
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

2-9-2010

Throughput optimization in MPR-capable multi-
hop wireless networks
Jorge Crichigno

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Crichigno, Jorge. "Throughput optimization in MPR-capable multi-hop wireless networks." (2010).
https://digitalrepository.unm.edu/ece_etds/58

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/58?utm_source=digitalrepository.unm.edu%2Fece_etds%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu




Throughput Optimization in
MPR-Capable Multi-Hop Wireless

Networks

by

Jorge Crichigno

B.Sc., Electrical Engineering, Universidad Catolica, Paraguay, 2004

M.Sc., Computer Engineering, University of New Mexico, 2008

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

August, 2009



c©2009, Jorge Crichigno

iii



Dedication

To my mom, for the infinite love she has provided us through our lives; to my dad,

my brothers and my sister, for the support and emotional fortitude they provided

me during these years.

iv



Acknowledgments

I am fortunate to have been advised by Dr. Wennie Shu. She has been a mentor
and the person who has supported me with no reserves at ECE for the last four
years. None of this work would have been possible without her expertise on how to
approach research problems. She was also responsible for my visit to Shanghai along
with Dr. Min-You Wu, where I spent five wonderful months.

My sincere thanks to Dr. Min-You Wu, who supported me in Shanghai and co-
advised this work. His wisdom has been a priceless source of knowledge. He has
proposed the topic of this dissertation and deserves credits for it.

Special thanks to Dr. Ramiro Jordan for unconditionally supporting us latinos
at ISTEC Lab and being member of my thesis committee. Many thanks also to Dr.
Nasir Ghani for being part of the committee.

I am grateful to Dr. Sudharman Jayaweera for very fruitful discussions on multi-
access channels and convex sets. I am also indebted to ECE Professors Marios
Pattichis, Chaouki Abdallah, Greg Heileman, Ed Graham, Peter Dorato, and Pro-
fessor Xinbing Wang from SJTU. Many thanks also to all my friends from ECE at
UNM, and from Wireless and Sensor Networks Lab at SJTU.

Special thanks go out to Bel, Jeremy, and Pablo. They opened the door of their
house and treated me as a family member.

Finally, thanks dad, Juan, Pipo, and Carla for your emotional fortitude and
support during these years. Thanks mom for the infinite love you have provided us
through our entire lives.

v



Acronyms

AS Approximation-based Scheduler

AWGN Additive White Gaussian Noise

CDMA Code Division Multiple Access

DCF Distributed Coordination Function

FDMA Frequency Division Multiple Access

GSI Greedy Scheduler I

GSII Greedy Scheduler II

HD Half-Duplex

IETF Internet Engineering Task Force

ILP Integer Linear Program

JRS Joint Routing and Scheduling algorithms

LP Linear Program

MAC Medium Access Control

MANET Mobile Ad Hoc Network

MMSP Minimum Makespan Scheduling Problem

MPR Multi-Packet Reception

MUD Multi-User Detection

RT-LP Routing Linear Program

RTSCH-LP Routing and Scheduling Linear Program

SIC Successive Interference Cancelation

vi



SINR Signal to Interference Plus Noise Ratio

TDMA Time Division Multiple Access

WMN Wireless Mesh Network

vii



Throughput Optimization in
MPR-Capable Multi-Hop Wireless

Networks

by

Jorge Crichigno

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

August, 2009



Throughput Optimization in
MPR-Capable Multi-Hop Wireless

Networks

by

Jorge Crichigno

B.Sc., Electrical Engineering, Universidad Catolica, Paraguay, 2004

M.Sc., Computer Engineering, University of New Mexico, 2008

Ph.D, Computer Engineering, University of New Mexico, 2009

Abstract

Recent advances in the physical layer have enabled the simultaneous reception of

multiple packets by a node in wireless networks. This capability has the potential

of improving the performance of multi-hop wireless networks by a logarithmic fac-

tor with respect to current technologies. However, to fully exploit multiple packet

reception (MPR) capability, new routing and scheduling schemes must be designed.

These schemes need to reformulate a historically underlying assumption in wireless

networks which states that any concurrent transmission of two or more packets results

in a collision and failure of all packet receptions. In this work, we present a gen-

eralized model for the throughput optimization problem in MPR-capable multi-hop

wireless networks. The formulation incorporates not only the MPR protocol model to

quantify interference, but also the multi-access channel. The former is related with

the MAC and routing layers, and considers a packet as the unit of transmission.
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The latter accounts for the achievable capacity of links used by simultaneous packet

transmissions. The problem is modeled as a joint routing and scheduling problem.

The scheduling subproblem deals with finding the optimal schedulable sets, which

are defined as subsets of links that can be scheduled or activated simultaneously.

Among other results, we demonstrate that any solution of the scheduling subprob-

lem can be built with |E| + 1 or fewer schedulable sets, where |E| is the number

of links of the network. This result contrasts with a conjecture that states that a

solution of the scheduling subproblem, in general, is composed of an exponential

number of schedulable sets. The model can be applied to a wide range of networks,

such as half and full duplex systems, networks with directional and omni-directional

antennas with one or multiple transmit antennas per node. Due to the hardness of

the problem, we propose several polynomial time schemes based on a combination of

linear programming, approximation algorithm and greedy paradigms. We illustrate

the use of the proposed schemes to study the impact of several design parameters

such as decoding capability and number of transmit antennas on the performance of

MPR-capable networks.

x



Contents

List of Figures xv

1 Introduction 1

1.1 Wireless Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8

2.1 Antenna Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Fundamental Properties of Antennas . . . . . . . . . . . . . . 9

2.1.2 Transmission and Reception Modes . . . . . . . . . . . . . . . 12

2.2 Wireless Models of Interference for Single Packet Reception . . . . . . 12

2.2.1 Protocol Model . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Generalized Physical Model . . . . . . . . . . . . . . . . . . . 15

xi



Contents

2.3 Wireless Models of Interference for MPR-capable Networks . . . . . . 15

2.3.1 MPR Protocol Model . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Multi-Access Channel . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Conflict Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Convex Sets and Convex Combinations . . . . . . . . . . . . . . . . . 24

2.5.1 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Convex Combinations . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Related Work 27

3.1 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Routing and Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Channel Assignment, Routing, and Scheduling . . . . . . . . . . . . . 30

3.4 Scheduling with Directional Antennas . . . . . . . . . . . . . . . . . . 31

3.5 MPR - Theoretical Work . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 MPR - Protocols and Architectures . . . . . . . . . . . . . . . . . . . 33

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Problem Formulation and Characterization 38

4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xii



Contents

4.2.1 Routing Subproblem . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Scheduling Subproblem . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Joint Routing and Scheduling Problem . . . . . . . . . . . . . 47

4.3 Characterization of the Throughput Optimization Problem . . . . . . 49

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Joint Routing and Scheduling Schemes 58

5.1 Routing Linear Program . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Greedy Scheduler Under MPR Protocol Model . . . . . . . . . . . . . 61

5.3 Approximation-based Scheduler Under MPR Protocol Model . . . . . 65

5.4 Greedy Scheduler Under Multi-Access Channel Model . . . . . . . . . 71

5.5 Optimality of Scheduling Algorithms . . . . . . . . . . . . . . . . . . 76

5.6 Joint Routing and Scheduling Linear Program . . . . . . . . . . . . . 76

5.7 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Performance Studies 80

6.1 Performance Studies Under the MPR Protocol Model . . . . . . . . . 81

6.2 Performance Studies Under the Multi-Access Channel Model . . . . . 91

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Conclusion 101

xiii



Contents

References 104

xiv



List of Figures

1.1 Classification of wireless networks. . . . . . . . . . . . . . . . . . . . 2

2.1 Radiation pattern models . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Example of a multi-access channel . . . . . . . . . . . . . . . . . . . 17

2.3 Example of a multi-access channel and its capacity region . . . . . . 21

2.4 A wireless network and corresponding conflict graph . . . . . . . . . 23

2.5 Example of convex and non-convex sets . . . . . . . . . . . . . . . . 24

2.6 Example of convex hull of two sets . . . . . . . . . . . . . . . . . . . 25

4.1 Routing linear program . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 A wireless network, conflict graph and schedulable sets . . . . . . . . 44

4.3 Routing and scheduling linear program . . . . . . . . . . . . . . . . 48

4.4 Impact of MPR on the allocation polytope . . . . . . . . . . . . . . 52

4.5 Example of a capacity region for two simultaneous transmissions . . 54

4.6 Linear program to upper bound the number of schedulable sets . . . 55

xv



List of Figures

5.1 Routing linear program . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Pseudocode of Greedy Scheduler I (GSI) . . . . . . . . . . . . . . . 63

5.3 Operation of GSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Operation of Approximation-based Scheduler (AS) . . . . . . . . . . 67

5.5 Pseudocode of AS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Factor two optimality of AS . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Pseudocode of Greedy Scheduler II (GSII) . . . . . . . . . . . . . . . 72

5.8 Joint routing and scheduling linear program . . . . . . . . . . . . . . 77

6.1 Grid topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Throughput vs K, for β = π
3
. . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Optimal schedule for a 16-node grid topology . . . . . . . . . . . . . 85

6.4 Throughput vs K, for M = 2, R = 200. . . . . . . . . . . . . . . . . 85

6.5 Random wireless network . . . . . . . . . . . . . . . . . . . . . . . . 86

6.6 Throughput vs K, for β = π
3
, R = 200. . . . . . . . . . . . . . . . . 87

6.7 Throughput vs K, for M = HD, R = 200. . . . . . . . . . . . . . . 88

6.8 Throughput vs K, for M = 2, R = 200. . . . . . . . . . . . . . . . . 89

6.9 Throughput vs beamwidth, for K = 5, R = 200. . . . . . . . . . . . 89

6.10 Throughput vs K, for M = HD. . . . . . . . . . . . . . . . . . . . . 90

6.11 Throughput vs K, for M = 2. . . . . . . . . . . . . . . . . . . . . . 91

6.12 A 30-node random network . . . . . . . . . . . . . . . . . . . . . . . 92

xvi



List of Figures

6.13 Throughput vs K, for M = 2. . . . . . . . . . . . . . . . . . . . . . 93

6.14 Throughput vs K, for M = HD. . . . . . . . . . . . . . . . . . . . . 94

6.15 Average node degree vs K, for M = 2. . . . . . . . . . . . . . . . . . 95

6.16 Average node degree vs K, for M = HD. . . . . . . . . . . . . . . . 95

6.17 Throughput vs (K, M), for β = π
3
. . . . . . . . . . . . . . . . . . . . 96

6.18 Throughput vs (K, M), for β = 2π. . . . . . . . . . . . . . . . . . . 97

6.19 g
(
M, K, π

3

)
÷ g (M, K, 2π). . . . . . . . . . . . . . . . . . . . . . . . 97

6.20 Throughput vs (M , β), for K = 4. . . . . . . . . . . . . . . . . . . . 98

6.21 Throughput improvement as a function of unitary increment on M . 99

xvii



Chapter 1

Introduction

1.1 Wireless Networks

A wireless network consists of wireless nodes and wireless links. A wireless node,

or simply node in the context of this work, is equipped with one or more wireless

interfaces. A wireless link from a node u to a node v exists if node v can correctly

receive packets from node u.

A special type of wireless network, which is self-organized and configured, and

can operate without the support of any infrastructure, is known as an ad hoc wireless

network. In the last years, there has been a tremendous interest in ad hoc wireless

networks, driven by their potential, by new advances at the physical layer, by the

low cost of the wireless devices, and by their robustness [1].

Generally, ad hoc networks are multi-hop networks; a node can operate not only as

a source of data but also as a router, forwarding packets on behalf of other nodes that

may not be within direct wireless transmission range of their destinations. Certainly,

the absent of central coordinator or base station may require more complex routing

1



Chapter 1. Introduction

Figure 1.1: Classification of wireless networks.

and scheduling schemes with respect to cellular networks. However, this is also the

main advantage of ad hoc networks, since there is no central point of failure [2].

A broad but typical classification of ad hoc networks is illustrated in Figure

1.1. They are further divided in more than one type of network, including wireless

sensor networks and wireless mesh networks (WMNs). The former is composed

of a large number of sensor nodes that are densely deployed in a specific area of

interest. Nodes are generally limited in processing capability, and subject to power

constraints. Additionally, nodes may have mobility, and the size of the network can

be much larger than other types of ad hoc networks [1].

On the other hand, nodes in WMNs are mostly static, have no power constraint

and more data processing capability. Nodes serve as routers and provide to final users

(clients) access to other networks such as the Internet. Each node has a point-to-point

and point-to-multipoint connectivity with other nodes (thereby forming a mesh).

Features such as self-establishment and maintenances of the mesh connectivity brings

many advantages including low up-front cost and reliable service coverage. In this

work, we will mainly focus on wireless mesh networks, i.e., networks where nodes

have power processing capability, no power consumption restriction, may decode

multiple packets at a time, and may be endowed with multiple transmit antennas.

2



Chapter 1. Introduction

Thus, when referring to wireless networks, we will actually refer to networks with

these characteristics.

A fundamental issue in wireless networks is that performance degrades sharply

as the number of hops traversed increases. For example, in a network of nodes with

identical and omnidirectional transmission ranges, going from a single hop to two

hops away halves the throughput of a flow, because wireless interference dictates

that only one of the two hops can be active at a time. The seminal work by Gupta

et al. [3] formalized this observation, and showed that the throughput capacity of

random wireless ad hoc networks is Θ
(

1√
|V | log |V |

)
, where | · | denotes cardinality

and V is the set of nodes of the network. The reason of this result is the fact that

transmitting nodes exclusively consume spatial resource, which is proportional to the

area involving the transmission. Nodes close to the intended receiver require to be

idle to avoid collisions, which cause the loss of packets.

To overcome the spatial limitation, possible approaches include: (i) the increment

of the amount of information a transmitting node relays in each transmission; (ii)

the reduction of interference through directional transmissions; (iii) the increment of

reception capability, so that a receiver can decode multiple concurrent transmissions

within its receiver range. The latter permits the reception of multiple packets simul-

taneously through the use of multi-user detection (MUD) techniques at the physical

layer. Work has been carried out in the three fronts. Liu et al. [4] showed that the

first approach does not increase the throughput capacity order. Similarly, Yi [5] et

al. demonstrated that directional antennas improve the throughput by a constant

factor with respect to the work by Gupta et al. [3]. Finally, Garcia-Luna-Aceves

et al. [6] demonstrated that the increment of reception capability is the more ap-

pealing approach, since the throughput capacity can be increased by a logarithmic

factor with respect to the work in [3]. However, the little research currently done

is this area has mostly focused on theoretical work to find asymptotic bounds on

3



Chapter 1. Introduction

the throughput capacity. Furthermore, the combination of directional antennas and

multi-packet reception (MPR) has not been addressed yet.

From the above, it is clear that using MPR is an attractive approach for mak-

ing wireless networks scale. However, as promising as the above theoretical recent

results on the use of multi-packet reception are, there is much work to be done be-

fore MPR-capable networks can be reduced to practice. The transmissions that are

to be decoded at a receiver node need to be sent synchronously, and the number

of concurrent transmissions allowed around a receiver cannot exceed the number of

concurrent transmissions that the receiver can decode, which may be smaller than

the number of neighbors near the receiver if the network is densely connected. Fur-

thermore, the protocols used to date in ad hoc networks have been designed to avoid

multi-access, and are derivatives of protocols and architectures originally designed

for wired networks based on point-to-point links. For example, the IEEE 802.11 Dis-

tributed Coordination Function (DCF) adopts a similar back-off strategy to Ethernet

when more than one transmission occurs around a receiver [7]. Similarly, the IETF

MANET routing protocols work independently of the channel access method, even

though it is not true that routing in ad hoc networks occurs over a pre-existing net-

work topology and the transmission over one link does not impact the transmissions

over other links, as it can be done in a wired network [8].

Motivated by the potential of multi-packet reception, this work presents a gen-

eralized model for the throughput optimization problem in MPR-capable multi-hop

wireless networks. The formulation incorporates not only the MPR protocol model

[6] to quantify interference, but also the multi-access channel model [9]. The former

models wireless interference from MAC and routing layer perspectives, and considers

a packet as the unit of transmission. The latter accurately accounts for the physical

layer rates in bits per second used by simultaneous transmissions. The problem is

modeled as a joint routing and scheduling problem. The scheduling subproblem deals

4



Chapter 1. Introduction

with finding the optimal schedulable sets, which are defined as subsets of links that

can be scheduled or activated simultaneously. Among other results, we demonstrate

that any solution of the scheduling subproblem can be built with |E| + 1 or fewer

schedulable sets, where |E| is the number of links of the network. This result con-

trasts with a conjecture that states that a solution of the scheduling subproblem, in

general, is composed of an exponential number of schedulable sets [10]. The model

can be applied to a wide range of networks, such as half and full duplex systems,

networks with directional and omni-directional antennas with one or multiple trans-

mit antennas per node. Due to the hardness of the problem, we propose several

polynomial time schemes based on combinations of linear programming, approxi-

mation algorithms and greedy paradigms, which are referred as Joint Routing and

Scheduling (JRS) algorithms. We illustrate the use of the proposed schemes to study

the impact of several design parameters such as decoding capability and number of

transmit antennas on the performance of MPR-capable networks, and the relation

of them with topological network properties.

1.2 Goals and Contribution

In this dissertation, we introduce a novel model for throughput optimization in multi-

hop wireless networks with MPR-capability. The model incorporate several features

not included in previous works, such as the use of directional antennas and multi-

access channel. In summary, the dissertation includes the following contributions:

1. Provide a novel model for the throughput optimization problem in MPR net-

works. The formulation incorporates not only the MPR protocol model to

quantify interference, but also the multi-access channel. To the best of our

knowledge, the application of multi-access channel in an MPR-capable net-

work has not been previously considered.

5



Chapter 1. Introduction

2. Characterize the throughput optimization in multi-hop wireless as a convex

optimization problem. The advantages of casting the problem as a convex

optimization include the application of well-known techniques and theorems

for this kind of problem.

3. As a main result from item 2, we demonstrate that any solution of the schedul-

ing subproblem can be built with |E| + 1 or fewer schedulable sets, which

contradicts previous work. This theoretical result is valid for single-hop and

multi-hop networks, with directional and omnidirectional antennas, with multi-

packet and single-packet reception.

4. Provide efficient schemes to solve the proposed optimization model. By efficient

schemes we mean polynomial time optimization schemes, since the throughput

optimization problem under any model of interference is known to be NP-hard

[10].

5. Study the fundamental limitations of MPR networks, and how to overcome

those eventual limitations.

6. Study the impact of directional antennas in MPR networks. There is no previ-

ous work considering the use of directional antennas with multi-packet recep-

tion. A reason may be the fact that MPR capability, intuitively, mitigates the

inefficient spatial reuse of omni-directional antennas. However, the impact of

directional antennas in MPR networks is a very important open research issue,

which is analyzed in this work.

7. Study the use of multiple transmit interfaces. Previous work attempted to im-

prove the throughput in MPR network by increasing the MPR capability only,

assuming a single half-duplex interface and neglecting the potential benefits of

multiple interfaces.

6



Chapter 1. Introduction

1.3 Organization

The present chapter presented an overview and motivation of the research work, and

exposed the goals and novel contributions of this doctoral dissertation. Chapter 2

presents background information about wireless networks, models of interference and

radiation patterns, and convex optimization. Chapter 3 provides a literature survey

on previous work regarding throughput optimization in wireless networks. Chapter

4 presents a mathematical generalized model for the throughput optimization prob-

lem in multi-hop wireless networks that support multi-packet reception capability.

The problem is further characterized as a convex optimization, and some impor-

tant theorems are derived from this model. Chapter 5 presents the JRS schemes to

solve the joint routing and scheduling problem in MPR-capable wireless networks.

The schemes decouple the problem into two subproblems: routing and scheduling.

The routing subproblem is solved by using linear programming. For the scheduling

subproblem, multiple algorithms based on greedy heuristic and approximation algo-

rithm paradigms are presented. Chapter 6 shows performance studies of numerical

examples, and Chapter 7 concludes the dissertation and discusses future work.

7



Chapter 2

Background

This chapter is not intended to provide a comprehensive exposition of background

topics needed for this work, but a review of concepts which will be extensively used

in next chapters. The chapter is organized as follows: Section 2.1 presents the funda-

mental properties of antennas for wireless networks. Section 2.2 provides an overview

of the classical models of interference for single packet reception, namely, protocol

model, physical model and generalized physical model. Section 2.3 presents the mod-

els of interference used in MPR-capable networks, which include the MPR protocol

model and the multi-access channel model. Section 2.4 introduces the conflict graph,

a graph theoretic approach to model interference. Finally, Section 2.5 presents main

concepts of convex analysis, which are used in Chapter 4 to characterize the through-

put optimization problem.

From here on, we represent a wireless network as a graph G = (V, E), where V

is the set of nodes and E the set of links. Let rij be the distance between two nodes

i and j. There exists a link e = (i, j) ∈ E from node i ∈ V to node j ∈ V if rij ≤ R,

where R is the receiver range. For an active link (i, j), we say that node i transmits

to node j. The capacity of link (i, j) (i.e., the rate at which node i transmits to node

8



Chapter 2. Background

j) will be denoted as cij. Let S ∈ E be a set of links simultaneously activated at a

time. If cij is affected by such set, we will denote the capacity of the link (i, j) as

cij(S). We will use the notations (i, j) and e in an interchangeable manner.

2.1 Antenna Models

2.1.1 Fundamental Properties of Antennas

Antenna Gain

The antenna radiates the time-averaged power in all directions. The gain of an

antenna is defined as

G(θ, φ) = ε
U(θ, φ)

Uavg

, (2.1)

where U(θ, φ) is the power density in direction (θ, φ), Uavg is the average power

density over all directions and ε is the efficiency of the antenna. U(θ, φ) is a function

of the space coordinates, with θ and φ being the elevation and azimuth angles. If the

antenna transmits power equally in all directions, then U(θ, φ) will be equal to Uavg,

and the antenna is called isotropic or omnidirectional. An isotropic antenna has a

spherical pattern. If no direction is specified, the gain usually means the maximum

gain value over all directions. Due to reciprocity, the gain and radiation pattern

characteristics are the same for both transmission and reception [11].

Radiation Pattern and Beamwidth

An antenna pattern is the specification of the gain values in each direction in space,

described as projections on the elevation and azimuth planes. It typically has a

9
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main lobe of peak gain and side lobes of smaller gains, which affect the normal

transmission. In most cases, the more directional the antenna is, the higher the gain

and the smaller the beamwidth will be. The beamwidth of an antenna is a measure

of the angle that contains two points on the patterns with a 3 dB power on the

main lobe. Gain and beamwidth are related. Typically, the more directional the

antenna is, the higher the gain and the smaller the beamwidth are. However, two

antennas with the same gain could have different beamwidths. In general, radiation

patterns may be very complex for networking analysis purposes. In order to simply

and to make the analysis more tractable, two models are commonly used: flat-top

and cone+sphere radiation patterns [12].

1. Flat-top

This model assumes that the gain is constant within the beamwidth and there

are no side lobes. The antenna beam can be seen as a slice of a pie in shape.

For throughput analysis purposes, the assumption that nodes lie in a two-

dimension plane is used, so that the gain of the antenna is a function of the

azimuth angle only. Based on this model, a flap-top radiation pattern example

is shown in Figure 2.1 (a), where β is the beamwidth of the antenna. Although

this model simplifies the radiation pattern, the sidelobes are generally small

enough. Moreover, the gain of the main lobe of typical directional antennas

is more than 100 times the gain of sidelobes. Additionally, smart antennas

often have null capability that mitigates the sidelobes and backlobes. The

interference region of an antenna is principally determined by its main lobe

and simplifying the radiation pattern does not lead to a fundamental change

on the result of the throughput analysis [5].

2. Cone+sphere

In this model, the main lobe is also represented as a cone of uniform gain. In

addition, sidelobes are aggregated to a single bulb at the base of the cone with a

10
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(a)
 (b)
 (c)


Figure 2.1: (a) Flap-top and (b) cone+sphere radiation patterns. (c) MPR flap-top
model.

smaller gain than the mainlobe. Figure 2.1 (b) shows the cone+sphere model.

Figure 2.1 (c) shows the MPR Flap-top, which is derived from the flap-top radi-

ation pattern model and the MPR protocol model. As we shall see, this interference

model states that a reception of all transmissions is achievable if the the number of

simultaneous transmissions in the receiver range R is less than or equal to K, where

K is the decoding capability. The model of Figure 2.1 (c) also includes the angle α,

which is defined as the angle between the the axis of the main lobe of the transmit

antenna and the direction of an arbitrary node which we would like to analyze.

To account for the case where a node transmits to multiple receivers at the same

time through multiple antennas [13], we will denote the number of transmit antennas

as M .

Let S ⊆ E be a schedulable set (the formal definition of a schedulable set will be

given in Section 4.2.2) consisting of links which are scheduled at a time. Thus, if

Ri = {j|(i, j) ∈ S} (2.2)

denotes the set of nodes receiving from node i, then we will require that |Ri| ≤ M .

11



Chapter 2. Background

2.1.2 Transmission and Reception Modes

Every antenna has four transmission and reception modes: omnidirectional transmis-

sion, omnidirectional reception, directional transmission and directional reception. If

a receiver listens in directional mode, the maximum reception gain will be reached.

Similarly, if a sender transmits in directional mode, the maximum transmission gain

will be reached. Thus, when a receiver listens in directional mode and a trans-

mitter sends data also in directional mode, according to the path loss model, the

required transmit power can be further reduced. Moreover, in that case, the com-

munication range can be maximized and the interferences minimized, which leads

to an increased wireless network capacity. However, depending on the directivity of

the beams, scheduling antenna beams to face each other at the same time is still

challenging [12].

2.2 Wireless Models of Interference for Single Packet

Reception

An interference model describes the conditions for a successful reception of a packet

over a wireless channel. The basic models described in the seminal work Gupta and

Kumar [3] are known as protocol and physical models. More complex models such as

MPR protocol can be derived from them. These models are discussed in this section.

12
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2.2.1 Protocol Model

Assume nodes transmit omni-directionally. Let rij be the distance between nodes i

and j. A (direct) communication from node i to node j is successful if

ri′j ≥ (1 + ∆)rij (2.3)

for every other node i′ simultaneously transmitting over the channel. Once Equation

(2.3) is satisfied, it is assumed that the data rate over the link is constant (fixed) and

greater than zero. The quantity ∆ ≥ 0 is a parameter that depends on the character-

istic of the physical layer. It models situations where a guard zone is specified by the

protocol to prevent a neighboring node from transmitting on the same channel at the

same time. It also allows for imprecision in the achieved range of transmissions. The

protocol model inherently implies that disk areas centered at concurrent receivers

are disjoint.

A common assumption is the fact that nodes are homogeneous, i.e., all transmis-

sions employ the same transmission power, which leads to definition of the transmis-

sion range. Under the assumption of homogeneous transmission power, the trans-

mission range Rtx is defined as the maximum distance from which a receiver node

can successfully receive a packet.

Based on the definition of transmission range and assuming that all nodes employ

the same transmission power, the conditions for successful transmission under the

protocol model can be restated as follows. A transmission from node i to node j is

successful if:

rij ≤ Rtx, (2.4)

ri′j ≥ (1 + ∆)Rtx, (2.5)
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for every other node i′ simultaneously transmitting over the same channel. When

referring to the protocol model, we will refer to the model under the homogeneous

transmission range assumption, unless otherwise is explicitly specified.

2.2.2 Physical Model

Assume nodes transmit omni-directionally. Let {i′|i′ ∈ T} be the subset of nodes si-

multaneously transmitting over a common Additive White Gaussian Noise (AWGN)

channel, with zero mean Gaussian noise and variance η. Let Pij be the power level

of the signal received at node j from node i. Then, the transmission from node i ∈ T

is successfully received by node j if:

Pij

η +
∑
∀i′∈T ;i′ 6=i Pi′j

≥ δ. (2.6)

Once this constraint is satisfied, it is assumed that the data rate over the link is

constant (fixed) and greater than zero. Equation (2.6) models a situation where a

minimum signal to interference plus noise ratio (SINR) of δ is necessary for successful

receptions, when a set T of nodes simultaneously transmit. In radio transmissions,

a signal power transmitted from node i to node j is reduced in proportion to the

distance between them:

Pij = ζ · r−γ
ij . (2.7)

Equation (2.7) states that the signal power decays exponentially according to the

distance rij between nodes i and j. ζ and γ depend on the path loss model. The

latter is known as pass loss exponent, while the former is the term accounting for

other factors such as the gain of transmitter and receiver antennas.
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2.2.3 Generalized Physical Model

The physical model assumes that a transmission can only occur at a constant (fixed)

rate if Equation (2.2.2) is satisfied. Based on the Shannon’s formula for AWGN

channel, the data rate of the physical model can be generalized as follows:

cij = W log2

(
1 +

Pij

η +
∑
∀i′∈T ;i′ 6=i Pi′j

)
, (2.8)

where W is the bandwidth of the channel in Hertz. To achieve this data rate,

however, nodes must adapt the modulation or coding scheme dynamically according

to current SINR, a fact that entails complex coordination between the nodes.

2.3 Wireless Models of Interference for MPR-capable

Networks

The protocol and physical models do not model wireless networks where nodes are

endowed with technologies such as CDMA transceivers and/or multiple antennas. In

these networks, nodes may be capable of receiving multiple packets simultaneously,

and there may be unexpected reception errors due to channel time variation. In

this section, we present two models of interference for MPR-capable networks: MPR

protocol Model [6] and multi-access channel [9]. The former is more related with

the MAC and routing layers, and considers a packet as the unit of transmission.

The latter accurately accounts for the physical layer rates in bits per second used by

simultaneous transmissions.
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2.3.1 MPR Protocol Model

Ghez et al. [14] proposed a model where a node can correctly receive a fraction of

the number of transmissions from nodes located inside its receiver range R. The

reception probabilities of a node b are specified by its receiver matrix Hb. The entry

hi,j of Hb is given by:

hi,j = Pr{ j packets are correctly received | i packets

are transmitted by nodes within a radius R

from node b},

where i ≥ 1 and j ≥ 0. The MPR matrix Hb at receiver node b is then defined as:

Hb =




h1,0 h1,1 0 . . . 0

h2,0 h2,1 h2,2 0 . . . 0
...

...
...

. . .




. (2.9)

A variety of physical layers has been modeled using MPR, including the MPR pro-

tocol model proposed by Garcia-Luna-Aceves et al. [6]. In this model, a node can

simultaneously decode up to K packets sent inside its receiver range R; if more than

K packets are transmitted, then none of them can be correctly received. Thus, K

denotes the decoding capability of a receiver node. The entries of the receiver matrix

Hb are then given by:

hi,j =





1 ; i ≤ K and j = i

1 ; j = 0 and i > K

0 ; otherwise.

(2.10)
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Figure 2.2: Simultaneous transmissions to node b.

Example 2.1. Consider the receiver node b shown in Figure 2.2 and assume a

decoding capability of K = 2. The channel matrix of node b is then given by:

Hb =




0 1 0 . . . 0

0 0 1 0 . . . 0

1 0 . . .
...

...
. . .

1 0 . . . 0




. (2.11)

The channel matrix states that node b can simultaneously decode packets from two

nodes, say nodes a and c. However, if node d attempts to simultaneously transmit

while a and c are active, then none of the packets can be received, since h3,0 = 1.

The MPR protocol model can be considered as a simplified model of the multi-

access channel [9], which describes a system where multiple senders can simultane-

ously transmit to a single receiver. Although the problem of finding the capacity

region of a single multi-access channel was already solved, its application in a multi-

hop networking context is very complex, since the overall network should be modeled

as multiple multi-access channels. The complexity arises because a single multi-access

channel affects the capacity region of the remaining multi-access channels. Moreover,

for each multi-access channel, the number of inequalities to be satisfied is exponential
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in K, the decoding capability. For these reasons, the MPR protocol model simply

assumes an homogeneous capacity value to any link [6, 15, 16, 17, 18] (e.g., a unit

link capacity [16]).

In this work, we use a more general approach. Assume nodes transmit direction-

ally according to the MPR flap-top model presented in Section 2.1 and illustrated

in Figure 2.1(c). Assume also an AWGN channel with bandwidth W , where the

capacity of a link (i, j) is modeled by the following two equations:

SINRij =





ζ · r−γ
ij if −β

2
≤ αij ≤ β

2

0 otherwise,
(2.12)

cij = W log2(1 + SINRij). (2.13)

Equation (2.12) states that the signal to interference plus noise ratio (SINRij) decays

exponentially according to the distance rij between nodes i and j, and it is zero if

receiver node j is outside of the main lobe of the radiation pattern of the transmit

antenna. For a graphical interpretation of the angle αij, please refer to Figure 2.1(c).

As explained in Equation (2.7), γ is the path loss exponent, and ζ is a term that

depends on multiple factors such as path loss model and decoding technology. In a

point-to-point model where all transmitters transmit at the same power P , this term

is computed as:

ζ =
P

η +
∑

i′ 6=i Pr−γ
i′j

, (2.14)

where η is the variance of the AWGN channel, and the sum is over all node i′ 6=
i transmitting simultaneously with node i, such that −β

2
≤ αi′j ≤ β

2
. In multi-

access channels, Equation (2.14) does not necessarily hold, since technologies such

as Code Division Multiple Access (CDMA) and Successive Interference Cancelation

(SIC) permit to achieve improved values of ζ [9]. Equation (2.13) is the Shannon

capacity. A similar capacity model is frequently used for omni-directional antennas
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[19]. Equations (2.12) and (2.13) model the case where shorter transmission distance

implies higher link capacity [19], and the capacity follows a logarithmic dependence

on SINR. In the MPR protocol model, ζ is an opaque fixed value, which can

be computed as desired. As a consequence, the capacity of link (i, j) is constant,

independently of the links simultaneously activated with link (i, j) [6, 16]. On the

other hand, in the multi-access channel model, this value is accurately computed, as

we shall see in next section.

The MPR protocol model given by Equation (2.10) has been the most widely used

model for MPR-capable networks. We will use it in Chapter 4 to model multi-hop

wireless networks with MPR capability.

2.3.2 Multi-Access Channel

Denote P0 as the uniform fixed power level used for any transmission. For an active

link (i, j), the received power Pij at node j decays exponentially with rij:

Pij = P0r
−γ
ij , (2.15)

where γ is the path loss exponent. This equation is similar to Equation (2.7) and

follows the same path loss model.

Consider the following scenario: let S ⊆ E be a schedulable set consisting of links

simultaneously activated, and Tj be the set of nodes transmitting to a receiver node

j:

Tj = {i|(i, j) ∈ S}. (2.16)

Similarly, let Ψj be the set of simultaneous transmitters interfering with node j,

which point out their transmit antenna such that node j lies inside the main lobe of
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them:

Ψj =
{
i′|(i′, j′) ∈ S, j 6= j′, and −β

2
≤ αi′j ≤ β

2

}
. (2.17)

Then, assuming an AWGN channel, the total noise at receiver node j is:

ηj = η +
∑

i′∈Ψj

Pi′j, (2.18)

where η is the variance of the channel noise. ηj is referred as destructive interference

[20]. We define the channel capacity function of a single user of an AWGN channel

with bandwidth W and signal to interference plus noise ratio SINR as:

ϕ(SINR) = W log2(1 + SINR). (2.19)

Let cij(S) be the capacity in bits per second (bps) of a link (i, j) ∈ S, when all

links in S are activated. For receiver node j, the capacity region of the multi-access

channel is the closure of the convex hull of link capacity vectors satisfying:

∑

i∈T

cij(S) ≤ ϕ

(∑
i∈T Pij

ηj

)
, (2.20)

for all T ⊆ Tj [9]. The region given by Equation (2.20) is characterized by 2|Tj | − 1

constraints, each corresponding to a nonempty subset of transmitters. The capacity

region has precisely |Tj|! vertices in the positive quadrant, each achievable by SIC

using one of the |Tj|! possible orderings. The following example illustrates the case

for |Tj| = 2.

Example 2.2. Consider the scenario in Figure 2.3(a), where the schedulable set

S = {(a, b), (c, b), (e, d), (f, d)}, nodes a and c transmit to node b (Tb = {a, c}), and
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(a)
 (b)


Figure 2.3: (a)Nodes a and c simultaneously transmit to node b, while node e inter-
ferers with node b. (b) Corresponding capacity region. For the multi-access channel
model, the capacity region is upper bounded by the solid lines. For the single user
channel model, the capacity region is upper bounded by the dashed line, which is
achieved by using time-sharing.

node e interferers with node b (Ψb = {e} and ηb = η + Peb). The capacity region for

node b is reduced to the following 3 constraints and shown in Figure 2.3(b):

cab(S) ≤ ϕ

(
Pab

ηb

)
,

ccb(S) ≤ ϕ

(
Pcb

ηb

)
,

cab(S) + ccb(S) ≤ ϕ

(
Pab + Pcb

ηb

)
.

The vertices in the positive quadrant are labeled with vector notations, ~ci =

(cab(S), ccb(S)), i ∈ {1, ..., 4}. The aggregate capacity, cab(S) + ccb(S), is maximized

when a link capacity vector lies in the segment line between ~c2 and ~c3. The points ~c2

and ~c3 can be achieved by using SIC and CDMA. For example, ~c2 can be obtained in

a two-stage SIC decoding process. In the first stage, node b decodes packet p1 from

node c, considering the transmission from node a as part of noise. Therefore, the link

capacity can be ϕ
(

Pcb

ηb+Pab

)
. In the second stage, after packet p1 has been decoded, it
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can be subtracted out, thereafter packet p2 from node a can be decoded. Thus, the

link capacity can be ϕ
(

Pab

ηb

)
. The packets are sent using different codes (CDMA).

In general, the capacity region achieved with CDMA and SIC is larger than that

achieved with TDMA, which is bounded by the dashed line in Figure 2.3(b) [9].

For a general number of transmitters, the points in the capacity region that

maximize the sum of the capacity of the links are defined as follows.

Definition 2.1 Max-capacity operation. Let Tj = {i1, i2, ..., i|Tj |} be a set of nodes

transmitting to a receiver node j. The corresponding links (i1, j), (i2, j), ..., (i|Tj |, j)

are said to operate at max-capacity if
∑

ih∈Tj
cihj = ϕ

(∑
ih∈Tj

Pihj

ηj

)
.

To maximize the throughput of a network and fully exploit the multi-access chan-

nel, any strategy should try to schedule links such that they operate at max-capacity.

At the same time, increasing the number of transmitters clearly increases through-

put. However, in practice, a receiver node can decode only a finite number of packets

[6, 15]. Complexity and energy consumed by decoders are main limitations that re-

strict the decoding capability. To account for these limitations, interference models

for MPR-capable networks [6] restrict the number of transmissions inside the disk of

radio R centered at a receiver node j (independently of whether transmissions are

intended for node j or not) to a certain value K. Mathematically, this requirement

is given by Equation (2.22):

T ′
j = Tj ∪ {i|i ∈ Ψj and rij ≤ R}, (2.21)

|T ′
j | ≤ K. (2.22)

To be consistent with practical issues and previous works [6, 15, 16, 21], we will

assume that Equation (2.22) is satisfied for a receiver node j to successfully decode

packets. We will refer to K as the decoding capability. For analysis purposes, this

value will be parameterized as needed.
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(a)
 (b)


Figure 2.4: (a)A wireless network. Links (a, b) and (c, d) contend with each other,
as well as (c, d) and (e, f). (b) The corresponding conflict graph.

2.4 Conflict Graph

The conflict graph [10], also known as contention graph, permits to capture the in-

teraction among wireless links by using graph-theoretic concepts. The conflict graph

is a graph Gc = (Vc, Ec), where a vertex vij ∈ Vc corresponds to a wireless link of

the network topology. There exists an edge between two vertices if the transmis-

sions along these two links conflict with each other according to the protocol model

(i.e., they cannot be activated or scheduled simultaneously). We associate the terms

node and link with the network topology graph, and the terms vertex and edge

with the conflict graph. Thus, an edge between two vertices in the conflict graph

is drawn if Equation (2.5) does not hold when the corresponding links are active at

the same time (i.e., for two directed links denoted as (i, j) and (p, q), riq < (1+ ∆)R

or rpj < (1 + ∆)R). Figure 2.4 illustrates the use of conflict graph for a network

with three links. Assuming that links (a, b) and (c, d) contend with each other, as

well as (c, d) and (e, f), the corresponding conflict graph is shown in Figure 2.4 (b).

The edge between vertices (in the conflict graph) (a, b) and (c, d) indicates that they

cannot be scheduled simultaneously. A similar relation holds for vertices (c, d) and

(e, f).
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2.5 Convex Sets and Convex Combinations

2.5.1 Convex Sets

A set C ⊆ <n is called convex if it contains line segments between each pair of

its point, that is, if λ1x1 + λ2x2 ∈ C whenever x1, x2 ∈ C and λ1, λ2 ≥ 0 satisfy

λ1 + λ2 = 1. Equivalently, C is convex if and only if (1 − λ)C + λC ⊆ C for every

λ ∈ [0, 1] [22].

Roughly speaking, a set is convex if every point in the set can be seen by every

other point, along an unobstructed straight path between them, where unobstructed

means lying in the set. Figure 2.5 illustrates some simple convex and non-convex

sets in <2.

(a)
 (b)
 (c)


Figure 2.5: (a) The hexagon, which includes its boundary (shown darker), is convex.
(b) The kidney shaped set is not convex, since the line segment between the two
points in the set shown as dots is not contained in the set. (c) The square contains
some boundary points but not others, and is not convex.

2.5.2 Convex Combinations

As we shall see in Chapter 4, the scheduling problem in wireless networks we are

interested in has certain special linear combinations of vectors that represent mix-
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tures of points. When x1, x2, ..., xm ∈ <n and numbers (weights) λ1, λ2, ..., λm ≥ 0

satisfy
∑m

j=1 λj = 1, we say that x =
∑m

j=1 λjxj is a convex combination of the

points x1, x2, ..., xm. Thus, a set is convex if and only if (iff) it contains each convex

combination of any two of its points.

The convex hull of a set C, denoted Co(C), is the set of all convex combinations

of points in C:

Co(C) = {λ1x1 +λ2x2 + ...+λmxm|xi ∈ C, λi ≥ 0, λ1 +λ2 + ...+λm = 1}.(2.23)

As the name suggests, the convex hull Co(C) is always convex. It is the smallest

convex set that contains C; if B is any convex set that contains C, then Co(C) ⊆ B.

In the plane, intuitively, if we were to surround the points of C by a large, stretched

rubber band, the convex hull is the (convex) polygonal shape that would be enclosed

by the band when released. Figure 2.6 illustrates the definition of convex hull.

(a)
 (b)


Figure 2.6: (a) The convex hulls of two sets in <2. (a) The convex hull of a set of
fifteen points (shown as dots) is the pentagon (shown shaded). (b) The convex hull
of the kidney shaped set is the shaded set.
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2.6 Summary

In this chapter, we have presented the antenna and interference models as well as

fundamental concepts of convex analysis. Among the the above topics, we should

highlight the importance and relevance of multi-access channel and convex analysis.

The former is generally used in information theory to analyze single hop MPR-

capable networks, while the latter is commonly applied to optimization theory to

demonstrate fundamental results and devise optimization algorithms. In Chapter 4,

we will merge these two areas to obtain a novel formulation and characterization of

the throughput optimization in MPR-capable networks.
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Related Work

In this chapter, we provide a literature survey regarding the throughput optimization

problem in wireless networks. According to the surveyed works, the problem can be

casted as a i) pure scheduling problem (when routing is independently performed),

ii) joint scheduling and routing problem, iii) joint scheduling, routing and channel

assignment. The latter corresponds to systems with multiple narrow-band channels,

such as 802.11-based networks. In MPR-capable networks, however, we are inter-

ested on the performance over a single channel only. MPR is also compatible with

multi-channel networks, where MPR technology can be applied over the different

orthogonal channels.

We classify related work according to how the throughput optimization problem

is casted. The classification is not an exclusive one. The chapter starts by surveying

pure scheduling schemes in Section 3.1. Then, Sections 3.2 and 3.3 discuss related

work on joint routing and scheduling, and joint channel assignment, routing and

scheduling respectively. Section 3.4 focuses on directional antennas, and Sections 3.5

and 3.6 present related work on theoretical and practical schemes exploiting MPR-

capability.
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3.1 Scheduling

The scheduling problem in wireless networks has been extensively studied in the liter-

ature. Contention-free scheduling schemes are often shown to solve certain maximum

weight matching or graph coloring problems, or maximum and maximal independent

set problems in the conflict graph. The general approach is to find maximal link sets

and optimal allocation of time for those sets such that the performance metric is

optimized. The rationale for time-sharing scheduling over WMNs can be derived

from the very general approach for multi-hop wireless networks where the purpose

of a schedule is to prevent interference among transmissions from neighboring links.

From the fact that finding the optimal schedule (or even finding an approximation) is

an NP-hard problem [10], many heuristics have been proposed. Some relevant works

are discussed as follows.

Brar et al. [23] presented a centralized greedy algorithm for computing a feasible

schedule under the physical model of interference. By using this interference model,

they claimed that a significant throughput improvement can be obtained compared

to scheduling schemes based on the protocol model of interference.

Moscibroda et al. [24] proposed a heuristic centralized scheduling algorithm for

scenarios where the traffic demands are the same on every network link. Although

this assumption simplifies the problem, it is not representative of a typical wireless

network scenario, where traffic on different links may be very different.

In [25, 26], the scheduling problem was investigated from a theoretical point of

view. A lower bound for optimal throughput under the protocol model of interference

is given in [25], while an upper bound and a fair scheduling mechanism is presented

in [26].

Salonidis et al. [27] proposed a distributed scheduling scheme where a flow model
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is used to quantify link activations under the protocol model. The fairness issue is

also discussed. Djukic et al. [28] presented a distributed scheduler based on the

Bellman-Ford algorithm running on the conflict graph, and Björklund et al. [29]

presented an integer linear program (ILP) for scheduling under the physical model,

and a heuristic column generation algorithm.

3.2 Routing and Scheduling

Joint routing and scheduling schemes not only schedule link sets but also compute a

path or set of paths between sources and destinations. Relevant schemes are discussed

below.

In [10], Jain et al. presented a linear programming scheme for computing upper

and lower bounds on the optimal throughput for the joint routing and scheduling

problem, where an omnipresent centralized entity performs routing and scheduling.

The formulation, however, is computationally intractable because it requires finding

all possible sets of non-conflicting transmissions, which takes exponential time.

Kodialam et al. [30] proposed a polynomial time approximation algorithm for

the routing problem, and a graph-coloring approach for the scheduling problem. In

the graph coloring problem, the objective is to assign a color to each link such that

links with the same color do not conflict (i.e., they can be simultaneously scheduled)

and the number of colors (sets) is minimized.

Zhang et al. [31] formulated the routing and scheduling problem as a joint op-

timization problem, where end-to-end traffic flows are satisfied (i.e., the authors

assumed that the traffic demand is given. On the other hand, max-flow models

attempt to maximize the aggregated flow). Due to the NP-hardness of the prob-

lem, they developed a column generation approach, which decomposes the original
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problem into sub-problems and solves them iteratively.

Wu et al. [32] presented two centralized algorithms for the max-flow problem,

which perform joint routing and scheduling: i) link scheduling with shortest hop

path, and ii) link scheduling with bandwidth-aware routing. The main idea of the

algorithms is to schedule links such that the flow demand on each link is satisfied

(similar assumption to the work in [31]). The conflict among links is minimized by

requiring a sender node transmit if it is free of interference under the protocol model.

3.3 Channel Assignment, Routing, and Schedul-

ing

In the presence of multiple narrow-band channels, the throughput can be improved

by efficiently using the available channels. Schemes considering this dimension are

specially designed to exploit the multiple channels.

Kodialam et al. [33] presented a max-flow model for the joint channel assignment,

routing and scheduling problem in WMNs, which results into an ILP. To efficiently

solve the problem, a centralized greedy algorithm for each, routing, scheduling and

channel assignment is presented. Alicherry et al. [34] formulated the joint schedul-

ing, channel assignment and routing for networks with multiple interfaces per node.

They devised a constant approximation algorithm which was used to empirically

demonstrate the impact of multiple channel on throughput.

Distributed schemes for channel assignment, routing and scheduling are presented

in [35, 36]. Lin et al. [35] proposed a distributed algorithm based on the greedy

maximal weighted scheduling algorithm, and Wang et al. [36] proposed a heuristic

algorithm where routes are chosen according to a routing metric that captures spatial

and frequency reuse. Once a path is established, the channel assignment and link
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scheduling are simultaneously determined.

3.4 Scheduling with Directional Antennas

The main advantage of using directional antennas is the reduced interference and

the possibility of having parallel transmissions among neighbors with a consequent

increase of spatial reuse. The use of directional antennas was proved to improve

the asymptotic bound on throughput by a constant factor with respect to the re-

sults presented in [3]. The factor depends on the beamwidth of the antennas used

for transmission and reception [5]. Many practical schemes have been proposed to

attempt to approach this bound. We include here some relevant work.

Spyropoulus et al. [37] formulated the scheduling problem as a matching in a

graph. A matching in a graph is a subset of edges (i.e., links in the network topology)

that have no vertices in common. The scheduling process consists of finding a series of

maximum-weight matchings. Each matching constitutes a set of edges which can be

scheduled simultaneously. The allocation time for each matching is chosen according

to the traffic flowing through the most congested edges of the matching.

Cain et al. [38] described the scheduling in wireless networks as a graph coloring

problem. Each color represents a time slot. Given a set of links which need to be

scheduled, the main idea is to assign a color to each link such that no node has

more than one link colored with the same color. The objective, therefore, is the

minimization of colors so that each link is colored. A distributed scheme is then

proposed to solve the problem.

Capone et al. [39] presented an ILP for the joint routing and scheduling problem

with directional antennas. The authors also proposed a heuristic based on column

generation approach. The main concern of this approach, however, is the high com-
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putational effort to solve the problem.

3.5 MPR - Theoretical Work

The multi-packet reception model was introduced in [40] by Ghez et al., where mul-

tiple simultaneous packet receptions can be inferred by a probabilistic model, as

opposed to the classical methods in which a deterministic failure would be declared.

Specifically, the authors proposed the multi-packet reception model given by Equa-

tion (2.9), which was extensively used in subsequent work.

In [41], Mergen et al. analyzed the performance of two MAC and routing protocol

combinations in regular (grid) MPR networks. In the first scenario, the performance

of a simple MAC protocol based on slotted aloha and optimal routing is analyzed,

while in the second scenario, an optimal MAC protocol with a random walk routing

protocol is evaluated. The authors concluded that the MAC protocol does not change

the order of the network capacity, but the routing does change the order, and a poor

routing protocol can significantly degrade the performance of large networks.

Garcia-Luna-Aceves et al. [6] showed that MPR increases the order of per-source

throughput by a logarithmic factor with respect to the protocol model. An extension

of this work was presented in [20], where the throughput is also showed to be improved

with respect to the physical model.

Moraes et al. [42] presented an architecture that exploits the advantages of MUD,

SIC, array antennas, CDMA and mobility to increase the per-source throughput on

WMNs. The overall improvement in the network performance is obtained at a cost

of considerable increased processing complexity in the nodes.

Summarizing, the theoretical work [6, 20, 42] exploring MPR clearly shows that

architectures exploiting multi-packet reception can increase the order the throughput
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capacity of wireless network. However, few practical schemes were already proposed;

some of them are discussed in the next section.

3.6 MPR - Protocols and Architectures

Few MAC protocols, routing and scheduling schemes that exploit MPR capability

have already been proposed. Zhao et al. [17] proposed the first MAC protocol

designed explicitly for networks with MPR capability. The key idea of the protocol

is to adaptively grant access to the channel to a number of users such that the

expected number of successfully received packets is maximized. The protocol tries

to avoid unnecessary empty slots for light traffic and excessive collisions for heavy

traffic. The difficulty of the protocol, however, lies in its computational complexity

which grows exponentially with the number of users in the network. To overcome

this problem, in [18] the same authors proposed a simpler algorithm that achieves a

comparable performance to the one in [17].

Wang et al. [16]. proposed a max-flow formulation that considers MPR capability,

which results into an ILP. Due to the intractability of the problem (ILP is NP-hard,

and the size of the problem increases exponentially with the number of links), the

authors developed a centralized heuristic algorithm that jointly performs routing and

scheduling. An interesting result that opens a research issue is the system bottleneck

resulting from the fact that nodes cannot transmit and receive simultaneously.

Celik et al. [15] studied the behavior of legacy MAC protocols (i.e., similar

to the 802.11 MAC protocol) in single-hop MPR networks. Their analytical and

simulation results showed that the throughput reduction is very significant. The

authors also devised a simple scheduling mechanism for MPR networks that leads to

a considerable improving.
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3.7 Summary

Table 3.1 presents a summary of the papers discussed in this chapter. The table

indicates also whether a paper addresses routing and channel assignment or not. The

columns Dir. Antenna and MPR capability indicate if directional antennas and MPR

capability are considered. Column Program. m. refers to the programming model

proposed (e.g., max-flow linear program (LP), integer linear program (ILP), etc.).

Since many programming models result in intractable problems (e.g., integer linear

programming), the column Algorithm/Protocol refers to the practical algorithm and

or protocol used to solve the problem, and columns Centralized and Distributed

indicate how they are implemented. The last column, Int. model, indicates the

model of interference used in the corresponding paper.

Open Research Issues

Having surveyed previous work, we found several open research issues dealing with

MPR. The following list points out some relevant work not considered in the litera-

ture:

1. Limitations of MPR networks. Theoretical work by Garcia-Luna-Aceves et al.

[6] demonstrated that MPR increases the order of capacity of random wireless

networks by a logarithmic factor with respect to the protocol model [3]. The

same authors [20] demonstrated that throughput is also improved with respect

to the physical model [3], and that MPR provides greater improvement than

network coding. However, practical schemes such as [16] show that MPR only

(i.e., without additional interface resources) may not improve the throughput

substantially.

2. The use of directional antennas with multi-packet reception. There is no work
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that considers the use of directional antennas with multi-packet reception. A

reason may be the fact that MPR capability, intuitively, mitigates the inefficient

spatial reuse of omni-directional antennas. However, the impact of directional

antennas in MPR networks is a very important open research issue, which is

worth to study.

3. The use of multiple transmit interfaces. Previous work attempted to improve

the throughput in MPR network by increasing the MPR capability of nodes.

However, as pointed out in item 1, this may not be enough to substantially

improve throughput. We think that the number of transmit interfaces plays

a key role in MPR networks, and it must be considered to fully exploit MPR

capability.

4. Computational efficient schemes to solve the throughput optimization problem.

From Table 3.1, the only computational scheme presented in previous work is

an ILP [16], which is only useful for networks with a small number of nodes.

Thus, this is a clear open research issue that has to be solved.

5. Distributed protocols. As seen in Section 3.6, a very limited number distributed

protocols specially devised for MPR networks were proposed. The work by

Celik et al. [15] clearly demonstrates that the use of legacy protocols in MPR

networks leads to a very poor performance.

From the point of view of the protocol stack, two main layers directly involved

in the throughput optimization problem are the routing and the MAC. Regarding

these two layers, we can point out the following.

• Routing Layer

Except for [16], there is no work dealing with routing for MPR networks. Fur-

thermore, Garcia-Luna-Aveces et al. [16] proposed an ILP, which is intractable.
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There is a need for new routing metrics for MPR networks, since previous ap-

proaches such as [8] focused on the minimization of intraflow interference. Since

MPR mitigates the effect of this type of interference and helps in improving the

spatial reuse, this may not be the main issue for MPR networks. Investigation

of new routing schemes and metrics are needed.

• MAC Layer

Most scheduling protocols are based on the protocol model and the conflict

graph. In this schemes, only one transmission is scheduled in the neighborhood

of the sender node (its own transmission). For example, the IEEE 802.11 Dis-

tributed Coordination Function (DCF) adopts a backoff mechanism for which

a node sensing the channel busy decreases its transmission probability. This

becomes a very conservative approach for MPR networks, since multiple simul-

taneous transmissions may be achievable. New scheduling algorithms should

take this fact into account to grant access to the channel to the optimal number

of senders.

The joint routing and scheduling problem has only been considered in [16]. No

distributed approach has been proposed yet for this problem. Furthermore, the

results obtained in [16] open many question. Specifically, they showed that the

bottleneck to further improve the performance is the fact that nodes cannot

transmit and receive at the same time.
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Ref Year R
o
u
ti

n
g

C
h
a
n
n
el

a
ss

ig
n
.

D
ir

.
a
n
te

n
n
a

M
P

R
ca

p
a
b
il
it
y

Program. m. C
en

tr
a
li
ze

d

D
is

tr
ib

u
te

d

Algorithm/Protocol. Int. model
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[25] 2003 x MAC 802.11 Ideal
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Protocol

[26] 2005 x Heuristic approx.
for clique enumera-
tion

Protocol

[27] 2004 x Heuristic Protocol
[28] 2007 x Heuristic based on

Bellman-Ford algo-
rithm

Protocol

[29] 2003 ILP x Column generation Protocol
[10] 2003 x Max-flow LP x Protocol
[30] 2005 x Max-flow LP x Heuristic approxi-

mation algorithm
Protocol

[31] 2005 x LP x Column generation Protocol
[32] 2006 x Max-flow

LP/ILP
x Heuristic based

on Dijkstra and
greedy scheduling

Protocol

[33] 2005 x x Max-flow
LP/ILP

x Heuristic approxi-
mation algorithm

Protocol

[34] 2006 x x Max-flow
LP/ILP

x Heuristic approxi-
mation algorithm

Protocol

[35] 2007 x x x Greedy maximal
weighted schedul-
ing algorithm

Protocol

[36] 2008 x x x Heuristic protocol Protocol
[37] 2003 x x Maximal-

weight
matching

x Dijkstra and
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matching

Protocol

[38] 2003 x x Graph color-
ing

x Heuristic graph
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Protocol
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x Column generation Physical
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MPR Protocol

This work 2009 x x x Max-flow
LP
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approximation
and greedy
algorithms

MPR Protocol
and multi-
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Problem Formulation and

Characterization

In this chapter, we present a mathematical generalized model for the throughput op-

timization problem in multi-hop wireless networks that support multi-packet recep-

tion capability. To model wireless interference, the formulation incorporates either

MPR protocol model or multi-access channel model. The latter permits to accu-

rately account for the achievable link capacities used by simultaneous transmissions.

The problem is modeled as a joint routing and scheduling problem. The scheduling

subproblem deals with finding optimal schedulable sets, which are defined as sub-

sets of links that can be scheduled or activated simultaneously. As a main result,

we demonstrate that any solution of the scheduling subproblem can be built with

|E| + 1 or fewer schedulable sets, where |E| is the number of links of the network.

This result contrasts with the conjecture that states that a solution of the scheduling

subproblem, in general, is composed of an exponential number of schedulable sets

[10]. The model can be applied to a wide range of networks, such as half and full

duplex systems, networks with directional or omni-directional antennas with one or

multiple transmit antennas per node.
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The chapter is organized as follows. Section 4.1 discusses the assumptions consid-

ered in the rest of the chapter. Section 4.2 presents the formulation of the throughput

optimization in MPR-capable network. The problem is presented as a joint routing

routing and scheduling optimization problem. Both the routing and scheduling sub-

problems are discussed in 4.2.1 and 4.2.2 respectively. Finally, Section 4.3 charac-

terizes the problem as a convex one, and presents two important theorems derived

from the proposed formulation.

4.1 Assumptions

The assumptions considered in this chapter are:

1. The wireless network is MPR-capable. Thus, we use the models of interference

presented in Section 2.3. Both models, MPR protocol model and multi-access

channel model, state that the reception of all transmissions is achievable if

the number of simultaneous transmissions in the receiver range R is less than

or equal to K. The multi-access channel model imposes the additional con-

straint given by Equation (2.20). To avoid ambiguity, the specific model will

be explicitly stated as needed.

2. Nodes are equipped with M transmit antennas. The transmission power is uni-

form for every node. We consider directional transmission and omni-directional

reception. Directional transmission improves the spatial reuse, while omni-

directional reception maximizes the benefits of MPR.

3. The radiation pattern of transmit antennas is modeled with the flap-top model

given in Section 2.1.1, where β is beamwidth of the antennas.

4. Nodes are stationary.
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We will use the notation (M, K, β)-network to refer to a network with M in-

terfaces per node, where the receiver antenna can decode up to K packets simulta-

neously, and the transmit antennas have a beamwidth β. We use this notation to

simplify the explanation. It is straightforward to generalize to networks where M, K

and β are not the same at every node.

4.2 Problem Formulation

As in previous chapters, we represent a wireless network as a graph G = (V, E),

where V is the set of nodes and E the set of links; rij denotes the distance between

two nodes i and j. There exists a link e = (i, j) ∈ E from node i ∈ V to node

j ∈ V if rij ≤ R, where R is the receiver range. If the MPR protocol model is used

to model interference, the capacity of a link (i, j) is denoted as cij, and is computed

according to Equation (2.13). Note that this quantity is fixed. On the other hand,

if the multi-access channel is used to model interference, the capacity of the link

(i, j) is denoted as cij(S), where S is the set of link simultaneously activated. This

capacity must satisfy Equation (2.20).

The throughput optimization problem in wireless networks can be casted as a

special max-flow problem. Let N be the set of end-to-end flows. Each flow is char-

acterized by a 3-tuple (sn, dn, fn), which denotes the source node, the destination

node and the flow in bits per second (bps). Although a flow is characterized by

(sn, dn, fn), we will also use the term flow to informally refer to fn. The feasible

aggregated throughput, or simply throughput, is defined as follows.

Definition 4.1 Feasible throughput. A throughput of F =
∑

n∈N fn bits per second

for a set of flows N is said to be feasible if there is a scheme to schedule transmissions

and choice of routes between sources and destinations, so that every flow n ∈ N

40



Chapter 4. Problem Formulation and Characterization

can achieve a data transfer to its destination at the corresponding rate fn. The

scheme needs to specify, for each link, when it should be activated under the model

of interference, and the amount of data it should send. Data can be delayed at

intermediate nodes before reaching its destination.

The feasible throughput as defined above is considered the main performance

metric used in this work. Thus, the goal of the routing and scheduling schemes

discussed in the next sections is the maximization of this metric.

According to the definition of feasible throughput, the problem can be divided

into two main subproblems:

• Routing, which attempts to maximize throughput by routing through (poten-

tially) multiple paths connecting each source-destination pair, and may ignore

the impact of wireless interference to simplify its formulation;

• Scheduling, which deals with finding sets of links that can be scheduled simul-

taneously and the fraction of time allocated to each set.

In order to formulate the problem succinctly, we first present the routing sub-

problem, followed by the scheduling subproblem. Then, we give the joint routing

and scheduling problem.

4.2.1 Routing Subproblem

In the absent of wireless interference, the max-flow model attempts to optimize

the throughput by routing through (likely) multiple paths connecting each source-

destination pair. The routing problem formulation is shown in Figure 4.1. Equation

(4.1) is the throughput to be optimized. Equation (4.2) represents the flow con-

servation constraint; for each flow n ∈ N , the amount of flow at each node other
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max FRT -LP =
∑

n∈N

fn (4.1)

∑

j:(i,j)∈E

xn
ij −

∑

j:(j,i)∈E

xn
ji =





fn; i = sn

−fn; i = dn

0; otherwise
n ∈ N (4.2)

∑

n∈N

xn
ij ≤ ωij; (i, j) ∈ E (4.3)

fn ≥ 0; n ∈ N (4.4)

xn
ij ≥ 0; n ∈ N, (i, j) ∈ E (4.5)

Figure 4.1: Routing linear program (RT-LP).

than its own source or destination must be zero. Equation (4.3) states that the total

amount of flow routed through a link (i, j) cannot exceed a capacity ωij. The actual

value of the capacity depends on the model of interference. If the MPR protocol

model is used, the capacity of a link is considered as a constant [6, 16]. On the other

hand, if the multi-access channel model is used, the capacity of a link depends on the

links simultaneously activated with that link. Because of the circular dependency

between the routing and the scheduling subproblems, the approach in this work is to

consider ωij as an upper bound on capacity, which should be revisited in the schedul-

ing subproblem (as we shall see in Section 4.2.2). Equations (4.4) and (4.5) restrict

the per-source throughput and the amount of flow on each link to be non-negative.

We will refer to Equations (4.1)-(4.5) as routing linear program (RT-LP). The model

given by RT-LP is sometimes called sum multicommodity flow model in the literature

[43].
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4.2.2 Scheduling Subproblem

In wireless networks, generally only some links may be scheduled or activated simul-

taneously. A schedulable set S ⊆ E is a set of links which can operate at the same

time. For example, in the network of Figure 4.2(a), if we assume that nodes have only

one omnidirectional transmit antenna and links (a, b), (c, d) and (e, f) conflict with

each other (i.e., they cannot be simultaneously scheduled) then only one link can be

scheduled at any time. Thus, S1 = {(a, b)}, S2 = {(c, d)} and S3 = {(e, f)} consti-

tute the set of schedulable sets. The conflict graph corresponding to the network is

shown in Figure 4.2(b).

Note that when constructing the conflict graph, we draw an edge between two

vertices if the corresponding links conflict with each other. Thus, for this particular

example, where the transmissions are omnidirectional and M = K = 1, a schedulable

set S ⊆ E must be an independent set in the conflict graph Gc. An independent set is

a set of vertices, such that there is no edge between any two of the vertices. Referring

to Figure 4.2, note that the three schedulable sets correspond to independent sets in

the conflict graph of Figure 4.2(b).

Feasibility Conditions for Scheduling in (M, K, β)-networks

In general, for M ≥ 1, K ≥ 1 and when nodes can directionally transmit, a schedu-

lable set S may be feasible even though it does not form an independent set in the

conflict graph. The feasibility conditions for scheduling in (M, K, β)-networks de-

pend on the model of interference. The MPR protocol model restricts the number

of simultaneous transmissions around a receiver node. We start this section by pre-

senting these constraints. Then, we consider the multi-access channel model and the

additional constraints on the link capacities used by concurrent transmissions.

Let S ⊆ E be a set of links which are simultaneously scheduled. For any (i, j) ∈ S,
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Figure 4.2: (a) A wireless network with three links conflicting with each other, and
(b) corresponding conflict graph. (c), (d), (e) Schedulable sets under the protocol
model: S1 = {(a, b)}, S2 = {(c, d)}, and S3 = {(e, f)}.

Ri, Tj, and T ′
j are defined by Equations (2.2), (2.16) and (2.21). Then, we have the

following definition.

Definition 4.2 Schedulable set under MPR protocol model. Given an (M,K, β)-

network, a set S ⊆ E is a schedulable set under the MPR protocol model iff ∀
e = (i, j) ∈ S:

|Ri| ≤ M, (4.6)
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|T ′
j | ≤ K, (4.7)

The term on the left hand side of Equation (4.6) is the number of links having

node i as transmitter, which must be less than or equal to M . Equation (4.7) states

that the receiver node j can decode at most K packets. Note that a node cannot

transmit and receive simultaneously with a single antenna, but through different

interfaces. The use of directional antennas permit such a scheme, since transmit

antennas radiate only to certain directions and minimize the interference at the

location of the transmitter node. Furthermore, interference cancelation techniques

allow to remove a known unwanted transmitted signal by subtracting it from the

received signals.

Additional Feasibility Conditions for Multi-Access Channel Model

The multi-access channel model imposes additional constraints on the rates used to

transmit simultaneous packets. As seen in Equation (2.20), the link capacities used

by concurrent transmissions must lie inside the capacity region. Thus, for multi-

access channels, we have the following definition.

Definition 4.3 Schedulable set under multi-access channel model. Given an (M, K, β)-

network, a set S ⊆ E is a schedulable set under the multi-access channel model iff ∀
(i, j) ∈ S:

|Ri| ≤ M, (4.8)

|T ′
j | ≤ K, (4.9)

∑

i′∈T

ci′j(S) ≤ ϕ

(∑
i′∈T Pi′j

ηj

)
,∀T ⊆ Tj. (4.10)
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While we focus on (M, K, β)-networks, in next sections we will also consider

half-duplex (HD) networks for performance comparison purposes. Since Equations

(4.6), (4.7), (4.8), and (4.9) model networks where nodes can send and receive simul-

taneously through different interfaces, they should be substituted for the following

constraint in HD networks:

|Ri|+
⌈ |T ′

i |
K

⌉
≤ 1, (4.11)

for every node i scheduled in S as transmitter or a receiver.

As we shall see, the problem formulation presented in Section 4.2.3, and the

schemes proposed in Chapter 5 are general and can be applied to both half-duplex

and full-duplex networks.

Scheduling Constraints

Before extending RT-LP so that wireless interference is considered, we formally define

a schedule as follows.

Definition 4.4 Feasible Schedule. Let G = (V,E) be an (M,K, β)-network, and

Γ = {S1, S2, ..., S|Γ|} be the set of all feasible schedulable sets satisfying Definition

4.2 or Definition 4.3, according to the interference model used. A feasible schedule

in G = (V,E) is a set Γ′ = {S1, S2, ..., S|Γ′|} ⊆ Γ of schedulable sets, and the fraction

of time allocated to each schedulable set. The schedule is periodic with period 1. If

λk, 0 ≤ λk ≤ 1 represents the fraction of time allocated to the schedulable set Sk,

then the schedule interval [0, 1] is ∪k[tk, tk+1], where links in Sk are activated for the

activity period tk+1 − tk = λk, k ∈ {1, 2, ..., |Γ′|}, t1 = 0 and t|Γ′|+1 = 1.
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Having defined the concept of a schedule, we now proceed to mathematically for-

mulate the scheduling constraints to incorporate to RT-LP. We will call the variable

λk as the activity period variable corresponding to the schedulable set Sk. The time

resource restriction in the scheduling subproblem can be written as:

|Γ|∑

k=1

λk = 1. (4.12)

Equation (4.12) can be interpreted as a resource allocation constraint, where the

resource to be allocated is time. The total fraction of time allocated to all schedulable

sets must be equal to one.

In the scheduling subproblem, links are scheduled according to the scheduling

constraints. Since a link may be activated during multiple activity periods, the

amount of flow routed through it must not exceed the sum of its capacity on those

periods multiplied by the corresponding activity periods:

∑

n∈N

xn
ij ≤ ∑

∀k∈{1,2,...,|Γ|}|(i,j)∈Sk

λkcij(Sk), (4.13)

where cij(Sk) is the capacity of link (i, j) when the set Sk is scheduled. Note that

for the MPR protocol model, this value is a constant, which may be equal to one

[6, 16], or may be computed according to Equation (2.13). On the other hand, for

the multi-access channel model, cij(Sk) must lie inside the capacity region given by

Equation (2.20).

4.2.3 Joint Routing and Scheduling Problem

In general, only a small subset Γ′ ⊆ Γ is needed to evaluate Equations (4.12) and

(4.13), as we shall see in Theorem 4.2. By incorporating Equations (4.12) and (4.13)

into RT-LP and optimizing not only over the variables given by Equations (4.4) and
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(4.5) but also over all possible set Γ′ ⊆ Γ of schedulable sets, the formulation of the

joint routing and scheduling problem is given in Figure. 4.3.

max
Γ′⊆Γ

FRTSCH-LP =
∑

n∈N

fn (4.14)

∑

j:(i,j)∈E

xn
ij −

∑

j:(j,i)∈E

xn
ji =





fn; if i = sn

−fn; if i = dn

0; otherwise
n ∈ N (4.15)

∑

n∈N

xn
ij ≤ ∑

∀k∈{1,2,...,|Γ′|}|(i,j)∈Sk

λkcij(Sk); (i, j) ∈ E (4.16)

|Γ′|∑

k=1

λk = 1 (4.17)

fn ≥ 0; n ∈ N (4.18)

xn
ij ≥ 0; n ∈ N, (i, j) ∈ E (4.19)

λk ≥ 0; k ∈ {1, 2, ..., |Γ′|} (4.20)

Figure 4.3: Routing and scheduling linear program (RTSCH-LP).

We will refer to this linear program as routing and scheduling linear program

(RTSCH-LP). The reason of the hardness of RTSCH-LP is the exponentially large

number of sets of schedulable sets. Potentially, there are 2|E| distinct sets Γ′ ⊆ Γ.

To find the optimal set requires an exhaustive search, which would take exponential

time. In the next section, we characterize RTSCH-LP and derive Theorems 4.1 and

4.2, which shed some lights on how to solve such a complex problem.
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4.3 Characterization of the Throughput Optimiza-

tion Problem

The complexity of the joint routing and scheduling problem is mainly determined

by the scheduling subproblem. Thus, we will briefly discuss the complexity of the

routing subproblem first, followed by the that of the scheduling subproblem.

Complexity of the Routing Subproblem

The routing subproblem is modeled by LP-RT, which is defined in Figure 4.1. This

linear program is a max-flow problem. The number of flow conservation constraints

(Equation (4.2)) is |V | · |N |, because there is one constraint per node per flow.

Similarly, the number of capacity constraints (Equation (4.3)) and flow variable

constraints (Equations (4.4) and (4.5)) are |E|, |N |, and |E| · |N | respectively. Thus,

the number of constraints and variables are polynomially bounded in |E| · |N |, and

can be solved by a polynomial time linear programming algorithm. For example, by

using an interior point method, the running time of the algorithm to solve LP-RT is

O(|E|3|N |3) [22].

From an optimization perspective, LP-RT describes a routing polytope. This

polytope is the collection of feasible points ignoring wireless interference, and is

a simple structure on which a linear objective function can be easily optimized.

For example, if the simplex algorithm is applied to RT-LP, it will find the optimal

throughput in the following way: start from a vertex of the polytope, say the origin,

where xn
ij = 0 for all n ∈ N, (i, j) ∈ E, and then proceed to improve the solution

(by moving along edges of the polytope from one polytope vertex to another) until

reaching the polytope vertex corresponding to the optimal throughput. Since in

practice simplex run in polynomial time, the solution will be found in polynomial
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time [44].

Characterization of the Scheduling Subproblem

The complexity of the routing and scheduling linear program (RTSCH-LP) is mainly

determined by the scheduling subproblem. Thus, a key issue is the characterization

of it. We start by presenting some definitions.

Let G = (V, E) be an (M, K, β)-network, where the set of links is ordered in an

arbitrary manner E = {e1, e2, ..., e|E|}. The link space {0, 1}|E| is the vector space

over the 2-element field {0, 1} of all function (scheduler) E → {0, 1}. Every point

of {0, 1}|E| corresponds naturally to a subset of E, the set of those links to which it

assigns a one, and every subset of E is uniquely represented in {0, 1} by its indicator

function. We may thus think of {0, 1}|E| as the power set of E made into a vector

space. Since {{e1}, {e2}, ..., {e|E|}} is a basis of {0, 1}|E|, the dimension of the vector

space is |E|. According to these definitions, a schedulable set can be characterized

by a schedulable vector ~S of size |E|. The jth element of this vector is set to one if the

link ej ∈ E is a member of ~S, and to zero otherwise. Any schedulable vector ~S can

be regarded as a point in {0, 1}|E|, which also becomes a vertex of the the convex hull

of the set of schedulable vectors. We call this this convex hull as allocation polytope,

which is formally defined as follows.

Definition 4.5 Allocation Polytope. Let G = (V, E) be an (M, K, β)-network, and

Γ = {S1, S2, ..., S|Γ|} be the set of all schedulable sets. Then, the allocation polytope

is defined as the convex hull of all schedulable vectors ~S1, ~S2, ..., ~S|Γ|, and is denoted

as Co(Γ).

The allocation polytope represents the region that tells whether a solution of

the scheduling subproblem is feasible or not. Let ~u = (u1, u2, ..., u|E|) be an |E|-
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dimensional utilization vector, where ui is the utilization of link ei, which indicates

the total fraction of time allocated to link ei. By regarding the utilization vector as

a point in {0, 1}|E|, we have the following theorem.

Theorem 4.1 Feasible Schedule. A solution to the scheduling subproblem given by

a set Γ′ = {S1, S2, ..., S|Γ′|} ⊆ Γ with corresponding activity periods λ1, λ2, ..., λ|Γ′| is

feasible iff the resulting utilization vector ~u lies within the allocation polytope.

Proof:

⇒ Assume a feasible schedule (i.e., a schedule that satisfies Definition 4.4), with a

set Γ′ = {S1, S2, ..., S|Γ′|} and corresponding activity periods λ1, λ2, ..., λ|Γ′|. Then ~u

must be of the form:

~u =
|Γ′|∑

i=1

λi
~Si. (4.21)

By definition, the allocation polytope is the set of all convex combinations of all

possible schedulable vectors:

Co(Γ) = {θ1
~S1 + ... + θk

~Sk, for all Si ∈ Γ,θi ≥ 0, θ1 + ... + θk = 1}. (4.22)

Note that the utilization vector ~u given by Equation (4.21) is a convex combination

of the schedulable vectors corresponding to the sets in Γ′, where the weights are

given by the activity periods λ1, λ2, ..., λ|Γ′|. Since Γ′ ⊆ Γ, ~u is a particular point

that satisfies Equation (4.22) and therefore lies inside the allocation polytope.

⇐ Assume that ~u lies within the allocation polytope. Then, ~u can be expressed as

a convex combination of a set of schedulable vectors, which have a corresponding

set Γ′ = {S1, S2, ..., S|Γ′|}. By allocating λi seconds to Si ∈ Γ′ (the schedulable set

that has a corresponding schedulable vector ~Si), we can build a feasible schedulable,

which implies that ~u is feasible.
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Theorem 4.1 implies that the optimal schedule can be found by using linear pro-

gramming, since the solution space is bounded by linear constraints. The hardness,

however, arises because of the non-trivial procedure to build the solution space of

the scheduling subproblem (i.e., the allocation polytope), since it may have an ex-

ponential number of vertices that can only be found by enumeration.

The following example illustrates the throughput optimization problem as an

optimization problem, and the application of Theorem 4.1.

Figure 4.4: (a) Network topology with three links: (a, b), (c, b), and (b, d). (b)
Allocation polytope, for K = 1 and half-duplex operation of network in (a). The

schedulable vectors are: ~S0 = (0, 0, 0), ~S1 = (1, 0, 0), ~S2 = (0, 1, 0), and ~S3 = (0, 0, 1).
(c) Allocation polytope, for K = 2, of network in (a). The schedulable vector
~S4 = (1, 1, 0) is included, since node b can simultaneously decode packets from nodes
a and c. (d) Allocation polytope including all potential schedulable vectors of network

in (a). The additional schedulable vectors are: ~S5 = (1, 0, 1), ~S6 = (0, 1, 1), and
~S7 = (1, 1, 1).

Example 4.1. Consider the network shown in Figure 4.4(a), and assume a

half-duplex network with K = 1. The channel is an AWGN with variance η, and
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wireless interference is modeled according to the multi-access channel model. Assume

also the existence of two end-to-end flows: flow 1, from node a to node d routed

through node b; and flow 2, from node c to node d routed through node b. The

objective is the maximization of the aggregated throughput, namely F = f1 + f2.

The flow conservation constraints (Equation (4.15)) state that the amount of flow

at node b must be zero, while the amount of flow leaving nodes a and c must be

maximized. The only set that may activate the three links is Γ′ = {S1, S2, S3},
where S1 = {(a, b)}, S2 = {(c, b)}, and S3 = {(b, d)}. The corresponding link capacity

constraints given by Equation (4.16) are:

x1
ab ≤ λ1ϕ

(
Pab

ηb

)
, (4.23)

x2
cb ≤ λ2ϕ

(
Pcb

ηb

)
, (4.24)

x1
bd + x2

bd ≤ λ3ϕ

(
Pbd

ηd

)
, (4.25)

where ηb = ηd = η. The scheduling constraint given by Equation (4.17) is expressed

as:

|Γ′|∑

i=1

λi = λ1 + λ2 + λ3 = 1. (4.26)

This equation requires the scheduling algorithm to allocate time to each schedulable

set, such that the resulting utilization vector lies inside allocation polytope shown

in Figure 4.4(b). Assume now a multi-access channel with K = 2, where node b can

simultaneously decode transmissions from node a and c. The set S4 = {(a, b), (c, b)}
is now a schedulable set, and the capacity of links (a, b) and (c, b) are restricted to lie

inside the capacity region shown in Figure 4.5, where ηb = η. Let ~c2 be the operation

point. By scheduling S4 along with S3 (i.e., Γ′ = {S3, S4}), the constraints given by
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Figure 4.5: Capacity region for receiver node b in Figure 4.4(a).

Equation (4.16) are:

x1
ab ≤ λ4ϕ

(
Pab

ηb

)
, (4.27)

x2
cb ≤ λ4ϕ

(
Pcb

ηb + Pab

)
, (4.28)

x1
bd + x2

bd ≤ λ3ϕ

(
Pbd

ηd

)
, (4.29)

(4.30)

where ηd = η, and λ3 + λ4 = 1. Since S4 is now a schedulable set, it is included

as a vertex of the the allocation polytope shown in Figure 4.4(c). Finally, the use

of directional antennas and full-duplex capability can further enlarge the allocation

polytope, as shown in Figure 4.4(d).

From the previous example, we can see that links (a, b) and (c, b) are activated

for λ4 seconds, and link (b, d) for λ3 seconds. In a general scheduling problem, we

are interested on activating every link ei ∈ E for certain fraction of time ui. The

following proposition upper bounds the number of schedulable sets to achieve this.
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Theorem 4.2 Any utilization vector ~u can be represented as a convex combination

of |E|+ 1 or fewer schedulable vectors in Co(Γ).

Proof: Theorem 4.2 can be demonstrated by applying Caratheodorys’s theo-

rem on convex sets [9]. Let Γ1 = {S1, S2, ..., S|Γ1|} ⊆ Γ be a schedule with cor-

responding allocation times λ1, λ2, ..., λ|Γ1| greater than zero, and utilization vector

~u = (u1, ..., u|E|). We will assume that |Γ1| > |E|+1, and show that there is solution

Γ2 that produces the same utilization vector with no more than |E|+ 1 schedulable

sets. Denote the ith scalar component of the schedulable vector ~Sk as Ski. Then, for

any ei ∈ E, the component ui of ~u is:

|Γ1|∑

k=1

λkSki = ui; ei ∈ E. (4.31)

Now, we can formulate a linear program where the optimization variables are activity

period variables λ′1, λ
′
2, ..., λ

′
|Γ1|, as shown in Figure 4.6. The fundamental theorem

|Γ1|∑

k=1

λ′kSki = ui; ei ∈ E (4.32)

|Γ1|∑

k=1

λ′k = 1; (4.33)

λ′k ≥ 0; k ∈ {1, 2, ..., |Γ1|} (4.34)

Figure 4.6: Linear program to obtain Γ2 = {Sk|Sk ∈ Γ1 and λ′k > 0}.

of linear programming states that every feasible linear program has a basic feasible

solution. In a basic feasible solution, only the basic variables are nonzero. Here, we

assume that the solution is a non-degenerate basic feasible solution. In a degenerate

basic feasible solution, a basic variable can be zero. Referring back to Figure 4.6, the

linear program has |E| + 1 basic variables (one per equality constraint). Thus, this
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basic solution naturally corresponds to a set Γ2 = {Sk|Sk ∈ Γ1 and λ′k > 0}, which

demonstrates Theorem 4.2.

Theorem 4.2 implies that any solution to the scheduling subproblem can be built

no more than |E| + 1 schedulable sets, contradicting the conjecture that says that

a solution is generally composed of an exponential number of schedulable sets [10].

Theorem 4.2 encourages the design of new scheduling polynomial time algorithms

to approximate to optimal solutions, instead of devising complex algorithms that

search for an exponential number of schedulable sets [10]. Certainly, this is an open

research topic that deserves close attention. The following example highlights this

fact.

Example 4.2. Consider the network of Figure 4.4(a) and allocation polytope

shown in Figure 4.4(d). Let Γ′1 = {S1, S2, S3, S4, S5, S6} be a schedule with corre-

sponding allocation times λi = 1
6

for all i ∈ {1, 2, ..., 6}. The schedule produces

an utilization vector ~u =
∑6

i=1 λi
~Si = (1

2
, 1

2
, 1

2
), activating each link for 1

2
seconds.

According to Theorem 4.2, we can build a schedule with no more than |E| + 1 = 4

schedulable sets that produces the same utilization vector. A possible solution is the

set Γ′2 = {S0, S7} with corresponding allocation times of λ0 = λ7 = 1
2
. The allocation

of 1
2

seconds to S0 implies that the network is idle for half of the time. Notice also

that |Γ′2| = 2 < |E| + 1. In general, however, the number of schedulable sets we

should expect is |E| + 1. For example, for the allocation polytope of Figure 4.4(b)

and for an utilization vector ~u = (1
4
, 1

4
, 1

4
), the only set that produces the desired ~u is

Γ′3 = {S0, S1, S2, S3} with corresponding allocation times λi = 1
4

for i ∈ {0, 1, 2, 3}.
Thus, |Γ′3| = |E|+ 1.
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Complexity of the Scheduling Subproblem

The complexity of the routing and scheduling linear program (RTSCH-LP) is mainly

determined by the scheduling subproblem. To find an optimal solution, the problem

requires searching for a set of optimal schedulable vectors in {0, 1}|E|, which is ex-

ponentially large in |E|. The hardness of the problem, alternatively, can be proved

by noting that the throughput optimization problem under the protocol model, for

omni-directional antenna networks without MPR-capability [10], is a particular case

of the of the joint routing and scheduling problem in an (M, K, β)-network (i.e., it

can be reduced to RTSCH-LP). Since the former is an NP-hard problem, RTSCH-LP

is also NP-hard.

4.4 Summary

In this chapter, we have presented a generalized problem formulation for the through-

put optimization in MPR-capable networks. The flexibility of the formulation per-

mits to model a wide range of networks, such as half and full duplex systems, or

networks with directional and omni-directional antennas with one or multiple trans-

mit antennas per node. Besides the MPR protocol model of interference, in which the

unit of transmission is the packet, the formulation incorporates multi-access chan-

nel, which accurately accounts for the achievable link capacities used by simultaneous

transmissions. We have further characterized the problem as a convex optimization.

By using convex analysis, we have proved two fundamental theorems that may be

relevant for future protocols and architecture designs for wireless networks.
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Joint Routing and Scheduling

Schemes

In this chapter, we present polynomial time joint routing and scheduling (JRS)

schemes based on a combination of greedy, approximation algorithm, and linear

programming paradigms to solve the throughput optimization problem presented in

Chapter 4. Because of the hardness of the problem, the proposed approaches decou-

ple the routing and scheduling subproblems. The routing subproblem is solved by

using linear programming. For the scheduling subproblem, we propose three different

scheduling algorithms based on greedy and approximation algorithms.

The schemes consist of three steps:

1. Solve RT-LP.

2. Solve the scheduling subproblem. Create a set Γ′ ⊆ Γ by using an approx-

imation or a greedy algorithm. To run in polynomial time, the scheduling

algorithm guarantees that the number of schedulable sets found during the

searching process is upper-bounded by |E|.
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3. Solve RTSCH-LP, considering only the subset Γ′ ⊆ Γ found in step 2.

The remainder of this chapter is organized as follows. Section 5.1 discusses the

first step, which solves the routing subproblem. Sections 5.2, 5.3, and 5.4 present

three different scheduling algorithms to solve the scheduling subproblem. The first

algorithm is a greedy approach which solves the scheduling subproblem under the

MPR protocol model. The second algorithm is an approximation algorithm which

guarantees that, for certain type of networks, its schedule period is at most two

times the schedule period of the the optimal scheduler. This algorithm also solves

the scheduling subproblem under the MPR protocol model. The third algorithm is

another greedy approach which solves the scheduling subproblem under the multi-

access channel model. The algorithm schedules link so that they operate at max-

capacity. Finally, Section 5.6 presents a linear program to solve step 3, and discusses

upper and lower bounds on throughput as well as the complexity of the overall

scheme.

5.1 Routing Linear Program

This step consists of solving RT-LP. The procedure is intended to identify multiple

paths for each flow, such that the throughput is maximized. In the absence of wireless

interference (e.g., on a wired network), finding the maximum achievable throughput

between the source and the destination, given the flexibility of using multiple paths,

is formulated as the max-flow problem given by RT-LP in Figure 5.1.

The output of the step 1 is the set of links which are assigned a positive flow

value by RT-LP, namely ERT -LP = {(i, j) ∈ E|∑n∈N xn
ij > 0}, where the variables

xn
ij
′s are the optimization variables of RT-LP given by Equation (5.5).

The main and key issue regarding LP-RT is the link capacity ωij used in Equation
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max FRT -LP =
∑

n∈N

fn (5.1)

∑

j:(i,j)∈E

xn
ij −

∑

j:(j,i)∈E

xn
ji =





fn; i = sn

−fn; i = dn

0; otherwise
n ∈ N (5.2)

∑

n∈N

xn
ij ≤ ωij; (i, j) ∈ E (5.3)

fn ≥ 0; n ∈ N (5.4)

xn
ij ≥ 0; n ∈ N, (i, j) ∈ E (5.5)

Figure 5.1: Routing linear program (RT-LP).

(5.3), for all (i, j) ∈ E. If this quantity is considered as a constant as proposed in [3, 6,

16] (e.g., unit link capacity [16]), then RT-LP can be easily solved. This simplification

permits to find suboptimal solutions in a polynomial time. At the same time, the

simplification is compatible with the MPR protocol model, where a link capacity is

given by Equation (2.13)). On the other hand, if the multi-access channel model is

used, then any link capacity may be affected by all links simultaneously activated

in the network, and must lie inside the capacity region given by Equation (2.20).

The difficulty of evaluating Equation (2.20) arises from the dependency between the

routing and the scheduling subproblems. To accurately find the capacity of a link

(i, j), the routing subproblem must know which links are simultaneously scheduled

with link (i, j). On the other hand, the scheduling subproblem schedules the link

(i, j) according to the flow routed through it, which is assigned by the routing process.

Thus, to decouple this circular dependency, the right-hand side of Equation (5.3) is

just considered as an upper bound in step 1. The value of the upper bound is given

by:

ωij = ϕ
(
ζr−γ

ij

)
, (5.6)
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where:

ζ =





1, under the the MPR protocol model;

Pij

η
, under the multi-access channel model.

(5.7)

Pij is given by Equation (2.15). It is the power of the signal transmitted by node i at

receiver node j, and η the variance of the AWGN channel. Clearly, ωij is an upper

bound, since the total noise at receiver node j is given by η only. When solving the

scheduling subproblem, the actual link capacity will be revisited, so that the noise

at receiver node j takes the value given by Equation (2.18).

RT-LP is a linear program bounded in size. According to Equation (5.4), there

are |N | flow variables. Similarly, there are |N | · |E| variables used to indicate the

amount of flow routed by each link, as seen in Equation (5.5). The number of flow

conservation constraints given by Equation (5.2) is |N | · |V |, and the number of links

capacity constraints given by Equation (5.3) is |E|. Thus, the number of variables

and constraints are O(|N | · |E|), and can be solved by a polynomial time linear

programming algorithm [22].

5.2 Greedy Scheduler Under MPR Protocol Model

Step 2 processes the set ERT -LP = {(i, j) ∈ E|∑n∈N xn
ij > 0} given by step 1. The

scheduling algorithm schedules all the links in that set, such that every link (i, j)

can send the amount of flow
∑

n∈N xn
ij during a schedule period. In this section, we

present a greedy scheduler under the MPR protocol model.
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Algorithm Description

The scheduling algorithm partitions the set ERT -LP = {(i, j) ∈ E|∑n∈N xn
ij > 0}

in maximal disjoint schedulable sets, and tries to minimize the number of such sets.

A maximal set S is defined as a schedulable set (Definition 4.2), such that, when

all links in S are activated, no more links can be activated without violating the

scheduling constraints. The algorithm proceeds by always choosing the next link

with maximum link utilization. The utilization of a link (i, j) defined in Section 4.3

can be expressed as:

uij =
total number of bits routed through link (i, j)

capacity of link (i, j)
(5.8)

=

∑
n∈N xn

ij

cij

, (5.9)

where
∑

n∈N xn
ij is the flow through link (i, j) resulting from step 1. Note that the

utilization uij is the fraction of time link (i, j) must be activated, so that
∑

n∈N xn
ij

bits can be sent through it during a schedule period. The detailed process is shown in

Figure 5.3. The Greedy Scheduler I (GSI) creates sets S1, S2, ..., S|ΓGSI |, where every

link of each set satisfies the feasibility conditions given by Definition 4.2. In line 9, a

link is greedily chosen to belong to the set Sk according to the link utilization. The

greedy selection attempts to group links with similar utilizations in the same set.

Throughput Performance of GSI

The output of GSI is ΓGSI = {S1, S2, ..., S|ΓGSI |} only. The algorithm is not intended

to allocate corresponding allocation times, which is done in step 3. However, we

may easily find a feasible solution for RTSCH-LP at this step, which may be used

as a lower bound to the solution produced by step 3 (as we shall see in Section 5.6).

To this end, consider the following allocation policy. Let τk be the fraction of time
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Greedy Scheduler I (GSI)

1: INPUT: ERT -LP , G(V, E)
2: OUTPUT: Set ΓGSI of schedulable sets.
3: ΓGSI = {};
4: k = 0;
5: while (ERT -LP 6= {}) do
6: k = k + 1;
7: Sk = {};
8: while ∃ (i, j) ∈ ERT -LP |E(Sk ∪ {(i, j)}) do
9: (i, j) = arg max{uij|(i, j)ERT -LP and E(Sk ∪ {(i, j)})};

10: Sk = Sk ∪ {(i, j)};
11: ERT -LP = ERT -LP − {(i, j)};
12: end while
13: τk = max{uij|(i, j) ∈ Sk};
14: ΓGSI = ΓGSI ∪ Sk;
15: end while
16: return ΓGSI ;

Figure 5.2: Greedy Scheduler I (GSI). E(S) stands for the event E(S) = {Equations
(4.6) and (4.7) are satisfied for all (i, j) ∈ S}.

allocated to the set Sk:

τk = max{uij|(i, j) ∈ Sk}. (5.10)

τk is equal to the maximum link utilization among all links in Sk. Define τGSI as the

period of the schedule produced by the algorithm; i.e.,

τGSI =
|ΓGSI |∑

k=1

τk. (5.11)

Clearly, a link (i, j) ∈ Sk is allocated enough time, such that the flow
∑

n∈N xn
ij routed

through it can be sent during a schedule period. Thus, the throughput produced by

this allocation policy is:
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FGSI =
end-to-end bits transmitted during a schedule period

schedule period
(5.12)

=
FRT -LP

τGSI

(5.13)

According to the Definition 4.4, the above allocation policy may not produce a

feasible schedule, since the period τ may be greater than 1. However, the solution

provided by the above allocation policy can be slightly modified with the following

allocation times:

λk =
τk

τGSI

, (5.14)

for all schedulable set Sk ∈ ΓGSI . Thus,

schedule period =
ΓGSI∑

k=1

λk =
ΓGSI∑

k=1

τk

τGSI

= 1, (5.15)

which satisfies Definition 4.4. Moreover, the throughput given by Equation (5.13)

still holds. The following example illustrates the operation of GSI.

Example 5.1. Consider the three links of Figure 5.3(a) with the respective link

utilizations: uab = 0.8, ucd = 0.6, and uef = 0.5. The operation of the scheduling

algorithm is shown in Figure 5.3(b). Assume that links conflict with each other, and

that nodes can decode at most two packets at the same time (i.e., K = 2). Thus, at

most two links can be simultaneously scheduled. The algorithm starts by scheduling

(a, b) and (c, d), which constitute a maximal set S1. According to the allocation

policy discussed above and line 13, the algorithm allocates τ1 = 0.8 seconds to the

set S1. This fraction of time is enough to satisfy the link utilization of all links in S1.
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(a)
 (b)


Figure 5.3: (a) Network topology, where links (a, b), (c, d), and (e, f) are to be sched-
uled. (b) Operation of GSI, assuming that at most two links can be simultaneously
scheduled at any time. The times allocated to S1 and S2 are τ1 = 0.8 and τ2 = 0.5.

At t = 0.8, a new maximal set S2 is created with those links that were not scheduled

yet, namely link (e, f). The fraction of time allocated to S2 is τ2 = 0.5 seconds.

GSI constitutes the first algorithm designed for scheduling in (M,K, β)-networks.

In the following section, we will present an approximation algorithm which is based

on GSI.

5.3 Approximation-based Scheduler Under MPR

Protocol Model

In this section, we present an Approximation-based Scheduler (AS), a variant of GSI

proposed in Section 5.2. While the schedulable sets S1, S2, ...S|ΓGSI | built by GSI are

disjoints (i.e., Si ∩ Sj = {}, for all i 6= j, i, j ∈ {1, 2, ..., |ΓGSI |}), AS constructs

schedulable sets which may have common links.

Before describing AS, we will give the definition of an approximation algorithm

for the scheduling subproblem in wireless networks. The objective of the subproblem

is the minimization of the schedule period, such that every link (i, j) ∈ ERT -LP is

scheduled for at least a fraction of time uij given by Equation (5.9). We will denote
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the schedule period produced by the optimal scheduler as τOPT . An approximation

algorithm is one that produces a feasible solution whose schedule period is close to

the optimal; by close we mean within a guaranteed factor of optimality. Thus, we say

that AS is an κ-factor approximation algorithm if the expected period of its solution

is τAS ≤ κ · τOPT , for κ > 1.

Algorithm Description

AS schedules all the links in ERT -LP by finding maximal schedulable sets. Consider

again the utilization of a link (i, j) given by Equation (5.9):

uij =
total number of bits routed through link (i, j)

capacity of link (i, j)
(5.16)

=

∑
n∈N xn

ij

ωij

,

where
∑

n∈N xn
ij is the flow through link (i, j) resulting from step 1. The scheduling

algorithm schedules links in such a way that every link (i, j) can send the amount

of flow
∑

n∈N xn
ij during a schedule period. AS schedules links one by one, in an

arbitrary order, until a maximal set S1 is obtained. The fraction of time allocated

to S1 is equal to the minimum link utilization among all links in S1, i.e.,

τ1 = min{uij|(i, j) ∈ S1}. (5.17)

Let l = argmin {uij|(i, j) ∈ S1}. Note that by scheduling S1 for τ1 seconds, link l

can send uij · cij =
∑

n∈N xn
ij bits during this period. Thus, l is then removed from

S1, and is not considered for any subsequent set. The remaining links form a new

set S2, which becomes maximal by adding new links not scheduled yet. Successive

sets are found iteratively in a similar way. Consider a general iteration when Sk is
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Figure 5.4: (a) Network topology, where links (a, b), (c, d) and (e, f) are to be sched-
uled. (b) Operation of the approximation algorithm scheduler, assuming that at
most two links can be simultaneously scheduled at any time. The times allocated to
S1, S2, and S3 are τ1 = 0.6, τ2 = 0.2 and τ3 = 0.3.

being created, and sets S1, ..., Sk−1 have already been built. Define the residual link

utilization of a link (i, j) as:

u′ij = uij −
∑

∀k′∈{1,2,...,k−1}|(i,j)∈Sk′

τk′ . (5.18)

For a general iteration k, Equation (5.17) can be rewritten as:

τk = min{u′ij|(i, j) ∈ Sk}. (5.19)

The process is repeated until all link (i, j) ∈ ELP1 has been scheduled for a fraction

of time uij. The operation of the algorithm is illustrated with the following example.

Example 5.2. Consider the three links of Figure 5.4(a) with the respective

link utilizations: uab = 0.8, ucd = 0.6 and uef = 0.5. Assume that links interferer

with each other, and K = 2 (i.e., at most 2 links can be scheduled simultaneously).

The operation of the scheduling algorithm is shown in Figure 5.4(b). AS starts by

scheduling (a, b) and (c, d), which constitute S1. At t = 0.6, link (c, d) is removed

from S1. The time allocated to S1 is τ1 = 0.6. The algorithm then schedules link
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Approximation-based Scheduler (AS)

1: INPUT: ERT -LP , G(V, E)
2: OUTPUT: Set ΓAS of schedulable sets.

3: u′ij = uij, ∀(i, j) ∈ ERT -LP ;
4: ΓAS = {}; S0 = {}; t = 0; k = 0;
5: while (∃ (i, j)|u′ij > 0) do
6: k = k + 1;
7: Sk = Sk−1;
8: while ∃ (i, j) ∈ ERT -LP |E(Sk ∪ {(i, j)}) do
9: Sk = Sk ∪ {(i, j)};

10: ERT -LP = ERT -LP − {(i, j)};
11: end while
12: ΓAS = ΓAS ∪ Sk;
13: e = argmin{u′e|e ∈ Sk};
14: τk = u′e;
15: u′ij = u′ij − u′e,∀(i, j) ∈ Sk;
16: Sk = Sk − {e};
17: end while
18: return ΓAS;

Figure 5.5: Approximation-based Scheduler (AS). E(S) stands for the event E(S) =
{Equations (4.6) and (4.7) are satisfied for all (i, j) ∈ S}.

(e, f), so that S2 = {(a, b), (e, f)}. At time 0.8, (a, b) is removed from S2 and τ2 = 0.2

by applying Equation (5.19). Similarly, S3 is allocated τ3 = 0.3 seconds.

The pseudo-code of AS is shown in Figure 5.5. In lines 7-11, links are added one

by one until a maximal set is created. In line 16, the link with minimum residual

utilization is removed from Sk, so that a new maximal set is created in the next

iteration.
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Throughput Performance of AS

To find the throughput produced AS, we can do a similar analysis to reach to the

expression given by Equation (5.13). Specifically, let

τAS =
|ΓAS |∑

k=1

τk (5.20)

be the schedule period, where τk is the fraction of time allocated to set Sk and is

given by Equation (5.19). Then, the throughput is:

FAS =
end-to-end bits transmitted during a schedule period

schedule period
(5.21)

=
FRT -LP

τAS

. (5.22)

From scheduling theory, AS can be seen as an approximation algorithm for the

minimum makespan scheduling problem (MMSP) [43]. In the context of wireless

scheduling, MMSP can be stated as follows: given processing times (link utilizations)

of |ERT -LP | jobs (links), find an scheduling order of the jobs (links) so that the

completion time, also called makespan, is minimized. AS may be considered as a

factor two optimal scheduler under certain conditions, as stated in Theorem 5.1.

Theorem 5.1 Factor two optimality of AS. Let E ′ = {e1, e2, ..., e|E′|} be the set of

links to be scheduled by AS, and u1, u2, ..., u|E′| be the corresponding link utilizations.

In a fully-connected (M, K, 2π)-network with M ≥ K, and in a single-hop MPR-

capable network where the transmissions are directed to a central node (e.g., a base

station), the schedule period is guaranteed to be factor two optimal.

Proof:

For the two types of network topologies referred in the theorem, K links can be
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Figure 5.6: Operation of the scheduling algorithm. Since the algorithm creates
maximal schedulable sets, K links are always active until at t = startf , the time the
link with larger completion time is scheduled. This implies that startf ≤ 1

K

∑
e∈E′ ue.

simultaneously scheduled. This is illustrated in Figure 5.6, where there is a timeline

for each scheduled link. Let ef be the link with the larger completion time (i.e., link ef

is scheduled until the completion time of the whole schedule), and startf be the time

ef is scheduled. Since the algorithm creates maximal sets, all the timelines are busy

until startf (otherwise, the schedulable set prior to startf would not be maximal, and

the algorithm would have already scheduled ef ). From this observation, it follows

that startf is less than or equal to the average timeline:

startf ≤ 1

K

∑

e∈E′
ue. (5.23)

The average timeline, on the other hand, can be considered as a lower bound of any

schedule period; i.e., the optimal schedule period τOPT is at least the total duration

of all link utilizations divided by K. In addition, τOPT is at least equal to the largest

link utilization. These two lower bounds can be expressed as:

1

K

∑

e∈E′
ue ≤ τOPT , (5.24)

max
e∈E′

{ue} ≤ τOPT . (5.25)
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By combining Equations (5.24) and (5.25) with Equation (5.23), we can express the

schedule period τAS of the algorithm as:

τAS = startf + uf ≤ 2τOPT , (5.26)

which proves Theorem 5.1.

As for GSI, AS may not produce a feasible schedule as defined in Definition 4.4.

However, by modifying the allocation times as

λk =
τk

τAS

, (5.27)

we have that Definition 4.4 is satisfied and the throughput given by Equation (5.22)

holds.

5.4 Greedy Scheduler Under Multi-Access Chan-

nel Model

In Sections 5.2 and 5.3, we presented two scheduling algorithms that satisfy the

feasibility conditions for scheduling under the MPR protocol model, as stated in

Definition 4.2. In this section, we present a scheduling algorithm that satisfies the

additional constraint imposed by multi-access channel, namely Equation (4.10).

Algorithm Description

The algorithm, called Greedy Scheduler II (GSII), not only creates schedulable sets

according to Definition 4.3, but also computes link capacities that lie inside the

capacity region of the corresponding receiver nodes. GSII is shown in Figure 5.7.
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Greedy Scheduler II (GSII)

1: INPUT: ERT -LP , G(V, E);
2: OUTPUT: ΓGSII = {S1, S2, ..., S|ΓGSII |}, cij(S), ∀(i, j) ∈ S,∀S ∈ ΓGSII ;
3: ΓGSII = {}; k = 0;
4: ntj = |{i|(i, j) ∈ ELP−RT }|; ∀j ∈ V ;
5: while ELP−RT 6= {} do
6: k = k + 1; Sk = {};
7: while ∃ (i, j) ∈ ERT -LP and E(Sk ∪ {i, j}) do
8: j = arg max{ntj | ∃ (i, j) ∈ ERT -LP and E(Sk ∪ {i, j})};
9: Ψj = {i′|(i′, j′) ∈ Sk, j 6= j′, and −β

2 ≤ αi′j ≤ β
2 };

10: ηj = η +
∑

i′∈Ψj
Pi′j ;

11: while ∃ (i, j) ∈ ERT -LP and E(Sk ∪ {i, j}) do
12: (i, j) = arg max{rij | ∃(i, j) ∈ ERT -LP and E(Sk ∪ {i, j})};
13: Sk = Sk ∪ {(i, j)}; ERT -LP = ERT -LP − {(i, j)}; ntj = ntj − 1;
14: ηij = ηj +

∑
t:(t,j)∈Sk

Ptj ;

15: cij(Sk) = ϕ
(

Pij

ηij

)
;

16: for all (i′, j′) ∈ Sk|j 6= j′ and −β
2 ≤ αij′ ≤ β

2 do
17: ηi′j′ = ηi′j′ + Pij′ ; // link (i, j) adds noise to (i′, j′)
18: ci′j′(Sk) = ϕ

(
Pi′j′
ηi′j′

)
;

19: end for
20: end while
21: end while
22: ΓGSII = ΓGSII ∪ Sk;
23: end while

Figure 5.7: Scheduling algorithm. E(S) stands for the event E(S) = {Equations (4.8)
and (4.9) are satisfied for all (i, j) ∈ S}.

The algorithm schedules, one by one, all links in ERT -LP until a maximal set is

created. Once the set becomes maximal, GSII creates a new schedulable set with

those links not scheduled yet in previous sets. Line 8 selects the receiver node, de-

noted by j, with the largest number of transmitters to that node. Then, lines 11-20

schedule as many links with node j as receiver as possible, so that the multi-access

channel at node j is fully exploited. At line 12, a link (i, j) is chosen in decreasing

order of distance between nodes i and j, to compensate the inferior capacity of the

link (first links to be scheduled experience less interference, as explained below). The

72



Chapter 5. Joint Routing and Scheduling Schemes

noise ηij experienced by a link (i, j) is computed in line 14 and consists of destructive

interference (the first term, which is given by Equation (2.18)) and constructive in-

terference (the second term). The latter refers to the power from the links previously

scheduled to the same schedulable set, which also have node j as receiver. Finally,

line 15 computes the capacity cij(Sk) the link (i, j) will operate at.

A key question regarding GSII is whether the link capacity assigned at line 15

is achievable. The following theorem shows that links operate at max-capacity, and

therefore the capacities are achievable.

Theorem 5.2 Let (i1, j), (i2, j), ..., (iH , j) be a set of H ≤ K links scheduled by GSII

in this order, which belong to the same schedulable set. Then, they operate at max-

capacity.

Proof: The proof is by induction. Since all links belong to the same schedulable set,

we will omit the identifier of the set.

Basis step: assume that links (i1, j), (i2, j) are scheduled in this order. The capacity

of the links are (line 15):

ci1j = ϕ

(
Pi1j

ηi1j

)
= ϕ

(
Pi1j

ηj

)
,

ci2j = ϕ

(
Pi2j

ηi2j

)
= ϕ

(
Pi2j

ηj + Pi1j

)

where ηj = η +
∑

t∈Ψj
Ptj represents the destructive interference. By adding the

capacity of the two links we obtain:

ci1j + ci2j = W log2

(
nj + Pi1j

nj

· nj + Pi1j + Pi2j

nj + Pi1j

)
,

= W log2

(
1 +

Pi1j + Pi2j

nj

)
,
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which proves that links (i1, j) and (i2, j) operate at max-capacity.

Extension step: assume that links (i1, j), (i2, j), ..., (iH−1, j) were already scheduled

by GSII and operate at max-capacity:

H−1∑

h=1

cihj = W log2

(
1 +

∑H−1
h=1 Pihj

ηj

)
.

GSII then schedules the H th link having node j as receiver, with a capacity assigned

in line 15 as:

ciHj = ϕ

(
PiHj

ηiHj

)
= W log2

(
1 +

PiHj

ηj +
∑H−1

h=1 Pihj

)
.

The sum of the capacity of the links is:

H∑

h=1

cihj = ciHj +
H−1∑

h=1

cihj = W log2

(
1 +

PiHj

ηj +
∑H−1

h=1 Pihj

)
+

W log2

(
1 +

∑H−1
h=1 Pihj

ηj

)

= W log2

(
ηj +

∑H−1
h=1 Pihj + PiHj

ηj +
∑H−1

h=1 Pihj

· ηj +
∑H−1

h=1 Pihj

nj

)

= W log2

(
1 +

∑H
h=1 Pihj

nj

)
,

which demonstrates Theorem 5.2.

For a given receiver node j, Theorem 5.2 guarantees that the capacity of the

links having node j as receiver is one of the H! vertices of the capacity region in the

positive quadrant. Those capacities are therefore achievable with SIC and CDMA.

Since the link capacity vector is a vertex of the capacity region, it is achievable.

Thus, we have the following corollary.

Corollary 5.1 Let (i1, j), (i2, j), ..., (iH , j) be a set of H ≤ K links scheduled by GSII

in this order, which belong to the same schedulable set. Then, the associated link

capacity vector lies inside the capacity region of the multi-access channel of receiver

node j.
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Throughput Performance of GSII

In order to compute an achievable throughput of GSII, consider the following al-

location policy. Let τk be the fraction of time allocated to the schedulable set Sk,

k ∈ {1, 2, ..., |ΓGSII |}, which is given by the following equation:

τk = max

{∑
n∈N xn

ij

cij(Sk)

}
, (5.28)

where
∑

n∈N xn
ij is the flow through link (i, j) assigned by RT-LP, and cij(Sk) is the

capacity of the link (i, j) when scheduled in Sk. Define the period of the schedule

produced by GSII as:

τGSII =
|ΓGSII |∑

k=1

τk. (5.29)

From Equation (5.28), we can conclude that GSII guarantees that every link can

send at least
∑

n∈N xn
ij bits during a schedule period. Consequently, the corresponding

throughput is:

FGSII =
end-to-end bits transmitted during a schedule period

schedule period
(5.30)

=
FRT−LP

τGSII

. (5.31)

As for GSI and AS, GSII may not produce a feasible schedule as defined in

Definition 4.4. However, by modifying the allocation times as

λk =
τk

τGSII

, (5.32)

we have that Definition 4.4 is satisfied and the throughput given by Equation (5.31)

holds.
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5.5 Optimality of GSI, AS, and GSII

The solution obtained by GSI, AS, and GSII are feasible schedules and constitute

solutions for the joint routing and scheduling problem. However, they do not guaran-

tee optimality with respect to the schedulable sets they find. For example, suppose

ΓGSI is the set of schedulable sets found by GSI. Then, the allocation times τ1, τ2, ...,

τ|ΓGSI | may not be optimal with respect to ΓGSI (i.e., there may be a better allocation

time policy that only uses the same set of schedulable sets). To find such an optimal

solution, we need to apply step 3, which is presented in next section.

5.6 Joint Routing and Scheduling Linear Program

In the previous section, we presented three scheduling algorithms which produce fea-

sible solutions for the joint routing and scheduling problem, where the corresponding

throughput are given by Equations (5.13), (5.22), and (5.31). For a compact pre-

sentation, let FA and ΓA be the throughput and the set of schedulable sets found in

step 2, where A refers to the scheduling algorithm GSI, AS, or GSII; i.e.,

FA =





FGSI = FRT-LP

τGSI
; if GSI is used in step 2;

FAS =
FRT-LP

τAS
; if AS is used in step 2;

FGSII =
FRT-LP

τGSII
; if GSII is used in step 2;

(5.33)

ΓA =





ΓGSI ; if GSI is used in step 2;

ΓAS; if GSI is used in step 2;

ΓGSII ; if GSII is used in step 2.

(5.34)

The throughput FA may not optimal with respect to ΓA. The optimal allocation

time policy which produces FOPT that uses the same set ΓA may be found by solving

a variant of RTSCH-LP. The linear program is shown in Figure 5.8.
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max
Γ′⊆ΓA

FRTSCH-LP =
∑

n∈N

fn (5.35)

∑

j:(i,j)∈E

xn
ij −

∑

j:(j,i)∈E

xn
ji =





fn; if i = sn

−fn; if i = dn

0; otherwise
n ∈ N (5.36)

∑

n∈N

xn
ij ≤ ∑

∀k∈{1,2,...,|ΓA|}|(i,j)∈Sk

λkcij(Sk); (i, j) ∈ E (5.37)

|ΓA|∑

k=1

λk = 1 (5.38)

fn ≥ 0; n ∈ N (5.39)

xn
ij ≥ 0; n ∈ N, (i, j) ∈ E (5.40)

λk ≥ 0; k ∈ {1, 2, ..., |ΓA|} (5.41)

Figure 5.8: Joint routing and scheduling linear program used in step 3.

Note the difference between the linear programs in Figures 4.3 and 5.8. While

the former is optimized over all set Γ′ ⊆ Γ, the latter is only optimized over all set

Γ′ ⊆ ΓA. Since Γ is the set of all schedulable sets, its size is exponentially large on

the number of links, i.e., |Γ| = Θ(2|E|), and the problem in Figure 4.3 is NP-hard.

On the other hand, |ΓA| = Θ(|E|), and the problem in Figure 5.8 can be solved in

polynomial time. As a result, we have the following theorem.

Theorem 5.3 Optimality of the proposed scheme. The solution obtained from the

linear program shown in Figure 5.1 is better than any other schedule that only uses

the schedulable sets in ΓA.

The proof is straightforward. Assuming that the problem is non-degenerate, then

there is a unique global optimal solution, which can be found by a linear programming

algorithm. This solution is guaranteed to be optimal. Theorem 5.3 permits to obtain

a lower bound on throughput, as presented below.
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Upper and Lower Bounds on Throughput

As a consequence of Theorem 5.3, the throughput FRTSCH-LP given by Equation

(5.35) is lower bounded by the throughput produced by the scheduling algorithm,

FA. At the same time, FRTSCH-LP is clearly upper bounded by FRT−LP , which is the

throughput obtained by the routing linear program. These bounds are expressed as:

FA =
FRT -LP

τA

≤ FRTSCH-LP ≤ FRT -LP , (5.42)

where A refers to GSI, AS, or GSII, depending of the scheduling algorithm used in

step 2. In Chapter 6 we will see some numerical examples, showing how close to the

upper bound the throughput obtained by the proposed scheme is.

5.7 Complexity Analysis

To demonstrate that the heuristic has a polynomial running time, we will show that

the running time and the size (number of variables and constraints) of steps 1 and

3 are bounded (step 2 is either a greedy approach or an approximation algorithm,

which obviously run in polynomial time). Step 1 is a linear program (Figure 5.1),

with |N | + |N | · |E| total positive flow variables (Equations (5.4) and (5.5)). The

number of flow conservation (Equation (5.2)) and link capacity (Equation (5.3))

constraints are |N | · |V | and |E| respectively. Thus, the number of variables and

constraints are polynomially bounded in |N | · |E| and can be solved by a polynomial

time linear programming algorithm. The linear program of step 3 (Figure 5.8) is

similar to LP-RT, except that one additional constraint is added, namely Equation

(5.38), and O(|E|) additional variables (i.e., the activity period variables). Therefore,

the running time of step 1 and step 2 using an interior-point method is O(|E|3|N |3)
[22].
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5.8 Summary

In this chapter, we have presented polynomial time schemes based on a combination

of greedy, approximation algorithm, and linear programming paradigms to solve the

joint routing and scheduling problem in MPR-capable networks. We have discussed

how the routing subproblem can be solved by using linear programming. For the

scheduling subproblem, we have firstly devised a simple greedy algorithm. Then, we

have presented an approximation algorithm, which was shown to produce a factor

two optimal schedule period under certain conditions. For multi-access channels,

we have further proposed a greedy algorithm that not only creates schedulable sets

but also computes rates or link capacities that lie inside the capacity regions of

the corresponding receiver nodes. Finally, we have discussed how to solve the joint

routing and scheduling problem by using only the schedulable sets found by the

scheduling algorithms. In the next chapter, we will see numerical examples and their

resolutions according to the schemes presented in this chapter.
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Performance Studies

In this chapter, we present numerical examples based on the schemes presented

in Chapter 5. The algorithms were implemented as a solver in C language. To

solve linear programs, the solver incorporates the library LP-solve [45]. This library

is a source code written in ANSI C, which implements the Simplex algorithm for

linear programming as well as branch and bound algorithms for mixed integer linear

programming.

We have conducted performance studies using the JRS schemes presented in

Chapter 5. According to the scheduling algorithm used in step 2, there can be three

variants of JRS. The first variant uses the GSI algorithm presented in Section 5.2.

Similarly, the second and third variants use AS and GSII algorithms presented in

Sections 5.3 and 5.4 respectively.

The chapter starts by presenting numerical results using JRS with GSI as sched-

uler in Section 6.1. We apply this scheme to solve the throughput optimization

problem under the MPR protocol model; i.e., interference is modeled according to

the MPR protocol model presented in Section 2.3.1. Then, Section 6.2 shows nu-

merical results using JRS with GSII as scheduler. In the latter, the interference is
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modeled according to the multi-access channel presented in Section 2.3.2.

6.1 Performance Studies Under the MPR Proto-

col Model

All the examples shown in this section were obtained with the same parameter values.

Referring back to Equations (2.12) and (2.13), we set W = 1, and a link capacity

cij = 10 units when the distance rij between nodes i and j is equal to R (maximum

distance from which a node can decode a packet). The path loss exponent γ was

set to 4, which corresponds to the two-ray model. Having set these values, any link

capacity can be computed according to Equations (2.12) and (2.13).

The results were evaluated in terms of FRTSCH-LP , the objective function of the

joint routing and scheduling problem (Equation (5.35)), and normalized to the upper

bound FRT -LP−RT (Equation (5.1)); i.e.,

Normalized throughput =
FRTSCH-LP

FRT -LP

. (6.1)

We simulated grid and random topologies. For the first topology, we included

the results produced by JRS with GSI as scheduling algorithm (JRS-GSI), and by

the shortest path (SP) approach. The results from JRS-GSI are denoted as JRS,

since there is no name ambiguity. This comparison permits to visualize the improve-

ment with respect to current routing protocols used in wireless networks [8], which

are based on SP. For the second topology, we only analyze the results of the JRS

approach. We include results for both (M, K, β)-networks and half-duplex networks.

This comparison shows the gain obtained by the former type of networks with respect

to the latter, which was proposed in previous work [16].
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Grid Topology

We start with an illustrative example in the 16-node grid topology shown in Figure

6.1. R was set to
√

2D, where D is defined in Figure 6.1. Node 0 is the source

node, and node 15 the destination. If all the links were scheduled simultaneously,

an optimal solution would route the flow through 3 different paths, which may be

the paths shown in Figure 6.1. A shortest path approach, on the other hand, only

uses path 1. In this example, we use the max-flow min-cut theorem to find an upper

bound (UB) on throughput. The capacity of the source cut is limited by the number

of transmit antennas. The three links incident to node 0 may be simultaneously

scheduled only if node 0 has 3 transmit antennas. Similarly, the capacity of the

Figure 6.1: Grid topology.
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destination cut is limited by the number of incident links to node 15 simultaneously

scheduled. To schedule those links at the same time, K should be equal or greater

than 3. A cut capacity involving other nodes depends on K and M as well.

Impact of the Number of Transmit Antennas

Figure 6.2 shows the numerical results for nodes endowed with directional antennas,

with β = π
3
. Table 6.1 shows the schedulable sets and allocated time for different

Figure 6.2: Throughput vs K, for β = π
3
.

values of M and K. For half-duplex (HD) systems, the SP approach, which routes

packets through path 1, needs two schedulable sets to route the flow and to produce

a throughput of 0.14. JRS routes through paths 2 and 3, and schedules four sets to

achieve a throughput of about 0.17.

For M = 1 (i.e., one exclusive transmit antenna), SP doubles its throughput

to 0.28 by scheduling the three links in only one set. Note that, because of the

use of directional antennas, links do not interfere with each other. Additionally,
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Table 6.1. Schedulable sets and allocated time, for β = π
3
.

Sets and corresponding allocated times
SP, HD S1 = {(0, 5), (10, 15)}, S2 = {(5, 10)}, λ1 =

λ2 = 0.5
SP, M ≥ 1 S1 = {(0, 5), (5, 10), (10, 15)}, λ1 = 1
JRS, HD, K = 1 S1 = {(0, 1), (4, 5), (6, 10), (11, 15)}

S2 = {(0, 4), (1, 5), (9, 10), (14, 15)}
S3 = {(5, 6), (10, 11)}
S4 = {(5, 9), (10, 14)}
λ1 = λ2 = λ3 = λ4 = 0.25

JRS, M = 1, K = 1, ...,
5

S1 = {(0, 4), (4, 5), (5, 9), (9, 10) (10, 14),
(14, 15)}, λ1 = 1

JRS, M = 2, K = 1 S1 = {(0, 4), (4, 5), (5, 9), (9, 10) (10, 14),
(14, 15)}, λ1 = 1

JRS, M = 2, K > 1 S1 = {(0, 1), (0, 4), (1, 5), (4, 5), (5, 6),
(5, 9), (6, 10), (9, 10), (10, 11), (10, 14),
(11, 15), (14, 15) }, λ1 = 1

incrementing K above 2 does not have any impact. The performance of JRS is also

improved to optimal performance by routing through path 2 and scheduling all the

links of the route in only one set (see Figure 6.3). Note that the upper bound UB

is achieved, which is independent of K because the throughput cannot be further

improved with only one transmit antenna per node (i.e., the source node cannot

simultaneously send to more than one neighbor at the same time). Note also that

JRS routes through path 3 instead of path 1, since we modeled link capacities such

that shorter transmission distance implies a higher link capacity. For M = 2 (two

transmit antennas) and K = 1, JRS produces the same solution as for M = 1.

However, in this case, the limitation is not the number of transmit antennas but

the number of incident links simultaneously scheduled to the destination, which is

equal to K. For K > 2, JRS uses paths 2 and 3 simultaneously, which doubles the

throughput to achieve the optimal.
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Figure 6.3: Optimal schedule for one transmit antenna with β = π
3
.

Impact of the Beamwidth

Figure 6.4 shows the throughput results, for M = 2. For β = π
3
, the directional

transmission permits JRS to achieve the min-cut upper bound. For example, consider

Figure 6.4: Throughput vs K, for M = 2, R = 200.
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the case of K = 1. The optimal solution found with β = π
3

is shown in Figure 6.3.

For β ≥ π
2
, the above solution is not feasible anymore, since transmissions along

the path interfere with each other; e.g., the transmission of node 0 (intended for

node 4) affects also node 5, which should receive from node 4. The increment in

decoding capability, however, permits to approach to optimal throughput with wider

beamwidth antennas. For β = π
2

and π, optimal performance is achieved with K ≥
4 and K ≥ 6 respectively.

Random Topology

Figure 6.5: Random topology.

We obtained numerical results for the random topologies shown in Figure 6.5.

Nodes were uniformly distributed over a 1000 x 1000 square-meter area, where 10

flows were created. The source and destination of each flow were randomly selected.
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The path loss exponent and link capacity were set as in the Grid topology. We

evaluated the impact of some design parameters, for which several scenarios with

different values of β, K, M and R were considered. We only consider the results

provided by the JRS.

Impact of the Number of Transmit Antennas

Figure 6.6 shows the throughput as a function of K, for different number of antennas

Figure 6.6: Throughput vs K, for β = π
3
, R = 200.

with β = π
3
. Note that the throughput for HD and M = 1 increases monotonically

until K = 3, and that further increments of K have no impact. The corresponding

curves are almost overlapped because they have the same bottleneck: only one in-

terface can operate in transmit mode. By adding more transmit antennas, the MPR

capability is better exploited and the throughput is increased. Note also that the

throughput increases approximately linearly until K equals the number of transmit

antennas.
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Impact of the Beamwidth

Figure 6.7 shows the curves of throughput vs K, for HD and different values of β.

Figure 6.7: Throughput vs K, for M = HD, R = 200.

The best performance is obtained with the minimum beamwidth value (β = π
3
), due

to a better spatial reuse. However, the disadvantage of having wider beamwidth

antennas can be compensated by increasing the MPR capability; for M ≥ 11, even

the use of omni-directional antennas produces an optimal performance. The effect

of using two transmit antennas per node is shown in Figure 6.8: the maximum

throughput increases from about 0.19 to 0.35. Note also that, for both, HD and

M = 2, and for a given value of K, say 5, a beamwidth β = π
2

produces about

the same result as a beamwidth β = π
3

(i.e., a beamwidth of π
2

is narrow enough

for optimal performance, and narrower beamwidths would not produce significant

improvement). This is better highlighted in Figure 6.9.
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Figure 6.8: Throughput vs K, for M = 2, R = 200.

Impact of the Receiver Range R

Figure 6.10 shows, for HD, the normalized throughput FRTSCH-LP /FRT -LP
′, where

Figure 6.9: Throughput vs beamwidth, for K = 5, R = 200.
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Figure 6.10: Throughput vs K, for M = HD.

FRT -LP
′ is the flow value when R = 400. RT-LP produces the maximum upper bound

on throughput when R increases, because of a higher connectivity (the average node

degrees for R = 200, 300 and 400 meters (m) were 10.26, 21.92 and 35.7 respectively).

For omni-directional transmit antennas, the best performance is obtained when R =

400; the throughput monotonically increases until 0.054 at K = 11, and higher

values of K do not produce any improvement. For small values of K, and R = 200

or R = 300, increments in K produce smaller improvement than for the case of

R = 400. Similarly, for β = π
3

and K ≤ 3, the best performance is obtained when

R = 400. On the other hand, for K > 4, higher throughput is obtained when

R = 200. These results allow us to infer the following: i) for high values of R, the

high connectivity permits the routing of flows through short paths in term of hops.

Thus, few links are needed to be scheduled, which can be achieved with small values

of K. For higher values of K, the improvement in throughput is not significant

because of two bottlenecks: the large number of conflicting links due to the high

connectivity, and the limited number of transmit antennas; ii) for small values of R,
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the increments of K have more impact than for the case of high values of R, because

more links can be simultaneously scheduled due to the lower connectivity. This last

item agrees with the results of the protocol model of Gupta and Kumar [3], where

for optimal performance, R should be as small as possible. However, to guarantee

connectivity, this value cannot be arbitrarily minimized. Similar conclusions can be

obtained by using two transmit antennas per node, as shown in Figure 6.11.

Figure 6.11: Throughput vs K, for M = 2.

6.2 Performance Studies Under the Multi-Access

Channel Model

In this section, we present a numerical example based on the JRS with GSII as

scheduling algorithm. We will refer to this scheme simply as JRS, since there is

no name ambiguity. We assume an AWGN multi-access channel, where the rates

at which simultaneous packets are sent must lie inside the capacity region given by
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Equation (2.20). As shown in Theorem 5.2, JRS guarantees this. For this scenario, we

will analyze the impact of decoding capability, beamwidth, and number of transmit

antennas on multi-hop networks. While corresponding to a particular instance of

the problem, the results illustrate how topological properties such as average node

degree should be considered for proper network designs. This conclusion holds for

any instance of the joint routing and scheduling problem.

We set the channel bandwidth W = 1 MHz, transmission power P0 = 100 mW,

receiver range R = 30 meters, path loss exponent γ = 3, and channel noise η = −10

dB. We generated 4 random flows such that all links of a 30-node random network

shown in Figure 6.12 were scheduled by JRS. The average node degree of the network

Figure 6.12: A 30-node random network. There is a link (solid line) between two
nodes if the distance between them is less than or equal to R = 30 meters.

topology was 7.6.

In the numerical examples, we will show the impact of different parameters on

the average node degree of the schedulable sets found by JRS, which is denoted as
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g(M,K, β). It is defined as the number of links per node activated on average:

g(M,K, β) =
1

|V |
|ΓGSII |∑

i=1

λi|Si|. (6.2)

Note that g(M,K, β) is a linear combination of the size of the size of schedulable sets,

where the weights are given by the allocation times. Thus, it may also be considered

as the time-averaged node degree of the network.

Impact of the Number of Transmit Antennas

Figures 6.13 and 6.14 show the throughput obtained with two different values of

Figure 6.13: Throughput vs K, for M = 2.

M . For comparison purposes, the results in both figures are normalized to the

maximum throughput found by JRS, which is obtained when M = 2, K = 5, β = π
4
.

As expected, the throughput increases with K. However, for high values of K,

the throughput remains approximately constant and does not improve any further,
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Figure 6.14: Throughput vs K, for M = HD.

independently of the beamwidth. The number of links simultaneously scheduled

at any time is limited by the number of transmit antennas. This constitutes a

transmission-oriented bottleneck ; as K increases, transmitting nodes cannot generate

enough transmissions to exploit the decoding capability. This fact is illustrated in

Figures 6.15 and 6.16, where the average node degrees for M = 2 and M = HD

approach 1.5 and 0.53 as K increases. The size of schedulable sets cannot get larger,

unless M is increased.

Impact of Beamwidth

Referring back to Figures 6.13 and 6.14, the best performances are obtained with

narrower beamwidths, because of better spatial reuse. Note that for both H = 2 and

H = HD, and for high values of K, the results obtained with β = π
4
, β = π

3
, and β =

π
2

converge to the same throughput. The disadvantage of having wider beamwidth

antennas may be compensated by increasing the decoding capability. However, we
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Figure 6.15: Average node degree vs K, for M = 2.

should also highlight the impact of omnidirectional transmissions. Consider the

results of Figures 6.14 and 6.16 for β = 2π. For K ≥ 9, even though the average node

Figure 6.16: Average node degree vs K, for M = HD.
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degree is about the same for all β, the throughput with omnidirectional antennas

is notoriously inferior. A reason of this poor performance is the cumulative noise

experienced at any receiver node; all transmissions not directed to a given receiver

represent additional noise to that receiver. Figures 6.17 and 6.18 compare the

Figure 6.17: Throughput vs (K,M), for β = π
3
.

performance of networks with β = π
3

and β = 2π. The results are normalized to

the maximum throughput, obtained with M = 9, K = 10, β = π
3
. An interesting

observation is that, with β = π
3
, the throughput clearly increases with both K and

M . On the other hand, with β = 2π, increments in M only do not lead to significant

improvement. The better spatial reuse when β = π
3

leads to larger schedulable

sets than those obtained with β = 2π. Consequently, larger average node degrees

are obtained with the former, as shown in Figure 6.19. For K < 6 and M > 1,

g(M,K, π
3
) is more than 3 times g(M,K, 2π).
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Figure 6.18: Throughput vs (K,M), for β = 2π.

Impact of Decoding Capability

Increasing K clearly improves throughput. However, independently of β and for a

fixed value of K, increments on M may not result on better performances because of

Figure 6.19: g
(
M, K, π

3

)
÷ g (M, K, 2π).
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a receiver-oriented bottleneck ; i.e., receiver nodes cannot decode more than K simul-

taneous transmissions, even though transmitting nodes may increase the number of

transmissions. For a typical decoding capability, e.g., K = 4 [15], Figure 6.20 shows

the throughput as a function of β and M , normalized to the throughput obtained

Figure 6.20: Throughput vs (M , β), for K = 4.

with M = 5, K = 4, β = π
4
. For any value of β and small values of M , say M ≤ 4,

the throughput increases almost monotonically. On the other hand, incrementing

M beyond 5 does not affect the performance. To quantify the throughput gain pro-

duced by a unitary increment on the number of transmit antennas, define throughput

improvement (TI) as:

TI(M2,M1) =
FRTSCH−LP (M2)− FRTSCH−LP (M1)

FRTSCH−LP (M1)
,

where FRTSCH−LP (M) is the throughput obtained with M transmit antennas. Figure

6.21 shows that, for any beamwidth, incrementing the number of transmit antennas

from HD to 1 implies a throughput improvement of at least 20%. However, an incre-

ment on M has more impact when combined with narrower beamwidths; for example,
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Figure 6.21: Throughput improvement as a function of unitary increment on M , for
K = 4.

increasing M from 1 to 2 has no impact when β = 2π. On the other hand, an im-

provement of at least 40% is obtained when β ≥ π
2
. A receiver-oriented limitation is

clearly noted as M increases beyond 5, where no improvement is obtained.

6.3 Summary

In this chapter, we have presented numerical examples of the throughput optimiza-

tion problem in wireless networks. We have applied the proposed JRS scheme to

solve the problem under both MPR protocol model and multi-access channel model.

Moreover, the flexibility of the scheme permits to evaluate the throughput perfor-

mance of networks with directional and omnidirectional antennas, half and full duplex

operational modes, and single and multiple transmit antennas per node.

The results showed that to fully exploit MPR capability, nodes may need to
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be endowed with multiple transmit antennas. For both the MPR protocol model

and multi-access channel, we found that the three parameters, decoding capability,

number of transmit antennas and beamwidth, play important and complementary

roles on the throughput improvement. The numerical examples clearly illustrated

that, if any of them is not carefully selected, the network may experience either

transmitter or receiver oriented bottleneck.

As an open research issue, we think that the design of distributed algorithms

based on interior point methods for convex optimization may be an interesting re-

search direction; since the throughput optimization problem can be characterized as

a convex problem (as seen in Chapter 4), a natural approach to solve it is by applying

convex optimization techniques.
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Conclusion

In this dissertation, we have presented a novel model for throughput optimization

problem in multi-hop wireless networks with MPR-capability. While this may be

considered as the main contribution, the present work has several innovative features

not included in previous works, which are listed below.

1. We have presented a generalized model for the throughput optimization prob-

lem in wireless networks. To the best of our knowledge, this is the first work

that simultaneously considers multiple transmit interfaces, generalized antenna

model and multi-packet reception [46].

2. To solve the proposed model, we have presented a polynomial time heuristic

based on a combination of greedy and linear programming paradigms [46].

3. We have extended the proposed scheme presented in [46] to an approximation

scheme, which guarantees that, for certain type of networks, the schedule period

of the scheduling algorithm is at most two times the schedule period of the

optimal scheduler [47].
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4. We have characterized the throughput optimization problem in multi-hop wire-

less as a convex optimization. The advantages of addressing the problem as

a convex optimization include the application of well-known techniques and

theorems for this kind of problem [46, 47].

5. The main theoretical result obtained in this work has been given by Theorem

4.2., which demonstrates that any solution of the scheduling subproblem can

be built with |E|+ 1 or fewer schedulable sets. This result is general, valid for

any wireless network (e.g., single or multi-hop networks, with single or multi-

packet reception, with directional or omni-directional antennas). The result

contradicts the conjecture that says that a solution is generally composed of an

exponential number of schedulable sets. Theorem 4.2 may have impact in future

scheduling schemes, since it encourages the design of new polynomial time

algorithms to approximate to optimal solutions, instead of devising complex

algorithms that search for an exponential number of schedulable sets [48].

6. Using information theoretic results, we have also incorporated the multi-access

channel into the model. To the best of our knowledge, the proposed model is

the first joint routing and scheduling formulation that considers the capacity

region of the multi-access channel in a network. It accurately accounts for the

capacity of the links used by simultaneous transmissions to a single receiver

[49].

7. We have devised a greedy scheduling algorithm that exploits the multi-access

channel in a network. We have demonstrated that the algorithm guarantees

the operation of links at max-capacity, where the sum of the capacity of the

links is maximized and the multi-access channel is fully exploited [49].

8. We have studied the impact of directional antennas in MPR networks. There

is no previous work considering the use of directional antennas with multi-

packet reception. A reason may be the fact that MPR capability, intuitively,
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mitigates the inefficient spatial reuse of omni-directional antennas. However,

as numerical results showed, the benefit of combining these two technologies

deserves further investigation and should not be neglected [46, 47, 48, 49].

As future work, an interesting research direction is the incorporation of MIMO

and power control in our model. Additionally, our approach to characterize the

problem as a convex optimization is suitable for optical networks. Thus, beyond

wireless networks, we believe that the results obtained in this work can be easily

extended to that type of networks. Finally, the devise of distributed protocols that

exploit multi-packet reception capability is an open research issue that should be

studied.
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