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Abstract

Lately, distributed computing (DC) has emerged in several application scenarios such

as grid computing, high-performance and reconfigurable computing, wireless sensor

networks, battle management systems, peer-to-peer networks, and donation grids.

When DC is performed in these scenarios, the distributed computing system (DCS)

supporting the applications not only exhibits heterogeneous computing resources

and a significant communication latency, but also becomes highly dynamic due to

the communication network as well as the computing servers are affected by a wide

class of anomalies that change the topology of the system in a random fashion. These

anomalies exhibit spatial and/or temporal correlation when they result, for instance,
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from wide-area power or network outages These correlated failures may not only

inflict a large amount of damage to the system, but they may also induce further

failures in other servers as a result of the lack of reliable communication between

the components of the DCS. In order to provide a robust DC environment in the

presence of component failures, it is key to develop a general framework for accurately

modeling the complex dynamics of a DCS.

In this dissertation a novel approach has been undertaken for modeling a general

class of DCSs and for analytically characterizing the performance and reliability of

parallel applications executed on such systems. A general probabilistic model has

been constructed by assuming that the random times governing the dynamics of

the DCS follow arbitrary probability distributions with heterogeneous parameters.

Auxiliary age variables have been introduced in the modeling of a DCS and a hybrid

continuous and discrete state-space model the system has been constructed. This hy-

brid model has enabled the development of an age-dependent stochastic regeneration

theory, which, in turn, has been employed to analytically characterize the average

execution time, the quality-of-service and the reliability in serving an application.

These are three metrics of performance and reliability of practical interest in DC.

Analytical approximations as well as mathematical lower and upper bounds for these

metrics have also been derived in an attempt to reduce the amount of computational

resources demanded by the exact characterizations.

In order to systematically assess the reliability of DCSs in the presence of corre-

lated component failures, a novel probabilistic model for spatially correlated failures

has been developed. The model, based on graph theory and Markov random fields,

captures both geographical and logical correlations induced by the arbitrary topology

of the communication network of a DCS. The modeling framework, in conjunction

with a general class of dynamic task reallocation (DTR) control policies, has been

used to optimize the performance and reliability of applications in the presence of in-
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dependent as well as spatially correlated anomalies. Theoretical predictions, Monte-

Carlo simulations as well as experimental results have shown that optimizing these

metrics can significantly impact the performance of a DCS. Moreover, the general

setting developed here has shed insights on: (i) the effect of different stochastic mod-

els on the accuracy of the performance and reliability metrics, (ii) the dependence

of the DTR policies on system parameters such as failure rates and task-processing

rates, (iii) the severe impact of correlated failures on the reliability of DCSs, (iv) the

dependence of the DTR policies on degree of correlation in the failures, and (v) the

fundamental trade-off between minimizing the execution time of an application and

maximizing its reliability.
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Chapter 1

Introduction

Parallel computing is defined as the simultaneous execution of an application on mul-

tiple processors. Applications can be executed in a parallel fashion only if they can

be partitioned into small independent tasks. After such partitioning process, tasks

must be allocated onto the processors, and only after this process the application

can starts its execution in parallel. The goal in parallel computing is to achieve the

results faster as compared to executing the same application on a single processor.

The type of parallel computing where computing servers (CSs) do not have ac-

cess to a shared memory and must communicate each other by means of a network

is called distributed computing (DC). The popularity of DC has increased because

it allows the execution of large, computationally intensive parallel applications at an

inexpensive cost. This inexpensive cost comes from the fact that DC is typically per-

formed on clusters of low-end workstations interconnected by a network that exhibits

both low bandwidth and a significant latency to any exchange of the information.

Thus, unlike parallel computing systems, distributed computing systems (DCSs) are

multi-computer environments, with a distributed-memory, heterogeneous computing

capabilities and non-negligible communication costs.

1



Chapter 1. Introduction

In DC there is a fundamental trade-off between the execution time of an appli-

cation and the communication costs between the processors. The performance of

applications executed on DCSs can be improved, at runtime, by migrating the tasks

among the servers. In DCSs, effective dynamic task reallocation (DTR) strategies

must account for the heterogeneous capabilities of the servers as well as for the trans-

fer delays imposed by the communication network. Unfortunately, practical DCSs

suffer from component failures that may halt the execution of applications; therefore,

providing a robust DC environment to the users becomes essential. Improving the

robustness in a DCS is a challenging problem because DTR policies must trade off re-

liability, communication costs and execution time, while simultaneously considering

the heterogeneous capabilities of the system components. Trading off communication

costs, application’s reliability and DCS performance is the gist of this dissertation,

and a novel mathematical framework for optimizing performance and reliability in

DCSs in the presence of component failures is the major contribution of this work.

Lately, DC has emerged in applications such as grid computing [23], reconfig-

urable and high-performance (HP) computing, wireless sensor networks (WSNs),

distributed pattern-searches in DNA databases [82], battle management systems [19],

surveillance and threat detection, peer-to-peer (P2P) networks, and donation grids

[78]. When DC is executed in these applications, the DCS not only offers to its

users heterogeneous computing resources and a significant communication latency,

but also exhibits a topology that changes over time in a random fashion due to such

applications are affected by a wide class of anomalies that may exhibit spatial and/or

temporal correlations. Consider, for instance, the case of a cluster of servers in a DCS

that are geographically or logically coupled. These servers may fail simultaneously

due to a wide-area power or network outage. In addition, consider now the case of DC

in WSNs, the topology of the DCS may vary due to a coordinated action executed by

the sensors in order to save batteries. Such kind of energy-preserving action typically

involve turning off a subset of the sensor nodes. In battle management systems, for

2



Chapter 1. Introduction

example, real-time DC is performed in harsh environments and massive disruptions

can result from attacks using weapons of mass destruction (WMD). In fact, the aris-

ing of real-time DC in harsh environments has triggered government agencies, such

as the Defense Threat Reduction Agency, to launch research initiatives in network

science to understand the extent of damage that can be inflicted upon networks in

the event of attacks and also to develop strategies to increase the robustness of net-

works when a threat is present. Since performance and reliability of applications are

known to be highly dependent on the stochastic attributes of component failures, it

is plausible to conjecture that correlated failures have more adverse effects on the

performance and reliability than independent failures. These emerging scenarios for

DC have generated new challenges where techniques developed for traditional DCSs

are no longer appropriated. This new paradigm for DC calls for novel models for

DCSs as well as new assessment tools that can adapt to both workload fluctuations

and changes in the number of available CSs.

In order to provide a robust DC environment in the presence of network anoma-

lies, it is key to develop a general framework for accurately predicting the performance

and reliability of the applications being executed on a DCS. This general framework

must capture the heterogeneity and randomness in both the processing capabilities

of the servers and in the communication network. In addition, such a general frame-

work must include the type of correlation exhibited by the anomalies altering the

topology of the system, and must account also for a DTR policy so that performance

and reliability of applications can be improved at no extra cost to the system. To

the best of the author’s knowledge, such framework at the level of generality stated

has not been proposed heretofore.

3
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Figure 1.1: Empirical pdfs and several fitted distributions for: (a) task execution
time at a server; and (b) task transfer-time between two servers communicating over
a wireless channel.

1.1 Motivation

Modeling DCSs and assessing their performance and reliability are complicated tasks

due to the fact DCSs comprise a large number of elements that interplay in a concur-

rent and stochastic manner, thereby creating a complex system dynamics [11,22,23].

Because of this complexity, most of the analytical approaches used to analyze per-

formance and reliability introduce the simplifying assumption about the Marko-

vian behavior of the DCS. Under the Markovian assumption, all the concurrent

events governing the behavior of the DCS are assumed to follow exponential distri-

butions [4, 9, 42,47,51,67].

Unfortunately, the Markovian assumption is not always appropriate to model real

systems. For example, Figs. 1.1(a) and (b) show, respectively, the empirical pdfs of

the service time of tasks and the transfer times of tasks. These pdf have been ob-

4



Chapter 1. Introduction

tained after processing data logged from experiments conducted on the testbed DCS

described in Section 4.2.3. These experiments were conducted using non-dedicated

computers that communicate over an IEEE 802.11g wireless channel during working

hours on a normal day of work at the third floor of the Electrical and Computing

Engineer Department building. In the figures different stochastic models for approx-

imating the random service and transfer times are presented. First, it can be noted

that real systems impose unavoidable minimum response times to the service or to

the transfer of a task. In the case of the service time, this minimum time results from

operations conducted by the operating system and the application, such as loading

the data into the memory, making system calls and initializing parameters. In the

case of the transfer times, the communication networks employed by actual DCSs

always introduce a non-zero end-to-end propagation delay to any exchange of infor-

mation. From these physical constraints of real systems, the probability distribution

of the random service and transfer times cannot be accurately modeled by an expo-

nential distribution. Second, from the shape of the empirical pdfs, the exponential

distribution does not appear as the appropriate distribution for the data. In the case

of the service time, evidence of a heavy tail is observed at the point mass centered

at t = 10 s, while in the case of the transfer time the pdf resembles a Gamma or

a Log-normal distribution. In addition, from the figures it is easy to observe that

the total approximation errors introduced by the exponentially fitted pdfs are larger

than those introduced by the remaining probability distributions considered in the

example. From these observation the following research questions arise: under which

conditions the exponential models are accurate approximations for the service and

transfer times? How these approximations impact the performance and reliability

metrics?

In [67] the question on how much the exponential approximation affects the ser-

vice reliability metric was studied by means of Monte-Carlo (MC) simulations. Pre-

liminary results of this study indicated that the exponential model for the reliability

5
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the task transfer times are approximated by an exponential (“Exp.”) model. As
the amount of tasks exchanged increases, the exponential approximation looses its
accuracy in predicting the reliability.

yields accurate predictions for such metrics and the approximation errors appeared to

be no larger than 4%. However, further simulations showed that as the ratio between

the average transfer time of tasks and the average service time of them increases, the

exponential approximation looses its accuracy in predicting the reliability. In par-

ticular, unacceptable errors of 120% were found when the ratio between these times

was five. In addition, another simulation-based study confirmed that under the same

operation regime, the performance metric average execution time is also affected by

wrongly assuming that the random events driving the DCS dynamics follow expo-

nential distributions. Figure 1.2 depicts the theoretical predictions for the service

reliability as a function of the number of tasks exchanged among the servers, for

several stochastic models for the transfer times. (This example is explained in detail

in Section 3.3.2 of this dissertation.) This figure shows that when a few number of
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tasks are exchanged in the network, i.e., when the communication cost is “small,”

the approximations provided by the exponential distribution remains very accurate

for all the stochastic models considered. However, as soon as the number of tasks

exchanged increases, i.e., the transfer time becomes larger, the exponential approxi-

mation is no longer valid. Specifically, for the example showed in Fig. 1.2 a maximum

relative approximation error for the service reliability of 65% has been found. This

approximation errors introduce another research question: does the modeling error

affect the DTR policies?

From these examples, it can be observed that Markovian models for performance

and reliability metrics are not suitable for representing the dynamics of general DCSs.

Even though the existing Markovian approaches can yield accurate approximations

for such metrics, the applicability of these models is clearly limited.

Finally, most of the reliability analysis of DCSs has been conducted heretofore

assuming that failure components are independent. However, in the emergent sce-

narios for DC correlated may naturally occur. The presence of this type of failures

immediately limitates the scope of application of the existing approaches for assess-

ing reliability in DCSs. It was mentioned that one can conjecture about the more

negative impact of correlated failures on the reliability of DCSs as compared to inde-

pendent failures. However, in order to systematically assess reliability in the presence

of spatially correlated failures, it is mandatory first to have tools for modeling such

kind of component failures. In the literature only few analytical models for corre-

lated failures are available and most of them have been derived from the statistical

analysis of logged data. Moreover, it has been observed in the literature that there

is a need for efficient simulation tools for generating patterns of failures with spa-

tial correlation. Thus, another motivation for this dissertation is to satisfy the need

for general analytical models as well as simulation tools for the assessing reliability

in DCSs with arbitrarily defined topologies, when they are affected by correlated

7
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failures.

1.2 Prior work

1.2.1 Modeling distributed computing systems

Modeling DCSs and assessing the performance and reliability of applications exe-

cuted on these DCSs are complicated tasks for several reasons. First, the computing

servers composing a DCS offer heterogeneous processing capabilities to their users.

Second, servers in a DCS are not normally dedicated processors; the processing time

of tasks at any server varies in time according to the random fluctuations of the

load executed by the servers. Third, the communication network of a DCS inter-

connects geographically dispersed servers, and consequently, imposes a significant

random and heterogeneous latency to any exchange of information. Finally, a DCS

comprises a large number of elements that interplay in a concurrent and stochastic

manner, thereby resulting in complex system dynamics [11,22,23].

Because of this unavoidable complexity, simulation, and in particular discrete

event simulation (DES), has emerged as the most employed method for both mod-

eling and conducting performance and reliability analysis in heterogeneous DCSs.

The most appealing aspect of DES is its simplicity and general application, while

its main drawback is its high computational cost to achieve accurate results [11]. In

addition to DES, another type of theoretical modeling has been conducted by means

of specification languages and graphical modeling tools such as Petri Nets [10], fault

trees [12], and reliability graphs [52].

Analytical methods for performance and reliability have also been developed in

the literature. To circumvent the inherent complexity of the models, researchers

usually impose a set of simplifying assumptions and constraints so that system’s be-
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havior can be characterized in a tractable manner. The most common simplifying as-

sumptions employed in the literature are heuristics related to applications’ execution

time [5, 83, 88], homogeneous capabilities of servers and/or communication links [5],

time-invariant DCS topology [43], and the deterministic behavior of the transfer time

of tasks [7,47,88]. Even though these assumptions are meaningful in parallel comput-

ing systems, the random nature of the uncertainty introduced by the communication

network and the number of functioning servers necessitates using probabilistic models

for conducting performance and reliability analysis of DCSs [10,44,71].

The stochastic model most widely used to represent a DCS is the Markovian

distributed-queueing network. Such model is obtained under the assumption that

all the concurrent events governing the behavior of the DCS follow exponential

distributions [4, 9, 42, 47, 51, 67]. The extensive amount of research on Markovian

models has yielded several modeling and analysis tools such as TimeNET and Web-

SPN [9,42,47,51]. The main advantages provided by the Markovian assumption are

that highly simplifies the calculations, avoids tractability problems and the time-

dependent behavior of system dynamics [62], and leads to closed-form [9, 42, 51], or

recursive characterizations [28,67], of very complex performance metrics.

Analytical modeling and analysis of queueing systems in non-Markovian settings

has been also conducted. The classical approach is to abstract a DCS in terms of

G/G/n queues [23,58], and more recently, in terms of non-Markovian stochastic Petri

Nets [10,38,85]. Then, analysis can be conducted using basic principles and standard

methods from stochastic processes such as state-space expansion based on continuous

and discrete phase-type distributions [11], or based on supplementary variables [11,

20]. As a result of these works, researchers have observed that Markovian models

may introduce significant errors in the calculation of performance and reliability

metrics [38, 67, 70]. In particular, it is shown here that the service reliability of a

DCS calculated exploiting the Markovian assumption is highly inaccurate in settings
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where the average task-transfer delays are large compared to the average task service-

time. These findings have been reported also in [67,70].

In addition, we can comment that non-Markovian analysis of queueing systems

has been conducted in a much simpler scenario: a G/G/1, i.e., in scenarios where

a single server is processing the workload and the inter arrival times follow general

distributions. As in the case of multiple servers, closed form solution are not simple

to derive and in some cases are even impossible to obtain. Approaches like the

technique of supplementary variables developed by Cox, [20], and large deviation

characterizations for heavy and lightly tailed distributions have been obtained by

several researchers, where the groups by Gallaler, Tsitsiklis, and Modiano at the

Massachusetts Institute of Technology are one the most active in the area, [37,49,64].

1.2.2 Spatially correlated failures

It was stated that modeling and assessing the performance and reliability of applica-

tions executed on DCSs are complicated tasks. What makes these tasks even more

complicated is that, in the aforementioned emerging scenarios for DC, server failures

can exhibit correlation in space and/or time. To date, there are few works in the liter-

ature tackling the problem of reliability in the presence of correlated failures. In most

of the work the problem has been tackled in contexts different from DC; however,

the common factor is that none of them present a systematic stochastic approach

to model correlated failures. For example, Fu and Xu reported in [35] a proactive

failure management in networked computing systems using a failure predictor based

on spatial and temporal correlation. The failure correlation has been empirically

modeled in this work by analyzing system event logs and databases of failure signa-

tures. In a similar sense, Jiang and Cybenko attempted in [50] to detect correlated

failures in a computer network security system, while Tang and Iyer employ mea-
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surements from a cluster to assess reliability for different types of software-induced

correlated failures [81]. In [23], Dai et al. evaluated the reliability of a grid com-

puting system considering the failure correlation of different subtasks executed by

the grid, but component failures were still assumed to be independent. In [24,41], a

software reliability modeling framework was reported, which is based on Markov re-

newal processes. The framework is capable of incorporating the dependencies among

successive software runs. Recently, approximate analytical expressions for reliability

in on-demand systems exhibiting correlated failures has been developed in order to

assess the impact of pairwise component correlations on system reliability [34].

1.2.3 Dynamic task reallocation for performance and relia-

bility

The role of DTR in improving the performance of DCSs has been studied vastly

considering a number of performance metrics; these include the average response time

of an entire application [28,73], the probability of completely serving an application

[6,17,22,23,25,26,66], the probability of serving an application within a given amount

of time [77], the average queue-length of a server [48, 84], and the total sum of

communication and service times [54, 55]. In addition, the problem of devising task

reallocation (TR) policies has been studied under both static and dynamic scenarios.

In static TR, a centralized entity allocates the tasks offline, that is, tasks are allocated

prior to their execution in the DCS [22,23,84]. In contrast, in DTR tasks are queued

at the servers and DTR is triggered online whenever there is an imbalance in the

DCS [28, 29, 44, 55]. Searching for the optimal solution to the problem of devising

DTR policies is stated as a mixed integer optimization problem, which is known to

be NP-hard [8, 32, 83]. In [8, 71] authors state that heuristic methods can give near

optimal or in some cases optimal results.
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DTR policies are typically employed as mechanisms to achieve an even distri-

bution of tasks among the servers [28, 84]. This process is usually referred to as

load balancing (LB). A LB policy is efficiently using the computing resources of a

DCS if the application is evenly distributed among all the servers, [15, 21, 89], the

amount of inter-server communication is kept small, [46,57,60], the cost incurred in

transferring the tasks is smaller than the waiting time of the tasks in the queues of

the servers, and the computing overhead incurred by the LB algorithm is small [16].

Clearly, there is an inherent trade-off between the aforementioned reduction in com-

munication and the disseminating of load and network state information. Moreover,

in DCS environments where communications costs are expensive (e.g. wireless chan-

nels) or where communication links are not reliable the communication overhead is

an important issue to consider.

DTR has also been effectively employed to reduce the effect of server failures

on the service of an application. The objective is to maximize the service reliabil-

ity, while the service time of the application is simultaneously minimized. To date,

existing analytical solutions to this problem have been based upon multi-objective

optimization approaches. Some approaches have assumed deterministic communi-

cation delays [56, 61, 65, 75] while introducing task and/or hardware redundancy to

compensate for the communication delays [72, 74]. Other solutions either exploit a

priori information on the network configuration [79] or provide computationally fast

solutions by using heuristic algorithms such as genetic algorithms [88] and simulated

annealing [7, 43]. It is argued here that when DC is performed in scenarios where

servers may fail permanently, the uncertainty introduced by both the number of

functioning servers and the communication network, the DTR problem has to be

tackled in a probabilistic framework. The papers most relevant to this dissertation

are the works by Dai et al. [22,23]. The authors solve the static TR problem by using

a centralized entity, which allocates tasks in the DCS in order to maximize the ser-

vice reliability. In these works, the authors have considered random communication
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delays as well as random server failure. Additionally, in [26] the effect of failure and

recovery of servers on the average service time of an application has been studied

when the DCS is composed by two servers.

Prior work by the Resource Allocation Group at UNM

In the last years, Professor Hayat’s Resource Allocation Group, formerly Load Bal-

ancing Group, at UNM has conducted collaborative research with The University of

Tennessee–Knoxville (UTK). The group has performed research on modeling, opti-

mization, and testing of LB policies in large-scale DCS, [1–3,18,27,28,67]. Chiasson

et al. developed deterministic linear and nonlinear models for DCS where the appli-

cation as well as system information transfer-times are not negligible. In addition,

they characterized the stability of the DCS in terms of the transfer-times of informa-

tion and the partition of the application in the LB algorithm, [2, 3, 18]. Ghanem et

al. developed and implemented a layered multiplatform DCS architecture using the

C programming language, POSIX-threads, and the TCP/IP protocol stack [39, 40].

Such architecture has been used to experimentally test all the LB and the DTR poli-

cies developed by the group. The architecture is explained in the next section and

the contributions made in this dissertation to the original software are commented.

The experiments conducted by the group were performed over several communica-

tion networks: LANs, wireless LANs, Internet and PlanetLAB. Dhakal et al.,using

a novel regeneration-theory–based approach, developed stochastic models capable of

analytically characterizing the average service time of an application executed on a

DCS [25,28]. An important contribution made by the authors is that their approach

considered heterogeneous CSs and the random information and task transfer-times.

In addition, Dakhal et al. developed static and dynamic LB algorithm [27, 28, 67].

In [27], the stochastic model was extended to include reliability issues and two static

LB algorithms were introduced. One algorithm is preemptively counteracting the
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consequences of random failures while the other compensates for the occurrence fail-

ures upon the occurrence of them.

1.3 Contributions of this dissertation

The first major contribution of this dissertation is the development of

a general probabilistic model for assessing performance and reliability

in heterogeneous DCSs. A queueing theory setting has been used to construct

the state-space of the stochastic process modeling the dynamics of the DCS. Next,

the stochastic regeneration principle has been invoked to develop a recursive age-

dependent analytical model for the random execution time taken by a DCS to con-

currently serve an application. The model has been derived assuming a heterogeneous

non-Markovian setting, that is, assuming that all the random events governing the

system’s dynamics follow arbitrarily specified probability distributions with hetero-

geneous parameters. Key in the development of the model is the inclusion of auxiliary

age variables in the state vector. The auxiliary age variables are real-valued quanti-

ties that keep track of the memory of all the non-exponential random times, thereby

relaxing the commonly made assumption about the Markovian dynamics of a DCS.

This work presents also novel analytical approximations, as well as lower and upper

bounds, for the random execution time of an application. These approximations re-

duce the dimension of the age-dependent state vector and yield a linear scalability in

the number of CSs. The model for the random execution time has been employed to

analytically characterize three metrics of practical applicability, namely, the average

execution time of an application, quality-of-service (QoS) guarantees in executing an

application, and the reliability in executing an application.

The second major contribution of this dissertation is the development

of a novel model for spatially correlated failures in DCSs. To do so, the
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topology of the DCS is abstracted as a graph, thereby capturing the geographical

and logical correlations between the servers of the DCS. Next, patterns of failures

exhibiting spatially correlated can be obtained by introducing a Markov random

fields (MRFs) induced by the graph modeling the DCS. A practical contribution

of this model is that the distribution function of failure patterns in the entire DCS

can be obtained by specifying solely simple local interactions between neighboring

servers. A key insight provided by the model for spatially correlated failures is that

correlated failures effectively have more adverse effects on the reliability of DCSs

than independent failures.

The third major contribution of this dissertation is the development of

a class of DTR policies and an algorithm for optimizing the performance

and reliability metrics characterized using the age-dependent regeneration

theory. The simultaneous analysis and optimization of the performance and relia-

bility conducted here have shed insights on the existence of a fundamental trade-off

between minimizing execution time and maximizing the service reliability. In addi-

tion, the analysis of these metrics in a general setting has provide insights on the

effect of network-delays on the accuracy of Markovian models. Results indicate that

when the network delays are relatively large compared to service times, the error

in estimating any of these metrics, as a result of falsely assuming exponentially dis-

tributed random delays, becomes significant, thereby necessitating the use of the

age-dependent model developed in this work.

The fourth major contribution of this dissertation is the integration

of the general model for a DCS and the model for correlated failures to

yield a general framework for predicting and improving performance and

reliability in DCSs in the presence of spatially correlated failures. To the

best of the author’s knowledge such a framework is not available in the literature.

This framework is general and allows the assessment of performance and reliability in
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non-Markovian DCSs where network anomalies may exhibit or not spatial correlation.

Additionally, general DTR policies for improving performance and reliability in the

face of spatially correlated anomalies is presented.

To date, the work developed in this dissertation has resulted in three journal

papers [67–69], one book chapter [45], and three conference papers [30, 66,70].

1.4 Dissertation overview

In Chapter 2 the problem of characterizing performance and reliability of applica-

tions executed on a DCS is stated. The mathematical definitions as well as the

general assumptions made in this work are presented. In addition, the Markovian

regeneration-based theory developed by Dhakalet al. in [25, 28] is reviewed.

In Chapter 3, a novel and rigorous analytical approach for characterizing perfor-

mance and reliability metrics associated with the execution of parallel applications

on a DCS is presented. Characterizations have been derived in a general setting

where all the random times governing the dynamics of the DCS are assumed to fol-

low arbitrarily specified probability distributions with heterogeneous parameters. In

order to account for the efficient execution of applications, the modeling framework

includes also the execution of a DTR policy by the system servers. The scalability

problems associated with the characterizations is studied, and analytical approxima-

tions exhibiting a linear scalability, in the number of servers, are derived. In addition,

analytical lower and upper bounds are also presented.

In Chapter 4, the problem of devising optimal DTR strategies for improving

performance and reliability in DCS is formulated. A class of DTR policies executed

in a synchronous and distributed manner by the servers in the DCS is presented, and

an algorithm for calculating the optimal DTR policies is provided. The performance
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and reliability are studied by means of theoretical predictions, MC simulations and

experimental results conducted on a testbed DCS.

In Chapter 5, a stochastic model for spatially correlated failures on DCSs is

presented. The developed model generates samples of correlated network anomalies

by capturing the spatial geographical and logical interactions induced by the network

topology of a DCS. Graph theory and MRFs theory are exploited to introduce “local

specifications” of failures that, in turn, induce a global distribution function of failure

patterns to all the servers in the DCS.

In Chapter 6, the general framework for predicting and improving performance

and reliability in DCSs is combined with the model for spatially correlated failures.

The combination of these two models allows the assessment of reliability in a more

general framework where network anomalies may exhibit or not spatial correlation.

In addition, a policy for improving reliability in the presence of spatially correlated

anomalies is provided. Finally, Chapter 7 presents possible new lines of research for

this work in the future.
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Chapter 2

Markovian model for the execution

time of parallel applications

In this chapter, the problem of characterizing performance and reliability of appli-

cations executed on a DCS is stated. The mathematical definitions as well as the

general assumptions made in this work are presented. For completeness, the Marko-

vian regeneration-based theory developed by Dhakal in [25] is reviewed.

2.1 Problem statement

Consider the problem of processing a parallel application on an n-server DCS, whose

servers execute a synchronous DTR action at a given prescribed time. Suppose that

the application belongs to the class of parallel applications with no data-dependence

constraints between operations. Consequently, such application can be partitioned

into an integer number, M , of indivisible and independent tasks. Suppose also that,

at t = 0, an off-line scheduler has allocated mj tasks in the queue of the jth server,

where mj is a non-negative integer and M =
∑n

j=1mj.
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Assume that the service time of a task is random and depends only on the random

service time of the server executing the task. This kind of heterogeneity in the task

service time is referred to as processor-consistent heterogeneity [76,77]. Also, assume

that computing servers can fail permanently at any random instant, and suppose also

that no mechanism is provided by the DCS to totally or partially recover tasks from

a failed server. Consequently, the application being executed on the system cannot

be completed upon the failure of a server with unfinished tasks. This failure model

is referred to as the crash-stop model [33, 63].

It has been established here that servers perform a DTR action at a prescribed

time. The goal of this action is to efficiently execute the application in a parallel

fashion. Let tb denote the time at which the servers synchronously perform the DTR

action. Also, let lij(tb) ≡ lij denote the number of tasks reallocated from the ith

to the jth server at time tb. By arranging the lij quantities in matrix form, the

DTR policy can be denoted as L = (lij)n×n. In addition, it has been supposed here

that upon failure a server broadcasts over the network a small fixed-sized failure-

notice (FN) message in an attempt to inform the working servers about its faulty

state. Due to the communication networks utilized in a DCS impose practical and

unavoidable limitations, it has been assumed here that the exchange of either tasks

or FN packets among any pair of servers faces a random communication delay. In

particular, it has been assumed that due to the small size of the FN packets, their

end-to-end delays depend solely on the heterogeneous end-to-end propagation time of

each communication link. Also, it has been assumed also the mean transfer time of a

group of lij tasks from the ith to the jth server follows the first-order approximation:

Z̄ij = aijlij + bij, (2.1)

where aij and bij are positive constants (in seconds per task and seconds, respectively)

that depend upon the communication channel connecting the ith and the jth server.
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This first-order approximation captures the dependence of the mean transfer time

on: (i) the number of tasks to be transferred; (ii) the end-to-end transmission time

per task, through the parameter aij that is related to the bandwidth; and (iii) the

combined effects of the absolute minimum end-to-end propagation time and arbitrary

delays resulting from queueing (due to congestion), which can be represented by a

single parameter, bij. Finally, it is further assumed that servers employ a reliable

message-passing protocol. With this, tasks cannot be discarded in the network in

situations like the failure of a server while transferring tasks to another server.

In the setting considered the time taken by the DCS to process the application is a

random variable. Modeling this random variable is a extremely complicated because

the execution time depends on both the DTR policy executed by the servers and

on the interplay between all the aforementioned random times. For mathematical

tractability, assumptions A1 and A2 are imposed on the random times driving the

events occurring in the DCS:

Assumption A1. For any j 6= k, the following times are regarded as random and

their pdfs are known: (i) Wki: the service time of the ith task at the kth server,

with pdf fWki
(x); (ii) Yk: the failure time of the kth server, with pdf fYk(x);

(iii) Xjk: the transfer time of a FN message sent from the jth to the kth server,

with pdf fXjk
(x); and (iv) Zik: the transfer time of lik tasks from the ith to

the kth server, with pdf fZik
(x).

Assumption A2. All the random times listed in Assumption A1 are mutually in-

dependent.

In the next section the random execution time of an application as well as the

three metrics regarded in this dissertation are briefly introduced. Mathematical def-

initions of these quantities will be presented in Section 2.2.1 after the construction of

the Markovian state-space representation for the dynamics of the DCS. Later, in Sec-
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tion 3.1.2 the Markovian assumption will be relaxed and a general (non-Markovian)

state-space representation will be constructed. This new state-space will enable the

recursive characterization of the performance and reliability metrics regarded in this

dissertation.

2.2 Markovian model for the random execution

time

In [25, 28], Dhakalet al. introduced a state-space model for the random execution

time of applications in situations where servers may fail permanently or may fail

and recover after a finite time. The state-space model was derived including an

extra condition to Assumption A1. This extra condition stated that the random

times Wki, Yk, Xjk, and Zik follow exponential distributions with parameters λdk ,

λfk , λjk, and λ̃ik, respectively. When all the random events governing the dynamics

of the underlying stochastic process follow exponential distributions, the model is

commonly referred to as a Markovian model [11,38].

Under this Markovian setting, Dhakal derived an analytical recursive character-

ization for both the average execution time of applications in an n-server DCS and

the service reliability in a two-server DCS. For completeness, the characterization for

the average completion time developed by Dhakal is presented here. In addition, the

two-server characterization for the service reliability developed by Dhakal has been

generalized here to the case of an n-server DCS. In the remaining of this section,

material from [25,28] will be freely drawn.
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2.2.1 Markovian state-space model for DCSs

When the random events are assumed to follow exponential distributions, the mem-

oryless property of such distribution guarantees the Markovian nature of the under-

lying stochastic process from which the execution time of an application is derived.

Consequently, in a Markovian setting, the state-space S(t) of the continuous-time

stochastic process {S(t), t ≥ 0} is unambiguously specified by means of one state

vector and two state matrices. These three objects describe the following discrete

quantities: (i) the number of tasks queued at each server; (ii) the functional or dys-

functional state of each server in the system; and (iii) the amount of tasks in transit

over the communication network.

Let mi(t) denote the queue length of the ith server in the DCS at time t, where

mi(t) is a non-negative integer for all t and i ∈ {1, . . . , n}. By stacking all these terms,

the n-dimensional vector m(t), termed as system-queue state vector, is introduced

and its ith element is precisely mi(t). In particular, at t = 0, the system-queue state

vector is m(0) =
(
m1 m2 . . .mn

)T
due to the assumption on an off-line scheduler

allocating mi tasks in the queue of the ith server at t = 0.

Let fi(t) be a binary variable representing the working (“1”) or failed (“0”) state

of the ith server at time t. For i 6= j, let fij(t) = 1 (correspondingly, fij(t) = 0)

indicate that the jth server is functioning (correspondingly, faulty) as perceived by

the ith server at time t. By arranging all these variables in an n-by-n matrix, the

system-function state matrix F(t) can be introduced. Note that the random transfer

time of FN packets introduce uncertainty on the functioning state that a server

perceives about the other servers in the DCS. For example, for n = 3 and t = t0 the

configuration F(t0) =
(

1 1 1
1 0 1
1 0 1

)
corresponds to a state where server 2 has failed and

only server 3 is aware of the failed state of server 2.

Additionally, let cij(t) be a non-negative integer denoting the number of tasks
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being transferred over the network from the ith to the jth server at time t. As in

the case of the system-function state matrix, by arranging the cij(t) terms in matrix

form the non-negative integer-valued matrix C(t) can be obtained. Such matrix has

been termed as the network state matrix and specifies all the tasks being transferred

over the network at time t.

Next, Dhakal et al. defined in [25,28] the state-space representation for an n-server

DCS as the concatenation of the system-queue state vector, system-function state

matrix and the network state matrix, i.e., S = (m,F,C). In this dissertation, the

definition of the state-space for a DCS provided by Dhakal is employed to formally

introduce the stochastic process {S(t), t ≥ 0}, which characterizes the stochastic

dynamics of the DCS in a Markovian setting. Note that the vector m and the

matrices F and C have finite dimensions and take values on the finite discrete sets

Ω1 = {0, 1, . . . ,M}n, Ω2 = {0, 1}n2
and Ω3 = {0,M}n2

, respectively. For Ω =

Ω1×Ω2×Ω3, we can always define any one-to-one mapping h : Ω→ I such that, for

each possible value of the concatenated matrix (m,F,C) in Ω, h(m,F,C) assigns a

positive integer in the index set I = {1, 2, . . . , κ}, where κ is the cardinality of Ω.

2.3 Mathematical definition of performance and

reliability metrics

Let {S(t), t ≥ 0} be a continuous-time stochastic process, with state-space S(t), mod-

eling the queue-length of the servers, the number of tasks queued in the network and

the failed or working state of the servers. Suppose that at time t = 0, the configura-

tion of the state-space of the DCS is S0 = S(0) = (m0,F0,C0). Moreover, exploiting

the definition of the indexing mapping h(·), we label the initial configuration for the

DCS as `0 = h(S0).

23



Chapter 2. Markovian model for the execution time of parallel applications

Definition 1. The random execution time of an application is defined as the random

time taken by the DCS to serve an application if servers execute the DTR policy L at

time t = tb and the initial system configuration is as specified by S0. Mathematicaly:

T`0(tb) , inf{t > 0 : m(t) = 0 and C(t)=0}. (2.2)

The random execution time of an application is denoted as T (tb,L; S0) and will

be mathematically defined from the stochastic process in (2.2). It must be noted

that since servers can fail permanently with non-zero probability, the execution time

is defined to be infinite when at least one task remains queued at a server that has

already failed. Note also that in the special case where servers are completely reliable,

the application execution time is always finite. From this definition for the random

execution time, the following performance and reliability metrics can be introduced.

Definition 2. The average execution time of an application, denoted as T `0(tb),

is the performance metric defined as the expected value of the random application

execution time, that is:

T `0(tb)
4
=E[T`0(tb)]. (2.3)

The average execution time is critical to assess the speed-up in the execution of

applications when executed in parallel on a DCS. The average execution time is

a reasonable metric (i.e., it takes a finite value) only in settings where servers are

completely reliable or in settings where servers are allowed to recover after a failure.

In this dissertation, the average execution time is defined for the case where servers

are completely reliable, i.e., when Yk is equal to infinity almost surely for all k.

Definition 3. The QoS in executing an application, denoted as Q`0(tb, TM), is

a performance metric defined as probability that the application can be entirely

executed by the user-specified due time TM , that is:

Q`0(tb, TM)
4
= P{T`0(tb) < TM}. (2.4)

24



Chapter 2. Markovian model for the execution time of parallel applications

The QoS is a reasonable metric in settings where server nodes may or may not fail.

The QoS is a metric of interest to system users and analysts, specially in real-time

or in time constrained applications.

Definition 4. The service reliability, denoted as R`0(tb), is a metric defined as the

probability that the application can be entirely executed by the system, that is:

R`0(tb)
4
= P{T`0(tb) <∞}. (2.5)

The service reliability is an important metric for assessing the dependability of ap-

plications executed on DCSs that do not tolerate down times. The metric is a

reasonable only when servers can fail without recovery (crash-stop model) and/or in

settings where applications cannot continue their execution after a failure. It must

be noted that the service reliability is a special case of the QoS for which the due

time to execute the application is finite.

2.3.1 Markovian characterization of the performance and re-

liability metrics

With all these definitions at hand, Dhakal et al. developed a regeneration theory for

recursively characterizing the average execution time of a n-server DCS [25,28]. The

characterization consists in a system of coupled difference-differential equations in

the time variable ξ, which represents any arbitrary task reallocation instant. The

system of coupled difference-differential equations are stated in Theorem 1 and the

initial condition for ξ = 0 is presented in Theorem 2.

Theorem 1 (Dhakal [25], Dhakal et al. [28]). Consider an n-server DCS satisfying

Assumptions A1 and A2. Suppose also that all the random times listed in A1 follow

exponential distributions, and that all the servers perform a synchronous DTR action

at the time ξ ≥ 0. For any ` ∈ I, the average execution time of an application
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Chapter 2. Markovian model for the execution time of parallel applications

satisfies the set of coupled, difference-differential equation:

d

dξ
T `
(
ξ
)

=
n∑
i=1

λdiT `i
(
ξ
)
−

n∑
i=1

λdiT `
(
ξ
)

+ 1, (2.6)

where S = (m,F,0) denotes an arbitrary initial system configuration, ` = h(m,F,0),

`i = h(m− δi,F,0), δi denotes an n-dimensional vector with all its entries equal to

zero except that its ith element is equal to one, and mi−1 is set to zero when mi = 0.

Proof: See [25] Section 3.2 and Dhakal et al. [28] Appendix B.

Theorem 2 (Dhakal [25], Dhakal et al. [28]). Consider an n-server DCS satisfying

Assumptions A1 and A2. Suppose also that all the random times listed in A1 follow

exponential distributions. For any ` ∈ I, the initial condition T `
(
0
)

associated with

the average execution time of an application satisfies the general algebraic recursion:

T `
(
0
)

=
n∑
i=1

λdi
λ
T `i
(
0
)

+
n∑
i=1

n∑
j=1,j 6=i

λ̃ji
λ
T `′ji

(
0
)

+
1

λ
, (2.7)

where S = (m,F,C) denotes an arbitrary initial system configuration, ` = h(m,F,C),

`i = h(m− δi,F,C), `
′
ji = h(m + ljiδi,F,C

(ji)), and λ =
n∑
i=1

λdi +
n∑
i=1

n∑
j=1,j 6=i

λ̃ij.

Proof: See [25] Section 3.2.

It must be noted here that (2.6) and (2.7) characterize the rate of change in the

average service time as a function of the reallocation action and the DTR policy for

any initial task allocation and for any network state. To calculate the average exe-

cution time, a system of difference-differential equations must be constructed from

(2.6). This system of equations involves recursions in terms of the state vector S.

Therefore, the configuration of the DCS at t = 0 must be specified. This configura-

tion is S0 = (m0,F0,0), where m0 = (m1 m2 . . .mn)T represents the initial allocation
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Chapter 2. Markovian model for the execution time of parallel applications

Figure 2.1: Example of the recursions generated from a generic initial state S0 in the
case of a non-Markovian DCS.

of tasks, F0 = 1 is an all-ones matrix representing that all the servers are functioning

and C0 = 0 is the null-matrix representing that no-task is being transferred in the

network. Figure 2.1 shows an example of the recursions generated starting form the

initial state S0. The transition of the states occurs from left to right. Only a single

transition is allowed and those quantities that have changed are colored and written

in bold font. Note that by labelling the states depicted in fig. 2.1 a particular form

for the mapping h(m,F,C) can be defined. Also, it must be noted that the number
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Chapter 2. Markovian model for the execution time of parallel applications

of states created after a couple of recursions grows exponentially.

Similarly, it has been proven by the author of this dissertation in [67] that the

service reliability of an n-server DCS satisfies the difference-differential equation in

Theorem 3, which has an initial condition for tb = 0 given in Theorem 3.

Theorem 3 (Dhakal [25], Pezoa et al. [67]). Consider an n-server DCS satisfying

Assumptions A1 and A2. Suppose that all the random times listed in A1 follow

exponential distributions, and that all the servers perform a synchronous DTR action

at the time ξ ≥ 0. For any ` ∈ I, the service reliability satisfies the set of coupled

difference-differential equations:

d

dξ
R`

(
tb
)

=
n∑
i=1

λdiR`i

(
tb
)

+
n∑
i=1

λfiR`
′
i

(
tb
)

+
n∑
i=1

n∑
j=1,j 6=i

λijR`ij

(
tb
)
− λR`

(
tb
)
, (2.8)

where S = (m,F,0) denotes an arbitrary initial system configuration, ` = h(m,F,0),

`i = h(m − δi,F,0), `
′
i = h(m,F(ii),0), `ij = h(m,F(ji),0), λ =

n∑
i=1

(
λdi + λfi

)
+

n∑
i=1

n∑
j=1,j 6=i

λij and the the matrix A(ij) is identical to the matrix A but with its ijth

component set to zero.

Proof: See Pezoa et al. [67] Appendix.

Theorem 4 (Dhakal [25], Pezoa et al. [66]). Consider an n-server DCS satisfying

Assumptions A1 and A2. Suppose also that all the random times listed in A1 follow

exponential distributions. For any ` ∈ I, the initial condition R`

(
tb
)

associated with

the service reliability of an application satisfies the general algebraic recursion:

R`

(
0
)

=
n∑
i=1

λdi
λ
R`i

(
0
)

+
n∑
i=1

λfi
λ
R`
′
i

(
0
)

+
n∑
i=1

n∑
j=1,j 6=i

λij
λ
R`ij

(
0
)

+
n∑
i=1

n∑
j=1,j 6=i

λ̃ij
λ
R`
′
ij

(
0
)
, (2.9)
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Chapter 2. Markovian model for the execution time of parallel applications

where S = (m,F,C) denotes an arbitrary initial system configuration, ` = h(m,F,C),

`i = h(m−δi,F,C), `
′
i = h(m,F(ii),C), `ij = h(m,F(ji),C), `

′
ij = h(m+ljiδi,F,C

(ji)),

and λ =
n∑
i=1

(
λdi + λfi

)
+

n∑
i=1

n∑
j=1,j 6=i

(λij + λ̃ij).

Proof: See Pezoa et al. [66] Appendix.

2.4 Service reliability in a Markovian setting
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Figure 2.2: Service reliability of a two-server DCS as a function of the number of tasks
exchanged among the servers.

The service reliability of a two-server DCS has been assessed exploiting the an-

alytical characterization (2.9). The initial allocation of tasks onto the servers is

m1 = 50 tasks and m2 = 25 tasks, while the average failure times of the servers are
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Chapter 2. Markovian model for the execution time of parallel applications

λ−1f1 =300 s and λ−1f2 = 100 s. The service rates of each server are λd1 = 0.1682 tasks

per second (tps) and λd2 = 0.4978 tps. The mean arrival times of each FN packet

are λ−112 = 4.6402 s and λ−121 = 1.6659 s. Finally, the parameters of the first order

approximation for the average transfer time per task are: a12 = 0.243, a21 = 0.339

(in seconds per task) and b12 = 1.971, b21 = 1.652 (in s). It must be commented that

the parameters of the DCS have been estimated from data obtained after conducting

training experiments on a two-server testbed as reported in [66].

The estimated service reliability of the two-server DCS is calculated by solving the

system of recurrence equations generated by (2.9), for the initial state m0 = (m1 m2)
′
,

F = 1 and C =
(

0 l21
l12 0

)
. Figure 2.2 depicts the service reliability as a function of

both the number of tasks exchanged from server 1 to server 2, l12, and the number of

tasks exchanged from server 2 to server 1, l21. Note that an improper selection of the

amount of tasks to migrate between the servers can produce a significant reduction

on the service reliability, as is depicted in the case of choosing l12 = 0 tasks and

l21 = 25 tasks. This reduction is a consequence of the following situation: for small

values of l12, server 1 (which is the slowest server) keeps most of its initial load.

Consequently, the load distribution is unbalanced between the server even after the

DTR is executed. Therefore, the time required to serve the application increases and,

as a consequence, the service reliability is reduced. When l12 approaches to 50, the

first server transfers most of its initial load to the second server. Hence, almost all

the tasks are queued, first in the network and later at server 2. Since server 2 is the

most unreliable server, it is expected to observe a reduction in the service reliability

because of the queuing of tasks and the unwise decision of transferring most of the

tasks to the less reliable server. Finally, it can be noticed that the optimal DTR

policy corresponds to l∗12 = 30 tasks and l∗21 = 0 tasks, which provides a theoretical

optimal service reliability of 0.601.
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Chapter 2. Markovian model for the execution time of parallel applications

2.5 On the validity of application of the Marko-

vian models

Assuming that all the random events governing the dynamics of a DCS follow expo-

nential distributions is a popular yet idealized assumption. The memoryless property

of the exponential distribution guarantees that the underlying stochastic process is

a continuous-time Markov chain. Even though the analysis and modeling problem

is still hard in this simplified setting, some relief can be obtained in the analysis be-

cause of the existence of a large amount of tools from Markov chain theory that can

be used to analyze the dynamics of the DCS [11, 38]. However, several researchers

have raised questions about the accuracy of the exponential distribution in modeling

real phenomena.

For example, in [67] the accuracy of the Markovian regenerative model to predict

the service reliability of a testbed DCS was evaluated by means of MC simulations.

Using experimental data collected from the testbed, Pareto probability distributions

were fitted for the actual transfer and service times. In addition, from the sampled

mean of the data, exponential distributions were also fitted to approximate the results

by means of the Markovian theory developed. The Pareto models were evaluated via

MC simulations, and the service reliability was estimated with a 95% confidence. It

was observed that the Markovian model for reliability was very accurate and yielded

a relative approximation error below 4%. However, further simulations showed that,

as the ratio between the average transfer time and the average service time of the

servers increases, the exponential approximation looses its accuracy in predicting

the reliability. Specifically, approximation errors of 120% were found when the ratio

between the times was five. This observation raised the following research questions:

under which conditions the Markovian models yield “good approximations” for the

service reliability? How accurate is the Markovian model for the average execution
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Chapter 2. Markovian model for the execution time of parallel applications

time? Are the amount error in the approximation for the reliability of the same

order of magnitude as in the case of the average execution time? Does the modeling

error affect the DTR policies? In the upcoming chapters of this dissertation these

question will be answered.
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Chapter 3

Non-Markovian model for the

execution time of parallel

applications

In this chapter, a novel age-dependent analytical theory is derived for characterizing

three performance and reliability metrics of great interest to system analysts and

designers. These characterizations have been derived in a general setting where

all the random times governing the dynamics of the DCS are assumed to follow

arbitrary probability distributions with heterogeneous parameters. In particular,

the Markovian models derived by Dhakal et al. in [25, 28] are special cases of the

general characterizations presented here. The scalability, in the number of servers,

of the characterizations is studied, and analytical approximations exhibiting a linear

scalability are derived. In addition, analytical lower and upper bounds have been

also derived and presented.
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Chapter 3. Non-Markovian model for the execution time of parallel applications

3.1 Age-dependent characterization of the random

execution time

The discrete state-space model as well as the recursive characterizations for the av-

erage execution time and the service reliability presented in [28,67], and reviewed in

Chapter 2, were derived under Assumption A1, A2 and the extra condition that all

the random times follow exponential distributions with known parameters. When

the distributions of the random events follow any arbitrary probability distribution,

memory is introduced into the system dynamics and destroying the Markovian prop-

erty of the underlying stochastic process. In order to retain the Markovian property

of the process the memory of the non-exponential distributions must be tracked. To

do so, in this dissertation real-valued age variables have been introduced in the anal-

ysis to supplement the discrete state-space model presented in the previous chapter.

The inclusion of these age variables captures the memory of the non-Markovian ran-

dom times and also enables the construction of a hybrid discrete and continuous

state-space representation for the underlying stochastic process governing dynamics

of the DCS.

3.1.1 Auxiliary age variables

Auxiliary real-valued age variables have been employed in this dissertation for an-

alyzing the stochastic dynamics of a DCS. To illustrate how the concept of age

variables has been exploited here, suppose that T is random variable representing

some random time. Loosely speaking, if it is known that a units of time have elapsed

for the random time T , then the remaining random time Ta = T−a can be introduced

as the replacement of the random time T measured from a, and also, one can think

of Ta as the aged version of T with age a. Proceeding formally, the age parameter,

34



Chapter 3. Non-Markovian model for the execution time of parallel applications

a, associated with the random time T , is defined as the non-negative, real-valued

quantity that defines on the event A = {T ≥ a}, the random time Ta = T − a. The

random time Ta is the aged version of T with age parameter a, and has a pdf equal

to the conditional pdf of T given that A has occurred, that is, fTa(t; a) = fT |A(t|a).

It must be noted that if T is exponentially distributed, then the pdfs of T and Ta

are identical due to the memoryless property of the exponential distribution.

In this dissertation the relationship between a random variable and its aged ver-

sion has been exploited as follows: As soon as a random time T is triggered by some

event, its associated age variable is set to zero, and as time elapses, the age variable

keeps track of the age of T and adjusts accordingly the pdf of T to show the effect

of the elapsed time on its likelihood. If a random time has not been triggered by an

event, the age variable associated with it is set to infinity.

It must be commented that in [20] Cox introduced the method of supplementary

variables for analyzing a general class of continuous-time stochastic process with

discrete state spaces. In his work, Cox stated that if at any instant the discrete

state variables as well as a finite number of continuous variables are specified, a

non-Markovian process can be converted into a Markovian one. His method has

been employed in the form of expended life-times, which record the elapsed time

associated with a random variable and can be though of as increasing timers [38],

or in the form of rest variables, which record the remaining time associated with a

random variable and can be though of as decreasing timers [38]. Even though the

expended life-time variables are conceptually the same as the auxiliary age variables

employed in this dissertation, this represents by no means a direct application of the

method introduced by Cox. Here, the stochastic process driving the dynamics of the

DCS has been constructed from basic principles and a stochastic regeneration theory

has been developed to rigorously prove the regenerative behavior of the process, while

in [20] Cox developed a general example for a classical G/G/n queueing system.
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Chapter 3. Non-Markovian model for the execution time of parallel applications

3.1.2 Age-dependent state-space model for DCSs

In a non-Markovian setting, the state-space model for an n-server DCS is partially

described by the system-queue state vector, the system-function state matrix and

the network state matrix. The configuration of a non-Markovian, n-server DCS is

completely and unambiguously specified if m(t), F(t), and C(t) are supplemented

with one more vector, which is associated with m(t), and two extra matrices, which

are associated with F(t) and C(t).

Let aMi
and aFi

be age variables associated with the random service time of a

task at the ith server and the random failure time of the ith server, respectively, with

i = 1, . . . , n. Also, let aFij
be the age variable connected to the random transfer time

of a FN packet from the ith to the jth server, with i, j = 1, . . . , n, i 6= j. All these age

variables can be arranged in the column vector aM and the n-by-n matrix aF . The

aM vector contains the aMi
age variables and the aF matrix contains both the aFi

variables (at the diagonal of the matrix) and the aFij
variables (at the off-diagonal

positions). Similarly, let aCik
be the age variable associated with the random transfer

of lik tasks from the ith to the kth server. These age variables can also be arranged

in matrix form to obtain aC , whose ikth component is aCik
.

At this point, the system-age state matrix can be defined as the concatenated

matrix a
4
= (aM , aF , aC). Further, for a given time t we define the age-dependent

system-state matrix as the concatenated matrix S(t)
4
=
(
m(t),F(t),C(t), a(t)

)
, which

describes completely the state of a non-Markovian n-server DCS. It must be noted

again that in a Markovian setting the memoryless property of the exponential distri-

bution makes the system-age matrix unnecessary; therefore, the system-state matrix

reduces to the age independent case S(t) =
(
m(t),F(t),C(t)

)
.

Now, equipped with the age-dependent state vector, the stochastic process can

be extended to the non-Markovian case. Let {S(t), t ≥ 0} be the continuous-time
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stochastic process, with hybrid continuous and discrete state-space S(t), that char-

acterizes the dynamics of the DCS in a general setting where arbitrary probability

distribution govern the random events of the system. Recall that we can always

define any one-to-one mapping h : Ω → I such that, for each possible value of the

discrete part of the age-dependent state-vector, i.e., (m,F,C), h(m,F,C) assigns a

positive integer in the index set I = {1, 2, . . . , κ}, where κ is the cardinality of Ω.

Definition 5. The age-dependent random execution time of the application can be

mathematically defined from the generalized stochastic process as

T`0(tb, aM , aF , aC) , inf{t > 0:m(t)=0 and C(t)=0}, (3.1)

with `0 = h(m0,F0,C0).

Note that the right-hand side of the definitions (2.2) and (3.1) are identical;

however, in (3.1) we make a explicit reference to the age-dependent nature of the

random execution time of an application.

Definition 6. The age-dependent average execution time of an application, denoted

as T `0(tb, aM , aF , aC), is the performance metric defined as the expected value of the

age-dependent random application execution time, that is:

T `0(tb, aM , aF , aC)
4
=E[T`0(tb, aM , aF , aC)]. (3.2)

Definition 7. The age-dependent QoS in executing an application, denoted as

Q`0(tb, TM , aM , aF , aC), is a performance metric defined as probability that the ap-

plication can be entirely executed by the user-specified due time TM , that is:

Q`0(tb, TM , aM , aF , aC)
4
= P{T`0(tb, aM , aF , aC) < TM}. (3.3)

Definition 8. The age-dependent service reliability, denoted as R`0(tb, aM , aF , aC),

is a metric defined as the probability that the application can be entirely executed
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by the system, that is:

R`0(tb, aM , aF , aC)
4
= P{T`0(tb, aM , aF , aC) <∞}. (3.4)

3.2 Age-dependent regeneration-based approach

and recursive characterization of metrics

3.2.1 Age-dependent regeneration theory

The theory of stochastic regeneration has been exploited here to derive an age-

dependent recursive characterization of the metrics (2.3)–(2.5). The key idea is

to define an age-dependent regeneration event and analyze the stochastic process

emerging immediately after the first occurrence of this event. The age-dependent

regeneration event is defined as the first occurrence of either the service of a task at

any server, the failure of any server, the reception of a FN packet by any server, or the

reception of a group of tasks by any server. The point here is that upon the occurrence

of the regeneration event, a fresh copy of the original stochastic process emerges at

the regeneration time albeit with a new initial configuration that transpires from

the regeneration event. Unlike the regeneration-based approach taken in [28, 67],

the age-dependent regeneration theory presented here must employ the information

supplemented by the age variables in order to yield a regenerative stochastic process.

Proceeding formally, consider the process {S(t), t ≥ 0} and suppose that at time

t= t0 the system configuration is as specified by S=(m,F,C, a). The age-dependent

regeneration time, denoted by τa, is defined as the minimum of the following four

random variables: the time to the first task service by any server, the time to the

first occurrence of failure at any server, the time to the first arrival of a FN packet at

any server, or the time to the first arrival of a group of tasks at any server. Given the
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system-age a, for t ≥ t0 the random times listed in Assumption A1 can be replaced

by their aged versions, thereby the age-dependent regeneration time can be defined

mathematically as:

τa
4
= min

(
min
k
Wk1,min

k
Yk,min

j 6=k
Xjk,min

k,i
Zik
)
, (3.5)

where the subscript a emphasizes the dependency of the regeneration time on all

the age variables associated with the non-exponential random times. The upcoming

example describes how the age-dependent regeneration time and the age-dependent

system-state matrix can be used to yield a recursive characterization for the execution

time of an application.

Suppose that the first event occurring in the DCS happens to be the execution of

a task at the ith server at t=s, for t0 < t. The occurrence of this event implies that

all the random times governing the DCS have aged by s units of time (in addition

to the ages specified in a) and there is one less task queued at the ith server; all the

other dynamics remain unchanged. Thus, the occurrence of the event {τa = s, τa =

Wi1 − aMi
} gives birth to a new DCS at t= s, represented by {S(t), t ≥ s}, that is

statistically identical to the original process while having a new initial configuration

S
′
= (m

′
F
′
,C

′
, a
′
) resulting from the regeneration event {τa = s, τa = Wi1 − aMi

}.

More precisely, the new initial system configuration is as follows: m
′

is identical

to m but with one unit less at its ith element, F
′

= F, C
′

= C, and the new

system-age matrix is a
′

= a + s with the ith component of a
′
M set to zero if at

least one task remains queued at the ith server and set to infinity otherwise. Similar

transformations on the initial configuration are observed when the regeneration event

is any of the remaining events, namely, the failure of the ith server, the arrival of a

FN packet from server j to server k, or the arrival of the ith group of tasks to the

kth server.

39



Chapter 3. Non-Markovian model for the execution time of parallel applications

3.2.2 Characterization of the performance metrics

Before stating Theorems 1 and 2, we introduce some useful definitions. Let us

define the term GX(α) , P{X = τa|τa = α}fτa(α), where X is any of the random

times listed in Assumption 1, fτa(α) is the pdf of the age-dependent regeneration

time τa and P{X = τa|τa = α} is the probability that the regeneration event is

{τa = X} conditional on the event {τa =α}. Both, the pdf of the the age-dependent

regeneration time and the latter conditional probability can be computed explicitly,

either analytically or numerically, using (A.10) and (A.11), respectively. Note that

the vector m and the matrices F and C have finite dimensions and take values

on the finite discrete sets Ω1 = {0, 1, . . . ,M}n, Ω2 = {0, 1}n2
and Ω3 = {0,M}n2

,

respectively. For Ω = Ω1 × Ω2 × Ω3, we can define any one-to-one mapping h :

Ω → I such that, for each possible value of the concatenated matrix (m,F,C) in

Ω, h(m,F,C) assigns a positive integer in the index set I = {1, 2, . . . , κ}, where κ

is the cardinality of Ω. Finally, let m = (r1, . . . , rn)T , F = (fij)n×n, C = (cij)n×n,

aM , aF , and aC denote an arbitrarily specified initial configuration for the DCS,

where ri is the number of tasks queued at the ith server, fij ∈ {0, 1} for all i, j and

cij ∈ {0, 1, . . . ,M}.

Theorem 5 (Age-dependent characterization for the average execution time). Con-

sider an n-server DCS whose servers perform a synchronous DTR action at the time

ξ ≥ 0. For any ` ∈ I, the average application execution time satisfies the system of

recursive, coupled integral equations in ξ:

T `(ξ, aM , aF , aC) =

∫ ξ

0

n∑
i=1

GWi1
(α)T `i

(
ξ − α, (aM+α)(i), aF + α, aC + α

)
dα

+

∫ ξ

0

αfτa(α) dα +
(
1− Fτa(ξ)

)(
ξ + T `(0, aM , aF , aC)

)
, (3.6)

where recursions are carried out in the discrete variables m and F, the vectors m and

aM and the matrices F, 0, aF , and aC denote an arbitrarily specified initial system
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configuration, ` = h(m,F,0), `i = h(m − δi,F,0), δi denotes an n-dimensional

vector with all its entries equal to zero except that its ith element is equal to one,

the vector v(i) is identical to the vector v but with its ith component set to zero, and

T `(0, aM , aF , aC
)

is the initial condition related to the `th integral equation.

Proof: See Appendix A.

Theorem 6 (Age-dependent characterization for the QoS). Consider an n-server

DCS whose servers perform a synchronous DTR action at the time ξ ≥ 0. For

any ` ∈ I, the QoS in executing an application by a predefined time-deadline TM ,

when the n-servers in a DCS perform a synchronous DTR action at the time ξ ≥ 0,

satisfies the system of recursive, coupled integral equations in ξ:

Q`(ξ,TM , aM , aF , aC) =

∫ ξ

0

[
n∑
i=1

GWi1
(α)Q`i

(
ξ − α, TM − α, (aM+α)(i),

aF + α, aC + α
)

+
n∑
i=1

Q`
′
i

(
ξ − α, TM − α, aM+α, (aF + α)(ii), aC0 + α

)
×GYi(α) +

n∑
i=1

n∑
j=1,j 6=i

GXij
(α)Q`ij

(
ξ − α, TM − α, aM+α, aF +α, aC+α

)]
dα

+
(
1− Fτa(ξ)

)
Q`(0, TM − ξ, aM , aF , aC), (3.7)

where recursions are carried out in the discrete variables m and F, the vectors m

and aM and the matrices F, 0, aF , and aC denote an arbitrarily specified initial

system configuration, ` = h(m,F,0), `i = h(m − δi,F,0), `
′
i = h(m,F(ii),0), `ij =

h(m,F(ji),0), the vector v(i) (respectively, the matrix A(ij)) is identical to the vector

v (respectively, the matrix A) but with its ith (respectively, ijth) component set to

zero, and Q`(0, TM − ξ, aM , aF , aC) is the initial condition related to the `th integral

equation.

Proof: See Appendix A.
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Corollary 1 (Age-dependent characterization of the service reliability). Consider an

n-server DCS whose servers perform a synchronous DTR action at the time ξ ≥ 0.

For any ` ∈ I, the service reliability in executing an application, when the n-servers

in a DCS perform a synchronous DTR action at the time ξ ≥ 0, satisfies the system

of recursive, coupled integral equations in ξ:

R`(ξ, aM , aF , aC) =

∫ ξ

0

[
n∑
i=1

GWi1
(α)R`i

(
ξ − α, (aM+α)(i), aF + α, aC + α

)
+

n∑
i=1

GYi(α)R`
′
i

(
ξ − α, aM+α, (aF + α)(ii), aC0 + α

)
+

n∑
i=1

n∑
j=1,j 6=i

GXij
(α)R`ij

(
ξ − α, aM+α, aF +α, aC+α

)]
dα

+
(
1− Fτa(ξ)

)
R`(0, aM , aF , aC), (3.8)

where recursions are carried out in the discrete variables m and F, the vectors m

and aM and the matrices F, 0, aF , and aC denote an arbitrarily specified initial

system configuration, ` = h(m,F,0), `i = h(m − δi,F,0), `
′
i = h(m,F(ii),0), `ij =

h(m,F(ji),0), the vector v(i) (respectively, the matrix A(ij)) is identical to the vector

v (respectively, the matrix A) but with its ith (respectively, ijth) component set to

zero, and R`(0, aM , aF , aC) is the initial condition related to the `th integral equation.

In our evaluations, we are interested in predict the metrics the average execution

time, QoS and service reliability, for a given DCS with an arbitrarily specified initial

system configuration S0 = S(0) = (m0,F0,C0, aM0 , aF0 , aC0). In this dissertation

we have assumed that at time t = 0, the system configuration is the following: S0

is m0 = (m1, . . . ,mn)T meaning that there is an initial allocation of tasks onto the

servers, F0 = 1 (an all-ones matrix) meaning that all the servers are assumed to be

functioning, C0 = 0 (the null-matrix) meaning that the DTR policy has not been

executed yet by the servers, and a0 = 0 because it is supposed that, at t = 0, all the

random times have age zero. Thus, in our evaluations we will calculate the metrics:
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T `0(ξ,0,0,0), Q`0(ξ, TM ,0,0,0), and R`0(0,0,0,0), with `0 = h(m0,F0,C0).

To solve the recursions of Theorems 5 and 6 and Corollary 1, the following values

must be specified: (i) the configuration of the system at time t = 0; (ii) some

particular configurations for which the values of T `(ξ, aM , aF , aC), Q`(ξ, aM , aF , aC),

and R`(ξ, aF , aC) are known; (iii) the configuration of the system at time t = tb when

the servers execute a predetermined DTR policy L; and (iv) the values for the initial

conditions T `(0, aM , aF , aC), Q`(0, TM − ξ, aM , aF , aC), and R`(0, aM , aF , aC).

It was already stated that at time t = 0, the system configuration is S0 =

(m0,F0,C0, aM0 , aF0 , aC0), where m0 = (m1, . . . ,mn)T , F0 = 1 (an all-ones matrix)

since all the servers are assumed to be functioning, C0 = 0 (the null-matrix) since

the DTR policy has not been executed yet by the servers, and a0 = 0 because it is

supposed that, at t = 0, all the random times have age zero.

At any time, the values taken by the metrics are known in the following particular

cases for any ξ and `: (i) if the application is composed of a single task queued at the

ith server then T `(ξ, aM , aF , aC) = E[Wi1]; (ii) if there are no tasks to be served in

the DCS then T `(ξ, aM , aF , aC) is equal to zero, while Q`(ξ, TM −α, aM , aF , aC) and

R`(ξ, aM , aF , aC) are both equal to one; (iii) if a server fails and contains at least one

task in its queue then T `(ξ, aM , aF , aC) is infinite, while Q`(ξ, TM − α, aM , aF , aC)

and R`(ξ, aM , aF , aC) are both equal to zero.

Finally, the values of the initial conditions T `(0, aM , aF , aC), Q`(0, TM−ξ, aM , aF , aC)

and R`(0, aM , aF , aC) can be computed using the results of Theorems 7, 8 and Corol-

lary 2, respectively, and recalling that due the execution of the DTR policy at time

t = tb, the new system configuration is Stb = S(tb) = (mtb ,Ftb ,Ctb , aMtb
, aFtb

, aCtb
),

where mtb = (r
′
1, . . . , r

′
n)T where r

′
i = ri −

∑n
j=1,j 6=i lij, Ftb = F, Ctb = L, aMtb

=

aM + tb, aFtb
= aF + tb, the ages of the elements of aC associated with the tasks

being transferred in the network are set to zero.
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Theorem 7 (Initial condition for the age-dependent characterization of the average

execution time). Consider an n-server DCS with an arbitrarily specified initial system

configuration m, F, C, aM , aF , and aC. For any ` ∈ I, the initial condition

T `(0, aM , aF , aC
)

related to the `th integral equation of the characterization for the

average application execution time satisfies the system of recursive, coupled integral

equations:

T `(0, aM , aF , aC) = E[τa]+

∫ ∞
0

[
n∑
i=1

GWi1
(α)T `i

(
0, (aM+α)(i), aF + α, aC + α

)
+

n∑
i=1

n∑
j=1,j 6=i

GZji
(α)T `′ji

(
0, aM+α, aF +α, aC+α

)]
dα, (3.9)

where recursions are carried out in the discrete variables m, F, and C, the vectors m

and aM and the matrices F, C, aF , and aC denote an arbitrarily specified initial sys-

tem configuration, ` = h(m,F,C), `i = h(m− δi,F,C), `
′
ji = h(m+cjiδi,F,C

(ji)),

and the vector v(i) (respectively, the matrix A(ij)) is identical to the vector v (respec-

tively, the matrix A) but with its ith (respectively, ijth) component set to zero.

The proof of Theorem 7 is sketched in Appendix B since it is similar to that of

Theorems 5 and 6. The reader is referred to [70] for a proof in the special case of

n = 2 servers.

Theorem 8 (Initial condition for the age-dependent characterization of the QoS).

Consider an n-server DCS with an arbitrarily specified initial system configuration

m, F, C, aM , aF , and aC. For any ` ∈ I, the initial condition Q`(0, T
′
M , aM , aF , aC)

related to the `th integral equation of the characterization for the QoS in executing
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an application satisfies the system of coupled integral recursions:

Q`(0, T
′
M ,aM , aF , aC) =

∫ ∞
0

[
n∑
i=1

GWi1
(α)Q`i

(
0, T ′M − α, (aM+α)(i), aF + α,

aC + α
)

+
n∑
i=1

GYi(α)Q`
′
i

(
0, T ′M − α, aM+α, (aF + α)(ii), aC0 + α

)
+

n∑
i=1

n∑
j=1,j 6=i

GZji
(α)Q`ji

(
0, T ′M − α, aM + α, aF + α, aC + α

)
+

n∑
i=1

n∑
j=1,j 6=i

GXij
(α)Q`ij

(
0, T ′M − α, aM+α, aF +α, aC+α

)]
dα, (3.10)

where recursions are carried out in the discrete variables m, F, and C, the vectors

m and aM and the matrices F, C, aF , and aC denote an arbitrarily specified initial

system configuration, T ′M = TM − ξ, ` = h(m,F,C), `i = h(m − δi,F,C), `
′
i =

h(m,F(ii),C), `ij = h(m,F(ji),C), `
′
ji = h(m + cjiδi,F,C

(ji)), and the vector v(i)

(respectively, the matrix A(ij)) is identical to the vector v (respectively, the matrix

A) but with its ith (respectively, ijth) component set to zero.

The proof of Theorem 8 is sketched in Appendix B since it is similar to that of

Theorems 5 and 6. The reader is referred to [70] for a proof in the special case of

n = 2 servers.

Corollary 2 (Initial condition for the age-dependent characterization of the service

reliability). Consider an n-server DCS with an arbitrarily specified initial system

configuration m, F, C, aM , aF , and aC. For any ` ∈ I, the initial condition

R`(0, aM , aF , aC) related to the `th integral equation of the characterization for the

45



Chapter 3. Non-Markovian model for the execution time of parallel applications

QoS in executing an application satisfies the system of coupled integral recursions:

R`(0,aM , aF , aC) =

∫ ∞
0

[
n∑
i=1

GWi1
(α)R`i

(
0, (aM+α)(i), aF + α, aC + α

)
+

n∑
i=1

GYi(α)R`
′
i

(
0, aM+α, (aF + α)(ii), aC0 + α

)
+

n∑
i=1

n∑
j=1,j 6=i

GZji
(α)R`ji

(
0, aM + α, aF + α, aC + α

)
+

n∑
i=1

n∑
j=1,j 6=i

GXij
(α)R`ij

(
0, aM+α, aF +α, aC+α

)]
dα, (3.11)

where recursions are carried out in the discrete variables m, F, and C, the vectors

m and aM and the matrices F, 0, aF , and aC denote an arbitrarily specified initial

system configuration, ` = h(m,F,C), `i = h(m − δi,F,C), `
′
i = h(m,F(ii),C),

`ij = h(m,F(ji),C), `
′
ji = h(m + cjiδi,F,C

(ji)), and the vector v(i) (respectively, the

matrix A(ij)) is identical to the vector v (respectively, the matrix A) but with its ith

(respectively, ijth) component set to zero.

Algorithm to solve the integral recursions

To calculate the performance and reliability metrics the initial task allocation,

the tb instant and a specific DTR policy must be defined. (See Section 4.1.1 for the

class of DTR policies used in this work.) In addition, to compute the QoS and the

service reliability the value of TM must be provided. All these conditions, as well as

equations (3.6) to (3.10) and the known values for QoS and average execution time

in the special configurations discussed in the previous section have been employed in

the development of Algorithm 1 that solves the integral recursions.

The algorithm is divided in two stages. The first stage (first while loop in Algo-

rithm 1) dynamically constructs the mapping h : Ω → I by saving a list of all the

possible states that the DCS visits as part of its dynamics given that its initial con-
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Algorithm 1 Algorithm to solve the integral recursions in Theorems 5 to 8.

Require: S0, tb, L, and TM

Ensure: T (S0) and RTM (S0)

KnownValues=
{
T (S) = E[Wi1 − aMi ], RTM (S′) = 1, RTM (S′) = 0

}
ListOfStatesK=∅, ListOfStatesKMinus1=S0, k=0

while true do {Generate list of possible states}

CtrStates=0, CtrKnownValues=0

for OldState ∈ ListOfStatesKMinus1 do

for X ∈ {Wi1, Yi, Xij , Zij} do

NewState ← Change(OldState,X)

ListOfStatesK ← ListOfStatesK ∪ NewState

CtrStates=CtrStates+1

if NewState ∈ KnownValues then

CtrKnownValues=CtrKnownValues+1

end if

end for

end for

Store(ListOfStatesK)

if CtrStates==CtrKnownValues then

false

end if

k←k+1, ListOfStatesK=∅, ListOfStatesKMinus1=ListOfStatesK

end while

while k6= 0 do {Solving recursions}

Load(ListOfStatesK)

Solve (3.6) to (3.10) using ListOfStatesKMinus1 to obtain ListOfStatesK

ListOfStatesKMinus1=ListOfStatesK, k← k-1

end while
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figuration at t = 0 is as specified by S0. Example of the recursions generated from a

generic initial state S0. Figure 3.1 shows a simplified case for the the recursions gen-

erated from a generic initial state S0. Comparing Figs. 2.1 and 3.1 it becomes evident

that the Markovian model generates a reduced number of states as compared to the

non-Markovian case. The second stage, (second while loop in Algorithm 1) solves

the recursions in (3.6) to (3.10) by means of the values for the metrics calculated

in the previous recursion. This algorithm has been coded in C with the help of the

GNU’s Scientific Library (GSL), [36], which provides exceptional tools for numerical

integration as well as vector and matrix data-type handling. The major challenge in

coding Algorithm 1 is the large amount of memory and computational resources it

takes due to the construction, sorting and storage of all the state values. Because of

memory limitations, the load and store operations of the algorithm must be carried

out using the hard drive.

3.2.3 Approximations and bounds

Executing Algorithm 1 to solve the system of recurrence equations is computationally

expensive for large DCSs because of two reasons. First, since the dimension of the

age-dependent state vector S is 4n2 + 2n, the age-dependent state-space model for

the execution time scales polynomially in the number of servers. Second, for a fixed

number of servers in a DCS, since both FN packets and tasks exchanged among the

servers may arrive at any random instant, every recursion generated from Theorems 5

to 8 and Corollaries 1 and 2 must consider a combinatorial number of values for the

age-dependent state-vector, and as a consequence, the number of recursive integral

equations that must be constructed to calculate the metrics in Theorems 5 to 8 and

Corollaries 1 and 2 scales exponentially in the number of messages exchanged.

In order to circumvent the scalability problem of the age-dependent model, two

48



Chapter 3. Non-Markovian model for the execution time of parallel applications

Figure 3.1: Example of the recursions generated from a generic initial state S0 in the
case of a non-Markovian DCS.

simplifying assumptions have been considered in constructing an approximated char-

acterization for the dynamics of the DCS. This approximation has been used to yield

approximations for the metrics characterized in Theorems 5 to 8 and Corollaries 1

and 2. The first assumption considered is to neglect the random transfer time of FN

packets on the network. This approximation reduces the matrix F to a binary vector

that we have denoted as f . The second assumption considered is to suppose that all
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the tasks in transit to a particular server arrive simultaneously to it. More precisely,

it has been assumed here that the lk =
∑

j ljk tasks being transferred from other

servers to the kth server arrive simultaneously to server k at a certain random time

denoted as Z̃k. This approximation reduces the matrix C to a vector that we have

denoted as c. Once these approximations are imposed, the same principles presented

in Section 3.2.1 can be exploited to obtain a set of regenerative age-dependent equa-

tions for the approximated random execution time. To this end, we must consider

the following extra assumption.

Assumption A3. Suppose that the pdf of the random times Z̃i are known and

denoted as fZ̃i
(t). Suppose also that these random times are mutually inde-

pendent and also are mutually independent to all the random times listed in

Assumptions A1.

In addition, we associate the age-variables aCi
to the random times Z̃i, and, as

in the case of the complete characterizations for performance and reliability, we note

that the vectors m, f and c have finite dimensions and take values on the finite

discrete sets Ω1 = {0, 1, . . . ,M}n, Ω̃2 = {0, 1}n and Ω̃3 = {0,M}n, respectively.

Thus, for Ω̃ = Ω1× Ω̃2× Ω̃3, we can always define any one-to-one mapping h̃ : Ω̃→ Ĩ

such that, for each possible value of the concatenated vector (m, f , c) in Ω̃, the

mapping h̃(m, f , c) assigns a positive integer in the index set Ĩ = {1, 2, . . . , κ̃},

where κ̃ is the cardinality of Ω.

Empowered by these approximations, we introduce the approximated age-dependent

random execution time of an application, T`(tb, ãM , ãF , ãC), when the system configu-

ration is as specified by the reduced age-dependent state vector S̃ = (m, f , c, ãM , ãF , ãC),

where ` = h̃(m, f , c). It must be noted that these approximations reduce the dimen-

sion of the age-dependent state vector to 6n, yielding a model with linear scalability

in the number of servers.
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The rationale for approximating the random task-arrival times can be further

exploited to define upper and lower bounds for the random execution time of an

application. To do so, note that the random execution time of an application is the

maximum over all the random execution times of each server. In addition, the random

execution time of each server is equal to the random service time of the tasks allocated

at the server’s queue plus the random time taken to receive and serve the tasks in

transit to itself. Therefore, it can be concluded that a lower bound (consequently,

an upper bound) for the random execution time of an application can be obtained

by assuming that all the tasks arrive simultaneously to all the recipient servers at

the lowest (consequently, at the highest) random task-transfer time occurring in the

DCS. More precisely, the overall minimum and maximum random task-transfer times

can be defined as Zmin = mini,j Zij and Zmax = maxi,j Zij, respectively. Note that

this new approximation reduces the vector c to a constant, c. In order to exploit, one

more time, the principles of stochastic regeneration to obtain a set of regenerative

age-dependent equations for the lower and upper bounds of the execution time, the

following extra assumption is required.

Assumption A4. Suppose that the pdf of the random times Zmin and Zmax are

known and denoted, respectively, as fZmin(t) and fZmax(t). Suppose also that

these random times are mutually independent and also are mutually indepen-

dent to all the random times listed in Assumptions A1.

Additionally, we must associate the age-variables aCmin
and aCmax to the random

times Zmin and Zmax, respectively. Noting one more time that the vectors m and f

and the constant c have finite dimensions and take values on the finite discrete sets

Ω1, Ω̃2 and Ω̃′3 = {0,M}, respectively. Thus, for Ω̃′ = Ω1 × Ω̃2 × Ω̃′3, we can always

define any one-to-one mapping g̃ : Ω̃′ → Ĩ ′ such that, for each possible value of the

concatenated vector (m, f , c) in Ω̃′, the mapping g̃(m, f , c) assigns a positive integer

in the index set Ĩ = {1, 2, . . . , κ̃′}, where κ̃′ is the cardinality of Ω̃′.
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Now we can introduce the lower and the upper bounds for the random execution

time of an application, respectively, as Tmin
` (tb, ãM , ãF , ãC) and Tmax

` (tb, ãM , ãF , ãC),

when the system configuration is as specified by the reduced age-dependent state

vector S̃′ = (m, f , c, ãM , ãF , ãC), where ` = g̃(m, f , c).

For the sake of the space, characterizations only for the approximation and the

lower bound of the performance and reliability metrics are presented. The struc-

ture of the remaining set of equations is similar to the ones presented here and in

Theorems 5 to 8 and Corollaries 1 and 2.

Theorem 9 (Age-dependent characterization for the approximated average execu-

tion time). Consider an n-server DCS whose servers perform a synchronous DTR

action at the time ξ ≥ 0. For any ` ∈ I, the average approximated execution time of

an application satisfies the system of recursive, coupled integral equations in ξ:

T `(ξ, ãM , ãF , ãC) =

∫ ξ

0

n∑
i=1

GWi1
(α)T `i

(
ξ − α, (ãM+α)(i), ãF + α, ãC + α

)
dα

+

∫ ξ

0

αfτa(α) dα +
(
1− Fτa(ξ)

)(
ξ + T `(0, ãM , ãF , ãC)

)
, (3.12)

where recursions are carried out in the discrete variables m and f , the vectors m,

f , 0, ãM , ãF , and ãC denote an arbitrarily specified initial system configuration,

` = h̃(m, f ,0), `i = h̃(m − δi, f ,0), δi denotes an n-dimensional vector with all its

entries equal to zero except that its ith element is equal to one, the vector v(i) is

identical to the vector v but with its ith component set to zero, and T `(0, ãM , ãF , ãC)

is the initial condition related to the `th integral equation. Moreover, these initial

conditions satisfy the system of recursive, coupled integral equations:

T `′(0, ãM , ãF , ãC) = E[τa]+

∫ ∞
0

[
n∑
i=1

GWi1
(α)T `i

(
0, (ãM+α)(i), ãF + α, ãC + α

)
+

n∑
i=1

GZ̃i
(α)T `′i

(
0, ãM + α, ãF + α, ãC + α

)]
dα, (3.13)
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where recursions are carried out in the discrete variables m and f , the vectors m,

f , c, ãM , ãF , and ãC denote an arbitrarily specified initial system configuration,

`′ = h̃(m, f , c), and `
′
i = h̃(m + liδi, f , c

i).

Theorem 10 (Age-dependent characterization for the approximated QoS). Consider

an n-server DCS whose servers perform a synchronous DTR action at the time ξ ≥ 0.

For any ` ∈ I, the approximated QoS in executing an application satisfies the system

of recursive, coupled integral equations in ξ:

Q`(ξ,TM , ãM , ãF , ãC) =

∫ ξ

0

[
n∑
i=1

GWi1
(α)Q`i

(
ξ − α, TM − α, (ãM+α)(i), ãF + α,

ãC + α
)

+
n∑
i=1

GYi(α)Q`
′
i

(
ξ − α, TM − α, ãM+α, (ãF + α)(ii), ãC + α

)]
dα

+
(
1− Fτa(ξ)

)
Q`(0, TM − ξ, ãM , ãF , ãC), (3.14)

where recursions are carried out in the discrete variables m and f , the vectors m,

f , 0, ãM , ãF , and ãC denote an arbitrarily specified initial system configuration,

` = h̃(m, f ,0), `i = h̃(m − δi, f ,0), `′i = h̃(m, f i,0), δi denotes an n-dimensional

vector with all its entries equal to zero except that its ith element is equal to one,

the vector v(i) is identical to the vector v but with its ith component set to zero, and

Q`(0, TM − ξ, ãM , ãF , ãC) is the initial condition related to the `th integral equation.

Moreover, these initial conditions satisfy the system of recursive, coupled integral

equations:

Q`′(0, T
′
M ,ãM , ãF , ãC) =

∫ ∞
0

[
n∑
i=1

GWi1
(α)Q`i

(
0, T ′M − α, (ãM+α)(i), ãF + α,

ãC + α
)

+
n∑
i=1

GYi(α)Q`
′
i

(
0, T ′M − α, ãM+α, (ãF + α)(ii), ãC0 + α

)
+

n∑
i=1

GZ̃i
(α)Q`

′′
i

(
0, T ′M − α, ãM + α, ãF + α, ãC + α

)]
dα, (3.15)

where recursions are carried out in the discrete variables m, f , and c, the vectors m,

f , c, ãM , ãF , and ãC denote an arbitrarily specified initial system configuration, T ′M =
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TM−ξ, `′ = h̃(m, f , c), `i = h̃(m−δi,F,C), `
′
i = h̃(m, f (i), c), `

′′
i = h(m+liδi, c, c

(i)),

and the vector v(i) is identical to the vector v but with its ith component set to zero.

Corollary 3 (Age-dependent characterization for the approximated service reliabil-

ity). Consider an n-server DCS whose servers perform a synchronous DTR action

at the time ξ ≥ 0. For any ` ∈ I, the approximated service reliability in executing

an application satisfies the system of recursive, coupled integral equations in ξ:

R`(ξ,ãM , ãF , ãC) =

∫ ξ

0

[
n∑
i=1

GWi1
(α)R`i

(
ξ − α, (ãM+α)(i), ãF + α, ãC + α

)
+

n∑
i=1

GYi(α)R`
′
i

(
ξ − α, ãM+α, (ãF + α)(ii), ãC + α

)]
dα

+
(
1− Fτa(ξ)

)
R`(0, ãM , ãF , ãC), (3.16)

where recursions are carried out in the discrete variables m and f , the vectors m,

f , 0, ãM , ãF , and ãC denote an arbitrarily specified initial system configuration,

` = h̃(m, f ,0), `i = h̃(m − δi, f ,0), `′i = h̃(m, f i,0), δi denotes an n-dimensional

vector with all its entries equal to zero except that its ith element is equal to one,

the vector v(i) is identical to the vector v but with its ith component set to zero,

and R`(0, ãM , ãF , ãC) is the initial condition related to the `th integral equation.

Moreover, these initial conditions satisfy the system of recursive, coupled integral

equations:

R`′(0,ãM , ãF , ãC) =

∫ ∞
0

[
n∑
i=1

GWi1
(α)R`i

(
0, (ãM+α)(i), ãF + α, ãC + α

)
+

n∑
i=1

GYi(α)R`
′
i

(
0, ãM+α, (ãF + α)(ii), ãC0 + α

)
+

n∑
i=1

GZ̃i
(α)R`

′′
i

(
0, ãM + α, ãF + α, ãC + α

)]
dα, (3.17)

where recursions are carried out in the discrete variables m, f , and c, the vectors

m, f , c, ãM , ãF , and ãC denote an arbitrarily specified initial system configuration,
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`′ = h̃(m, f , c), `i = h̃(m − δi, f , c), `
′
i = h̃(m, f (i), c), `

′′
i = h(m + liδi, f , c

(i)), and

the vector v(i) is identical to the vector v but with its ith component set to zero.

Theorem 11 (Age-dependent characterization for the lower bound of the average

execution time). Consider an n-server DCS whose servers perform a synchronous

DTR action at the time ξ ≥ 0. For any ` ∈ I, the lower bound for the average

execution time of an application satisfies the system of recursive, coupled integral

equations in ξ:

T
min

` (ξ, ãM , ãF , ãC) =

∫ ξ

0

n∑
i=1

GWi1
(α)T

min

`i

(
ξ − α, (ãM+α)(i), ãF + α, ãC + α

)
dα

+

∫ ξ

0

αfτa(α) dα +
(
1− Fτa(ξ)

)(
ξ + T

min

` (0, ãM , ãF , ãC)
)
,

(3.18)

where recursions are carried out in the discrete variables m and f , the vectors m,

f , ãM , and ãF and the scalars 0 and ãC denote an arbitrarily specified initial sys-

tem configuration, ` = g̃(m, f , 0), `i = g̃(m − δi, f , 0), δi denotes an n-dimensional

vector with all its entries equal to zero except that its ith element is equal to one,

the vector v(i) is identical to the vector v but with its ith component set to zero,

and T
min

` (0, ãM , ãF , ãC) is the initial condition related to the `th integral equation.

Moreover, these initial conditions satisfy the system of recursive, coupled integral

equations:

T
min

`′ (0, ãM , ãF , ãC) = E[τa]+

∫ ∞
0

[
n∑
i=1

GWi1
(α)T

min

`i

(
0, (ãM+α)(i), ãF + α, ãC + α

)
+GZ̃min(α)T

min

`
′′

(
0, ãM + α, ãF + α, ãC + α

)]
dα, (3.19)

where recursions are carried out in the discrete variables m and f , the vectors m, f ,

ãM , and ãF and the scalars c and ãC denote an arbitrarily specified initial system

configuration, `′ = g̃(m, f , c), and `i = g̃(m− δi, f , 0), and `′′ = g̃(m + l, f , 0), where

l = (l1, . . . , ln) is a column vector describing the total number of tasks in transit to

each server.
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Theorem 12 (Age-dependent characterization for the lower bound of the QoS).

Consider an n-server DCS whose servers perform a synchronous DTR action at the

time ξ ≥ 0. For any ` ∈ I, the lower bound of the QoS in executing an application

satisfies the system of recursive, coupled integral equations in ξ:

Qmin
` (ξ,TM , ãM , ãF , ãC) =

∫ ξ

0

[
n∑
i=1

GWi1
(α)Qmin

`i

(
ξ − α, TM − α, (ãM+α)(i), ãF + α,

ãC + α
)

+
n∑
i=1

GYi(α)Qmin
`
′
i

(
ξ − α, TM − α, ãM+α, (ãF + α)(ii), ãC + α

)]
dα

+
(
1− Fτa(ξ)

)
Qmin
` (0, TM − ξ, ãM , ãF , ãC), (3.20)

where recursions are carried out in the discrete variables m and f , the vectors m, f ,

ãM , and ãF , and the scalars 0 and ãC denote an arbitrarily specified initial system

configuration, ` = g̃(m, f ,0), `i = g̃(m − δi, f ,0), `′i = g̃(m, f i,0), δi denotes an

n-dimensional vector with all its entries equal to zero except that its ith element is

equal to one, the vector v(i) is identical to the vector v but with its ith component

set to zero, and Qmin
` (0, TM − ξ, ãM , ãF , ãC) is the initial condition related to the `th

integral equation. Moreover, these initial conditions satisfy the system of recursive,

coupled integral equations:

Qmin
`′ (0, T ′M ,ãM , ãF , ãC) =

∫ ∞
0

[
n∑
i=1

GWi1
(α)Qmin

`i

(
0, T ′M − α, (ãM+α)(i), ãF + α,

ãC + α
)

+
n∑
i=1

GYi(α)Qmin
`
′
i

(
0, T ′M − α, ãM+α, (ãF + α)(ii), ãC + α

)
+GZ̃min(α)Qmin

`′′

(
0, T ′M − α, ãM + α, ãF + α, ãC + α

)]
dα, (3.21)

where recursions are carried out in the discrete variables m, f , and c, the vectors m,

f , ãM , and ãF , and the scalars c and ãC denote an arbitrarily specified initial system

configuration, T ′M = TM − ξ, `′ = g̃(m, f , c), `i = g̃(m − δi, f , c), `
′
i = g̃(m, f (i), c),

`
′′

= g(m + l, c, 0), where l = (l1, . . . , ln) is a column vector describing the total
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number of tasks in transit to each server, and the vector v(i) is identical to the vector

v but with its ith component set to zero.

Corollary 4 (Age-dependent characterization for the lower bound of the service

reliability). Consider an n-server DCS whose servers perform a synchronous DTR

action at the time ξ ≥ 0. For any ` ∈ I, the lower bound of the service reliability in

executing an application satisfies the system of recursive, coupled integral equations

in ξ:

Rmin
` (ξ,ãM , ãF , ãC) =

∫ ξ

0

[
n∑
i=1

GWi1
(α)Rmin

`i

(
ξ − α, (ãM+α)(i), ãF + α, ãC + α

)
+

n∑
i=1

GYi(α)Rmin
`
′
i

(
ξ − α, ãM+α, (ãF + α)(ii), ãC + α

)]
dα

+
(
1− Fτa(ξ)

)
Rmin
` (0, ãM , ãF , ãC), (3.22)

where recursions are carried out in the discrete variables m and f , the vectors m, f ,

ãM , and ãF , and the scalars 0 and ãC denote an arbitrarily specified initial system

configuration, ` = g̃(m, f ,0), `i = g̃(m − δi, f ,0), `′i = g̃(m, f i,0), δi denotes an

n-dimensional vector with all its entries equal to zero except that its ith element is

equal to one, the vector v(i) is identical to the vector v but with its ith component

set to zero, and Rmin
` (0, ãM , ãF , ãC) is the initial condition related to the `th integral

equation. Moreover, these initial conditions satisfy the system of recursive, coupled

integral equations:

Rmin
`′ (0,ãM , ãF , ãC) =

∫ ∞
0

[
n∑
i=1

GWi1
(α)Rmin

`i

(
0, (ãM+α)(i), ãF + α, ãC + α

)
+

n∑
i=1

GYi(α)Rmin
`
′
i

(
0, ãM+α, (ãF + α)(ii), ãC + α

)
+GZ̃min(α)Rmin

`′′

(
0, ãM + α, ãF + α, ãC + α

)]
dα, (3.23)

where recursions are carried out in the discrete variables m, f , and c, the vectors m,

f , ãM , and ãF , and the scalars c and ãC denote an arbitrarily specified initial system
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configuration, T ′M = TM − ξ, `′ = g̃(m, f , c), `i = g̃(m − δi, f , c), `
′
i = g̃(m, f (i), c),

`
′′

= g(m + l, c, 0), where l = (l1, . . . , ln) is a column vector describing the total

number of tasks in transit to each server, and the vector v(i) is identical to the vector

v but with its ith component set to zero.

Proof of Theorems 9 to 12 are sketched in Appendix C since it is a simplified

version of the proof of Theorem 5 and 7.

Finally, it must be commented that the approximations and bounds proposed

and derived in this section correspond to a simple yet effective dimension reduction

technique. The main advantages of this simple approach are that a linear scalability,

in the number of servers, has been obtained and that the number of recurrence equa-

tions to solve in order to predict the performance and reliability metrics has been

dramatically reduced. However, the simplicity of the approach has the disadvantage

that no information or knowledge about the process has been exploited to smartly

reduce the dimension of the characterization. For instance, one manner of smartly

reducing the dimension is to exploit the fact that the conditional probabilities of the

regeneration events are know. With this information we can attempt to eliminate all

those states with a low likelihood. By implementing such technique in Algorithm 1

we can reduce the number of states visited at earlier recursions, thereby reducing

the total number of states visited as part of the evolution of the system dynamics.

Another approach that can be taken to reduce the state-space dimension is to inves-

tigate the applicability of dimension reductions techniques used in hybrid systems in

control theory. For example, the concept of bisimulation is known to be a concept

that yields a state space equivalent of a hybrid process, and in addition provides a

state space reduction, thereby allowing to study systems with a large state space

dimension [14,87].
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3.3 Performance and reliability assessment

3.3.1 Theoretical comparison between age-dependent mod-

els and other approaches

At this point, theoretical differences between the Markovian and the non-Markovian

characterizations for the performance and reliability metrics are established. First,

in a Markovian setting the regeneration time is independent of the age and follows an

exponential distribution. In the non-Markovian case the regeneration time follows a

general distribution whose parameters are age-dependent. Second, in a Markovian

setting the conditional probability associated with the regeneration event remains

constant and depends on the parameters of both the random time triggering the

regeneration event and the regeneration time. In the non-Markovian case these

probabilities are age dependent and depend on the distributions of the random times

listed in Assumption A1 as shown in (A.11). Third, in a Markovian setting metrics

are characterized by difference-differential equations and algebraic recursions both

with having constant coefficients. In the non-Markovian case characterizations are

also recursions but comprising integrals with age-dependent coefficients. Fourth, in a

Markovian setting the state-space representation for the application execution time

is discrete and has a dimension 2n2 + n. In the non-Markovian case such state-

space has discrete and continuous components and its dimension is 4n2 + 2n. Fifth,

for a fixed n and a fixed initial state, due to the dimension of the state-vector is

smaller in the Markovian case, the number of equations to be solved in such case is

smaller than in the non-Markovian case. Figure 3.2 shows the number of states that

must be evaluated in the Markovian and the non-Markovian cases as a function of

the number of servers. Values were obtained after executing only the first stage of

Algorithm 1. Cases labeled as “M fixed” evaluate a situation where an application

composed of M = 400 tasks is executed by the DCS using n servers. Cases labeled
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as “M variable” evaluate a situation where mi = 50 tasks are assigned to each server

in the system. (This explains why curves merge for n = 8 in each case.) Figure 3.2

shows that the number of states to be evaluated (i.e., the number of integrals to

compute) is very large even in the case of two servers. Figure 3.2 also shows that the

number of states generated by the non-Markovian representation is about two times

the number of states in the Markovian case.

2 3 4 5 6 7 8
10

0

10
5

10
10

10
15

10
20

10
25

10
30

n

N
u
m

b
e
r 

o
f 
s
ta

te
s
 e

v
a
lu

a
te

d

 

 

Markovian M variable

Markovian M fixed

Non−Markovian M variable

Non−Markovian M fixed

Figure 3.2: Comparison between the number of states generated by the recursions
in Theorems 5 to 8 and Corollaries 1 and 2 in Markovian and non-Markovian cases.

Compared to a DES-based performance and reliability analysis, the analytic age-

dependent regenerative approach developed here has the following differences and

similarities. In terms of memory usage, both the age-dependent state-space model

and any DES-based approach must employ a state-space representation of dimension

4n2 + 2n to simulate the class of DCSs regarded here is. Half of these state variables

are discrete and must be employed to track the dynamics of queue lengths, failed

or working state of servers, and the number of tasks queued in the network. The

60



Chapter 3. Non-Markovian model for the execution time of parallel applications

remaining state variables are continuous, however, in DES they must keep track of

the remaining time until the next event is triggered in the system, unlike in the

age-dependent model where they keep track of the age of the random times. Also in

terms of memory usage, the age-dependent model has the disadvantage that a list

to track all the states generated at a certain recursion must be stored, and since the

list of states is large, so it does the requirement of memory. In terms of computing

requirements, the type of calculations performed in a DCS approach are much simpler

(mainly random number generation, simple algebraic operations and comparisons)

than the CPU-intensive calculations performed to solve the integral recursions given

in Theorems 5 to 10. In terms of the number of iterations performed, the age-

dependent methods execute a fixed number of iterations, which are given by the

total number of states visited as part of the dynamical evolution of the system. In

DES, the number of iterations to execute is variable and depends on the confidence

required for the results and the use of variance reduction techniques. Moreover, if

rare events are being simulated, then an huge number of iterations must be conducted

unless techniques like large deviations are employed. Finally, it must be highlighted

that the main advantage of the analytical approach taken here over DES is that

the results obtained are exact and not approximated results with some associated

confidence level, as in the case of simulation.

3.3.2 Comparing Markovian and non-Markovian models

First, predictions for the average execution time, the service reliability and the QoS

in executing an application obtained using the non-Markovian characterization to

those provided by the Markovian models in [28, 67] will be compared. In the study

conducted in this section, the communication network is assumed to be homogeneous

and two network-delay conditions have been considered: low and severe network-

delays. Under low network-delay conditions, transferring a task to and processing
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such task at the fastest server takes, on average, the same time as processing the

task at the slowest server. For the severe network-delay case, the average transferring

plus processing time of a task to the fastest server is at least five times the service

time at the slowest server.

Different stochastic models for the task transfer times have been employed. The

Markovian setting is represented by the Exponential model. Pareto 1 and Pareto

2 models represent the case where service and transfer times follow Pareto laws

with finite and infinite variance, respectively. For the Shifted-Exponential model,

both service and transfer times follow shifted exponential distributions. Finally, in

the Uniform model service and transfer times follow uniform distributions. For fair

comparison, all distributions modeling the same random times have identical mean

values. Without loss of generality, the Markovian and non-Markovian models are

compared in a heterogeneous DCSs composed of two servers.
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Figure 3.3: (a) Average execution time; and (b) Service reliability for low network-
delay conditions.

The application is composed of 150 tasks, initially allocated as follows: m1 = 100
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Figure 3.4: (a) Average execution time; and (b) Service reliability for severe network-
delay conditions.
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Figure 3.5: QoS in executing an application by the due time TM = 140 s as a function
of the number of tasks exchanged.

tasks at server 1 and m2 = 50 tasks at server 2. In order to assess the effect of the

network delays on the approximations, it has been assumed in this comparison that
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both service and failure times follow exponential distributions. The mean service

time per task is 2 and 1 s for servers 1 and 2, respectively, while the mean failure

times are λ−1f1 = 1000 and λ−1f2 = 500 s. (Recall that when the average execution time

is calculated, servers are assumed to be 100% reliable.) Also, the mean transfer time

of FN packets are 0.2 and 1.0 s for the low and severe delay scenarios, respectively.

Figures 3.3 and 3.4 show the average execution time and the service reliability

as a function of the number of tasks exchanged in the network, for the two network-

delay conditions considered. It can be noted that the Markovian approximations for

both metrics, the average execution time and the service reliability, show a remark-

able accuracy in the low network-delay condition. In fact, the maximum relative

approximation errors are below 3% in all cases for both metrics. However, as the

mean transfer time increases, Figs. 3.3 and 3.4 also show that the Markovian approx-

imations loose their accuracy in predicting the actual values of the metrics. When

network-delays are severe, maximum relative approximation errors increase up to

15% for the average execution time and up to 65% in the case of the service reliabil-

ity. Figures 3.3 and 3.4 also show the effect of the network-delays on the performance

metrics. It can be noted that as the mean transfer time increases so does the average

execution time, while the service reliability decreases.

Figure 3.5 shows the QoS metric when the due time is 140 s as a function of

the number of tasks exchanged in the network for the Pareto 1 model and severe

network-delays. As expected, the QoS in executing the entire application increases

as more tasks are transferred from server 1 to server 2. The maximal QoS is only

0.471, which is attained when 33 to 35 tasks are transferred to the second server.

Next, the effect of different stochastic models for the service times on the ap-

proximations is assessed. Transfer times as well as failure times have been assumed

to follow exponential distributions. The scenario for the transfer times considered is

low-network delays. The application served by the DCS has been partitioned into
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Figure 3.6: The QoS in executing an application as a function of the due time.
Several stochastic models and the Markovian approximation are considered for the
service time.

M = 250 tasks, which are assigned uniformly to a DCS composed of five servers. The

average service time of the servers are 1, 2, 3, 4, and 5 seconds. The stochastic models

evaluated in this example are Pareto with finite (“Pareto 1”) and infinite (“Pareto

2”) variance and a uniform distribution with a coefficient of variation (standard de-

viation divided by the mean) of approximately 2%. As in the previous comparisons

all the stochastic models have the same mean. Figure 3.6 compares predictions using

the exact stochastic models with the predictions generated by a Markovian approx-

imation (“Exponential”) for the QoS metric as a function of the due time . It can

be observed from the figure that once again the Markovian approximation yields

inaccurate results. In particular, larger approximation errors are obtained in the

most extreme cases, that is, in the Pareto 2 model, which has infinite variance, and

in the uniform model, which has a very narrow variance and tends to behave as a

deterministic model. Moreover, notice that the QoS metric is reduced in the case of
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the Pareto 2 model. This is expected as in the Pareto model with infinite variance

large service times are more likely to occur as compared to other model with finite

variance. This also helps to explain the steep slope in the Uniform model, whose

shape and narrow variance eliminates the likelihood of short and long processing

times.

3.3.3 Approximations and bounds for the metrics

In order to evaluate both the accuracy of the approximations for the random task

transfer times and the tightness of the upper and lower bounds, in this section

some theoretical as well as simulation based evaluations are conducted. It must be

noted that the simultaneous arrival of tasks to a server at a random time can be

defined in several different ways. For instance, a conservative approximation can be

obtained by defining Z̃i as the maximum of all the random task-arrival times, that

is Z̃k = maxi Zik. Less conservative approximations can be obtained by defining

Z̃k as any `th order statistics, where Z̃k = mini Zik corresponds to most aggressive

approximation. In the evaluations presented here, the minimum random arrival time

as well as the maximum random arrival time approximations have been considered.

Figure 3.7 shows the number of states that must be evaluated for the exact and

the approximated characterizations, in the non-Markovian case, as a function of the

number of system servers. Once again, cases labeled as “M fixed” evaluate a situation

where an application composed of M = 400 tasks is executed by the DCS using n

servers. Cases labeled as “M variable” evaluate a situation where mi = 50 tasks are

assigned to each server in the system. The figure clearly shows the linear dependency

of the number of states in the number of system servers, and consequently, shows

the large savings in computational resources that the approximation provides.

Results for different initial allocations of an application partitioned in M = 250
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Figure 3.7: Comparison between the number of states generated by the exact and
the approximated recursions in Theorems 5 and 7 in the non-Markovian case.

tasks have been calculated. The DCS considered is composed of five servers whose

processing times following Exponential or Pareto distributions, with average pro-

cessing times of 1, 2, 3, 4, and 5 seconds for the first, second, third, fourth, and

fifth node, respectively. The communication network has been considered to be ho-

mogeneous and the channel parameters are aij = a = 3 (in seconds per task) and

bij = 1 (in seconds), i, j ∈ {1, . . . , 5}. In addition, different distributions for the ran-

dom transfer times of tasks have been considered. Namely, Exponential (Markovian

case), Lognormal, Uniform, Gamma and Pareto (with finite and infinite variance).

Three different initial allocations for the tasks have been considered: a uniform

allocation m1 = . . . = m5 = 50 tasks for all i and two non-uniform allocations:

(m1, . . . ,m5) = (10, 40, 50, 50, 100) and (m1, . . . ,m5) = (150, 0, 0, 0, 100). The DTR

policy has been executed at time tb = 0 seconds, and it has been assumed that servers

possess the same estimate of the queue-length of the remaining servers in the DCS.

Moreover, the imbalancing in the DCS is detected based on the relative processing
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speed of the nodes. From this, it can be calculated that the total amount of tasks

exchanged over the network is 61, 111, and 117 tasks when the initial allocation is

(50,50,50,50) and (10,40,50,50,100), and (150,0,0,0,100), respectively.

Figures 3.8 and 3.9 show results for the case when the random service times fol-

low exponential distributions. MC simulations are also shown representing the exact

value of the QoS. The QoS metric estimated via MC simulation was obtained using

a 95% confidence. The first observation that can be made about the approximations

is that they are not very accurate, and that the bounds are not tight. The second

observation is that the approximation based on the maximum random arrival time

per server is more accurate than the aggressive approximation based on the mini-

mum arrival time. It can be observed from the figures that as the number of tasks

exchanged over the network increases so it does the execution time of the application.

In addition, it can be observed that the execution time of the application becomes

excessively large when the random communication times follow Pareto and Lognor-

mal distributions. This is attributed to the fact that such distributions possess a

“heavy tail,” which means that events taking a long time to occur are more likely, as

compared to distributions not exhibiting a heavy tail such as the exponential distri-

bution. Figure 3.10 shows the results obtained when the random service times follow

Pareto distributions with a finite variance for the non-uniform case (150,0,0,0,100).

It can be noted that the execution times of the application are longer than in the

case of exponentially distributed service times.

3.4 Conclusions

A novel analytical characterization for the average execution time, the service re-

liability and the QoS in executing an application in DCSs has been developed.

The age-dependent analytical characterizations constitute a generalization to a non-
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Figure 3.8: Approximated QoS using the minimum and the maximum arrival time of
tasks reallocated for the balanced case. Random service times follow exponential dis-
tributions. Random transfer times of tasks follow: (a) Exponential, (b) Lognormal,
(c) Gamma, and (d) Pareto (with infinite variance) distributions.

Markovian, and hence, more physical setting of the work on LB in DCSs conducted

by Dhakal in [28]. The analysis of these performance and reliability metrics in this

new setting is important since they provide insights on the accuracy of the expo-
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Figure 3.9: Approximated QoS using the minimum and the maximum arrival time of
tasks reallocated for the unbalanced case (m1, . . . ,m5) = (10, 40, 50, 50, 100). Ran-
dom service times follow exponential distributions. Random transfer times of tasks
follow: (a) Exponential, (b) Lognormal, (c) Gamma, and (d) Pareto (with infinite
variance) distributions.

nential approximation in modeling actual phenomena that not follow exponential

approximations. Results obtained here have shown that when the variance of the
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Figure 3.10: Approximated QoS using the minimum and the maximum arrival time of
tasks reallocated for the unbalanced case (m1, . . . ,m5) = (150, 0, 0, 0, 100). Random
service times follow Pareto distributions with finite variance. Random transfer times
of tasks follow: (a) Exponential, (b) Lognormal, (c) Gamma, (e) Pareto (with infinite
variance) distributions.

random times in the DCS is large, Markovian approximations produce inaccurate

results, which can be significant when approximating probabilities like in the case
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of QoS and reliability metrics. Moreover, this generalization has provided also in-

sights about the effect of network-delays on the service time of applications and

their effects on the modeled performance and reliability metrics. Results provided

here indicate that when the network delays are relatively large compared to service

times, the error in estimating any of these metrics, as a result of falsely assuming

exponentially distributed random delays, becomes significant, thereby necessitating

the use of the age-dependent model developed in this dissertation. For example, our

calculations show relative errors as large as 40% and 110% in estimating the average

execution time and the service reliability, respectively. It must be mentioned that the

accuracy provided by the age-dependent model in predicting the three performance

metrics regarded here comes at expense of increased computations as compared to

their Markovian counterpart.

The stochastic model for DCS developed here takes into account the heterogeneity

in the computing resources, the stochastic communication, the uncertainty associated

with the number of functional servers in the DCS, and an arbitrary DTR policy

executed by the servers. The models is based on a hybrid age-dependent state

vector that tracks the discrete variables of the system (number of tasks queued at

the servers and in the network as well as the number of functioning servers) and

the memory associated with the non-exponential random times. This state vector

effectively tracks the underlying point processes associated with the dynamics of

the DCS. The mathematical framework presented here can be modified to calculate

other performance metrics, such as statistics of the queue-length of servers or jitter in

the service time, and can be extended to model crash-recovery failure scenarios. The

latter extension, however, has the extra complication that increases the number of

states visited by the process, and consequently, the computational burden is largely

augmented.

Mathematical approximations and bounds for the metrics characterized here have
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been developed to reduce the computational resources required to calculate the exact

characterizations. The analytical approximations presented significatively reduce the

number of calculations; however, their accuracy in the prediction of the metrics may

not be acceptable. This has been observed in situations when several servers are

exchanging tasks over the network. Finally, it must be commented that the analytical

bounds presented here are not tight.
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Chapter 4

Optimal task reallocation in

distributed computing systems

The problem of efficiently executing a parallel application on a DCS is a fundamental

problem in distributed computing. Solutions to this problem aim to devise smart

DTR strategies that judiciously employ the resources of the DCS. These strategies

are run-time control actions dictating when and how tasks must be exchanged among

the servers. In a DCS, effective DTR strategies must account for the heterogeneous

processing capacities of the servers and the heterogeneous transfer delays imposed

by the communication network. The problem becomes challenging when DC is per-

formed in harsh scenarios where servers may fail permanently, because effective DTR

policies must consider also the reliability of the servers, while accurate estimates of

the working or failed state of servers are either not available or dated.
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4.1 Problem statement

Given a DCS composed of n servers and a parallel application partitioned into M

tasks, the DTR problem consists in finding the optimal task migration scheme such

that the metrics characterized in Theorems 5 to 8 are optimized. In this dissertation

the DTR problems regarded are minimizing the average service time, and maximizing

both the service reliability and the QoS in serving an application. Thus, the following

mixed integer optimization problems are formulated.

Minimal average execution time:

(t∗b ,L
∗) = argmin

(tb,L)

T `0(tb,0,0,0), (4.1)

subject to:
n∑

j=1,j 6=i

lij ≤ mi, i = 1, . . . , n, (4.2)

lij ∈ {0, 1, . . . ,mi}, i, j = 1, . . . , n, i 6= j, (4.3)

tb ≥ 0. (4.4)

Maximal quality-of-service:

(t∗b ,L
∗) = argmax

(tb,L)

Q`0(tb, TM ,0,0,0), (4.5)

subject to:
n∑

j=1,j 6=i

lij ≤ mi, i = 1, . . . , n, (4.6)

lij ∈ {0, 1, . . . ,mi}, i, j = 1, . . . , n, i 6= j (4.7)

tb ≥ 0. (4.8)
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Maximal service reliability:

(t∗b ,L
∗) = argmax

(tb,L)

R`0(tb,0,0,0), (4.9)

subject to:
n∑

j=1,j 6=i

lij ≤ mi, i = 1, . . . , n, (4.10)

lij ∈ {0, 1, . . . ,mi}, i, j = 1, . . . , n, i 6= j (4.11)

tb ≥ 0. (4.12)

Each problem has n(n − 1) non-negative integer-valued variables, one non-negative

real-valued variable and n2 + 1 restrictions.

From (4.1) and (4.5) it becomes clear that the optimization problem is mixed

integer. Since the optimization problem is known to be NP-hard due to the combi-

natorial explosion of the search space, an efficient search algorithm must be devised in

order to find feasible optimal DTR policies. Before discussing the search algorithm,

the general DTR policy employed by the servers is introduced.

4.1.1 Distributed task reallocation policy

In this dissertation, the following DTR policy, consisting in three steps, executed in

a synchronous and distributed manner by the servers in DCS is considered.

Step 1. Since the DTR policy executed by the servers is distributed, each server

must determine independently the total amount of tasks to reallocate to other servers.

At the prescribed instant, tb ≥ 0, the jth functioning server computes its excess load

by comparing its local load to the estimated average load in the system. Recall

that mj(tb) denotes the number of tasks queued at the jth server at time tb. Let

m̂`,j(tb) be the estimate of the number of tasks queued at the `th functioning server
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as perceived by the jth server at time tb, with ` 6= j. The excess load of the jth

server at time tb is defined as

Lexj (tb)
4
= mj(tb)−

Λj∑
`∈Wj

Λ`

M̂j(tb), (4.13)

where M̂j(tb) = mj(tb) +
∑n

`=1,` 6=j m̂`,j(tb) is the estimate of the number of tasks

in the system as perceived by the jth server at time t= tb, Wj is the collection of

servers that are functioning as perceived by the jth server at time t = tb, and the

Λj’s are parameters that can be defined in several ways in order to establish different

reallocation criteria.

For example, the Λj parameters may be associated with the processing speed of

the servers. If the processing speed of the jth server is denoted as λj = 1/E[Wj1],

then Λj are given by λj = 1/E[Wj1], and the imbalance in the DCS is determined by

the relative computing power of the servers. Alternatively, the Λj’s may be associated

with the reliability of the servers, λfj , which is defined as λfj = 1/E[Yj]. In this case,

the relative resilience of the servers determines the amount of imbalance in the DCS.

Yet another option is to define the Λj’s so that, simultaneously, a server transfers

fewer tasks to the less-reliable servers and transfers larger number of tasks to the

faster servers. With this criterion in mind, the Λj parameters can be defined as

Λj = λj

(
1−

λfj∑
k∈Wj

λfk

)
. (4.14)

Note that in the case of an extremely reliable server, (λfi ≈ 0), the parameter Λj

is approximately equal to the processing rate of a server. On the contrary, for an

unreliable server the parameter Λj is only a reduced fraction of its processing rate.

Step 2. Each server in the DCS has to determine the amount of tasks to reallo-

cate to the remaining servers in the system. Let V denote the collection of overloaded

servers in the DCS. This collection is defined as all those servers that, at the real-

location instant, perceive themselves as overloaded with respect to their perceived
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fair share of the total workload of the system. More precisely, V 4
= {j : Lexj (tb) > 0}.

Similarly, for each overloaded server j, the collection Uj of candidate task-receiver

servers is defined as all those servers that, at time tb, are perceived by the sender

server as functioning and underloaded with respect to their own perceived fair shares

of the total workload; namely, Uj
4
= {k : Lexk,j(tb) < 0, k ∈ Wj}, where j ∈ V and

Lexk,j(tb) is the excess load at the kth functioning server as perceived by the jth server

and is defined as Lexk,j(tb)
4
=m̂k,j(tb)− ΛkM̂j(tb)/

∑
`∈Wj

Λ`.

Step 3. The jth server partitions its excess load among all the candidate task-

receiver servers. For the kth candidate task-receiver server, the partition pjk is

defined as pjk
4
= Lexk,j(tb)/

∑
`∈Uj L

ex
`,j(tb) whenever k ∈ Uj. For convenience, the

partition pji = 0 for all i /∈ Uj. In general, the load partitions pjk may not be

effective and must be adjusted in order to compensate for the effects of the random

transfer times. This compensation is carried out by the algorithm to be presented

next. However, the unadjusted partitions will be used to obtain:

l
(0)
ij ≡ l

(0)
ij (tb) =

⌊
pij

(
mi(tb)−

Λj∑
`∈Wj

Λ`

M̂i(tb)
)⌋

, (4.15)

which will be used as initial values to start the search algorithm described next.

Scalable algorithm for sub-optimal task reallocation

For DCSs with arbitrary number of servers, it has already been shown that it is

computationally expensive to calculate the performance and reliability metrics us-

ing the exact characterizations. In addition, the optimization problem is NP-hard

and demands for also fast search algorithms. To circumvent all these problems, an

efficient iterative algorithm for devising sub-optimal DTR policies is provided. The

idea of the algorithm is to exploit the decomposition technique used in mixed integer

programming, and solve the optimization problems (4.1) and (4.5) for two-server

DCSs. Key observations in the development of this algorithm are that the exact
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characterization of the reliability metrics for two-server systems are computationally

inexpensive, and that such pairwise decomposition yields a linear scalability in the

number of system servers. This algorithm was reported in [67] and refined in [66,70].

The algorithm computes the number of tasks to reallocate from the ith to the jth

server at the kth iteration, l
(k)
ij , as follows. The ith server has an estimate, m̂j,i, of

the number of tasks queued at the jth server. Using these estimates, the ith server

constructs its collection of candidate task-recipient servers, Ui. From such collection,

the ith server picks the jth server, say, and obtains l
(k)
ij by solving either (4.1) or

(4.5) with m1 = ri and m2 = m̂j,i, where ri is the number of tasks queued at the

ith server assuming that such server has already reallocated tasks to all its other

candidate recipient servers, with the exception of the jth server. In order to produce

an algorithm independent of the order in which servers are selected from Ui, the

l
(k)
ij quantities are iteratively computed until all of them settle down to some value

or until a maximum number of iterations, K, is reached. The algorithm requires

the following parameters: K, m̂j,i, tb and l
(0)
ij (tb). The parameter K is selected by

the user. The estimates m̂j,i are obtained from queue-length information packets

frequently exchanged among the servers, and the initial value for the DTR policy,

l
(0)
ij , is given by (4.15).

A pseudo code for the algorithm is shown in Algorithm 2. The scalability of

Algorithm 2 has been studied empirically. As the algorithm is decentralized, the

study focuses only on the computations performed by a single server. The most

computationally intensive case has been considered in this study. That is, when

a server has to partition its excess load among all the other servers in the DCS.

Figure 4.1 shows the average computing overhead introduced by Algorithm 2, i.e.,

the execution time taken by the multi-server algorithm to solve (4.1), as a function

of the number of servers in the DCS, for four different amounts of tasks allocated at

the sender server. The mean computing overhead was computed by averaging 100
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Algorithm 2 DTR policy for multi-server DCSs

Require: K, m̂j,i and l
(0)
ij , with j = 1, . . . , n, i 6= j

Ensure: L = (lij)n×n

Set Ui = {j : L
(0)
ij > 0}, U ′i = ∅ and k = 1

loop

while j ∈ Ui do

Ui ← Ui \ {j}

m1 = mi −
∑

`∈Ui
L
(k−1)
i` −

∑
`∈U ′i

l
(k)
i` and m2 = m̂j,i

Solve (4.1) or (4.5) using m1 and m2 to obtain l
(k)
ij

U
′
i ← U

′
i ∪ {j}

end while

Set Ui = {j : L
(0)
ij > 0}, U ′i = ∅ and k ← k + 1

if
∑n

i=1

∑n
j=1,j 6=i

(
l
(k)
ij − l

(k−1)
ij

)
= 0 or k > K then

lij = l
(k)
ij for all j ∈ Ui and exit

end if

end loop

executions of the algorithm. Roughly speaking, Fig. 4.1 shows that the overhead

increases linearly with the number of servers in the DCS. Moreover, note that each

server has to solve at most n − 1 times any of the two optimization problems, and

such computation has to be repeated no more than K times. From this, it can be

observed that the algorithm in fact scales linearly in the number of servers.
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Figure 4.1: Average execution time taken by Algorithm 2 to solve (4.1) as a function
of the number of system servers.

4.2 Task reallocation in non-Markovian settings

4.2.1 Task reallocation for two-server systems

Since Algorithm 2 is based upon a two-server decomposition of a DCS, results for

two-server DCSs are presented first. As in Section 3.3.2, the parallel application to

be executed on the DCS comprises m1 = 100 tasks and m2 = 50 tasks, initially

allocated at servers 1 and 2, respectively. The mean service time per task is 2 and

1 s for servers 1 and 2, respectively. It has been also assumed that failure times

follow exponential distributions with means λ−1f1 = 1000 and λ−1f2 = 500 s. (Recall

that when the average service time is calculated, servers are assumed to be 100%

reliable.) Also, the mean transfer time of FN packets are 0.2 and 1.0 s for the low

and severe network delay scenarios, respectively.

The optimization problems (4.1) and (4.5) are solved in order to devise DTR
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Figure 4.2: (a) Average service time, and (b) QoS in executing an application before
TM = 180 s, as a function of all the DTR policies for Pareto 1 model and severe
network-delay conditions.

policies for the average service time and the QoS in serving an application. For

both performance metrics the case of a DCS with completely reliable servers has

been considered. Optimization results for all the models and both low and severe

network-delay conditions are listed in Table 4.1. It can be seen from such Table that

when network-delays are low, a Markovian model yields fairly accurate predictions for

both metrics. However, when the amount of delay in the communication network is

high, results produced by the Markovian approximation are not only inaccurate, but

also yield DTR policies that can degrade the performance metrics in approximately

10 to 40%. Figure 4.2 shows the average service time and the QoS in serving an

application as a function of the DTR policies for the Pareto 1 model and severe

network-delays. The minimal average service time is 140.11 s, and is achieved by the

policy l12 = 32 tasks and l21 = 1 tasks. Figure 4.2(b) shows the QoS in serving the

entire application within 180 s. The QoS metric for TM = 180 s is maximized by three

policies l12 ∈ {31, 32, 33} tasks and l21 = 1 task, which yield a maximal probability

of serving the application of 0.988. It must be commented that the maximal QoS in
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serving the application within 140 s (the minimal average completion time) is only

0.471.

Next, the effect of optimal DTR policies on the usage of the computing resources

is discussed. If low network-delay conditions are considered, optimal policies dictate

that approximately 50% of the load initially allocated at the slower server has to

be migrated to the faster server, while the latter server must keep all its initial

load. Note that, on average, server 2 processes its initial load in 50 s, and note

also that, transferring 50 tasks from server 1 to server 2 takes 50 s. Consequently,

the optimal task reallocation is perceived by the second server as an instantaneous

exchange of load. In addition, note that processing the 50 tasks reallocated to server

2 takes another 50 s, on average, while serving the remaining 50 tasks at server

one takes 100 s, on average. Therefore, optimal policies keeps both servers busy

for approximately the same amount of time, thereby efficiently using the computing

resources of the DCS. When network-delays are severe, computing resources cannot

be utilized equally. In this case, optimal policies trade off between transfer times

and utilization of the servers.

4.2.2 Task reallocation for multi-server systems

The average service time and the service reliability of a heterogeneous, five-server

DCS have also been optimized by employing Algorithm 2 presented in Section 4.1.1.

It has been assumed that the parallel application is partitioned in M = 200 tasks.

To assess the service reliability, it has been assumed that failure times follow Weibull

distributions with means 1000, 800, 600, 500, and 400 s, for servers 1 to 5, respec-

tively. The average service times were set to be 5, 4, 3, 2, and 1 s for servers 1 to

5, respectively. The remaining parameters are the same as those in the two-server

analysis.
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Table 4.1: Optimal DTR policies for average service time and QoS.

Low network-delays

Model T `0(0,0,0,0) l12 Q`0(0, 110,0,0,0) l12
Exponential 110.65 51 0.604 53
Pareto 1 106.44 53 0.660 53
Pareto 2 106.26 53 0.675 53
Shifted Exp. 108.81 52 0.642 52
Uniform 112.33 54 0.630 54

Severe network-delays

Model T `0(0,0,0,0) l12 Q`0(0, 180,0,0,0) l12
Exponential 183.80 16 0.659 22
Pareto 1 140.11 32 0.988 33
Pareto 2 119.10 44 0.997 44
Shifted Exp. 139.94 40 0.969 39
Uniform 145.32 37 0.979 37

Table 4.2: Service reliability for different models under severe network-delay condi-
tions.

Initial load Avg. Service Time, s
(m1, . . . ,m5) Pareto 1 Pareto 2 Shft. Exp. Uniform Exp.

(200,0,0,0,0) 109.66 101.33 108.41 106.40 128.62
(0,0,0,0,200) 107.39 102.62 107.01 105.55 125.57

(40,40,40,40,40) 105.44 101.91 104.31 104.79 122.83
(18,22,30,43,87) 90.01 88.87 89.37 91.47 90.05

Initial load Service Reliability
(m1, . . . ,m5) Pareto 1 Pareto 2 Shft. Exp. Uniform Exp.

(200,0,0,0,0) 0.614 0.622 0.601 0.572 0.339
(0,0,0,0,200) 0.588 0.591 0.575 0.601 0.392

(40,40,40,40,40) 0.631 0.643 0.632 0.639 0.430
(62,48,36,30,24) 0.741 0.755 0.729 0.699 0.546

Table 4.2 lists both the average service time and the maximal service reliability

obtained under severe network-delay conditions. Both performance metrics were

obtained by solving the system of equations generated by the recursion presented in

Theorem 5. For comparison, the column “Exponential” presents results yielded using

the optimal policies devised under Markovian assumptions. Also for comparison, the

last row on each part of the Table represents a benchmark for each performance
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metric, since the initial allocation of tasks is actually the optimal allocation. These

optimal task allocations were obtained by performing a MC-based exhaustive search

over all the DTR policies. It can be noted from Table 4.2 that the exponential

approximation produces relative errors between 5% and 45%. As in the case of two-

server DCSs, using incorrect models for the random times yield not only inaccurate

results, but also specifies inappropriate reallocation policies that, in turn, reduce

the performance metrics under study. Finally, during the evaluations conducted in

this work it has been observed that policies devised using Algorithm 1 and a non-

Markovian model can achieve values for the average service times and the service

reliability that are within 70% of the optimal values.

4.2.3 Distributed computing testbed

As part of this dissertation, the DCS architecture developed by Ghanem in [40] has

been employed and modified to accommodate independent as well as correlated fail-

ures. The hardware architecture consists of the computing servers and the commu-

nication network. The set of computing servers comprises heterogeneous processors,

such as Pentium II- and Pentium 4-based computers. Lately, the testbed has been

ported to a dedicated cluster of twelve PowerPC-based computers. This cluster be-

longs to the UNM Center for Advanced Research Computing [86]. Depending on

which environment is used some of the computing servers are dedicated machines

(cluster), while others are serving as lightly loaded web-, mail- and database-servers.

The occurrence of failures at the server is simulated by software. In the case of

independent failures, each server randomly generates a time to fail. In the case of

correlated failures, the server in charge of providing the initial allocation of load and

triggering the DC draws a failure pattern using Algorithm 3 and generates a random

failure time. The failure pattern as well as the random failure time are broadcasted

to the remaining servers in the system using the same data packet employed to trig-
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ger the beginning of the execution of the application. These methods for generating

and simulating independent and correlated failures are practical contributions of this

work to enhance the testbed architecture. Upon the occurrence of a failure, a com-

puting server is switched from the so-called working state to the failed state. If a

server is in the failed state then it cannot process tasks. The communication net-

work employed by the testbed architecture is mainly the Internet, where the final

links connecting the computing nodes are either wired or wireless. Hence, the com-

munication network naturally exhibits a notorious communication delay. However,

when the cluster of PowerPC-based servers is employed or in situations where some

of the communication links provide high speed connection, artificial latency has been

introduced to the communication by means of traffic shaper applications. A traffic

shaper may reduce the actual transfer speed of the network interfaces to slow speeds

such as 1024 to 512 Kbps. This is the second practical contribution of this work to

the testbed DCS.

The software architecture of the DCS is divided in three layers: application, task

reallocation and communication. Layers are implemented in software using POSIX

threads. The application layer executes the application selected to illustrate the DC:

matrix multiplication. The service of a task has been defined as the multiplication of

one row by a static matrix, which is duplicated in all servers. To achieve variability

in the processing time of the servers, randomness is introduced in the size of each row

by independently choosing its arithmetic precision using any arbitrary probability

distribution. The application layer also switches the state of a server from working

to failed. The same layer maintains, at each server, two vectors of n− 1 components

that track the failed or working state of the other servers in the DCS. The first

vector stores the number of tasks queued at the other nodes using a long integer

representation. The second vector is binary and indicates which servers remain

functioning in the system. The task reallocation layer executes the DTR policy

defined for each type of experiment conducted. This layer schedules and triggers the
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reallocation instants when task-reallocation is performed. It also: (i) determines if

a server is overloaded with respect to the other servers in the system; (ii) selects

which servers are candidate receiving servers; and (iii) computes the amount of task

to transmit to the receiver nodes by using Algorithm 2. Finally, the communication

layer of each server handles the transfer of tasks as well as the transfer of FN packets

among the servers. Each node uses the UDP transport protocol to transfer either

an FN packet to the other servers. The TCP transport protocol is used to transfer

tasks between the servers.

4.2.4 Maximizing the service reliability of a testbed DCS

In order to experimentally validate the age-dependent theory developed here, policies

for maximizing the service reliability of a testbed DCS, which uses the Internet

as the communication network, have been devised. A detailed description of the

testbed DCS employed is given in [67]. In order to yield predictions for the service

reliability, first it is mandatory to characterize experimentally the random times of

the testbed DCS. Figures 4.3(a) and (b) show the normalized histograms as well

as fitted pdfs for the service time of server 1 and the transfer time of tasks from

server 2 to 1. The parameters of the fitted pdfs were estimated using maximum

likelihood estimators. Each estimated pdf was selected according to the minimum

total squared error between the normalized histogram and each fitted pdfs. From this

experimental characterization, it has been found that: (i) the service times at servers

1 and 2 follow Pareto distributions with means 4.858 and 2.357 s, respectively; (ii)

the task transfer times follow shifted gamma distributions with means Z12 = 1.207

and Z21 = 0.803 s; and (iii) the FN packet transfer times follow shifted gamma

distributions with means X12 = 0.313 and X21 = 0.145 s. Note that according to

the classification of the network delays, these values correspond to a condition of

low network-delays. The free parameters of the system are the initial allocation and
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the distribution of the failure times of the servers. The initial allocation was set to

m1 = 50 and m2 = 25 tasks and failure times were assumed to follow exponential

distributions with means 300 and 150 s.

The optimal DTR policy calculated using Algorithm 2 and a non-Markovian

model for the two-server testbed is l12 =26 and l21 =0 tasks. Such policy provides a

theoretical service reliability of 0.6007. Figure 4.3(c) shows theoretical predictions,

MC simulations as well as experimental results for the service reliability of the two-

server testbed. Results show the case when the optimal reallocation from server 2 to

1 is used (l21 =0), while different number of tasks are migrated from the first to the

second server (l12). In both simulations and experiments, the service reliability is

calculated by averaging failure or success outcomes. A total of 10000 and 500 inde-

pendent realizations of each policy have been employed in computing MC simulations

and experimental results, respectively. Figure 4.3(c) shows a remarkable agreement

between simulations and the non-Markovian theoretical predictions. Experimental

results show also a fairly good agreement with the theoretical curves, where the rela-

tive error between predictions and experiments is less than 7%. Note that if no task

reallocation is performed, the service reliability is reduced in approximately 15%. If

a Markovian approximation is employed to devise the optimal DTR policy for the

two-server testbed, the service reliability is reduced in approximately 1.5%.

In addition, the service reliability of the two-server DCS has also been optimized.

First, it has been assumed that the DTR policy is executed at tb = 0; therefore, The-

orem 7 only must be used to solve the optimization problem (4.5). Figures 4.4(a)

and (b) show the service reliability under for l21 = 5 and l21 = 18 are plotted as a

function of l12. On one hand, small values for l12 imply that server 1 remains unbal-

anced with respect to server 2 and executes most of its workload. As a consequence,

the second server is under utilized because, on average, server 2 executes its entire

workload before it fails. Therefore, the time required to serve the workload becomes
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Figure 4.3: Normalized histogram and fitted pdf of: (a) Service time at server 1; and
(b) Task transfer time from server 1 to 2. (c) Service reliability as a function of DTR
policies.

“large” and the service reliability is “small.” On the other hand, when l12 approaches

to 60, the first server transfers approximately half of its initial load to the second

server. Hence, almost all the tasks are queued and served at the less reliable server

until it fails, thereby reducing the service reliability. In addition to the theoretical

predictions, Fig. 4.4 shows the Markovian approximation, MC simulations as well as

89



Chapter 4. Optimal task reallocation in distributed computing systems

experimental results. In simulations, the service reliability is calculated by averaging

outcomes (failures or successes) from independent realizations of the policies. The

values of reliability obtained via MC simulation plotted in Fig. 4.4 correspond to

centers of 95% confidence intervals, for which the estimated service reliability will

not differ from the true value by more than 0.0025. Simulation results strongly agree

with the age-dependent theoretical predictions, and remarkably, experiments con-

ducted on the two-server DCS show a fairly good agreement with theoretical curves.

In the experiments, the service reliability is calculated by averaging the results of

500 independent trials for each policy shown in Fig. 4.4(a). It must be noticed that,

in this case, the Markovian approximation yields fairly accurate predictions, where

the relative approximation error is below 4%.

Next, the optimization problem (4.5) is solved to find the optimal time to trigger

the DTR policy; Theorems 5 and 7 must be used in this case. Figure 4.3(b) shows

theoretical predictions, MC simulations and experimental results for the service reli-

ability as a function of the reallocation instant, for some representative reallocations.

After solving (4.5), a maximal service reliability of 0.874 is achieved by the system

at t∗b = 0 by the following four DTR policies: L∗1 =
(
0 22
0 0

)
, L∗2 =

(
0 22
1 0

)
, L∗3 =

(
0 23
0 0

)
,

and L∗4 =
(
0 23
1 0

)
. Figure 4.3(b) shows the service reliability as a function of tb for

the optimal policy L∗1. Note that an improper selection of the number of tasks to

reallocate can produce a notorious reduction on the service reliability, as is depicted

for the case of choosing L =
(

0 1
19 0

)
. Note also that, an improper selection of the

number of tasks to reallocate can be compensated by delaying the DTR action.

Finally, the service reliability of a heterogeneous five-server DCS executing an

application composed of M = 150 tasks has been maximized. The failure times

of the servers have been assumed exponential with mean failure times of 350 s,

10 s, 20 s, 200 s, and 300 s, respectively. The service times were experimentally

characterized in the testbed DCS, and as in the two-server case, service times follow
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Figure 4.4: Service reliability as a function of the number of tasks exchanged from
server 1 to 2, 1 when DTR policy is executed at tb = 0. (a) l21 = 5 and (b)
l21 = 18 tasks. (c) Service reliability as a function of the reallocation instant for four
representative reallocations, L.

Pareto distributions and transfer times follow shifted Gamma distributions. The

channel-dependent parameters, also estimated from data collected using the testbed

DCS, are listed in Table 4.3. The mean service times of the servers are 5.945, 2.009,

3.866, 3.943, and 5.447 s. For brevity, only the minimum and the maximum values
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of the estimated mean arrival times of FN packets are provided: 0.343 and 7.727 s,

respectively.

Table 4.3: Empirically characterized parameters, ajk and bjk, of the first-order ap-
proximation for the average task-transfer times in a five-server DCS.

ajk k = 1 k = 2 k = 3 k = 4 k = 5

j = 1 — 0.898 0.838 0.706 0.751
j = 2 0.336 — 0.335 0.273 0.350
j = 3 0.541 0.665 — 0.677 0.617
j = 4 0.248 0.532 0.408 — 0.273
j = 5 0.219 0.355 0.298 0.234 —

bjk k = 1 k = 2 k = 3 k = 4 k = 5

j = 1 — 1.970 2.219 2.000 2.199
j = 2 1.651 — 1.993 1.876 1.667
j = 3 5.001 4.997 — 5.203 5.557
j = 4 4.131 7.604 5.862 — 7.604
j = 5 3.009 2.887 2.731 2.943 —

For this DCS, three different DTR policies have been devised and discussed: (i)

The Null DTR policy where tasks are not exchanged in the system; (ii) The Full

DTR policy where tasks exchanged are given by the initial unadjusted values (4.15);

and (iii) The Reliability policy where the number of tasks reallocated is calculated

using Algorithm 2 with Λj parameters defined to be equal to the failure rate of

the servers. Theoretical predictions obtained for different initial task allocations are

listed in Table 4.4. The service reliability was calculated via simulations and values

listed in Table 4.4 correspond to centers of 95% confidence intervals, for which the

estimated reliability will not differ from the true value by more than 0.005. Also,

the column labeled as “Experimental” presents results obtained after averaging 500

realization of experiments conducted on the testbed DCS. The first three rows of

Table 4.4 represent cases where the system is totally imbalanced. The last four

rows represent cases where the initial allocation was uniformly, according to servers’

reliability, according to servers’ processing speed, and arbitrarily.

It can be observed from Table 4.4 that the Reliability DTR policy outperforms
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the other two policies in all the cases considered. It can also be noticed that the

Reliability DTR policy effectively increases the service reliability because it trades

off network queuing times and servers idle times by computing appropriate amount

of tasks to exchange among the servers. For instance, when all the tasks are queued

at the fourth server if no DTR action is executed, then on an average after 200 s

the fourth server fails, while on an average the following events have occurred in

the DCS: (i) the second and third servers have failed; (ii) the fourth server has

been informed about the failures of the second and third servers; and (iii) the fourth

server has executed 50 tasks. So, it can be clearly noticed that the first and the

fifth server remained idle for long periods of time, and even worst, the second and

third servers were never employed to serve any task. On the contrary, when the Full

DTR policy is used, the fourth server decides to transfer 59, 1, 3, and 50 tasks to the

first, second, third, and fifth server, respectively, while 37 tasks remain queued at the

fourth server. From the previous discussion it becomes evident that Full DTR policy

is advantageous over the Null policy, as evidenced by the service reliability shown in

Table 4.4. Notably, the Reliability policy takes an even better by reallocating 38, 1,

3, and 41 tasks to the first, second, third, and fifth server, respectively. Note that

by sending fewer tasks to the first and fifth server, the Reliability policy reduces the

idle time of these servers as compared to the Full policy.

Table 4.4: Service reliability under different DTR policies.

Initial load Service Reliability
(m1, . . . ,m5) Null Full Reliability

Theoretical Theoretical Theoretical Experimental

(150,0,0,0,0) 0.210 0.508 0.509 0.527
(0,0,0,150,0) 0.330 0.532 0.583 0.575
(0,0,0,0,150) 0.255 0.533 0.543 0.559

(30,30,30,30,30) 0.634 0.557 0.634 0.603
(59,2,4,34,51) 0.534 0.555 0.556 0.539

(18,55,29,27,21) 0.642 0.563 0.642 0.625
(26,30,28,38,28) 0.642 0.563 0.642 0.603
(40,15,40,35,20) 0.621 0.562 0.624 0.649
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The effect of the selection of various reallocation criteria on the service reliability

is now studied. Three DTR policies have been considered, each one of them having

a different reallocation criterion but sharing the same algorithm to compute the

amount of tasks to reallocate. The Reliability LB policy reallocate tasks in the DCS

according to the reliability of the servers. The Processing-Speedpolicy reallocate tasks

in the DCS based upon the processing rate of the servers, i.e., Λj = λdj . Finally,

the Maximal-Service policy uses a balancing criterion that combines both processing

and failure rates, that is, the Λj are defined as in (4.14). Additionally, a MC–based

exhaustive search has been conducted, over the number of tasks to reallocate, in

order to estimate the optimal service reliability for each case considered. The results

of our evaluations are listed in Table 4.5.

Note that the fastest servers in the example are also the less reliable ones. Conse-

quently, the task reallocation criterion employed by the Processing-Speed LB policy

appears to be inappropriate in order to maximize the service reliability. However,

it can be seen from Table 4.5 that, in most of the cases, the three policies achieve

approximately the same performance, which shows the strength of our approach. For

example, in the case when all the tasks are initially queued at the fourth server, the

Processing-Speed policy dictates that 54 tasks have to be transferred to the second

server. However, when Algorithm 2 is employed to calculate the number of tasks

to reallocate, such amount reduces to only 11 tasks. From Table 4.5 it is observed

that the Maximal-Service policy outperforms in almost all the cases the other two

policies. This is because such policy trades off reliability and computing speed in

both the reallocation criterion and the excess workload partitioning. Finally, it can

be seen from Table 4.5 that the service reliability achieved by the policies is within

70% of the optimal service reliability for each case. In fact, the optimum is achieved

in some cases.
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Table 4.5: Service reliability achieved by three DTR policies, which have different
task reallocation criteria. For comparison purposes, the optimal value obtained for
each case is listed.

Initial load Service reliability
(m1, . . . ,m5) Reliability Processing-Speed Maximal-Service Optimum

(150,0,0,0,0) 0.509 0.511 0.573 0.631
(0,0,0,150,0) 0.583 0.533 0.612 0.615
(0,0,0,0,150) 0.543 0.566 0.613 0.619

(30,30,30,30,30) 0.634 0.603 0.636 0.657
(59,2,4,34,51) 0.556 0.608 0.638 0.668

(18,55,29,27,21) 0.642 0.623 0.640 0.649
(26,30,28,38,28) 0.642 0.639 0.642 0.642
(40,15,40,35,20) 0.624 0.610 0.643 0.656

4.3 Conclusions

An analytical, probabilistic framework to devise decentralized DTR polices that min-

imize the average execution time and maximize the QoS and the service reliability

of heterogeneous DCSs has been presented in this chapter. The framework for devis-

ing DTR policies relies on the general analytical stochastic model developed in the

previous chapter. Combining such a general model for DCSs with the general class

of DTR policies employed here has provided three key insights about the behavior

of heterogeneous DCSs. First, when incorrect models for the random times govern-

ing the dynamics of the system are employed to calculate DTR policies, not only

inaccurate predictions are yielded for the performance and reliability metrics, but

also the calculated DTR policies specify inappropriate amount of tasks to reallocate

among the servers, which, in turn, reduce the metrics under study. Second, there is a

fundamental trade off between minimizing the average service time and maximizing

service reliability, such a trade off can be obtained, for instance, by devising DTR

policies that optimize simultaneously the two metrics. Third, effective DTR policies

for improving performance and reliability of DCSs must consider the heterogeneous

processing capabilities of the servers, their reliability and the heterogeneous network
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transfer delays.

When DTR is performed as dictated by the policies presented here, the service

reliability can be improved up to 63% as compared to the reliability provided by

a DCS, and up to 45% as compared to policies that consider server’ reliability but

disregard the communication costs over the network. Moreover, the suboptimal

algorithm developed to compute the DTR policies achieves a service reliability within

80% of the optimal service reliability, and in cases achieves the optimal value. Using

the framework presented here, the service reliability of a small-scale testbed DCS has

been predicted and DTR policies to enhance its reliability have been devised. Such

policies were implemented in the testbed and experimental results were compared

to theoretical predictions. Evaluations have shown not only an improvement in the

service reliability of the testbed, but also the remarkable accuracy of the predictions

of the non-Markovian model developed in this dissertation. In terms of scalability,

the algorithm for finding the number of tasks to reallocate among the servers scales

linearly with the number of servers of the DCS and exploits the exact analytical

age-dependent model for two-server DCSs.
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Modeling spatially correlated

failures

This chapter presents a stochastic model for spatially correlated failures on DCSs.

The model captures the logical and geographical spatial interactions of the servers

in a DCS. Unlike the model for DCSs presented in the previous chapters, here

the underlying network topology of a DCS is modeled by using graph theory. A

MRFs theory is exploited in conjunction with the topological structure of the network

to introduce “local specifications” of failures. These local specifications, in turn,

induce a global distribution function of failure patterns to all the servers in the DCS.

For completeness, the beginning of this chapter provides the required notation and

terminology related to graph theory and MRFs.
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5.1 Preliminaries

5.1.1 Graph theory and the network topology of a DCS

Physical as well as logical network topologies are commonly abstracted in the liter-

ature by means of graph theory. Server nodes are represented by a set of vertices

and the (physical and/or logical) relationships between the servers are represented

by edges linking pairs of them. Here, the underlying topology of an n-server DCS is

described by the connected, undirected graph G = (V,E), where V = {1, 2, . . . , n} is

the set of server nodes and E ⊂ V × V is the set of communication links in the net-

work. Since the set of edges describes only if a connection exists or not between any

pair of servers, a set of non-negative weights, W (E), associated with E has been also

defined. Specifically, the map W : E → [0,∞) associates to each edge e in the graph

a positive weight denoted as W (e). This weight function allows to the model more

general relationships between the servers, such as, geographical distances between

them and communication costs among others.

For v 6= u, a trajectory from the server v to the server u on the graph G = (V,E)

is the non-empty, acyclic subgraph of G denoted by Tv,u = (X, Y ) that links servers

v = v0 and u = vk. Formally, a trajectory is defined as Tv,u = (X, Y ) ⊂ G where

X = {v0, v1, . . . , vk} is the set of all the servers visited in the trajectory from node

v0 to server vk, while Y =
{
{v0, v1} , {v1, v2} , . . . , {vk−1, vk}

}
is the set with the

sequence of edges employed in the trajectory. For convenience, it has been defined

that Tv,v = ∅. Let Tv,u denote the collection of all possible trajectories between

servers v and u. With this, the logical distance, dL(v, u), as well as the weighted
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distance, dW (v, u), between servers v and u in G can be defined as:

dL(v, u) , min
(X,Y )∈Tv,u

|Y |, (5.1)

dW (v, u) , min
(X,Y )∈Tv,u

∑
e∈Y

w(e), (5.2)

where |Y | is the cardinality of the set Y .

5.1.2 Neighborhood of a server

Servers can be related to some group of servers via the concept of “neighborhood.”

A neighborhood is a relationship between servers satisfying the following properties:

(i) A server is not a neighbor of itself: for all v ∈ V, v /∈ Nv,

(ii) A neighboring relation is reflexive: for all v, u ∈ V, v ∈ Nu ⇔ u ∈ Nv,

where Nv denotes the neighborhood of server v. For instance, the neighborhood of

the server v can be defined as:

Nv , {u : dW (v, u) ≤ Dmax u, v ∈ V }, (5.3)

where the positive number Dmax is a parameter that can extend or reduce the size of

a neighborhood. Note that if Dmax = 1 and dW (v, u) is replaced by dL(v, u) in (5.6),

then the definition of neighborhood reduces to the traditional definition of nearest

neighbors on a graph. For notational convenience, the set Ñv , Nv ∪ {v} is also

introduced. Finally, the neighborhood system, N , induced by the graph G is defined

as the collection of all neighborhoods, i.e., N = {Nv, v ∈ V }.

5.1.3 Random fields and Markov random fields

Definition. Let Xi denote a discrete random variable defined on Ωi = {0, 1, . . . , Ni}.

For V = {1, 2, . . . , n}, let X = {Xi, i ∈ V } be a the collection of random variables
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taking values on Ω = Ω1×. . .×Ωn, termed as the “configuration space.” A probability

measure π is a random field if for all ω in Ω the probability π(ω) is positive, [13,53,80].

Intuitively, a random field can be regarded as a “random variable” taking values

on the configuration space, where a particular value of a configuration will be denoted

as x =
(
x1 x2 . . . xn

)
, with xi ∈ Ωi for all i ∈ V . Further, the restriction of x to the

set A, for A ⊂ V , is defined as x(A) = {xi, i ∈ A}.

Definition. Gibbs fields is a random field that follows the Gibbs distribution:

πX(x) =
1

ZT
exp

(
−E(x)

T

)
, (5.4)

where ZT a normalizing constant, termed as the partition function, T is a constant

termed as the temperature and E(x) is referred to as the energy function, [13,53,80].

Definition. Let X be a random field. This random field is a Markov random

field with respect to a neighborhood system N induced by the graph G = (V,E) if

for all v ∈ V the random variables Xv and X(V \ Ñv) are independent given X(Nv).

More precisely, for all v ∈ V and x ∈ Ω

P{Xv = xv|X(V \ v) = x(V \ v)} = P{Xv = xv|X(Nv) = x(Nv)}. (5.5)

According to the Hammersley-Clifford theorem, there is an equivalence between

MRFs and certain types of Gibbs’ random fields [13,53,59]. When the energy function

can be written as E(x) =
∑

C∈C VC(x), where VC(x) is a Gibbs potential on the

clique1 C, then a MRF is equivalent to a Gibbs field [13, 53, 59]. (The variable C

denotes the collection of all cliques.)

1Formally, a subset C of V with one or more elements is called a clique of the graph
G = (V,E) if and only if any two distinct members of C are mutual neighbors.
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5.2 Model for spatially correlated failures

The key idea to develop a model for spatially correlated failures is as follows. First,

to capture the logical and geographical connections between the servers in a DCS, the

underlying topology of the communication network connecting the servers has been

modeled using graph theory. Next, the ability of MRFs to model spatially correlated

phenomena has been exploited by defining meaningful local interactions that are

simple to specify. These interactions in turn, define a global Gibbs distribution of

spatially correlated failures. The technical details of the model are provided next.

5.2.1 Markov random fields approach for modeling spatially

correlated failures

Suppose that the undirected graph G = (V,E) represents the topology of a DCS,

where V = {1, . . . , n} is the set of servers and E ⊂ V × V represents the underlying

topology of the communication network connecting the servers. In order to capture

both geographical as well as logical correlations in a MRF setting, the following

neighborhood system is defined:

Nv , {u : dW (v, u) ≤ Dmax or dL(v, u) = 1, u, v ∈ V }, (5.6)

In words, two servers are neighbors if their Euclidean (geographical) distance is

within the range Dmax or if they have a direct connection with each other. From this

definition of neighborhood, the graph G induces the neighborhood system N .

Suppose now that Xi is a binary random variable representing if a server has

failed (“1”) or not (“0”). The definition of neighborhood-system in conjunction

with the collection of binary random variables X = {Xi, i ∈ V } taking values on the

configuration space Ω = {0, 1}n is employed here to introduce a MRF. The definition

of the MRF is complete when the Markovian condition (5.5) is specified. That is, the
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MRF is completely determined when the likelihood of failure of a server, conditional

on the failed or working state of its neighbor servers is specified.

Requirements. It is of interest to this dissertation analyzing the performance

of DCSs in harsh scenarios where the failure of a server induces failures in other

functioning servers, for instance, due to the inability of the working servers to ex-

change data and information with a failed server. It is also of interest to this work to

model situations where the geographical or logical proximity of a functioning server

to a failed server increases the likelihood of failure on the functioning server and its

neighbor nodes. To fulfill all these requirements, the following local specification for

the likelihood of failure of server v given the failed or working state of its neighbor

servers is proposed

P{Xv = xv|X(Nv) = x(Nv)} =
exp

(
−T−1 xv(rv −

∑
u∈Nv

sv,u xu)
)

1 + exp
(
−T−1(rv −

∑
u∈Nv

sv,u xu)
) , (5.7)

where T is a constant, rv is a non-negative parameter modeling the resilience of the

vth server to failures and sv,u is a non-negative parameter modeling the strength of

interaction between the servers u and v.

Note that, due to the summation in (5.7), the likelihood of server v of being in a

failed state, xv = 1, effectively increases when one or more of its neighboring servers

are also in a failed state, xu = 1. Moreover, consider the following definition for the

strength of interaction parameters:

sv,u =


Dmax

dW (v,u)
+ sL , if u ∈ Nv and dW (v, u) ≤ Dmax

sL , if u ∈ Nv and dW (v, u) > Dmax

0 , if u /∈ Nv

, (5.8)

where sL is a non-negative parameter modeling the logical strength of interaction

between nodes v and u. This inhomogeneous definition for sv,u clearly increases the

likelihood of failure of servers when they are geographically or logically close to failed

servers.
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The equivalence between MRFs and Gibbs fields can be exploited to determine

the energy function. By invoking the law of total probability, the definition (5.7)

and recalling the Markovian condition (5.5) it is straightforward to obtain:

E(x) =
∑
v∈V

rv xv −
∑
v∈V

∑
u∈Nv

sv,u xvxu, (5.9)

which is written in terms of second-order Gibbs potentials. The energy function

can be written using matrix-vector notation as: E(x) = xT r − xTAx, where x =

(x1 . . . xn)T , r = (r1 . . . rn)T , and A = (sv,u)n×n. Thus, the Gibbs distribution asso-

ciated with this energy function is

πX(x) =
1

ZT
exp

(
−
∑

v∈V rv x(v)−
∑

v∈V
∑

u∈Nv
sv,u xvxu

T

)
=

1

ZT
exp

(
−xT r− xTAx

T

)
. (5.10)

Note that the local specification (5.7) is independent of the normalizing constant

ZT , while the Gibbs distribution depends on it. Note also that when the strength of

interaction parameters are equal to zero, the Gibbs distribution reduces to the case

of independent failures.

5.3 Monte-Carlo approach for sampling spatially

correlated failures

5.3.1 The Gibbs sampler

Realizations of spatially correlated failures following a Gibbs distribution can be sam-

pled, in theory, from (5.10). Unfortunately, the normalizing constant T is usually

hard to compute since due to the large dimension of the configuration space. In order

to circumvent this problem, sampling algorithms such as Gibbs or Metropolis sam-

plers can be employed to generate realizations of (5.10). These sampling algorithms
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yield realizations of MRFs by constructing a field-valued, homogeneous Markov chain

that has as its stationary distribution, the desired Gibbs distribution. The idea of

the algorithm is to generate a realization of a Markov chain that, at a large number

of iterations, will be close to (5.10). A key result in MRFs theory proves that a

Markov chain having as a stationary distribution (5.10) can be constructed using the

local specifications, [13,59].

From (5.7), the local specifications for the vth server are:

p0 = π (0|x(Nv)) =
1

1 + exp
(
−T−1(rv −

∑
u∈Nv

sv,u xu)
) , (5.11)

p1 = π (1|x(Nv)) =
exp

(
−T−1 (rv −

∑
u∈Nv

sv,u xu)
)

1 + exp
(
−T−1(rv −

∑
u∈Nv

sv,u xu)
) = 1− p0. (5.12)

Once these expressions are known, the Gibbs sampler can be implemented. Algo-

rithm 3 shows the details of the sampling process, whose main idea is the following:

Starting with an initial random configuration, at each iteration of the algorithm a

server is randomly picked, say the vth server. The value of the realization xv asso-

ciated with the random variable Xv, is updated according to either p0 or p1. This

process is repeated a large number of times, K, and as a result of these K iterations

a sample from (5.10) is obtained.

5.3.2 Sampled patterns of spatially correlated failures

To demonstrate the ability of the MRF-based model for generating correlated failures,

DCSs with representative network topologies have been considered. In the examples,

a nationwide DCS has been considered where servers are located at several cities in

the US as shown in Fig. 5.1. The network topology of the first DCS considered is a

realization from the class of the so-called random networks. In the second and third

DCSs considered, the underlying communication networks correspond to modified

versions of the AT&T IP backbone network 2Q2000, [31]. The DCSs studied in
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Algorithm 3 Gibbs sampler for the distribution (5.10)

Require: G = (V,E), T , rv, sL, Dmax, Nv, and K

Ensure: x

Set x0 to any random value in ΛV

Set k = 0

while k ≤ K do

xk+1 ← xk

Randomly pick v ∈ V

Compute p0 using (5.11)

Generate a random number α ∼ U [0, 1]

if α < p0 then

Set xk+1
v = 0

else

Set xk+1
v = 1

end if

k ← k + 1

end while

x← xk

this section comprise 20, 38 and 17 servers, and the Fiedler connectivity2 of the

communication networks are 0.47, 0.45 and 0.23, respectively.

Unless otherwise is stated, the following parameters have been used to gen-

erate spatially correlated failures on the DCS: T = 1, rv = 2, sL = 1, and

Dmax = 300 miles. Additional parameters employed are: (i) the Gibbs sampler

iterates K = 50000 times before yielding a sample of the MRF; and (ii) covariance

matrices were estimated using 2000 realizations of the MRF. It has been termed

here as the (spatially) independent distribution to a Gibbs distribution where the

2The Fiedler connectivity is defined as the second smallest eigenvalue associated with
the Laplacian matrix of the graph G modeling the topology of the network.
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(a) (b)

(c)

Figure 5.1: (a) Sample DCS composed of 20 servers. (b) DCS interconnected by
means of the AT&T IP backbone network 2Q2000, [31]. (c) DCS interconnected by
means of a simplified version of the AT&T IP backbone network 2Q2000, [31].

only cliques considered are those having a single node, that is, when sv,u = 0 for all

v and u in (5.10).

Spatial correlation in the failure patterns has been tested by generating a total of

2000 failure realizations, and sampled covariance matrices have been computed. Each

off-diagonal element of such matrices was statistically tested for correlation using a

t-test for the hypothesis of no correlation with a confidence of 99%. The results

of these tests and a sample realization of the failures in the network were used to

construct the correlation matrices shown in Fig. 5.2. The elements in the diagonal of
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Correlation Matrix

Server ID

S
e
rv

e
r 

ID

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Red: Server has failed
Blue: Spatial correlation

(a)

Correlation Matrix

Server ID

S
e

rv
e

r 
ID

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Red: Server has failed
Blue: Spatial correlation

(b)

Figure 5.2: Matrices showing the spatial correlation in the case of the (a) sample
network with 20 nodes, and (b) the AT&T IP backbone network 2Q2000. The
elements in the diagonal of the matrices correspond to a sample realization from the
Gibbs distributions. A red color means a failed server. The off diagonal elements
show if there is (blue color) or not (white color) spatial correlation between the
failures at the servers.

the matrices correspond to sample realizations from the Gibbs distributions obtained

from the Gibbs sampler described in Algorithm 3. A server, say, the ith server has

become failed if the ith diagonal element is “1” (red color) and is in a working state

if the ith element is “0” (white color). The off-diagonal elements of the matrices

shown in Fig. 5.2 represent if there is spatial correlation (value “1” in blue color) or

not (value “0” in white) between the ith and jth servers.

Figures 5.3 and 5.4 show the average number of failed servers as a function of

the server robustness, the logical strength of interaction between servers, and the

maximum geographical distance between neighboring servers for the two DCSs de-

picted in Fig. 5.1(a) and (b). It can be observed from the figures that the average

number of failed servers increases as the robustness parameter decreases. In addi-
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tion, as the logical strength of interaction or the Dmax parameters increase so it does

the average number of failed servers. This behavior suggests that failures propagate

more intensely as these two parameters increase. As expected, when the robustness

parameter is fixed, the average number of failed servers is larger in the case of spa-

tially correlated failures compared to the case of a spatially independent failures.

Finally, note that the slopes of the plots in Figs. 5.3(a) to (c) are steeper than those

shown in Figs. 5.4(a) to (c). This is attributed to the connectivity of the underly-

ing networks associated with the DCSs. Since the 20-server DCS is more connected

than the 38-server DCS, according to the Fiedler eigenvalue, it is expected that the

spatial interaction between servers is naturally accentuated due to the larger number

of relative connections in the 20-server DCS as compared to the connections in the

38-server DCS.

Table 5.1 compares the effect of correlation parameters sL and Dmax on some in-

teresting failure patterns for the 17-server DCS shown in Fig. 5.1(c). The normalizing

constant has been calculated by considering all the values in the configuration space

for independent and correlated failures. With this, the probability of each specific

failure pattern can be calculated from the Gibbs distribution (5.10). Results show

that the probability of having a large fraction of the servers failing is much higher

in the correlated-failure case than in the independent-failure case. As expected from

such model, the correlation parameters sv,u can be used to control the degree of

failed-servers clustering or bunching. Similarly, the probability of failure patterns

with very few failed servers is much lower in the correlated-failure scenario than that

corresponding to the independent case. Namely, there is a weaker “inhibition” effect

in the correlated-failure scenarios compared to the independent-failure scenario.

Finally, Figure 5.5 shows the empirical distribution of failures on the servers for

two different selections of the parameter rv. For simplicity of visualization, Gaussian

distribution functions have been placed at the failed servers with the height equal to
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Figure 5.3: Average number of failed servers versus (a) rv parameter, (b) sL param-
eter, and (c) Dmax parameter for the DCS with 20 servers shown in Fig. 5.1(a).

the number of times a server has failed in the entire 2000 realizations. In the model

used to generate the failures in Fig. 5.5(a), all servers have a common rv value of 2.6

with the exception of server 2, which is set to r2 = 0.1. Similarly, for Fig. 5.5(b),

r8 = 0.1 while all the other servers share the same value of 2.6 for rv. Clearly, there

is a higher probability of failure at server 2 and its neighbors in Fig. 5.5(a) than that
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Figure 5.4: The average number of failed servers versus (a) rv parameter, (b) sL
parameter, and (c) Dmax parameter for the DCS with 38 servers shown in Fig. 5.1(b).

in Fig. 5.5(b). The same behavior is observed at server 8 for Fig. 5.5(b) compared

to Fig. 5.5(a).
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Table 5.1: Failure patterns in correlated and independent failure scenarios for the
DCS shown in 5.1(c).

Probability of failure patterns
Correlated Independent Failure pattern

0.081 10−42 All servers
Clustering 0.063 10−35 All except 2, 4, 10, 11

0.030 10−41 All except server 17
Effect 0.030 10−41 All except server 7

0.030 10−41 All except server 2
Inhibition 10−5 0.006 One server only

4× 10−5 to 10−7 4× 10−5 Two servers only
Effect 5× 10−5 to 10−9 4× 10−7 Three servers only

(a) (b)

Figure 5.5: Distribution of the failures on the DCS shown in 5.1(c). Failures are
visualized with a Gaussian distribution function with height equal to the number
of failures on each server of the topology. The distribution of the failures has been
obtained by fixing rv = 2.6 for all servers and changing only (a) r2 = 0.1; and (b)
r8 = 0.1.
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5.4 Conclusions

A novel framework, based on MRFs and graph theory, for modeling correlated fail-

ures of servers in DCSs have been developed. The model abstracts the arbitrary

topology of the underlying network connecting the servers in a DCS. The devel-

oped failure model captures the spatial correlation between servers with logical and

geographical connections, therefore capturing the percolation effect of node damage

across the DCS. The model is developed by defining local conditional specifications

of failure probabilities that are related directly to both the geographical and logical

neighborhood relations imposed by the topology of the DCS. Key in the development

of the model are the set of parameters termed as the strength of interaction between

servers. These parameters specified the degree of interaction between servers in terms

of physical distances and also in terms of logical coupling.

The statistical analysis conducted on realizations obtained from the model for

correlated failures has shown that the failure of a single server does propagate to

other functioning servers, depending on the intensity of the so-called inter-server

strength of interaction parameter, which captures both logical and geographical re-

lations between each pair of serves. The analysis confirms that the average number

of failures increases as the logical and geographical strength of interaction between

servers increases. As expected, the analysis confirms also that the average number

of failed servers increases when correlated failures affect the servers of a DCS, as

compared to the case of independent failures. Analytical results show also that the

probability of having a failure pattern involving a large fraction of the servers is much

higher when correlated failures affect the system, than in the case of independent

failures. Moreover, the strength of interaction parameters specified in the model can

be used to control the degree of failed-servers clustering or bunching. This result is of

practical interest in order to identify the vulnerabilities associated with coordinated

attacks on the network infrastructure of the DCS.
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Robust distributed computing in

the presence of correlated failures

In this chapter the analytical age-dependent models for service reliability as well as

the model for spatially correlated failures are combined to assess the reliability of

DCSs in the presence of spatially correlated failures. The main assumption imposed

is that servers affected by a pattern of spatially correlated failures will fail simul-

taneously, and a temporal distribution for the cluster of failed servers in order to

exploit the age-dependent characterization of the service reliability. A DTR policy

considering spatially correlated failures is also presented in this Chapter.

6.1 Characterizing reliability in the presence of

correlated failures

In order to calculate the service reliability in the presence of spatially correlated

failures, a hybrid analytical and Monte-Carlo approach is presented. By means
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of a Gibbs sampler, a large number of realizations of spatially correlated failures

can be generated. Thus, conditional on a particular failure pattern, the analytical

model for the DCS can be employed to calculate the service reliability. Finally, the

calculated values for reliability are averaged over the number of realizations to obtain

an estimate of the service reliability of a DCS in the presence of spatially correlated

failures. The hybrid approach for calculating the service reliability is completed once

a distribution for the random time to fail for the conditional set of servers is defined.

Conditional on the occurrence of a spatially correlated failure, let the random

variable YI , be the random failure time of all those servers, indexed by the set I,

that fail in a correlated manner. The same principles presented in Section 3.2.1

can be applied to obtain regenerative age-dependent equations for the conditional

service reliability of a DCS. To this end, consider the following the Assumption A5

and associate a single age-variable, aCI
, to the random time YI

Assumption A5. Suppose that the pdf of the random time YI is known and denoted

as fYI (t). Suppose also that this random time is mutually independent to all

the random times listed in Assumptions A1.

Theorem 13 is presented without proof as it follows the same principles of the proof

of Theorems 1 and 2.

Theorem 13. Consider an n-server DCS whose servers perform a synchronous DTR

action at the time ξ ≥ 0. Suppose that I denotes a set of servers that fail altogether

in a correlated manner, and let X = xI denote the pattern of failed servers. For

any ` ∈ I, the service reliability in executing an application, when the n-servers in

a DCS perform a synchronous DTR action at the time ξ ≥ 0, satisfies the system of
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recursive, coupled integral equations in ξ:

R`(ξ, aM , aF ,aC |X = xI) =

∫ ξ

0

[∑
i∈V

R`i

(
ξ − α, (aM+α)(i), aF + α, aC + α|X = xI

)
×GWi1

(α) +GYI (α)R`
′
I

(
ξ − α, aM+α, (aF + α)(I), aC + α|X = xI

)
+

n∑
i=1

n∑
j=1,j 6=i

GXij
(α)R`ij

(
ξ − α, aM+α, aF +α, aC+α|X = xI

)]
dα

+
(
1− Fτa|X(ξ|xI)

)
R`(0, aM , aF , aC |X = xI) (6.1)

where recursions are carried out in the discrete variables m and F, the vectors m

and aM and the matrices F, 0, aF , and aC denote an arbitrarily specified initial

system configuration, ` = h(m,F,0), `i = h(m − δi,F,0), `
′
I = h(m,F(I),0), `ij =

h(m,F(ji),0), the vector v(i) (respectively, the matrix A(ij)) is identical to the vector

v (respectively, the matrix A) but with its ith (respectively, ijth) component set to

zero, and R`(0, aM , aF , aC |X = xI) is the initial condition related to the `th integral

equation. These initial conditions satisfy the system of recursive, coupled integral

equations:

R`(0,aM , aF , aC |X = xI) =

∫ ∞
0

[
n∑
i=1

R`i

(
0, (aM+α)(i), aF + α, aC + α|X = xI

)
×GWi1

(α) +GYI (α)R`
′
I

(
0, aM+α, (aF + α)(I), aC0 + α|X = xI

)
+

n∑
i=1

n∑
j=1,j 6=i

GZji
(α)R`ji

(
0, aM + α, aF + α, aC + α|X = xI

)
+

n∑
i=1

n∑
j=1,j 6=i

GXij
(α)R`ij

(
0, aM+α, aF +α, aC+α|X = xI

)]
dα, (6.2)

where recursions are carried out in the discrete variables m, F, and C, the vectors

m and aM and the matrices F, 0, aF , and aC denote an arbitrarily specified initial

system configuration, ` = h(m,F,C), `i = h(m − δi,F,C), `
′
I = h(m,F(I),C),

`ij = h(m,F(ji),C), `
′
ji = h(m + cjiδi,F,C

(ji)), and the vector v(i) (respectively, the

matrix A(ij)) is identical to the vector v (respectively, the matrix A) but with its ith

(respectively, ijth) component set to zero.
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6.1.1 Correlated-failure–aware task reallocation policies

The general class of DTR policies presented in Section 4.1.1 is modified here to con-

struct a correlated-failure–aware policy. First, it must be noticed from the definition

of the general policy that when the estimate of the system load is accurate, the

performance of the DTR policy is given by the reallocation criterion. A correlated-

failure–aware DTR policy must account for the sources of correlation in the failure

patterns. From the statistical analysis conducted in Chapter 5, the parameters rv

and su,v are key in the generation of correlated failures; therefore, they must be

included in the definition of the reallocation criterion.

With this, for spatially correlated failures, the following reallocation criterion is

proposed as a mechanism to yield a correlated-failure–aware DTR policy:

Λj = λj

(
1−

λfj∑
k∈V λ

f
k

)
rj

(
1

1 +
∑

v∈V sj,v

)
. (6.3)

It becomes evident that the idea behind this definition is to favor the reallocation

of tasks to those servers that are less vulnerable to fail, and simultaneously, to

penalize the task reallocation to those servers having a strong interaction with other

neighboring nodes. Note that the processing speed of the servers as well as the

failure rate are still considered in the definition as in (4.14). It must be noticed also

that when failures are uncorrelated all the si,j parameters are zero and the proposed

policy becomes proportional to (4.14), which was defined for the independent failure

case. With this definition at hand, the optimization problem (4.5) can be solved to

compensate for the effect of network delays.
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6.2 Assessing reliability in the presence of corre-

lated failures

In order to assess the reliability of a DCS in the presence of correlated failures,

the 17-server DCS has been considered. For simplicity of the presentation, in the

calculations presented here two classes of servers have been considered: HP servers

and standard servers. Since HP servers are expected to process more tasks than

standard nodes, they are supplied with a larger number of logical connections. In

particular, all those servers with four or more logical connections in the topology

depicted in Fig. 5.1(c) are regarded as HP servers. The average task-processing time

of the HP servers is 0.2 s, while the average task-processing times of the standard

serves are 2, 3, and 4 s. An application composed of M = 1000 tasks is initially

allocated uniformly onto the nodes.

In the failure more regarded here, conditional on a pattern of correlated failures,

the average failure time of a cluster of failed servers is 3000 s. When independent

failures are considered, the average failure time of a server is also 3000 s. Regarding

task-transfer times, the mean transfer time of a group of tasks transferred over the

network follows the first-oder approximation given in (2.1). The parameters of the

Gibbs sampler have been adjusted to draw realizations of spatially correlated failures

having the same average number of failed servers as those of an independent failure

case. In addition, a DTR policy with a reallocation criterion based solely on the

relative processing speed of the servers has been considered initially.

Figure 6.1(a) depicts the service reliability of the DCS as a function of the DTR

policy. The DTR policy shown in the figure corresponds to the case of transferring

tasks from a standard node to an HP server. It can be seen that, in spite of the

average number of failures being the same, correlated failures reduce the service reli-

ability as compared to the case of independent failures. For the case presented here,
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the service reliability is reduced in approximately 2 to 6%. As a secondary metric

of performance, the average number of tasks executed by the DCS before it fails has

been estimated by means of MC simulations. Results are shown in Fig.6.1(b). It

can be seen that, on average, a larger number of tasks are processed by the DCS

when independent failures affect the behavior of the system. This result is expected

because values of service reliability closer to one imply that a DCS is able to service

the entire application more times before its fails.
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Figure 6.1: (a) Service reliability, and (b) average number of tasks served by the
17-server DCS as a function of fraction of tasks reallocated over the network.

The reduction in the service reliability, when correlated failures affect the DCS,

is a consequence of disregarding the correlation information in the specification of

the DTR policy. In order to see the effect on the reliability when such information is

used in a policy, the DTR with a reallocation criterion based solely on the processing

speed of servers is compared to the policy defined in (16). In this example, the

workload is initially distributed uniformly over the standard servers only. Results

on the comparison between the two DTR policies are shown in Fig. 6.2. it can be

clearly observed that including the information about the spatial correlation in a

118



Chapter 6. Robust distributed computing in the presence of correlated failures

DTR policy yields a considerable increase in the service reliability as compared to a

policy that omits such information. In this case an improvement of approximately

20% has been achieved.
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Figure 6.2: Service reliability as a function of the fraction of tasks reallocated .

6.3 Conclusions

The analytical model for service reliability has been extended to a setting where

the failures at the servers are spatially correlated. The effects of such failures on

the service reliability have been investigated. To this end, patterns of correlated-

failure sampled from the MRF-based model developed in Chapter 5 are fed into

the service reliability model to conditionally characterize the service reliability on

a sample pattern of correlated failures. A comparison has been made between the

service reliability of a DCS in presence of independent and correlated failures. Also,

a correlated-failure–aware DTR policy has been proposed in order to enhance the
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service reliability of the system.

Results show that correlated failures reduce both the service reliability and the

average number of tasks executed by a DCS as compared to scenarios of independent

failures. Moreover, the optimal selection of the number of tasks to reallocate among

the servers in a DCS depends upon the degree of correlation in the failures. For

example, results show that if one erroneously assume independent failures in the

selection of the number of tasks to reallocate among the servers, the service reliability

yielded by such reallocation is approximately 20% lower than that obtained when the

correct correlation statistics of failures are employed. In addition, the average number

of tasks executed by the DCS is reduced in approximately 6% as a consequence of

the incorrect assumption on the degree of correlation in the failures.
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Future work

DTR policies must determine the amount of tasks to reallocate among the system

servers. Such amount relies heavily on the estimate that a server has about the load

at the remaining servers, and as a consequence, on the estimate of the total system

workload. Inaccurate estimates of either system workload or server workload can

lead to reduction in the performance of the DCS due to inefficient task exchange. In

addition, an excessive amount of exchange of system information is not desirable due

to communication as well as computational cost. Information fusion techniques, in

conjunction with consensus theory, can be used in DCSs to yield accurate estimates of

the system workload. In particular, the fact that consensus theory can construct con-

sensed estimated values is a desirable property for estimating the system workload,

because not only inaccurate state information can lead to a performance reduction,

but also inconsistent state information does as stated in [25, 28]. As a future work,

consensus theory can be employed as an information fusion technique to investigate

the effect of both consistent yet inaccurate and inconsistent estimates of the system

workload an their effect on the performance and reliability.

Also as a future work, the theory developed in these dissertation can be extended
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to calculate other performance metrics, such as statistics of the queue-length of

servers or jitter in the service time. Also, DTR can be studied in scenarios of green

DC, where the goal of the DCS is to simultaneously reduce the average execution

time and the power consumed by the servers in the DCS. Another avenue to explore

is to extend the model to include the class of crash-recovery failures. Such extension,

however, has the extra complication that increases the number of states visited by

the process, and consequently, the computational costs are largely augmented.

Regarding the computational costs associated with the recursive characterization

of the metrics, other approximation and dimension reduction techniques should be

studied. For instance, the expression for the conditional probability of the regener-

ation event being a particular random time can be employed to discard those states

with low likelihood. By doing so, the number of states visited at earlier recursions

will be reduced, thereby reducing the total number of states visited as part of the

evolution of the system dynamics. Another approach that can be investigated to

reduce the state-space dimension is to exploit the vast amount of research on hybrid

systems in control theory. For example, the concept of bisimulation seems to be a

very useful tool to study systems with a large state space dimension, because by

means of bisimulation one can create a subprocess with an equivalent state space

of a desired hybrid process but with the advantage that bisimulation provides state

space reduction.

Regarding the model for correlated failures, the theory can be extended to model

more realistic correlated failures. For instance, failures induced by natural disasters

or by attacks to the network infrastructure can take place at any location on the

plane; therefore, a MRF-based model for correlated failures is not enough to ab-

stract such situations. Point processes can be explored to generate the realizations

of geographical failure centers. Then, such realizations can be employed to specify

appropriated values for the robustness parameters in the MRF model for correlated
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failures. The theory for correlated failures can be also extended to stochastically

model the data dependencies generated by the class of parallel applications not con-

sidered in this work. In this scenarios, the graph modeling the data dependencies can

be exploited to induce the logical data correlations. In a more practical approach,

empirical data can be analyzed to refine the local specification proposed in this dis-

sertation and construct a failure more driven by the type of applications analyzed.

For instance, traces from distributed denial of service attacks or from disruptions

due to large power outages can be employed as real-world examples.
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Proof of Theorems 5 and 6

Consider that at time ξ ≥ 0 before the synchronous DTR is performed by the

servers, the initial system configuration is S = (m,F,0, aM , aF , aC). Let us exploit

the labeling mapping h(·) so that ` = h(m,F,0). The average execution time and the

QoS in executing an application can be computed by conditioning on the regeneration

time as follows:

T `(ξ, aM , aF , aC) =

∫ ∞
0

E[T`(ξ, aM , aF , aC)|τa =α]fτa(α) dα

=

∫ ξ

0

E[T`(ξ, aM , aF , aC)|τa =α]fτa(α) dα

+

∫ ∞
ξ

E[T`(ξ, aM , aF , aC)|τa =α]fτa(α) dα, (A.1)

Q`(ξ, TM , aM , aF , aC) =

∫ ∞
0

P{T`(ξ, aM , aF , aC) < TM |τa =α}fτa(α) dα

=

∫ ξ

0

P{T`(ξ, aM , aF , aC) < TM |τa =α}fτa(α) dα

+

∫ ∞
ξ

P{T`(ξ, aM , aF , aC) < TM |τa =α}fτa(α) dα. (A.2)
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Note that the rightmost terms in (A.1) and (A.2) can be cast as:∫ ∞
ξ

E[T`(ξ, aM , aF , aC)|τa =α]fτa(α) dα

= E[T`(ξ, aM , aF , aC)|τa > ξ]P{τa > ξ}, (A.3)∫ ∞
ξ

P{T`(ξ, aM , aF , aC) < TM |τa =α}fτa(α) dα

= P{T`(ξ, aM , aF , aC) < TM |τa > ξ}P{τa > ξ}. (A.4)

To calculate the conditional expectations and the conditional probabilities in

(A.1) to (A.4), the definition of the age-dependent regeneration time is exploited

in conjunction with the law of total probabilities. Consequently, the conditional

expectation as well as the conditional probability can be decomposed according to all

possible, disjoint regeneration events occurring before the DTR action is performed.

That is,

E[T`(ξ, aM , aF , aC)|τa =α] =
n∑
k=1

P{τa = Wk1 − aMk
|τa = α}

× E[T`(ξ, aM , aF , aC)|τa =α, τa =Wk1 − aMk
]

P{T`(ξ, aM , aF , aC)<TM |τa =α} =
n∑
k=1

P{τa = Wk1 − aMk
|τa = α}

× P{T`(ξ, aM , aF , aC) < TM |τa =α, τa =Wk1 − aMk
}

+
n∑
i=1

n∑
j=1,j 6=i

P{T`(ξ, aM , aF , aC) <TM |τa =α, τa =Xij − aFij
}

× P{τa = Xij − aFij
|τa = α}+

n∑
k=1

P{τa = Yk − aFk
|τa = α}

× P{T`(ξ, aM , aF , aC) < TM |τa =α, τa =Yk − aFk
}. (A.5)

Now, let W
′

ki, Y
′

k , X
′

jk, and Z
′

ik denote all the random times associated with the

DCS emerging at the regeneration time τa, all of them measured from α. Suppose

now that the regeneration event happens to be the service of a task at the first server,
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Ea = {τa = α, τa = W11 − aM1}, and let Sa = min
(
mink,k 6=1Wk1 − aMk

,mink Yk −

aFk
,minj 6=kXjk − aFjk

,mink,i Zik − aCik

)
. The joint distribution of a pair of random

times associated with the emergent DCS, say W
′

k1 = Wk1 − aMk
− τa and Y

′

k =

Yk − aFk
− τa, conditional on Ea is:

P{W ′

k1 ≤ t1, Y
′

k ≤ t2|Ea} = P{Wk1 ≤ t1 + aMk
+ α, Yk ≤ t2 + aFk

+ α|Ea}

= P{Wk1 ≤ t1 + aMk
+ α, Y1 ≤ t2 + aFk

+ α|Da},

where the last equation holds since Ea and Da = {W11 − aM1 = α, Sa > α} are

equivalent events. Exploiting Assumption A2 the conditional joint distribution can

be written as

P{W ′

k1 ≤ t1, Y
′

k ≤ t2|Ea}

= P{Wk1 ≤ t1 + aMk
+ α, Y1 ≤ t2 + aFk

+ α|Wk1 > α, Yk > α}

=
P{Wk1 ≤ t1 + aMk

+ α, Y1 ≤ t2 + aFk
+ α,Wk1 > α, Yk > α}

P{Wk1 > α, Yk > α}

=
P{α < Wk1 ≤ t1 + aMk

+ α}
P{Wk1 > α}

P{α < Yk ≤ t2 + aFk
+ α}

P{Yk > α}

= P{W ′

k1 ≤ t1}P{Y
′

k1 ≤ t2},

where the last equation is obtained by replacing W
′

k1 = Wk1 − aMk
− τa and Y

′

k =

Yk − aFk
− τa. Therefore, it can be concluded that conditional on the occurrence

of a regeneration event, the random times emerging at the regeneration time are

conditionally independent. Moreover, from the definitions of W
′

k1 and Y
′

k it becomes

clear that these emergent random times are aged versions, now further aged by s

units of time, of the original random times Wk1 and Yk, respectively.

This conditional independence for the emerging DCS implies the following obser-

vations: (i) a fresh copy of the underlying stochastic process emerges at τa but with

a new initial age-dependent system-state matrix; (ii) the emergent stochastic process

is independent of the original process and satisfies assumptions A1 and A2; and (iii)

the independence of the new process allows to shift the time origin to t = α. First, if
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the regeneration event is the service of a task at the first server, after applying these

observations the following holds

E[T`(ξ, aM , aF , aC)|τa =α, τa =W11 − aM1 ]

= E[τa + T`1(ξ, a
W11
M , aW11

F , aW11
C )|τa =α, τa =W11 − aM1 ],

P{T`(ξ, aM , aF , aC) <TM |τa =α, τa =W11 − aM1}

= P{τa + T`1(ξ, a
W11
M , aW11

F , aW11
C ) <TM |τa =α, τa =W11 − aM1},

where T`1(ξ, a
W11
M , aW11

F , aW11
C ) is the random time taken by the DCS emerging at

the regeneration time to serve all its tasks when the initial configuration is SW11 =

(mW11 ,FW11 ,CW11 , aW11
M , aW11

F , aW11
C ), where `1 = h(mW11 ,FW11 ,CW11). This new

initial configuration is precisely mW11 = (r1 − 1, r2, . . . , rn)T, FW11 = F, CW11 = 0,

aW11
M = (0, aM2 + s, . . . , aM2 + s)T , aW11

F = aF + s, and aW11
C = aC + s. By exploiting

the independence between the emergent and the original process, and recalling that

τa =α, it is straightforward to obtain

E[τa+T`1(ξ − α, (aM + α)(1), aF + α, aC + α)|τa =α, τa =W11 − aM1 ]

= E[α|τa =α, τa =W11 − aM1 ] + T `1(ξ − α, (aM + α)(1), aF + α, aC + α)

= α + T `1(ξ − α, (aM + α)(1), aF + α, aC + α), (A.6)

P{τa+T`1(ξ − α, (aM + α)(1), aF + α, aC + α) < TM |τa =α, τa =W11 − aM1}

= P{T`1(ξ − α, (aM + α)(1), aF + α, aC + α) < TM − α}

= Q`1(ξ − α, TM − α, (aM + α)(1), aF + α, aC + α). (A.7)

Second, if the regeneration event happens to be the arrival of a FN packet trans-

ferred from server i to server j, Xij, the new system configuration is given by

SXij = (mXij ,FXij ,CXij , a
Xij

M , a
Xij

F , a
Xij

C ), where mXij = m, FXij = F(ji), CXij = 0,

a
Xij

M = a +α, a
Xij

F = (aF +α)ji, and a
Xij

C = aC +α because only the system-function

state matrix is updated. Conducting the same analysis as for W11 it can be concluded

127



Appendix A. Proof of Theorems 5 and 6

that

P{τa+T`ij(ξ − α, aM + α, (aF + α)(ji), aC + α) <TM |τa =α, τa =Xij − aFij
}

= P{T`ij(ξ − α, aM + α, (aF + α)(ji), aC + α) < TM − s}

= Q`ij(ξ − α, TM − α, aM + α, (aF + α)(ji), aC + α), (A.8)

where `ij = h(m,F(ji),0).

Third, if the regeneration event happens to be the failure of the j server, Yj,

the new system configuration is given by SYj = (mYj ,FYj ,CYj , a
Yj
M , a

Yj
F , a

Yj
C ), where

mYj = m, FYj = F(jj), CYj = 0, a
Yj
M = a + α, a

Yj
F = (aF + α)(jj), and a

Yj
C = aC + α

because only the system-function state matrix is updated. Once again, conducting

the same analysis as for W11 it can be concluded that

P{τa+T`′j
(ξ − α, aM + α, (aF + α)(jj), aC + α) <TM |τa =α, τa =Yj − aFjj

}

= P{T`′j(ξ − α, aM + α, (aF + α)(jj), aC + α) < TM − α}

= Q`
′
j
(ξ − α, TM − α, aM + α, (aF + α)(jj), aC + α), , (A.9)

where `ij = h(m,F(jj),0).

The first integral at the right-hand side of (3.9) is obtained by plugging (A.6)

in (A.1), while the first three integrals at the right-hand side of (3.10) are obtained

after plugging (A.7) to (A.9) in (A.2).

Similarly, the occurrence of the event {τa > ξ} implies that, by definition of the

regeneration time, nothing has changed in the system configuration before t = ξ.

This means that the time origin can be shifted by ξ units of time, and this also

means that, all the random times have further aged ξ units of time. This generates

the terms at the rightmost part of (3.9) and (3.10).

In order to complete the characterization of the performance metrics, the term

GX(s) must be completely specified. This means that formulae for calculating fτa(t),
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the pdf of the age-dependent regeneration time, and P{X=τa|τa =s}, the conditional

probability of a particular random time being equal to the regeneration time, must

be provided. For the sake of notation, let us index all the random times listed in

Assumption A1 as well as their associated age parameters using the set I. Let us

also denote these random times as T (j) with j ∈ I. Consider now the definition of

the age-dependent regeneration time given in (3.5). From basic probability and from

Assumption A2, the pdf of τa can be computed in a straightforward manner using:

fτa(t) =
∑
j∈I

fT (j)|Aj
(t|aj)

∏
k∈I,k 6=j

(
1− FT (k)|Ak

(t|ak)
)
, (A.10)

whereAj = {Vj ≥ aj} and FT (j)|Aj
(t|aj) = FT (j)(t; aj) [correspondingly, fT (j)|Aj

(t|aj) =

fT (j)(t; aj)] is the conditional distribution [correspondingly, the conditional density]

that defines the cumulative distribution function [correspondingly, the pdf] of the

aged version of the random time T (j) whose age parameter is aj.

Finally, a formula for the conditional probability P{T (j) = τa|τa = s} is obtained

as follows. First note that the events {τa = T (j)} and {T (j) < T (1), . . . , T (j) <

T (j−1), T (j) < T (j+1), . . . , T (j) < T (p)} are equivalent, where p is the cardinality of

the set I. Thus,

P{T (j) =τa|τa =s} =P{T (j) < T (1), . . . , T (j) < T (j−1), T (j) < T (j+1), . . . ,

T (j) < T (p)|τa =s}.

Next, we note that the event {τa = s} implies that s units of time have elapsed

since all the random times have been fired and compete to be the regeneration event.

Consequently, all the random times have aged s units of time in addition to the ages

specified in a0. Thus, we can write

P{T (j) =τa|τa =s} =P{T (j)
aj+s < T

(1)
a1+s, . . . , T

(j)
aj+s < T

(j−1)
aj−1+s, T

(j)
aj+s < T

(j+1)
aj+1+s, . . . ,

T
(j)
aj+s < T

(p)
ap+s|τa =s},
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where T
(j)
aj+s is the aged version the random time T (j). With this the condition on

the event {τa = s} can be dropped, provided that the event defining the age of the

jth random time is redefined as A
′
j = {Vj ≥ aj + s}. By invoking the law of total

probability and by exploiting Assumption A2 it is straightforward to obtain the

following relationship:

P{T (j) = τa|τa = s}=

∫ ∞
0

fT (j)|A′j
(t; aj + s)

∏
k∈I,k 6=j

(
1− FT (k)|A′j

(t|ak + s)
)
ds.

(A.11)

�
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Sketch of proof of Theorems 7 and

8

Consider that after the DTR action has been performed, the initial system config-

uration is S = (m,F,C, aM , aF , aC). The average execution time and the QoS in

executing an application can be computed by conditioning on the regeneration time

as follows:

T `(0, aM , aF , aC) =

∫ ∞
0

E[T`(0, aM , aF , aC)|τa =α]fτa(α) dα, (B.1)

Q`(0, TM , aM , aF , aC) =

∫ ∞
0

P{T`(0, aM , aF , aC) < TM |τa =α}fτa(α) dα. (B.2)

The conditional expectations and the conditional probabilities in (B.1) and (B.2)

can be computed from the definition of the age-dependent regeneration time in con-

junction with the law of total probabilities by conditioning on all the possible, disjoint
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regeneration events:

E[T`(0, aM , aF , aC)|τa =α] =
n∑
k=1

P{τa = Wk1 − aMk
|τa = α}

× E[T`(0, aM , aF , aC)|τa =α, τa =Wk1 − aMk
] +

n∑
i=1

n∑
j=1,j 6=i

P{τa = Zji − aCji
|τa = α}E[T`(0, aM , aF , aC)|τa =α, τa =Zji − aCji

] (B.3)

P{T`(0, aM , aF , aC)<TM |τa =α} =
n∑
k=1

P{τa = Wk1 − aMk
|τa = α}

× P{T`(0, aM , aF , aC) < TM |τa =α, τa =Wk1 − aMk
}

+
n∑
i=1

n∑
j=1,j 6=i

P{T`(0, aM , aF , aC) <TM |τa =α, τa =Xij − aFij
}

× P{τa = Xij − aFij
|τa = α}+

n∑
k=1

P{τa = Yk − aFk
|τa = α}

× P{T`(0, aM , aF , aC) < TM |τa =α, τa =Yk − aFk
}

+
n∑
i=1

n∑
j=1,j 6=i

P{T`(0, aM , aF , aC) <TM |τa =α, τa =Zji − aCji
}

× P{τa = Zji − aCji
|τa = α}. (B.4)

Note now that, as in the case of the analysis conducted for the DCS emerging

before tb, conditional on the occurrence of a regeneration event, the random times

emerging at the regeneration time are conditionally independent. Therefore, the

conditional independence for the emerging DCS implies the following observations:

(i) a fresh copy of the underlying stochastic process emerges at τa but with a new

initial age-dependent system-state matrix; (ii) the emergent stochastic process is

independent of the original process and satisfies assumptions A1 and A2; and (iii)

the independence of the new process allows to shift the time origin to t = s. Since

in Appendix A, these observations were applied to all the regeneration events but

those triggered by the arrival of tasks from server i to server j, it suffices to show
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Appendix B. Sketch of proof of Theorems 7 and 8

here the effect of such regeneration event on the system configuration. Thus, if

the regeneration event happens to be Zij, the new system configuration is given

by SZij = (mZij ,FZij ,CXij , a
Zij

M , a
Zij

F , a
Zij

C ), where mZij = m + lijδj, FZij = F,

CZij = Cij, a
Zji

M = a +α, a
Zij

F = aF +α, and a
Zij

C = (aC +α)ij because both system-

queue state vector and the network state matrix are updated upon the arrival of

tasks at a server. Conducting the same analysis as for W11 it can be concluded that

E[τa+T`′ij
(0, aM + α, aF + α, (aC + α)(ij))|τa =α, τa =Zij − aCij

]

= E[α|τa =α, τa =Zij − aCij
] + T `′ij

(0, aM + α, aF + α, (aC + α)(ij))

= α + T `′ij
(0, aM + α, aF + α, (aC + α)(ij)) (B.5)

P{τa+T`′ij
(0, aM + α, aF + α, (aC + α)(ij)) <TM |τa =α, τa =Zij − aCij

}

= P{T`′ij(0, aM + α, aF + α, (aC + α)(ij)) < TM − α}

= Q`
′
ij

(0, TM − α, aM + α, aF + α, (aC + α)(ij)), (B.6)

where `
′
ij = h(m + lijδj,F,C

ij). The two integrals at the right-hand side of (3.9)

is obtained by plugging (A.6) and (B.5) in (B.1), while the E[τa] term appears from

(B.5) after some algebra and the application of the law of total probability. The four

integrals at the right-hand side of (3.10) are obtained after plugging in (A.7) to (A.9)

and (B.6) in (B.2).

Finally, formulae for calculating fτa(t), the pdf of the age-dependent regeneration

time, and P{X= τa|τa =s}, the conditional probability of a particular random time

being equal to the regeneration time are provided by (A.10) and (A.11). �
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Sketch of proof of Theorems 9 to

12

Consider that the initial system configuration is S̃=(m, f , c, aM , aF , aC). The aver-

age approximated execution time and the approximated QoS in executing an appli-

cation can be computed by conditioning on the regeneration time as follows:

T `(0, ãM , ãF , ãC) =

∫ ∞
0

E[T`(0, ãM , ãF , ãC)|τa =α]fτa(α) dα, (C.1)

Q`(0, TM , ãM , ãF , ãC) =

∫ ∞
0

P{T`(0, ãM , ãF , ãC) < TM |τa =α}fτa(α) dα. (C.2)

Proceeding in the same manner as in the previous cases, the conditional expec-

tations and the conditional probabilities in (B.1) and (B.2) can be computed from

the definition of the age-dependent regeneration time in conjunction with the law of
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total probabilities by conditioning on all the possible, disjoint regeneration events:

E[T`(0, ãM , ãF , ãC)|τa =α] =
n∑
k=1

P{τa = Wk1 − aMk
|τa = α}

× E[T`(0, ãM , ãF , ãC)|τa =α, τa =Wk1 − aMk
] +

n∑
i=1

P{τa = Z̃j − ãCi
|τa = α}E[T`(0, ãM , ãF , ãC)|τa =α, τa = Z̃j − ãCj

] (C.3)

P{T`(0, ãM , ãF , ãC)<TM |τa =α} =
n∑
k=1

P{τa = Wk1 − aMk
|τa = α}

× P{T`(0, ãM , ãF , ãC) < TM |τa =α, τa =Wk1 − aMk
}

+
n∑
k=1

P{τa = Yk − aFk
|τa = α}P{T`(0, ãM , ãF , ãC) < TM |τa =α, τa =Yk − aFk

}

+
n∑
i=1

P{T`(0, ãM , ãF , ãC) <TM |τa =α, τa = Z̃j − ãCji
}

× P{τa = Z̃j − ãCj
|τa = α}. (C.4)

Applying the same principles as in the proof of Theorems 5 to 10, conditional on

the occurrence of a regeneration event, the approximated random times emerging at

the regeneration time are conditionally independent. Therefore, the conditional inde-

pendence for the emerging DCS implies the following observations: (i) a fresh copy of

the underlying stochastic process emerges at τa but with a new initial age-dependent

system-state matrix; (ii) the emergent stochastic process is independent of the orig-

inal process and satisfies assumptions A1 and A2; and (iii) the independence of the

new process allows to shift the time origin to t = s. In particular, if the regeneration

event happens to be the simultaneous arrival of lj =
∑n

i=1 lij tasks to the jth server,

Z̃j, the new system configuration is given by SZ̃j = (mZ̃j , f Z̃j , cZ̃j , a
Z̃j

M , a
Z̃j

F , a
Z̃j

C ),

where mZ̃j = m + ljδj, f Z̃j = f , cZ̃j = c(i), a
Z̃j

M = a + α, a
Z̃j

F = aF + α, and

a
Z̃j

C = (aC + α)i because both system-queue state vector and the network state vec-

tor are updated upon the simultaneous arrival of tasks at a server. Thus, it can be
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Appendix C. Sketch of proof of Theorems 9 to 12

concluded that

E[τa+T`′j
(0, ãM , ãF , ãC)|τa =α, τa = Z̃j − ãCj

]

= E[α|τa =α, τa = Z̃j − ãCij
] + T`′j

(0, ãM , ãF , ãC)

= α + T`′j
(0, ãM , ãF , ãC), (C.5)

P{τa + T`′j
(0, ãM , ãF , ãC) <TM |τa =α, τa = Z̃j − ãCj

}

= P{T`′j(0, ãM , ãF , ãC) < TM − s}

= Q`
′
j
(0, TM − α, ãM , ãF , ãC), (C.6)

where `
′
j = h̃(m + ljδj, f , c

(i)). The two integrals at the right-hand side of (3.12) is

obtained by plugging (A.6) and (C.5) in (C.1), while the E[τa] term appears from

(C.5) after some algebra and the application of the law of total probability. The

three integrals at the right-hand side of (3.14) are obtained after plugging in (A.7),

(A.9) and (C.6) in (C.2).

Finally, formulae for calculating fτa(t), the pdf of the age-dependent regeneration

time, and P{X= τa|τa =s}, the conditional probability of a particular random time

being equal to the regeneration time are provided by (A.10) and (A.11). �
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