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Abstract
REGULATION OF GLUT4 GLUCOSE TRANSPORTER TRAFFICKING. Leah McNally and
Jonathan Bogan, Departments of Internal Medicine and Cellular Biology, Yale

University School of Medicine, New Haven CT.

In fat and muscle cells, insulin stimulates glucose uptake by causing the
translocation of GLUT4 glucose transporters out of intracellular membranes and to
the plasma membrane. Impaired GLUT4 translocation results in insulin resistance,
and contributes to the pathogenesis of type 2 diabetes. Yet, how insulin signaling
and protein trafficking pathways intersect remains poorly understood. In 3T3-L1
adipocytes, data support a model in which TUG (“tether, containing a UBX domain,
for GLUT4) binds GLUT#4 and retains it intracellularly in the absence of insulin.
Insulin then signals the release GLUT4 from TUG, which mobilizes GLUT4 to the cell
surface. How and where TUG retains GLUT#4 intracellularly remains unknown.
Previous data show that the TUG carboxyl terminus is required for intracellular
retention of GLUT4, but is dispensable for binding to GLUT4 itself. Therefore we
hypothesized that this region interacts with an unidentified, intracellular
“anchoring” protein. Here, we tested if GCC185 may be this sought-after protein, to
which TUG links GLUT4 in unstimulated cells. GCC185 is a Golgi matrix protein that
captures vesicles arriving at the trans-Golgi network (TGN) from endocytic or
biosynthetic pathways. It tethers the vesicles to the TGN membrane and promotes
their fusion at the TGN. It has previously been suggested that GLUT4 may by

retained by an intracellular cycle of fusion and budding at the TGN in unstimulated



cells. To test the hypothesis that TUG cooperates with GCC185 to facilitate such a
cycle, we performed coimmunoprecipitation experiments. We found that TUG
interacted with GCC185 in cotransfected 293 cells. Importantly, this interaction
required the TUG carboxyl terminus, as predicted for the “anchoring” protein. The
TUG-GCC185 interaction was confirmed in reciprocal coimmunoprecipitation
experiments. Mutagenesis identified a particular residue in TUG that is likely
involved in this interaction, which may be modified to control the binding of TUG
and GCC185. A second project was prompted by the observation that Ubc9 is
another protein that binds GLUT4 and promotes its accumulation in insulin-
responsive storage vesicles. Because Ubc9 is a conjugating enzyme for the
ubiquitin-like protein, SUMO, we tested the hypothesis that TUG is a target of SUMO
modification. However, no data were obtained to support this hypothesis. In
summary, our data show that GCC185 and TUG interact, and support a model in
which GCC185 participates in targeting GLUT4 to vesicles that are mobilized acutely

by insulin to control glucose uptake.
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Introduction

It has been estimated that by 2030, the number of people suffering from type
2 diabetes will reach some 366 million (1). It is also predicted that type 2 diabetes
will increasingly become a worldwide phenomenon, with nations that traditionally
had low disease rates (e.g. those in Africa and Southeast Asia) seeing a steep rise in
disease prevalence over the coming years. Therefore, understanding the
pathophysiology of the disease and identifying new targets for therapy, have
become increasingly important.

Blood Glucose Homeostasis and the GLUT4 Transporter

Under physiological conditions, blood glucose concentrations are very tightly
controlled, so that variation is minimized post-prandially or in times of fasting. The
main hormone that regulates blood glucose concentration is insulin, which both
suppresses hepatic glucose production and drives glucose uptake into adipose and
muscle cells (2). Adipocytes and myocytes contain GLUT4 glucose transporters,
which contain twelve membrane-spanning domains and, together with GLUT1, are
the main glucose transporter present in these tissues. GLUT4 proteins are
facilitative transporters that are inserted into the plasma membrane in response to
insulin signaling (3, 4, 5). This distinguishes them from GLUT1 proteins, which are
present at the plasma membrane even at the basal state. Their insertion into the
membrane can occur rapidly because the transporters are targeted to and stored in
specific, intracellular vesicles -termed GLUT4 storage vesicles (GSVs)- within
unstimulated cells. After insulin has finished signaling, GLUT4 is endocytosed and

sent back through the recycling pathway into GSVs, to await the next stimulus (6).



Thus, the process is reversible. The number of GLUT4 transporters present in the
plasma membrane controls the overall rate of glucose uptake into fat and muscle
cells. In addition, insulin appears to both increase exocytosis of GLUT4 and to
slightly decrease its endocytosis (7).

Clearly, GLUT4 plays a key role in maintaining glucose homeostasis. One
could hypothesize that defects in GLUT4 or its movement to the plasma membrane
are at least partially responsible for the hyperglycemia of the insulin resistant and
type 2 diabetic state. However, one of the first questions that was asked and
answered in regards to this hyperglycemia was whether it was chiefly due to faulty
movement of glucose across the plasma membrane (suggesting a role for GLUT4) or
to faulty utilization of glucose once inside these cells. Studies utilizing NMR strongly
supported the hypothesis that the problem lay in the transport of glucose into the
cell from the bloodstream and not in its utilization within the cell (8, 9). Once this
was established, the cause of this faulty glucose movement became the next and
ongoing focus, with the role of GLUT4 translocation being a central theme (10, 11).

As reviewed above, GLUT4 transporters are the insulin-responsive channels
through which glucose traverses the plasma membrane in mycocytes and
adipocytes. Defects in the presence of GLUT4 at the plasma membrane are
correlated with insulin resistance. In mouse models, decreased presence of GLUT4
at the plasma membrane through partial GLUT4 knockdown results in insulin
resistance (12, 13, 14, 15). In addition, in humans with insulin resistance or type 2
diabetes, there is decreased GLUT#4 at the plasma membrane in response to insulin

(16). Thus it can be said that the translocation of GLUT4 to the plasma membrane in



response to insulin is not only defective in insulin resistance and type 2 diabetes,
but also a major contributor to the pathophysiology. However, multiple
mechanisms likely contribute to these defects. These include faulty insulin signal
transduction (17, 18), down-regulation of GLUT4, and mislocalization of GLUT4
away from the GSV compartment (19, 20, 21).

GLUT4 Localization to GSVs

To understand the concept of GLUT4 mislocalization, what is known about
the formation of GSVs should be reviewed. Even the very existence of GSVs took
time to demonstrate. In the non-insulin stimulated state, GLUT4 is mainly localized
to intracellular membrane compartments (22, 23). In fibroblasts (preadipocytes),
exogenously expressed GLUT4 is thought to cycle between endosomes and the
trans-Golgi network (TGN) (24, 25). However, in mature adipocytes, GLUT4 is
largely excluded from endosomes. This has been shown in studies that used horse-
radish peroxidase-conjugated transferrin to ablate compartments of the recycling
pathway (24). In fibroblasts, this results in the destruction of the majority of GLUT4.
However, when this is done in mature adipocytes, over 50% of GLUT4 remains
unaffected, suggesting that it is sequestered in specialized compartments, namely
GSVs.

The existence of GSVs is also supported by the finding that vesicles enriched
in GLUT4, IRAP and VAMP2, but lacking common endosomal proteins such as
transferrin and cellubrevin, have been isolated and appear to be insulin-responsive
(26). It has been further shown that these small, specialized vesicles are not found in

fibroblasts, and that the development of these vesicles correlates with adipocyte



maturation and insulin responsiveness. The production of GSVs in maturing
adipocytes is linked to the expression of the cargo adaptor protein sortilin (27, 28,
29). Importantly, this work further demonstrated that exogenous expression of
sortilin in 3T3-L1 preadipocytes resulted in GSV formation and that sortilin
knockdown in 3T3-L1 adipocytes prevented the formation of GSVs. As adipocytes
mature, GLUT4 can be seen to co-localize with TGN markers such as syntaxin 6 and
16. This suggests that at least some steps of GSV formation traffic through this
region of the TGN. This theory is further supported by the finding that IRAP, an
integral protein in GSVs, has sugar modifications consistent with its passage through
the TGN (21).

Additional data supporting the existence of GSVs comes from the observation
that the half-life of GLUT4 is significantly shorter in mature adipocytes than it is in
fibroblasts. This suggests the GLUT4 has been sequestered from the general
recycling pathway wherein it can be readily degraded by targeting to lysosomes.
Interestingly, following stimulation with insulin, the rate of GLUT4 degradation
increases, suggesting that insulin mobilizes GLUT4 from this sequestration
compartment. Final evidence for the GSV compartment comes from the finding that
there appears to be a dose dependent response of GLUT4 mobilization following
insulin stimulation (30). In this study, low insulin doses resulted in only 10-20% of
intracellular GLUT4 cycling through the plasma membrane, while high insulin doses
resulted in ~ 70% of GLUT4 cycling though the plasma membrane. This graded
response would fit with the presence of a sequestered GLUT4 pool (GSVs) that can

be accessed to different extents in the presence of insulin. Taken all together, the
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evidence points to the existence of GSVs whose formation likely involves steps at a
sub-domain of the TGN.

Direct evidence for the mislocalization of GSVs in the insulin resistant state,
type 2 diabetes and gestational diabetes comes from cell fractionation studies (19,
20, 21). In studies examining tissue from healthy subjects, GLUT4 is found in the
light membrane (ie cell surface) compartment in adipocytes and mycocytes.
However, in insulin resistant and diabetic states, it is found chiefly in the dense
membrane (ie intracellular) compartment. One study also showed that IRAP’s (one
of the two protein known to associate with GSVs) distribution was similarly altered.
These studies used biopsies from fasting individuals, suggesting that GLUT4 is not
being compartmentalized properly within unstimulated adipose and muscle cells.
These reports raise the possibility that unless GLUT4 is selectively trafficked to the
GSV compartment, it will not be accessible to insulin signaling. Additional studies in
diabetic patients have also highlighted the importance of proper GSV formation. For
example, obese patients with increased TNF-alpha expression showed down-
regulation of sortilin (31). As sortilin is necessary and sufficient for GSV formation
in tissue culture models, this linkage of sortilin expression to an insulin resistant
state, again emphasizes the importance of proper GLUT4 localization in the
pathophysiology of type 2 diabetes.

A Role for TUG in GLUT4 Trafficking

Despite the apparent importance of GSV formation and GLUT4 localization,

exactly how GLUT4 are targeted to and kept in GSVs, as well as how insulin

mobilizes these vesicles to the cell surface, is not well understood. This area is the
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main focus of work in the Bogan laboratory. In particular, work on a protein called
TUG (tether, containing a UBX domain, for GLUT4) has shown promise in clarifying
this issue. Data support the notion that in cultured 3T3-L1 adipocytes, TUG binds
directly to GLUT4 and sequesters it specifically in GSVs, thus excluding it from the
plasma membrane (32, 33, 34, 35). Overexpression of TUG appears to enhance
targeting of GLUT4 to GSVs, and increases the insulin-responsive pool of GLUT4
proteins. Conversely, a decrease in TUG abundance (using RNAi) or inhibiting its
action (using a truncated, dominant negative form, termed UBX C-terminal or UBX-
Cter) prevents the accumulation of GLUT4 in GSVs. Truncation of the C-terminal of
TUG (anywhere from amino acid 270 on) prevents TUG’s ability to sequester GSVs
away from the plasma membrane. Importantly, disruption of TUG action (using
RNAi or the dominant negative form) results in targeting of GLUT4 to the cell
surface, and mimics insulin action to a large extent. This fits with the idea that TUG
functionally tethers GLUT4 to an intracellular anchoring site within unstimulated
cells. In this proposed model the TUG in association with GLUT4 in GSVs binds to an
anchoring site and thereby localizes the GSVs properly, in a configuration from
which they can be mobilized, within cells. However, it should be noted that the
association of TUG with GSVs and the anchoring site is not necessarily a static one.
For example, GSVs may be allowed to move within the TGN sub-domain while
remaining sequestered from the general recycling pathway. The molecular nature
of this anchoring site is not fully understood. Nonetheless, data are consistent with
the idea that insulin stimulates dissociation of a TUG-GLUT4 protein complex to

release GLUT4 to the cell surface, and to enhance glucose uptake.
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Present data from the Bogan laboratory support a model in which following
insulin-stimulation, TUG is proteolytically processed and gives rise to a new
ubiquitin-like modifier, termed TUGUL (for TUG ubiquitin-like). TUGUL joins a
family of about 11 known ubiquitin-like modifiers (Ubls), including ubiquitin itself
(36, 37, 38). These peptides are generally synthesized as part of larger, precursor
proteins, which are cleaved in a site-specific manner to liberate the mature Ubl (as
the N terminal cleavage product). The Ubl can then be attached covalently to target
proteins or lipids. In the case of TUG, cleavage is a regulated event that occurs
rapidly after insulin stimulation in 3T3-L1 adipocytes. TUG cleavage separates an N
terminal region (TUGUL), which binds GLUT4, from C terminal regions, which bind
the anchoring proteins. Preliminary data suggest that TUGUL moves with GLUT4 to
the plasma membrane, and the C-terminal product remains behind and is degraded
by the proteasome. This model predicts that subsequently endocytosed GLUT4
would require intact, newly-synthesized TUG protein for retention in GSVs of
unstimulated cells. Most TUG resides in the cytosol, and it may be recruited to
membranes containing endocytosed GLUT4 from this large reservoir.

In the sustained presence of insulin, endocytosed GLUT4 may not cycle
through GSVs, and there need not be ongoing TUG processing and degradation.
Thus, TUG is an essential compartment of a retention mechanism that is likely
engaged only in the absence of insulin.

Ubc9 and GLUT4 Trafficking
Another protein that likely plays a crucial role in the targeting and storing of

GLUT4 in GSVs is Ubc9, a SUMO conjugating enzyme (39, 40). Ubc9 binds to the



13

GLUT4 C terminus, and controls the accumulation of GLUT4 in GSVs in L6 myoblasts
and 3T3-L1 adipocytes. Similar to ubiquitin conjugating enzymes, Ubc9 catalyzes
the covalent attachment of a Ubl, SUMO, to target proteins. SUMO is 12 kD, and its
attachment to target proteins modulates their activities or intracellular locations
(41,42, 43). The Ubc9 data suggest that SUMO modification (“SUMOylation”) may
function in GLUT4 trafficking. Of note, present data from the Bogan laboratory
shows the C terminal remnant of TUG is observed in both 42 kDa and 54 kDa forms.
The expected size of the cleavage product is 42 kDa, and the 54 kDa form may be a
modified form of the 42 kDa cleavage product. One possibility, which was examined
during the course of this work, was that the TUG C-terminal product is SUMOylated,
and that this modification of the TUG C-terminal cleavage product may be involved
in removing it from the anchoring site. This would vacate the anchoring site so that
it is available for subsequent cycles of GLUT4 retention and release.

Usually, SUMO modifications are added to a lysine residue amidst a
consensus site: aliphatic residue-lysine-any amino acid-glutamic acid (44). Several
residues meeting these criteria can be found within TUG. However, as will be
discussed, multiple experiments were not consistent with this idea of TUG
SUMOylation. This raised the possibility of the putative TUG modifier being
something other than SUMO.

In addition to SUMOylation, other common post-translational protein
modifications include acetylation, methylation, ubiquitination, and ADP-
ribosylation. Of note, these other modifications also frequently occur at lysines. In

addition, previous work has shown that some lysines are alternatively acetylated
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and SUMOylated, which made acetylation the logical modification to consider next
(45, 46, 47, 48). Further, the UniProtKB online database showed that one of TUG’s C-
terminal residues was a site of acetylation (ref Q9BZE9). A recent paper showed
that lysine modification of the enzyme ornithine carbamoyltransferase decreased
the affinity of this enzyme for one of its substrates. In addition, the acetylation of
this enzyme was dependent on the extracellular glucose and amino acid availability
(49). This resulted in the hypothesis that TUG acetylation may alter its affinity for a
GSV anchoring protein, allowing GLUT4 to be released to the plasma membrane. In
addition, this acetylation could be dependent on either extracellular glucose
concentration, or the insulin signaling cascade. The idea that acetylation can be due
to the concentration of metabolic products is also supported by work showing that
deacetylation causes breakdown of NAD to produce nicotinamide and ADP-ribose.
Build up of nicotinamide shifts the homeostasis to favor acetylation and build up of
NAD favors deacetylation. Thus, if TUG’s acetylation state alters its affinity for the
anchor and this in turn affects the localization of GLUT4, the concentration of
metabolic products- such as NAD- could have a role.
GCC185 as a Putative Anchor

A final question to consider is where GSVs are anchored within the cell. The
membrane density work done in diabetic humans strongly suggested that proper
GLUT4 localization played a key role in insulin-responsiveness. TUG is known to
bind GLUT4 within its N-terminus and that deletion of the C-terminus of TUG results
in its inability to retain GLUT4 intracellularly. This suggests that the C-terminal

binds to an anchoring site for GSVs. Again this term “anchor” is used in the
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functional sense and is not meant to imply a static interaction. Given that GSVs seem
to at least traffic through the TGN, it is possible that a protein associated with the
TGN is the anchor (50). One candidate for this anchor is the known tether Golgin
Coiled-Coil protein 185 (GCC185). Golgin proteins are integral to the Golgi complex
and frequently act as anchors for vesicles moving to and from this organelle.

Three reasons highlight GCC185 as a putative anchor. 1. This protein has
been shown to localize to the TGN and to be a necessary tether for transport vesicles
coming from endosomes (51). This model was best worked out in regards to the
mannose-6-phosphate receptor (M6PR), a receptor for lysosomal enzymes that
traffics between late endosomes/lysosomes and the TGN. After releasing its cargo to
lysosomes, M6PR recycles back through the TGN, using GCC185 as its anchor.
Without this interaction, M6PR’s are mislocalized and instead found at random
locations within in the cell. A similar model could be imagined for GLUT4 vesicles,
which also must recycle back from the plasma membrane. Also of note, when GLUT4
colocalizes with syntaxin 6/16 at the TGN, this same subdomain is also labeled with
M6PR (12, 22). This further emphasizes the idea that GCC185 may be an anchor for
both the M6PR and for GLUT4. 2. GCC185 has been shown to interact with Rabs (52,
53, 54). Rabs are small GTPases that are active when GTP-bound and inactive when
GDP-bound. They have diverse roles (54, 55). Those relevant to the topic at hand
include vesicle budding, tethering, and fusion (57); vesicle motility when molecular
motors are involved (58); and control of signaling pathways. Rabs are known to be
involved in these steps in GLUT4 trafficking, and since GCC185 has been shown to

associate with multiple Rabs, it is possible that it is during its association with
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GCC185 that GSVs are formed and then later moved from their intracellular site to
the plasma membrane (56, 59). This brings up reason 3: GCC185 anchors non-
centrosomal microtubules. GLUT4 uses both actin and microtubules to arrive at the
plasma membrane (60). In particular, insulin loads GLUT4 onto Kif5B microtubule
motors to mobilize it from the perinuclear region, near the Golgi apparatus, and to
target it to the cell periphery (61). It is possible that GSVs are loaded from their site
in association with GCC185 onto these microtubules to traffic out to the plasma
membrane in response to insulin.
Summary

Clarifying how GLUT4 is targeted and stored in its specific vesicles is key to
understanding the cascade of events after insulin signaling. Data suggest TUG
associates specifically with GLUT4 that is stored in GSVs, and that these GSVs may
be functionally tethered at the TGN to await insulin signaling. Identification of the
anchoring protein that TUG uses to hold GSVs in place as well as better
characterization of how GSVs are mobilized to the plasma membrane will clarify

how insulin acts to control GLUT4 targeting and glucose uptake.
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Specific Aims:

The long-range goal of the project proposed here is to better understand GSV
formation, localization, and insulin-induced translocation. As outlined above, it was
hypothesized that TUG acts as a functional tether between GLUT4 within GSVs and
an anchoring protein at the TGN (see Figure 1). It was hypothesized that this TGN
anchor protein is GCC185. Additionally, it was hypothesized that TUG modification
participates in a biochemical mechanism for the release of GSVs to the plasma
membrane. This modification may occur at a lysine residue in the C-terminal of TUG
and was considered to be either SUMOylation or acetylation. To test these
hypotheses, here it is proposed:

1. To characterize interactions among GLUT4, GCC185, and TUG, and to learn if
these proteins bind each other simultaneously as a complex in HEK293 and
unstimulated 3T3-L1 adipocytes.

2. Tolearn if TUG is SUMOylated or acetylated, to define the site, and to study the
functional role of this modification.

Accomplishment of these aims will clarify biochemical mechanisms that
mediate the action of insulin to enhance glucose uptake. These mechanisms have

high relevance for the pathogenesis of insulin resistance and diabetes.
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Figure 1. We hypothesize that TUG binds to both GLUT4 and an anchoring protein, possibly GCC185, at the
TGN (not shown). Following insulin stimulus, TUG is cleaved, freeing GLUT4 to go to the plasma
membrane. The C-terminal fragment of TUG is then modified, removed from the anchoring site, and
degraded. This opens up the binding site at the anchoring protein for new TUG-GLUT4 complex to bind

and for the cycle to begin anew in the basal state.
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Methods:

Aim 1a. To test whether GCC185 binds to TUG as well as to GLUT4, initial
experiments employed coimmunoprecipitation (Co-IP) from lysates of transiently
transfected 293 cells. Transfection was carried out by treating plates of 293 cells
grown in DMEM and 10% Bovine Growth Serum with a mixture of Lipofectamine,
DNA, and DMEM. In general, one microgram of DNA, 15 microliters of
Lipofectamine, and 250 microliters of DMEM were used for each transfected plate.
These numbers were titrated up or down with the goal of having equal levels of
protein expression of the transfected DNA in each plate (this was determined by
comparing the prelysate protein levels). Cells were allowed to grow for 48-72 hours
post-treatment and were then lysed on ice using ice-cold TNET (50 mM Tris, pH 8.0,
150 mM NaCl, 5 mM EDTA, 1% Triton X-100). This allowed for the investigation of
non-covalent interactions.

A plasmid encoding GCC185 was acquired from the Pfeffer lab at Stanford
University and was a myc-tagged construct. TUG was used either in the untagged
form and pulled down with the specific antibody made in the Bogan lab, called L1C,
or in the Flag-tagged form. GLUT4 was used either in the untagged form and blotted
for with the specific antibody YU126, or was used in the V5 tagged form. These
proteins were transfected in all possible combinations to probe for possible
interactions. Co-IP’s were carried out using affinity matrix beads to the various
protein tags (ie FLAG, V5, myc) or using the specific antibody to the protein followed
by protein G beads. Western blots were made with the pre-lysates and eluates.

These samples were run out on 4-12% polyacrylamide gels and overnight dry gel
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transfers were set up at a low voltage (2-4 Volts) to allow for complete transfer of
GCC185, a large protein of 185 kDa. Membranes were developed using Pierce PICO
ECL reagent. Images were acquired on film.

Aim 1b. To map the interaction between GCC185 and TUG, a series of
truncations of both proteins were used to carry out coimmunoprecipitations in 293
cells. Again affinity matrix beads for the flag or myc tag were used. The TUG
truncations already existed in the lab in the following forms: TUG UBX (amino acids
377-550), flag-TUG delta 18 (amino acids 1-532), and flag-L1N1 (TUG protein with
amino acids 165-550). Two of the GCC185 truncation constructs were obtained
from the Pfeffer lab and included delta C110 (amino acids 1-1574) and delta CC123
(amino acids 890-1684). Additional truncation constructs were created using PCR
followed by Topo cloning, and were based on fragments that would fold into coiled-
coils based on the paper by Hayes et al (53). The fragments included CC123 (amino
acids 1-861), C110 (amino acids 1575-1684) and C343 (amino acids 1341-1684). All
of the GCC185 constructs were tagged with myc.

Aim 1c. To assess whether TUG modification is necessary for interaction with
the putative anchor protein GCC185. The lysine site most likely to be modified was
located and mutated using PCR techniques. This construct was termed TUG K549R,
and it mutated the penultimate lysine to an arginine. It was used in
coimmunoprecipitations with the myc-GCC185 construct to assess for increased or
decreased interaction.

Aim 2a. To assess whether TUG is a target of Ubc9-mediated SUMOylation.

An outline of experiments to assess for protein SUMOylation can be found in an
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overview by Ok-Kyong, Park-Sarge and Sarge (62). In the first experiment
performed, SUMO-1, and SUMO-2 were tagged with the HA tag and then transiently
transfected into 293 cells along with TUG. The HA tag was then immunoprecipitated
and TUG was blotted for. Transfected cells were lysed in boiling .1% SDS to assess
for covalent modifications with SUMO. In the second experiment, TUG was
immunoprecipitated using the L1C antibody and protein G beads, and SUMO was
blotted for. In the third experiment, purifications were carried out using affinity
matrix beads containing a SUMO-interaction motif and then TUG was blotted for. In
the fourth experiment, affinity matrix beads containing bound SUMO were used to
pull down proteins to which SUMO normally bound. Beads containing bound
ubiquitin, which is not believed to bind TUG, were used as a negative control. Again,
TUG was blotted for. The TUG K549R construct was again used in experiments
alongside wild type TUG to assess for any difference.

Aim 2b. To examine whether SUMO modifies TUG in 3T3-L1 adipocytes, cells
stably expressing a GLUT4 reporter protein were used. This reporter contains seven
myc epitope tags, as well as GFP fused in frame at the carboxy terminus. It has been
validated extensively, and is expressed at about fivefold the abundance of
endogenous GLUT4. The myc tags facilitate immunoprecipitation of GLUT4 and
associated proteins, using an immobilized monoclonal antibody. In addition, stable
3T3-L1 cells have already been generated and characterized that contain both the
GLUT4 reporter and overexpressed TUG, or the GLUT4 reporter and a dominant
negative (UBX-Cter) TUG fragment. These three cell lines were then stably infected

with the HA-SUMO 1and HA-SUMO 2 vector. Infections were achieved by first
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transiently transfecting 293 cells with the desired DNA and the pCL vector system
(63). The media from these 293 plates was then collected and added to the 3T3L1
plates. Successful uptake was confirmed using FACS and cells were then sorted to
get 100% infection rates. These cells were then differentiated into mature
adipocytes, treated in the absence of insulin or in the presence of insulin for 2, 5, or
10 minutes and then immunoprecipitated using the HA tag. Eluates were then
immunoblotted to assess for the presence of associated TUG, and to determine if
insulin affected this association. To concentrate the interaction of the desired
proteins, this experiment was also done after making membranes and cytosol. In
this experiment, three plates of the same type were combined, and lysates were
spun in the Ultracentrifuge for 30 minutes at 100,000 rpm. The separated
membranes and cytosol were then immunoprecipitated using the HA tag and TUG
was blotted for.

Aim 2c. To examine whether acetylation is the modification of TUG, 293 cells
were transiently transfected with TUG or TUG K549R. After 36 hours, these cells
were treated with trichostatin A (TSA) at a concentration of 0.5 microMolar for 16-
21 hours and with nicotinamide (NAM) at a concentration of 5 milliMolar for the last
6 hours. Both TSA and NAM are known to inhibit deacetylation. Cells were then
lysed in boiling 0.1% SDS, triton-X100 was added to 1%, and TUG was
immunoprecipitated using the L1C antibody. Eluates were then blotted using a

commercial antibody to acetylated lysine.
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Results

1a: Determination of an interaction between GCC185 and TUG. In transfected
293 cells, immunoprecipitation of the myc tag on GCC185 resulted in the
simultaneous precipitation of TUG in the cell lines in which both TUG and GCC185
were transfected. In the lanes with only myc-GCC185 or only TUG, this effect was
not seen (see Figure 2). The interaction of TUG and GCC185 was demonstrated even
in lane 6 of Figure 2, where the transfection of the GCC185 construct occurred at a
lower efficiency. The converse of this experiment was also done and showed that
when the flag tag on TUG was immunoprecipitated, there was
coimmunoprecipitation of GCC185. Again, this effect was only seen in the cell lines
in which both flag-TUG and myc-GCC185 were expressed (see Figure 3). Both of

these experiments were repeated on three separate occasions.

TUGWT) — + — — — + — + -
TUG(K549R) — — + — — — + — +
GFP-Golgin-160 — — — — + — — + +
GCC185-myc — — — + + + + + +
IP GCC185-myc, WB TUG - e :gg
lysate, WB TUG e o - :gg
kD
lysate, WB GFP-Golgin-160 s - — 180
lysate, WB GCC185-myc e e _ 18s

Figure 2. Immunoprecipitation of myc-GCC185 and Western Blot of TUG. In
this experiment, 293 cells were transfected with combinations of TUG, TUG
K549R mutant, GFP-Golgin-160, and myc-GCC185. Golgin-160, another large
Golgi-resident protein was used to compare it to GCC185. The myc tag on
GCC185 was immunoprecipitated and equal amounts of the various proteins
were blotted for. TUG and TUG K549R were blotted for with anti-L1C,
GCC185 with anti-mve. and GFP-golein 160 with anti-GFP.
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Figure 3. Immunoprecipitation of flag-TUG and Western Blot of myc GCC185.
In the reciprocal experiment to the one in Figure 2, 293 cells were transfected
with combinations of flag-TUG, flag-TUG deltal8, and myc-GCC185. The flag
tag was immunoprecipitated and equal amounts of the various proteins were
blotted for. TUG and flag-TUG deltal8 were blotted for with anti-flag and
GCC185 with anti-myec.
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Experiments were also done in which V5-GLUT4, myc-GCC185 and flag-TUG

were expressed and the myc tag was immunoprecipitated. This was done with the

goal of showing that TUG was a central protein binding both GLUT4 and GCC185, so

that pulling down GCC185 would bring down TUG and the associated GLUT4 in

complex. Unfortunately, the V5 -GLUT4 construct did not express in all of the plates

in which it was transfected, so these results could not be interpreted (data not
shown).
1b. Mapping the interaction between TUG and GCC185. In this experiment,

flag-TUG, flag-L1N1 (TUG protein with amino acids 165-550), myc-delta C110

(GCC185 protein with amino acids 1-1574), and myc-delta CC123 (GCC185 protein

with amino acids 890-1684) were transfected into 293 cells. The myc tag was

immunoprecipitated, and the flag tag was blotted for. There was a specific band in

the lanes with flag-TUG and myc-deltaCC123 (see figure 4). There was no band in
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the lane with flag-TUG deltal8 and myc-GCC185 (see Figure 3). The absence of a
band in the lane with flag-TUG deltal8 and myc-GCC185 was seen in two separate
experiments. Unfortunately, the cells transfected with myc-delta C110 died on
multiple occasions, so it was not possible to narrow down the site on GCC185 any

further.

myc-GCC185ACC123 — — — — + +
flag-TUG — + — — — +

IP myc-ACC123, WB flag-TUG o -
IP & WB myc-ACC123 -— —

lysate, WB flag-TUG . .

Figure 4. Immunoprecipitation of myc-delta CC123 and Western Blot of flag-TUG. 293
cells were transfected with combinations of flag-TUG and myc-delta CC123. The myc tag
was immunoprecipitated and equal amounts of the various proteins were blotted for.
TUG was blotted for with anti-flag and delta CC123 was blotted for with anti-myc.

1c. Determining whether TUG modification is necessary for interaction with
GCC185. For the initial assessment of this, 293 cells were transfected with
combinations of TUG, TUG K549R-whose penultimate lysine has been altered, with
the purpose of making it unmodifiable- and myc-GCC185. When the myc tag was
immunoprecipitated, and the eluate was blotted for TUG, it was seen that GCC185
and TUG came down together, but that TUGK549R and GCC185 did not come down
together or came down significantly less (see Figure 2). The TUGK549R mutant was
transfected at an efficiency that was about 50% less than that of the TUG construct,
however the difference in the amount of TUGK549R and TUG in the eluate lanes is

greater than 50%. This result was seen on two separate occasions.
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2a. Assessing TUG for SUMO-modification in 293 cells. In multiple separate
experiments, 293 cells were transfected with different combinations of HA-SUMO 1,
HA-SUMO 2, and TUG. In some experiments the HA tag was immunoprecipitated and
TUG was blotted for, and in other experiments TUG was immunoprecipitated and
the HA tag was blotted for. In none of these experiments did the two proteins come
down together. When affinity matrix beads containing SUMO-interacting motifs
were used, no TUG came down. When affinity matrix beads containing bound SUMO
were used, they did not bind to TUG, as no TUG came down in the eluate. Finally,
when TUG and the mutant TUG K549R were transfected to see if SUMO interacted
with one and not the other, no difference could be detected.

2b. Assessing TUG for SUMO-modification in 3T3L1 adipocytes. Six sets of
3T3L1 adipocytes were analyzed: the first expressed excess GLUT4 and HA-SUMO 1,
the second expressed excess GLUT4, TUG, and HA-SUMO 1, the third expressed
excess GLUT4, UBx-C terminal TUG fragment, and HA-SUMO 1, the fourth expressed
excess GLUT4 and HA-SUMO 2, the fifth expressed GLUT4, TUG, and HA-SUMO 2,
and the sixth expressed excess GLUT4, UBx-C terminal TUG fragment, and HA-SUMO
2. An insulin time course (0, 2, 5, and 10 minutes) was set up, the HA tag was
immunoprecipitated, and TUG was blotted for in the eluates. In none of the plates
was TUG seen to come down. In a similar experiment, membranes and cytosol were
separated in the first 3 cell types and HA was again immunoprecipitated, this time
without the insulin time course. When TUG was blotted for in the eluates, it was not

seen to come down in any of the lanes.
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2c. Assessing TUG for acetylation in 293 cells. 293 cells were transfected with
either TUG or TUG K549R and then treated with either NAD and TSA (to prevent
deacetylation) or with nothing. TUG was then immunoprecipitated in the cell
lysates. In the prelysates, the plates treated with NAD and TSA had significantly
more protein on the acetylated lysine blot as compared to the untreated plates. In
the eluates blotted for acetylated lysine, there was a band in the TUG lane treated
with NAD and TSA, but this band ran at 51 kDa as opposed to the normal level for
TUG, which is 60 kDa. Thus, it was unclear what this band represented. Of note,
another member of the laboratory (Charisse Orme) conducted an experiment in
which she immunoprecipitated the flag-tags on both flag-tagged full length TUG and
flag-tagged TUG deltal8. She then blotted the eluates with an acetylated-lysine
antibody (which detects acetylated-lysine residues). The immunoprecipitated
protein was detected when flag-TUG was used, but not when flag-TUG deltal8 was
used (Figure 5). This suggests that TUG is acetylated and its C terminal 18 amino

acids are required for this acetylation.
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Figure 5. Courtesy of Charisse Orme. Inmunoprecipitation of flag TUG and
Western Blot of acetylated-lysine. 293 cells were transfected with
combinations of flag-TUG and flag-TUG delta18. The flag tag was
immunoprecipitated and equal amounts of the various proteins were blotted
for. The acetylated-lysine antibody was used to probe for the presence of
proteins with acetylated-lysine residues.
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Discussion

At the outset of this project, the goal was to gain a better understanding of
how GSVs form and where they localize within adipocytes and myocytes in the
absence of insulin. Coimmunoprecipitation data from 293 cells suggest that GCC185
and TUG do in fact interact. This is supported by the fact that TUG can be pulled
down when GCC185 is immunoprecipitated, with the reciprocal finding also being
demonstrated. This data is limited by the fact that it was acquired from 293 cells, a
cell line that is not insulin responsive. However, TUG was shown to sequester
GLUT4 away from the cell surface in transfected 293 cells (32). Thus, although itis a
promising result, it needs to be expanded upon with experiments in insulin-
responsive cell lines, such as the 3T3L1 adipocytes. In such experiments, in addition
to seeing an interaction between TUG and GCC185, one might also expect to see a
loss of this interaction after stimulation of the cells with insulin. This would fit the
hypothesized model in which TUG functionally tethers GSVs to an intracellular
anchor, from which GSVs are released following insulin stimulation.

In regards to mapping the interaction between TUG and GCC185, the
preliminary data suggest that the C terminus of TUG is necessary for this interaction,
since the TUG deltal8 construct does not appear to interact with GCC185. These
data fit with previous TUG data, which showed that the N terminus of TUG
interacted with GLUT4 and that the C terminus of TUG was necessary for it to
sequester GSVs away from the plasma membrane. The finding that when TUG lacked

its C terminus it was no longer able to sequester GSVs, is consistent with this new
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finding that the C terminus of TUG is necessary to bind to GCC185, the putative
anchor.

Furthermore, the fact that a fragment of TUG's C terminus, the UBX-Cter,
appears to act as a dominant negative also fits this model. Presumably, this UBX-
Cter fragment can bind to the anchoring site, and in so doing occupies the places
where full length TUG would normally bind. Since the UBX-Cter fragment lacks the
GLUT4 binding site, this would prevent TUG from being able to tether GSVs. This
makes it important to test the hypothesis that the UBX-Cter fragment and GCC185
bind to one another. It also raises the need for functional data in an insulin-
responsive cell line. For example, in the lab there is a 740++ 3T3L1 adipocyte cell
line that has permanently knocked-down TUG. If the TUG deltal8 construct were
added back to this, it should be unable to rescue proper GSV localization, since it
would presumably lack the anchor-binding site.

Mapping of the TUG binding site on GCC185 will also be important. The
preliminary data suggest that TUG binds to the C-terminus of GCC185. Further
narrowing of this interaction was not completed as plates transfected with the other
fragments died.

It would also be crucial to demonstrate the co-localization of GCC185 and
GLUT#4 in an insulin responsive cell-line such as 3T3-L1 adipocytes. This was
attempted using electroporation followed by cell staining but the cells did not
survive. It seems likely that the harsh conditions imposed on the cells from the
combination of these two methods resulted in this endpoint. As such, a cherry-

GCC185 construct was created to be used alongside the already existing GFP-GLUT4
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construct. By using these two constructs, electroporation would still be necessary,
but the staining step could be skipped, since both constructs would fluoresce. In
addition, some of these cells would have to be treated with insulin to show that this
results in loss of co-localization. Alternatively, stable cell lines could be made
expressing cherry-GCC185 and GFP-GLUT4, or transiently stable cells could be
created with the two constructs using an adenovirus vector.

The data showing that the TUG K549R mutant significantly lessens the
interaction between TUG and GCC185 is promising. This mutation was made based
on the fact that this site seemed a likely site of modification and was seen in the
UniProtKB database to be an acetylated residue. This mutation would prevent such
acetylation from taking place by eliminating the lysine. It is therefore interesting
that this mutant cannot interact with GCC185, and suggests that TUG acetylation is
necessary for its association with GCC185. To assess the true significance of this
finding, experiments would have to be set-up in an insulin responsive cell line. For
example, if the 740++ cell line were used, the K549R mutant could be added back
and it would be expected to be unable to localize GSVs to their appropriate
intracellular location, since it would not bind to GCC185, the presumed anchoring
site. A mutant of the UBX-Cter was also made with this K549R, and this could be
tested in 3T3L1 adipocytes as well. The predicted outcome here would be that the
mutant UBX-Cter would no longer be able to act as a dominant negative construct,
since it presumably could no longer interact with GCC185.

Attempts to verify that acetylation occurs at this site yielded non-specific

results. Hence, these experiments should first be re-attempted using a positive
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control such as p-53, which is known to be acetylated. It is also possible to raise
antibodies against specific acetylated lysine complexes, though this is an expensive
and time-consuming endeavor. It would also be possible to look at the role of
acetylation in 3T3L1 cells either by using deacetylase inhibitors, which might
strengthen the interaction between GCC185 and TUG and hinder GSV translocation,
or by promoting deacetylases, which might prevent the interaction between GCC185
and TUG.

As part of our initial hypothesis, we proposed that the 54 kDa fragments of
TUG represented a modified form of processed TUG that allowed its removal from
the anchoring site. We had hoped to characterize this modification. Given the variety
of experiments done in both 293 and 3T3L1 adipocytes, along with the repetition of
said experiments, it seems that SUMO is not the modifier of TUG. This may be
consistent with the work from Liu et al., in which it was shown that the catalytically
inactive form of UBC9 was just as effective at allowing GSV movement to the cell
surface as the active form of UBC9 (40). Since the catalytic role of UBC9 is to
facilitate SUMOylation, the observation that an inactive UBC9 still allows for GSV
translocation suggests that SUMOylation does not play a role in the untethering of
GSVs. Yet, because this work used an adenovirus to express Ubc9 transiently, and
given that the 54 kD fragment is produced after TUG cleavage, it is formally possible
that disrupting SUMOylation might not affect the initial cycle of GSV release.
Nonetheless, it seems most likely that TUG SUMOylation is not involved in GSV

translocation.
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The nature of the modification causing the shift from a 42 kDa to a 54 kDa
product remains unknown. One possibility is that this modification is ADP-
ribosylation. Deacetylation and ADP-ribosylation have been shown to occur in
concert and are both stimulated by NAD (64). If acetylation of TUG is needed for it to
associate with GCC185, then TUG’s deacetylation and subsequent ADP-ribosylation
may allow it to dissociate. Further, the ADP-ribosylation could account for the 54
kDa band of TUG seen following insulin stimulation. This hypothesis deserves
further investigation.

It should be stated that in experiments meant to represent an insulin-
responsive cell model, 3T3L1 adipocytes were used to be consistent with other
GLUT4 literature in which this is generally the model cell system. This is in part
because myocyte cell lines have proved difficult to manipulate. It is presumed that
the TUG and the anchor would play a similar role in mycocytes, since these cells are
similarly responsive to insulin. However, this is something that would eventually
have to be verified in a myocyte cell line. Additionally, GSV movement to the plasma
membrane in mycocytes can also be stimulated by muscle contraction, and it is not
clear whether this uses the same signal transduction pathway as insulin to release
GSVs.

Although these results need to be developed further, they are exciting.
Additional characterization of the TUG/GCC185 interaction may further support the
idea that GCC185 is indeed the anchor to which the GSV-TUG complex binds. This
would then provide a clearer sense of the proteins involved in the insulin-

responsive complex. As previously reviewed, the formation and location of GSVs
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play a key role in glucose homeostasis, making this valuable information. If GCC185
in fact plays this role, it would explain why GLUT4 and IRAP colocalize with TGN
markers at various points in adipocyte maturation. The fact that GCC185 is
associated with microtubules would also provide a transport mechanism whereby
GSVs could move to the plasma membrane. In addition, the association of GCC185
with Rabs, would put at-hand the catalysts to allow this translocation.

It is also instructive to consider the fact that TUG is expressed in almost
every cell type. This raises the possibility that TUG plays a similar functional
tethering role in multiple cell types. If that is the case, the interaction of TUG and
GCC185 may be conserved, with the TUG-associated vesicle being the variable. For
this reason, other cell types with regulated secretion should be investigated to see if
a similar set-up exists. Such cell types are multiple and would include gastric
parietal (in which the H+/K+ pump is translocated to the cell surface), renal distal
collecting tubules (in which aquaporin channels are translocated), and neurons (in
which AMP-A glutamate receptors are translocated) for a start. Given the finely-
controlled steps that must go into forming these secreted vesicles and then
stimulating their release, it would make sense if the underlying proteins were

conserved.
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