
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

2-9-2010

Information similarity metrics in information
security and forensics
Tu-Thach Quach

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Quach, Tu-Thach. "Information similarity metrics in information security and forensics." (2010). https://digitalrepository.unm.edu/
ece_etds/212

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/212?utm_source=digitalrepository.unm.edu%2Fece_etds%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/212?utm_source=digitalrepository.unm.edu%2Fece_etds%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Tu- Thach Quach
Candidate

Electrical and Computer Engineering
Department

This dissertation is approved, and it is acceptable in quality
and form for publication:

Approved by the Dissertation Committee:

Chairoerson

Information Similarity Metrics in
Information Security and Forensics

by

Tu-Thach Quach

B.S., Computer Engineering, University of New Mexico, 1999

M.S., Electrical Engineering, University of New Mexico, 2003

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2009

c⃝2009, Tu-Thach Quach

iii

Acknowledgments

I would like to express my gratitude to my committee members: Professors Heileman,
Pérez-González, Abdallah, and Pattichis. Professor Heileman has an amazing ability
for seeing the big picture and connecting concepts that might seem disconnected at
first. You have taught me how to approach problems from many different perspec-
tives. Professor Pérez-González, you have taught me many technical skills, to be a
deep thinker, to challenge assumptions, and to be skeptical. Professors Abdallah and
Pattichis, thank you for your utmost support.

This dissertation would not have been possible without the excellent educational
programs supported by Sandia National Laboratories and the Department of Energy.
My manager, Stephen Kleban, thank you for supporting my effort and filling in for
me during my absence from work.

I also would like to thank members of DRAKE for enduring many of my talks.
Your comments certainly contributed to the improvement of my research.

iv

Information Similarity Metrics in
Information Security and Forensics

by

Tu-Thach Quach

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2009

Information Similarity Metrics in
Information Security and Forensics

by

Tu-Thach Quach

B.S., Computer Engineering, University of New Mexico, 1999

M.S., Electrical Engineering, University of New Mexico, 2003

Ph.D., Engineering, University of New Mexico, 2009

Abstract

We study two information similarity measures, relative entropy and the similarity

metric, and methods for estimating them. Relative entropy can be readily estimated

with existing algorithms based on compression. The similarity metric, based on al-

gorithmic complexity, proves to be more difficult to estimate due to the fact that

algorithmic complexity itself is not computable. We again turn to compression for

estimating the similarity metric. Previous studies rely on the compression ratio as an

indicator for choosing compressors to estimate the similarity metric. This assump-

tion, however, is fundamentally flawed. We propose a new method to benchmark

compressors for estimating the similarity metric. To demonstrate its use, we propose

to quantify the security of a stegosystem using the similarity metric. Unlike other

measures of steganographic security, the similarity metric is not only a true distance

metric, but it is also universal in the sense that it is asymptotically minimal among

all computable metrics between two objects. Therefore, it accounts for all similarities

vi

between two objects. In contrast, relative entropy, a widely accepted steganographic

security definition, only takes into consideration the statistical similarity between

two random variables. As an application, we present a general method for bench-

marking stegosystems. The method is general in the sense that it is not restricted to

any covertext medium and therefore, can be applied to a wide range of stegosystems.

For demonstration, we analyze several image stegosystems using the newly proposed

similarity metric as the security metric. The results show the true security limits of

stegosystems regardless of the chosen security metric or the existence of steganalysis

detectors. In other words, this makes it possible to show that a stegosystem with a

large similarity metric is inherently insecure, even if it has not yet been broken.

vii

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Organization . 5

2 Information Similarity Metrics 7

2.1 Relative Entropy . 8

2.2 Algorithmic Distance . 8

2.2.1 Algorithmic Information Theory 9

2.2.2 Information Distance . 18

2.3 Summary . 19

3 Metric Estimation 20

3.1 Entropy and Relative Entropy Estimation 21

viii

Contents

3.1.1 The Burrows-Wheeler Transform 23

3.1.2 Experimental Result . 26

3.2 Algorithmic Complexity Estimation 27

3.2.1 Experimental Result . 29

3.2.2 Related Work . 33

3.3 Summary . 33

4 Steganography and Steganalysis 35

4.1 Steganography . 38

4.1.1 Least-significant Bit Embedding 38

4.1.2 F5 . 40

4.1.3 Steghide . 42

4.1.4 Model-based . 44

4.2 Steganalysis . 46

4.2.1 Method-specific Steganalysis 48

4.2.2 Universal Steganalysis . 49

4.3 Model-based Steganalysis . 53

4.3.1 Cover Image . 53

4.3.2 Stego Image . 54

4.3.3 Invariant Feature . 56

4.3.4 Detecting The Hidden Message 57

ix

Contents

4.4 Summary . 65

5 Benchmarking Stegosystems 67

5.1 Steganographic Security . 68

5.2 Steganographic Capacity . 72

5.3 Experimental Result . 74

5.3.1 Information-Theoretic Result 75

5.3.2 Algorithmic Complexity Result 83

5.4 Summary . 86

6 Conclusion and Future Work 88

6.1 Enhancing Steganalysis Detector . 89

6.2 Steganalysis and Algorithmic Complexity 90

Appendices 92

A Mean and Standard Deviation of Security Estimates 93

A.1 Information-Theoretic Model . 94

A.2 Algorithmic Complexity Model . 95

References 96

x

List of Figures

2.1 Turing machine . 10

3.1 Comparison of the LZ and BWT (a) entropy estimators and (b)

relative entropy estimators. 26

3.2 NCD(x, x) at different sequence lengths for (a) all compressors and

(b) for the lzma compressor. NCD(x, x) for the lzma compressor

actually decreases as sequence length increases. 31

3.3 |NCD(x, y) − NCD(y, x)| at different sequence lengths. Each point

is an average of 100 sequences. 32

4.1 A sender uses the encoder of a stegosystem to hide message M into

covertext X to produce stegotext Y , which is sent over a noiseless

public channel to a receiver. The receiver uses the decoder to extract

message M from the stegotext. 36

4.2 LSB replacement overrides the least-significant bits of the covertext

with the message bits to produce a stegotext. LSB embedding results

in little visual distortion. 39

xi

List of Figures

4.3 LSB embedding equalizes the histogram bins of pixel values that

differ only in the least-significant bit. Before embedding, the number

of 6’s is 60 and the number of 7’s is 40. After embedding, the two

numbers are likely to be equal when the message size is sufficiently

large. 41

4.4 The decompressor uses the statistical model of the covertext to de-

compress a random message so that the output sequence has the

desired statistical properties of the model. The output sequence can

then replace the least-significant portion of the covertext to produce

the stegotext. 45

4.5 Visual attack on LSB embedding exploiting the ability of the hu-

man visual system to recognize patterns: (a) cover image (b) least-

significant bit image of cover image and (c) least-significant bit image

of stego image where the left half is overwritten with the message bits.

The outline of the cover image can be seen in the least-significant bits.

LSB embedding destroys this pattern. 47

4.6 The scatter plot of |r2,1(5)|, |r2,1(10)|, and |r2,1(15)| for 100 random

cover images and stego images using LSB and Steghide with message

size at 100% of the cover capacity. The stego images are generated

from a different set of 100 cover images. 60

4.7 A detector’s false-alarm probability versus detection probability for

a perfectly secure stegosystem. 61

4.8 The ROC curves for our classifier along with the SSIS, LSB, and

Steghide hiding schemes (a). The ROC curves for four different mes-

sage sizes at 100%, 50%, 25%, and 5% of the cover capacity (b). . . 62

xii

List of Figures

4.9 The detection accuracy for different hiding algorithms and message

sizes at 95% cover detection accuracy. 63

5.1 The security and capacity trade-off of the simple stegosystem. The

relative entropy estimates are good approximations of the ideal values. 77

5.2 An example illustrating how JPEG coefficients are converted into a

one-dimensional sequence. 77

5.3 Security and capacity trade-off of F5, Steghide, MB, and Outguess

JPEG stegosystems. 78

5.4 Security and capacity trade-off of Steghide and LSB pixel-domain

stegosystems using (a) vertical and (b) horizontal concatenation of

pixels. 81

5.5 The security and capacity trade-off of the simple stegosystem using

the lzma compressor. The estimates closely match the ideal values. . 84

5.6 Security and capacity trade-off of F5, Steghide, MB, and Outguess

JPEG stegosystems using algorithmic complexity model. 85

xiii

List of Tables

3.1 The Ziv-Lempel algorithm on the sequence abbbbaaabba. 22

3.2 The Ziv-Merhav algorithm with xn = abbbbaaabba and zn = baababaabba. 23

3.3 An example of the BWT algorithm. 24

3.4 The mean NCD(x, x) and mean compression ratio on x for three

different compressors on randomly generated ASCII texts of 100,000

characters. 30

3.5 The mean NCD(x, x) and mean compression ratio on x for three

different compressors on JPEG images. 30

3.6 The NCD(x, x) and compression ratio on x for lzma and DNACom-

press on Plasmodium falciparum DNA sequences. 31

A.1 Mean and standard deviation of relative entropy estimate at different

α for F5, Steghide, MB, and Outguess JPEG stegosystems. 94

A.2 Mean and standard deviation of NCD at different α for F5, Steghide,

MB, and Outguess JPEG stegosystems. 95

xiv

Chapter 1

Introduction

The ability to quantify the similarity between two objects is of great importance in

many applications such as data mining and pattern recognition. The Euclidean dis-

tance between two points in a plane measures how close they are in space. Hamming

distance defines the distance between two binary strings of equal length as the num-

ber of positions in which the two strings differ. It quantifies the number substitutions

required to make two strings match. This metric only captures the positional depen-

dencies of two strings. It is not the minimal number of changes required to make two

strings match. Edit distance is a generalization of Hamming distance, where the set

of operations is expanded to include insertion and deletion. These distance metrics

have been used successfully in many applications such as clustering, DNA matching,

and, of course, spell checking.

In our information age, we are interested in metrics that quantify the informa-

tion similarity between two objects, which might not have coordinates or well-defined

operations. Information similarity has a wide range of important applications. In

music applications, for example, the similarity of two songs can be used to recom-

mend songs to consumers based on their past choices. Searching for similar images

1

Chapter 1. Introduction

can apply information similarity to find images that have similar content rather

than pixels. Information theory is an appropriate framework to study information

similarity. One of the fundamental quantities in information theory is relative en-

tropy, which quantifies the divergence between two random variables [1]. It is not

surprising that relative entropy has been used in many applications including clas-

sification [2, 3] and intrusion detection [4]. An important application of relative

entropy is steganography. In steganography, it is critical that the covertext and the

stegotext are similar to minimize detection. This similarity determines the security

of a stegosystem and is defined as the relative entropy between the covertext and the

stegotext distributions [5, 6].

Despite its popularity, relative entropy has many drawbacks. It is not a dis-

tance metric because it is not symmetric and does not satisfy the triangle inequality.

More importantly, information-theoretic metrics such as relative entropy inherently

deal with probabilities and ensembles, not individual objects. In this sense, rela-

tive entropy is not general as it requires two probability distributions. What if we

want to compare two objects that do not have distributions or their distributions

are unknown? Even with distributions, relative entropy fails to capture the infor-

mation similarity of two distributions. Two binary random variables X and Y with

distributions pX(0) = p and pY (0) = 1 − p, where p < 0.5, have non-zero relative

entropy. Yet, they represent identical information sources. This is a consequence

of the fact that relative entropy only considers statistically regularities between two

distributions.

An alternative metric based on algorithmic complexity is the information dis-

tance [7] and its normalized form, the similarity metric [8]. The benefits of using

algorithmic complexity is that it is a universal information quantity. As a result,

the similarity metric is a universal metric in the sense that it is asymptotically mini-

mal among all computable metrics between two objects. Universality is an important

2

Chapter 1. Introduction

point to emphasize. This implies that any similarity between two objects is accounted

for by the similarity metric. As an additional benefit, algorithmic complexity deals

with individual objects, not ensembles, which means that it does not rely on any

underlying probabilistic model. Whether two objects are probability distributions or

two paintings, the similarity between them is defined.

In order to use these metrics in applications, they must be calculated. Relative

entropy can be computed trivially when the distributions are known. In many ap-

plications, however, the distributions are not known. Digital images, for example,

have high degrees of dependencies among pixels and the distributions are difficult to

obtain. In these situations, the underlying distribution can only be estimated. As

simple as it sounds, estimating relative entropy has been a road block due to the

poor performance of existing estimators. We study in depth two estimators based on

compression algorithms and show that the estimator based on the Burrows-Wheeler

Transform performs better.

Computing the similarity metric proves to be more difficult due to the fact that

algorithmic complexity itself is not computable. We can only hope to approximate

it using compression. The idea is that the compressed version of an object serves

as the shortest representation, and estimates the shortest program, for producing

that object. Thus, the size of the compressed object can approximate its complexity.

Identifying a good compressor to estimate the similarity metric has been an active

are of research. This is critical as bad compressors lead to poor results. In the case

of classification, for example, objects would be put in the wrong class. We examine

several well-known compression programs to estimate the similarity metric. We show

that related works using compression ratio to benchmark compressors are flawed

as minimal compression ratio does not guarantee good estimates for the similarity

metric. We propose a new method to benchmark compressors for estimating the

similarity metric and test several compressors on different types of objects including

3

Chapter 1. Introduction

text, images, and DNA sequences. Contrary to results reported in literature, we show

that the popular ppmd compressor does not perform well as reported. The lzma

compressor, on the other hand, is a general-purpose compressor that outperforms

ppmd and task-specific compressors.

To demonstrate its use, we study the security of stegosystems. A fundamental

requirement of a stegosystem is its security. This is the condition where the war-

den cannot distinguish stegotexts from covertexts, i.e., the presence of the hidden

message cannot be detected by the warden. From a practical approach, the secu-

rity of a stegosystem is viewed from the perspective of a steganalysis detector. This

approach, however, has many issues. The results are dependent on many factors in-

cluding the performance of the detectors, the training process, and the data set. An

alternative approach is define steganographic security independent of any steganal-

ysis detector. There exist many works that try to define steganographic security

using different quantities. The problem with these definitions, however, is that they

only consider one aspect of security based on the chosen quantity. Therefore, it is

difficult to compare the security of stegosystems under different definitions. For ex-

ample, a stegosystem is shown to be more secure than another stegosystem under

relative entropy, but is less secure with respect to a different security definition. This

immediately raises an issue of the choice of security measure. Due to its universal-

ity, we propose to define steganographic security using the similarity metric which

overcomes this problem.

As an application, we present a general-purpose method for benchmarking stegosys-

tems. Unlike existing works, this method does not rely on any steganalysis detector.

As a result, it does not have many of the drawbacks such as classifier parameters

and training associated with using steganalysis detectors. Furthermore, it is general

in the sense that it is not restricted to any covertext medium and therefore, can be

applied to a wide range of stegosystems. Our method requires only a security met-

4

Chapter 1. Introduction

ric and the steganographic capacity of a stegosystem. We benchmark several image

stegosystems using the newly proposed similarity metric as the security metric. For

comparison, we also use relative entropy as the security metric. We demonstrate the

generality of our approach to show that it is not restricted to JPEG images or file for-

mats by applying it to pixel-domain stegosystems. The results show the security and

capacity trade-off of stegosystems and serve as a benchmark for stegosystems. More

importantly, the results show the true security limits of stegosystems regardless of

the chosen security metric or the existence of steganalysis detectors. In other words,

this makes it possible to show that a stegosystem with a large similarity metric is

inherently insecure, even if it has not yet been broken.

1.1 Organization

The technical content of this dissertation is divided into four Chapters. Chapter 2

describes relative entropy, information distance, and the similarity metrics in de-

tail. Fundamental properties of each metric are presented. In addition, algorithmic

information theory is described in detail as well as its connection to prefix codes.

Chapter 3 discusses methods to estimate relative entropy and the similarity metric.

A new method to benchmark compressors for estimating the similarity metric is pro-

posed. This is in contrast to existing methods that rely on optimal compression ratio

to choose compressors. Experimental results are presented to compare each method.

Chapter 4 describes steganography in detail including the common methods used in

steganography as well as the challenges in developing secure stegosystems. It cov-

ers several popular image stegosystems. Common steganalysis techniques are also

outlined. Our model-based steganalysis method is developed in detail. A discussion

on how steganalysis detectors are used to quantify the security of stegosystems is

presented. We re-examine the security issue of stegosystems in Chapter 5. We define

5

Chapter 1. Introduction

the security of a stegosystem using the similarity metric and present our general-

purpose approach to benchmark stegosystem. Experimental results for real image

stegosystems are shown. Chapter 6 concludes our work and discusses future research

directions.

6

Chapter 2

Information Similarity Metrics

Two theories that quantify information are classical information theory and algo-

rithmic information theory. Shannon’s approach in classical information theory was

motivated as a communication problem. As such, it deals with the probabilistic

nature of communication. Algorithmic information theory, on the other hand, was

motivated from the complexity of objects, and how to describe those objects effi-

ciently. It is remarkable that both approaches end up with many similarities. The

entropy of a random variable, for example, is approximately equal to the length of

the shortest program to describe it. In terms of information similarity, information

theory offers a convenient metric, relative entropy, that quantifies how different two

random variables are. Algorithmic information theory has a true distance metric

that measures the information similarity between two objects. This is the informa-

tion distance [7] and its normalized form is the similarity metric [8]. Both inherit

many benefits from algorithmic complexity. An important property is universality.

That is, the information distance is minimal among all computable distances between

two objects. Therefore, it accounts for all similarities between two objects. This is

truly a remarkable property. We formally define these metrics in this chapter with

an emphasis on algorithmic complexity.

7

Chapter 2. Information Similarity Metrics

2.1 Relative Entropy

Perhaps the most popular metric in information theory that measures the divergence

between two probability distributions pX and pY is relative entropy:

D(pX ||pY) =
∑

x

pX(x) log
pX(x)

pY (x)
. (2.1)

We are careful to use the word divergence rather than distance because relative

entropy is not a true distance as it is not symmetric and does not satisfy the triangle

inequality. It does, however, has some properties that make it resemble a distance

metric as shown in the following theorem.

Theorem 2.1.1 (Positivity). D(pX ||pY) ≥ 0 with equality iff pX = pY .

2.2 Algorithmic Distance

Relative entropy as a distance measure has several drawbacks. It is not a metric

because it is not symmetric and does not satisfy the triangle inequality. More im-

portantly, information-theoretic metrics such as relative entropy inherently deal with

probabilities and ensembles, not individual objects. In this sense, relative entropy is

not general as it requires two probability distributions. What if we want to compare

two objects that do not have distributions or their distributions are unknown? Even

with distributions, relative entropy fails to capture the information similarity of two

distributions. Two binary random variables X and Y with distributions pX(0) = p

and pY (0) = 1−p, where p < 0.5, have non-zero relative entropy. Yet, they represent

identical information sources. This is a consequence of the fact that relative entropy

only considers statistically regularities between two distributions. This same situa-

tion can be extended to other popular distance metrics such as Hamming distance.

A black and white picture and its negative have a large Hamming distance, but the

8

Chapter 2. Information Similarity Metrics

two pictures look similar. Clearly, relative entropy, Hamming distance, and other

popular distances fail to capture this similarity. From a computation perspective,

however, the negative image is easily generated. Turn all zeros into ones and turn

all ones into zeros. It would be ideal if we can define a universal metric that takes

into account all computable similarities between two objects. For this, we turn to

algorithmic information theory.

2.2.1 Algorithmic Information Theory

We toss a fair coin 20 times and we obtain all heads. Instantly, we do not believe this

is a fair coin because the sequence does not look random. Our argument is that since

this is a fair coin, we expect some heads and some tails, but not all heads. Why?

Probability tells us that any sequence is as likely and each has probability 2−20. So,

why should we feel that a sequence of all heads is not random? The problem is that

probability only works with expectations of ensembles, not individual objects. This

simple example illustrates another problem with probability and classical information

theory. The entropy of the source (the coin toss) is 1. However, the empirical entropy

of the sequence of all heads is practically 0. It is not possible to embed any usable

quantity of information into this sequence, but the source entropy tells us otherwise.

Again, the problem is that classical information theory tells us about the expected

quantity of information of ensembles, not individual objects.

This brings us to algorithmic information theory that quantifies the information

content of individual objects. Algorithmic information theory was independently dis-

covered by Kolmogorov, Solomonoff, and Chaitin [9, 10, 11]. We are interested in a

efficient way to describe objects. Some objects are easily described. A sequence of one

million heads is easily described. We have just described this sequence in just a few

bytes. The number 3.1415926535897932384626433832795..., or π, seems to be com-

9

Chapter 2. Information Similarity Metrics

Finite State Control

Head

Tape 01010101010100101010BBBBBBB

Figure 2.1: Turing machine

plicated, but it too can be described in just a few bytes. There are, however, many

objects that are difficult to describe, the binary sequence 0110001101010110001... is

difficult to describe other than to write the sequence itself.

In order to be useful, we must agree on a universal mechanism to describe objects.

If such universal mechanism does not exist, then we cannot have a standard way of

quantifying the information content of objects as this quantity would depend on the

chosen description mechanism. If, for example, we do not understand the symbol π,

then it would not mean anything to us and we cannot compute π. Similarly, some

programming languages are more elegant at specific tasks than others and require

only a few lines of codes to implement difficult algorithms. It turns out though that

this universal mechanism exists and is due to the theory of computation developed

in the 1930s.

In 1936, Alan Turing described a simple computer and showed that any function

that can be computed by a human can be computed by the computer [12]. This

Turing machine consists of a finite state control with a head and a tape as shown in

Figure 2.1.

At each execution step, the machine is allowed to read the value on the tape at

the head location and can perform only two basic operations:

1. write to the tape at the current head location

10

Chapter 2. Information Similarity Metrics

2. move the head one position to the left or right

The finite state control is allowed to change its state at the end of each step according

to a determined set of rules based on its current state and the symbol read from the

tape. We can view a Turing machine as a function that maps finite binary strings

to finite or infinite binary strings. Some combinations of states and symbols lead

the finite state control to enter a halt state and ends its execution. In these cases,

the function is defined. Not all combinations halt execution. In these cases, the

function is undefined. The set of functions that are computed by Turing machines

are collectively referred to as partial recursive functions.

One of the most celebrated results of Turing’s work is the halting problem, which

states that there is no computer that can determine whether any arbitrary computer

will halt on some input. This theorem has important consequences. One of the

consequences, as we will see shortly, is that the algorithmic complexity of an object

is non-computable.

Theorem 2.2.1 (Halting Theorem). Let T1, T2, . . . be the enumeration of computers.

There is no computer H such that H(i, x) = 1 if Ti(x) is defined (i.e., halts) and

H(i, x) = 0 if Ti(x) is undefined for all i, x.

Proof. We prove by contradiction using circular referencing. Suppose that H does

exist. Define computer H as follows. H(x) is defined if H(x, x) = 0 and H(x) is

undefined if H(x, x) = 1. Let Tj = H in the enumeration of computers. Now, what

happens if we execute H(j, j)? If H(j, j) = 1, then Tj(j) is defined, but according

to the definition of Tj, Tj(j) is defined only if H(j, j) = 0. Similarly, if H(j, j) = 0,

then Tj(j) is undefined, but Tj(j) is undefined only if H(j, j) = 1. Thus, we have a

contradiction.

Turing’s model of computation is quite simple. It turns out that Turing’s model

11

Chapter 2. Information Similarity Metrics

of computation is equivalent to any other models in the sense that they all can

compute the same set of functions within a polynomial time factor [13]. This is now

commonly known as Church’s Thesis. Thus, we can construct a universal computer

that simulates all Turing machines. This brings us back to algorithmic information

theory.

Informally, the complexity or information content of an object is the length of

the shortest program that generates the object. Formally, let x be a finite binary

sequence and U be a universal computer. Let p be a program executable by U .

Denote the length of p as l(p). The algorithmic complexity of x with respect to U is

defined as

KU(x) = min
p:U(p)=x

l(p). (2.2)

If no such program exists, KU(x) = ∞.

Similarly, we can define a conditional version of algorithmic complexity of x given

y with respect to computer U as

KU(x|y) = min
p:U(p,y)=x

l(p). (2.3)

If no such program exists, KU(x|y) = ∞. In other words, the conditional complexity

is the shortest program length that computes x if y is made available to computer

U . This is equivalent to saying that y is a parameter or data made available to

program p on computer U . To satisfy the symmetry of algorithmic information

where KU(x, y) = KU(y|x) + KU(x), KU(x|y) is defined as K(x|y∗), where y∗ is the

shortest program for y. For an in-depth discussion on the symmetry of information

issue, please refer to the textbook by Li and Vitányi [14].

We instantly run into the problem described above where the complexity is now

dependent on computer U . Fortunately, the invariance theorem, which relies on

the existence of universal computers, solves this problem elegantly. This theorem

12

Chapter 2. Information Similarity Metrics

is considered as one of the most fundamental theorems in algorithmic information

theory since the entire theory relies on it.

Theorem 2.2.2 (Invariance Theorem). Let U be a universal computer and V be any

other computer. Then,

KU(x) ≤ KV (x) + c, (2.4)

where c is independent of x.

Proof. Let T1, T2, . . . be the set of all computers. Let p be a shortest program to

compute x using computer V , i.e., V (p) = x. Let V correspond to Tn in the enumer-

ation of computers. Denote the length of n as l(n). Universal computer U uses the

following program to compute x

pU = 1l(n)0np. (2.5)

U parses the input program to extract n, then simulates V and executes p to compute

x. Thus,

KU(x) ≤ KV (x) + 2l(n) + 1. (2.6)

The constant itself can be quite large depending on n. That is not the point of

the theorem, however. The key point is that the constant does not depend on x.

Thus, the complexity of x depends only on x. Therefore, we will not refer to any

specific computer U so that the algorithmic complexity of x is denoted as K(x).

There are several versions of algorithmic complexity. The most well-known ver-

sion is prefix algorithmic complexity. In prefix algorithmic complexity, the programs

form a prefix-free set. That is, no program is a prefix of another program. This

restriction has many connections with information theory. In particular, there is a

13

Chapter 2. Information Similarity Metrics

strong tie to Shannon’s source coding theorem and Kraft inequality, which ultimately

leads to the universality of algorithmic complexity.

Definition A code C for alphabet X is a mapping from the elements of X to binary

strings, i.e., C : X → {0, 1}∗. The binary string C(x) is the corresponding codeword

for x.

Definition A code is a prefix code if no codeword is a prefix of another codeword.

The following theorem, due to Kraft [15], establishes a constraint on the codeword

lengths of any prefix code.

Theorem 2.2.3 (Kraft Inequality). There exists a prefix code with codeword lengths

l1, l2, . . . if and only if

∑

i

2−li ≤ 1. (2.7)

It is straightforward to see that
∑

2−K(x) ≤ 1 since the programs form a prefix

free set. An important consequence of Kraft inequality is the establishment of a lower

bound on the expected codeword length of any prefix code for a given distribution.

This remarkable result was discovered by Shannon in his original paper [16] and is

commonly known as the noiseless coding theorem or source coding theorem.

Theorem 2.2.4 (Source Coding Theorem). Let l(x) be the codeword length for x

of some prefix code and p(x) be the corresponding probability of x. The expected

codeword length satisfies

∑

x

p(x) log
1

p(x)
≤
∑

x

p(x)l(x). (2.8)

14

Chapter 2. Information Similarity Metrics

In other words, the expected codeword length of any prefix code is lower bounded

by the entropy of the random variable over the alphabet. Equality is achieved when

the codeword lengths are optimal,

l∗(x) = log
1

p(x)
. (2.9)

An optimal prefix code exists only if the optimal lengths are integer, which is

often not case. One way to construct a prefix code for a given distribution that is

almost optimal is through Shannon-Fano coding. To solve the non-integer problem,

Shannon-Fano coding rounds up the non-integer lengths to become

l(x) =

⌈
log

1

p(x)

⌉
. (2.10)

These codeword lengths still satisfy Kraft inequality since

∑

x

2−⌈log 1
p(x)⌉ ≤

∑

x

2− log 1
p(x) = 1. (2.11)

Therefore, by the Kraft inequality, we can construct a prefix code with these round-

up codeword lengths.

An important consequence of the above discussion is the following theorem, which

establishes algorithmic complexity as a universal information metric.

Theorem 2.2.5. For any computable real-valued function f(x) satisfying the in-

equality
∑

x 2−f(x) ≤ 1,

K(x) ≤ f(x) + c, (2.12)

where c is a constant independent of x.

Proof. Since
∑

x 2−f(x) ≤ 1, there exists a prefix code with codeword lengths ⌈f(x)⌉.
Thus, we can construct a computer ϕ(x) that produces a codeword for x. Since the

15

Chapter 2. Information Similarity Metrics

codewords form a prefix code, ϕ(x) is unique for every x. Therefore, we can construct

another computer using codewords ϕ(x) as programs to compute x, i.e., φ(ϕ(x)) = x.

The complexity of x is the length of ϕ(x), which is ⌈f(x)⌉. Altogether, we have

Kφ(x) = ⌈f(x)⌉ ≤ f(x) + 1. (2.13)

Combined with the Invariance Theorem (Theorem 2.2.2), we have

K(x) ≤ Kφ(x) + c (2.14)

≤ f(x) + c + 1 (2.15)

= f(x) + O(1). (2.16)

Corollary 2.2.6. For any computable function p(x) ≥ 0 satisfying
∑

x p(x) ≤ 1,

2−K(x) ≥ cp(x). (2.17)

We can view 2−K(x) as a universal probability for x in the sense that any other

probability distribution on x is within a multiplicative constant factor of 2−K(x).

Furthermore, K(x) ≤ log 1
p(x)

+c, which resembles Shannon’s definition of information

suggesting that there is a connection between algorithmic complexity and entropy.

Theorem 2.2.7. For any computable probability mass function p(x) with finite en-

tropy, i.e., H(p) < ∞,

0 ≤
∑

xi

p(xi)K(xi) − H(p) ≤ c. (2.18)

Proof. Since K(x) is the length of a prefix code, the first inequality follows imme-

diately from Theorem 2.2.4. For the second inequality, Theorem 2.2.5 states that

K(x) ≤ log 1
p(x)

+ c. Thus,

∑

xi

p(xi)K(xi) ≤
∑

xi

p(xi)

(
log

1

p(xi)
+ ci

)
(2.19)

≤ H(p) + c∗, (2.20)

16

Chapter 2. Information Similarity Metrics

where c∗ = max{ci}.

This is truly a remarkable result. It states that K(x) is equivalent to the entropy

of a random variable on average. Yet the two metrics came from two different

approaches. Algorithmic complexity, however, has one major drawback due to the

following theorem.

Theorem 2.2.8. K(x) is non-computable.

Proof. This is a result of the halting theorem (Theorem 2.2.1). Namely, we do not

know whether a program will halt. So, the only way to find the shortest program

for x is to run all programs. Some very short programs, however, do not halt. The

following very short program, for example, does not halt:

while true do

end

Since there is no way of knowing whether a program halts, we cannot determine

whether the current shortest program to compute x is, in fact, the shortest. It follows

that algorithmic complexity is not computable.

Even though K(x) is not computable, we can approximate it from above. We

can certainly wait for a very long time to allow more and more short programs to

finish. The longer we wait, the better the estimate is. In other words, K(x) is upper

semicomputable, but not computable. In practice, we resort to compression methods

to approximate algorithmic complexity.

17

Chapter 2. Information Similarity Metrics

2.2.2 Information Distance

Algorithmic information theory offers a mechanism to define the absolute information

content that is based on individual objects. As we have seen, algorithmic complexity

is a universal information measure. This makes it even more attractive to define a

distance metric based on algorithmic complexity. We want this metric to be a true

distance metric so that it satisfies the following conditions:

• d(x, y) = 0 iff x = y

• d(x, y) = d(y, x)

• d(x, y) ≤ d(x, z) + d(z, y)

The above conditions address the symmetry and triangle inequality issues not

present in relative entropy. The conditional complexity K(x|y) is a good candidate,

but it is not symmetric, i.e., K(x|y) ̸= K(y|x), in general. Bennett et al. [7] addressed

this issue by defining an information distance

E(x, y) = max{K(x|y), K(y|x)}. (2.21)

It is straightforward to verify that (2.21) is a metric in that it satisfies the above

conditions. The triangle inequality is satisfied since

K(x|z) ≤ K(x, y|z) = K(x|y, z) + K(y|z) ≤ K(x|y) + K(y|z). (2.22)

Furthermore, for any other computable metric d satisfying the density requirement

∑

x:x ̸=y

2−d(x,y) ≤ 1, (2.23)

E(x, y) ≤ d(x, y) + c, where the constant c is independent of x and y. This is due

to Theorem 2.2.5. Therefore, the information distance accounts for all computable

18

Chapter 2. Information Similarity Metrics

distance metrics between two objects and it is the minimal up to an additive constant

among them. We note that the density requirement eliminates degenerate metrics

where d(x, y) = 1 for all x ̸= y. In effect, there can only be a finite number of

elements x from y at any distance.

In many situations, it is advantageous to use a normalized form of information

distance rather than the absolute information distance. In this case, the normalized

distance expresses the degree of similarity between two objects. Li et al. [8] defined

the normalized information distance, also referred to as the similarity metric, as

e(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)} . (2.24)

2.3 Summary

A natural metric to measure the similarity between two random variables is relative

entropy. As we have seen, however, relative entropy has many drawbacks. The infor-

mation distance and the similarity metric based on algorithmic complexity addressed

many of these drawbacks. Both are true metrics. Furthermore, they are universal in

the sense that they account for all computable metrics between two objects.

19

Chapter 3

Metric Estimation

In order to use relative entropy and the similarity metric in applications, they must

be calculated. Relative entropy can be computed trivially when the distributions

are known. In many applications, however, the distributions are not known. Digital

images, for example, have high degrees of dependencies among pixels and the distri-

butions are difficult to obtain. In these situations, the underlying distribution can

only be estimated. As simple as it sounds, estimating relative entropy has been a

road block due to the poor performance of existing estimators. We study in depth

two estimators based on compression algorithms and show that the estimator based

on the Burrows-Wheeler Transform performs better.

Computing the similarity metric proves to be more difficult due to the fact that

algorithmic complexity itself is not computable. We can only hope to approximate

it using compression. The idea is that the compressed version of an object serves

as the shortest representation, and estimates the shortest program, for producing

that object. Thus, the size of the compressed object can approximate its complexity.

Identifying a good compressor to estimate the similarity metric has been an active

are of research. This is critical as bad compressors lead to poor results. In the case

20

Chapter 3. Metric Estimation

of classification, for example, objects would be put in the wrong class. We examine

several well-known compression programs to estimate the similarity metric. We show

that related works using the compression ratio to benchmark compressors are flawed

as minimal compression ratio does not guarantee good estimates for the similarity

metric. We propose a new method to benchmark compressors for estimating the

similarity metric and test several compressors on different types of objects including

text, images, and DNA sequences. Contrary to results reported in literature, we show

that the popular ppmd compressor does not perform well as reported. The lzma

compressor, on the other hand, is a general-purpose compressor that outperforms

ppmd and task-specific compressors.

3.1 Entropy and Relative Entropy Estimation

If the sequence is generated according to an i.i.d. process, then entropy and relative

entropy estimation is trivial. In this case, a simple frequency count is sufficient. How-

ever, sources for covertext, such as digital images, exhibit a high degree of correlation

between adjacent data samples. For these sources, simple frequency counting would

not be adequate and more advanced algorithms are needed. Several algorithms based

on popular compression algorithms can be used as entropy estimators for stationary

ergodic sources and relative entropy estimators for finite-memory Markov sources.

Universal compression algorithms can optimally compress a sequence generated

from a source without having knowledge of the underlying distribution [17]. The Ziv-

Lempel algorithm is an example of such algorithms [18]. Given an input sequence,

the algorithm parses the sequence into distinct phrases. Each phrase is the shortest

phrase not previously parsed. The algorithm works as follows. The algorithm looks

along the sequence until it encounters a subsequence that has not been parsed. This

subsequence or phrase is added to a dictionary of parsed phrases. The algorithm

21

Chapter 3. Metric Estimation

Table 3.1: The Ziv-Lempel algorithm on the sequence abbbbaaabba.
Current phrase Parsed? Output
abbbbaaabba no a
abbbbaaabba no b
abbbbaaabba yes
abbbbaaabba no bb
abbbbaaabba yes
abbbbaaabba no ba
abbbbaaabba yes
abbbbaaabba no aa
abbbbaaabba yes
abbbbaaabba yes
abbbbaaabba no bba

continues where it left off until the entire sequence is parsed. For example, if the

sequence is abbbbaaabba, then the algorithm parses it as a, b, bb, ba, aa, bba as shown

in Table 3.1.

Let c(xn) be the number of phrases parsed by the algorithm on a sequence xn

of length n generated from a stationary ergodic source Xn. In the above example,

c(xn) = 6. Then, due to Wyner and Ziv [19],

c(xn) log c(xn)

n
→ H(Xn)

n
. (3.1)

Similar algorithms exist using slightly different calculations [20, 21].

Ziv and Merhav extended the idea of LZ parsing and proposed a relative en-

tropy estimator for finite-memory Markov sources based on cross parsing of two

sequences [2]. Given the two sequences xn and zn, the algorithm parses xn into

c(xn|zn) longest phrases that appear in zn. The algorithm works as follows. Find

the longest prefix of xn that appears in zn. In other words, find the largest m

such that (x1, x2, . . . , xm) = (zi, zi+1, . . . , zi+m−1) for some i. Then, start again

from xm+1 until the entire sequence is parsed. For example, let xn = abbbbaaabba

and zn = baababaabba, the algorithm parses xn with respect to zn to produce

22

Chapter 3. Metric Estimation

Table 3.2: The Ziv-Merhav algorithm with xn = abbbbaaabba and zn = baababaabba.
Matching xn Matching yn Output
abbbbaaabba baababaabba abb
abbbbaaabba baababaabba bba
abbbbaaabba baababaabba aabba

abb, bba, aabba as shown in Table 3.2.

Let c(xn|zn) be the number of output phrases resulting from parsing xn with

respected to zn. In the above example, c(xn|zn) = 3. The corresponding relative

entropy estimator is

1

n
[c(xn|zn) log n − c(xn) log c(xn)] , (3.2)

where xn and zn are sequences generated from finite-order stationary Markov sources.

Although convergence was proven for the above algorithms, the required number

of samples can be large, as shown in the sequel. Furthermore, the relative entropy

estimator in (3.2) tends to produce negative values especially when the two sequences

differ only by a small number of samples. For these reasons, we use estimators based

on the Burrows-Wheeler Transform (BWT), described next, rather than the LZ

scheme.

3.1.1 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform is a block-sorting lossless data compression algo-

rithm [22]. The input to the algorithm is a sequence of n symbols. The algorithm

generates n cyclic shifts or rotations of the sequence, sorts them lexicographically,

and extracts the last symbol of each rotation. The algorithm itself does not compress

the sequence, but groups similar symbols together making it easy to compress using

simple compression algorithms such as Huffman or run-length coding. For exam-

23

Chapter 3. Metric Estimation

Table 3.3: An example of the BWT algorithm.

Rotations Sorted Output

banana abanan n

ananab anaban n

nanaba ananab b

anaban banana a

nabana nabana a

abanan nanaba a

ple, let the input sequence be banana, then the algorithm produces the rotations as

shown in Table 3.3.

The key idea to use the BWT as an entropy estimator is the fact that sorting

the rotations lexicographically results in grouping together rotations that start with

the same sequence, and the output symbol is the symbol that precedes the sequence

in each row. If the BWT is performed on the reversed input sequence, for finite

memory sources, the algorithm groups together symbols that share the same state,

and the conditional distributions can be estimated.

Cai et al. proposed an entropy estimator, and proved almost sure convergence, for

stationary ergodic sources using this key observation [23]. The method is as follows:

1. Apply the BWT on the reversed input sequence of n symbols.

2. Partition the BWT output into T segments. Uniform segmentation with T =
√

n is sufficient.

3. Estimate the first-order distribution within each segment. Denote the number

of occurrences of symbol a ∈ X in segment j as Nj(a). The probability estimate

of symbol a in segment j is then

p̂(a, j) =
Nj(a)∑
b∈X Nj(b)

. (3.3)

24

Chapter 3. Metric Estimation

The contribution of segment j to the entropy estimate is

log p̂(j) =
∑

a∈X
Nj(a) log p̂(a, j). (3.4)

4. The entropy estimate is

Ĥ(p) = − 1

n

T∑

j=1

log p̂(j). (3.5)

The BWT entropy estimator can be extended to act as a relative entropy esti-

mator for finite-memory Markov sources [24]. The method is as follows:

1. Concatenate the two sequences xn and zn together.

2. Apply the BWT on the reversed concatenated sequence.

3. Partition the BWT output into T segments according to zn. Uniform segmen-

tation according to zn is sufficient.

4. Estimate the first-order distribution within each segment. Denote symbols

from xn with lowercase letters and the same symbols from zn with uppercase

letters. The probability estimate of symbol A from zn in the j segment is

q̂(A, j) =
Nj(A) + ∆∑

B∈X Nj(B) + |X |∆ , (3.6)

where Nj(A) is the number of occurrences of symbol A in segment j. A small

bias ∆ > 0 is needed to deal with the potential for zero probability. The

contribution of segment j to the cross entropy estimate is

log q̂(j) =
∑

a∈X
Nj(a) log q̂(A, j). (3.7)

5. Estimate the relative entropy. Averaging over all T segments,

Ŝ(p||q) = − 1

n

T∑

j=1

log q̂(j). (3.8)

25

Chapter 3. Metric Estimation

0 2 4 6 8 10

x 10
5

0.45

0.5

0.55

0.6

0.65

0.7

Sequence size

E
nt

ro
py

 e
st

im
at

e

LZ
BWT
Ideal

(a)

0 2 4 6 8 10

x 10
5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Sequence size

R
el

at
iv

e
en

tr
op

y
es

tim
at

e

LZ
BWT
Ideal

(b)

Figure 3.1: Comparison of the LZ and BWT (a) entropy estimators and (b) relative
entropy estimators.

The relative entropy estimate is then

D̂(p||q) = Ŝ(p||q) − Ĥ(p). (3.9)

3.1.2 Experimental Result

For comparison, we test the LZ and the BWT entropy and relative entropy estimators

using binary first-order Markov sources. The result of averaging over 100 runs is

shown in Figure 3.1. The ideal curves are shown along with the approximations

produced by the estimators. Estimators based on the BWT converge quickly to the

ideal curves. The LZ estimators, on the other hand, do not offer good approximations

even with 106 data samples.

26

Chapter 3. Metric Estimation

3.2 Algorithmic Complexity Estimation

In our discussion on algorithmic information theory, we established that algorithmic

complexity is not computable (Theorem 2.2.8). We can only hope to approximate

it using compression. The idea is that the compressed version of an object serves

as the shortest representation, and estimates the shortest program, for producing

that object. Thus, the size of the compressed object can approximate its complexity.

With a real-world compressor Z, the similarity metric (2.24) is expressed as

NCD(x, y) =
Z(xy) − min{Z(x), Z(y)}

max{Z(x), Z(y)} , (3.10)

where Z(x) is the compressed size of x and Z(xy) is the compressed size of the con-

catenation of x and y. This technique was used to construct mammalian phylogeny

trees and to classify biological sequences [8, 25, 26].

Of course, this opens the question of what compressors are good estimators of the

similarity metric. It is not clear what metrics we should use to compare compressors

to identify good compressors. Ideally, we would like to use compressors that are

optimal. A compressor Z is optimal if

1

n
Z(xn) → 1

n
H(Xn). (3.11)

Among the optimal compressors, the ones based on LZ77 [27] and LZ78 [18] are the

most popular. For a proof of the optimality of LZ77 and LZ78, see [17].

As with our discussion on entropy estimators, optimality does not guarantee good

results in practice. In fact, many compressors are optimal, but do they all estimate

the similarity metric well? Clearly, optimality alone is not a sufficient condition.

It is surprising that this optimality condition, also referred to as compression ratio,

is used extensively as a quantity to compare compressors for estimating the NCD.

Compression ratio ignores an important component of NCD(x, y): Z(xy). Z(x)

might be minimal but Z(xy) might not be. Even if Z(x) and Z(xy) are minimal, that

27

Chapter 3. Metric Estimation

is still not a sufficient condition for minimal NCD(x, y). Suppose that compressor

Z1 compresses better than Z2 so that

Z1(x) < Z2(x) (3.12)

and

Z1(xy) < Z2(xy) (3.13)

for all x and y. The following relation is not guaranteed to hold:

Z1(xy) − min{Z1(x), Z1(y)}
max{Z1(x), Z1(y)} <

Z2(xy) − min{Z2(x), Z2(y)}
max{Z2(x), Z2(y)} . (3.14)

For simplicity, let Zi(x) < Zi(y) for i ∈ {1, 2} so that the above condition becomes

Z1(xy) − Z1(x)

Z1(y)
<

Z2(xy) − Z2(x)

Z2(y)
. (3.15)

It is straightforward to verify that minimal compression is not sufficient for the above

relation. Let Z1(xy) − Z1(x) = Z2(xy) − Z2(x).

Many existing applications of the NCD or its relatives rely on the compression

ratio to identify good compressors [8, 25, 28, 29]. It has been pointed out that

compression ratio is not a good quantity to compare compressors [30]. Another

approach compared compressors based on how well machine classifiers were able to

classify known DNA sequences using the computed NCD [26]. This, too, is not a

good indicator as it depends on the classifier used, its parameters, and the training

and testing data sets. The result is therefore dependent on many factors.

Rather than using some indirect metrics, we take our clues directly from the

definition of a distance metric:

1. d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x)

28

Chapter 3. Metric Estimation

3. d(x, y) ≤ d(x, z) + d(z, y).

Specifically, the first two properties, identity and symmetry, are quantities that can

be used to compare compressors. Therefore, we evaluate compressors by computing

1. NCD(x, x)

2. NCD(x, y) and NCD(y, x).

Ideally, NCD(x, x) should be zero. For a practical compressor, however, there

will be some overhead associated with storing the additional information of the

replica. A good compressor should yield values close to zero. Similarly, we would

like NCD(x, y) to be close to NCD(y, x).

3.2.1 Experimental Result

We test three compressors: bzip2, which is based on the BWT algorithm [22], lzma,

which is based on the Lempel-Ziv compression algorithm [27], and ppmd, which is

based on the Prediction by Partial Matching algorithm [31]. All compressors use

their best compression setting. This means that the window size is 900 KB for bzip2,

the dictionary size for lzma is 64 MB, and the dictionary size for ppmd is 192 MB.

Identity Property

We randomly generate English-alphabet text sequences consisting of n = 100, 000

characters. For each sequence we compute NCD(x, x) and the compression ratio on

x for all three compressors. The result of averaging over 100 sequences is shown is

Table 3.4.

29

Chapter 3. Metric Estimation

Table 3.4: The mean NCD(x, x) and mean compression ratio on x for three different
compressors on randomly generated ASCII texts of 100,000 characters.

NCD(x, x) Compression ratio on x

bzip2 0.368200 4.785793

lzma 0.002287 4.844836

ppmd 0.001778 4.893315

Table 3.5: The mean NCD(x, x) and mean compression ratio on x for three different
compressors on JPEG images.

NCD(x, x) Compression ratio on x

bzip2 0.865825 1.305979

lzma 0.003059 1.375825

ppmd 0.533291 1.203729

The compression ratio for all three compressors are quite good. Note that the

entropy of the source is log 26 ≈ 4.7. This is the lower bound on the compression

ratio. It is clear that bzip2 has the best compression ratio of the three. It is,

however, a poor NCD estimator. This is not surprising given our above discussion

that minimal compression ratio is not a sufficient condition for minimal NCD.

The dependency of the NCD on the sequence length n can be seen in Figure 3.2.

The bzip2 compressor is poor for n > 400, 000, which is expected as its window size

is 900,000 KB. The ppmd compressor falls apart for n > 500, 000. This is surprise

given that its dictionary size is quite large. The lzma compressor on the other hand,

performs better as n increases.

We further validate our results using JPEG images. Image dimensions vary from

1012×1600 to 1600×1600 yielding a minimum of 1.6×106 pixels. We use the JPEG

coefficients as our x. The result of averaging over 100 images is shown is Table 3.5.

Again, lzma outperforms the other two even though it has the largest compression

ratio of the three.

30

Chapter 3. Metric Estimation

1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Text size

N
C

D
(x

,x
)

bzip2
lzma
ppmd

(a)

1 2 3 4 5 6 7 8 9 10

x 10
5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−3

Text size

N
C

D
(x

,x
)

lzma

(b)

Figure 3.2: NCD(x, x) at different sequence lengths for (a) all compressors and (b)
for the lzma compressor. NCD(x, x) for the lzma compressor actually decreases as
sequence length increases.

Table 3.6: The NCD(x, x) and compression ratio on x for lzma and DNACompress
on Plasmodium falciparum DNA sequences.

lzma DNACompress

Sequence Length NCD(x, x) ratio on x NCD(x, x) ratio on x

AE001362 947102 0.001121 0.2148 1 0.2082

AE014185 1694445 0.000930 0.2132 1 0.2073

AE014186 2035250 0.000854 0.2181 1 0.2064

We test the lzma compressor against a special-purpose compressor DNACom-

press [32] optimized for DNA sequences. This compression algorithm uses Pattern-

Hunter [33] to find similar, not necessarily identical, sequences and encode the differ-

ences between them. This method works because DNA sequences are quite similar.

We use long DNA sequences of Plasmodium falciparum. The result of computing

NCD(x, x) is shown in Table 3.6. Similar to the above experiments using general-

purpose compressors, lzma has larger compression ratio than DNACompress, but it

is a much better NCD estimator than DNACompress. In fact, DNACompress does

not work at all for long DNA sequences.

31

Chapter 3. Metric Estimation

1 2 3 4 5 6 7 8 9 10

x 10
5

0

1

2

3

4

5

6

7

8
x 10

−4

Text size

|N
C

D
(x

,y
)

−
 N

C
D

(y
,x

)|

bzip2
lzma
ppmd

Figure 3.3: |NCD(x, y) − NCD(y, x)| at different sequence lengths. Each point is
an average of 100 sequences.

Symmetry Property

We now test the same three compressors on the symmetry property. We randomly

generate English-alphabet text sequences of various lengths. For each sequence x,

we create a sequence y by randomly changing every tenth character. This is done

on purpose so that the resulting values are not equal to 1. Then, NCD(x, y) and

NCD(y, x) are computed. From this, we calculate |NCD(x, y) − NCD(y, x)|. The

result is shown in Figure 3.3. Each point is an average of 100 sequences. Since bzip2

uses the Burrows-Wheeler Transform, it is expected that

|NCD(x, y) − NCD(y, x)| = 0

for sequence lengths less than 450 KB. Only on longer sequences that bzip2 starts

to diverge from zero. For all compressors, the symmetry does not play a significant

role.

32

Chapter 3. Metric Estimation

3.2.2 Related Work

Estimating the similarity metric has been an active area of research. There exist

many works using compression programs to estimate the NCD for phylogeny tree

construction [8, 25, 28, 29]. These works rely on short mitochondrial DNA sequences

less than 20,000 bases. Compression ratio has been the metric of choice to compare

compressors. Besides special-purpose compressors such as GenCompress [28] and

DNACompress, ppmd was the top performing general-purpose compressor in all of

these studies. Our experiments show that ppmd does not work well for long sequences

of lengths larger than 500,000. We also show that DNACompress does not work for

long DNA sequences either. On the other hand, we show that the lzma compressor

is the best compressor.

Rather than using compression ratio, Ferragina et al. used machine learning as

an indicator to compare compressors [26]. This approach, however, is problematic as

it is dependent on many factors including the chosen classifier, its parameters, and

the training and testing sets. They also used short mitochondrial DNA sequences.

Their results showed that the top general-purpose compressor is ppmd while bzip2

is the worst. Gencompress also did well. Our experiments using long sequences show

that neither bzip2 nor ppmd are good compressors.

3.3 Summary

We have shown better methods for estimating entropy and relative entropy based

on the Burrows-Wheeler Transform that outperform estimators based on Lempel-Ziv

compression. Estimating the similarity metric is more tricky as algorithmic complex-

ity is not computable. For this, we resort to data compression with the justification

that the compressed version of an object serves as the shortest representation, and

33

Chapter 3. Metric Estimation

estimates the shortest program, for producing that object. We show that minimal

compression ratio is not sufficient to guarantee minimal NCD. Our experiments

validate this idea. Unlike previous studies which show that the general-purpose

compressor ppmd is a good compressor for estimating the NCD, we show that it

does not work well on long sequences of lengths larger than 500,000. Our results also

show that DNACompress, a special-purpose compressor for DNA sequences, also

does not work well for long DNA sequences. More importantly, we show two criteria

for evaluating compression algorithms: identity and symmetry. This does not have

the disadvantages of using compression ratio or other approaches based on machine

classification, which depends on many factors including the chosen classifier, its pa-

rameters, and the data set. Our results show that only the lzma compressor does

well in all cases which include text, images, and DNA sequences.

In the next chapter, we study steganography and steganalysis, which sets the

stage for the following chapter where we use these estimators to study the security

of stegosystems.

34

Chapter 4

Steganography and Steganalysis

Steganography is the term used to refer to a branch of information hiding where the

goal is to communicate covertly. The prisoners problem is often used to describe

steganography [34]. The prisoners, Alice and Bob, are locked up in separate cells.

They wish to communicate with each other in order to come up with an escape plan.

They are allowed to send messages to each other, provided the warden examines all

messages. If the warden suspects they are devising an escape plan, no further com-

munication between them will be allowed. Alice and Bob are aware of the situation

and are prepared for the event that they are arrested. They agree to use a stegano-

graphic method or stegosystem to communicate with each other to devise an escape

plan. Using the agreed upon steganographic method, Alice embeds an escape plan

into an innocent looking covertext to create a stegotext. The stegotext is then given

to the warden who may pass it along to Bob under the conditions described above.

They succeed if they can communicate their escape plan without being detected by

the warden. The situation depicted is often referred to as steganography with a pas-

sive adversary. Steganography with an active adversary refers to the situation where

the warden is allowed to alter messages deliberately. We restrict our discussion to

the former.

35

Chapter 4. Steganography and Steganalysis

Encoder DecoderM MNoiseless Channel

X

Y Z

Sender Receiver

Observer

Figure 4.1: A sender uses the encoder of a stegosystem to hide message M into
covertext X to produce stegotext Y , which is sent over a noiseless public channel to
a receiver. The receiver uses the decoder to extract message M from the stegotext.

A stegosystem consists of an encoder and a decoder. The input to the encoder,

in general, consists of a covertext and a message to encode or embed. The encoder

embeds the message into the covertext to produce a stegotext. The sender sends

the stegotext over a public channel monitored by a warden who also has access to

the covertext. The receiver uses the decoder to extract the hidden message from the

stegotext. While other forms of steganography exist that use side information at the

decoder, the described stegosystem is widely popular due to its simplicity and ease of

use. This is especially the case for image steganography. We restrict our discussions

to stegosystems that do not rely on side information at the decoder, however, our

work applies to this case as well. A typical stegosystem is depicted in Figure 4.1.

Although similar, steganography differs from cryptography in the mechanisms

they use to communicate privately. In cryptography, only the intended recipients can

understand the content, which is otherwise unintelligible to others. Steganography

goes one extra step to conceal the presence of the private communication itself.

In practice, these two are commonly used together where a secret message is first

encrypted and subsequently embedded into a covertext.

The desire to communicate secretly has a long history with man. For example,

Romans shaved the heads of their soldiers and tattooed secret messages onto the

bare skin. Once the hair grew back, the soldiers can safely deliver the messages.

During World War II, a spy sent the following message:

36

Chapter 4. Steganography and Steganalysis

Apparently neutral’s protest is thoroughly discounted and ignored. Isman

hard hit. Blockade issue affects pretext for embargo on by-products,

ejecting suets and vegetable oils.

On the surface, the message appears to be a casual statement. Combining the second

letter of every word, however, reveals “Pershing sails from NY June 1.” A recent

espionage case involving a former State Department official and his wife highlights

the use of steganography [35]. The couple was arrested and accused of providing

classified information to the Cuban government. They passed information to the

Cuban officials by changing shopping carts in a grocery store.

Today, steganography has many more uses beyond covert communication. The

popularity of the Internet and the ease of sharing digital content have revolutionized

the way we use and distribute information. Digital images, books, music, and videos,

for example, are easily accessible via the Internet. This accessibility, however, is also a

concern for publishers and copyright owners. For these entities, tracking ownerships

and enforcing license agreements, are vital to their business. There is an entire

research field called digital rights management devoted to this problem, but certainly,

steganography is a part of the solution. Intellectual property owners, for example,

can use steganography to identify customers who violate their license agreement.

The transmission and storage of medical records benefit from steganography in that

patient information and other sensitive data remain hidden and coupled with the

records. The storage and transmission of highly sensitive information can use an

additional layer of security through the use of steganography. The act of sending

encrypted content alone alerts unauthorized users of its significance. However, if the

encrypted content is hidden in an innocent covertext, eavesdroppers will have to take

additional steps to figure out which message contains the original encrypted sensitive

information.

We study several stegosystems and the techniques they use to hide data. One of

37

Chapter 4. Steganography and Steganalysis

the burning questions in steganography is determining the security of a stegosystem.

A commonly used approach is the define the security of a stegosystem in terms of its

detectability with respect to a steganalysis detector. We cover common steganalysis

techniques and illustrate how they can be used to define the security of a stegosystem.

4.1 Steganography

While many forms of steganography exist, in our digital world, it is not surprising

that digital steganography is ubiquitous. Digital steganography manipulates digi-

tal contents such as images, video, audio, and text documents to embed messages.

Among the many digital formats, digital images have emerged as a popular choice

of covertext for concealing messages. Digital images are easily accessible. Anyone

with a digital camera can produce digital images. Digital images also tend to have

high redundancy. Stegosystems can exploit this redundancy to hide secret messages.

The concept of steganography is intriguing on its own. The rich set of embedding

techniques used in steganography makes it even more fascinating. In general, it is

best to hide a message so that the resulting stegotext resembles the original cover-

text. In digital images, this implies, at a minimum, that the two images look similar

and that there is no visible artifact in the stegotext, which would otherwise raise

suspicion. Each embedding method aims to achieve this and they do so in their own

way. Some methods are more advanced and try to preserve statistical properties of

the covertext so that they are not vulnerable to statistical attacks.

4.1.1 Least-significant Bit Embedding

One of the simplest embedding methods involves replacing the least-significant bits

(LSB) of the covertext with the message bits. The idea of LSB replacement is that it

38

Chapter 4. Steganography and Steganalysis

001 010 011

010 011

011 100 101

100

0 1 0

1 0

0 1 0

1

Secret Message

Cover Image

LSB Embedding

000 011 010

011 010

010 101 100

101

Stego Image

Figure 4.2: LSB replacement overrides the least-significant bits of the covertext with
the message bits to produce a stegotext. LSB embedding results in little visual
distortion.

results in minimal visual distortion. For example, a pixel value of 100 does not look

different from 101. Thus, given a covertext and a message to hide, LSB replacement

overrides the least-significant bits of the covertext with the message bits. This process

is illustrated in Figure 4.2.

It can be seen that the secret message can be recovered from the stegotext by the

intended recipient by extracting the least-significant bits of the stegotext. In practice,

the message bits are typically shuffled before embedding to increase randomness and

security. Shuffling is done using a random number generator and a private key known

only to the sender and recipient. Thus, an observer cannot simply extract the least-

significant bits to reveal the message. This would likely result in a random sequence

of bits. Only the intended recipient with the appropriate key can extract the hidden

message.

Another form of LSB embedding is called LSB matching. Rather than overwrit-

ing the least-significant bits of the covertext with the message bits, LSB matching

randomly adds or subtracts one from the covertext value when their least-significant

39

Chapter 4. Steganography and Steganalysis

bits do not match.

LSB replacement is easy to implement and has the added benefit of minimal

visual distortion. Yet, the statistical properties of the stegotext are quite different

from the covertext, which makes it vulnerable to detection (a topic we will explore in

the next Chapter). The concept of LSB embedding, however, is far-reaching. Today,

many advanced stegosystems borrow this LSB concept to hide messages. These

stegosystems differ primarily on how they select pixels to change to embed a secret

message.

4.1.2 F5

The inherent problem with the simple LSB method is that it introduces statistical

irregularities. In particular, LSB embedding tends to equalize the histogram bins

of pixel values that differ only in the least-significant bit. Consider two pixel values

6 and 7. Let the number of 6’s in the covertext be n6 and the number of 7’s in

the covertext be n7. Assume that n6 ̸= n7. Let the message bits consist of an

equal number of 0’s and 1’s. After LSB embedding, the number of 6’s is now n6+n7

2
.

So is the number of 7’s. An illustration of this problem is shown in Figure 4.3.

This issue becomes more apparent as the message size increases and the method

is easily detected by just looking at pixel pairs that share all bits other than the

least-significant bit.

A simple method to overcome this problem is to correct the histogram after

embedding so that the distribution of the values in the stegotext is identical to the

covertext. First-generation JPEG stegosystems such as Outguess [36] utilized this

technique to preserve the distribution of the values in the covertext. Of course, the

disadvantage of such approach is that the embedding capacity is reduced since some

covertext values cannot be used for hiding.

40

Chapter 4. Steganography and Steganalysis

0

0

0

0

0

1

1
6 67 7

60

40

50 50

Half will be 0 and half will be 1 after LSB embedding

Figure 4.3: LSB embedding equalizes the histogram bins of pixel values that differ
only in the least-significant bit. Before embedding, the number of 6’s is 60 and the
number of 7’s is 40. After embedding, the two numbers are likely to be equal when
the message size is sufficiently large.

Westfeld approached the histogram problem using an embedding technique called

matrix embedding in his F5 stegosystem [37]. Matrix embedding was discovered by

Crandall [38] and independently by Dijk and Willems [39], Galand and Kabatian-

sky [40], and later studied by Fridrich and Soukal [41]. Matrix embedding borrows the

idea from Hamming codes with the purpose of increasing the embedding efficiency,

where efficiency is defined as the number of bits embedded per change. Efficiency is

a quantity that is frequently used to determine how good an embedding technique

is. In general, the higher the efficiency is, the better the embedding method is. As-

suming that the message bits are uniformly distributed, then after LSB embedding,

half of the message bits change the covertext, while the other half does not change

anything. So, the embedding efficiency for LSB embedding is 2 bits per change.

To illustrate the advantage of matrix embedding, consider a simple scenario where

we wish to embed two bits m1,m2 using three bits x1, x2, x3 from the covertext.

Let m1 = x1 ⊕ x3 and m2 = x2 ⊕ x3, where ⊕ denotes exclusive or. With this

configuration, we have four possible outcomes:

41

Chapter 4. Steganography and Steganalysis

m1 = x1 ⊕ x3, m2 = x2 ⊕ x3, no change

m1 ̸= x1 ⊕ x3, m2 = x2 ⊕ x3, change x1

m1 = x1 ⊕ x3, m2 ̸= x2 ⊕ x3, change x2

m1 ̸= x1 ⊕ x3, m2 ̸= x2 ⊕ x3, change x3.

The point is that, at most, only one change is needed to embed two bits. This

type of code is denoted as a triple (dmax, n, k), where n is the number of modifiable

symbols from the covertext, k is the number of message bits to embed, and dmax is the

maximum number of changes. In the above example, we have (1, 3, 2). The expected

efficiency for this code is 8
3

= 2.667 bits per change, which is larger than the efficiency

of LSB embedding. The example shows the value of using matrix embedding as a

mechanism to improve efficiency. The efficiency can further be improved by using

codes with larger k such as (1, 7, 3) which yields an efficiency of 3.429. For the class

of (1, n, k) codes, n = 2k − 1. The expected number of changes for each block of n

symbols is n
n+1

. Thus, the expected efficiency is k(n+1)
n

. Note that efficiency is always

larger than k. The penalty for using large k is low embedding rate, which is defined

as k
n
. Low embedding rate reduces the overall capacity of the covertext.

4.1.3 Steghide

A different approach to embedding is based on exchanging rather than overwrit-

ing pixels. By exchanging pixels, the histogram is automatically preserved. Hetzl

and Mutzel proposed a graph-theoretic stegosystem based on exchanging called

Steghide [42]. In this scheme, the covertext is partitioned into groups of k elements.

Each group is used to hide one message bit. The parity of the least-significant bits

of each group is compared with their corresponding message bit. If the two do not

match, a node is created for that group. An edge is formed between two groups if

an element in one group can be swapped with another element in the other group so

42

Chapter 4. Steganography and Steganalysis

that their resulting parity bits match the message bits. As an example, let the least

significant bits of the covertext be 1, 0, 1, 1, 1, 0, 0, 0, 1. Let the message be 1, 0, 0.

Let k = 3. Then, the covertext is partitioned into three groups of threes:

Group 1 2 3

LSB 1 0 1 1 1 0 0 0 1

Parity Bit 0 0 1

Message Bit 1 0 0

Since the parity bit of group 2 matches the message bit, no change is required. For

groups 1 and 3, their parity bits do not match with their message bits. Therefore,

one value from group 1 needs to be swapped with another value from group 3. For

example, swapping the first value of group 1 with the first value of group 3 yields

the desired message bits.

In a real situation, there will be many nodes and many edges. Two nodes can

have multiple edges and the resulting graph is dense. There are multiple ways of

picking values to swap. In our example, we could have picked the first value of

group 1 to swap with the second value of group 3 to obtain the desired message

bits. If the covertext values are binary, then this does not become a major issue.

For non-binary covertext values, choosing the appropriate swapping arrangement is

critical. For example, if the first value of group 1 is 101 and the first value of group

3 is 100 while the second value of group 3 is 10, swapping the first value of group

1 with the first value of group 3 is clearly a better choice than the alternative. To

guide the search for a good swapping arrangement, each edge has a weight that

is based on the distance between the two values to swap. The algorithm tries to

find a swapping arrangement on the graph so that the number of matching vertices

is maximized while minimizing the total exchanged edge weights. This problem is

referred to as the maximum cardinality minimum weight matching problem. The

general algorithm is not limited to using just the least-significant bits, but can be

43

Chapter 4. Steganography and Steganalysis

applied to a value function v which maps covertext values to a range of values from

0 to m − 1. This is accomplished by replacing the parity bits described above with

a modulo m sum operation. The approach is generic and does not limit itself to

any specific covertext format. The implementation supports palette images, JPEG

images, waveform audio, and µ-law audio files.

Other than preserving the histogram of the covertext, Steghide is similar to LSB

replacement. It has an expected efficiency of 2 bits per change. Depending on k,

however, the overall capacity of the image is also reduced by a factor of 1
k
. For

example, when k = 2, only half of the image can be used to hide messages. The

main benefit of this approach is that it automatically preserves first-order statistics

and is therefore resilient against statistical attacks that rely on first-order statistics.

4.1.4 Model-based

Other than trying to preserve first-order statistics, the above stegosystems do not

make use of any statistical model of the covertext. With a statistical model, it might

be possible to build a more secure stegosystem. Sallee proposed a Model-based

(MB) stegosystem using statistical modeling and data compression [43]. The rela-

tionship between embedding and data compression can be seen as follows. Supposed

that we have a perfect compressor for digital images, then the compressor produces

random binary sequences for any input image. If the output sequence is given to

the corresponding decompressor, the original image is reproduced perfectly. Now,

what if a random secret message is given to the decompressor? Surely, a perfectly

legitimate image is also produced. The idea is then to construct a model of the

covertext to guide a decompressor to produce a sequence from the message that has

the desired statistical properties of the model. This sequence can then replace the

least-significant portion of the covertext to produce the stegotext. The process is

44

Chapter 4. Steganography and Steganalysis

Decompressor

Statiscical model

Random message

Sequence to embed

Figure 4.4: The decompressor uses the statistical model of the covertext to de-
compress a random message so that the output sequence has the desired statistical
properties of the model. The output sequence can then replace the least-significant
portion of the covertext to produce the stegotext.

illustrated in Figure 4.4. The receiver can recover the message by extracting the

sequence from the stegotext and compresses the sequence using the same statistical

model.

A specific form of the generalized Cauchy distribution is used to model the dis-

tribution of the JPEG coefficients:

fX(x) =
p − 1

2s

(∣∣∣x
s

∣∣∣+ 1
)−p

. (4.1)

This distribution has a closed form equation for its cumulative density function and

is preferred over other distributions such as the generalized Gaussian. The model

parameters s and p are obtained using the maximum likelihood method. Arith-

metic coding [44] is used for compression and decompression, which achieves better

compression than Huffman.

An important issue with this approach is that the compressor and decompressor

must use the same statistical model. If the compressor uses a slightly different model

from the decompressor, the message would not be recoverable. Since the covertext

and the stegotext are not identical, some care must be taken so that both compressor

and decompressor end up with the same model. To solve this problem, the algorithm

puts multiple JPEG coefficients into one bin. For example, coefficient values 1 and

2 are put into the same bin. Each coefficient is then identified by its bin index and

its offset in the bin. Coefficient 1 has offset 0, while coefficient 2 has offset 1. These

bins are referred to as low precision histograms. The model parameters are fit using

45

Chapter 4. Steganography and Steganalysis

these low precision histograms. The probability of each offset can be calculated using

the cumulative distribution of the model. These probabilities can now be used by

the decompressor to produce a sequence carrying the message that has the desired

statistical properties. Note that the use of the low precision histograms guarantee

that the covertext and stegotext end up with the same model. Thus, the message is

recoverable by the recipient.

Let the probability of offset 0 be p and the probability of offset 1 be 1 − p.

Assuming that the compressor is ideal, the average number of bits that can be

embedded for each coefficient is equal to the entropy: −(p log p + (1 − p) log(1 − p)).

The expected number of changes is p(1 − p) + (1 − p)p = 2p(1 − p). Therefore, the

expected efficiency is

−(p log p + (1 − p) log(1 − p))

2p(1 − p)
. (4.2)

For 0 < p < 1, the above equation lower bounded by 2 with equality when p = 1
2
.

Thus, MB has better efficiency than the simple LSB method.

4.2 Steganalysis

Advances in steganography have not gone unnoticed. There exist many interesting

steganalysis techniques. In the previous section, we described LSB embedding which

tries to minimize visual distortion. It does not guarantee, however, that visual attack

is not possible. In fact, early stegosystems employing LSB embedding are vulner-

able to visual detection [45]. The premise of LSB embedding is that the human

visual system has difficulty discerning the minor differences in the least-significant

bits. Thus, the least-significant bits can be treated as noise and can be used to

hide messages. The human visual system, however, is also excellent at recognizing

patterns. Coupled with the fact that the least-significant bits of color images carry

46

Chapter 4. Steganography and Steganalysis

(a) (b) (c)

Figure 4.5: Visual attack on LSB embedding exploiting the ability of the human
visual system to recognize patterns: (a) cover image (b) least-significant bit image
of cover image and (c) least-significant bit image of stego image where the left half
is overwritten with the message bits. The outline of the cover image can be seen in
the least-significant bits. LSB embedding destroys this pattern.

enough information to convey visible patterns, the human visual system can be used

as a steganalysis detector. A naive stegosystem that does not distribute the message

bits randomly over the covertext is particularly vulnerable to this visual attack. For

example, in Figure 4.5, a cover image is shown along with its least-significant bit

image from the three color components. Also shown is the least-significant bit image

of the stego image generated using LSB embedding on the left half of the cover image

(without shuffling). It can be seen that the least-significant bit image of the cover

image contains enough visual information to convey the outline of the cover image.

LSB embedding puts noise into the cover image, the resulting stego image destroys

this visible pattern. Thus, an observer can exploit this weakness to detect stego

images.

Visual attacks work on simple stegosystems that are unaware of this weakness.

It is easy to see that this type of attack would not be as successful if a stegosys-

tem employs shuffling to distribute the message bits over the cover image or that

the cover image is grayscale. It illustrates, however, that stegosystems that seem

secure are in fact vulnerable. More advanced statistical steganalysis techniques exist

47

Chapter 4. Steganography and Steganalysis

exploiting the statistical anomalies left behind by the embedding process. Steganal-

ysis techniques are divided into two broad categories: method-specific and universal.

Method-specific techniques aim to defeat a specific steganographic algorithm by ex-

ploiting the embedding process of the target stegosystem. Universal steganalysis

makes no prior assumption about the embedding method. The goal is to be able to

detect the presence of a hidden message embedded by a variety of hiding schemes.

The two categories offer complimentary views on steganography and steganalysis.

4.2.1 Method-specific Steganalysis

One of the earliest statistical attacks aiming at LSB replacement is the χ2 method [45].

The idea was outlined in our discussion on Steganography. Assuming that the mes-

sage bits are uniformly distributed, replacing the least-significant bits of the covertext

with the message bits has the effect that values that differ only in the least-significant

bits are equally distributed after embedding. This concept was illustrated in Fig-

ure 4.3. A simple observation shows that the mean of the two frequencies do not

change by LSB replacement. Thus, the expected histogram of the values are known

for any given image. The method does not need any information about the origi-

nal image. Given an image, the method constructs the histogram of the image and

compare it against the expected histogram using the χ2 method. The χ2 method

measures how close the two distributions are. If the two are close, we can declare

the image to be steganographic. This method is simple and it illustrates the idea of

statistical steganalysis by exploiting statistical irregularities in the stegotext. The

χ2 method works well on early stegosystems. Advanced stegosystems such as F5,

Steghide, and MB are difficult to detect with this method as they try to preserve

first-order statistical properties that this method relies on.

It is known that image pixels are highly correlated. For example, two adjacent

48

Chapter 4. Steganography and Steganalysis

pixels do not vary much. By taking into account the statistical dependency among

pixels, better steganalysis attacks can be developed. Fridrich et al.’s RS (Regu-

lar/Singular) steganalysis detector uses this principle to detect LSB replacement

embedding [46, 47]. Pixels are divided into two groups called the R and S groups

based on flipping the LSB and some discrimination function such as variation. The

observation is that the frequencies of the two groups approach each other as more

message bits are embedded. This is due to the equalization property of LSB re-

placement described above. The advantage of this approach is that it is possible to

estimate the length of the message as well. A similar method based on partitioning

groups of pixels into sets is sample pair analysis [48].

Attacks on other stegosystems also try to exploit weakness of their targeted

stegosystems. For example, Outguess reserves half of the JPEG coefficients to cor-

rect the histogram after embedding. However, Outguess leaves traces of evidence

at the boundaries of the 8x8 pixel blocks. By measuring the discontinuities at the

boundaries, Fridrich et al. was able to attack Outguess successfully [49].

An attack on F5 is based on estimating the original histogram of the cover im-

age [50, 51]. By decompressing an image, crops it by four pixels in both horizontal

and vertical directions, recompresses it using the same quality factor, the original

cover image histogram can be obtained. By comparing the histogram of the stego

image with the estimated histogram of the original cover image, the method can

detect stego images. Furthermore, the two histograms provide an estimate of the

number of changes made by F5, which gives an indication on the size of the message.

4.2.2 Universal Steganalysis

The above detectors give a flavor of the diversity of the techniques used to attack

stegosystems. They provide valuable insights into the weaknesses of stegosystems.

49

Chapter 4. Steganography and Steganalysis

For large scale steganalysis, however, it is more practical to use universal detectors

that can detect a number of stegosystems. Universal detectors do not exploit weak-

nesses of any particular stegosystem. Rather, they try to identify measures that are

natural in cover images and are altered in stego images by the embedding process.

Thus, a major challenge in developing universal steganalysis detectors is identifying

these natural measures. This becomes even harder given that cover images vary

widely.

An approach to universal steganalysis uses image quality metrics such as Mean

Square Error and Spectral Magnitude Distance via analysis of variance (ANOVA)

technique [52]. However, the use of ANOVA requires knowledge of various hiding

schemes a priori. It was shown though that these metrics can still be used to detect

unknown hiding schemes. A similar approach relies on the correlation between the

7th and 8th bit planes for detecting LSB embedding [53]. The assumption is that

there is a correlation between these two bit planes and that embedding destroys this

correlation. Several binary similarity measures are used to capture this correlation.

These measures are used to train a Support Vector Machine (SVM) classifier to

detect stego images.

Another detector aims at detecting spatial-domain stegosystems where cover im-

ages are originated from JPEG compressed images [54]. The method works by de-

tecting the compatibility of 8x8 blocks of pixels with a given JPEG quantization table

estimated from the image. Without embedding, each block is compatible with the

estimated quantization table. Embedding introduces noise and the resulting block is

not compatible with the estimated quantization table.

Harmsen and Pearlman model information hiding as an additive process [55].

With the assumption that the embedding process is independent of the cover image,

the resulting histogram of the stego image is the convolution of the distribution of the

message and the histogram of the cover image. In other words, if hc is the histogram

50

Chapter 4. Steganography and Steganalysis

of the cover image, fm is the distribution of the message values, hs is the histogram

of the stego image, then hs = hc ∗fm, where ∗ is the convolution operator. Let Hc[k],

Hs[k], and Fm[k] be the discrete Fourier transform of hc, hs, and fm, respectively.

Then,

Hs[k] = Hc[k]Fm[k]. (4.3)

Hc[k] and Hs[k] are referred to as the histogram characteristic function (HCF) of hc

and hs, respectively. Since fm is a probability mass function, |Hs[k]| ≤ |Hc[k]|.

The HCF is then used to calculate the center of mass (COM):

C(H[k]) =

∑
i k|H[i]|∑
i |H[i]| . (4.4)

It can be shown that

C(Hs[k]) ≤ C(Hc[k]). (4.5)

For color images, each COM is calculated for each color component: red, green,

and blue. The three values form a point in a 3-dimensional space, which can be used

to detect stego images as the COMs for stego images are smaller than those for cover

images.

Fridrich’s approach to universal steganalysis utilizes the idea of cropping an image

to obtain an estimate of the original image [56]. This technique has been used

successfully to attack Outguess and F5 [50, 51]. In this method, an image is cropped

4 pixels horizontally and vertically. The choice of 4 is critical due to the way JPEG

compression works on 8x8 blocks. By cropping 4 pixels in both directions, the

obtained image has minimal influence from the previous quantization process. This

also eliminates the noise introduced by embedding. Thus, the obtained image is a

good estimate of the cover image. The method uses several features obtained from

the two images such as global histogram, individual histogram for various coefficient

51

Chapter 4. Steganography and Steganalysis

types, dual histograms, variation, and blockiness. These features can then be used

to train a classifier to detect stego images.

Lyu and Farid proposed a universal steganalysis method for digital images using

wavelet decomposition [57]. Their motivation for using wavelet is that spatial or

frequency representation of digital images is insufficient to discriminate between an

image and a noise. In the pixel or spatial representation, the histogram is a typical

model of images. However, it is possible to have a noisy image that still has the

exact histogram of a perfectly looking image. Thus, this pixel representation is not

sufficient to discriminate an image from noise. Similarly, a frequency representation

based on the Fourier transform, for example, would also not be sufficient to discrim-

inate between an image and a noise pattern. This problem is due to the fact that

the spatial representation is localized in space, but not in frequency. The frequency

representation, on the other hand, is localized in frequency, but not in space. To

get the best of both worlds, wavelet is used to get partial spatial and frequency lo-

calization. First-order and higher-order magnitude and phase statistics are collected

from the wavelet coefficients. These statistics can then be used to train a classifier

to detect stego images.

As we have seen, just as with method-specific steganalysis, there are many dif-

ferent techniques used for universal steganalysis. What is common among these

methods is the quest for reliable features that can be used to classify cover and stego

images. Ideally, these features should have similar values for cover images and vary

for stego images. The differences can then be detected and classified appropriately by

a steganalysis detector using these features. In the next section, we discuss a model-

based steganalysis method. This method differs from existing methods in that it

relies on specific models of images to derive invariant features [58]. The approach

was motivated by the work on Benford’s law [59].

52

Chapter 4. Steganography and Steganalysis

4.3 Model-based Steganalysis

The inherent difficulty with steganalysis is that the original cover image is not avail-

able. As such, various attempts have been made to identify image properties that

are altered when a hidden message is embedded into an image. Our approach to

steganalysis is to analyze the frequency components of images. This motivation

comes from the fact that existing steganography techniques primarily try to preserve

first-order statistics. Image pixels, however, are highly correlated beyond first-order

dependency. This suggests that analysis of the frequency components can reveal

clues on whether there is a hidden message in an image. We analyze the frequency

components using the DCT coefficients. The choice of using the DCT is due to the

fact that the distribution of the coefficients can be modeled as a Laplacian [60]. This

gives us a closed form equation which simplifies analysis. We seek to identify the

Fourier coefficients of the Laplace distribution and how embedding alters these co-

efficients. Using these coefficients, we identify invariant features that can be used to

detect stego images. We evaluate our detector against three different pixel-domain

stegosystems.

4.3.1 Cover Image

Let C be the cover image in the DCT domain. Then, the distribution of the DCT

coefficients of C is modeled as a Laplacian,

fC(x) =
1

2b
e− |x−µ|

b , (4.6)

where µ and b are the mean and scale parameter, respectively. The Laplace distri-

bution is symmetric at x = µ and the standard deviation of the Laplace distribution

is
√

2b.

Rather than analyzing the distribution on the entire space in R, we analyze the

53

Chapter 4. Steganography and Steganalysis

distribution of Ĉ = C mod m for some m ∈ R+. The effect of the modulo operator

on the distribution of Ĉ, fĈ(x), can be seen through an intermediate function fC̃(x),

fC̃(x) = fC(x) ∗
∞∑

k=−∞
δ(x − km) (4.7)

=
∞∑

k=−∞
fC(x − km), (4.8)

where ∗ is the convolution operator, δ is Dirac’s delta function.

It is clear that fĈ(x) = fC̃(x), x ∈ [0,m). Since fC̃(x) is periodic, its Fourier

coefficients are,

ak =
1

m
ΦC(ω)

∣∣∣
ωk

, (4.9)

where ΦC(ω) is the Fourier transform of fC(x), ωk = 2πk
m

.

Without loss of generality, let µ = 0, the Fourier transform of fC(x) is

ΦC(ω) =
1

1 + ω2b2
. (4.10)

It follows that the Fourier coefficients in (4.9) are,

ak =
1

m
(
1 +

(
2πk
m

)2
b2
) . (4.11)

The Fourier coefficients depend on two parameters: the scaling parameter b, and the

modulo m.

4.3.2 Stego Image

Similar to the derivation of the Fourier coefficients for cover images, we now derive

the coefficients for stego images. Our assumption is that embedding is an additive

process. The goal is to understand how embedding alters the Fourier coefficients. In

54

Chapter 4. Steganography and Steganalysis

the additive model, the stego image is S = C + M , where M is the hidden message

to embed. The distributions for S and M are fS(x) and fM(x), respectively. The

Fourier coefficients for fS(x) are,

ak =
1

m
ΦS(ω)

∣∣∣
ωk

, (4.12)

where ΦS(ω) is the Fourier transform of fS(x). From probability theory, the dis-

tribution of the sum of two independent random variables is the convolution of the

distributions. Therefore,

fS(x) = fC(x) ∗ fM(x). (4.13)

The Fourier transform of a convolution is the product of the transforms. It follows

that,

ΦS(ω) = ΦC(ω)ΦM(ω), (4.14)

and

ak =
ΦM(2πk

m
)

m
(
1 +

(
2πk
m

)2
b2
) . (4.15)

The relationship between the cover and stego images is clear from (4.11) and (4.15).

Let ck be the coefficients in (4.11) and sk be the coefficients in (4.15), then the

relationship between the two coefficients is

sk = ckΦM

(
2πk

m

)
. (4.16)

In addition to being dependent on b and m, the stego coefficients have a multiplicative

factor that is dependent on the message distribution. Thus, the message distribu-

tion plays an important role in shaping the Fourier coefficients of stego images and

ultimately, its detectability.

55

Chapter 4. Steganography and Steganalysis

4.3.3 Invariant Feature

Since fM is a density function, |ΦM(ω)| ≤ 1, and we have the following inequality

from (4.16)

|sk| ≤ |ck|. (4.17)

In other words, the magnitude of the stego coefficients is at most the magnitude of

the cover coefficients. This suggests that these coefficients can be used to differentiate

cover and stego images. However, a steganalysis detector does not have access to the

cover image and hence, cannot compute the cover coefficients for comparison against

the stego coefficients.

It is tempting to train a classifier using two sets of coefficients: one from cover

images and one from stego images. The resulting classifier can then be used to

detect stego images. This, too, would not work well in practice. The problem is

that although the distribution of images can be modeled as a Laplacian, the scale

parameter b can vary among images. This parameter is present in (4.11) and (4.15).

Thus, the coefficients are not invariant across images. This hints at the limitation

of using the coefficients directly for steganalysis. What we want is a feature that

is invariant of b for cover images. Furthermore, this feature must be altered by

embedding. Such a feature would allow a classifier to detect stego images without

needing access to the original cover images. Our approach is then to eliminate the

scale parameter b from (4.11).

If we choose m = b
c
, where 1 ≤ c < ∞, then (4.11) is simplified as,

ak =
1

m
(
1 + (2πkc)2) . (4.18)

Define the ratio of two coefficients ak and al for a choice of c as,

rk,l(c) =
ak

al

=
1 + (2πlc)2

1 + (2πkc)2
. (4.19)

56

Chapter 4. Steganography and Steganalysis

For a choice of c, rk,l(c) is invariant of b for cover images. As such, it is less sensitive

to the differences among cover images.

For stego images, rk,l(c) is,

rk,l(c) =
ak

al

=

(
ΦM(2πk

m
)

ΦM(2πl
m

)

)(
1 + (2πlc)2

1 + (2πkc)2

)
. (4.20)

The alteration depends only on the distribution of the DCT coefficients of the hidden

message. Hence, the distribution of the message plays a crucial role in is detectability.

The ratio for cover images simply says that for any cover image, we can find two

points such that their ratio is invariant of the image parameter, namely b. This is

not true for stego images due to the contribution from the message distribution.

4.3.4 Detecting The Hidden Message

We now propose a simple steganalysis method using the above ratio to detect pixel-

domain hiding schemes. The derivation of rk,l(c) makes no reference to any particular

steganographic algorithm other than the fact that the hiding method changes the

cover additively. Note that this is not a restriction as stegosystems can be viewed

as additive embedding. This is desirable, as in practice, we often do not know what

embedding method was used to hide messages. Thus, our steganalysis detector is a

universal detector.

Ratio Selection

From (4.20), it is clear that the performance of the detector depends not only the

distribution of the message, but also the choice of k, l, and c. A steganalysis detector

using just one ratio is prone to evasion. After all, with just one ratio, we are only

looking at two frequencies in the spectrum. An advanced hiding scheme can easily

57

Chapter 4. Steganography and Steganalysis

evade detection. Ideally, we want to sweep the entire spectrum and measure rk,l(c).

This can be expensive and time consuming. Instead, we can achieve a similar effect

using different techniques. For example, for a choice of c, we vary k and l. In theory,

we can choose any ak and al to form our ratio, but it is advantageous not to choose

large k or l. This observation is a direct consequence of (4.11). As k → ∞, ak → 0.

To minimize numerical errors, small k should be used. Consequently, this approach

is limited.

Alternatively, we can fix k and l to some small integers and vary c to obtain a

vector r as,

r = (rk,l(c1), rk,l(c2), . . . , rk,l(cn)). (4.21)

In our experiments, r is,

r = (r2,1(5), r2,1(10), r2,1(15), r2,1(20), r2,1(25)) . (4.22)

In general, rk,l(c) is complex. Therefore, we use its magnitude |rk,l(c)| instead. Our

choice of c covers a wide range of frequencies. If we assume that the message has

a Gaussian distribution, then its Fourier transform is also a Gaussian. As a result,

(4.20) would vary for different values of c. By detecting this variation, we should be

able to detect stego images.

Experimental Result

We evaluate our steganalysis detector against three stegosystems: Spread Spectrum

Image Steganography (SSIS) [61], Steghide [42], and LSB replacement. Our image

database consists of 2460 images collected from various Internet image repositories.

Many of the images are photos contributed by different photographers using different

cameras. Images span a wide range of scenes. Some images are computer generated.

Image dimensions vary from 228x451 to 640x640. All images are in JPEG format.

58

Chapter 4. Steganography and Steganalysis

For our experiments, we convert all images into gray-scale BMP format. For each

image, we apply the 16-by-16 DCT to obtain the DCT coefficients. We then calculate

r. To do this, we apply the modulo operator on the DCT coefficients. Then, the

resulting coefficients are binned into 100 bins to obtain the frequency or distribution.

Next, the FFT is applied to the distribution to obtain ak and, consequently, r.

Stego images are generated from the cover images using SSIS, LSB, and Steghide

with random messages generated at 100%, 50%, 25%, and 5% of the cover capacity.

The cover capacity is the maximum message size, in bytes, that can be embedded.

This value is image and hiding method dependent. Steghide’s executable has the

option to estimate the cover capacity. We use this feature to generate random mes-

sages with sizes close to the estimated capacity. At 100% cover capacity, the average

message sizes are 28 KB, 28 KB, and 18KB for SSIS, LSB, and Steghide, respectively.

The messages for SSIS are generated using a Gaussian distribution N (0, 4.52).

This yields average SNRs of -23 dB, -25 dB, -28 dB, and -35 dB for message sizes at

100%, 50%, 25%, and 5% of the cover capacity, respectively. This is consistent with

the smallest SNR Marvel et al. did in their experiments at -23 dB. We assume SSIS

fails to recover the message for smaller SNR. Thus, we embed beyond the capability

of SSIS. For LSB, the message consists of randomly generated 0’s and 1’s of equal

probability. For each stego image, we compute the vector r as described above for

cover images.

The invariant ratio in (4.19) suggests that cover images have similar values. This

clustering property can be seen in the 3-dimensional scatter plot using three different

ratios |r2,1(5)|, |r2,1(10)|, and |r2,1(15)| on 100 random images as shown in Figure 4.6.

Also shown are the ratios for stego images generated using LSB and Steghide with

message size at 100% of the cover capacity. To strengthen the point, the stego images

are generated from a different set of 100 cover images. The ratios for SSIS stego im-

ages are not shown because it occupies a region that is relatively far from the other

59

Chapter 4. Steganography and Steganalysis

0.2
0.4

0.6
0.8

1

0

0.5

1
0

0.5

1

1.5

Cover
LSB
Steghide

Figure 4.6: The scatter plot of |r2,1(5)|, |r2,1(10)|, and |r2,1(15)| for 100 random cover
images and stego images using LSB and Steghide with message size at 100% of the
cover capacity. The stego images are generated from a different set of 100 cover
images.

two in the three dimensional space. From the figure, we note that |r2,1(c)| ≈ 0.7

for the cover images. The ideal value from (4.19) should be approximately 1
4
. This

discrepency might be an artifact of numerical binning or the fact that the Laplace

distribution is not a perfect representation of the distribution of the DCT coefficients.

Perhaps using a subset of the DCT coefficients might yield better estimates. Never

the less, the clustering property is a good candidate for applying machine classifi-

cation techniques such as Support Vector Machine (SVM). We use Joachims SVM

implementation for our classifier [62]. Half of the cover images and the corresponding

half of the stego images are used for training. The other half is used for testing. For

training, we use the default radial basis kernel (RBF) with gamma = 1. We do not

optimize any parameters.

As suggested by Chandramouli and Memon, the security of a stegosystem can be

60

Chapter 4. Steganography and Steganalysis

False alarm

D
e

te
c

ti
o

n

45 degree

Figure 4.7: A detector’s false-alarm probability versus detection probability for a
perfectly secure stegosystem.

viewed from a steganalysis perspective via a receiver operating characteristics (ROC)

plot [63]. The ROC shows the performance of the detector by comparing its false

alarm probability versus its detection probability. The detection probability is the

number of correctly identified stego images over the total number of stego images.

The false alarm or error probability is the number of cover images classified as stego

over the total number of cover images. Thus, the ROC shows the trade-off between

the false-alarm and detection probabilities. Let α be the false-alarm probability and

β be the detection probability. If we assume the probability of an image carrying

a message is equal to the probability of an image not carrying a message, then the

average probability of error is

pe =
1

2
(α + (1 − β)) . (4.23)

If α = β, then pe = 0.5. In this case, the detector is making random guesses and

is no better than flipping a fair coin. Thus, when the ROC is a straight line at 45

degrees, a stegosystem is said to be perfectly secure with respect to the specified

steganalysis detector. The ROC curve of a perfectly secure stegosystem is depicted

in Figure 4.7.

Shown in Figure 4.8(a) is the ROC curve for our detector. It also shows the

ROC curves corresponding to the three stegosystems. SSIS is easily detectable and

Steghide is harder to detect. Similarly, shown in Figure 4.8(b) are the ROC curve

61

Chapter 4. Steganography and Steganalysis

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr(false alarm)

P
r(

de
te

ct
io

n)

All
SSIS
LSB
Steghide

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr(false alarm)

P
r(

de
te

ct
io

n)

All
100%
50%
25%
5%

Figure 4.8: The ROC curves for our classifier along with the SSIS, LSB, and Steghide
hiding schemes (a). The ROC curves for four different message sizes at 100%, 50%,
25%, and 5% of the cover capacity (b).

for our classifier and the ROC curves for different message sizes at 100%, 50%, 25%,

and 5% of the cover capacity. The smaller the message size, the more difficult it is to

detect. Overall, our classifier performs best at 5% false alarm or 95% cover detection,

where the total probability of error (false alarm plus false positive) is minimal. The

detail breakdowns for each stegosystem and message size at 95% cover detection

accuracy is shown in Figure 4.9. Clearly, SSIS is easy to detect. At 5% of the cover

capacity or 1.4 KB message size, we can still detect 97.5% of the SSIS stego images

and 58.5% of the LSB stego images. For Steghide, at 5% of the cover capacity or 0.9

KB message size, we can detect about 10% of the stego images.

Related Work

To put our results into perspective, we compare our method against other universal

pixel-domain steganalysis methods. However, it is difficult to have a direct compar-

ison against existing methods due to the differences in the image set, the number of

images, the stegosystems used, message size, and the classifiers and their parameters.

62

Chapter 4. Steganography and Steganalysis

SSIS LSB Steghide
0

10

20

30

40

50

60

70

80

90

100

D
et

ec
tio

n
ac

cu
ra

cy
 (

%
)

100%
50%
25%
5%

Figure 4.9: The detection accuracy for different hiding algorithms and message sizes
at 95% cover detection accuracy.

For example, a detector using only simple stegosystems tends to lead to better results

than another detector that uses a mixture of stegosystems including more advanced

ones. Different message sizes would also lead to bias results. Machine classification

methods are usually used to classify covertexts and stegotexts. Comparing results

using different classifiers is difficult. To further complicate things, some reported re-

sults optimized their classifier parameters to obtain optimal results. Never the less,

we will point out some important differences as we go.

Harmsen and Pearlman used histogram characteristic function and center of mass

to classify cover and stego images [55]. They tested their method on 24 color images

using SSIS, LSB and DCT hiding schemes with message sizes at 100% of the cover

capacity. This is clearly different from our experiment. In particular, using only

message size at 100% of the cover capacity is advantaguous in their experiment. As

we have seen from our results, larger message sizes are easier to detect than smaller

63

Chapter 4. Steganography and Steganalysis

message sizes. Using only 100% of the cover capacity leads to better detection prob-

abilities and lower false alarm probabilities. Regardless, at 94.88% cover detection,

they detected 96.87% of SSIS stego images, and 100% LSB stego images. In contrast,

our detection accuracies at 95% cover detection with message size at 100% of the

cover capacity for SSIS and LSB are 98.94% and 97.97%, respectively.

Lyu and Farid used wavelet decomposition to capture higher-order image statis-

tics to classify cover and stego images [57]. They tested their method on 40,000

images using 432 features. Though they focused on detecting JPEG hiding methods,

they also experimented with LSB hiding on TIFF images. However, for the TIFF

images, only LSB hiding was used. This is no longer blind or universal steganalysis as

it is now tuned to a specific hiding scheme. Similar to the above situation, this gives

an advantage in their experiment. At 99% cover detection, they detected 72.3%,

52.9%, 11.3% and 1.2% LSB stego images with message sizes at 100%, 89%, 22%,

and 5% of the cover capacity, respectively. In contrast, at 95% cover detection, our

blind detector detects 97.97% , 93.74%, 80.98%, and 58.46% LSB stego images with

message sizes at 100%, 50%, 25%, and 5%, respectively. Since the cover detection

percentages are not the same in the two experiments, it is better to compare the

total probability of error, which is the sum of the false alarm plus the missed detec-

tion. Their total errors are 28.7% and 99.8% for message sizes at 100% and 5% of

the cover capacity, respectively. Our total errors are 7.03% and 46.54% for message

sizes at 100% and 5% of the cover capacity, respectively. Clearly, using a large set of

features or higher-order statistics does not necessarily give better results. Our blind

steganalysis method uses only five features, but results in better performance. The

difference is that the feature selection using wavelet decomposition is arbitrary.

64

Chapter 4. Steganography and Steganalysis

4.4 Summary

There are many interesting embedding techniques employed in steganography. As

we have seen, LSB is a simple embedding method aiming at minimizing visual dis-

tortion. We have shown three other stegosystems using three different approaches

to embedding. In particular, F5 uses matrix embedding, Steghide uses the con-

cept of exchanging rather than overwriting, while MB uses statistical modeling and

compression for embedding.

Other embedding methods that are not based on LSB embedding exist. Spread

Spectrum Image Steganography (SSIS) is one example [61]. In SSIS, a Gaussian noise

carrying the hidden message is added to the cover image. The idea is that the noise is

not easily distinguishable from common natural image distortions. The method uses

image restoration and error-correcting codes to extract the hidden message without

requiring the original cover image.

We have seen a breadth of techniques used in steganalysis. The premise of ste-

ganalysis is that embedding leaves traces of evidence that can be used to detect the

presence of the hidden message. Least-significant bit embedding, for example, tries to

exploit to weakness of the human visual system by embedding in the least-significant

bit plane so that it is difficult for the human eyes to pick up any distortions. A

simple visual attack, however, shows that it is possible to visually inspect an im-

age to determine whether it contains a hidden message. This reinforces the idea

that steganalysis is possible, but at the same time forces steganography to adapt to

become more evasive. Advances in steganography forces the development of more ad-

vanced statistical attacks. Development of new attacks and improvement of existing

detectors are ongoing active research areas [64, 65, 66, 67, 68].

The availability of steganalysis detectors makes it possible to understand the se-

curity of stegosystems from a steganalysis perspective. The security of a stegosystem

65

Chapter 4. Steganography and Steganalysis

with respect to a detector is defined in terms of the false-alarm and detection proba-

bilities, which is obtained from the ROC plot. While this approach to analyzing the

security of stegosystems aims to be practical, it suffers many problems in practice.

As we have seen, the detection probabilities of stegosystems vary among detectors.

The detectors are also sensitive to the training process, which leads to the problem

that the same detector trained using two different training data sets might produce

two different ROC curves. Ultimately, the dependency on a steganalysis detector is

problematic as it is difficult to interpret results. In the next chapter, we re-examine

the security issue and present a general method for benchmarking stegosystems.

66

Chapter 5

Benchmarking Stegosystems

The most critical requirement of a stegosystem is security. If the warden is able to

differentiate covertexts from stegotexts, the stegosystem is rendered useless. There

exist many works that try to define steganographic security using different quanti-

ties [5, 63, 69, 70, 71, 72, 73]. The problem with these definitions, however, is that

they only consider one aspect of security based on the chosen quantity. Therefore,

comparing the security of stegosystems using different definitions would be difficult.

For example, it could be that a stegosystem is shown to be more secure than an-

other stegosystem under relative entropy, but is less secure with respect to a different

security definition. This immediately raises an issue of the choice of security measure.

We propose a universal steganographic security metric based on algorithmic com-

plexity theory that overcomes this problem [74]. This metric is the similarity metric.

It is not only a metric, but it is also universal in the sense that it is asymptotically

minimal among all computable metrics between two objects. Therefore, it accounts

for all similarities between two objects. This is significant as it illuminates the true

security of a stegosystem. That is, if a stegosystem is perfectly secure with respect

to some metric, then it is also perfectly secure with respect to this metric. Analo-

67

Chapter 5. Benchmarking Stegosystems

gously, a stegosystem with a large similarity metric is inherently insecure as all other

computable metrics must also be large. In contrast, relative entropy, a widely ac-

cepted steganographic security definition, only takes into consideration the statistical

similarity between two random variables.

As an application, we present a general-purpose method for benchmarking stegosys-

tems. Unlike existing works [63, 75], our method does not rely on any steganalysis

detector. As a result, it does not have many of the drawbacks such as classifier pa-

rameters and training associated with using steganalysis detectors. Furthermore, it

is general in the sense that it is not restricted to any covertext medium and therefore,

can be applied to a wide range of stegosystems. In contrast, the approach proposed

by Pevný and Fridrich is limited to JPEG images [76]. Our method requires only

a security metric and the steganographic capacity of a stegosystem. We benchmark

several image stegosystems using the newly proposed similarity metric as the secu-

rity metric. For comparison, we also use relative entropy as the security metric.

We demonstrate the generality of our approach to show that it is not restricted

to JPEG images or file formats by applying it to pixel-domain stegosystems. The

results show the security and capacity trade-off of stegosystems and serve as a bench-

mark for stegosystems. More importantly, the results show the true security limits of

stegosystems regardless of the chosen security metric or the existence of steganalysis

detectors. In other words, this makes it possible to show that a stegosystem with a

large similarity metric is inherently insecure, even if it has not yet been broken.

5.1 Steganographic Security

Among the different models defining steganographic security, Cachin’s definition is

the most widely used [5, 6]. This model quantifies the security of a stegosystem

in terms of the relative entropy between the covertext and stegotext distributions.

68

Chapter 5. Benchmarking Stegosystems

Let the probability distributions of the covertext and the stegotext be pX and pY ,

respectively. Then, a steganographic system is said to be perfectly secure if

D(pX ||pY) =
∑

x

pX(x) log
pX(x)

pY (x)
= 0, (5.1)

and ϵ-secure if

D(pX ||pY) ≤ ϵ, (5.2)

where the logarithm is base 2.

In a perfectly secure stegosystem, the covertext and the stegotext are statistically

identical. The warden, who has full knowledge of the distribution of the covertext,

cannot statistically differentiate between the two and allows the stegotext to go

through. Consequently, Alice and Bob can communicate their escape plan without

being detected by the warden.

Differentiating between covertexts and stegotexts is ultimately a hypothesis test-

ing problem. In hypothesis testing, two types of errors can occur: type I and type

II. In a type I error, or false-alarm error, the warden mistakenly asserts that the

object is a stegotext when in fact it is a covertext. Denote this probability by α. In

a type II error, the warden mistakenly asserts that the object is a covertext when

in fact it is a stegotext. The probability of type II error occurring is β. Using the

following theorem, the relationship between the error probabilities and the security

of a stegosystem can be developed.

Theorem 5.1.1 (Information Processing Inequality). Let pX and qX be two distri-

butions over alphabet X. Let Y = f(X), where f is any deterministic function,

then

D(pX ||qX) ≥ D(pY ||qY). (5.3)

69

Chapter 5. Benchmarking Stegosystems

Proof.

D(pX ||qX) =
∑

x

pX(x) log
pX(x)

qX(x)
(5.4)

=
∑

y

∑

x:y=f(x)

pX(x) log
pX(x)

qX(x)
(5.5)

≥
∑

y

 ∑

x:y=f(x)

pX(x)

 log

∑
x:y=f(x) pX(x)

∑
x:y=f(x) qX(x)

(5.6)

=
∑

y

pY (y) log
pY (y)

qY (y)
(5.7)

= D(pY ||qY), (5.8)

where inequality (5.6) is due to the log-sum inequality.

Thus, deterministic processing cannot increase the relative entropy between two

distributions. Relating back to our hypothesis testing problem, the warden ulti-

mately makes a binary decision: 0 for covertexts and 1 for stegotexts. For cover-

texts, the probabilities of 0 and 1 are 1 − α and α, respectively. For stegotexts, the

probabilities of 0 and 1 are β and 1 − β. The relative entropy between these two

distributions is

D(α||β) = (1 − α) log
1 − α

β
+ α log

α

1 − β
. (5.9)

Since we can view the decision process of the warden as a deterministic function,

according to Theorem 5.1.1, we have

D(α||β) ≤ D(pX ||pY). (5.10)

For the special case when α = 0, the above equation yields a lower bound on the

type II error probability,

β ≥ 2−D(pX ||pY). (5.11)

70

Chapter 5. Benchmarking Stegosystems

Defining the security of a stegosystem using relative relative entropy solves the

problems associated with the approach based on steganalysis detectors and allows

for a “fair” analysis of stegosystems. We are careful to emphasize “fair” because

relative entropy is not without criticism. As we have seen, there are many different

security definitions. What makes one definition better than another? It could be

that a stegosystem is shown to be more secure than another stegosystem under

relative entropy, but is less secure with respect to a different security definition.

This immediately raises an issue of the choice of security measure. What is needed is

a notion of universal steganographic security that takes into account all computable

metrics. To overcome this problem, we define the security of a stegosystem using the

similarity metric.

Definition Let x be a covertext and y be the corresponding stegotext. A stegosys-

tem is called universal perfectly secure if

e(x, y) = 0, (5.12)

within a additive factor, and is called universal ϵ-secure if

e(x, y) ≤ ϵ. (5.13)

The universality of this steganographic security definition is justified as follows.

If a stegosystem is perfectly secure with respect to some normalized metric d(x, y),

i.e., d(x, y) = 0, then it is also perfectly secure within an additive factor with respect

to the similarity metric due to the fact that e(x, y) ≤ d(x, y) + δ. We note that the

additive term δ is O(1/ min{K(x), K(y)}). For long sequences, it is negligible. In

those cases, if d(x, y) = 0, then e(x, y) → 0 as the length goes to infinity. Further-

more, a stegosystem with a large similarity metric is inherently insecure as all other

computable metrics must also be large. This implies that the stegosystem can be

broken with any of these metrics.

71

Chapter 5. Benchmarking Stegosystems

5.2 Steganographic Capacity

While security is an important measure of stegosystems, it is incomplete by itself; it

does not specify how much information can be embedded. A stegosystem that can

only embed one bit of information into a covertext has limited uses as compared to a

stegosystem that can embed one thousand bits of information into the same covertext.

Analogously, a compressed image typically does not contain as much information as

its raw counterpart. Embedding the same message into these two images might

produce different security results or might not be possible altogether. Therefore,

the amount of information that can be embedded is dependent on the source of

covertexts. Clearly, a notion of steganographic capacity is needed to quantify the

amount of information that can be hidden.

The steganographic capacity problem has been an active area of research. Moulin

and O’Sullivan studied the channel capacity problem for Bernoulli and Gaussian

sources [77]. Similarly, Moulin and Wang analyzed the steganographic capacity of

a stegosystem where the covertext is Bernoulli(1
2
) and the distortion constraint is a

Hamming distance [78, 79]. Comesaña and Pérez-González derived the capacity of a

stegosystem where the covertext and the message are Gaussians [80]. Harmsen and

Pearlman defined steganographic capacity for arbitrary channels [81] using the gen-

eral channel capacity formula developed by Verdú and Han [82]. Chandramouli and

Memon proposed that steganographic capacity should be defined from a steganalysis

perspective [63, 83].

We define the steganographic capacity as the maximum amount of information

that can be communicated subject to being perfectly secure. From an information-

theoretic perspective, this quantity is defined using the channel capacity. Using the

variables from Figure 4.1, the steganographic capacity is,

C = max
pY :pY =pX

I(Y ; Z), (5.14)

72

Chapter 5. Benchmarking Stegosystems

where I(Y ; Z) is the mutual information between Y and Z. Since this is a noiseless

channel,

I(Y ; Z) = H(Y) (5.15)

= H(X), (5.16)

where the last equality is due to the perfectly secure constraint. Thus, for a fixed

covertext source X ∼ pX , the maximum rate of information that can be commu-

nicated in a perfectly secure stegosystem is bounded by H(X). This has a natural

interpretation in that the maximum amount of information is the entropy of the

covertext.

The information-theoretic security and capacity definitions apply to stationary

ergodic covertext sources. In this case, the relative entropy rate is used to define the

perfectly secure constraint as,

lim
n→∞

1

n
D(pX ||pY) = 0. (5.17)

For a fixed covertext source Xn ∼ pX , the steganographic capacity of a perfectly

secure stegosystem is defined using the entropy rate,

C = lim
n→∞

1

n
H(Xn). (5.18)

Parallel to the information-theoretic model, we derive the universal stegano-

graphic capacity using algorithmic complexity. Denote the encoder of a stegosystem

as f which embeds a message m into a covertext x to produce a stegotext y = f(m,x).

For a fixed covertext x, we define the steganographic capacity of a stegosystem as

the maximum message complexity subject to being perfectly secure:

C = max
m:e(x,f(x,m))=0

K(m). (5.19)

The above definition is intuitive in the sense that the complexity of an object is a

measure of the absolute information content of that object. Thus, the capacity of a

73

Chapter 5. Benchmarking Stegosystems

stegosystem is the maximum information content that can be hidden while remaining

perfectly secure. This leads to the following intuitive result that the capacity is upper

bounded by K(x).

Due to the perfectly secure constraint, it follows that

K(x|y) = K(x, y) − K(y) = 0 (5.20)

K(y|x) = K(x, y) − K(x) = 0. (5.21)

Thus, K(y) = K(x). Since y carries the information content of m, K(y) ≥ K(m).

Therefore, K(m) ≤ K(x), yielding

C = K(x). (5.22)

It is interesting to note that the information-theoretic steganographic capacity in

(5.16) and algorithmic complexity steganographic capacity in (5.22) are the informa-

tion content of the covertext. This is expected because the stegotext cannot contain

more information than the covertext without being detectable. Furthermore, both

quantities are equivalent due to the fact that the complexity of a random variable is

approximately equal to its entropy.

5.3 Experimental Result

Our general method for benchmarking stegosystems works as follows. For a fixed

covertext, the analysis is done by embedding random binary messages of various sizes

and computing the corresponding security metric. The sizes, in bits, are determined

according to αC, where C is the steganographic capacity and α increases until the

stegosystem fails to embed the message due to its large size. The result shows the

security and capacity trade-off of the stegosystem and can be used to benchmark

stegosystems. It is important to emphasize that our method is independent of the

74

Chapter 5. Benchmarking Stegosystems

choice of steganalysis detector. The dependency on a chosen steganalysis detector

is undesirable due to the following reasons. Steganalysis detectors, in general, rely

on machine learning to classify covertexts and stegotexts. Therefore, the results

are dependent on many factors including the performance of the chosen detector,

its parameters, the training process, and the data set. To avoid these problems,

our method does not make use of any steganalysis detector. A similar work was

proposed by Pevný and Fridrich [76]. The authors used a nearest neighbor entropy

estimator to calculate relative entropy. However, due to large errors in the estimates,

the Maximum Mean Discrepancy was used to quantify security. They also used

bits per non-zero coefficients or bpac to define steganographic capacity of JPEG

images. This limits their method to JPEG images. In contrast, our method is not

restricted to any covertext medium and therefore, can be applied to a wide range

of stegosystems. For comparison, we use both relative entropy and the similarity

metric in our experiments.

5.3.1 Information-Theoretic Result

Before we analyze real stegosystems, it is illustrative to analyze a simple stegosys-

tem. In this setting, covertexts of length n are generated according to a uniform

distribution over N consecutive integer values. The stegosystem adds 1 or -1 to a

covertext value to hide a message bit. We assume that the embedding process is

independent of the covertext. This is a variation of the simple least-significant bit

embedding method. Assuming that the message bits are uniformly distributed so

that the number of 1’s is equal to the number of -1’s, then the distribution of the

message is,

75

Chapter 5. Benchmarking Stegosystems

pM(x) =
1

2
αH(X)δ(x + 1) + (1 − αH(X))δ(x)

+
1

2
αH(X)δ(x − 1), (5.23)

where H(X) is the entropy of the covertext, δ(x) is Dirac’s delta function and 0 ≤
α ≤ 1

H(X)
. The α parameter controls how much information is embedded. At α = 0,

the covertext is identical to the stegotext. At α = 1, the largest possible message is

embedded into the covertext. The ideal relative entropy is,

D(pX ||pY) = − 2

N
log

(
1 − 1

2
αH(X)

)
. (5.24)

We analyze this simple stegosystem using the BWT estimators. The parameters

are N = 5, n = 105. We vary α in increments of 0.01 starting at 0.01. The plot of

the result is shown in Figure 5.1. The estimate curve is an average of 100 runs. Also

shown is the ideal relative entropy values from (5.24). The estimates closely match

the ideal values. The convexity of relative entropy can also be seen from the plot.

JPEG Steganography

We apply our proposed method to analyze the performance of several practical JPEG

and pixel-domain image stegosystems. Our image set consists of 812 grayscale JPEG

images taken using different cameras spanning a wide range of scenes. These images

have varying compression qualities ranging from 50% to 97%. Image dimensions vary

from 1012 × 1600 to 1600 × 1600 yielding a minimum of 1.6 × 106 pixels.

For each image, the JPEG coefficients are converted into a one-dimensional array

by converting each 8x8 block into a one-dimensional sequence and then concatenating

all sequences to form the final array as illustrated in Figure 5.2. The entropy H(Xn)

76

Chapter 5. Benchmarking Stegosystems

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

alpha

R
el

at
iv

e
en

tr
op

y
es

tim
at

e

Estimate
Ideal

Figure 5.1: The security and capacity trade-off of the simple stegosystem. The
relative entropy estimates are good approximations of the ideal values.

5 0 0

0 0 0

0 0 1

6 0 0

0 0 0

0 0 2

5,0,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,2

Figure 5.2: An example illustrating how JPEG coefficients are converted into a one-
dimensional sequence.

of the entire sequence is estimated using the BWT entropy estimator. Recall that

this quantity is the steganographic capacity of perfectly secure stegosystems.

Then, for each image, random binary messages of various sizes are generated

and embedded into the image using F5 [37], Steghide [42], Model-based (MB) [43],

and Outguess [36]. The message sizes start at α = 0.01 and, in increments of

77

Chapter 5. Benchmarking Stegosystems

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

alpha

R
el

at
iv

e
en

tr
op

y
es

tim
at

e

F5
Steghide
MB
Outguess

Figure 5.3: Security and capacity trade-off of F5, Steghide, MB, and Outguess JPEG
stegosystems.

0.01, go up to the point where the stegosystems fail to embed the messages. Both

Steghide and MB modify the JPEG coefficients directly. However, F5 decompresses

and recompresses the cover image to generate the stego image. To minimize double

compression problems, which lead to unfair analysis of F5, 703 images are chosen

from the collection such that they use the same quality factors supported by F5.

For each stego image, the JPEG coefficients are converted into a one-dimensional

sequence as described above for the cover image. The BWT relative entropy estima-

tor is used to obtain the relative entropy estimate between the cover and stego images.

Shown in Figure 5.3 is the average relative entropy estimate for each stegosystem at

different α values. Clearly, MB is the best of the four stegosystems. For any message

size, MB is more secure than the others. This is expected since MB tries to embed

according to the entropy of the source. Thus, it is favorable under relative entropy.

Steghide is slightly better than F5 in terms of security. This is a consequence of

Steghide preserving first-order statistics while F5 does not. It is interesting to note

78

Chapter 5. Benchmarking Stegosystems

that Outguess is the least secure system even though it does preserve first-order

statistics just like Steghide. How they preserve the statistics, however, is different.

Outguess flips bits to preserve statistics after embedding. Steghide, on the other

hand, does this automatically as it swaps pixels. In a sense, Steghide does not have

to correct for its embedding process, which might leave further evidence. The re-

sults also reveal that MB and F5 support larger message capacity than Steghide and

Outguess. This is expected since Steghide uses k > 1 symbols to hide just one bit.

Similarly, Outguess only uses half the coefficients for embedding. The other half is

used to preserve covertext statistics.

We compare our results against the detection accuracy of universal steganalysis

methods. Universal steganalysis aims to detect the presence of a hidden message

independent of the stegosystem. In this setting, a universal steganalysis detector

acts as the warden that classifies an image as cover or stego using features extracted

from the image. The classification process generally uses a machine learning tech-

nique such as the Support Vector Machine (SVM). As a consequence, the detection

accuracy of a steganalysis detector depends on many factors including the image set,

learning algorithm and parameters, and the chosen stegosystems. Despite this draw-

back, comparing our results against the detection accuracy of universal steganalysis

detectors is still useful.

Lyu and Farid used wavelet decomposition to obtain magnitude and phase statis-

tics of images to train linear and non-linear SVM classifiers to detect stego im-

ages [57]. They tested their detector using several JPEG stegosystems including F5,

Outguess, and Steghide. Their results showed that F5 is slightly more secure than

Steghide, which in turn is more secure than Outguess. Our results, on the other

hand, show that Steghide is slightly more secure than F5, which is more secure than

Outguess.

Fridrich used features such as the histogram and the dual histogram of the JPEG

79

Chapter 5. Benchmarking Stegosystems

coefficients obtained from the stego image and the same set of features obtained

from an estimate of the original image to classify cover and stego images using a

Fisher Linear Discriminant classifier [56]. Several JPEG stegosystems were tested

including F5, MB, and Outguess. The results showed that MB is more secure than

F5, especially for small message sizes. Outguess is easily detected. This matches

with our results.

Pevný and Fridrich used another steganalysis detector to detect several JPEG

stegosystems including F5, MB, and Steghide [84]. Their results show that Steghide

is the least secure, followed by F5, and MB. Our results show that Steghide is more

secure than F5.

Kharrazi et al. benchmarked four JPEG stegosystems including F5, MB, and

Outguess using three different universal steganalysis detectors trained with linear

SVM classifiers [75]. The first detector used image quality metrics identified using

analysis of variance techniques [52]. The second detector was wavelet decomposition

as proposed by Lyu and Farid above. The third was Fridrich’s feature-based detector.

For the image quality metrics and wavelet based detectors, the results showed that

MB is slightly more secure than F5, which is more secure than Outguess. However,

for the feature-based detector, MB is significantly more secure than F5, which is

still more secure than Outguess. These findings match our results, especially for the

feature-based detector.

The above comparisons illustrate the weakness of defining the security of a

stegosystem from a steganalysis perspective [63]. As we have seen, one detector

might detect a stegosystem poorly, but the same stegosystem is easily detected with

another detector. Even with the same detector, the result can be different as the

detector relies on machine learning and training for classification.

We now compare our results with one that does not rely on any universal ste-

80

Chapter 5. Benchmarking Stegosystems

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

alpha

R
el

at
iv

e
en

tr
op

y
es

tim
at

e

LSB
Steghide

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

alpha

R
el

at
iv

e
en

tr
op

y
es

tim
at

e

LSB
Steghide

(b)

Figure 5.4: Security and capacity trade-off of Steghide and LSB pixel-domain
stegosystems using (a) vertical and (b) horizontal concatenation of pixels.

ganalysis detector. Pevný and Fridrich benchmarked several JPEG stegosystems

including F5, Steghide, and MB [76]. The approach was to calculate the relative

entropy between a set of cover images and a set of stego images collectively. A near-

est neighbor entropy estimator was used to calculate the relative entropy. However,

the relative entropy estimates are poor and the Maximum Mean Discrepancy was

used instead of the relative entropy. Their results showed that Steghide is the least

secure of the three. For smaller message sizes, F5 is more secure than MB. For larger

message sizes, MB is more secure than F5. In contrast, our results show that MB is

more secure than F5 regardless of message size.

Spatial Steganography

Unlike the approach in [76], which uses bits per non-zero AC coefficients or bpac

to quantify the steganographic capacity of JPEG images, our approach relies on the

entropy of the covertext. It does not make any assumption about the content format

of the covertext. That is, covertexts can be JPEG images, BMP images, audio or

81

Chapter 5. Benchmarking Stegosystems

video files, etc. As long as there exist mechanisms for approximating entropy and

relative entropy, our approach can be used to analyze stegosystems. To demonstrate

this point, we analyze two stegosystems for BMP image files. The first stegosystem

is Steghide as it supports both JPEG and BMP images. The second system is LSB

replacement where the least-significant bits of the image pixels are replaced with the

message bits.

We convert all 812 JPEG images into BMP images. Stego BMP images are gen-

erated using the same procedure described above for JPEG images. For comparison

purposes, the pixels are converted into a one-dimensional array by concatenating

pixels vertically and horizontally. The BWT algorithms are used to estimate the

entropy and relative entropy. Shown in Figure 5.4 is the average relative entropy

estimate for each stegosystem at different α. The results from both experiments are

virtually identical; there is no significant difference on how the pixels are converted

into a one-dimensional sequence.

Steghide is clearly more secure in contrast to the simple LSB method. This is

as expected since the simple LSB method does not take into account any statistical

regularity among pixels. Steghide, on the other hand, tries to preserve the first-order

histogram of the pixels. Our results match the detectability of Steghide and LSB

replacement using a model-based steganalysis detector [58].

One particular observation that is worth noting is the similarity between Fig-

ures 5.3 and 5.4 for Steghide. The relative entropy estimates for the corresponding

α values (between 0.01 and 0.06) in the two figures are similar. This is due to the

fact that the JPEG coefficients and the pixel values are related directly by the DCT

transform. Ignoring some small losses due to quantization, this transformation is

invertible. Combining this with the fact that entropy is invariant under invertible

transformations, and we see that this similarity is expected.

82

Chapter 5. Benchmarking Stegosystems

5.3.2 Algorithmic Complexity Result

Since relative entropy is not a universal metric, it does not take into account other

similarities that might exist between the covertext and the stegotext. Therefore, the

above results can only be interpreted with respect to relative entropy. Moreover, it

would be difficult compare the security of stegosystems if they were analyzed using

different security measures. To show the true security limits of these stegosystems,

we benchmark them using the similarity metric.

It would be ideal if we could obtain analytical result using our complexity model

on the simple stegosystem used in the information-theoretic model. However, due to

the fact that algorithmic complexity is non-computable, an analytical result is not

possible. As an alternative, we make use of the fact that the complexity of a random

variable is approximately equal to its entropy

∑

x

p(x)K(x) ≈ H(p). (5.25)

With this in mind, the similarity metric in (2.24) has an entropy counterpart:

e(X,Y) =
max{H(X|Y), H(Y |X)}

max{H(X), H(Y)} . (5.26)

Recall that the simple stegosystem hides a message bit M into a covertext symbol

X by adding a 1 or -1 (Y = X+M). First, observe that H(Y |M) = H(X|M). Under

our assumption that X and M are independent,

H(Y) ≥ H(Y |M) = H(X|M) = H(X). (5.27)

Since H(Y) ≥ H(X), it follows that H(X|Y) ≤ H(Y |X). The above equation

becomes

e(X,Y) =
H(Y |X)

H(Y)
=

H(M)

H(Y)
, (5.28)

83

Chapter 5. Benchmarking Stegosystems

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

alpha

N
C

D

LZMA Estimate
Ideal

Figure 5.5: The security and capacity trade-off of the simple stegosystem using the
lzma compressor. The estimates closely match the ideal values.

where H(M) is the entropy of the message distribution according to (5.23). This

gives us a closed-form equation relating security and capacity which we can use to

compare with our experimental results.

The covertexts are sequences of length 105 with symbols drawn i.i.d. over the set

{1, 2, 3, 4, 5}. We vary α from 0.01 through 0.15 in increments of 0.01. We only plot

up to α = 0.15, which is sufficient for the JPEG stegosystems, due to the fact that

the compressor does not produce good estimates for large α. The plot of the result

is shown in Figure 5.5. The estimates are an average of 100 runs. Also shown is the

ideal curve. The estimates closely match the ideal values for small values of α. The

concavity of entropy can also be seen in the plot.

We analyze the same four JPEG stegosystems (F5, Steghide, MB, and Outguess)

using our complexity model. For each cover image x, the JPEG coefficients are

compressed. The size of the compressed coefficients gives an approximation for the

84

Chapter 5. Benchmarking Stegosystems

0 0.02 0.04 0.06 0.08 0.1 0.12
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

alpha

N
C

D

F5
Steghide
MB
Outguess

Figure 5.6: Security and capacity trade-off of F5, Steghide, MB, and Outguess JPEG
stegosystems using algorithmic complexity model.

complexity of the cover image, K(x). Then, for each image, random messages of

various sizes are generated and embedded into the image using F5, Steghide, MB,

and Outguess. The message sizes start at α = 0.01 and, in increments of 0.01,

go up to the point where the stegosystems fail to embed the messages. For each

stego image y, the JPEG coefficients of x and y are compressed together to obtain

K(x, y). The similarity metric can then be calculated using (3.10). Similar to our

above experiment with JPEG stegosystems using the classic information-theoretic

model, only 703 images are chosen from the collection such that they use the same

quality factors supported by F5.

Shown in Figure 5.6 is the average NCD for each stegosystem at different α

values. Similar to our previous results using relative entropy, MB is the best of the

four stegosystems. For any message size, MB is more secure than the others. Steghide

is better than F5 in terms of security. The results also reveal that MB and F5 support

larger message capacity than Steghide and Outguess. There is one difference between

85

Chapter 5. Benchmarking Stegosystems

the relative entropy result and this result: Outguess is more secure than F5 for larger

messages. This is due to the fact that the similarity metric takes into account more

than just statistical regularities, but all computable similarities between two objects.

Since Outguess preserves first-order statistics of the covertext, it has not changed the

information content of the covertext, to the first-order. F5 does not preserve first-

order statistics and is therefore accounted for by the similarity metric. The details

on the means and standard deviations at each α for all four stegosystems are shown

in Table A.2 in Appendix A.

The importance of this result is that reveals the universal steganographic security

of these stegosystems. That is, it shows the true security limits of these stegosystems

regardless of the chosen security metric or the existence of steganalysis detectors.

5.4 Summary

Defining steganographic security that is independent of any steganalysis detector

solves the problems associated with the definition based on steganalysis detectors

and allows for a fair analysis of stegosystems. Analysis based on steganographic

security definitions, however, is not without problems. Namely, they only address

one aspect of security based on the chosen quantity. This makes it difficult to compare

the security of stegosystems using different definitions. To overcome this limitation,

we have proposed a universal steganographic security metric called the similarity

metric that takes into account all other computable metrics between the covertext

and the stegotext. This metric is asymptotically minimal among all computable

metrics between the covertext and the stegotext. As a result, a stegosystem with a

large similarity metric is inherently insecure as all other computable metrics are also

large. Consequently, the security of stegosystems can be analyzed using this newly

proposed metric without requiring knowledge of any other metric, a priori.

86

Chapter 5. Benchmarking Stegosystems

To illustrate this concept, we present a general approach for benchmarking stegosys-

tems. It is general in the sense that it is not limited to just JPEG images or digital

images and the same approach can be applied to text-based stegosystems, digital

audio and video, for example. We show, for the first time, the security and capacity

trade-off of several image stegosystems that is independent of any steganalysis de-

tector. More importantly, the results show the true security limits of stegosystems

regardless of the existence of steganalysis detectors. We hope that future stegosys-

tems will use our method for benchmarking as it is easy to implement.

87

Chapter 6

Conclusion and Future Work

We have studied two information similarity metrics: relative entropy and the simi-

larity metric. The ability to compute the similarity between two objects is critical in

many applications. We have shown various methods to estimating relative entropy

and the similarity metric. We have shown that compression ratio is not a good in-

dicator for choosing compressors to estimate the similarity metric and proposed a

new method for benchmarking compressors. Our experiments support our analysis

and show that compressors previously reported in literature to be good estimators of

the similarity metric do not perform well for long sequences even though they have

minimal compression ratios. Our results show that only the lzma compressor does

well in all cases which include text, images, and DNA sequences.

Our growing reliance on digital information has created many issues. Accessi-

bility, theft, and privacy are examples of the problems we face. While there is no

single solution to all problems, steganography has emerged as a strong contender. In

order to utilize steganography effectively, it is essential to understand the security

limits of stegosystems. To this end, we define the security of a stegosystem using

the similarity metric and propose a new general-purpose method for benchmarking

88

Chapter 6. Conclusion and Future Work

stegosystems. The results show the true security limits of stegosystems regardless of

the chosen security metric or the existence of steganalysis detectors. In other words,

this makes it possible to show that a stegosystem with a large similarity metric is

inherently insecure, even if it has not yet been broken. We have chosen to use image

steganography to demonstrate our method due to the fact that it is popular and

widely available. Our general-purpose method, however, can be applied to other

forms of steganography including text, audio, and video.

The primary goal of this dissertation is to develop the similarity between objects,

methods for computing similarity, and applying it to steganography. In doing so, we

have gained new perspectives and obtained satisfying results. Still, there are more

problems to address. Since our benchmarking method is not limited to images, we

plan on investigating other types of stegosystems such as audio steganography in the

future. We also plan on extending this work to systems with an active adversary

such as watermarking. We offer some future research directions based on the work

presented in this dissertation.

6.1 Enhancing Steganalysis Detector

The model-based steganalysis detector discussed in Chapter 4.2 uses all DCT coef-

ficients. This mixes the distributions of all coefficients and might not be accurately

represented with a Laplacian distribution. It might be possible to obtain better re-

sults by grouping each coefficient type separately. That is, for each 8x8 block, we

have 64 coefficient types. The distribution of each type follows a Laplacian. The

difference among each distribution is primarily the scale parameter b in (4.6). Thus,

we can obtain the vector r as in (4.22) for each type. Since the DC coefficient is

rarely affected by embedding, only the AC coefficients should be considered. If five

types are used, then the total number of features is 25 rather than 5 as we originally

89

Chapter 6. Conclusion and Future Work

had. If these distributions are more accurately represented by Laplacians, then the

resulting ratios should improve detection accuracy.

6.2 Steganalysis and Algorithmic Complexity

As we have seen, algorithmic complexity is a universal information measure. Any

other deterministic processing on an object only reduces the contained information.

Rather than building a steganalysis detector using some features extracted from an

object, which loses information, we can use algorithmic complexity directly. If x is

the covertext and y is the stegotext, we can compute K(x|y) and K(y|x) using a

compression algorithm as we did in our analysis of stegosystems. Note that K(x|x)

is negligible. However, K(x|y) > 0 and K(y|x) > 0. The assumption here, of course,

is that we have knowledge of the covertext, which is often not the case in practice.

We can, however, try to approximate the covertext. To illustrate the idea, let us

consider JPEG images. We can view embedding as adding a small noise signal to a

cover image. So, to recover or approximate the original cover image given the stego

image, we can filter out the noise. One way to do this is to use JPEG compression on

the stego image. If the stego image was compressed with quality factor Q, then we

approximate the original cover image by re-compressing the stego image with quality

factor Q − 1. The smaller quality factor serves as a filter to filter out the message

signal. We do not want to use a much smaller quality factor as it destroys too much

of the cover image. Similarly, we do not want to use a quality factor higher than

Q as that does not filter the message signal. With the resulting approximation x̂,

we can calculate K(x̂|y) and K(y|x̂). The idea is that both K(x̂|y) and K(y|x̂) are

approximately 0 if y does not contain any hidden message. On the other hand, if y

is a message-carrying stego image, K(x̂|y) and K(y|x̂) would be larger than 0.

Assuming that the approximation is good, an added benefit of using this ap-

90

Chapter 6. Conclusion and Future Work

proach is that it might be possible to approximate not only the size of the hidden

message, but potentially the locations of the message bits, which is of great interest

in quantitative steganalysis.

91

Appendices

A Mean and Standard Deviation of Security Estimates 93

A.1 Information-Theoretic Model . 94

A.2 Algorithmic Complexity Model . 95

92

Appendix A

Mean and Standard Deviation of

Security Estimates

93

Appendix A. Mean and Standard Deviation of Security Estimates

A.1 Information-Theoretic Model

Table A.1: Mean and standard deviation of relative entropy estimate at different α
for F5, Steghide, MB, and Outguess JPEG stegosystems.

α F5 Steghide MB Outguess

µ σ µ σ µ σ µ σ

0.01 0.0143 0.0134 0.0084 0.0031 0.0052 0.0022 0.0174 0.0361

0.02 0.0196 0.0139 0.0163 0.0059 0.0097 0.0040 0.0256 0.0357

0.03 0.0263 0.0147 0.0241 0.0086 0.0142 0.0058 0.0338 0.0354

0.04 0.0346 0.0165 0.0317 0.0113 0.0186 0.0075 0.0419 0.0358

0.05 0.0411 0.0173 0.0392 0.0139 0.0230 0.0091 0.0500 0.0356

0.06 0.0512 0.0196 0.0470 0.0152 0.0274 0.0106 0.0589 0.0365

0.07 0.0602 0.0213 0.0316 0.0121 0.0712 0.0377

0.08 0.0684 0.0226 0.0357 0.0136

0.09 0.0788 0.0245 0.0402 0.0149

0.10 0.0950 0.0283 0.0446 0.0162

0.11 0.1058 0.0296 0.0493 0.0174

0.12 0.1172 0.0304 0.0540 0.0186

0.13 0.1304 0.0298 0.0591 0.0196

0.14 0.0644 0.0204

94

Appendix A. Mean and Standard Deviation of Security Estimates

A.2 Algorithmic Complexity Model

Table A.2: Mean and standard deviation of NCD at different α for F5, Steghide,
MB, and Outguess JPEG stegosystems.

α F5 Steghide MB Outguess

µ σ µ σ µ σ µ σ

0.01 0.0871 0.0469 0.0633 0.0151 0.0560 0.0095 0.0933 0.0455

0.02 0.1467 0.0831 0.1039 0.0236 0.0912 0.0159 0.1446 0.0453

0.03 0.2032 0.0803 0.1393 0.0308 0.1214 0.0207 0.1898 0.0471

0.04 0.2448 0.0798 0.1683 0.0325 0.1481 0.0238 0.2286 0.0470

0.05 0.3098 0.0855 0.1730 0.0268 0.2590 0.0439

0.06 0.3458 0.0800 0.1957 0.0293

0.07 0.3985 0.0703 0.2140 0.0261

0.08 0.4477 0.0511 0.2300 0.0210

0.09 0.4808 0.0449 0.2449 0.0161

0.10 0.5143 0.0436 0.2595 0.0137

0.11 0.2711 0.0111

95

References

[1] S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[2] J. Ziv and N. Merhav, “A measure of relative entropy between individual se-
quences withapplication to universal classification,” IEEE Trans. Inf. Theory,
vol. 39, no. 4, pp. 1270–1279, 1993.

[3] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. Wiley-
Interscience, 2000.

[4] C. Jia, D. Chen, and K. Lin, “The application of the relative entropy density
divergence in intrusion detection models,” vol. 3, pp. 951–954, 2008.

[5] C. Cachin, “An information-theoretic model for steganography,” in 2nd Inter-
national Workshop on Information Hiding, ser. Lecture Notes in Computer Sci-
ence. Springer, 1998, pp. 306–318.

[6] ——, “An information-theoretic model for steganography,” Information and
Computation, vol. 192, no. 1, pp. 41–56, 2004.

[7] C. H. Bennett, P. Gács, M. Li, P. M. B. Vitányi, and W. H. Zurek, “Information
distance,” IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1407–1423, 1998.

[8] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi, “The similarity metric,”
IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3250–3264, 2004.

[9] A. Kolmogorov, “Three approaches to the quantitative definition of informa-
tion,” International Journal of Computer Mathematics, vol. 2, no. 1, pp. 157–
168, 1968.

[10] R. J. Solomonoff, “A formal theory of inductive inference: Part 1 and 2,” Inform.
Contr., vol. 7, no. 1-22, pp. 224–254, 1964.

96

References

[11] G. J. Chaitin., “On the length of programs for computing finite binary se-
quences,” Journal of the ACM, vol. 13, no. 4, pp. 547–569, 1966.

[12] A. M. Turing, “On computable numbers with an application to the entschei-
dungsproblem,” in London Math. Soc., vol. 42, 1936, pp. 230–265, correction,
Ibid., 43:544–546, 1937.

[13] A. Church, “A note on the entscheidungsproblem,” Journal of Symbolic Logic,
vol. 1, pp. 40–41, 1936.

[14] M. Li and P. Vitányi, An introduction to Kolmogorov complexity and its appli-
cations. Springer, 2008.

[15] L. G. Kraft, “A device for quantizing, grouping, and coding amplitude mod-
ulated pulses,” Master’s thesis, Department of Electrical Engineering, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1949.

[16] C. E. Shannon and W. Weaver, “A mathematical theory of communications,”
Bell System Technical Journal, vol. 27, no. 2, pp. 632–656, 1948.

[17] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, 2006.

[18] J. Ziv and A. Lempel, “Compression of individual sequences via variable length
coding,” IEEE Trans. Inf. Theory, vol. 24, no. 5, pp. 530–536, 1978.

[19] A. D. Wyner and J. Ziv, “On entropy and data compression,” IEEE Trans. Inf.
Theory, 1991.

[20] ——, “Some asymptotic properties of the entropy of a stationary ergodic data
source with applications to data compression,” IEEE Trans. Inf. Theory, vol. 35,
no. 6, pp. 1250–1258, 1989.

[21] I. Kontoyiannis, P. H. Algoet, Y. M. Suhov, and A. J. Wyner, “Nonparametric
entropy estimation for stationary processes and random fields, with applications
to english text,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1319–1327, 1998.

[22] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression al-
gorithm,” Digital Systems Research Center, Tech. Rep. 124, 1994.

[23] H. Cai, S. R. Kulkarni, and S. Verdú, “Universal entropy estimation via block
sorting,” IEEE Trans. Inf. Theory, vol. 50, no. 7, pp. 1551–1561, 2004.

[24] H. Cai, S. Kulkarni, and S. Verdú, “Universal divergence estimation for finite-
alphabet sources,” IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3456–3475, 2006.

97

References

[25] R. Cilibrasi and P. Vitányi, “Clustering by compression,” IEEE Trans. Inf.
Theory, vol. 51, no. 4, pp. 1523–1545, 2005.

[26] P. Ferragina, R. Giancarlo, V. Greco, G. Manzini, and G. Valiente,
“Compression-based classification of biological sequences and structures via the
universal similarity metric: experimental assessment,” BMC Bioinformatics,
vol. 8, no. 1, p. 252, 2007.

[27] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343, 1977.

[28] X. Chen, S. Kwong, and M. Li, “A compression algorithm for dna sequences
and its applications in genome comparison,” in 10th Workshop on Genome In-
formatics, 2000, pp. 51–61.

[29] M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang, “An
information-based sequence distance and its application to whole mitochondrial
genome phylogeny,” Bioinformatics, vol. 17, no. 2, pp. 149–154, 2001.

[30] M. Cebrián, M. Alfonseca, and A. Ortega, “Common pitfalls using the normal-
ized compression distance: what to watch out for in a compressor,” Communi-
cations in Information and Systems, vol. 5, no. 4, pp. 367–384, 2005.

[31] D. Shkarin, “PPM: One step to practicality,” in Data Compression Conference.
IEEE Computer Society, 2002, pp. 202–211.

[32] X. Chen, M. Li, B. Ma, and J. Tromp, “Dnacompress: fast and effective dna
sequence compression,” Bioinformatics, vol. 18, no. 12, pp. 1696–1698, 2002.

[33] B. Ma, J. Tromp, and M. Li, “Patternhunter: faster and more sensitive homol-
ogy search,” Bioinformatics, vol. 18, no. 3, pp. 440–445, 2002.

[34] G. J. Simmons, “The prisoners problem and the subliminal channel,” in
CRYPTO, vol. 83, 1984, pp. 51–67.

[35] “Former state department official and wife arrested for
serving as illegal agents of cuba for nearly 30 years,”
http://washingtondc.fbi.gov/dojpressrel/pressrel09/wfo060509a.htm, June
2009.

[36] N. Provos, “Defending against statistical steganalysis,” in 10th USENIX Secu-
rity Symposium.

98

References

[37] A. Westfeld, “F5 - a steganographic algorithm,” in 4th International Work-
shop on Information Hiding, ser. Lecture Notes In Computer Science, vol. 2137.
Springer, 2001, pp. 289–302.

[38] R. Crandall, “Some notes on steganography,” posted on Steganography Mailing
List, http://os.inf.tu-dresden.de/westfeld/crandall.pdf, 1998.

[39] M. van Dijk and F. Willems, “Embedding information in grayscale images,” in
22nd Symposium on Information and Communication Theory, 2001, pp. 147–
154.

[40] F. Galand and G. Kabatiansky, “Information hiding by coverings,” in Informa-
tion Theory Workshop, 2003, pp. 151–154.

[41] J. Fridrich and D. Soukal, “Matrix embedding for large payloads,” IEEE Trans.
Inf. Forensics Security, vol. 1, no. 3, pp. 390–395, 2006.

[42] S. Hetzl and P. Mutzel, “A graph-theoretic approach to steganography,” in Com-
munications and Multimedia Security, ser. Lecture Notes in Computer Science,
vol. 3677. Springer, 2005, pp. 119–128.

[43] P. Sallee, “Model-based steganography,” in Digital Watermarking, Second In-
ternational Workshop, ser. Lecture Notes in Computer Science, vol. 2939.
Springer, 2004, pp. 154–167.

[44] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data com-
pression,” Communications of the ACM, vol. 30, no. 6, pp. 520–540, 1987.

[45] A. Westfeld and A. Pfitzmann, “Attacks on steganographic systems,” in 3rd
International Workshop on Information Hiding, ser. Lecture Notes In Computer
Science, vol. 1768. Springer-Verlag, 1999, pp. 61–76.

[46] J. Fridrich, M. Goljan, and R. Du, “Reliable detection of lsb steganography in
color and grayscale images,” in Workshop on Multimedia Seciruty and Water-
marking. ACM, 2001.

[47] ——, “Detecting LSB steganography in color and grayscale images,” Magazine
of IEEE Multimedia: Special Issue on Security, vol. Oct-Dec, pp. 22–28, 2001.

[48] S. Dumitrescu, X. Wu, and Z. Wang, “Detection of lsb steganography via sample
pair analysis,” IEEE Trans. Signal Process., vol. 51, no. 7, pp. 1995–2007, 2003.

[49] J. Fridrich, M. Goljan, and D. Hogea, “Attacking the outguess,” in Workshop
on Multimedia and Security. ACM, 2002.

99

References

[50] ——, “Steganalysis of JPEG images: Breaking the F5 algorithm,” in 5th In-
ternational Workshop on Information Hiding, ser. Lecture Notes In Computer
Science, vol. 2578. Springer-Verlag, 2003, pp. 310–323.

[51] J. Fridrich, M. Goljan, D. Hogea, and D. Soukal, “Quantitative steganalysis:
estimating secret message length,” ACM Multimedia Systems. Special issue on
Multimedia Security, vol. 9, no. 3, pp. 288–302, 2003.

[52] I. Avcibas, N. Memon, and B. Sankur, “Steganalysis using image quality met-
rics,” IEEE Trans. Image Process., vol. 12, no. 2, pp. 221–229, 2003.

[53] I. Avcıbas, M. Kharrazi, NasirMemon, and B. Sankur, “Image steganalysis with
binary similarity measures,” EURASIP Journal on Applied Signal Processing,
vol. 2005, no. 17, pp. 2749–2757, 2005.

[54] J. Fridrich, M. Goljan, and R. Du, “Steganalysis based on JPEG compatibility,”
in Multimedia Systems and Applications IV. SPIE, 2001, pp. 275–280.

[55] J. J. Harmsen and W. A. Pearlman, “Steganalysis of additive noise modelable
information hiding,” in Electronic Imaging, vol. 5022. SPIE, 2003.

[56] J. Fridrich, “Feature-based steganalysis for JPEG images and its implications for
future design of steganographic schemes,” in 6th International Workshop on In-
formation Hiding, ser. Lecture Notes In Computer Science, vol. 3200. Springer,
2004, pp. 67–81.

[57] S. Lyu and H. Farid, “Steganalysis using higher-order image statistics,” IEEE
Trans. Inf. Forensics Security, vol. 1, no. 1, pp. 111–119, 2006.

[58] T.-T. Quach, F. Pérez-González, and G. L. Heileman, “Model-based steganalysis
using invariant features,” in Media Forensics and Security XI, vol. 7254. SPIE
Eletronic Imaging, 2009.

[59] F. Pérez-González, T.-T. Quach, G. L. Heileman, and C. T. Abdallah, “Ben-
ford’s law and multimedia signals,” in Workshop on Applications of Benford’s
Law, Santa Fe, NM, USA, December 2007.

[60] R. Reininger and J. Gibson, “Distributions of the two-dimensional dct coeffi-
cients for images,” IEEE Trans. Commun., vol. 31, no. 6, pp. 835–839, 1983.

[61] L. M. Marvel, C. G. Boncelet Jr., and C. T. Retter, “Spread spectrum image
steganography,” IEEE Trans. Image Process., vol. 8, pp. 1075–1083, 1999.

100

References

[62] T. Joachims, Learning to Classify Text Using Support Vector Machines: Meth-
ods, Theory and Algorithms. Norwell, MA, USA: Kluwer Academic Publishers,
2002.

[63] R. Chandramouli and N. Memon, “Steganography capacity: a steganalysis per-
spective,” in Security and Watermarking of Multimedia Contents V, vol. 5020.
SPIE, 2003, pp. 173–177.

[64] A. D. Ker, “Improved detection of LSB steganography in grayscale images,”
in 6th International Workshop on Information Hiding, ser. Lecture Notes in
Computer Science. Springer, 2004, pp. 87–115.

[65] ——, “Quantitative evaluation of Pairs and RS steganalysis,” in Security,
Steganography, and Watermarking of Multimedia Contents VI, vol. 5306. SPIE,
2004, pp. 83–96.

[66] ——, “Steganalysis of LSB matching in grayscale images.” in IEEE Signal Pro-
cessing Letters, 2005, pp. 441–444.

[67] M. Goljan, J. Fridrich, and T. Holotyak, “New blind steganalysis and its impli-
cations,” in Security, Steganography and Watermarking of Multimedia Contents
VIII, vol. 6072. SPIE, 2006, pp. 101–113.

[68] A. D. Ker, “Steganalysis of embedding in two least significant bits.” IEEE Trans.
Inf. Forensics Security, vol. 2, no. 1, pp. 46–54, 2007.

[69] M. J. Ettinger, “Steganalysis and game equilibria,” in 2nd International Work-
shop on Information Hiding, ser. Lecture Notes in Computer Science, vol. 1525.
Springer, 1998, pp. 319–328.

[70] J. Zöllner, H. Federrath, H. Klimant, A. Pfitzmann, R. Piotraschke, A. Westfeld,
G. Wicke, and G. Wolf, “Modeling the security of steganographic systems,”
in 2nd International Workshop on Information Hiding, ser. Lecture Notes in
Computer Science, vol. 1525. Springer, 1998, pp. 344–354.

[71] T. Mittelholzer, “An information-theoretic approach to steganography and wa-
termarking,” in 3rd International Workshop on Information Hiding, ser. Lecture
Notes in Computer Science, vol. 1768. Springer, 1999, pp. 1–16.

[72] N. J. Hopper, J. Langford, and L. von Ahn, “Provably secure steganography,”
in Advances in Cryptology: CRYPTO, August 2002, pp. 77–92.

[73] S. Katzenbeisser and F. A. P. Petitcolas, “Defining security in steganographic
systems,” in Security and Watermarking of Multimedia Contents IV, vol. 4675.
SPIE, 2002, pp. 260–268.

101

References

[74] T.-T. Quach, F. Pérez-González, and G. L. Heileman, “Universal steganographic
security,” Submitted to IEEE Trans. Inf. Forensics Security.

[75] M. Kharrazi, H. T. Sencar, and N. D. Memon, “Benchmarking steganographic
and steganalysis techniques,” in Security, Steganography, and Watermarking of
Multimedia Contents VII, vol. 5681. SPIE, 2005, pp. 252–263.

[76] T. Pevný and J. Fridrich, “Benchmarking for steganography,” in 10th Interna-
tional Workshop on Information Hiding, ser. Lecture Notes In Computer Sci-
ence. Springer-Verlag, 2008, pp. 251–267.

[77] P. Moulin and J. OSullivan, “Information-theoretic analysis of information hid-
ing,” IEEE Trans. Inf. Theory, vol. 49, no. 3, p. 563, 2003.

[78] P. Moulin and Y. Wang, “New results on steganographic capacity,” in Informa-
tion Science and Systems, Princeton, NJ, USA, March 2004.

[79] Y. Wang and P. Moulin, “Perfectly secure steganography: Capacity, error ex-
ponents, and code constructions,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp.
2706–2722, 2008.

[80] P. Comesana and F. Pérez-González, “On the capacity of stegosystems,” in 9th
Workshop on Multimedia & security. ACM, 2007, pp. 15–24.

[81] J. J. Harmsen and W. A. Pearlman, “Capacity of steganographic channels,” in
7th Workshop on Multimedia and security. ACM, 2005, pp. 11–24.

[82] S. Verdú and T. S. Han, “A general formula for channel capacity,” IEEE Trans.
Inf. Theory, vol. 40, no. 4, pp. 1147–1157, 1994.

[83] R. Chandramouli and N. Memon, “Analysis of lsb based image steganography
techniques,” in International Conference on Image Processing, vol. 3. IEEE,
2001, pp. 1019–1022.

[84] T. Pevný and J. Fridrich, “Merging markov and dct features for multi-class
jpeg steganalysis,” in Security, Steganography, and Watermarking of Multimedia
Contents IX, vol. 6505. SPIE Electronic Imaging, 2007.

102

	University of New Mexico
	UNM Digital Repository
	2-9-2010

	Information similarity metrics in information security and forensics
	Tu-Thach Quach
	Recommended Citation

	tmp.1472502609.pdf.scr6U

