above or below predicated feed intake in a 

group of animals).  These methods are effective but are labor intensive procedures that require 

measuring feed intake and body weight gain on individual animals.  Development of biomarker 

selection tools to be used in commercial breeding programs can contribute significantly towards 

increasing animal production efficiency.  

NFE2L2 (Nuclear factor erythroid-derived 2-like 2) is a molecule that coordinates 

cellular response to oxidative stress (e.g. Shelton et al., 2013).  As shown in Fig. 1.1 (p.5), under 

normal (non-stressful conditions), NFE2L2 remains in combination with CUL3 (Cullin3) and 

Keap1 (Kelch like-ECH protein 1) and is rapidly directed to proteasomes for degradation.  

However, in response to oxidative stress, NFE2L2 is transported into the nucleus where it 
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stimulates antioxidant gene expression and various other protection mechanisms through the 

antioxidant response element (ARE).  Recently, NFE2L2 was predicted to be activated based on 

downstream target molecules in commercial broilers (meat chickens) and in pedigree male 

broilers exhibiting high FE (Zhou et al., 2015; Kong et al., 2016).  One of these target molecules 

upon which the prediction was based was SOD2 (Mn-SOD Superoxide Dismutase 2).  SOD2 is 

found predominately in the mitochondria where it acts to protect the electron transport chain and 

mitochondria from oxidative stress from superoxide radicals.  Given that SOD2 was upregulated 

in the high FE broilers, it warrants investigation into other downstream antioxidant enzymes such 

as SOD1 (Superoxide Dismutase 1, CuZn-SOD), which is predominantly found in the cytosol of 

a cell, as well as another antioxidant enzyme that localizes to the mitochondria: GPx-1 

(Glutathione Peroxidase 1).  To our knowledge, the relationship between NFE2L2 mRNA 

expression and FE has not been clearly defined.  Thus, NFE2L2 could play a role in the 

phenotypic expression of FE by orchestrating antioxidant protection within cells. Oxidative 

stress biomarkers remain elusive to a degree (Beaulieu et al., 2014) and may prove crucial in 

solving the global food shortage in the years to come.   

MATERIALS AND METHODS 

Avian Lines Selected for Feed Efficiency 

Three different lines of birds were used for the in vivo studies to investigate relationships 

of NFE2L2 and FE.  The first line examined was a male pedigree broiler breeder line that had 

been selected through many generations for the high FE phenotype. Muscle tissue was harvested 

at 8 wk after animals were individually phenotyped for FE between 6 and 7 wk (Table 2.1). The 

second line examined were male Japanese quail that were phenotyped for FE between 3 and 5 

wk and with tissues obtained at 5 wk.  Both the pedigree broilers and Japanese quail were 
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considered sexually immature (Table 2.1).  These Japanese quail were the progeny of a line of 

Japanese quail initially phenotyped for the purpose of distinguishing high stress (HS) and low 

stress (LS) lines based on corticosterone.  This was primarily done by measuring blood 

corticosterone levels in response to restraint stress (Satterlee et al., 1988).  The birds used in this 

study were male progeny from both the HS and LS line.  The final line examined was a line of 

Japanese quail that were phenotyped for FE between 5 and 6 wk and harvested at 30 wk (Table 

2.1).  These Japanese quail selected from this line were both male and female and were 

considered sexually mature when tissue were obtained.  These birds weighed significantly more 

than the quail described in the HS and LS line.  This larger body mass is due to selecting for a 

heavier quail over many generations of this line to closer resemble the mass and body 

proportions of a broiler chicken.  All animal care and handling was conducted with approval by 

the Institutional Animal care Committee (IACUC), protocol # 14012 and # 13039. 

RNA Isolation, cDNA Preparation and Quantitative Real-Time PCR 

 After humanely killing animals, a portion of breast muscle was quickly removed, flash 

frozen in liquid nitrogen and stored at -80 C.  Total RNA was extracted by TriZOL reagent (Life 

Technologies) according to the manufacturer’s recommendations, DNase-treated, and reverse-

transcribed (Quanta Biosciences, Gaithersburg, MD).  RNA concentrations and purity were 

determined for each sample on a Take 3 microvolume plate using Synergy HT multimode 

microplate reader (BioTek, Winooski, VT).  The RNA was converted into cDNA with oligo-dT 

primer and Superscript II reverse transcriptase (Invitrogen Life Technologies) following the 

manufacturer’s instructions.  The RT products (cDNAs) were subject to a real-time quantitative 

reverse-transcription PCR (qRT-PCR) (Applied Biosystems, 7500 real-time PCR system) with 

Power SYBR Green Master Mix.  The conditions of qRT-PCR amplification were 1 cycle at 
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95°C for 2 min, 40 cycles at 95°C for 30 s, 58°C for 1 min, 72°C for 30 s, and 1 cycle at 72°C 

for 10 min.  The chicken 18S ribosomal RNA (18s) gene was used as the internal control. 

Dissociation curves were performed at the end of amplification for validating data quality. All 

qRT-PCR reactions were performed 2 times and the values of average cycle threshold (Ct) were 

determined for each sample, and these 2−ΔΔCt values were used for relative quantification by 

fold change and statistical significance.  At the end of the amplification, melting curve analysis 

was applied using the dissociation protocol from the Sequence Detection system to exclude 

contamination with unspecific PCR products.  The PCR products were confirmed by agarose gel 

and showed only one specific band of the predicted size. Relative expressions of target genes 

were determined by the 2-ΔΔ Ct method.  All forward and reverse primer sequences are shown in 

Table 2.2.   

QM7 Cells 

  QM7 cells were plated in a 6 well plate and grown in M199 medium (Life Technologies, 

Grand Island, NY) complemented with 10% FBS (Life Technologies), 10% tryptose phosphate 

(Sigma-Aldrich, St. Louis, MO), and 1% penicillin-streptomycin (Biobasic, Amherst, NY) at 

37°C under a humidified atmosphere of 5% CO2 and 95% air. At 80-90% confluence, the cells 

were then treated 4-hydroxy-2-nonenal (4-HNE) at different concentrations. 0 µM 4-HNE 

(Control), 10 µM 4-HNE, or 20 µM 4-HNE for 30 min, 120 min, and 240 min in different 

passages of the cells (Passages 13,14,15).  After washing with ice cold PBS twice, TriZOL 

reagent was added directly to the tissue culture plate and the cells were detached from the plate 

using a sterile scraper. Total RNA extraction was performed following the same protocol as the 

breast muscle.  
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Statistical analysis 

Values in graphs and tables represent the mean + SE.  Differences of mean values were 

determined by two-tailed Student’s T-test (or analysis of variance) with a P value of < 0.05 being 

considered statistically significant. 

RESULTS AND DISCUSSION 

 

             The main goal of this study was to determine relationships of NFE2L2 mRNA 

expression, along with regulators of NFE2L2, and downstream antioxidant gene expression in 

muscle associated with feed efficiency in vivo and 4-HNE induced oxidative stress in vitro.   

In Vivo Studies 

             Although the expression of NFE2L2 and CUL3 mRNA in the broilers was not different 

between the high and low FE phenotype (Figure 2.1, A), expression of KEAP1and SOD1 mRNA 

was higher (P < .05) in the high FE phenotype.  With KEAP1 being the primary sensor of 

oxidative stress in the NFE2L2 pathway (Shelton et al., 2013), this may suggest the high FE 

broilers show a tighter regulation when compared to the low FE phenotype.  Given that KEAP1 

is the primary negative regulator of NFE2L2, an increase in KEAP1 transcription could help 

regulate an increased NFE2L2 protein expression.  The results concerning KEAP1 expression 

may point to a more diverse function of KEAP1 than just regulation of NFE2L2. Although it is 

known that avian NFE2L2 has the same primary functions as mammalian NFE2L2, it shares 

only 67% homology (Maher et al., 2010).  The cysteine rich nature of KEAP1 makes it an ideal 

target for other proteins found in the cell and therefore could be affecting its translation in some 

capacity apart from NFE2L2.  This higher expression of KEAP1 in the high FE broilers may also 

just simply suggest high FE birds tightly regulate the NFE2L2 pathway. In a proteomics study, 

conducted on the same group of birds they observed that high FE broilers had a higher 
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expression of the Kelch-like-40 protein (KLH40) compared to low FE (Kong et al., 2016).  This 

protein shares many of the same conserved domains that KEAP1 contains, such as the BTB and 

POZ regions (Dhanoa et al., 2013).  Sahin et al. (2016) examined the effects of heat stress and 

dietary supplements on NFE2L2 expression in broilers.  Increasing the dietary intake of lycopene 

led to a decrease in KEAP1 protein expression, and increase NFE2L2 protein expression in heat 

stressed broilers (Sahin et al., 2016), indirectly improving FE.  Similarly, Zhang et al. (2015) 

showed that increasing dietary intake of curcumin in heat stressed broilers improved 

mitochondrial function and FE, thus inhibiting heat stress impaired growth performance.  

Possibly, curcumin may upregulate NFE2L2, leading to a more efficient antioxidant defense 

system or mitochondrial biogenesis.  Although a high expression of NFE2L2 mRNA was not 

observed, it is possible that NFE2L2 protein expression or activity could be different due to 

interaction with KEAP1, CUL3, or difference in proteosomal degradation.  It has been shown 

that NFE2L2 undergoes various post transcriptional and post translational modifications (Li et 

al., 2010; Kobayashi et al., 2004; Furukawa et al., 2005) and is an extremely unstable protein.  

These modifications can affect the amount of NFE2L2 protein produced, as well as how much of 

it is actually activated or degraded.  No difference was shown in CUL3 expression between the 

high and low FE group although it has been shown that ubiquitin expression in low FE broilers 

was higher (Bottje and Carstens, 2009).  Bottje and Carstens (2009) were not targeting the 

specific ubiquitin CUL3, but rather differences in ubiquitin levels in general between high and 

low FE broilers by means of immunoreactivity assays.  Similar to most cellular proteins, it has 

been shown in past studies that NFE2L2 mRNA expression can be a good predictor for protein 

expression despite the post transcriptional modifications it undergoes.   
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                In the LS line of quail individually phenotyped for FE, NFE2L2 and SOD2 were 

higher and SOD1 levels lower in the high FE compared to low FE (Figure 2.1, B).  This contrasts 

with the results in the HS line of Japanese quail, with the low FE group having higher mRNA 

expression of all the genes except SOD1 (Figure 2.1, C).  Given that these quail were selected 

from a line that showed elevated corticosterone levels in the blood after a period of handling 

stress, this may lend insight into how NFE2L2 levels play an important role in predicting FE 

when a certain stressor is applied.  It should be mentioned though that multiple studies have 

shown that SOD1 or SOD2 expression are not completely dependent on NFE2L2 activation as 

heat shock proteins and other cellular messengers play a vital role as well (Zelko et al., 2002).  

Recently, NFE2L2 has been viewed as something to be used to combat corticosterone effects in 

the body (Freitas et al., 2016).  Corticosterone can negatively affect the morphology of astrocytes 

and microglia in various regions of the brain (Freitas et al., 2016), and it has long been known to 

suppress protein synthesis and degradation in skeletal muscle (Odedra et al., 1983).  The results 

from the HS line could be a result of high corticosterone levels modulating the expression of 

NFE2L2 mRNA, thus affecting how FE is regulated in these birds.  Like many of the genes in 

this study, much is still unknown about CUL3, especially in the avian species.  In mammalian 

cells, the CUL family of proteins have shown they can undergo process called neddylation in 

which they will interact with small ubiquitin-like protein modifiers (Wu et al., 2005).  To our 

knowledge, no detailed studies have been carried out in an avian cell line concerning the role of 

neddylation on CUL3 specifically and its targets.  However, Kong et al. (2011) has shown that 

neddylation genes (e.g. Nedd8) were up regulated in muscle tissue of high FE broilers when 

compared to low FE broilers.  Neddylation proteins are essential for cell viability (Osaka et al., 



 
 

27 

 

2000), and could be signaling more efficient growth mechanisms in high FE birds compared to 

low FE birds. 

               In the mature quail that were individually phenotyped for FE, the expression of the 

downstream antioxidant enzymes (SOD1, SOD2, and GPx-1) showed higher mRNA expression 

in the high FE phenotype, even though NFE2L2 expression was not differentially expressed 

between the high and low FE phenotype (Figure 2.1, D).  It should be pointed out both male and 

female birds were selected to be used in this comparison.  These birds were highly selected for 

growth – similar to the pedigree broiler male.  The results shed light on the complexity of the 

NFE2L2 pathway and its downstream targets.  The fact that both male and female birds were 

used in this line, could have had an effect on the data as well.  Current literature supports the 

notion that expression of various cytoprotective genes can differ based on sex, specifically genes 

regulated by NFE2L2 (Sheng et al., 2003).  Definitive evidence that NFE2L2 is responsible for 

the difference in cytoprotective mRNA expression between sexes remains to be discovered, and 

some studies suggest that it is not responsible at all for the differences even though downstream 

targets are affected (Rohrer et al., 2014).  The question remains, if NFE2L2 is not responsible for 

the differences between sexes, than what is? 

              As an organism ages SOD’s and GPx’s become increasingly important in muscle tissue 

to combat muscle oxidation and deterioration.  Mutations in SOD’s have been linked to diseases 

such as amyotophic lateral sclerosis (ALS) (Bozzo et al., 2016).  NFE2L2 not being 

differentially expressed supports that a tremendous amount of cross talk between various 

pathways is occurring in the cell pertaining to the effects of oxidative stress.  The high FE birds 

within this group showed much higher mRNA expression of NFE2L2’s downstream targets, 
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despite no difference in NFE2L2 being observed.  This lends insight into just how important 

these antioxidant genes are in relation to FE in older animals. 

 

QM7 Cells 

 

             The effect of 4-HNE treated QM7 cells showed various differences across the six 

different genes of interest during the different time treatments (Figure 2.2).  Cell viability 

determined by trypan blue exclusion method ranged from 95-99% throughout the study (data not 

shown).  As expected, the QM7 cells treated with 20 µm 4-HNE at different time points showed 

significantly different mRNA expression when compared to the control cells.  Concerning the 

downstream targets, GPx-1 was the only one that tended to mirror the expression trend that was 

seen in NFE2L2 (Figure 2.5).  4-HNE has important electrophilic properties and reacts with 

proteins, lipids and nucleotides to form 4-HNE adducts (Pillon et al., 2012).  Given that the 

mitochondria is a major source of endogenous ROS, it makes it a target for HNE adduct 

formation (Echtay et al., 2003).  This could in fact explain the upregulation that is seen between 

NFE2L2 and GPx-1 in the 120 min treatment, and the down regulation shown during the 30 min 

time course.  Surprisingly, minimal differences were observed in the SOD1 and SOD2 mRNA 

expression levels between the different treatments. SOD2 showed no significant differences 

between the treatments while SOD1 did at the 30 min and 120 min time course.  In a study done 

by Yoon et al. (2007), they noticed as a high expression of 4-HNE and SOD1 in the 

hippocampus of aged dogs (10-12 years of age) when compared to dogs that where only 2-3 

years old.  The data acquired here suggests that in QM7 cells, an increase of 4-HNE does not 

always correspond with a direct increase in SOD1 mRNA expression.  The most notable 

relationship examined in the QM7 cell data is between NFE2L2 and GPx-1.  At both 30 min and 

120 min following 4-HNE treatment the mRNA levels of these two genes showed a similar trend 
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in expression.  The 30 min treatment of 4-HNE at 20 µM brought about a significant decrease in 

mRNA levels GPx-1 when compared to the control group, while NFE2L2 showed the same trend 

(P < .07).  The 120 min treatment of 4-HNE brought about a significant increase in mRNA 

expression of NFE2L2 and GPx-1 in the 20 µM treated group when compared to the control cells 

that received no 4-HNE.  The results regarding SOD2 mRNA expression are somewhat baffling, 

given the known relationship that exists between NFE2L2 and phase II detoxifying enzymes.  

Even when NFE2L2 showed differential mRNA expression throughout the different treatments, 

SOD2 had no significant differences in expression. This data supports the notion that NFE2L2 is 

more involved with mitochondria function that perhaps initially thought years ago.  In both the in 

vivo and in vitro studies, a clear correlation is seen between the trend of NFE2L2 mRNA 

expression and GPx-1 mRNA expression.   

           Cleary, more studies need to be conducted exploring NFE2L2’s role as a possible 

biomarker for FE in avian species. This study aimed to examine what mRNA expression would 

like for NFE2L2 when comparing different lines of birds that have been phenotyped for high and 

low FE.  The QM7 cell studies proved to show that 4-HNE at sublethal levels can bring about 

changes in oxidative stress related genes, but the amount of time in which they are treated proves 

crucial as to what kind of response is observed.  
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TABLES AND FIGURES 

Table 2.1: FI, Gain, and FE for the Different Avian Lines Used. 

Avian Line (n) FI Average ± SEM 

(g) 

Gain Average ± SEM 

(g) 

FE Average ± SEM 

Pedigree Broilers 

High FE (5) 

Low FE (5) 

970.4 ± 36.9 

1021.6 ± 24.4 

*628.0 ± 25.1 

470.4 ± 10.7 

*0.647 ± 0.006 

0.461 ± 0.006 

LS Quail  

High FE (6) 

Low FE (6) 

197.6 ± 7.1  

218.8 ± 10.8 

*38.33 ± 1.2 

28.33 ± 1.8 

*0.195 ± 0.005 

0.129 ± 0.003 

HS Quail  

High FE (6) 

Low FE (6) 

189.9 ± 8.1 

217.2 ± 8.8 

*42.5 ± 2.5 

25.2 ± 1.7  

*0.224 ± 0.012 

0.115 ± 0.004 

Mature Quail  

High FE (6) 

Low FE (6) 

272.5 ± 13.5  

309.2 ± 14.0  

*135.8 ± 5.9 

108.5 ± 4.1 

*0.500 ± 0.012 

0.354 ± 0.012 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Indicates High FE > Low FE (P< .05) 
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Table 2.2:  Primer Sequences  

Gene  Forward Primer (5’-3’) Reverse Primer (5’-3’) 

18S TCCCCTCCCGTTACTTGGAT GCGCTCGTCGGCATGTA 

NFE2L2  CCACCCTAAAGCTCCATTCA GGATCTGCAGAGCTTTTGCT 

KEAP1  TACAACCCCATGACCAACCG CGGCGTAGATCATCCCATCG 

KEAP1 (Cells) CGCCATCGACTGTTACAACC GCGTAGATCATCCCGTCGAT 

CUL3 AGCAGAGGTAACTCAGCAGC CTTTGCGATCCTCAGGTGTT 

SOD1 TGGCTTCCATGTGCATGAAT AGCACCTGCGCTGGTACAC 

SOD2 GCTGGAGCCCCACATCAGT GGTGGCGTGGTGTTTGCT 

GPx-1 TCCCCTGCAACCAATTCG AGCGCAGGATCTCCTCGTT 
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Figure 2.1: Avian Lines mRNA Expression: The expression of mRNA (arbitrary units) in 

breast muscle in A) Pedigree Broiler Males B) Low Stress (LS) Japanese Quail C) High Stress 

(HS) Japanese Quail D) Mature Japanese Quail exhibiting high or low feed efficiency (FE) for 

nuclear factor (erythroid 2)-like 2 (NFE2L2), Kelch-like ECH-associated protein 1 (Keap1), 

Cullin3 (CUL3), superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), and 

glutathione peroxidase 1 (GPx-1).   

Bars represent the mean + SE (n=4-6). 

* Values are different (P < 0.05) 

** Values are different (P < 0.01) 
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Figure 2.2: QM7 Cells mRNA Expression: The effect of 30 min, 120 min, and 240 min 

treatment of 4-hydroxy 2-nonenal (4-HNE) on mRNA expression (in arbitrary units) in QM7 

cells of: A) nuclear factor (erythroid 2)-like 2 (NFE2L2), B) Kelch-like ECH-associated protein 

1 (Keap1), C) Cullin3 (CUL3), D) superoxide dismutase 1 (SOD1), E) superoxide dismutase 2 

(SOD2), and F) glutathione peroxidase 1 (GPx-1).   

Bars represent the mean + SE (n=4).  

ab Values with different letters are significantly different (P < 0.05). 
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CHAPTER 3 

 

I. Overall Conclusion 

 

       Although this study shed light on NFE2L2 mRNA expression in avian muscle individually 

phenotyped for FE, more studies are needed to understand the full complexity of the role 

NFE2L2 may play in the feed efficiency phenotype.  Data acquired from the QM7 cells studies 

suggest intricate cross talk occurs within the oxidative stress pathways that modulates NFE2L2 

expression as well as its regulators and downstream targets. 
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APPENDIX 

Table A1:  Abbreviations and Definitions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NFE2L2  Nuclear factor (erythroid-derived 2)-

like 2 

bZIP Basic-region leucine zipper  

Neh  NFE2L2-homologous domains 

CDDO-le CDDO-Me Imidazole and methyl ester derivative 

of 2-cyano-3,12-dioxooleana-1,9(11)-

dien-28-oic acid 

Maf Protein  Small protein that heterodimerizes 

with NFE2L2 upon activation in the 

nucleus 

ARE Antioxidant response element 

KEAP1 Kelch-like ECH-associated protein 1  

Bric-a-Brac   Region of the KEAP1 protein  

CUL3 Cullin-3  

SQSTM1 (p62) Sequestosome 1  

H202 Hydrogen peroxide 

SOD1 Superoxide dismutase 1 [Cu-Zn] 

DJ-1 (Parkin7) Parkinson disease protein 7 

SOD2 Superoxide dismutase 2 [Mn] 

GPx-1  Glutathione peroxidase 1  

GSH  Glutathione  

L-FABP Fatty acid-binding protein 1 

4-HNE 4-hydroxy-2-nonenal 

FE  Feed efficiency  

LS  Low stress  

HS  High Stress  

RFI Residual feed intake  

ALS Amyotrophic lateral sclerosis  

KLH40 Kelch-like-protein 40 
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Table A2: Pedigree Male Broilers Phenotype Data 

Bird ID  Gender  Phenotype (FE) FE  FI (g) Gain 

(g)  

G1 M High  .630 920 580 

G4 M High  .652 1080 704 

G5 M High  .664 1012 672 

G10 M High  .659 844 556 

G16 M High  .631 996 628 

B2 M Low  .483 960 464 

B6 M Low  .455 1032 470 

B7 M Low  .444 974 432 

B11 M Low  .453 1112 504 

B13 M Low  .468 1030 482 
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Table A3: LS Japanese Quail Phenotype Data  

Bird ID  Gender Line (Stress) Phenotype 

(FE) 

FE FI (g) Gain 

(g) 

20 M L H .182 214.5 39 

42 M L H .220 168 37 

33 M L H .185 194.5 36 

8 M L H .194 185 36 

40 M L H .186 204.5 38 

28 M L H .201 219 44 

32 M L L .130 247 32 

29 M L L .133 225.5 30 

21 M L L .138 188 26 

23 M L L .123 195.5 24 

37 M L L .136 257.5 35 

16 M L L .116 199 23 
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Table A4: HS Japanese Quail Phenotype Data  

Bird ID  Gender Line (Stress) Phenotype 

(FE) 

FE FI (g) Gain 

(g) 

24 M H H .215 195.5 42 

10 M H H .181 209.5 38 

26 M H H .237 181.5 43 

15 M H H .280 189 53 

31 M H H .217 211.5 46 

30 M H H .216 152.5 33 

2 M H L .126 230 29 

36 M H L .098 214.5 21 

11 M H L .121 206 25 

6 M H L .107 177.5 19 

45 M H L .113 230.5 26 

41 M H L .127 244.5 31 
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Table A5: Mature Japanese Quail Phenotype Data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Wing Band  Gender Phenotype (FE) FE FI (g) Gain (g) 

9009 M High .537 218 117 

9058 M High .504 252 127 

9192 M High .539 282 152 

9124 F High .483 327 158 

9433 F High .454 284 129 

9300 F High .485 272 132 

17296 F Low .344 311 107 

9663 F Low .344 329 113 

9458 M Low .386 236 91 

9589 M Low .371 324 120 

17262 M Low .377 313 118 

9685 F Low .299 342 102 
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