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Abstract

Avalanche photodiodes (APDs) are the preferred photodetector in many applications

in which low light levels need to be detected. The reason why APDs are important in

such applications is due to their internal gain, which improves the APD’s sensitivity.

Compared to receivers based on PIN photodiodes, which do not present internal gain,

APD-based receivers achieve 5–10 dB improved sensitivity. The origin of the APD’s

internal gain is the impact ionization process. However, due to the stochastic nature

of the impact ionization process the multiplication gain comes at the expense of extra

noise. This multiplication noise is called the excess noise, and it is a measure of the

gain uncertainty. In addition, as the multiplication gain increases the buildup time,

which is the time required for all the impact ionizations to complete, also increases.

Thus, for a given multiplication gain the buildup time limits the bandwidth of the

APD.
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The main challenge for state-of-the-art APDs, operating in linear and Geiger

modes, is to achieve higher operating speeds. For application in which the APD is

operated in linear mode the limited speed of APD-based receivers have limited their

use in systems that operate at 2.5 and 10 Gbps. However, to meet the demand of the

exponential growth in data transfer, the telecommunication industry has been moving

toward 40-Gbps and 100-Gbps protocols for their core fiber-optic backbone networks

alongside the existing 10-Gbps infrastructure operating at the low-loss wavelength of

1.55 µm. Moreover, the fast progress on quantum communications requires Geiger-

mode APDs to operate at higher repetition rates. Currently, Geiger-mode APDs

are limited to operate at detection rates of about 20 MHz. In addition, there has

been relatively little work on infrared APDs, although there are many applications

in remote sensing, medical imaging, and environmental monitoring. In particular,

there is no GaAs-based APD operating in Geiger mode beyond 2 µm.

This dissertation provides theoretical analysis and experimental exploration of

APDs working in linear and Geiger modes in the near infrared (NIR) and mid-

infrared (MIR) ranges of wavelength. This research effort is geared to address the

aforementioned current challenges of the state-of-the-art APD technology. In the the-

oretical part of this work the focus is on the development of new theoretical methods

that allow us to model, understand, and characterize avalanche photodiodes working

in linear and Geiger modes. The objective is that the developed methods help the

design and optimization of high performance, high speed APDs. The experimental

part of this research effort consists of the design, fabrication and characterization

of a novel mid-infrared sensor, based on GaAs technology, called the quantum-dot

avalanche photodiode (QDAP). The main motivation for the QDAP is to exploit its

potential of working in Geiger mode regime, which can be utilized for single-photon

detection. In addition, the QDAP represents the first GaAs-based APD operating

in the mid infrared range of wavelength.
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Chapter 1

Introduction

1.1 Overview

Avalanche photodiodes (APDs) are very important devices in a wide range of com-

mercial, military, and research applications. These applications include optical com-

munications, satellite laser ranging [1], deep-space laser communications [2], time-

resolved photon counting [3], quantum key distribution [4, 5, 6] and quantum imag-

ing [7]. In recent years, the primary driving force for research and development of

APDs has been optical communications systems, especially at high bit rates. The

popularity of APDs in optical communications is due to their internal gain, which

increases the output signal of the device above the thermal-noise level of the receiver.

Thus, in thermal-noise-limited operation, APD-based receivers achieve a higher sen-

sitivity than those based on PIN photodiodes, which do not exhibit internal gain.

Compared to receivers with PIN photodiodes, APD-based receivers achieve 5–10 dB

improved sensitivity [8, 9]. Figure 1.1, extracted from [9], compares the sensitivity,

measured as the average received power level (in dBm), of commercial APDs and PIN

photodiodes at a bit error rate (BER) of 1 × 10−10, for some common bit rates. In
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practice, the lower sensitivity of PIN photodiodes can be overcome by using erbium

doped fiber amplifiers (EDFAs) to pre-amplify the signals optically before the are

detected by the PIN photodiode. The use EDFA-PIN receivers is well established;

they offer fast response time and good signal-to-noise ratio characteristics. However,

the optical amplifier is an expensive and bulky component. An EDFA requires the

use of meters of fiber, and it requires the use of a pump laser to provide the optical

amplification. On the other hand, in the APD-based receiver there is no need for the

optical pre-amplification stage, since the amplification is performed by the APD. As

a result, APD-based receivers benefit from small form-factor packaging, and offer a

more cost-effective solution compared to the EDFA–PIN receiver.

Figure 1.1: Sensitivity, measured as the average received power level (in dBm), of

commercial APDs and PIN photodiodes at a bit error rate (BER) of 1 × 10−10, for

some common bit rates. Data extracted from [9].

APDs operate on the basis of highly energetic (hot) carriers that exploit the im-

pact ionization mechanism to achieve avalanche multiplication gain. However, due to

the stochastic nature of the impact ionization process the multiplication gain comes

at the expense of extra noise. This multiplication noise is called the excess noise,
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and it is a measure of the gain uncertainty. In addition, as the multiplication gain

increases the buildup time, which is the time required for all the impact ionizations

to complete, also increases. This gives rise to intersymbol interference (ISI), which

limits the receiver performance in high-speed systems. McIntyre showed that the ex-

cess noise factor, F , associated with the mean gain, M , of the APD can be expressed

in the case of uniform electric field and pure electron injection as [10]

F (M) =
〈M2〉
〈M〉2 = kM + (1− k)

(

2− 1

M

)

(1.1)

where k = β/α is the ratio of the ionization coefficients for electrons, α, and holes, β,

of the semiconductor material. In the case of pure hole injection, k in (1.1) is given by

k = α/β. The value of α and β, which represent the probability of impact ionization

per unit length (cm−1), depend on the band structure of the semiconductor, the

scattering processes (mainly phonon scattering), and the electric field [11]. Equation

(1.1) has been derived under the condition that the ionization coefficients at a specific

position are determined solely by the electric field at that position, the so-called

local approximation. It is well known that the impact ionization is non-local, in the

sense that carriers injected in the multiplication region require a minimum distance

before acquiring sufficient energy to impact ionize. The distance in which no impact

ionizations occur is called the dead space. However, for thick multiplication regions

(> 1 µm) the dead space can be neglected, and the local approximation provides

an accurate prediction of the excess noise factor [11]. From (1.1) it is clear that the

lowest excess noise is obtained when k is small. Therefore, the more disparate the

ionization coefficients α and β are in a semiconductor material, the lower the excess

noise is. Examples of semiconductor materials that exhibit small values of k are Si

and HgCdTe.

Essentially, an APD is a pin junction that operates under reversed bias, as shown

in Fig. 1.2a. As a result of the reverse applied voltage a depletion region is formed

across the i region, which establishes an intense electric field. When an incoming
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Figure 1.2: (a) Reverse biased pin junction. (b) Illustration of three ionization events

in the depletion region from a spatial point of view. (c) Illustration of the energy

band transitions of the three ionization events shown in (b).

photon with sufficient energy hν, where h is the Planck’s constant and ν is the photon

frequency, is absorbed an electron-hole pair is generated. This event is identified

with the number 1 in Figs. 1.2 b and c. Under the influence of the electric field the

photogenerated electron and hole are forced to travel in opposite directions. As the

electric field increases these carriers can gain kinetic energy from the electric field at
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a faster rate than they lose it to the various scattering processes. If the electron or

the hole acquire sufficient energy, i.e., higher than the ionization threshold energy,

a random collision with an atom of the material results in an impact ionization

event, which generates a new electron-hole pair. This is event 2 in Figs. 1.2 b and

c. The electric fields required to observe impact ionization depend on the band gap

of the material and may range at room temperature from ≈ 104 V/cm−1 in low-

gap semiconductors, such as InAs (Eg = 0.33 eV), to values well in excess of 105

V/cm−1 in wide-gap materials, such as GaP (Eg = 2.24 eV) [12]. During the impact

ionization the carrier responsible for the ionization (parent carrier) looses part or

all of its energy to create the new electron-hole pair. As a result, right after an

impact ionization the parent carrier and the newly-generated electron and hole have

almost no kinetic energy. However, at this point the electric field accelerates the

carriers and they start to acquire kinetic energy. If any of these carriers acquire

sufficient energy they can impact ionize once again generating another electron-hole

pair, shown as event 3 in Figs. 1.2 b and c. The repetition of this process can yield a

cascade of impact ionization events. This process is called avalanche multiplication.

When an APD is properly biased it operates by converting each electron hole pair,

resulting from the absorption of a photon, to a large number of electron hole pairs

via a cascade of impact ionizations. The three ionization events described above are

illustrated in Figs 1.2b from a spatial points of view. On the other hand, Fig. 1.2c

illustrates the schematic of the energy band transitions associated with the same

ionizations events.

The impact ionization rate is not only affected by the ionization threshold energy

but also by the phonon scattering rate [12]. At nonzero temperature, the atoms

in the crystal lattice vibrate around their fixed equilibrium. These vibrations are

quantized and the quantum of lattice vibrations is called a phonon [13]. In III–V

semiconductor materials phonon scattering is the dominant scattering mechanism.

In particular, the impact ionization rate is strongly affected by phonon scattering [12,

5
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Figure 1.3: Current-voltage characteristics of an APD under reverse bias. As the

voltage across the APD increases the APD goes from linear mode operation to Geiger

mode operation. The figure also shows the transitions between the on and off states

in Geiger mode operation.

14]. Collisions with phonons control the energy and momentum losses of the carriers

and thus influence the average distance required to create an electron-hole pair by

impact ionization [12]. In the absence of phonon collisions, this distance would

be Eth/qE where E is the electric field. Phonon scattering greatly increases this

distance. Scattering against the direction of the field is very effective in this respect,

since after suffering these collisions, carriers are slowed down by the electric field and

lose a considerable portion of their energy. This increases considerably the distance
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Figure 1.4: Basic quenching circuit.

required to gain the ionization energy [12].

1.1.1 Modes of operation

APDs can be operated in two modes: linear mode and Geiger mode. In the linear

mode operation, the APD is biased below its breakdown voltage, Vb
1. Thus, the

cascade of impact ionizations resulting from each injected carrier pair ends within

a finite, stochastic time, which is the aforementioned avalanche buildup time. The

total number of carrier pairs, injected or generated via impact ionization, constitutes

the multiplication factor by which the photocurrent is amplified. On the other hand,

in Geiger mode operation, the APD is biased above breakdown. As a result, the

number of impact ionizations may increase indefinitely, yielding, in principle, an

infinite multiplication factor. In this mode of operation the APD functions as a switch

alternating between the on and off states. Figure 1.3 shows a typical current-voltage

characteristics of an APD under reverse bias. It can be seen from the figure that

1The breakdown voltage is the voltage after which the multiplication gain diverges.
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as the voltage across the APD increases the device goes from linear mode operation

(zone marked in orange), in which the multiplication gain is proportional to the

incident light, to Geiger mode operation (yellow zone), in which the multiplication

factor diverges.

To prevent the runaway of the avalanche current, also know as the persistent

current, in Geiger mode operation, a ballast resistor, RL, is sometimes introduced in

series with the APD to provide negative feedback, as shown in Fig. 1.4. In this con-

figuration the applied voltage, Va, is split between the APD and the ballast resistor.

As a result, the voltage across the APD decreases as the avalanche current increases.

This reduction in the voltage across the APD causes, in turn, the avalanche current

through the device to decrease. Depending upon the value of the applied bias, the

load resistor and the breakdown voltage, the avalanche current may terminate due

to stochastic fluctuations in the carrier production at a stochastic time, known as

the quenching time, after which the diode behaves once again as an open circuit [15].

After a recovery period the voltage across the APD once again reaches the value of

the voltage supply and the APD is ready for another avalanche trigger. This mode of

operation is referred to as the passive quenching mode [15], since the persistent cur-

rent is allowed to terminate spontaneously. Figure 1.3 shows the transitions between

the on and off states in an APD under Geiger mode operation.

The use of passive quenching circuits is the simplest way to terminate the avalanche

current of an APD working in Geiger mode [15]. The alternative way to terminate

the avalanche current is by employing active quenching circuits [15], which are much

more complex. The operation of an active quenching circuit includes the early de-

tection of the avalanche current after an avalanche is triggered and the ultra fast

reduction in the voltage across the APD to terminate avalanche pulse. The repe-

tition rate that can be achieved by using active quenching circuits is much higher

compared to that of the passive quenching approach. However, the simplicity of the
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latter makes them very attractive in applications such as single photon imaging and

quantum key distribution [16].

1.1.2 APD versus PIN photodiode

Next, the performance of APDs operating in linear mode and PIN photodiodes is

compared by calculating the signal to noise ratio (SNR) of both photodetectors.

The most common way to measure the performance of an optical receiver is by

calculating the SNR [17, 18, 19, 20]. The SNR of an electrical signal is defined as [18]

SNR =
average signal power

noise power
=

I2p
σ2
s + σ2

T

, (1.2)

where the two fundamental noise mechanisms σ2
s and σ2

T are the shot noise and the

thermal (Johnson) noise, respectively. Additional noise is generated if the incident

optical power, Pin, is itself fluctuating because of noise produced by optical ampli-

fiers [19]. However, this section focuses only on shot and thermal noises. The total

shot noise in an APD is given by [18, 19]

σ2
s,APD = 2qM2F (RPin + Id)∆f, (1.3)

where M is the multiplication gain, F is the excess noise factor, R is the responsivity,

q is the charge of the electron, Id is the dark current, and ∆f is the effective noise

bandwidth of the receiver. For a PIN photodiode, in which M = 1 and F = 1, (1.3)

reduces to

σ2
s,pin = 2q(RPin + Id)∆f. (1.4)

The thermal noise term, σ2
T , in an APD is given by

σ2
T,APD = (4kbT/RL)Fn∆f, (1.5)
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where kb is the Boltzmann constant, RL is the load resistor in the front end of the

optical receiver, T is the temperature, and Fn, which accounts for the amplifier noise,

is called the amplifier noise figure. The thermal noise in (1.5) remains the same in

PIN receivers since it originates in the electrical components that are not part of the

device.

Using equations from (1.2) to (1.5), and having in mind that the photocurrent in

an APD is given by Ip = MRPin, we can calculate the SNR of an APD as [18, 19]

SNRAPD =
I2p

σ2
s + σ2

T

=
(MRPin)

2

2qM2F (RPin + Id)∆f + (4kbT/RL)Fn∆f
, (1.6)

similarly, for a PIN photodiode (M = 1 and F = 1) the SNR is calculated as

SNRpin =
(RPin)

2

2q(RPin + Id)∆f + (4kbT/RL)Fn∆f
. (1.7)

Figure 1.5 shows the calculated SNR as a function of the optical incident power,

Pin, for a PIN photodiode and an APD. The multiplication gain of the APD was

assumed to be M = 5. The rest of the parameters used in the SNR calculation are

typical parameter values for a 1.55 µm InGaAs receiver: RL = 1 kΩ, Fn = 1, R = 1

A/W, Id = 1 nA, ∆f = 10 GHz. It can be seen from the figure that the SNR of

an APD receiver is worse than that of a PIN when input powers are relatively large.

The reason behind this behavior is related to the enhancement of shot noise in APD

receivers [18, 19, 20]. At low power levels, thermal noise dominates over shot noise,

and the APD gain is beneficial. However, as the incident optical power increases,

shot noise begins to dominate over thermal noise, and APD performs worse than a

PIN photodiode under the same operating conditions [18, 19, 20]. To illustrate this

point, the thermal-noise limited SNR and the shot-noise limited SNR are considered

separately.

In the thermal noise limit, in which σT ≫ σs, the ratio between the APD’s SNR
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Figure 1.5: Calculated SNR as a function of the optical incident power, Pin, for

a PIN photodiode and an APD. The multiplication gain of the APD was assumed

to be M = 5. The rest of the parameters used in the SNR calculation are typical

parameter values for a 1.55 µm InGaAs receiver: RL = 1 kΩ, Fn = 1, R = 1 A/W,

Id = 1 nA, ∆f = 10 GHz.

and the SNR of the PIN photodiode, given by equations (1.6) and (1.7), is

SNRAPD

SNRpin
= M2 (1.8)

As expected, the SNR of the APD is improvement by a factor of M2 compared to

that of the PIN photodiode. On the other hand, in the shot-noise limit, in which

σs ≫ σT , the ratio between the APD’s SNR and the SNR of the PIN photodiode is

SNRAPD

SNRpin

=
1

F
(1.9)

In this case the SNR of the APD is reduced by the excess noise factor, F , compared

to that of the PIN photodiode. This analysis illustrates the detrimental effect of the

excess noise factor on the APD’s performance.
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1.2 Single photon avalanche photodiodes (SPADs)

APDs operating in Geiger mode are also know as single-photon avalanche diodes

(SPADs). These photodetectors are very important in sensing very weak optical

signals in applications which span a wide range of the electromagnetic spectrum,

from the ultraviolet (10–400 nm) to the long-wave infrared (8–12 µm). As described

earlier, APDs operating in Geiger mode employ a nonlinear detection scheme, in

which the absorption of a single photon results in a large, saturated current which

can easily be detected without ambiguity by electronic circuitry. This detection

scheme is usually implemented to measure the arrival time of the incoming photon

or in photon counting applications.

1.2.1 Performance characterization of SPADs

Contrary to the case of linear-mode APDs, the concept of gain is less important in

SPADs since the operation of the SPAD devices moves between the off state and the

on state. Thus, performance metrics like the excess noise factor, which is very impor-

tant to characterize APDs working in linear mode is not relevant when characterizing

SPADs. This reveals important differences between the linear and the Geiger-mode

that need to be considered at the moment of the design and characterization of one

or the other type of device.

The performance of a SPAD is primarily measured by the photon detection effi-

ciency (PDE), the dark count rate (DCR), and the afterpulsing probability (AP). The

PDE is the product of the detector quantum efficiency and the avalanche breakdown

probability. The DCR constitutes false counts and it is a measure of how noisy the

detector is. Dark counts originate from dark carriers generated in the absence of illu-

mination; the larger the number of dark carriers, the larger the dark-count probability
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is [21]. There are several mechanisms that contribute to the concentration of dark

carriers. At high electric fields, the dark-carrier concentration is strongly affected

by band-to-band tunneling, which depends exponentially on the electric field [22],

and it constitutes a limiting factor in APDs that have thin multiplication regions.

Another important mechanism that contributes to the number of dark carriers is

tunneling through defects. It has been reported that in some materials the tunneling

current due to defects is higher than that of band-to-band tunneling [23]. The AP is

a measure of the likelihood of afterpulses events, which are false counts originated by

detrapped carriers. When charge flows during an avalanche event, some fraction of

the carriers are trapped at defect sites in the avalanche region of the SPAD. If these

carriers are detrapped at a later time when the device is ready for another avalanche

trigger, they can lead to dark counts, referred to as “afterpulses.” Larger avalanches

involve the flow of more charge, which results in a greater number of trapped charges

and consequently larger AP [24, 25]. One way of reducing afterpulsing, in Geiger

mode operation, is to keep the voltage across the SPAD below breakdown (hold-off

time) for a sufficiently long time interval, longer than the lifetime of the trap. Thus,

the next time the SPAD is ready for another avalanche trigger the trap levels are

empty. However, since the typical detrapping time is in the µs range, this approach

limits the photon counting rate to a few MHz [24, 25].

1.2.2 Breakdown probability

The breakdown probability is a key parameter in the operation of a SPAD; it is a

measure how likely it is to trigger an avalanche event. Besides the strength of the

electric field and the properties of the material, the probability of a carrier triggering

an avalanche breakdown is determined by the place where it is born [26]. A carrier

created in the start of the multiplication region has a greater probability of triggering

an avalanche event compared to that created close to the end of the multiplication
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region. This is because a primary carrier created early on in the multiplication

region has a larger distance to travel compared to those created close to the end of the

multiplication region. For example, for a separate absorption separate multiplication

(SAM)2 APD, a carrier created in the absorption layer is more likely to cause an

avalanche compared to that created in the multiplication region. More generally, the

dependence of the breakdown probability on the birth location of a carrier is crucial

in determining the SPAD’s performance when the number of dark carriers inside the

absorption and multiplication layers is taken into account.

1.3 Midwave infrared detection

Mid-infrared (MIR) sensors in the 3–25 µm range are very important devices in ap-

plications such as medical imaging, fire fighting equipments, and defense and security

applications [27, 28]. Among the different technologies available the most important

midwave infrared detectors are HgCdTe [29], InSb [30], type II InAs/GaSb strained

layer superlattice (SLS) [31], and bolometers. In addition, the quantum dot infrared

photodetector (QDIPs) and the quantum dots-in-a-well (DWELL) photodetector are

among the most promising alternatives for high background threshold applications

due to their beneficial characteristics, which include normal absorption of the in-

cident radiation and low dark current. In addition, QDIP and DWELL detectors

benefit from a mature growth and processing technology of III–V semiconductors,

which makes it possible to produce devices with good spatial uniformity over a large

2Separate absorption multiplication APDs are avalanche photodiodes in which the

photo-generation of carriers and the avalanche multiplication take place in different layers.

The goal of this structure is to provide sufficiently high electric field in the multiplica-

tion region to achieve avalanche gain while maintaining sufficiently low electric field in the

absorber region to suppress tunneling effects in this layer.
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area. This characteristic is essential for fabricating large area focal plane arrays

(FPAs).

The structure of a DWELL detector is a hybrid between a conventional quantum

well infrared photodetector (QWIP) and the QDIP and benefits from the advantages

of both of them [32]. Apart from sensitivity to normal incidence radiation and

dark current, the DWELL detector has demonstrated bias tunability and multicolor

operation in the mid-wave infrared (MWIR, 3–5µm), long wave infrared (LWIR, 8–

12µm) and very long-wave infrared (VLWIR, >14µm). In the DWELL design the

quantum dots are placed inside the quantum well and the intersubband transitions

are from the dot to the well and from the dot to the quasi-bound state [27].

1.3.1 Avalanche multiplication in midwave infrared detec-

tion

It it known that DWELL detectors suffer from low quantum efficiency (QE), which

translates into low responsivity and detectivity [27]. Several ways have been sug-

gested to improve the conversion efficiency of DWELL detectors. These ideas in-

clude the use of a resonant cavity and the addition of a photonic crystal cavity.

One other proposed design involves incorporating gain in the device, the addition of

an avalanche photodiode (APD) in conjunction with the DWELL produces a novel

sensor called quantum dot avalanche photodiode (QDAP) [33]. In the QDAP, an

intersubband quantum dot (QD) detector is coupled with an avalanche photodiode

(APD) through a tunnel barrier. The tunnel barrier reduces the dark current while

the avalanche section supplies the photocurrent with internal gain. In this three-

terminal device, the applied bias of the QD-detector and the APD section of the

QDAP are controlled separately. This feature permits the control of the responsivity

and dark current of the QD detector independently of the operating avalanche gain.
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When operated in Geiger mode the QDAP has the potential for use as a single-photon

detector.

1.4 Motivation for this dissertation

1.4.1 State of the art

The type of detector technology used for SPADs is determined by the range of wave-

lengths of the specific application. In the wavelength range from near infrared to mid

infrared ( 0.7 – 5 µm) the most important materials for single-photon detection are:

Silicon and the compounds InGaAs-InP, InGaAsP-InP, HgCdTe. In the following,

a brief overview of the most relevant detectors technologies in the wavelengths 0.7

– 5 µm will be presented. Additionally, their state-of-art performance will also be

discussed.

Near infrared single photon detectors

For wavelengths shorter than 1 µm Silicon SPADs are the detectors that exhibit the

best performance [34]. The PDE for a Si SPAD with an active region diameter of

200 µm under an excess bias of 5 V has a peak of 52 % at 550 nm and it is about 15

% at 820 nm [34]. The DCR decreases almost exponentially with temperature: at a

temperature of -25 oC the typical DCR is 5, 50, and 1500 counts/s for SPADs with

an active region diameter of 50, 100, and 200 µm, respectively [34]. However, for

wavelengths beyond 1 µm the PDE of Si SPADs do not exceed a few percent, due to

the low absorption of Si at these wavelengths, and single photon detection using Si

SPADs is not longer possible [24]. For the wavelengths beyond 1 µm devices that use

the alloy In0.53Ga0.47As, from now on referred to as InGaAs, as the absorber layer and
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InP as the multiplication region are used. These detectors are the separate absorption

multiplication InGaAs/InP SPADs. They cover the 1.1–1.65 µm wavelength interval,

which covers the telecommunication range of wavelengths. The typical value of PDE

of commercially available InGaAs/InP SPADs is 20 % and the DCR is about 50

kHz measured at 218 K [35]. However, the relatively narrow bandgap of the InGaAs

absorber, used to achieve a wavelength cutoff of 1.65 µm, leads to relatively high

dark count rates. This performance tradeoff is unnecessary if detection of these

longer wavelengths is not desired [36]. Therefore, for application at 1.06 µm the

InGaAs absorber layer is changed for the wider bandgap InGaAsP [22, 36]. For

InGaAsP/InP SPADs typical values of the photon detection efficiency of is about 30

% with a DCR of 1000 Hz measured at 237 K.

Figure 1.6: Basic circuits for the electronic detection of charge [37]. (a) Source

follower with load transistor, (b) Current-sink inverter, (c) Source follower with reset

transistor RST and effective input capacitance C.
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Mid-Infrared detectors

HgCdTe electron APDs working in linear mode with cutoff wavelengths from 2 µm

to 11 µm exhibit single-carrier electron (k = β/α ≈ 0) ionization properties that

are a consequence of the band structure and the scattering processes characteristics

of HgCdTe [38]. This results in a extremely low, gain-independent, excess noise

factor close to unity at 77 K for gains up to greater than 1000. To date, the highest

sensitivity that has been demonstrated is 7.5 photon input at a gain of 964. The low

excess noise property of HgCdTe, which provides an almost deterministic gain, has

motivated the interest of many research groups [39, 40, 41] to develop HgCdTe-based

mid infrared single photon imaging systems.

According to the definition proposed by Seitz and Theuwissen [37] “Single-photon

imaging is the detection of two-dimensional patterns of low-intensity light, i.e. mean

photon numbers in the pixels of less than 10, where the electronic photocharge detec-

tion process contributes such little noise that the probability of erroneously reporting

a photon where there is none is appreciably smaller than the probability of having at

least one photon in a pixel [37].” To achieve such low levels of noise the read-out in-

tegrated circuit (ROIC) needs to be carefully designed. Figure 1.6 shows three basic

ROICs for the electronic detection of charge. Among these circuits, the one shown

in Fig. 1.6c is the more complete pixel circuit [37]. It is based on the source follower

scheme, shown in Fig. 1.6a, for the detection of photogenerated charge Q on the gate

of the measurement transistor, M . This scheme includes a reset transistor (with

reset signal RST) and the effective capacitance C at the gate of the measurement

MOSFET. The root-mean-square noise, σQ, of this ROIC is [37]

σQ = C

√

4kbTBαR

gm
(1.10)

where kb is the Boltzmann constant, T is the temperature, B is the measurement

bandwidth, gm is the transconductance of the MOSFET, and αR is a parameter that
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depends on the operation regime of the MOSFET. In saturation αR = 2/3. Using

this source-follower based detection approach, and assuming the following parameter

values: C = 50 fF, 1/gm = 1 kΩ, T = 300 K, and B = 20 MHz; the thermal-noise

limited charge measurement resolution is σQ = 4.6 electrons [37].

The most effective way to reduce the ROIC noise given by (1.10) is to lower

the effective capacitance C [37]. One way to do this is by employing very small

transistors. This approach has led to capacitances C of only a few fF. Another

possibility is to reduce the operating temperature. However, this is not very effective

because the absolute temperature appears under the square root of (1.10). The

real benefit of lowering the temperature is the reduction of the dark current of the

photodetector [37]. The reduction of the measurement bandwidth B is a practical and

successful approach to single-electron photocharge detection. However, reducing the

output bandwidth of the image sensor will necessarily decrease the system’s frame-

rate [37]. An alternative to circumvent this problem is to provide the image sensor

with multiple output channels, each of them operating at a reduced bandwidth.

One way to relax the noise requirement on the ROIC is to employ physical am-

plification mechanisms to produce more than one charge per incoming photon. In

particular, single photon avalanche photodiodes have received a lot of attention by

the single photon imaging community due to their ability to provide internal gain.

Today, HgCdTe avalanche photodiodes are the photodetector of choice to be used

in mid infrared single photon imaging systems [39, 40, 41]. Beck et al. [39] reported

a gated-mode infrared imaging system based on a 128x128 FPA that uses HgCdTe

APDs and a custom designed ROIC, which shows an rms noise of 100 electrons. The

authors reported median gains as high as 946 at 11 V bias with noise equivalent

photon inputs as low as 0.4 photon at 80 K and 1 µs gate times. The gated-mode

operation of this system was demonstrated at ranges out to 9 km. As a future work

the authors aim to reduce the ROIC/system noise, which translates into lower gain
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requirements on the APDs. Another example is the FPA of the James Webb Space

telescope, called the NIRSpec, which has two 2048x2048 HgCdTe arrays based on

the Teledyne HAWAII-2RG ROIC, which shows a readout noise of 6 electrons rms

per 1008 second exposure. The median readout noise of the HAWAII-2RG at 100

kHz pixel readout rate at a wavelength of 2.5 µm is ≤ 18 electrons.

1.4.2 Prior work

Modeling methods: Metrics of performance

The development of models to describe the performance of SPADs has been inves-

tigated by many authors. Kang et al. [21] developed a model to calculate the dark

count probability and the single-photon quantum efficiency (SPQE) of SPADs. The

SPQE is calculates as SPQE = (Pon −Pd)/Pph, where Pd is the dark count probabil-

ity, which can be determined as Pd = 1−exp(−NdPa) where Pa is the probability of a

carrier to cause an avalanche and Nd is the total number of dark carriers in the multi-

plication region. The authors identify four sources of dark carriers that contribute to

Pd and relate them with the operating condition and the physical parameters of the

device such as transit time, gain bandwidth product, detrap time constant, etc. The

model assumes the probability of a carrier to cause an avalanche, Pa, as a parameter

independent of the structure and electric field profile. In a more material specific

work Karve et al. investigated the origin of dark counts in In0.53Ga0.47As/In0.52As

SPADs with a multiplication region of 400 µm. This thin multiplication region gives a

very good timing performance. However, as a result of the thin multiplication region

the dark count rate is dominated by band-to-band tunneling due to the high electric

field. Based on experimental data, Donnelly et al. [23] developed a model that can

predict the DCR and the PDE of a 1.06 µm InGaAsP–InP SPAD as a function of

the overbias and temperature. By fitting the parameters of the model to the experi-
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mental data they predicted that tunneling through defects in the avalanche region is

an important contributor to DCR even at room temperature and dominates at lower

temperatures. The model also predicts that in general Geiger-mode performance is

better in devices with thicker avalanche regions. The reason for this enhancement is

that in wider avalanche regions, for a given PDE, a substantially lower DCR can be

achieved compared to that obtained by a thinner avalanche region.
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Figure 1.7: Traditional model for a passively quenching SPAD circuit. id represents

the self sustaining current through the multiplication region of the SPAD; Rd is its

equivalent dynamic resistance; Cd is its junction capacitance; RL is the load resistor

and CL is its parasitic capacitance. The traditional model neglects the effect of

feedback on the impact ionization process; it assumes that after the trigger of an

avalanche, the electric field remains constant at the breakdown threshold, so that

the core of the device is represented by a voltage generator, Vb.
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Modeling methods: Traditional model for passively quenched SPADs

The most accepted model that describes the quenching characteristics of passively

quenched SPADs was proposed by Haitz in 1964 [42]. In this model, the SPAD is

represented by its depletion capacitance, Cd, in parallel with a series combination of

a switch, sw, a dynamic resistance, Rd, and a DC bias source, Vb, representing the

breakdown voltage of the SPAD. This model is shown in Fig. 1.7. In the absence of an

avalanche trigger the switch is open and the bias across the diode is Va, which is set

slightly above breakdown. When an avalanche is triggered the model assumes that

the switch is instantly closed and the capacitance Cd discharges through the diode’s

dynamic resistance Rd, which reduces the voltage across the SPAD to a value that

depends on the ratio of Rd and RL. In steady state, the voltage across the SPAD is

given by VSPAD = Va − IRL
RL ≈ Vb, the breakdown voltage of the device.

The presence of the DC source, Vb, in the traditional model implicitly assumes

that after an avalanche event is triggered the electric field in the avalanche region

(responsible for impact ionizations to persist) remains precisely at the breakdown

level until the persistent current is quenched due to the stochastic fluctuations in-

herent in the impact ionization process, that is when all carriers chance to exit the

multiplication region without ionizing.

A major concern about the traditional model, which arises from the constant

field assumption, is that it predicts that the quenching time should have memory.

In fact, a quenching process with memory is not observed in self quenched SPAD

circuits. Figure 1.8a shows measurements of the probability density function (pdf) of

the quenching time showing exponential decay, which implies that the decay process

is memoryless. (The data was provided by Princeton Lightwave Inc.) In addition,

The traditional model fails to predict the oscillatory behavior in persistent current

also observed by Itzler et al. [45, 43] and shown in Fig. 1.8b. Therefore, there is
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Figure 1.8: (a) Measured pdf of the quenching time [43]. The exponential decay of

the pdf implies that the quenching time is memoryless. (b) Measured voltage across

the SPAD for an excess bias of Vex ≈ 1.7 V [43]. The current shows oscillatory

behavior about the steady state before it quenches spontaneously. The complete

structure of the device can be found elsewhere [44].

the need for a more extensive model beyond the traditional model, which is able to

explain the behavior observed in the new generation of SPADs. This dissertation

introduces such a model.

New generation of SPAD structures: self-quenched SPADs

The reduction of the quenching time in passively quenched SPADs offers several

desirable features. Foremost, short quenching times reduce the total charge flow

during an avalanche event, and hence reduce the fraction of carriers trapped at

defect sites in the SPAD. This, in turn, leads to reduced afterpulsing, which is one of

the most severe drawbacks of SPADs as it limits the recovery time needed to allow

the trapped carriers to be released so that the SPAD is reset afresh to detect a new
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photon.

Recently, new SPAD structures capable of achieving very short quenching times

have been developed. These devices are the negative feedback avalanche diode

(NFAD) [45] and the self-quenching and self-recovery avalanche detector [46]. The

operation of self-quenching SPADs and in particular NFADs and self-quenching and

self-recovery avalanche detectors rely heavily on the introduction of negative feed-

back, which rapidly lowers the internal electric field of the avalanche diode following

buildup of the avalanche current and forces the stochastic avalanche to terminate

quickly. Presently, there is no model that is capable of predicting the statistics of

the stochastic quenching time in passively quenched SPADs in general and the new

generation of SPAD structures that heavily exploit the negative feedback effect in

particular. In this dissertation, a new fundamental model is developed, which helps

us to understand how NFADs work, and assists us in their optimization.

1.5 Contributions of this dissertation

1.5.1 Theoretical modeling of SPADs

The main focus of this dissertation on the theoretical analysis of APDs is to develop

new modeling methods that assist the design and characterization of high perfor-

mance APDs working in linear and Geiger modes. The first contribution is a model

that sheds light on the dependence of the performance of SAM SPADs on the width

of the multiplication region by comparing the effects of field-assisted tunneling with

temperature-assisted dark carriers as the width is varied. This model captures the

effect of the dead space and heterojunction multiplication regions. An aspect of

importance that had not been explored before, namely, the random locations where

carriers are born in each layer, will be thoroughly analyzed and studied. In par-
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ticular, it is assumed that photogenerated carriers are generated in the absorber at

random locations according to an exponential pdf. On the other hand, dark carriers

are assumed to be generated randomly in the multiplication region and the absorber

according to a uniform pdf in each layer. In addition, along with the DCR and PDE,

the single-photon quantum efficiency (SPQE) will be also used as a figure of merit to

assess the SPAD’s performance [21]. The ability of the SPQE to admit an optimal

operating overbias makes it a very useful metric [47].

The second contribution is the development of a stochastically self-regulating

avalanche model for passively quenched SPAD, which is the first significant expan-

sion beyond the model presented by Haitz in 1964 [42]. Specifically, the stochas-

tically self-regulating avalanche model reported in this dissertation addresses three

important phenomena that are entirely beyond the scope of the traditional modeling

methods. First, it predicts the existence of an oscillatory behavior of a persistent

avalanche current. Second, it predicts that the probability density function of the

stochastic quenching time of the persistent avalanche current has an exponential de-

cay. Third, under device and operational conditions that lead to strong feedback,

the stochastic avalanche current can collapse before persistent avalanche current can

be realized. All three of these behaviors are in agreement with recent experimental

demonstrations employing negative-feedback SPADs (NFADs) that had until now

not been theoretically explained. The model specifically captures the effect of the

load’s feedback on the stochastic avalanche multiplication, an effect believed to be

key in breaking today’s counting rate barrier in the 1.55−µm detection window.

In addition, it will be shown that the traditional model for passively quenched

SPADs fails to determine the quenching characteristics of passively quenched SPAD.

In particular, it will be shown that the constant-field assumption, namely the electric

field in the avalanche region remaining at the breakdown level while the persistent

current is ongoing, implies the unrealistic consequence that the quenching time, Tq,
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has memory. This unrealistic consequence is a result of the simplistic, deterministic

approach adopted in the traditional model, which neglects the effect of the feedback

on the stochastic impact ionization process.

1.5.2 Mid-infrared: Quantum dot avalanche photodiode

The experimental part of this dissertation focuses on the development of a GaAs-

based midwave infrared photodetector. The device exploits the impact ionization

mechanism to increase the conversion efficiency of III–V based semiconductor detec-

tors. The goal is to pave the path to realize single photon detectors (SPADs) with

III–V based semiconductors operating beyond 2 µm. Presently, there are no III–V

based semiconductor SPADs available beyond 2 µm. However, there are many appli-

cations ranging from biomedical imaging, astronomy to laser detection and ranging

that require SPADs in the MWIR (3–5 µm) range. In this dissertation, it is demon-

strated the linear mode operation of a GaAs-based avalanche photodiode (APD) at

5 µm. The device, called the QDAP, exploits quantum confined transitions to obtain

MWIR absorption and couples the photogenerated carriers into an APD to provide

multiplication. A conversion efficiency of 12% is obtained. This is also the longest

wavelength APD reported with III–V semiconductors and opens up the exciting

possibility of realizing SPADs for these wavelengths.

1.6 Outline of this dissertation

This dissertation is divided into two parts, Parts I and II. The first part, which

includes from Chapter 2 until Chapter 4, is devoted to the modeling of avalanche

photodiodes operating in linear and Geiger modes. On the other hand, Part II, which

includes Chapter 5, deals with the implementation of a new midinfrared photodetec-

26



Chapter 1. Introduction

tor called the quantum dot avalanche photodiode.

In Chapter 2, new modeling methods are developed to design and characterize

the performance of separate absorption multiplication (SAM) SPADs. The model

uses the recursive dead-space multiplication theory (DSMT) according to a field-

dependent spatial distribution of carriers to calculate the generalized breakdown

probability for all the carriers generated in the SPAD. The characterization of the

devices is made by calculating the performance metrics: photon detection efficiency,

the dark count rate and also the single-photon quantum efficiency as a function of

the width of the multiplication region, the applied voltage and the temperature of

operation. Moreover, An aspect of importance that had not been explored before,

namely, the random locations where carriers are born in each layer, is thoroughly

analyzed and studied. In particular, it assumed that photogenerated carriers are

generated in the absorber at random locations according to an exponential pdf.

On the other hand, dark carriers are assumed to be generated randomly in the

multiplication region and the absorber according to a uniform pdf in each layer.

Chapter 3 explores the characteristics of the impact ionization process under the

influence of an time-varying electric field. It is shown rigorously that a sinusoidal

biasing scheme that is synchronous with the optical pulse stream and has a properly

selected DC level, peak-to-peak value and phase, can offer an increase in the effective

gain-bandwidth product of the APD. Presently, to meet the demand of the expo-

nential growth in data transfer, the telecommunication industry has been moving

toward 40-Gbps and 100-Gbps protocols for their core fiber-optic backbone networks

alongside the existing 10-Gbps infrastructure operating at the low-loss wavelength of

1.55 µm. However, the limited speed of APD-based receivers have limited their use

in systems that operate at 2.5 and 10 Gbps. The proposed biasing scheme represents

a promising effort to enable the current InP-based APDs to meet the expectations

of 40 Gbps systems.
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Chapter 4 deals with the models for passively quenched SPADs. Three models

are analyzed: (1) The first model is the traditional model, which assumes that after

an avalanche trigger the voltage across the SPAD remains at a fixed value. It will be

shown that this assumption leads to unrealistic consequences. (2) The second model

to be examined is a deterministic self-regulating model. This model captures the

effect of the feedback from the load in the current-voltage characteristics of a passively

quenched SPAD. However, the stochastic nature of the impact ionization process is

neglected. (3) The third model is a stochastically self-regulating avalanche model,

which captures the dynamic effect of the feedback from the load in the stochastic

nature of the impact ionization process. The stochastically self-regulating avalanche

model represents the first significant expansion beyond the Haitz model [42], for

passively quenched SPADs, since it was proposed more than 45 years ago. It will

be shown that the proposed model predicts, the important phenomena observed in

NFADs that traditional models are unable to predict.

In Chapter 5, a new midwave infrared photodetector is presented, the Quantum-

dot avalanche photodiode (QDAP). In the QDAP, an intersubband quantum dots-in-

a-well (DWELL) detector is coupled with an APD through a tunnel barrier. The idea

behind the QDAP is to increase the conversion efficiency of GaAs-based midinfrared

detectors by providing avalanche multiplication gain. In the operation of the QDAP

the photon absorption and generation of carriers take place in the DWELL section

while the avalanche section of the device provides internal gain. It is shown that the

conversion efficiency of the DWELL detector is increased by a factor of 14 due to

the gain introduced by the avalanche multiplication stage of the QDAP.
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Chapter 2

Optimization of the width of

multiplication region

2.1 Introduction

Recently, there has been a growing interest in optimizing the width of the multi-

plication layer for the best photon detection efficiency (PDE) and dark count rate

(DCR) performance [23]. As mentioned in the introduction of this dissertation, the

PDE and DCR are two of the most important performance metrics for SPADs. The

PDE is the product of the detector quantum efficiency and the avalanche breakdown

probability. The DCR constitutes false counts and it is a measure of how noisy the

detector is. Dark counts originate from dark carriers generated in the absence of

illumination; the larger the number of dark carriers, the larger the dark-count rate

is [21]. There are several mechanisms that contribute to the concentration of dark

carriers. At high electric fields, the dark-carrier concentration is strongly affected

by band-to-band tunneling, which depends exponentially on the electric field [22].

Another important mechanism that contributes to the number of dark carriers is
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tunneling through defects. It has been reported that in some materials the tunneling

currents due to defects concentration is higher than that of band-to-band tunneling

[23].

Besides the strength of the electric field and the properties of the material, the

probability of a carrier triggering an avalanche breakdown is determined by the

place where it is born [26]. A carrier created in the start of the multiplication region

has a greater probability of triggering an avalanche event compared to that created

close to the end of the multiplication region. This is because a primary carrier

created early on in the multiplication region has a larger distance to travel compared

to those created close to the end of the multiplication region. For example, for a

separate absorption separate multiplication (SAM) APD, a carrier created in the

absorption layer is more likely to cause an avalanche compared to that created in the

multiplication region. More generally, the dependence of the breakdown probability

on the birth location of a carrier is crucial in determining the SPAD’s performance

when the number of dark carriers inside the absorption and multiplication layers is

taken into account. Since the width of the multiplication layer significantly affects

the electric field (and hence tunneling current), it is important to have a model

that can predict the DCR and PDE required for Geiger-mode operation for various

SPAD structures and geometries while taking into account the types of dark carriers

and the randomness in the location where they are generated in the absorption and

multiplication layers.

The main focus of this chapter is to present theoretical results based on new

modeling tools that shed light on the dependence of the performance of SAM SPADs

on the width of the multiplication region by comparing the effects of field-assisted

tunneling with temperature-assisted dark carriers as the width is varied. This study

also reveals the characteristic difference in the performance between low-temperature

operation and room-temperature operation while identifying and quantitatively ex-
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amining the main factors that govern the performance of the SPAD. Moreover, an

aspect of importance that had not been explored before, namely, the random loca-

tions where carriers are born in each layer, is thoroughly analyzed and studied. In

particular, it is assumed that photogenerated carriers are generated in the absorber

at random locations according to an exponential probability density function (pdf).

On the other hand, dark carriers are assumed to be generated randomly in the mul-

tiplication region and the absorber according to a uniform pdf in each layer. To

calculate the generalized breakdown probability for all the carriers generated in the

SPAD the recursive dead-space multiplication theory (DSMT) according to a field-

dependent spatial distribution of carriers is used [26, 47]. In addition, along with the

DCR and PDE, the single-photon quantum efficiency (SPQE) is also used as a figure

of merit to assess the SPAD’s performance [21]. The ability of the SPQE to admit

an optimal operating overbias makes it a very useful metric [47]. The theory devel-

oped is applied to SPADs that operate in a short-pulse gated-mode regime, in the

1.3–1.55 µm range, with InP multiplication regions and either InGaAs or InGaAsP

as absorbers.

2.2 Model

In this section I draw upon existing models for dark current [48, 23], breakdown prob-

ability [47, 26] and SPAD-performance metrics [21, 47] to develop new expressions

for distributed breakdown probability for SAM SPADs and their performance.

2.2.1 Review of dark current model

The dominant mechanism of dark-carrier generation in a specific SPAD will depend

upon its physical structure and operating conditions such as the bias voltage, repeti-
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tion rate in gated operation, and temperature. In this study dark-carrier generation

in both of the absorption and multiplication regions are considered. In both regions

the mechanisms to be considered are GR, band-to-band tunneling and tunneling

through defect states. Accordingly, the number of dark carriers generated per sec-

ond in the absorber is Nd,abs = Ngen,abs + Ndef,abs + Ntun,abs. In the same way, the

number of dark carriers generated per second in the multiplication region is given by

Nd,mul = Ntun,mul +Ndef,mul +Ngen,mul.

The GR current density, which is the dominant mechanism of dark-carrier gen-

eration at low voltage, is given by the expression [48]

Jgen =
qniW

τeff

(

1− exp(qV/2kT )

)

(2.1)

where, W is the width of the depletion region, ni is the intrinsic carrier concentration,

V is the applied voltage, and τeff is the effective carrier lifetime. (The units of Jgen

are Amperes per square meter.) Thus, the number of dark carriers due to GR is

Ngen = JgenA/q, where A is the SPAD’s cross-sectional area, and q is the charge of

the electron.

At high electric fields, the dominant mechanism of dark-carrier generation is

tunneling [48]. Consequently, tunneling currents become very important for thin

multiplication layers [49]. In InGaAs dark carrier generation due to tunneling be-

comes importance at electric field > 200 kV/cm [50]. Generally, tunneling current

increases exponentially as the electric field increases [22]; more precisely [48],

Jtun =

√
2m∗q3EmV

4π2~2E
1/2
g

exp

(

−θ
√
m∗E

3/2
g

qEm~

)

(2.2)

where Em is the electric field, V is the voltage across the avalanche region, m∗ is

the electron effective mass, and θ is a parameter that depends on the shape of the

tunneling barrier. As in the case of Ngen, the number of dark carriers in the avalanche

region due to band-to-band tunneling is Ntun = JtunA/q.
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Defects in the material also contribute to increase the dark-carrier generation

[25, 23, 22]. The tunneling current density due to defect states is given by the

expression [23]

Jdef =

AdEmV NT exp

(

−(B1E
3/2
B1

+B2E
3/2
B2

)

Em

)

Nv exp

(

−B1E
3/2
B1

Em

)

+Nc exp

(

−B2E
3/2
B2

Em

) (2.3)

where Ad = q3
√

2mr

Eg
/(4π3

~
2), mr =

2(mcmlh)
mc+mlh

is the reduced effective mass, mc being

the conduction band effective mass and mlh being the light hole effective mass, B1 =

π(mlh/2)
1/2/(2q~), and B2 = π(mc/2)

1/2/(2q~). In the above expression, EB1 is the

barrier height of tunneling from valence band to trap and is equal to aEg (a < 1),

and EB2 is the barrier height of tunneling from trap to the conduction and is equal

to (1 − a)Eg. The quantities Nv and Nc are the light hole valence and conduction

band density of states and NT represents the number of defects per unit volume

[23]. The number of dark carriers in the avalanche region due to defects states is

Ndef = JtunA/q. The average number of dark carriers generated in the SPAD is

given by

Nd = Nd,mul +Nd,abs (2.4)

2.2.2 Calculation of breakdown probability

In order to apply the DSMT to calculate the generalized breakdown probabilities for

all the carriers generated in the SPAD illustrated in Fig. 2.1 [47, 26], it has been used

(i) the nonlocalized ionization coefficients, also called enabled ionization coefficients

(the ionization coefficient assumed once the carrier travels the dead-space distance),

and the threshold energies for each material [51], and (ii) the electric-field profile

through the device. The non-localized electron and hole ionization coefficients and

threshold energies for InP, InGaAs and InGaAsP are readily available [51, 52, 53].
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Figure 2.1: Device structure and electric-field profile of a SAM SPAD with InP

multiplication region and InGaAs absorber.

Probability density function of the free path

The following shifted-exponential model for the probability densities of the distance

to ionization, y, measure from the location, x, where a carrier is born is adopted [26].

The mathematical expressions presented in this section are further explained in the

Appendix A. For an electron born at location x, with α being the enabled ionization

coefficient, the probability that it impact ionizes at location y and assuming that

electrons move to the direction of increasing x is [54]

he(y|x) = α(y) exp

(

−
∫ y

x+de(x)

α(u) du

)

, y ≥ x+ de(x) (2.5)

where de(x) is the dead space of an electron born at location x, and he(y|x) = 0 when

y < x+ de(x). The dead space is the distance a carrier must travel within the SPAD

before acquiring the energy threshold needed for effecting an impact ionization; de(x)

satisfies the equation [54]

Eth,e

(

x+ de(x)
)

= q

∫ x+de(x)

x

E(u) du, (2.6)

39



Chapter 2. Optimization of the width of multiplication region

where Eth,e(x) is the ionization threshold energy for electrons at location x in the

APD (this energy varies from layer to layer). Equation (2.6) neglects the effect of

scattering, which, as described in Chapter 1, increases the dead space. However,

(2.6) gives a good approximation of the dead space for high electric fields (> 1× 105

V/cm) where the carriers in the depleted multiplication region can gain energy from

the electric field at a faster rate than they lose it to the various scattering processes.

There are similar expressions for holes. For an hole born at location x, with β being

the enabled ionization coefficient, the probability that it impact ionizes at location

y and assuming that holes move to the direction of decreasing x is

hh(y|x) = β(y) exp

(

−
∫ x−dh(x)

y

β(u)du

)

, y ≤ x− dh(x) (2.7)

where dh(x) is the dead space of a hole born at location x, and hh(y|x) = 0 when

y > x− dh(x). The hole dead space satisfies the following equation

Eth,h

(

x− dh(x)
)

= q

∫ x

x−dh

E(u) du, (2.8)

In the case where the field is constant, and scattering effects are neglected, the

position-independent dead space is calculated using d = Eth/qE [51]. The equations

from (2.5) to (2.8) of the DSMT are generalized equations; they constitute a powerful

tool that allows us to model APDs with any electric-field profile and any structure,

like multilayer devices with heterostructure multiplication regions to be reviewed

next.

Breakdown probability

Suppose that we know the total electron and hole population, Z(x), resulting from

a parent electron born at x, and the total electron and hole population, Y (x), re-

sulting from a parent hole born at x, where 0 ≤ x ≤ w, and w is the width of

the SPAD. Let us define PZ(x) as the probability that Z(x) is finite, and similarly,
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PY (x) as the probability that Y (x) is finite [26]. These quantities reflect the non-

breakdown probabilities for carriers generated at location x anywhere in the SPAD.

Thus, for example 1 − PZ(x) is the probability that Z(x) is infinite, which is pre-

cisely the case when avalanche breakdown occurs. On the other hand, the probability

that an electron-hole pair born at x collectively triggers an avalanche breakdown is

Pb(x) = 1 − PZ(x)PY (x). Recursive integral equations describing PZ(x) and PY (x)

are developed elsewhere [26] and are repeated here for completeness:

PZ(x) =

∫

∞

w−x

he(ξ|x) dξ +
∫ w−x

0

(

P 2
Z(x+ ξ)PY (x+ ξ)

)

he(ξ|x) dξ (2.9)

PY (x) =

∫

∞

x

hh(ξ|x) dξ +
∫ x

0

(

P 2
Y (x− ξ)PZ(x− ξ)

)

hh(ξ|x) dξ (2.10)

These integral equations can be solved using a straightforward numerical iterative

approach similar to that described in [26].

Let us assume that the electron-hole pairs are created at random locations in the

absorption and multiplication regions extending from x = wai to x = wmf , as shown

in Fig. 2.1. It is also assumed that holes (electrons) are transported in the positive

(negative) x direction. Moreover, let f(x) denote the pdf of the birthplace of the

parent electron-hole pair. Thus, the average probability that an electron-hole pair,

randomly generated in the interval [wai, wmf ] according to the pdf f(x), triggering

an avalanche breakdown is given by

Qf =

∫ wmf

wai

f(x)
(

1− PZ(x)PY (x)
)

dx. (2.11)

The expression for Qf represents the general form of the breakdown probability

for any random distribution of carriers and it accounts for avalanche breakdown oc-

curring either in the absorption or multiplication regions. We can further specialize
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this expression for two distinct forms of f representing the following physical scenar-

ios: (a) the scenario for which the avalanche breakdown is triggered by electron-hole

pairs photo-generated inside the absorption region, in which case f is denoted by fph;

and (b) the scenario for which the avalanche breakdown is initiated by dark carriers

randomly generated in either the absorption or the multiplication region, in which

case f is denoted by fd. The use of fph and fd in (2.11) will lead to the injected-

carrier breakdown probability, Qph, and the distributed-carrier breakdown probability,

Qd, respectively. The former represents the breakdown probability caused by a car-

rier pair photogenerated in the absorber; on the other hand, the latter represents the

breakdown probability caused by a dark carrier that is randomly generated inside

the SPAD, taking into account the dark carriers generated in the multiplication and

the absorption regions.

Figure 2.2: Probability density function fd for the case where the avalanche break-

down is triggered by dark carriers randomly generated in the SPAD.

Let us consider first the case where the avalanche breakdown is triggered by dark

carriers randomly generated in the SPAD. In this case the pdf f is given by, as
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depicted in Fig. 2.2,

fd =
A

waf−wai

(

u(x− wai)− u(x− waf )

)

+ B
wmf−wmi

(

u(x− wmi)− u(x− wmf )

)

(2.12)

where A =
Nd,abs

Nd,abs+Nd,mul
, B =

Nd,mul

Nd,abs+Nd,mul
, and u(x) is the unit step function.

Note that A (resp. B) is the probabilities that an arbitrary dark-carrier pair already

generated in the SPAD was actually generated in the absorption (resp. multiplica-

tion) region. The quantities wmi and wmf respectively represent the start and end of

the multiplication region, and wai and waf respectively represent the start and end

of the absorption region, where it has been assumed (wmf −wmi) + (waf −wai) ≈ w

(see Fig. 2.1). (In all the calculations the effect of the charge layer, which is be-

tween the absorber and the multiplication region, has been neglected leading to the

approximation waf ≈ wmi.) Consequently, the probability Qd simplifies to

Qd =
Nd,abs

Nd,abs+Nd,mul

1
waf−wai

∫ waf

wai

(

1−PZ(x)PY (x)
)

dx

+
Nd,mul

Nd,abs+Nd,mul

1
wmf−wmi

∫ wmf

wmi

(

1−PZ(x)PY (x)
)

dx. (2.13)

In the case of the injected-carrier breakdown probability, the absorption of pho-

tons in the absorption region obeys an exponential behavior. Hence, fph will be of

the form fph(x) = C1e
−C2x, for wai ≤ x ≤ waf , and fph = 0 elsewhere. For sim-

plicity, x = wai = 0 and therefore waf = wabs, which is the width of the absorber

(see Fig. 2.1). The constant C2 can be determined by equating
∫ wabs

0
C2e

−C2x dx to

the SPAD’s quantum efficiency, η. This yields C2 = − ln(1− η)/wabs. The constant

C1, on the other hand, is chosen so that fph has unit area, as we would expect from

a valid pdf; this yields C1 = C2/η. In summary, the injected-carrier breakdown
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probability is given by

Qph =
− ln(1− η)

ηwabs

∫ wabs

0

exp

{

ln(1− η)

wabs
x

}

×
(

1− PZ(x)PY (x)
)

dx. (2.14)

2.2.3 SPAD performance

The traditional performance metrics, photon-detection efficiency and the dark-count

rate are respectively defined as PDE ≡ ηQph and DCR ≡ NdQd. Additionally,

the single-photon quantum efficiency is another useful metric to assess the SPAD

performance [21, 47]. The latter is defined as the probability that a photon triggers an

avalanche breakdown, given that an optical pulse is present and at least one photon

impinges on the SPAD, and provided that no dark carrier triggers a breakdown.

Mathematically, it is given by

SPQE =
(1− Pd)Popt

po
, (2.15)

where Pd is the dark count probability, calculated throughout the absorption and

the multiplication regions altogether. The quantity Popt is the probability that at

least one photogenerated carrier in the absorber triggers the avalanche, and po is the

probability that one photon impinges on the SPAD during the detection time. The

dark count probability is given by

Pd = 1− e−NdQd, (2.16)

where Nd is the average number of dark carriers generated in the SPAD (calculated

in (2.4)). Note that in Kang et al. [21], the breakdown probability Qph is used in

place of Qd; however, the use of Qd, as done here, accounts for dark-carrier generation

at random locations across the entire device. The quantity Popt is calculated using

the following expression

Popt = 1− e−ηQphNo , (2.17)
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where η is the detector quantum efficiency and No is the average number of photons

per pulse.

2.3 Results

The theory described in the previous section is applied to SAM SPADs with InP

homojunction multiplication regions and InAlAs-InP heterojunction multiplication

regions. In both cases the absorber layer is InGaAs. In the case where GR dark

carriers are included the operating temperature is 300 K. Figure 2.1 illustrates the

structure and the electric-field profile of the SPAD with InP homojunction multi-

plication region. A schematic of the electric-field profile across the device is also

shown.

To see the role played by the width of the multiplication region on the performance

of the SPAD, the PDE, DCR and SPQE curves have been calculated, as the width

of the multiplication region is varied, considering two scenarios: (i) when the domi-

nant dark-carrier-generation mechanism is field-assisted and (ii) when the dominant

mechanism of dark-carrier generation is temperature assisted. The comparison of the

performance of the SPAD under these scenarios will illustrate the characteristic differ-

ence in the performance between low-temperature operation and room-temperature

operation and how this attribute varies as the multiplication-region width is changed.

2.3.1 InGaAs/InP homojunction SAM photodiode

The DCR, PDE and SPQE for a SAM SPAD with InP homojunction multiplication

region of width in the range 500–2000 nm and absorber of 1µm were calculated. It

is expected that the effect on the number of dark carriers, and hence on the DCR,

of the temperature-assisted generation of dark carriers is more relevant at lower bias
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voltages since as we increase the bias voltage the dark-carrier generation will be

dominated by field-assisted mechanisms. Figure 2.3 shows the calculated DCR as

a function of the normalized excess applied voltage for three different widths of the

multiplication region. The normalized excess applied voltage is defined as ∆V/VBR,

where ∆V = (V −VBR), VBR is the breakdown voltage and V is the voltage across the

device. The solid lines correspond to the case when field-assisted and temperature-

assisted generation of dark carriers are both present in the model. For clarity, the case

when only field-assisted generation is taking place (dashed lines) is also shown. The

figure shows that at higher normalized excess bias voltages the DCR curve is almost

completely dictated by tunneling effects for all the widths of the multiplication region.

It is also noticed that the effect of temperature-assisted dark carrier generation on

the DCR is more important in devices with thick multiplication regions, e.g., > 800

nm. On the other hand, for devices with thin multiplication regions the DCR curve

is dominated, over almost the whole range of normalized excess voltages, by field-

assisted mechanisms.

Figure 2.4 shows the calculated PDE versus DCR for InP multiplication regions

of 700, 900, 1200 and 2000 nm, and an InGaAs absorption layer of 1 µm. There are

two groups of curves generated according to the different mechanisms for dark-carrier

generation; in the figure these two groups are labeled by their respective ellipses.

The lower group of curves corresponds to the cases for which both field-assisted and

temperature-assisted generation of dark carriers are included. On the other hand, in

the upper group of curves only field-assisted generation of dark carriers is considered.

It can be seen that the PDE versus DCR behavior varies as temperature-assisted

dark carriers along with field-assisted dark carriers are included. In the case when

only field-assisted dark-carrier generation is considered (upper group), the calculated

PDE, for a given DCR, is higher as the multiplication region becomes wider. On

the other hand, in the case for which both mechanisms of dark-carrier generation

are considered (lower group) two distinct behaviors are observed as the width of the
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Figure 2.3: DCR versus normalized excess voltage for 500 nm, 900 nm and 2000 nm

multiplication region widths. Dashed lines correspond to the case when GR dark

carriers are absent and solid lines correspond to the case when both field-assisted

and GR dark carriers are present.

multiplication region increases. First, for the low values of the DCR (< 1011Hz/cm2),

it can be seen an improvement in PDE as the width of the multiplication region is

increases. However, for larger DCR values, the PDE degrades as the multiplication

region becomes wider. Hence, the calculated results illustrated in Fig. 2.4 suggest

that in cooled devices, the performance will improve as the width of the multiplication

region is increased. However, for devices working at room temperature the increment

in PDE, due to a wider multiplication region, is counteracted by an increment in

DCR and the performance will be degraded as the multiplication region becomes

wider. The improvement in the PDE versus DCR characteristics at low temperatures

is attributable to fact that as the width of the multiplication region increases the
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Figure 2.4: PDE versus DCR for InP multiplication regions of 700, 900, 1200 and

2000 nm. The absorber is a 1 µm layer of InGaAs. The maximum value of the PDE

versus DCR curve is determined by the quantum efficiency η, which in this case is

0.5.

tunneling current decreases due to the lower electric field. It should be pointed out

that the maximum value of the PDE versus DCR curve is determined by the quantum

efficiency η, which in this case is 0.5.

Our calculations of the SPQE, as a function of the applied bias, indicate a similar

trend to that suggested by the PDE versus DCR curves. Moreover, the SPQE curves

provide further insight by suggesting an optimal thickness of the multiplication region

that achieves the highest SPQE at the appropriate applied voltage. Figure 2.5 (solid

lines) shows that the peak value of each SPQE curve increases as the width of

the multiplication region increases, reaching a maximum value (between 1200–1400

nm) beyond which it starts to decrease. Nonetheless, for a scenario dominated by
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field-assisted dark-current generation both the peak SPQE and the FWHM (full-

width-at-half-maximum) of each curve increase as the width of the multiplication

region increases (dashed lines). The existence of an optimal peak SPQE at room

temperature is a result of the competing effects of the field- and temperature-assisted

generation of dark carriers.

40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

Voltage (V)

S
P

Q
E

Field and temp.
assisted
Field assisted

2000 nm

1400 nm

1200 nm

1000 nm

Figure 2.5: SPQE versus applied voltage for several widths of the multiplication

region. The maximum achievable value of the SPQE curve is determined by the

quantum efficiency η, which in this case is 0.5.

2.3.2 InAlAs-InP heterojunction multiplication regions

Thin heterojunction multiplication regions have proven to be beneficial in reduc-

ing the excess noise factor due to the strong effect of the dead space in devices

with thin multiplication region [55, 56, 57]. However, their desirable characteristics
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decreases in devices with thick multiplication regions due to the reduced impor-

tance of dead space in these devices. Additionally, in an earlier theoretical work

[47] it has been shown that the fractional width of the In0.52Al0.48As layer in an

In0.52Al0.48As-InP heterojunction multiplication region can be optimized to attain a

maximum SPQE that is greater than that offered by a homojunction InP multiplica-

tion region. (The fractional width of the In0.52Al0.48As layer in an In0.52Al0.48As-InP

heterojunction multiplication region is defined as the ratio between the width of the

In0.52Al0.48As energy buildup layer to the total width of the heterojunction multipli-

cation region comprising the In0.52Al0.48As and InP layers.) It was also shown that

this effect became more pronounced in thin multiplication regions as a result of the

increased significance of dead space. Therefore, it would be of interest to further

investigate the performance of SPADs with heterojunction multiplication regions.

Figure 2.6 shows the DCR as a function of the normalized excess voltage for four

different widths of the multiplication region. By comparing Fig. 2.6 with Fig. 2.3,

it is observed that the curves show a similar trend in the DCR as the width of the

multiplication region is varied. Similarly to the case of a homojunction multiplication

region and in accord with our understanding of the dominance of field-assisted effects

over GR effects in high-fields, the change in the DCR, as the role of GR is varied (for a

certain width of the multiplication region), is only noticeable in thicker multiplication

regions.

The SPQE curves, on the other hand, give as a slightly more informative ac-

count of things. As a function of the applied voltage, the SPQE exhibits a different

behavior in the cases of a homojunction and heterojunction multiplication regions.

Figure 2.7 shows the calculated SPQE versus the applied voltage for the homojunc-

tion and heterojunction multiplication regions for several widths of the multiplication

region. For a given width of the multiplication region, the calculated SPQE of the

heterojunction multiplication region is higher than that for the homojunction case.
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Figure 2.6: DCR versus normalized excess voltage for 200 nm, 300 nm , 400 nm and

500 nm multiplication region widths. Dashed lines correspond to the case when GR

dark carriers are absent and solid lines correspond to the case when both field-assisted

and GR dark carriers are present.

Moreover, this enhancement in the SQPE, as we move from a homojunction to a

heterojunction, becomes more pronounced as the width of the multiplication region

is reduced. This is attributed to the fact that for a given width of the multiplica-

tion region, the electric field required to achieve a certain breakdown probability is

smaller in the heterojunction multiplication-region case than that in a homojunction

multiplication-region case [47], which, in turn, results in a reduction in the number

of dark carriers generated though field-assisted mechanisms. The improvement in

breakdown characteristics in properly designed heterojunction multiplication layers

is a result of the so-called initial-energy effect, which takes advantage of injecting

“hot” carriers from a high bandgap layer (InAlAs in our case) of the multiplication
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region to the lower bandgap layer (InP) [54, 47]. It is to be noted, however, that this

conclusion does not take into account the possibility of an increase in hole trapping

in a heterojunction multiplication region, which may aggravate after-pulsing.

15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

Voltage (V)

S
P

Q
E

 

 

InAlAs−InP
InP homojunction

W
mul

=200 nm

300 nm

400 nm 500 nm

Figure 2.7: SPQE versus applied voltage for InP homojunction and InAlAs-InP

heterojunction multiplication region.

2.4 Conclusions

This theoretical study shows that the thickness of the multiplication region plays

a different role in the performance of a SPAD depending upon what mechanism of

dark-carrier generation is dominant. At low temperatures, for which field-assisted

mechanisms are dominant, an increment in the thickness of the multiplication region

will result in an improved PDE vs. DCR characteristics. The same behavior is seen
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in the SPQE curve at low temperatures. At room temperatures, on the other hand,

the PDE vs. DCR characteristics show a weaker performance as the width of the

multiplication region is increased. However, the SPQE curves show a maximum

achievable peak SPQE at an optimal overbias and an optimal multiplication-region

width. It is important to note that the behavior of an APD as a function of the

multiplication-region width in the linear mode, where excess noise factor decreases

as the multiplication-region width is decreased, is characteristically different from

that of a SPAD.
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Chapter 3

Impact ionization under dynamic

electric field

3.1 Introduction

As mentioned in the introduction of this dissertation, the exponential growth in

video, voice, data and mobile-device traffic over the Internet, has motivated the

telecommunication industry to move toward 40-Gbps and 100-Gbps protocols for

their core fiber-optic backbone networks alongside the existing 10-Gbps infrastruc-

ture operating at the low-loss wavelength of 1.55 µm. Clearly, operation at such

high speeds requires high sensitivity detectors. Separate absorption and multiplica-

tion (SAM) InP-InGaAs APDs are normally the most preferred photodetectors for

direct-detection high-data rate systems. However, due to the stochastic nature of

the impact-ionization process, the buildup time of an APD is also stochastic and can

degrade its performance. In particular, the APD’s finite and stochastic buildup time,

the time needed for all the impact ionizations to settle, gives rise to intersymbol in-

terference (ISI) and limits the bandwidth of the communication system [58]. In fact,

54



Chapter 3. Impact ionization under dynamic electric field

the long avalanche buildup time in InP has limited the speed of InP-based APDs and

stopped them from meeting the expectations of 40-Gbps systems. While the buildup

time of an APD is dependent on the material (e.g., on k, the hole-to-electron ion-

ization coefficient ratio) it also has a dependence on the applied electric field and its

profile in time and space [59] as it governs the cascade of impact ionizations. Sev-

eral approaches have been explored to model the buildup time in order to increase

the gain-bandwidth product (GBP) of APDs, including GBPs for heterojunction

multiplication regions [60, 59]. However, all existing models focused, mainly, on op-

timizing the APD’s structure. In particular, the effect of modulating the electric

field on the impact ionization characteristics of APDs remains unexplored, and no

analytical model for avalanche multiplication exists for APDs that are driven by a

time-varying bias voltages. The modulation of the applied electric field to control

the impact ionization process could be beneficial in communication systems since it

opens up the possibility of increasing the GBP in a simple and efficient way. The

optimization problem becomes that of finding the optimal electric-field profile, for a

fixed mean gain, that maximizes the GBP. In this chapter it is outlined the potential

benefits of modulating the applied electric field on the performance of APDs. This

approach enables the calculation of the impulse response, gain and and excess noise

factor, breakdown probability, as well as pulse duration time all under conditions of

a dynamic field in the multiplication region.

The theory of impact ionization process under dynamic electric fields was devel-

oped by Hayat et al. [61], and the most important findings are repeated here for

completeness.
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Figure 3.1: Separate-absorption multiplication APD.

3.2 Concept of impact ionization under dynamic

electric field

Suppose that a time-varying bias, VB(t), t ≥ 0, is applied to an APD. Consider a

charge-depleted multiplication region of an APD extending from x = 0 to x = w, as

shown in Fig. 3.1, with the convention that the electric field is pointing in the negative

x direction. Let E(x, t) denote the dynamic electric field in the multiplication region

at position x and at time t. If the field is uniform, then E(x, t) ≡ E(t) = VB(t)/w.

Suppose that a parent hole (electron) is created at an arbitrary location x in the

multiplication region of the APD, and assume that the field is sufficiently high so

as conduction-band electrons and valence-band holes travel at their material-specific

saturation velocities, ve and vh, respectively. As the hole travels the multiplication

region, it can impact ionize at a stochastic location, say ξ, and at time τ = (ξx)/vh. It

will be assumed that the change in the electric field is slow with respect to the succes-

sive ionizations that a carrier undergoes so that the ionization coefficient of a carrier

depends adiabatically on the instantaneous electric field E(ξ, τ) at the point where
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and when it impact ionizes. The ability of a carrier to impact ionize also depends

on the carrier’s history, consistent with the dead-space phenomenon. In particular,

a newly born carrier cannot impact ionize before traveling a dead space [56], which

is the minimum distance a carrier must travel before it acquires sufficient energy

to effect an impact ionization. Upon impact ionization, the parent hole is replaced

with two offspring holes and an offspring electron. Each offspring carrier moves on

to further impact ionize, and so on. This process continues and it may or may not

terminate, depending on the field and device and material properties. The stochastic

multiplication factor is the total number of electron-hole pairs generated as a result

of a parent carrier; it can be either finite or infinite. On the other hand, the buildup

time is the time measured from the creation of the parent carrier to the time when

all carriers have exited the multiplication region. In Section 3.3 the equations that

enable us to calculate the statistics of the multiplication factor and the impulse re-

sponse function, as well as the breakdown probability under the dynamic field E(x, t)

will be derived. However, before doing it is important to extend the notions of the

ionization coefficient, dead space, and the probability density function of the carrier’s

free path (prior to ionization) to a dynamic-field setting.

Under the adiabatic field assumption, α(x, t) and β(x, t) are defined as the elec-

tron and hole time-varying non-localized ionization coefficients associated with carri-

ers at location x in the multiplication region and at time t. These are the ionization

coefficients for those carriers that have already traveled the dead space. Following

the model for non-localized ionization coefficients under a static electric field [62] and

by replacing the static field with its dynamic counterpart, the dynamic ionization

coefficients are given by
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α(x, t) = Ae exp

[

−
(

Ee

E(x;t)

)me
]

and

β(x, t) = Ah exp

[

−
(

Eh

E(x;t)

)mh
]

, (3.1)

where A, E , and m are parameters chosen by fitting measured excess-noise-factor

data [63, 64]. The value of the constants A, E , and m, are known for various III–V

materials [62].

3.2.1 Probability density function of the carrier’s free path

under dynamic fields

Consider an electron and hole created at location x and of age s relative to the

launch instant of the dynamic electric field (at t = 0), and let Xe and Xh be their

stochastic free-path distances to their first impact ionization. As it turns out, the

age of a carrier will play a key role in the formulation of the theory for avalanche

multiplication under dynamic fields, as described in Section 3.3. As an extension to

shifted exponential model for the free path [54], the time-varying probability density

function of Xe and Xh as he(ξ; x, s) and hh(ξ; x, s), respectively, are given by

he(ξ; x, s) =











α(ξ, s+ ξ−x
ve

) exp

(

∫ ξ

x+de(x,s)
α(σ, s+ σ−x

ve
) dσ

)

ξ ≥ x+ de(x, s)

0 Otherwise

(3.2)

hh(ξ; x, s) =











β(ξ, s+ x−ξ
vh

) exp

(

∫ x−dh(x,s)

ξ
β(σ, s+ x−σ

vh
) dσ

)

ξ ≤ x− dh(x, s)

0 Otherwise
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(3.3)

where de(x, s) and dh(x, s) represent the time-varying dead spaces for electron and

hole, respectively, that were created at position x and of age s. The electron’s time-

varying dead space is computed as the minimum d value that satisfies the equation

q

∫ x+de(x)

x

E(y, s+
y − x

ve
) dy = Eth,e(x+ de(x)), (3.4)

where for any 0 ≤ x ≤ w, Eth,e(x) is the ionization threshold energy for electrons for

the material at position x in the multiplication region. Similarly, the hole’s dynamic

dead space is computed as the minimum d value that satisfies the equation

q

∫ x+de(x)

x

E(y, s+
x− y

vh
) dy = Eth,h(x− dh(x)), (3.5)

where Eth, h(x) is the ionization threshold energy for holes for the material at po-

sition x in the multiplication region. Note that given the knowledge of the material

composition in the multiplication region and the electric field profile and its evolution

in time, the dynamic dead space can be calculated for all x and s.

3.3 Multiplication theory under dynamic electric

fields

The recurrence theory for the avalanche multiplication, including the gain and impulse-

response function, under non-uniform, static electric fields was originally formulated

by Hayat et al. in [65, 56, 66]. In addition, the generalization of the recurrence

theory under dynamic electric fields was introduced by Hayat et al. in [61] and it is

repeated for completeness. As it was mentioned before, the age of the parent carrier

triggering the avalanche process is key in modeling the avalanche multiplication pro-

cess when the field is allowed to be time variant because carriers with different ages
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will experience different dynamical electric field ahead of them as they travel the

multiplication region. Specifically, if we assume a causal and spatially non-uniform

electric-field, E(x, t), launched at time t = 0, then an electron born at location x

with age 0 will experience this time-varying field in its lifetime. In contrast, if an

electron is born at location x with age s (relative to the launch time of the field at

t = 0) then it will experience in its lifetime the s-delayed version of the dynamic field,

namely E(x, t)u(t − s), where u(.) is the unit-step function. To take the carrier’s

“age” element into account in a model for the avalanche multiplication process, we

must formulate a model in which the ionization probability is parameterized by the

time at which the parent carrier is injected in the multiplication region. In what

follows, sets of age-dependent recurrence equations are derived that enable us to cal-

culate the mean gain, the excess noise factor, the probability distribution function

of the gain, the mean of the impulse-response function, as well as the breakdown

probability, all under a dynamic electric field.

3.3.1 Analysis of the gain statistics

Z(x, s) and Y (x, s) are defined to be the totality of all electrons and holes, including

the parent carrier, initiated by an electron and hole, respectively, injected at location

x with age s. Note that Z(w, s) = Y (0, s) = 1 since an electron (hole) placed at

the left (right) edge of the multiplication region will exit with ionizing and result

in no offspring carriers. Now consider a parent and electron at location x and of

age s. The stochastic multiplication factor, M(x, s), defined as the total number of

electron-hole pairs generated as a result of an electron-hole pair whose initial location

in the multiplication region is x and whose ages are s is simply

M(x, s) = 0.5[Z(x, s) + Y (x, s)]. (3.6)

Note that in the case of a SAM APD where holes are injected at the edge of the
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multiplication region at x = w and with age s ≥ 0, then the stochastic age-dependent

gain is given by

G(s) = M(w, s) = 0.5[1 + Y (w, s)]. (3.7)

Mean gain

Now the equations that allow us calculate the statistics of the quantities Z(x, s) and

Y (x, s) are derived. Once we find the first and second moments of Z and Y we can

related them to the mean gain and the excess noise factor via (3.6) and (3.7).

Suppose that the first ionization for a parent electron of age s (from the launch

time of the field at t = 0) positioned at location x and occurs at location Xe = ξ,

where x ≤ ξ ≤ w. Note that the time of this ionization is necessarily s + τ , where

τ = (ξ − x)/ve. Note that the two offspring electrons at ξ, whose ages are s + τ ,

will independently generate Z1(ξ, s + τ) and Z2(ξ, s+ τ) carriers, respectively. The

offspring hole, on the other hand, will generate Y (ξ, s + τ) carriers, which is also

statistically independent of Z1(ξ, s + τ) and Z2(ξ, s + τ). Thus, conditional on the

event that the first impact ionization for the parent electron occurs at location ξ,

the sum of Z1(ξ, s+ τ), Z2(ξ, s+ τ) and Y (ξ, s+ τ) will simply amount to Z(x, s).

Since we can always express the mean of Z(x, s) as the expectation of the conditional

mean given that the first ionization of the parent electron (triggering Z(x, s)) occurs

at location Xe, we can write

E[Z(x, s)] = E[E[Z(x, s)|Xe]]

= E[Z1(Xe, s+ (Xe − x)/ve) + Z2(Xe, s+ (Xe − x)/ve)

+ Y (Xe, s+ (Xe − x)/ve)]. (3.8)

Now if we define the notation for the mean of the quantities z(x, s) = E[Z(x, s)]

and y(x, s) = E[Y (x, s)], then the expression on the right hand side of (3.8) can
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recast as

z(x, s) = E[2z(Xe, s+ (Xe − x)/ve) + y(Xe, s+ (Xe − x)/ve)]. (3.9)

Note that the only thing that is stochastic in (3.9) is Xe, whose pdf is given by

(A.1); thus, we can write (3.9) explicitly as

z(x, s) =
∫

∞

w
he(ξ; x, s) dξ +

∫ w

x

[

2z(ξ, s+ ξ−x
ve

) + y(ξ, s+ ξ−x
ve

)

]

he(ξ; x, s) dξ

0 ≤ x ≤ w, s ≥ 0. (3.10)

The first term on the right side of (3.10) represents the scenario when the parent

electron does not impact ionize before it exits the multiplication region.

We can repeat the above argument that led to (3.10) by starting from a parent

hole at ξ and of age s instead of the parent electron. Note that the location of the

first ionization of the parent hole, Xh, can be in the interval [0, x] (instead of [x, w]

as in the case of the parent electron). The recursive equation for y(x, s) is

y(x, s) =
∫

∞

x
hh(ξ; x, s) dξ +

∫ x

0

[

2y(ξ, s+ ξ−x
ve

) + z(ξ, s+ ξ−x
ve

)

]

hh(ξ; x, s) dξ

0 ≤ x ≤ w, s ≥ 0. (3.11)

The pair of linear coupled integral equation in (3.10) and (3.11) can be solved nu-

merically, e.g., by the method of iterations.

The age-dependent mean multiplication factor can be calculated using m(x, s) =

0.5(z(x, s)+y(x, s)), and the age-dependent gain, ga(s), is simply m(w, s) in the case

of a hole injection APD. As a special case, the usual mean gain, g, of an APD under

a static bias is simply g = ga(0) for the cases of hole injection.
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Excess noise factor

The first equations to be derived are the recursive equations for the second moments

z2(x, s) = E[Z(x, s)2] and y2(x, s) = E[Z(x, s)2]. Note that the second moment of the

multiplication factor, m2(x, s) = E[M(x, s)2], can be related to z2(x, s) and y2(x, s)

using m2(x, s) = 0.25[z2(x, s) + y2(x, s) + 2z(x, s)y(x, s)], and the age-dependent

excess noise factor, Fa(s) = m2(w, s)/ga(s)
2, is given by

F (s) =
y2(w, s) + 2y(w, s) + 1

[y(w, s) + 1]2
. (3.12)

Next, the renewal equations characterizing z2(x, s) and y2(x, s) are derived. Since

we can always express the second moment of Z(x, s) as the expectation of the condi-

tional second moment of Z(x, s) given that the first ionization of the parent electron

(triggering Z(x, s)) occurring at location Xe, we can write

E[Z(x, s)2] = E[E[Z(x, s)2|Xe]]

= E[{Z1(Xe, s+ (Xe − x)/ve) + Z2(Xe, s+ (Xe − x)/ve)

+Y (Xe, s+ (Xe − x)/ve)}2]

= E[Z1(Xe, s+ (Xe − x)/ve)
2 + Z2(Xe, s+ (Xe − x)/ve)

2

+Y (Xe, s+ (Xe − x)/ve)
2

+2Z1(Xe, s+ (Xe − x)/ve)Z2(Xe, s+ (Xe − x)/ve)

+2Z1(Xe, s+ (Xe − x)/ve)Y (Xe, s+ (Xe − x)/ve)

+2Z2(Xe, s+ (Xe − x)/ve)Y (Xe, s+ (Xe − x)/ve)], (3.13)

which simplifies to

z2(x, s) = E[2z2(Xe, s+ (Xe − x)/ve)

+y2(Xe, s+ (Xe − x)/ve) + 2z(Xe, s+ (Xe − x)/ve)
2

+4z(Xe, s+ (Xe − x)/ve)y(Xe, s+ (Xe − x)/ve)]. (3.14)
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Upon writing down the averaging explicitly using the pdf of Xe, we obtain

z2(x, s) =

∫

∞

w

he(ξ; x, s) dξ +

∫ w

x

[

2z2

(

ξ, s+
ξ − x

ve

)

+ y2

(

ξ, s+
ξ − x

ve

)

4z

(

ξ, s+
ξ − x

ve

)

y

(

ξ, s+
ξ − x

ve

)

+ 2z

(

ξ, s+
ξ − x

ve

)

]

he(ξ; x, s) dξ

0 ≤ x ≤ w, s ≥ 0. (3.15)

Similarly, a recursive equation for y2(x, s) can be obtained:

y2(x, s) =

∫

∞

x

hh(ξ; x, s) dξ +

∫ x

0

[

2y2

(

ξ, s+
x− ξ

vh

)

+ z2

(

ξ, s+
x− ξ

vh

)

4z

(

ξ, s+
x− ξ

vh

)

y

(

ξ, s+
x− ξ

vh

)

+ 2y

(

ξ, s+
x− ξ

vh

)

]

hh(ξ; x, s) dξ

0 ≤ x ≤ w, s ≥ 0. (3.16)

The pair of linear coupled integral equation in (3.15) and (3.16) can be solved nu-

merically once the quantities z(x, s) and y(x, s) have already been computed by first

solving the pair of equations in (3.10) and (3.11).

Breakdown probability

Here it is developed recursive equations that characterize the probability that a par-

ent carrier triggers breakdown, that is, the probability that infinitely many offspring

carriers are generated. Note that if an electron at position x in the multiplication

region and of age s (relative to the launch instant of the dynamic electric field) im-

pact ionizes for the first time at location ξ, then the probability that the parent

electron generates a finite number of offspring carriers is precisely the product of the

probabilities that each of the two offspring electrons and offspring hole created at ξ

with age s + (ξ − x)/ve generates a finite number of offspring carriers. (Implicit in
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this statement is that each carrier acts independently of the other carries, which is a

correct assumption since here no feedback effect from the created charges on the elec-

tric field are included.) Note that in the special case when the parent electron exits

the multiplication region without ionizing, the conditional probability that produces

a finite number of carriers is trivially equal to one.

Mathematically, PZ(x, s) = PZ(x, s) < ∞ and PY (x, s) = PY (x, s) < ∞ are de-

fined, and they are given by:

PZ(x, s) =

∞
∫

w

he(ξ; x, s) dξ +

w
∫

x

P 2
Z

(

ξ, s+
ξ − x

ve

)

PY

(

ξ, s+
ξ − x

ve

)

he(ξ; x, s) dξ (3.17)

A similar argument can lead to the equation

PY (x, s) =

∞
∫

x

hh(ξ; x, s) dξ +

x
∫

0

P 2
Y

(

ξ, s+
x− ξ

vh

)

PZ

(

ξ, s+
x− ξ

vh

)

hh(ξ; x, s) dξ (3.18)

Once PZ(x, s) and PY (x, s) are numerically calculated by solving the nonlinear cou-

pled integral equations in (3.17) and (3.18) (using iterations, for example), the

breakdown probability is calculated. For example, for a hole injection APD, the

age-dependent breakdown probability for a photon absorbed at time s, is simply

PB(s) = 1− PZ(w, s). (3.19)

3.3.2 Mean impulse response function

Ie(t, x, s) is defined as the stochastic impulse-response function at time t, initiated by

an electron injected at location x and with age s. Similarly, Ih(t, x, s) is the stochastic
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impulse-response function at time t, initiated by a hole injected at location x with

age s. The age variable s can also be associated with the absorption time of a photon.

Mathematically, if we define ie(t, x, s) and ih(t, x, s) as the mean quantities of

Ie(t, x, s) and Ih(t, x, s), respectively, then we can write that conditional mean of

Ie(t, x, s) given that the first ionization of the parent electron occurs at location Xe

as

E[Ie(t, x, s)|Xe] = 2ie(t, Xe, s+ (Xe − x)/ve) + ih(t, Xe, s+ (Xe − x)/ve), (3.20)

where 0 ≤ Xe ≤ w. On the other hand, when no ionization occurs (namely, Xe > w),

then E[Ie(t, x, s)|Xe > w] = (qve/w)u(t)− u(t(w − x)/ve), which is simply a square

pulse of duration equal to the transit time of the original electron (born at x) as

it drifts across the remainder of the multiplication region. Averaging the above

conditional expectation over all possible values of the stochastic position, Xe of the

first ionization, the following coupled recursive equations are obtained:

ie(t, x, s) =
qve
w

[

u(t)− u

(

t− w − x

ve

)]
∫

∞

w

he(ξ; x, s)

+

∫ min(w,x+vet)

x

2ie

(

t− ξ − x

ve
, ξ, s+

ξ − x

ve

)

ih

(

t− ξ − x

ve
, ξ, s+

ξ − x

ve

)

he(ξ; x, s) dξ (3.21)

A similar equation can be obtained for ih(t, x, s):

ih(t, x, s) =
qvh
w

[

u(t)− u

(

t− x

vh

)]
∫

∞

w

hh(ξ; x, s)

+

∫ x

max(0,x−vht)

2ie

(

t− x− ξ

vh
, ξ, s+

x− ξ

vh

)

ih

(

t− x− ξ

vh
, ξ, s+

x− ξ

vh

)

hh(ξ; x, s) dξ (3.22)

The two coupled equations can be solved numerically using an iterative approach.

The mean impulse-response function, i(t, s), (in the case of a hole injection to the
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multiplication region at x = 0) for a photon absorbed at time s is then obtained

using i(t, s) = ih(t, w, s).

3.3.3 Pulse response, pulse bandwidth and pulse-generated

mean gain

It was mentioned earlier that under dynamic biasing, the impulse response function

i(t, s) is dependent on the birth time of the photogenerated parent carrier triggering

the APD (or the arrival time s of the absorbed photon). Since in on-off keying optical

communication photons arrive randomly within each optical pulse, the appropriate

quantity to look at when assessing ISI would be the response of the APD to a pulse,

rather than an impulse, which can be easily obtained through the relation

ip(t) =

∫ T

0

i(t, s)pph(s) ds, (3.23)

where pph(s) is the probability density of photons within an optical pulse (bit) of

duration T , and it is proportional to the intensity of the received optical pulse within

the optical bit. Note that if the electric field is static, then i(t, s) is simply i(t−s), and

ip(t) would become simply the convolution between i(t) and pph(t). An alternative

way to view ip(t) is to regard it as a photon-arrival time averaged impulse response.

Since early and late photons have long and short impulse responses, it would make

sense to look at the average of the impulse response functions over all possible photon

arrival times within each received optical pulse. By calculating the 3 dB bandwidth

of the Fourier transform of ip(t), we can obtain the bandwidth, Bp, which combines

the APD’s buildup limited bandwidth with the bandwidth of the optical pulse in

each bit of duration T .

Note that if we integrate ip(t) over the interval [0, T ], then we obtain an estimate

of the charge generated by the APD due to the optical pulse received in the interval

[0, T ]. In particular, if i(t, s) is very narrow compared to the pulse pph(.), then
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the integral of ip(t) over the interval [0, T ] is simply q
∫ T

0
ga(s)pph(s) ds (assuming a

hole injection APD), which can be approximated as nT−1q
∫ T

0
ga(s) ds, where n =

∫ T

0
pph(s) ds is the average number of photons in the received pulse, and as defined

in Section 3.3, m(w, s) is the age-dependent mean multiplication factor due to a

carrier-pair born at w with age s. This motivates us to define the average pulse-gain

factor, ḡp, as

ḡp = T−1

∫ T

0

ga(s) ds (3.24)

which is simply the average of the age-dependent mean gain (ga(s)), as defined in

Section 3.3, over all photon arrival times. Hence, in the photocurrent is integrated

over one bit period, then the output of the integrator is nqḡp, which is the average

number of detected photons multiplied by the average age-dependent gain. As a

special case when the field is static, ḡp = g and the output of the integrator is the

usual expression nqg.

Finally, the pulse gain-bandwidth product, GBPp, is defined as

GBPp = gpBp, (3.25)

which collapses to the standard gain bandwidth product whenever the biasing is

static. It is worthwhile reiterating that when the photocurrent is integrated over

each bit in the receiver, the total charge is proportional to the product of the pulse-

gain factor ḡp and the average number n of detected photons in the optical pulse in

each bit. In other words, in the dynamically biased integrate-and-dump receiver, the

charge produced in each bit remains proportional to the energy in the optical pulse

in each bit. Thus, while the dynamically biased APD may not be directly applicable

to simple analog detection (unless gain equalization is employed), it is a perfect fit

to digital communications.
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3.4 Results

To exploit the dynamic biasing scheme in on-off keying direct detection communica-

tion, it is desirable to use a periodic dynamic bias so as to minimize the tail of the

APD’s response to an optical pulse, in either RZ or NRZ formats, over subsequent

bits, thereby minimizing ISI. In principle, there are many choices for the waveform

selection in each bit-duration; however, from the perspectives of practicality of imple-

mentation and minimizing waveform distortion at high speeds, a sinusoidal waveform

may be the best choice.

VB(t) = A+m · sin(2πfct+ φ), (3.26)

where fc is set to be equal to the reciprocal of the bit transmission rate, fc = 1/R.

The parameters A, m and φ are free parameters that can be selected to maximize the

benefit of dynamic biasing. It is implicitly assumed that the bias signal is synchronous

with the bit stream. In practice, a clock recovery circuit and a phase lock loop can

be employed to maintain synchronization. In addition, a spatially uniform electronic

field, E(t) = VB(t)/w, will be assumed.

3.4.1 Breakdown probability under linearly varying biasing

The calculation of the breakdown probability assumes that the voltage across the

multiplication region has a duration of 8 electron-transit times, after which the volt-

age is zero, as shown in the inset of Fig. 3.3a. First, the constant-field case is

examined. Figure 3.3a shows the calculated probability that the pulse, initiated by

an electron injected at location x with age s, terminates by time t. The inset shows,

in the blue curve, the applied constant voltage of 23 V as a function of time and the

breakdown voltage level in the red curve. Two cases were simulated: (i) when the

electron that initiates the avalanche is created at the start of the electric field, i.e.,
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Figure 3.2: Probability that the pulse created by an electron injected at x = 0 with age s

terminates by time t. The dash-dotted red curve shows Pe(x, t, s) for s = 0, which is the

case when the electron that initiates the pulse is injected at the start of the electric field.

On the other hand, the dashed blue curve shows Pe(x, t, s) when the electron that initiates

the pulse has an age s ∼ 30% of the total time. The inset shows the applied constant

voltage (blue curve) and the breakdown voltage (red curve).

with age s = 0 (dash-dotted red curve), and (ii) when the electron that triggers the

avalanche has an age s ∼ 30% of the total duration of the applied voltage (dashed

blue curve). It can be seen that both curves overlap. This is an expected result since

under a constant electric field the probability of pulse termination is not affected

by the age of the carrier that initiates the avalanche. On the other hand, when we
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Figure 3.3: Probability that the pulse initiated by an electron injected at x = 0 with age

s terminates by time t. The red curve shows Pe(x, t, s) for s = 0 and the blue curve shows

Pe(x, t, s) when the electron that generates the pulse has an age s ∼ 30% of the total time.

The inset shows the applied voltage (blue curve) and the breakdown voltage (red curve).

examine the time-varying-field case we obtain more informative results. Figure 3.3b

shows the calculated probability that the pulse, initiated by an electron born at

location x with age s, terminates by time t. The inset shows the applied voltage

in the blue curve and the breakdown voltage level in the red curve. The same two

cases were simulated: (i) when the electron that initiates the avalanche has an age

s = 0 (red curve), and (ii) when the electron that initiates the avalanche has an age

s ∼ 30% of the total duration of the applied voltage (blue curve). It can be clearly

71



Chapter 3. Impact ionization under dynamic electric field

seen that since the voltage across the device is time dependent the probability of

pulse termination will depend on the age of the carrier initiating the avalanche. As

expected, Fig. 3.3b shows that the probability of pulse termination is smaller in the

case when the carrier that initiates the avalanche has an age s = 0 (red curve). This

is because, when s = 0, the carrier that initiates the avalanche sees a higher electric

field compared to the case when the carrier that initiates the avalanche has an age

s ∼ 30% of the total duration of the applied voltage (blue curve). This is consistent

with the fact that higher electric fields increase the impact ionization probability.

3.4.2 Impulse response under sinusoidal biasing

In the calculations of the impulse response a SAM APD (see Fig. 3.1) with an InP

multiplication layer of width w = 200 nm is considered. The ionization parameters

for InP were extracted from [67]. For reference, we begin by showing the calculated

mean impulse response function, triggered by a hole injected at position x = w = 200

nm, under a static bias of VB = 14.45 V, as shown in the red curve of Fig. 3.4. The

figure also shows four mean impulse response functions triggered by four holes of

different ages. As expected, the impulse response is the same regardless the age

of the parent hole triggering the avalanche. The mean gain for this case is around

g = 28. The standard gain bandwidth product for this device is found to be 238

GHz, which is the same as the pulse GBPp in this case since the field is static.

The calculation of the age-dependent impulse response function in the case of

the dynamic bias is shown in Fig. 3.6 for different values of the age variable s. The

dynamic electric field profile is also shown in Fig. 3.6. The pulse-gain factor is around

27, making the static and dynamic biasing schemes equivalent in our example at from

an “average-gain” perspective. In Fig. 3.6, the curve with s = 4 transit times (green

curve), for example, corresponds to a parent hole triggering the avalanche 4 transit
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Figure 3.4: Mean impulse response under a constant electric field

times after the launch of the bias at time t = 0. It is interesting to note the change in

the shape of the impulse response as result of dynamic biasing. In particular, unlike

the static-bias case, the impulse response no longer peaks at the hole transit time

w/vh.

Figure 3.6 shows the calculated age-dependent impulse response function under

dynamic biasing using the following values for the dynamic-bias in (3.26): A = 13

V, m = 6 V, and φ = π/3. These parameters were chosen, in part, so that the pulse-

gain factor (calculated using (20)) is = 27, making the static and dynamic biasing
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Figure 3.5: Calculated age-dependent impulse response function under a sinusoidal

dynamic bias.

schemes equivalent in our example at from an average-gain perspective.It is to be

noted that due to the modulated field, for small values of the age (or equivalently

for early photons) the tail of the impulse response is far shorter than that for the

static-bias impulse response. Moreover, the gain associated with this s value is quite

high. This is due to the rise in the field initially, where a high gain is built up,

followed by a drop in the field, where the tail of the impulse response is shortened

due to high probability of the avalanche terminating. For example, when s = 0 the

age-dependent bandwidth corresponding to the impulse response is 62 GHz and the
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Figure 3.6: Calculated age-dependent impulse response function under dynamic bi-

asing using the following values for the dynamic-bias in (3.26): A = 13 V, m = 6 V,

and φ = π/3.

mean gain is 82, while in the static-bias case the bandwidth is 11.4 GHz and the

gain is 28. Meanwhile, if we look at larger age variables (corresponding to photons

arriving late in the pulse), we will see that the gain is generally small and so is the

bandwidth. For example, at s = 5π/3 the age-dependent bandwidth corresponding

to the impulse response is 23 GHz and the mean gain is 3. This is because the carriers

have reduced probability of impact ionizing due to the low field in the second half of

the pulse.
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Figure 3.7: Calculated time response to a 8.3-ps rectangular optical pulse of the

proposed DBE InP APD, with a sinusoidal-dynamic bias function, and a conventional

InP APD. A 5X enhancement in the GBP is predicted.

Figure 3.7 shows the calculated mean pulse-response function, ip(t), for the same

device, once with the sinusoidal dynamic-field profile and once with the traditional

static reverse bias. In this example the width of the optical pulse is 8.3 ps (con-

sistent with 60-Gbps NRZ bit stream). The amplitude, dc-bias and phase shift

of the sinusoidal periodic function has been selected to maximize the pulse gain-

bandwidth product, GBPp. The calculations predict an enhancement in the pulse

gain-bandwidth product from 238 GHz (corresponding to a mean gain of 28 and band-

width of 8.5 GHz) in the traditional static-bias scheme to a pulse gain-bandwidth

product of 1169 GHz (corresponding to a average pulse-gain factor of 27 and pulse

76



Chapter 3. Impact ionization under dynamic electric field

bandwidth of 43.3 GHz). This shows that a dynamically biased APD with the bias

parameters described earlier can increase the pulse gain-bandwidth product of an

APD by a factor of 5 compared to the same APD operated under the conventional

static biasing scheme.

3.5 Conclusion

In this chapter a theory that models the impact ionization process in APDs under

dynamic biasing was presented. The model allows us to predict the breakdown

probabilities, the gain, the mean impulse response, the excess noise factor, and the

gain-bandwidth product of SAM APDs under an arbitrary time-varying electric field.

The model predicts that by using an sinusoidal biasing scheme we are able to increase

the pulse gain-bandwidth product of a SAM APD by a factor of 5 compared to the

same APD operated under the conventional static biasing scheme.
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Models for passively quenched

SPADs

4.1 Introduction

Recently, new SPAD structures capable of achieving very short quenching times have

reactivated the interest in passively quenched SPADs. These devices are the nega-

tive feedback avalanche diode (NFAD) [45] and the self-quenching and self-recovery

avalanche detector [46]. The operation of self-quenching SPADs and in particular

NFADs and self-quenching and self-recovery avalanche detectors rely heavily on the

introduction of negative feedback, which rapidly lowers the internal electric field

of the avalanche diode following buildup of the avalanche current and forces the

stochastic avalanche to terminate quickly. The main motivation for achieving quick

quenching times is to increase the repetition rate of passively quenched SPADs. In

effect, the quick termination of the avalanche pulse reduces the total charge flow

during an avalanche event, which, in turn, reduces the fraction of carriers trapped

at defect sites in the SPAD that can lead to afterpulsing. It is well known that the
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increment of the repetition rate of SPADs is limited by afterpulsing.

Recent experiments on NFAD devices have revealed new aspects on the operation

of passively quenched SPADs, which are entirely beyond the scope of the traditional

modeling tools. First, the experiments have shown the existence of an oscillatory be-

havior of a persistent avalanche current. Second, it has been observed that the prob-

ability density function of the stochastic quenching time of the persistent avalanche

current has an exponential decay. Third, under certain device and operational condi-

tions the stochastic avalanche current can collapse before persistent avalanche current

can be realized. All three of these behaviors have not been theoretically explained,

since there is no model that is capable of predicting the statistics of the stochastic

quenching time in passively quenched SPADs in general and the new generation of

SPAD structures that heavily exploit the negative feedback effect in particular.

In this chapter three models to calculate the current-voltage evolution of passively

quenched SPAD after an avalanche is triggered by an injected carrier are presented.

The first model is the traditional model, which assumes that after an avalanche

trigger the voltage across the SPAD remains at a fixed value. It will be shown

that this assumption leads to unrealistic consequences. The second model to be

examined is a deterministic self-regulating model. This model captures the effect

of the feedback from the load in the current-voltage characteristics of a passively

quenched SPAD. However, the stochastic nature of the impact ionization process

is neglected. The third model is a stochastically self-regulating avalanche model,

which captures the dynamic effect of the feedback from the load in the stochastic

nature of the impact ionization process. The proposed model represents the first

significant expansion beyond the Haitz model [42], for passively quenched SPADs,

since it was proposed more than 45 years ago. It will be shown that the proposed

model predicts the aforementioned three phenomena that have been experimentally

observed in passively quenched NFAD.
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Figure 4.1: Traditional model for a passively quenching SPAD circuit. id represents

the self sustaining current through the multiplication region of the SPAD; Rd is its

equivalent dynamic resistance; Cd is its junction capacitance; RL is the load resistor

and CL is its parasitic capacitance. The traditional model neglects the effect of

feedback on the impact ionization process; it assumes that after the trigger of an

avalanche, the electric field remains constant at the breakdown threshold, so that

the core of the device is represented by a generator of voltage, Vb.

4.2 Traditional model

Figure 4.1 shows the traditional model of a passively quenched SPAD that was

reported by Haitz in 1964 [42]. Since then, this model has become the most accepted

one in describing the current-voltage characteristics of a passively quenched SPAD
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after an avalanche trigger, and it has been adopted by many authors [15]. In this

model, the SPAD is represented by its depletion capacitance, Cd, in parallel with a

series combination of a switch, sw, a dynamic resistance, Rd, and a DC bias source,

Vb, representing the breakdown voltage of the SPAD. In the absence of an avalanche

trigger the switch is open and the bias across the diode is Va, which is set slightly

above the breakdown voltage, Vb by the excess voltage, Vex. When an avalanche is

triggered the model assumes that the switch is instantly closed and the capacitance

Cd discharges through the diode’s dynamic resistance Rd, which reduces the voltage

across the SPAD to a value that depends on the ratio of Rd and RL. In steady state,

the voltage across the SPAD is given by VSPAD = Va − VexRL/(RL + Rd) ≈ Vb, for

RL ≫ Rd. In addition, the steady state avalanche current is given by Iss ≈ Vex/RL,

and the voltage across the resistor, RL, is VRL
≈ Vex, for RL ≫ Rd.

The presence of the DC source, Vb, in the traditional model reflects the assump-

tion that after an avalanche event is triggered the electric field in the avalanche region,

responsible for the persistence of impact ionization, remains precisely at breakdown

until the persistent current collapses owing to the stochastic fluctuations inherent in

the impact ionization process, that is when all carriers chance to exit the multipli-

cation region without ionizing.

4.2.1 Equations that describe the traditional model

In this section, the equations that describe the traditional model of Fig. 4.1 are

derived from the instant at which the avalanche is triggered to the spontaneous

quenching of the persistent current. It is assumed that an avalanche is triggered

at time t = 0, which is represented by the closing of the switch, sw. After the

system has reached steady state the switch is open once again, which represents the

instant at which the avalanche current spontaneously quenches. We can summarize
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the different stages of the current-voltage characteristics of the circuit in Fig. 4.1 as

follows:

1. At t = 0− (pre-avalanche trigger) the SPAD is reversed bias at Va. There is no

current flow, the voltage across the capacitor Cd is Va, and the voltage across

the capacitor CL is zero.

2. At t = 0 (transient response) the avalanche is triggered (the switch, sw, closes).

Simultaneously the capacitor Cd discharges through Rd and Vb until it reaches

a steady-state voltage VCd
= (Vb + VRd

), where VRd
is the steady state voltage

across the resistor Rd. As soon as the switch closes the capacitor CL starts

charging until it reaches a voltage VCL
= (VA − VCd

).

3. For t ≫ 0 (steady state) the voltage across Cd is VCd
= Vb+VRd

and the voltage

across CL is VCL
= VA− (Vb+VRd

). No current is flowing through either of the

capacitors, and the only current in the circuit is the current flowing through

Rd and RL and its value is given by iss = (VA − Vb)/(Rd +RL).

4. After a random time the persistent current is quenched due to stochastic fluc-

tuations inherent to the impact ionization process. In Fig. 4.1 the quenching

of the persistent current is represented by the closing of the switch sw. At this

point the voltage across Cd start recharging until its final voltage level, Va.

Next, the derivation of the equations that describe the current-voltage characteristics

of the circuit of Fig. 4.1 from points 1 to 3 described above is provided. By applying

the KCL we have

id(t) + iCd
(t) = iCL

(t) + iRL
(t) (4.1)
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where

id(t) =

(

vCd
(t)− Vb

)

Rd
(4.2)

iCd
(t) = Cd

dvCd
(t)

dt
(4.3)

iCL
(t) = CL

dvCL
(t)

dt
= CL

d

dt

(

VA − vCd
(t)
)

(4.4)

iRL
(t) =

vCL
(t)

RL
=

(

VA − vCd
(t)
)

RL
(4.5)

Substituting from (4.2) to (4.5) into (4.1) we have

(

vCd
(t)− Vb

)

Rd
+ Cd

dvCd
(t)

dt
= CL

d

dt

(

VA − vCd
(t)
)

+

(

VA − vCd
(t)
)

RL
(4.6)

where dVA/dt = 0. Now

vCd
(t)RL−VbRL+RLRdCd

dvCd
(t)

dt
= RLRdCL(−

dvCd
(t)

dt
)+RdVa−RdvCd

(t) (4.7)

Rearranging we obtain the following first order differential equation

dvCd
(t)

dt
+

RL +Rd

RLRd

(

Cd + CL

)vCd
(t) =

1
(

Cd + CL

)

(

Vb

Rd
+

VA

RL

)

u(t) (4.8)

Applying the Laplace transform to (4.8)

L

[

dvCd
(t)

dt
+

RL +Rd

RLRd

(

Cd + CL

)vCd
(t)

]

= L

[

1
(

Cd + CL

)

(

Vb

Rd
+

VA

RL

)

u(t)

]

making

C1 =
RL +Rd

RLRd

(

Cd + CL

)

[

sVCd
(s)− VCd

(0)

]

+ C1 · VCd
(s) =

[

1
(

Cd + CL

)

(

Vb

Rd
+

VA

RL

)]

1

s
(4.9)

Rearranging

VCd
(s)(s+ C1) =

[

VbRL + VARd

RdRL

(

Cd + CL

)

]

1

s
+ VCd

(0) (4.10)
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In this way

VCd
(s) =

VbRL+VARd

RdRL

(

Cd+CL

)

s

[

s+ RL+Rd

RLRd

(

Cd+CL

)

] +
VCd

(0)
[

s+ RL+Rd

RLRd

(

Cd+CL

)

] (4.11)

Using partial fraction expansion for the first term on the right hand side of (4.11)

we obtain the final equation for VCd
(s) given by

VCd
(s) =

{

VbRL + VARd

RdRL

(

Cd + CL

)

}

· 1
s

−
{

VbRL + VARd

RdRL

(

Cd + CL

)

}

· 1

s + RL+Rd

RLRd

(

Cd+CL

)

+
VCd

(0)

s+ RL+Rd

RLRd

(

Cd+CL

)

(4.12)

Taking the inverse transform of (4.12) gives

vCd
(t) =

VbRL + VARd

RdRL

(

Cd + CL

) · u(t) (4.13)

− VbRL + VARd

RdRL

(

Cd + CL

) exp

(

− RL +Rd

RLRd

(

Cd + CL

)t

)

+VCd
(0) exp

(

− RL +Rd

RLRd

(

Cd + CL

)t

)

(4.14)

Finally, rearranging (4.14) we obtain the expression for the voltage across the

capacitor Cd

vCd
(t) =

{

VCd
(0)− VbRL + VARd

RdRL

(

Cd + CL

)

}

exp

(

− RL +Rd

RLRd

(

Cd + CL

)t

)

+
VbRL + VARd

RdRL

(

Cd + CL

) · u(t) (4.15)
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The rest of the currents and voltages of the circuit can be obtained using (4.15)

as follows

vCL
(t) =

(

VA − vCd
(t)
)

(4.16)

id(t) =

(

vCd
(t)− Vb

)

Rd
(4.17)

iCd
(t) = Cd

d

dt
vCd

(t) (4.18)

iRL
(t) =

vCL
(t)

RL
(4.19)

iCL
(t) = CL

d

dt
vCL

(t) (4.20)

ia(t) = iRL
(t) + iCL

(t) (4.21)

The voltage across the capacitor Cd during the recharge period is given by the

following equation.

vCd
(t) = Va

(

1−exp

[

− t

RL(Cd + CL)

])

+VCd
(0) exp

(

− t

RL(Cd + CL)

)

(4.22)

4.2.2 Current-voltage characteristics

The equations derived above were used to calculate the response of a passively

quenched SPAD reversed biased at a voltage Va. In the simulation the avalanche

is triggered at t = 0, and the spontaneous quenching of the persistent current is

assumed to occur at t = 15 ns. The simulated SPAD has an InP multiplication

region of 1600 nm. The values of the circuit parameters used are as follows: junction

capacitance: Cd = 0.1 pF, dynamic resistance: Rd = 3 kΩ, load resistor: RL = 22 kΩ

and load capacitance: CL = 0.51 pF. The circuit is biased by the power supply at a
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Figure 4.2: Voltage across the capacitor Cd from the instant at which the avalanche

is triggered (t = 0) until the spontaneous quenching of the persistent current, which

occurs at t = 15 ns.

voltage Va = Vb+Vex so that the SPAD is reverse biased beyond its breakdown volt-

age, Vb by the excess voltage, Vex. The theoretical breakdown voltage was calculated

using McIntyre’s multiplication expression: [10]

M =
1− k

exp(−(1− k)αw)− k
, (4.23)

which yields Vb = 64.61 V. The electron and hole ionization coefficients for InP were

obtained from the work of Tan et al. [67].

Figure 4.2 shows the voltage across the junction capacitor from the triggering of
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Figure 4.3: Current in the load from the instant at which the avalanche is triggered

(t = 0) until the spontaneous quenching of the persistent current, which occurs at

t = 15 ns.

the avalanche to the spontaneous quenching time. Figure 4.3 shows the load current.

4.2.3 Limitations of the traditional model

Next, it will be shown that the assumption that the electric field in the multiplication

region remains at the breakdown level leads to unrealistic consequences, namely it

implies that the quenching time has memory. In particular, it is shown that the
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Figure 4.4: Measured pdf of the quenching time [43]. The exponential decay of

the pdf implies that the quenching time is memoryless. The data was provided by

Princeton Lightwave Inc.

traditional model implies a time dependent decay in the tail of the probability density

function (pdf) of the quenching time, which, in turn, implies that the quenching

time has memory, in contrast with measurements. More precisely, this result implies

that the probability that quenching occurs in a small time interval, (t, t + ∆t),

provided it has not occurred earlier, falls as t increases, which describes a system

with memory, whereas in a memoryless system this probability is independent of t.

This unrealistic consequence of the traditional model is a result of neglecting the

effect of the stochastic feedback on the impact ionization process. In fact, in this

section it will be shown that, as a consequence of this coupling, the voltage across
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Figure 4.5: Measured voltage across the SPAD for an excess bias of Vex ≈ 1.7 V.

The current shows oscillatory behavior about the steady state before it quenches

spontaneously. The complete structure of the device can be found elsewhere [44].

the SPAD, and so the electric field in the multiplication region, oscillate around

breakdown before the SPAD quenches spontaneously. This oscillatory behavior has

been observed by Itzler et al. [45, 43] and is not predicted by the simplistic traditional

model.

Following the assumption that after an avalanche event is triggered the electric

field in the avalanche region remains precisely at breakdown and building upon the

recursive technique for avalanche multiplication developed by Hayat et al. [66, 58],

it has been shown (details can be found elsewhere [68]) that the probability that the
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avalanche current, I self quenches before time t has elapsed is given by

FI(t)
△

= P{Tq ≤ t} ≈ exp(−T/t), (4.24)

where T = (ICτ 20J)/q, J = 2/ ln(k)(2/ ln(k)+ 1+k
1−k

), q is the electronic charge, C is a

dimensionless constant of order unity, τ0 is the average of the electron and hole transit

times across the multiplication region and k = β/α is the hole/electron ionization

coefficient ratio.

A major concern about the formula in (4.24) arising from the constant field

assumption, is that it predicts that the quenching time should have memory, since

the form of the probability FI(t) suggests that the pdf of quenching time should

diminish with time. The conditional probability that quenching should occur between

times t and t + ∆t is P{Tq < t + ∆t | Tq > t} = ∆t · (T/t2) exp(−T/t), instead of

being proportional to ∆t as in the memoryless case. Hence, the probability that

spontaneous quenching occurs in a small time increment ∆t becomes smaller as t

increases. This can be understood under the constant field assumption; a delayed

quenching time implies that the stochastic avalanche current has been large in the

past, which reduces the probability of its quenching in the future.

However, a quenching process with memory is not observed in self quenched SPAD

circuits. Figure 4.4 shows measurements of the pdf of the quenching time showing

exponential decay, which implies that the decay process is memoryless. The data

was provided by Princeton Lightwave Inc. The traditional model also fails to predict

the oscillatory behavior in persistent current also observed by Itzler et al. [45, 43]

and shown in Fig. 4.5.

The above discussion suggests that a more realistic approach is needed to model

the current voltage evolution and quenching characteristics of a passively quenched

SPAD. In the next section a first attempt to achieve a more complete description of

a passively quenched SPAD is presented.
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4.3 Deterministic self-regulating model

This model captures the feedback from the load resistor but ignores the stochastic

element of the avalanche persistent current. Once an avalanche is triggered (while the

diode is biased above breakdown), the average avalanche current grows exponentially

according to the theory of average impulse response of APDs above breakdown [58,

69]. This growth tends to discharge the capacitor, and therefore, reduce the junction

voltage (voltage across Cd), which, in turn, causes the avalanche current to drop.

The reduction in the avalanche current continues and the junction bias drops below

the breakdown voltage. After this point of time, the DC source begins to recharge

the capacitor with a time constant τr ≈ RLCd, causing the avalanche current to

increase once again. The repetition of this process can yield an oscillatory behavior,

where the current inside the diode oscillates about the steady state value. Moreover,

the field inside the multiplication region of the APD oscillates above and below the

breakdown threshold.

4.3.1 Mathematical description

The current in the voltage-controlled current source (VCCS), shown in Fig. 4.6, is

controlled by the voltage across the junction capacitor, VCd
, and the breakdown

voltage, Vb. The equation that describe the current in the VCCS is given by

id(t) = Ioe
α
∫ t
0
(vCd

(t)−Vb)dt, (4.25)

where α > 0 and I0 = qve/w is the initial current triggered by a single photo-

absorption event.

From Fig. 4.6 we know that the avalanche current, ia(t), must be equal to the

current through the APD and the load. More specifically, the avalanche current,

ia(t), is equal to the current through the capacitor, Cd, plus the current in the
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Figure 4.6: Circuit that models the diode and the quenching circuit.

VCCS, id(t). Moreover, ia(t) is equal to the current through the load resistor RL

plus the current in the load capacitor CL. Thus

ia(t) = id(t) + iCd
(t)

and,

ia(t) = iCL
(t) + iRL

(t)

then

id(t) + iCd
(t) = iCL

(t) + iRL
(t) (4.26)
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where

id(t) = Ioe
α
∫ t
0
(vCd

(t)−Vb)dt (4.27)

iCd
(t) = Cd

dvCd
(t)

dt
(4.28)

iCL
(t) = CL

dvCL
(t)

dt
= CL

d

dt

(

VA − vCd
(t)
)

(4.29)

iRL
(t) =

vCL
(t)

RL
=

(

VA − vCd
(t)
)

RL
(4.30)

Substituting from (4.27) to (4.30) into (4.26) we have

Ioe
α
∫ t
0
(vCd

(t)−Vb)dt + Cd
dvCd

(t)

dt
= CL

d

dt

(

VA − vCd
(t)
)

+

(

VA − vCd
(t)
)

RL

, (4.31)

where dVA/dt = 0. Rearranging and solving for dvCd
(t)/dt

Cd
dvCd

(t)

dt
+ CL

dvCd
(t)

dt
=

(

VA − vCd
(t)
)

RL
− Ioe

α
∫ t
0
(vCd

(t)−Vb)dt

(

Cd + CL

)dvCd
(t)

dt
=

(

VA − vCd
(t)
)

RL
− Ioe

α
∫ t
0
(vCd

(t)−Vb)dt

dvCd
(t)

dt
=

1
(

Cd + CL

)

RL

{

VA − vCd
(t)− RLIoe

α
∫ t
0
(vCd

(t)−Vb)dt
}

(4.32)

Using the fact that
∫

dvCd
(t)

dt
dt = vCd

(t)− VCd
(0)

where VCd
(0) = Vb +∆V and taking the integral in both sides of (4.32) gives

vCd
(t) = Vb+∆V +

1
(

Cd + CL

)

RL

∫ t

0

{

VA−vCd
(s)−RLIoe

α
∫ u
0

(

vCd
(u)−Vb

)

du
}

ds (4.33)

Substituting VA by Vb +∆V we get to the final equation

vCd
(t) = Vb+∆V +

1
(

Cd + CL

)

RL

∫ t

0

{

Vb+∆V −vCd
(s)−RLIoe

α
∫ u
0

(

vCd
(u)−Vb

)

du
}

ds

(4.34)

The effect of the resistor Rd is captured by the VCCS. In particular, any change in

the voltage across Rd is absorbed by the voltage across the VCCS so that voltage

across the series combination VRd
and VV CCS is always equal to the voltage across

the junction capacitor. As a result, the resistor Rd does not appear in (4.34).
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Figure 4.7: Voltage across the capacitor Cd from the instant at which the avalanche

is triggered (t = 0) until the spontaneous quenching of the persistent current, which

occurs at t = 15 ns.

4.3.2 Delay in the response of the VCCS

To account for the non-instantaneous response of the field as the voltage across the

diode is changed due to feedback, a delay in the dynamics of the diode is introduced.

The origin of the delay has to do with the non-instantaneous re-arrangement of the

charge in the multiplication region as a result of the finite time the carries take to

travel the multiplication region and effectively contribute to the negative feedback.

The effect of the delay on the dynamics of the diode can be an important factor that
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Figure 4.8: Current in the load from the instant at which the avalanche is triggered

(t = 0) until the spontaneous quenching of the persistent current, which occurs at

t = 15 ns.

affects the action of the feedback. The delay is introduced by retarding the response

of the VCCS to the changes in the field across the junction capacitance.

4.3.3 Results

Next, results obtained from the simulation of the circuit of Fig. 4.6 by solving the

equations derived above are shown. In the simulations it has been assumed that the

voltage dependent source, id, that generates the exponential growth of the current

95



Chapter 4. Models for passively quenched SPADs

inside the diode responses to the voltage across the capacitor Cd with a finite delay.

This delay provides the circuit with feedback, which is responsible of creating an os-

cillatory response. The value of the delay is given by delay = (RC time constant)/d,

where d is a constant. The simulated SPAD has the same circuit parameters as the

ones used in the traditional model. Those parameters are repeated here for complete-

ness: multiplication region width: 1600 nm (InP), junction capacitance: Cd = 0.1

pF, dynamic resistance: Rd = 3 kΩ, load resistor: RL = 22 kΩ and load capacitance:

CL = 0.51 pF. The circuit is biased by the power supply at a voltage Va = Vb + Vex

so that the SPAD is reverse biased beyond its breakdown voltage, Vb by the excess

voltage, Vex.

Figure 4.7 shows the calculated voltage across the load resistor according to this

deterministic model. It can be seen from the figure that the oscillations are indeed

centered about the steady state current through the diode. Figure 4.8 shows the

calculate persistent avalanche current, which also shows the oscillatory behavior seen

in the load resistor.

The oscillatory behavior is governed by two factors: (1) how quickly the junction

capacitor can be discharged, which, in turn, depends on the RC time constant and

on the growth rate of the avalanche pulse; and (2) how fast the change in the junction

voltage can alter the avalanche current in the diode. The latter effect, characterized

by a delay factor, d, is akin to a delay brought about by an inductor, which induces

oscillations.
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4.4 Stochastically self-regulating avalanche model

In this section a stochastically self-regulating avalanche model is presented. The

model combines an analytical circuit representation with a Monte Carlo simulator of

the multiplication process to calculate the response of a passively quenched SPAD,

reverse biased above breakdown. This model considers a passively quenched SPAD

as a closed loop system, capturing the effect of the feedback introduced by the

load on the stochastic nature of the avalanche multiplication. The carrier dynamics

and multiplication are simulated at successive instants by a custom made Monte

Carlo simulator. Notably, the self-regulating avalanche model is able to predict

the stochastic current-voltage evolution and quenching characteristics of the new

generation of SPAD structures that use the negative feedback effect. In addition,

the stochastically self-regulating avalanche model correctly predicts that the decay

of the tail of the pdf of the stochastic quenching time of the persistent avalanche

current is exponential, in agreement with the observed memoryless behavior. The

model can also be used to predict the conditions under which very short quenching

times are achieved, similar to the behavior seen in NFADs.

4.4.1 Model

Figure 4.9 shows the proposed stochastically self-regulating avalanche model of a

passively quenched SPAD [70]. The main difference between this and the traditional

model of Fig. 4.1 is that the switch and voltage generator Vb in Fig. 4.1, which

represented the on/off state of the SPAD, are now replaced by a stochastic voltage

controlled current source (VCCS) id. A Monte Carlo simulator of the dynamics of

the avalanche multiplication is used to produce the current in the VCCS. Moreover,

as the voltage across RL changes so does the bias on the SPAD, and hence also the

stochastic avalanche current id, since the ionization coefficients, α and β used by
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Figure 4.9: Stochastically self-regulating avalanche model for passively quenched

SPADs. The circuit represents a series combination of a SPAD and a negative feed-

back load. The load is described as a parallel combination of a resistance, RL and a

capacitance, CL. The SPAD is modeled as two parallel branches; one branch consists

of the diode depletion capacitance, Cd, the other includes the Monte Carlo simulator,

which is represented by the stochastic voltage controlled current source (VCCS) id.

The resistor Rd, in series with the VCCS, accounts for the resistance of the bulk

regions.

the Monte Carlo simulator depend on the instantaneous electric field through the

junction capacitance, Cd. As the carriers multiply stochastically their resulting cur-
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Figure 4.10: Monte-Carlo simulator for id. The expanded section on the left describes

the simulator represented in the circuit on the right by the stochastic VCCS id. In

the example a hole is injected at the start of the multiplication region, x = 0, at time

t = 0. At time 2∆t the first impact ionization occurs and as a result one hole and

one electron are created in the multiplication region. For simplicity it is assumed

that electrons and holes have the same drift velocity, v, i.e., v = ve = vh.

rent is calculated using Ramo’s theorem [17] from the number of carriers inside the

multiplication region. Hence, by contrast with the traditional model, the stochasti-

cally self-regulating avalanche model captures the effect of feedback on the stochastic

evolution of carrier multiplication associated with the persistent avalanche current.
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Monte Carlo simulator

Figure. 4.10 illustrates the operation of the Monte Carlo simulator used to produce

the current in the VCCS by mimicking a SPAD with a dynamic and stochastic bias.

In the simulator, the multiplication region extends from x = 0 to x = w, and this

region is divided into L small increments each of width ∆w, representing L bins,

each terminating at xk = k∆w, where k = 1, 2, 3, . . . , L. The total number of bins

L, which determines the spatial increment ∆w, is chosen so that the product α ·∆w

(β ·∆w) is small. The binomial model described here is a good approximation of the

continuous-space ionization process provided that α · ∆w(β · ∆w) ≪ 1. Indeed, in

the simulations with L = 1600 and ∆w = 1 nm. The maximum value for β ·∆w ≈
9 × 10−4, which is much less than one. The total simulation time, from t = 0

to t = Tmax, is divided into M small increments, each of duration ∆t, where ∆t

represents the time taken for a carrier to travel a distance ∆w. For simplicity it is

assumed that electrons and holes have the same drift velocity, v. A particular time

in the simulation is described as tj = j∆t, where j = 1, 2, 3, . . . ,M . It is assumed

that holes (electrons) move in the positive (negative) direction of x. In addition, it

is employed the common rule that at any time interval [t, t + ∆t] the probability

that an electron will impact ionize is given by α
(

ECd
(t)
)

∆w, where ECd
(t) is the

instantaneous electric field through Cd. Similarly, the probability that a hole will

impact ionize is given by β
(

ECd
(t)
)

∆w.

To track the stochastic evolution of the total number of carriers at each instant

Xe(tj, xk) and Xh(tj , xk) are defined as the number of electrons and holes, respec-

tively, at bin location xk and time tj. The effect of the dead space is ignored in

the carrier multiplication process since SPADs with thick multiplication regions are

considered (> 1µm), which are preferred for Geiger mode operation [16]. It is well

known that for thick multiplication regions the effect of the dead space does not play

a relevant role in the carrier multiplication process. Therefore, in thick multiplication
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regions the dead space can be ignored. On the other hand, for thin multiplication

regions (< 500 nm) the dead space becomes important and to accurately describe the

impact ionization process the dead space must be taken into account. Considering

the transport and ionization properties of the carriers, and by ignoring their dead

space, we can write the following stochastic dynamical equations:

Xe(tj+1, xk) = Xe(tj , xk+1) + b
(

Xe(tj , xk+1), α(ECd
(t))∆w

)

+b
(

Xh(tj, xk−1), β(ECd
(t))∆w

)

(4.35)

and

Xh(tj+1, xk) = Xh(tj, xk−1) + b
(

Xh(tj , xk−1), β(ECd
(t))∆w

)

+b
(

Xe(tj, xk+1), α(ECd
(t))∆w

)

. (4.36)

In the above equations the notation b(n, p) stands for a binomial random variable

of size n and success probability p; thus b(n, p) represents the total number of suc-

cessful ionization events resulting from n independent attempts, each with success

probability p. The boundary conditions at k = 1 and L must clearly be handled

separately in (4.35) and (4.36).

To trigger an avalanche the multiplication region is reverse biased above break-

down and a carrier is injected at the start of the multiplication region. The stochastic

dynamical equations (4.35) and (4.36) are implemented at every time increment and

samples of the required binomial random variables are generated. Figure 4.10 shows

a fictitious example which illustrates the total number of carriers in the multipli-

cation region at each time, the direction of motion of the carriers and the impact

ionization events generated, during 5 intervals of time ∆t, by a hole injected at time

t = 0 and at location x = 0. After time tj has elapsed the instantaneous stochastic
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current id(tj) is calculated using Ramo’s theorem:

id(tj) =
qv

w

L
∑

k=1

(

Xe(tj, k) +Xh(tj , k)
)

. (4.37)

All other currents and voltages in Fig. 4.9 are calculated by solving the standard

circuit equations. The instantaneous values of the electric field dependent ionization

coefficients are recalculated at every time increment to allow for the change of voltage

across the SPAD as a result of the instantaneous feedback from the load.

4.4.2 Derivation of the circuit equations

Finite difference equations

Applying Kirchhoff current and voltage laws to the circuit of Fig. 4.9 we can establish

the following equations:

id + iCd
= iL + iCL (4.38)

VA = vCd
+ vRL

+ vL (4.39)

VA = vCd
+ vCL

(4.40)

vRL
+ vL = vCL

(4.41)

iCd
= Cd

d

dt
vCd

= Cdv
′

Cd
(4.42)

iCL
= CL

d

dt
vCL

= CLv
′

CL
(4.43)

vL = L
d

dt
iL = Li′L (4.44)

102



Chapter 4. Models for passively quenched SPADs

from (4.38)

iL = id + iCd
− iCL

iL = id + Cdv
′

Cd
− CLv

′

CL

iL = id + Cdv
′

Cd
+ CLv

′

Cd

iL = id +

(

Cd + CL

)

v′Cd
(4.45)

In addition

VA = vCd
+ vRL

+ vL

VA = vCd
+RL

[

id +

(

Cd + CL

)

v′Cd

]

+ L
d

dt
iL (4.46)

Substituting (4.45) into (4.46) we obtain

VA = vCd
+RL

[

id +

(

Cd + CL

)

v′Cd

]

+ L

[

i′d +

(

Cd + CL

)

v′′Cd

]

(4.47)

Rearranging this equation we arrive at

VA = vCd
+RLid +RL(Cd + CL)v

′

Cd
+ L

[

i′d + L(Cd + CL)v
′′

Cd

]

L(Cd + CL)v
′′

Cd
+RL(Cd + CL)v

′

Cd
+ vCd

= VA −RLid − Li′d

v′′Cd
+

RL

L
v′Cd

+
1

L(Cd + CL)
vCd

=
VA − RLid
L(Cd + CL)

− i′d
(Cd + CL)

(4.48)

A more compact form of (4.48) can be obtained by grouping the constant terms into

three new constants. Thus, by making

C1 =
RL

L
(4.49)

C2 =
1

L(Cd + CL)
(4.50)

C3 =
1

Cd + CL
, (4.51)
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and substituting from (4.49) to (4.51) into (4.48) we obtain the second order differ-

ential equation to solve.

v′′Cd
+ v′Cd

C1 + vCd
C2 = (VA − RLid)C2 − i′dC3 (4.52)

Equation (4.52) can be solved numerically by using the finite difference method.

First, we need to express the derivatives in terms of finite difference. The finite

difference approximation of first order derivatives is given by

f ′(x) =
f(x) + f(x− 1)

h
, . (4.53)

Similarly, the finite difference approximation of second order derivatives is

f ′′(x) =
f(x)− 2f(x− 1) + f(x− 2)

h2
(4.54)

Substituting (4.53) and (4.54) into (4.52) we obtain the following equation

vCd
(x)− 2vCd

(x− 1) + vCd
(x− 2)

∆t2
+ C1

vCd
(x)− vCd

(x− 1)

∆t
+ vCd

(x)C2 =

(VA − idRL)− i′dC3

Rearranging the previous equation to express it in terms of vCd
(x) we obtain

vCd
(x)− 2vCd

(x− 1) + vCd
(x− 2)

∆t2
+ C1

vCd
(x)− vCd

(x− 1)

∆t
+ vCd

(x)C2 =

(VA − idRL)− i′dC3

{

1

∆t2
+

C1

∆
+ C2

}

vCd(x) −
{

2

∆t2
+

C1

∆t

}

vCd
(x− 1) +

1

∆t2
vCd

=

(VA − idRL)− i′dC3
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vCd
(x) =

{

2
∆t2

+ C1

∆t
1

∆t2
+ C1

∆t
+ C2

}

vCd
(x− 1)− 1

∆t2
{

1
∆t2

+ C1

∆t
+ C2

}vCd
(x− 2) +

(VA − idRL)C2
{

1
∆t2

+ C1

∆t
+ C2

} − (id(x)− id(x− 1))C3
{

1
∆t2

+ C1

∆t
+ C2

}

∆t

vCd
(x) =

{

2 + C1∆t

1 + C1∆t + C2∆t2

}

vCd
(x− 1)−

vCd
(x− 2)

1 + C1∆t+ C2∆t2
+

(VA − idRL)C2∆t2

1 + C1∆t + C2∆t2
− (id(x)− id(x− 1))C3∆t

1 + C1∆t+ C2∆t2
(4.55)

Equation (4.55) can be written in a more compact way by grouping the constant

terms in two new constants given by

C4 = 2 + C1∆t

C5 = 1 + C1∆t + C2∆t2 (4.56)

Finally, substituting the constant terms defined in (4.56) into (4.55) we obtain the

equation that describe the voltage across the capacitor Cd

vCd
(x) =

C4

C5
· vCd

(x− 1)− 1

C5
· vCd

(x− 2) + (VA − idRL) ·
C2∆t2

C5

+(id(x)− id(x− 1)) · C3∆t

C5
(4.57)

Equation (4.57) is solved in the interval 0 < x < w for each time increment ∆t. The

solution requires an initial condition for vCd
(x − 1) and vCd

(x − 2). The value of id

is obtained from the Monte-Carlo simulator.
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4.4.3 Results

Next, the stochastically self-regulating avalanche model is used to simulate the unique

attributes of the new generation of self quenched SPADs, which can be described by

the circuit shown in Fig. 4.9. In particular, the statistics of the quenching time

and the observed oscillatory behavior of the persistent current will be predicted. A

passively quenched InP SPAD is simulated using the following values of the circuit

parameters: junction capacitance: Cd = 0.1 pF, load resistor: RL = 22 kΩ and load

capacitance: CL = 0.001 pF. The resistor Rd is not included in the equations that

describe the model because its effect is absorbed by the voltage controlled current

source, id. In the simulations it is assumed that the electric field in the multiplication

region is spatially uniform, which corresponds to a multiplication region without

doping. To start the simulation a hole is injected at the edge of the multiplication

region of width w = 1600 nm. The circuit is biased by the power supply at a voltage

Va = Vb+Vex so that the SPAD is reverse biased beyond its breakdown voltage, Vb by

the excess voltage, Vex. The theoretical breakdown voltage was calculated from the

divergence of McIntyre’s multiplication expression [10]

M =
1− k

exp(−(1− k)αw)− k
. (4.58)

By using the electric-field dependent expressions for the electron and hole ionization

coefficients for InP [67], the breakdown voltage is found to be Vb = 64.61 V.

Circuit behavior after an avalanche trigger

Figure 4.11 shows the calculated avalanche current, ia, the feedback voltage, VRL
and

the voltage across the SPAD, VCd
as a function of time, displayed in terms of both

the carrier transit time, w/v, and the RC time constant of the circuit, RL(CL+Cd).

It is assumed that both holes and electrons travel at the velocity v = 6.7×106 cm/s.

In the simulations the value of the excess voltage is 0.39 V.
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Figure 4.11: Calculated current-voltage evolution of the SPAD after an avalanche

trigger. (a) Calculated avalanche current, ia = id + iCd
, (b) voltage across the

feedback resistor, RL, and (c) voltage across the SPAD, VCd
as a function of time

for an excess bias voltage Vex ≈ 0.39 V and a feedback resistor RL = 22 kΩ. It can

be seen that the oscillations are centered around their steady state values; thus, the

avalanche current oscillates around Iss ≈ 18 µA, the feedback voltage oscillations are

centered around VRL
= Vex ≈ 0.39 V and the voltage across the SPAD fluctuates

around the breakdown voltage Vf = Vb ≈ 64.61 V. Note that quenching occurs at

about 2340 transit times. In the simulations it is assumed that the electric field in

the multiplication region is spatially uniform, which corresponds to a multiplication

region without doping.

The current and voltages fluctuate around the steady state values predicted by

the traditional model; the persistent current fluctuates around Iss ≈ Vex/RL [42,

15], since RL ≫ Rd, the feedback voltage, VRL
, fluctuates around the excess bias

voltage Vex and the voltage across the junction capacitor, VCd
, fluctuates around the

breakdown voltage, Vb.

Once an avalanche is triggered, then when the diode is biased above breakdown

the mean avalanche current grows exponentially, after a brief transient of the order
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of the transit time, according to the theory of mean impulse response of APDs above

breakdown [58, 69]. This growth discharges the capacitor Cd and therefore reduce

the junction voltage VCd
, which in turn causes the avalanche current to increase more

slowly. Equivalently, from a feedback perspective the large avalanche current flowing

through the junction increases the Ohmic drop across RL, causing a drop in the

junction voltage VCd
. The avalanche current eventually falls until the junction bias

falls below the breakdown voltage. This is a significant outcome of the stochastically

self-regulating avalanche model and it is contrary to the traditional model, which

dictates that the junction voltage never drops below Vb. The DC source then begins

to recharge the capacitor with a time constant τr ≈ RLCd, causing the avalanche

current to increase once again. The repetition of these discharge and recharge cycles

yields the oscillatory behavior seen in Fig. 4.11, where the current through the diode

oscillates about Iss ≈ 18 µA, the feedback voltage oscillates around the excess bias

voltage Vex ≈ 0.39 V, and the voltage across the SPAD oscillates above and below

the breakdown threshold, Vb ≈ 64.61 V. This repetition continues until the stochastic

fluctuations inherent in the impact ionization process cause the spontaneous quench-

ing of the avalanche current. In the simulation shown in Fig. 4.11 quenching occurs

after about 2340 transit times.

In Fig. 4.12 the voltage across the junction capacitor, VCd
(red curve) is plotted

together with the current, id (blue curve), calculated by the Monte Carlo simula-

tor, to illustrate the timing relationship between the voltage and the current in the

SPAD. In the figure the different stages of the voltage and current described above

are identified, from the onset of the avalanche until the spontaneous quenching of the

persistent current. Stage 1 indicates the onset of the avalanche, where the avalanche

current starts growing. (For clarity the curve id was truncated and its first peak is

not shown.) It can be seen from the figure that after the onset of the avalanche the

junction capacitor starts to discharge, which reduces the voltage VCd
and causes the

avalanche current to drop, as shown in stage 2. This state of affairs continues and the
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Figure 4.12: Timing relationship between the voltage across the junction capaci-

tance and the number of carriers in the multiplication region. The red curve shows

the voltage across the junction capacitor VCd
and the blue curve shows the current

id calculated by the Monte-Carlo simulator. For clarity, the current id was truncated

and its first peak is not shown. The stages of the current-voltage evolution identified

are: (1) onset of the avalanche, (2) discharge of the junction capacitor, (3) recharge

of the junction capacitor and (4) spontaneous quenching.

voltage VCd
drops below the breakdown voltage level. As described above, after this

point the DC source begins to recharge the junction capacitor, which increases the

voltage VCd
and, in turn, causes the avalanche current to increase again, as shown in

stage 3. The repetition of the discharge and recharge cycles of the junction capacitor

yields the oscillatory behavior shown in Fig. 4.12. Eventually, the stochastic fluc-

tuations inherent in the impact ionization process cause the spontaneous quenching
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of the avalanche current. A key point that was learned from the simulations is that

spontaneous quenching invariably occurs during the recharge cycle of the junction

capacitor, where the persistent current is at its lowest and the number of carriers is

at a minimum. This is shown in stage 4. This observation is critical in understanding

the exponential form of the pdf of the quenching time, which is discussed later on.

Quenching behavior

In the simulations an observation window of 8000 transit times was considered (∼ 200

ns). The observation window is the interval of time during which the persistent cur-

rent was observed when the quenching time was determined. The quenching time

was measured within the observation window. A realization that shows a persis-

tent current that does not spontaneously quench within the observation window is

considered to be self sustaining. It was found that within the considered observa-

tion window the probability of spontaneous quenching increases as the current Iss

decreases. This is because when the current is reduced so is the number of ionizing

carriers, increasing the chance that all carriers present in the multiplication region

exit without impact ionizing.

Figure 4.13 shows representative examples of the persistent current regime with-

out quenching (red curve), the case where spontaneous quenching occurs after a

period of persistent current flow (blue curve) and the case when quenching occurs

immediately following the first current peak, shown in the black curve. In this ex-

ample the excess bias voltage is about 0.39 V and RL was varied to achieve the

different values of Iss. It should be mentioned that the three quenching behaviors

described above have been observed on NFAD devices by Princeton Lightwave, Inc.,

with appropriate variations in the feedback resistor RL. Moreover, a similar fast

self-collapse of the avalanche current was reported by Shushakov et al. [71, 72] and

Zhao et al. [46] in devices where the feedback was provided by means of a charge-
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accumulation effect due to a potential barrier outside the multiplication region. The

work of Shushakov et al. [71, 72] also included a Monte-Carlo simulation of the

stochastic avalanche process in the presence of feedback, which was used to calculate

the distribution of the gain.

The quenching behavior described above was reproduced consistently for excess

voltages below 0.8 V. However, for higher excess bias voltages the behavior shown

in the blue curve of Fig. 4.13, in which there is a period of persistent current flow

followed by spontaneous quenching, was not observed. Instead, in the higher excess

voltage case the system goes from the regime of persistent current flow that does not

quench to that of quenching immediately following the first peak of the current for

higher RL. This may be because with higher excess voltages the feedback is stronger

and the current id decreases too fast, making it difficult for the system to execute

even a single period of persistent oscillating current.

The stochastic nature of the avalanche current can be appreciated from Fig. 4.14,

which shows one realization of the calculated current id, represented by the number of

carriers in the multiplication region. After this oscillatory persistent current, which

extends for about 2340 transit times, spontaneous quenching occurs. Figure 4.14

also shows a zoomed view of three specific times in the simulation. Figure 4.14b and

4.14c show two instants where the random fluctuations of id reach their minimum

values. In both cases the number of carriers reaches a very small value, although

spontaneous quenching does not occur. Figure 4.14d shows the instant when spon-

taneous quenching occurs. The smallest fluctuations of the number of carriers in the

multiplication region is around one carrier.
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Figure 4.13: Quenching behavior of the simulated passively quenched SPAD for

different values of the current Iss. As the current Iss decreases the avalanche current

spontaneously quenches sooner, on average.

Probability density function of the quenching time

The pdf of the quenching time, Tq, for an excess bias voltage of 0.39 V was estimated

by repeating the simulation of the persistent current (from trigger instant to quench-

ing instant) 2267 times. The quenching time, Tq, is the interval of time measured

from the start of the avalanche until its spontaneous quenching. The result is shown

in Fig. 4.15, where the decay of the tail of the pdf is exponential, implying that the

quenching time is memoryless. This observation is consistent with the measurements

shown in Fig. 4.4.

The memoryless property of the quenching process can be understood from the

fluctuating behavior of the voltage across the SPAD and the persistent current.

Recall that these quantities oscillate about Vb and Iss, respectively. It can be noticed

from the simulations that quenching invariably occurs only during the recharge cycle
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Figure 4.14: Calculated current id. (a) Number of carriers in the multiplication region

as a function of time. The curve shows the oscillatory behavior of the persistent

current before spontaneous quenching occurs. (b) and (c) show two instants where

the random fluctuations of id reach their minimum value. In both cases only a few

carriers remain but spontaneous quenching does not occur. (d) shows the instant of

spontaneous quenching.
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of the junction capacitance, as shown in Fig. 4.12, and that the probability that

quenching occurs during the discharge stage of the capacitance is negligible. Two

key observations are made. The first is that the probability that quenching occurs

during the recharge cycle of the junction capacitance is the same for all recharge

cycles. (The beginning of each recharge cycle of the junction capacitance starts

right after the voltage across Cd reaches a local minimum.) This is due to two

factors: (a) the electric field profile is almost identical in all recharge cycles. The

point here is that the electric field remains above breakdown in half cycle and then

remains below breakdown in the second half. (b) The number of carriers at the

beginning of each recharge cycle is almost the same for all recharge cycles, owing to

the periodicity of the persistent current. The number of carriers at the beginning

of each recharge cycle is almost the same in a statistical sense, meaning that the

probability distribution of this number is approximately the same from cycle to

cycle but the actual numbers can be different. Hence, prior to quenching, both the

electric field and carrier number conditions are almost reproduced periodically at

the beginning of each recharge cycle. This, in turn, implies that the probability of

quenching is approximately the same for all recharge cycles. It is emphasized that the

probability of quenching is approximately the same on average (in a statistical sense),

although the actual values may vary from cycle to cycle and from experiment to

experiment. The second observation is that quenching events over different recharge

cycles are statistically independent. We can assume that the quenching events are

statistically independent because different recharge cycles involve different carriers,

since the duration of the cycle is much greater than the carrier transit time across the

multiplication region. Thus, if P represents the probability that quenching occurs

in a specific recharge cycle, given that quenching has not occurred earlier, then by

using the two observations made above we can write the probability that quenching

occurs at the nth recharge cycle as P (1 − P )n−1. This is exponential in form and

thus satisfies the memoryless property.
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Figure 4.15: Calculated probability density function of quenching time, Tq.

4.4.4 Conclusions

A stochastic model that calculates the response of a passively quenched SPAD, re-

verse biased above breakdown, was presented in this section. The model considers

a closed loop system, capturing the effect of the feedback introduced by the resis-

tive load on the stochastic nature of the avalanche multiplication. This approach

differs from the conventional traditional model [42, 15], which captures the deter-

ministic feedback, maintaining the device at breakdown, but neglects the dynamic

coupling between the voltage across the SPAD, the feedback from the load and the

impact ionization process. As a consequence the traditional model provides no way

of determining the oscillatory behavior of the persistent avalanche current and the

statistics of the quenching time. Moreover, it has been shown that the traditional

model leads to unrealistic predictions of the pdf of the quenching time. By contrast

the stochastically self-regulating avalanche model enables us to predict the stochastic
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current-voltage evolution and quenching characteristics in passively quenched SPAD

circuits. The model predicts key attributes of the stochastic avalanche current seen

in experiments performed on the new generation of SPAD structures that rely on

negative feedback. The proposed model therefore constitutes a reliable simulation

framework to aid the design and optimal operation of an emerging generation of

SPAD devices that rely on negative feedback.
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Chapter 5

QDAP

5.1 Introduction

Present day GaAs-based APDs are limited to wavelengths below 2 µm. In this chap-

ter, the first demonstration of a GaAs based APD operating in the mid wave infrared

region (MWIR, 3–5 µm) is reported. The device, called Quantum Dot Avalanche

Photodiode (QDAP) [33], exploits quantum confined transitions to obtain intersub-

band absorption in the quantum dots-in-a-well (DWELL) heterostructure for MWIR

detection and couples the photogenerated carries into an APD to obtain a large con-

version efficiency (CE) via avalanche multiplication. The conversion efficiency ηconv

is the product of the internal quantum efficiency η and the photoconductive gain g

and is given by ηconv = ηg = R(hν)/q, where R is the responsivity, q is the charge

of the electron and hν is the photoexitation energy. Using this approach, the pho-

tocurrent has been increased by a factor of 14 and reached a CE of 12%, which is

one of the highest reported CE for any quantum dot detector.

Various approaches have been explored to realize single photon detectors. They

include superconducting detectors, photomultiplier tubes (PMTs) and APDs. While
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Figure 5.1: heterostructure schematic of the Quantum Dot Avalanche Photodiode

(QDAP) showing the separate absorption and multiplication regions

superconducting detectors offer the highest quantum efficiency and the lowest dark

count rate, they are limited to very low operating temperature (<10 K). PMTs have

demonstrated very good performance in the visible region but are very bulky and are

not compatible with the standard semiconductor manufacturing processes. PMTs

also require very high voltages and are sensitive to magnetic fields. APDs represent

the most promising scalable technology as they are based on semiconductors such

as Si, GaAs and InP and can be made into large format arrays [11, 8, 29, 50].

APDs can be operated in two modes. In the linear mode, the APD is biased below

breakdown and the output photocurrent is “amplified” through the avalanche of

impact ionizations. In the Geiger or single-photon avalanche detector mode, the

APD is biased just below to the breakdown voltage and a gated pulse is used to
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Figure 5.2: Calculated band diagram of the QDAP using Sentaurus simulation tool

with the absorption and multiplication sections reverse biased at a voltage of 0.5 V

and 2.0 V, respectively.

drive it above breakdown for a short duration. An incoming photon during this

gated pulse triggers a cascade, or avalanche, of impact-ionization events leading to a

large current. Various active and passive quenching circuits have been developed to

limit the current flowing in the APD and to reset it for the next pulse [15]. However,

all GaAs based SPADs available today are limited to wavelengths less than 2 µm [73].

Hamamatsu has an extended InGaAs APD which operates till 1.7 µm [73].

In the QDAP, an intersubband quantum dots-in-a-well detector is coupled with an

APD through a tunnel barrier, see Fig. 5.1. The photon absorption and generation

of carriers take place in the DWELL section while the avalanche section provides
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Figure 5.3: Theoretical simulation of the electric field profile in the device confirming

that the maximum electric field is established across the multiplication region.

internal gain. The demonstration of the linear-mode operation of the QDAP signifies

a major achievement as it opens up the possibility of obtaining SPADs in the midwave

infrared range. This would have a dramatic impact on many applications that require

high sensitivity MWIR detectors including astronomy and biomedical diagnostics.

5.2 Operating principle

The operating principle of the QDAP is shown in Fig. 5.1. Operationally, the QDAP

can be divided into two stages: (a) the photogeneration of carriers, and (b) the

avalanche multiplication of the photogenerated carriers. The absorption of photons
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(a)

(b)

Figure 5.4: Theoretical modelling using Sentaurus. (a) Electric field profile (V/cm)

(b) impact ionization rate (cm−3s−1).

and photogeneration of electrons is due to intersubband transitions in the quantum

dots (QDs). Among the various QD heterostructures, the DWELL detector is among

the most promising alternatives for terrestrial applications [74]. The DWELL het-

erostructure is a hybrid between a conventional quantum well infrared photodetector

(QWIP) and a quantum dot infrared photodetector (QDIP) and draws from the ad-
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vantages of both of these technologies. DWELL detectors operate under normal

incidence conditions with low dark current like the QDIP and have good operating

wavelength control like the QWIP. In addition, DWELL detectors benefit from a ma-

ture growth and processing technology of III–V semiconductors, making it possible to

produce devices with good spatial uniformity over a large area. This characteristic is

essential for fabricating large format FPAs. Recently, Ting et al. have demonstrated

a 1 megapixel DWELL FPA with peak response at 8.5 µm [75].

Thus the spectral response of the QDAP is determined by the DWELL section.

On the other hand, the avalanche multiplication, resulting from the injection of the

photogenerated electrons into the avalanche region, takes place in the APD section.

To control the individual responses of the DWELL and the APD sections, the voltage

applied between the top and middle contacts and the voltage between the middle

and bottom contacts are independently varied. Figure 5.1 shows the heterostruc-

ture of the QDAP and illustrates the absorption and multiplication stages. When

the incident radiation of energy hν, where h is the Planck’s constant and ν is the

frequency of the incident radiation, is shone on the device, the incident photons are

absorbed in the active region of the DWELL section. As a result, the electrons in

the ground state of the quantum dots are promoted to a set of bound states within

the quantum well. Once these electrons are extracted from the quantum well they

drift, as a result of the applied electric field, toward the APD section of the device.

This is illustrated in Fig. 5.2. To reach the avalanche region located in the APD

section the electrons need to tunnel through the barrier established by the p-type

layer, as shown in Fig. 5.2. In the high-field avalanche region the injected electrons

experience a series of impact ionizations that multiply them. Finally, the multiplied

electrons are collected in the bottom contact. For these processes to take place,

the external biasing circuit used to operate the QDAP has to be designed in such

a way that the flow of electrons is from the top to the bottom contact. This mode

of operation is achieved when both sections of the QDAP are reverse biased, i.e.,
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VTop < VMid < VBot. A customized biasing circuit was built to enable this config-

uration. Figure 5.3 shows the theoretically calculated electric field in the QDAP

indicating that most of the applied field drops across the APD.

5.3 Device modeling

To help the design of the QDAP structure, in particular the APD section, and to

predict the device behavior theoretical modelling, using the software Sentaurus, was

carried out. Figure 5.4 shows the calculated 1D and 2D profiles of the electric field

and the impact ionization across the QDAP. In the simulation the voltage across the

DWELL section was 0.5 V and the voltage across the APD was 2.0 V. It can be

noticed that the electric field and the impact ionization profiles have their maximum

values in the avalanche multiplication region of the APD section. This result supports

the designed APD section as the multiplication stage in the device.
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Figure 5.5: Two different QDAP designs (a) QDAP 1 (b) QDAP 2

124



Chapter 5. QDAP

5.4 Device structure

The n-i-n DWELL detector was grown on top of the p-i-n APD section. The DWELL

consists of n-doped InAs dots in an In0.52Al0.48As /GaAs well and Al0.10Ga0.90As

as the barrier. These layers are sandwiched between two highly doped n-GaAs

layers. The APD is a standard PIN diode with a GaAs multiplication region of

0.15 µm. The multiplication region was made thin to achieve a small avalanche

breakdown voltage and to enhance the dead-space effect [54]. It is known that in thin

multiplication regions the dead-space reduces the multiplication noise, also called as

excess noise, introduced by the avalanche multiplication process in APDs [76, 54].

The multiplication noise is a result of the stochastic nature of the impact ionization

process.

Figure 5.5 shows the two different QDAP structures fabricated. The first design,

referred to as QDAP 1, shown in Fig. 5.5a, includes an APD with a GaAs p-type

layer of 50 nm, a GaAs homojunction multiplication region of 200 nm, and a GaAs

n-type layer of 500 nm. In the second design, referred to as QDAP 2, the p-layer of

the avalanche photodiode consists of an AlGaAs layer of 50 nm, a multiplication layer

of GaAs material of 150 nm, and a n-type layer of 500 nm of GaAs, see Fig. 5.5b.

The idea behind the design of QDAP 2 is to reduce the dark current by introducing

an AlGaAs potential barrier.

5.5 Growth and fabrication

In the QDAP structure the n-i-n DWELL detector was grown on top of the p-i-n

APD section in a single-step epitaxy. The DWELL section of the QDAP consists of

the structure reported by Shenoi et al. [77]. This DWELL structure was designed

to maximize the obsoption of photons by increasing the number of active region
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stacks to thirty, compared to previous designs [78]. This larger number of active

region stacks is achieved by minimizing the strain. In the design, the DWELL con-

sists of n-doped InAs dots in an In0.52Al0.48As/GaAs well and Al0.10Ga0.90As as the

barrier. These layers are sandwiched between two highly doped n-GaAs layers. 1
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Figure 5.6: Simulated reflectance of the sample as a function of the depth (upper

plot) and index of refraction profile (lower plot).

Post-growth processing was done in a class 100 clean-room environment by perform-

ing three rounds of: standard contact photolithography, plasma etching, and metal

deposition using an e-beam evaporator. Finally, the processing was concluded by an-

nealing the contacts at 400 ◦C using rapid thermal annealing. Due to the thin middle

contact layer (middle n-type layer), the critical part of the device processing was to

perform the first mesa etch. To overcome this difficulty the real-time reflectance of

1A detailed description of the DWELL structure design can be found elsewhere [77].
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Figure 5.7: Real-time measured reflectance as a function of etching time.

the sample was measured while the etching process was carried out. Figure 5.6 shows

a simulation of the theoretical reflectance profile (upper plot) as a function of the

depth of the sample. The index of refraction profile of the sample and the desired

target is also shown (lower plot). In Fig. 5.7 the measured reflectance (arbitrary

units) as a function of time is plotted. While the etching process is carried out, the

real-time measurement of the reflectance is compared with the theoretical reflectance

profile. When the profiles match, the etching process is stopped when the predicted

target is reached. The dark current of the APD section of the processed devices was

measured for several temperatures, see figure 5.8. It can be seen from the figure that

at 77 K the breakdown voltage is around -1.8 V.
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Figure 5.8: Dark current of the APD section of the QDAP as a function of the

applied voltage, measured at several temperatures. The breakdown voltage at 77 K

is around -1.8 V.

5.6 Results

To demonstrate the operation of the QDAP a series of radiometric measurements

were carried out. First the spectral response of the QDAP was measured using a

Thermo Nicolet Fourier transform infrared (FTIR) spectrometer. Figure 5.9 shows

the measured conversion efficiency of the DWELL section as a function of wavelength

for a reverse bias of 2 V across the DWELL. It can be seen that the conversion ef-

ficiency peaks at 5 µm. The next step was to demonstrate the ability to separately

control the absorption and multiplication response of the QDAP. To this end, the

photocurrent of the QDAP detectors was measured with the devices cooled down to

liquid nitrogen temperature (77 K). To create carriers in the DWELL section the
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Figure 5.9: Conversion efficiency of the DWELL absorber as a function of wavelength

for an applied bias of 2 V.

devices were irradiated using 3.39 µm laser beam chopped at a frequency of 400

Hz. A specially designed circuit board was used to bias the devices and amplify the

photocurrent. Figure 5.10 shows the designed biasing scheme used to measure the

photocurrent and the multiplication gain of the QDAP. (It can be seen from the

figure that the QDAP is modelled as a series combination of a resistor, which repre-

sents the DWELL section, and an APD.) Then, the amplified signal was fed into an

SR770 Fast Fourier Transform (FFT) Network Analyzer. In the first experiment, the

photocurrent in the QDAP was plotted as a function of the bias across the DWELL

section (shown in Fig. 5.11). The current increases linearly with the applied bias as

expected. The inset of Fig. 5.11 shows the structure of the device under test. In the

second experiment, the photoelectron generation in the DWELL section was fixed by

keeping the DWELL section biased at a fixed value (0.5 V). The multiplication gain
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Figure 5.10: Biasing scheme to measure the photocurrent of the QDAP.

of the APD was then varied by changing the voltage across the APD. Figure 5.12

shows the photocurrent and the total multiplied noise of the heterojunction QDAP

structure as a function of the reverse bias across the APD for a fixed reverse bias of

0.5 V across the DWELL section. It can be seen that for a fixed voltage across the

DWELL section, as the reverse bias across the APD increases, the photocurrent of

the device increases in a fashion dictated by the multiplication gain of the APD. In

addition, compared to the photocurrent characteristics of the DWELL section alone

the QDAP photocurrent is distinctly different. Our measurements demonstrate that

the response of the DWELL and APD sections of the device can be controlled in-

dependently and the overall response of the QDAP can be enhanced. Figure 5.13a

shows the calculated excess noise factor of the device (dots) and the excess noise

factor predicted by the dead-space multiplication theory [65] (DSMT, solid curve)

as a function of the multiplication gain. The excess noise factor was estimated by

fitting the measured data to the excess noise factor of a GaAs multiplication region
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Figure 5.11: Photocurrent and conversion efficiency of the DWELL section at λ =

5 µm as a function of the reverse bias.

of 150 nm predicted by the DSMT. It has been previously shown [51] that the DSMT

accurately predicts the excess noise factor of thin III-V avalanche photodiodes. It

can be seen that, with the exception of the excess noise factor for a multiplication

gain of ∼ 8.2, the calculated excess noise factor closely follows the trend predicted

by the DSMT.

We have found that the detectivity of the QDAP decreases as the reverse voltage

across the APD increases. The detectivity, D∗, is calculated as [79]

D∗(λ) =

√
Ad∆f

in
R (5.1)

where Ad is the area of the detector, ∆f is the measurement bandwidth, R is the

responsivity, and in is the current noise. Figure 5.13b shows the detectivity of the
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QDAP at λ = 3.39 µm, as a function of the reverse voltage across the APD section

for a fixed value of the DWELL section of 0.5 V. It can be seen from the figure that as

the reverse voltage across the APD section increases the detectivity curve decreases.

This behavior is an inevitable result of the operation of the QDAP, in which the

DWELL and the APD sections contribute to the noise of the device. In the QDAP,

both the photogenerated and the dark carriers injected from the DWELL section

into the APD are amplified by the same factor, which is the multiplication gain of

the APD. In addition, the dark carriers created in the APD are also amplified by the

multiplication gain. As a result as the gain of the APD is increased the noise of the

device increases faster than the signal.

To compare the performance of the QDAP with that of the DWELL, their con-

version efficiencies ηconv were measured. The conversion efficiency in the DWELL

was increased by a factor of 14 due to the gain introduced by the avalanche mul-

tiplication stage of the QDAP. From Fig. 5.9 we see that at λ = 5 µm the peak

conversion efficiency of the DWELL alone is measured to be 0.84% at a reverse bias

of 2.0 V. Therefore, by operating the QDAP with the DWELL section reverse biased

at 2.0 V it is possible to obtain a maximum conversion efficiency of about 12%.

5.7 Conclusion

A new mid infrared detector, called the QDAP, was presented. The QDAP structures

under test use an optimized DWELL structure as the absorption layer and a p-

i-n avalanche photodiode as the multiplication stage. The photocurrent shows an

increase as the reverse voltage across the APD section was increased. In fact, the

photocurrent of the QDAP increased in a nonlinear fashion as the reverse voltage

across the APD was increased. Compared to the photocurrent characteristic of the

DWELL section alone, the QDAP photocurrent is very distinct and its characteristic
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Figure 5.12: Photocurrent and conversion efficiency of the QDAP as functions of the

reverse-bias voltage across the APD section for a fixed applied bias of 0.5 V across

the DWELL section. The inset illustrates the structure of the device. Note that if

the DWELL absorber was operated at 2 V (as in Fig. 5.9), the peak CE at λ = 5 µm

would be about 12%, which is one of the highest reported CE for any QD based

mid-infrared detector.

is very similar to that of the I–V curve of the APD section. These results suggest

that the photocarriers generated in the DWELL section are amplified by the APD

section. It is expected that by operating the QDAP with the DWELL section reverse

biased at 2.0 V it is possible to obtain a maximum conversion efficiency of about 12%.
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Figure 5.13: (a) Measured (dots) and predicted (blue curve) excess noise factor of

the QDAP. (b) Detectivity of the QDAP, measured at 3.39 µm, as a function of the

reverse voltage across the APD section for a fixed value of the DWELL section of

0.5 V.
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Summary and future work

In this dissertation, theoretical methods have been presented that allow us to char-

acterize the performance of APDs working in linear and Geiger modes. In addition,

it has been demonstrated the linear mode operation of a novel mid infrared photode-

tector that incorporates avalanche multiplication gain.

The first modeling method presented is a model that sheds light on the depen-

dence of the performance of SAM SPADs (APDs operating in Geiger mode) on the

width of the multiplication region by comparing the effects of field-assisted tunneling

with temperature-assisted dark carriers as the width is varied. The characterization

of the devices is made by calculating the performance metrics: photon detection

efficiency (PDE), the dark count rate (DCR) and also the single-photon quantum

efficiency as a function of the width of the multiplication region, the applied volt-

age and the temperature of operation. The model captures the effect of the dead

space and heterojunction multiplication regions. An aspect of importance that had

not been explored before, namely, the random locations where carriers are born in

each layer, is thoroughly analyzed and incorporated in the model. In particular, it is

assumed that photogenerated carriers are generated in the absorber at random loca-
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tions according to an exponential probability density function (pdf). On the other

hand, dark carriers are assumed to be generated randomly in the multiplication re-

gion and the absorber according to a uniform pdf in each layer. This theoretical

study shows that the thickness of the multiplication region plays a different role in

the performance of a SPAD depending upon what mechanism of dark-carrier gen-

eration is dominant. At low temperatures, for which field-assisted mechanisms are

dominant, an increment in the thickness of the multiplication region will result in

an improved PDE vs. DCR characteristics. The same behavior is seen in the SPQE

curve at low temperatures. At room temperatures, on the other hand, the PDE vs.

DCR characteristics show a weaker performance as the width of the multiplication

region is increased. However, the SPQE curves show a maximum achievable peak

SPQE at an optimal overbias and an optimal multiplication-region width.

The second modeling method explores the characteristics of the impact ionization

process under the influence of a time-varying electric field. A theory is presented

that models the impact ionization process in APDs under dynamic biasing. The

model allows us to predict the breakdown probabilities, the gain, the mean impulse

response, the excess noise factor, and the gain-bandwidth product of SAM APDs

under an arbitrary time-varying electric field. The model predicts that by using a

sinusoidal biasing scheme we should be able to increase the pulse gain-bandwidth

product of a SAM APD by a factor of 5 compared to the same APD operated under

the conventional static biasing scheme. This result is important because the telecom-

munication industry has been moving toward 40-Gbps and 100-Gbps protocols for

their core fiber-optic backbone networks alongside the existing 10-Gbps infrastruc-

ture operating at the low-loss wavelength of 1.55 µm. However, the limited speed

of APD-based receivers have limited their use in systems that operate at 2.5 and 10

Gbps. Consequently, the proposed biasing scheme represents a promising effort to

enable the current InP-based APDs to meet the expectations of 40 Gbps systems.
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Future work is needed on the study of the impact ionization process under dy-

namic biasing. The future work includes the theoretical optimization of the biasing

scheme, the determination of the fundamental trade-offs, and the experimental fea-

sibility of the scheme. In particular, the optimal time-varying-voltage profile that

provides the highest speed at the maximum achievable mean gain needs to be deter-

mined. This task is not simple since there are several aspects to take into account.

For example, in the proposed scheme the gain produced by photons arriving early in

the bit is higher than the mean gain produced by photons arriving close to the end

of the bit. As a result, the mean gain produced by the APD in one bit depends on

the gain profile across the duration of the bit. Assuming that the frequency of the

sinusoidal bias voltage is fixed at the desired bit rate, the gain profile is a function

of the phase of the sinusoidal bias voltage, its amplitude, and its DC level. Some

of the constrains are: (a) the minimum applied bias has to be such that its associ-

ated gain has to be at least equal to 1, so that the APD is still able to detect the

incoming photons, and (b) the maximum voltage has to be such that the gain does

not diverge. In addition, the optimal bias voltage profile depends on the particular

I–V characteristics of the APD considered. Another aspect to investigate has to do

with the noise performance of the APD under the dynamic biasing scheme. As seen

in Chapter 1, the excess noise factor strongly affects the performance of an APD

receiver. Therefore, it is necessary to investigate the effect of the dynamic biasing

on the excess noise characteristics of the APD. In particular, since the excess noise

factor increases with the mean gain, it is important to know the penalty introduced

by the high multiplication gain produced by photons arriving early in the bit.

The third modeling method is a stochastically self-regulating avalanche model

for passively quenched SPADs, which is the first significant expansion beyond the

model presented by Haitz in 1964 [42]. The presented model considers a passively

quenched SPAD as a closed loop system, capturing the effect of the feedback intro-

duced by the resistive load on the stochastic nature of the avalanche multiplication.
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This approach differs from the traditional model [42, 15], which captures the static

feedback, maintaining the device at breakdown, but neglects the dynamic coupling

between the voltage across the SPAD, the feedback from the load and the impact

ionization process. To capture the coupling between the feedback and its effect on

the stochastic nature of the avalanche current a hybrid model has been developed

that uses an analytical circuit model in conjunction with a Monte Carlo simulator

of the multiplication process that allows the impact ionization coefficients to change

continuously in time according to the dynamic and stochastic feedback received from

the load. The stochastically self-regulating avalanche model reported in this disser-

tation addresses three important phenomena that are entirely beyond the scope of

the traditional modeling tools. First, it predicts an oscillatory behavior of a persis-

tent avalanche current. Second, it predicts that the probability density function of

the stochastic quenching time of the persistent avalanche current has an exponential

decay. Third, under device and operational conditions that lead to strong feedback,

the stochastic avalanche current can collapse before persistent avalanche current can

be realized. All three of these behaviors are in qualitative agreement with recent ex-

perimental demonstrations employing negative-feedback SPADs (NFADs) that had

until now not been theoretically explained. The model specifically captures the effect

of the load’s feedback on the stochastic avalanche multiplication, an effect believed to

be key in breaking today’s counting rate barrier in the 1.55−µm detection window.

Future work is needed to investigate the dependence of the probability density

function (pdf) of the quenching time on the strength of the feedback. This can be

determined by calculating the pdf of the quenching time by using different values

of the load resistor RL. The goal would be to find out how the probability density

function of the quenching time changes as the system goes from a self-sustaining

regime (lower values of RL) to the case in which the stochastic avalanche current

collapses fast, before a persistent avalanche current can be established (higher values

of RL).
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In the experimental part of this dissertation a new GaAs-based midwave in-

frared photodetector, called the quantum dot avalanche photodiode (QDAP), was

presented. The QDAP structures under test use an optimized DWELL structure as

the absorption layer and a p-i-n avalanche photodiode as the multiplication stage.

The proposed device exploits the impact ionization mechanism to increase the con-

version efficiency of the DWELL photodetector. The photocurrent of the QDAP

structures under test shows an increase as the reverse voltage across the APD sec-

tion was increased. In fact, the photocurrent of the QDAP increased in a nonlinear

fashion as the reverse voltage across the APD was increased. Compared to the pho-

tocurrent characteristic of the DWELL section alone, the QDAP photocurrent is

very distinct and its characteristic is very similar to that of the I–V curve of the

APD section. These results suggest that the photocarriers generated in the DWELL

section are amplified by the APD section. It is shown that the conversion efficiency

of the DWELL detector is increased by a factor of 14 due to the gain introduced

by the avalanche multiplication stage of the QDAP. It is expected that by operating

the QDAP with the DWELL section reverse biased at 2.0 V it is possible to obtain

a maximum conversion efficiency of about 12%.

Further work is needed to obtain lower noise QDAP structures in order to achieve

Geiger mode operation. As seen in Chapter 5, the sensitivity of the QDAP worsened

as the voltage across the APD section increased. This is an inevitable result of the

operation of the QDAP, in which the DWELL and the APD sections contribute

to the noise of the device. Thus, the real advantage of the QDAP is in Geiger

mode operation. In Geiger mode operation, in which an APD can be considered as

a photon-activated switch, performance metrics like the excess noise factor and the

concept of gain are irrelevant since in Geiger mode what is important is the detection

of the photon-arrival event rather than the linear amplification of the photogenerated

carriers. However, to achieve Geiger mode operation the dark current level needs to

be dramatically decreased in order to keep the dark count rate at a reasonable level.
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The dark current level that makes Geiger mode operation possible is of the order of

< 1× 10−9 A. Currently, at 77 K the dark current of the QDAP, before breakdown

occurs, is of the order of 1× 10−7 A. Therefore, it is necessary to decrease the dark

current by around two orders of magnitude. New DWELL sections with resonant

tunneling structures, which have lower dark current levels, have been considered to

be used in the next generation of QDAP devices. Another way to reduce the dark

current of the device is to employ APD sections with thicker multiplication regions

to reduce the dark current contribution due to tunneling effects.
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Appendix A

Calculation of the breakdown

probabilities

In this chapter I freely draw upon derivations and results reported elsewhere [26, 51,

54, 56, 62]

A.1 Preliminaries

Consider a multiplication region extending from x = 0 to x = w, and assume that

the electric field therein is E(x), pointing in the opposite direction of x. We will

further assume, in general, that the multiplication region consists of multiple layers.

The goal is to characterize the probability density function (pdf) of the distance

from the birth location of a carrier to the location of its first impact ionization

thereafter. If an electron (respectively, hole) is born at position x, we let he(ξ, x)

[respectively, hh(ξ, x)] denote the pdf of the distance to the first ionization, measured

from the carrier’s birth position at x. For example, he(ξ, x)∆ is approximately

the probability that an electron born at x first impact ionizes somewhere in the
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interval [x + ξ, x + ξ + ∆]. We begin by identifying the key physical parameters

that govern this pdf. These are: 1) the multiplication-region’s ionization threshold-

energy profile; 2) the carrier’s dead-space profile; and 3) the profile of the ionization

coefficients of enabled carriers (those that have traveled the required dead space). To

accommodate the requirement that the multiplication region may consist of layers of

different materials, we will allow the electron and hole ionization threshold energies,

Eth,e(x) and Eth,h(x), respectively, to be position-dependent.

For an electron (respectively, hole) created at position x, let de(x) [respectively,

dh(h)] be the dead space with which it is associated. With this convention, an electron

(respectively, hole) which is newly created at x position cannot impact ionize before

reaching x+de(x) [respectively, x−dh(x)]. Finally, let α and β denote the electron and

hole ionization coefficients, respectively, associated with carriers that have acquired

the ionization threshold energy. These coefficients are material specific and depend

only on the electric field E(x), independently of the multiplication-layer width. A

model for the electron and hole impact ionization coefficients of enabled carriers has

been developed by Saleh et al. [51, 62]. This model is given by

α(x) = Ae exp

[

−
(

Ee/E(x)

)me
]

,

β(x) = Ah exp

[

−
(

Eh/E(x)

)mh

]

(A.1)

where A, E , and m are parameters chosen by fitting measured excess-noise-factor

data [63, 64]. After calculating unique pairs of electron and hole ionization coefficients

for every pair of experimental gain and excess noise factor (corresponding to a specific

electric field E), one can obtain the parameters A, E , and m by fitting the ionization

coefficients to the model given by (A.1).

With the availability of profiles of the dead-space and the ionization coefficients,
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the expression for he(ξ|x) and hh(ξ|x) are given by [56]

he(ξ|x) = α(ξ) exp

(

−
∫ ξ

x+de(x)

α(u) du

)

, ξ ≥ x+ de(x) (A.2)

and

hh(ξ|x) = β(ξ) exp

(

−
∫ x−dh(x)

ξ

β(u)du

)

, ξ ≤ x− dh(x) (A.3)

To make the above pdfs suitable for multilayer multiplication regions, we must thor-

oughly characterize the dead space profiles in heterostructure. Figure A.1 shows a

qualitative example of the probability density function of the ionization distance,

he(ξ, x), described by (A.2). In this example the electron is born at x = 0, and the

width of the multiplication region is w = 1600 nm. To better visualize the shifting of

the probability density function due to the dead space, de(x), the value of the dead

space was assumed to be larger (300 nm) than it is in a real material. Typical values

of the dead space in GaAs are around [25 – 30] nm at electric fields of the order of

6× 105 V/cm [80].

A.1.1 Characterization of the dead space

Under the simplifying assumption that after each impact ionization a carrier starts

from zero initial energy, the minimum distance that an electron, born at position

x, must travel before acquiring the ionization threshold energy is governed by the

following energy relation

Eth,e

(

x+ de(x)
)

= q

∫ x+de(x)

x

E(u) du, (A.4)

The above expression is a simple extension of the dead-space definition in [56], which

now captures position-dependent ionization thresholds. Equation (A.4) neglects the

effect of scattering, which, as described in Chapter 1, increases the dead space.
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Figure A.1: Probability density function of the ionization distance. In this example

the electron is born at x = 0. The value of the dead space was assumed to be larger

(300 nm) than it is in a real material. Typical values of the dead space in GaAs are

around [25 – 30] nm at electric fields of the order of 6× 105 V/cm [80].

However, (A.4) gives a good approximation of the dead space for high electric fields

(> 1 × 105 V/cm) where the carriers in the depleted multiplication region can gain

energy from the electric field at a faster rate than they lose it to the various scattering

processes. Recall that the threshold energy Eth,e may vary with x according to the

type of material at x. Furthermore, observe that for each x, the relevant ionization

threshold energy is the value at the point where the carrier attains the ionization

threshold. Hence, for an electron born at location x, the dead space which must be

traveled, is the minimum nonnegative solution δ to the following equation:

Eth,e

(

x+ δ
)

= q

∫ x+δ

x

E(u) du, (A.5)
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Similarly, the hole dead space dh(x) is the minimum nonnegative solution δ to the

following equation

Eth,h

(

x− δ
)

= q

∫ x

x−δ

E(u) du, (A.6)

In our formulation of the dead-space model, we adopted the commonly-accepted

assumption that the dead space is deterministic. In actuality, the dead space is a

random variable since a carrier may not necessarily loose all of its kinetic energy

after each impact ionization.

A.2 Breakdown probabilities

We now characterize the breakdown probability. Let Z(x) denote the total electron

and hole population resulting from a parent electron born at x with zero initial energy.

Similarly, let Y (x) denote the total electron and hole population resulting from a

parent hole born at x. Thus, for the case of electron injection (at x = 0), the APD

gain G is given by 0.5(Z(0) + 1). Let be Pz(x) defined as the probability that Z(x)

is finite, and similarly, let PY (x) ≡ P{Y (x) < ∞}. McIntyre invoked a recurrence

argument and characterized PZ and PY through the following two nonlinear integral

equations [81]:

PZ(x) =

∫

∞

w−x

he(ξ|x) dξ +
∫ w−x

0

(

P 2
Z(x+ ξ)PY (x+ ξ)

)

he(ξ|x) dξ (A.7)

PY (x) =

∫

∞

x

hh(ξ|x) dξ +
∫ x

0

(

P 2
Y (x− ξ)PZ(x− ξ)

)

hh(ξ|x) dξ (A.8)

The coupled recursive equations (A.7) and (A.8) can be numerically solved using an

iterative approach. Once these equations are solved the breakdown probability is

calculated as 1− PZ(0).
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