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Kevin M. Davis 
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ABSTRACT 

 The WB-8 chamber is an inertial electrostatic confinement device which is being 

tested by Energy Matter Conversion Corporation in an attempt to study the viability of 

their Polywell design as a source of fusion energy.   One of the primary diagnostic tools 

will be a 94 GHz interferometer which will give a line average density measurement of a 

chord through the plasma.  The rate at which ions take part in a fusion event depends 

heavily on the density, making the interferometer measurements vital in assessing the 

progress made with WB-8. 

 In order to take density measurements, a beam must pass through the plasma and 

be collected on the other end.  One of the challenges in building an interferometer is 

designing lenses that can transmit a suitable beam into the test chamber.  The beam 
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leaving a horn antenna is approximately Gaussian.  Using Gaussian optics a lens can be 

used to focus the beam in order to probe the center of the plasma and provide sufficient 

energy at the receiver. 

 While the interferometer provides an average density, a more thorough picture of 

the density profile is needed to have a good understanding of how well the Polywell is 

functioning.  A refractometer is also being built which will transmit a beam similar to that 

sent by the interferometer.  This second beam, with a frequency of 136 GHz, is aimed 

parallel to the interferometer.  Instead of propagating through the center of the plasma, 

the refractometer beam will have a translating launch point which can probe the plasma 

through different chords.  By detecting the shape and location of the beam at the 

receiving end of the chamber the hope is that we will have additional information about 

the density profile. 
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1. WB-8 

Energy Matter Conversion Corporation has spent more than 25 years studying the 

viability of their Polywell fusion device as a potential energy source.  The design differs 

from other fusion containment schemes in that the plasma is controlled by a static electric 

field.  Building on the Farnsworth-Hirsch Fusor and the Elmore-Tuck-Watson Fusor, the 

Polywell replaces the charged grids in those devices, which became the main sources of 

loss, with a magnetic field intended to concentrate electrons at the center of the plasma 

[Bussard]. 

Fusion energy is created at a rate proportional to the density of the fuel squared.  

By focusing the electrons 

in center of the plasma, a 

virtual anode is created 

which in turn pulls ions 

to the center.  Figure 1-1 

shows a plot of the 

intended potential along 

a chord through the center 

of the plasma.  Concentrating ions in the center of the plasma greatly increases the 

density of the fuel which in turn increases the frequency of fusion events.[Chen]  In spite 

what may seem to be the case based on the plot of potential, the plasma remains 

approximately neutral. 

 In addition to increasing the rate of fusion, inertial electrostatic 

confinement (IEC) devices like the Polywell aim to prevent charged particles from 

Figure 1-1: Electric potential at the center of the Polywell 

chamber. [Bussard] 
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escaping from the system.  The virtual anode 

in the center will hold the ions, which will 

oscillate around the center until being part of 

a fusion event.  Electrons are contained by 

the magnetic field.  Figure 1-2 shows the 

arrangement of coils used to create the 

desired magnetic field while Figure 1-3 

shows the intended magnetic field in the 

plasma where magnetic mirror effects keep 

the electrons from escaping.  It is necessary to continue injecting electrons into the 

plasma as they can be lost through the cusps of the magnetic field.  In an ideal picture, 

even electrons that escape through the cusps would follow the field lines back into the 

plasma.  Only the products of fusion 

are intended to leave the system.  It 

is advantageous that the Polywell 

decouples the challenges of 

containing ions and 

electrons.[Bussard] 

 Ions are introduced at the 

edge of the plasma with low energy.  

The energy required for fusion is 

built up as the ion falls into the well 

created by the electrons.  Energy of 

Figure 1-2: Coils used to create the confining 

magnetic field. [Bussard] 

 

Figure 1-3: Magnetic field lines inside the Polywell [Krall] 
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the particles, along with density, is a primary limiting factor for fusion.   In particular, the 

energy affects the cross-section, which is the probability of a fusion event.  As energy 

increases, the cross section increases up to a maximum point before decreasing 

again.[Krall]  Because the ion and electron containments are decoupled in a polywell 

device, it is easy to find the potential of the well that will lead to the desired energy in our 

ion species.  

 This leads to one of the arguments for the Polywell over other fusion devices.  

The peak cross-section of a tritium-deuterium fusion reaction occurs when both particles 

have an energy of ~40KeV.  The neutron released in this reaction can lead to radioactive 

waste.  This is the reaction that tokamaks attempt to achieve.  There is hope that the 

Polywell can create a proton-Boron 11 fusion reaction.  This reaction, which requires 

particles to reach ~560KeV, does not result in free neutrons, reducing the amount of 

waste produced. 

 The importance of plasma density to the success of a fusion device leads to the 

goal of this thesis.  In the following chapter I discuss the interferometer, which will be 

used to measure the average density across a chord through the plasma.  While that 

chapter focuses on the microwave circuitry, Chapter 3 discusses the optics used to create 

a beam which can probe the plasma.  The final theory chapter discusses the design of our 

refractometer, with a goal of providing a more detailed picture of our plasma’s density 

profile. 

 Bench testing data is presented in Chapter 5 where the actual behavior of the 

interferometer and refractometer are compared with the theory.  The focus is on the 

optics where space constraints limited the size of lenses and mirrors.  Chapter 6 shows 
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the interferometer data collected from WR-8 and how that data is converted to an average 

density.  In the conclusion, I give an update of WR-8 and discuss the remaining work 

necessary to fully implement the refractometer. 
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2. Interferometer 

 Electromagnetic waves can be used to take measurements of a plasma when a 

physical probe is too intrusive or would be damaged by the high temperature 

environment.  Interferometry uses interference between a wave passed through the 

plasma and a reference wave to find the refractive index of the plasma.  Provided that the 

wave has a low enough energy and operates in a specific frequency range the effect on 

the plasma is negligible.  The refractive index can then be used to find the average 

electron density over the region of the plasma that was sampled.  This chapter will cover 

the selection of our interferometer design as well as the method of extracting a density 

measurement from our interferometer’s output.  

2.1 Frequency Selection 

 Depending on the direction of propagation and the applied magnetic field, waves 

at certain frequencies will not propagate.  If it is possible to transmit the signal 

perpendicular to the applied magnetic field and the wave is polarized along B then it is 

referred to as an ordinary wave and has a dispersion relation given by 

 
𝑛02 = 1 −

𝜔𝑝2

𝜔2 (2.1) 

where 

𝑛0 is the refractive index 

ω is the frequency of the wave 

𝜔𝑝 is the plasma frequency [Hutchinson] 

When the frequency of the wave is less than the plasma frequency the refractive index is 

imaginary and the wave will not propagate.  The plasma frequency depends on the 

density of the plasma and is given by 
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𝜔𝑝 = �

𝑛𝑒𝑒2

𝜖0𝑚𝑒
 (2.2) 

where 

𝑛𝑒 is the electron plasma density 

e is the charge of an electron 

𝑚𝑒 is the mass of an electron 

𝜖0 is the permittivity of free space 

Because the mass of an ion species is much higher than an electron, the ion plasma 

frequency is typically much smaller than the electron plasma frequency and the frequency 

of the transmitted wave.  As a result the ion plasma frequency has a negligible effect on 

the dispersion relation. 

 The geometry of our system prevents us from launching the interferometer beam 

perpendicular to the applied magnetic field.  Instead, the beam will be parallel to the 

applied field.  In this case there are two types of waves to consider, left-handed and right-

handed waves.  The dispersion relations for these two types of waves are given by: 

 
𝑛𝑅2 = 1 −

𝜔𝑝𝑖
2

𝜔(𝜔 + 𝜔𝑐𝑖)
−

𝜔𝑝𝑒2

𝜔(𝜔 − 𝜔𝑐𝑒) (2.3) 

 
𝑛𝐿2 = 1 −

𝜔𝑝𝑖
2

𝜔(𝜔 −𝜔𝑐𝑖)
−

𝜔𝑝𝑒2

𝜔(𝜔 + 𝜔𝑐𝑒) (2.4) 

where 

𝜔𝑝𝑖 is the plasma frequency for the ions 

𝜔𝑝𝑒 is the plasma frequency for the electrons 

𝜔𝑐𝑖 is the cyclotron frequency of the ions 

𝜔𝑐𝑒 is the cyclotron frequency of the electrons [Swanson] 
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The cyclotron frequency is the angular frequency at which a particle circles a magnetic 

field line and is given by 

𝜔𝑐 =
𝑞𝐵
𝑚

 

where 

B is the magnetic field strength 

m is the mass of the particle 

q is the charge of the particle 

 While the ordinary wave has a simple cutoff frequency, left and right-handed 

waves have a more complicated region of propagation.  Figure 2-1 shows a plot of the 

dispersion relations for each of these three waves in a plasma with a density of 2 ∗

1012𝑐𝑚−3.  At another density we would see differences in the cutoffs and the overall 

behavior of each mode, particularly at lower frequencies.  Regardless of the density and 

1 2 3 4 5 6 7 8 9 10
x 1010

-4

-3

-2

-1

0

1

2

3

4

Frequency (Hz * 1010)

n2

 

 

Right-hand Wave
Left-hand Wave
Ordinary Wave

Figure 2-1: Dispersion relations for different wave modes in a plasma with a constant density of 2*1012 cm-3 
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the mode we are considering, the dispersion relation approaches 1 as ω approaches 

infinity.  As a result, picking a high frequency limits variations in the dispersion relation 

caused by changes in density, while also allowing us to treat the left and right-handed 

waves in the same manner that we would treat ordinary waves. 

Using a high frequency is also advantageous from an optical standpoint.  A beam 

with a higher frequency will be smaller, allowing the use of smaller optical components.  

A smaller beam at the receiver will result in a higher percentage of power being collected 

by our antenna.  A narrow beam passing through the center of the chamber ensures that 

we are sampling a small chord of the plasma.  Furthermore, increasing the frequency of 

our beam will lessen the effect of refraction caused by density gradients in the plasma.  

The interferometer, aimed at the center of the plasma, should be minimally affected as the 

direction of propagation is parallel to the refractive index gradients.  On the other hand, 

the refractometer is aimed off center and is designed to measure these gradients.  A 

higher frequency will keep the refracted beam in range of our detectors for a denser 

plasma. 

The upper limit of our frequency is controlled by a number of concerns, few of 

which involve the actual plasma.  One such concern is purely financial.  The price for a 

94 GHz Gunn oscillator is significantly lower than we would find at higher frequencies.  

Working at higher frequencies will not only increase the cost of the Gunn, but also the 

mixers, which need to be able to operate at the Gunn frequency. 

Physically, vibrations caused by the polywell set the upper bound.  At 94 GHz we 

are dealing with 3.19mm wavelengths.  In this case it is unlikely that vibrations in the 
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machine will significantly alter the phase of our signal.  For frequencies much higher, this 

may become a serious concern. 

This phase shift manifests itself primarily by altering the path length.  The change 

in the phase as a result of vibrations is equal to 2𝜋𝑙 𝜆⁄   where l is the change in path 

length.  Increasing the frequency will have a linear effect on the phase shift.  This 

problem is of particular concern for a low density plasma where the phase shift we are 

measuring is small to begin with. 

2.2 Homodyne interferometer 

 The basic design of a homodyne interferometer is shown in Figure 2-2.  The term 

homodyne refers to the fact that the same source is used by the mixer as both the received 

signal and the local oscillator.  A directional coupler splits the beam for its two uses, 

typically sending most of the power into the plasma.  Sending a powerful signal into the 

plasma is necessary because power is lost as the beam propagates through the plasma, 

and again at the receiver where the antenna collects only a fraction of the power 

contained in the entire beam.  

Figure 2-2.  Basic schematic of a homodyne interferometer.  “Excerpted from [Gilmore]” 
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 Once the signal has passed through the plasma it is mixed with the original split 

signal.  The two signals entering the mixer can be defined by 

 𝑉𝑅𝐹 = 𝐴𝑅𝐹 cos(𝜔𝑡 + 𝜙𝑅𝐹) (2.5) 

 𝑉𝐿𝑂 = 𝐴𝐿𝑂 cos(𝜔𝑡 + 𝜙𝐿𝑂) (2.6) 

where 

𝑉𝑅𝐹 is the voltage of the signal that passed through the plasma 

𝐴𝑅𝐹 is the amplitude of the RF signal 

𝜔 is the angular frequency of the Gunn 

𝜙𝑅𝐹 is the phase offset of the RF signal 

𝑉𝐿𝑂 is the voltage of the local oscillator signal 

𝐴𝐿𝑂 is the amplitude of the LO signal 

𝜙𝐿𝑂 is the phase offset of the LO signal 

After passing through the mixer the new signal is 

 
𝑉𝐼𝐹 = 𝑉𝑅𝐹𝑉𝐿𝑂 =

𝐴𝑅𝐹𝐴𝐿𝑂
2

[cos(2𝜔𝑡 + 𝜙𝑅𝐹 + 𝜙𝐿𝑂) + cos(𝜙𝑅𝐹 − 𝜙𝐿𝑂)] (2.7) 

which, ignoring the high frequency term, leads to 

 
𝑉𝐼𝐹 =

𝐴𝑅𝐹𝐴𝐿𝑂
2

cos(𝜙𝑅𝐹 − 𝜙𝐿𝑂) = 𝐴𝐼𝐹 cos(Δ𝜙) (2.8) 

When there is no plasma present, or in the imaginary case of a constant plasma, 

Δ𝜙 will be constant and the output will be a DC value.  Only when there is a change in 

the phase shift, caused by a growing or decaying plasma, will the interferometer have an 

oscillating output.  A constant change in the plasma density would appear as a sinusoidal 

output with a fixed frequency.  If the rate of change increased, the frequency of the sine 

wave would increase.  The opposite would occur as the rate of change decreased. 
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2.3 Disadvantages of a Homodyne Interferometer 

 The most basic problem with the homodyne interferometer is that it is impossible 

to calibrate out amplitude variations created when a plasma is introduced.  Equation 2.8 

shows that the final signal depends on the phase shift as well as the amplitude of the two 

signals.  As the RF signal passes through the plasma, power is lost to absorption and 

refraction.  This will change the amplitude of the output signal and interfere with the 

extraction of the phase shift. 

 A subtler problem arises when trying to determine the direction of the phase shift.  

This problem occurs whenever the phase is 0, π, or 2π because cosine is an even function 

around these values.  Any shift will lead to the same value regardless of direction.  As a 

result, it is impossible to determine whether the phase has increased or decreased by π 

between these points.  At times there can be information about the system which can 

clarify the direction; however this is not always the case. 

 The homodyne interferometer is a fairly simple circuit.  With added complexity, 

we are able to eliminate these problems.   

2.4 Heterodyne Interferometer 

 The design of the homodyne interferometer can be improved upon by using 

separate sources for the plasma and reference signals.  This creates the heterodyne 

interferometer shown in Figure 2-3.  The increased complexity makes it possible to 

distinguish between phase and amplitude changes.  

 The primary motivation behind adding a second source is that now the two signals 

entering the mixer can have different frequencies.  Since both inputs have the same 
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frequency in the homodyne system, these frequencies cancel each other out in the low 

frequency output term.  When the frequencies are different, the output becomes: 

 𝑉𝐼𝐹 = 𝐴𝐼𝐹 cos�(𝜔𝑅𝐹 − 𝜔𝐿𝑂)𝑡 + Δ𝜙� (2.9) 

where 

𝜔𝑅𝐹 is the frequency of the RF Gunn 

𝜔𝐿𝑂 is the frequency of the LO Gunn 

 This effect can be seen in Figure 2-4.  For the homodyne interferometer, a phase 

change moves the output frequency from zero.  As a result, it is impossible to know the 

direction of the frequency change.  In the heterodyne interferometer, when the phase is 

constant the output has frequency given by the difference between the two input 

frequencies.  The direction of a phase shift can now be seen as: 

 
Δ𝜔 = Δ𝜔0 +

𝑑𝜙
𝑑𝑡

 (2.10) 

 

where 

Δ𝜔 is the output frequency 

Δ𝜔0 is the difference between the two frequencies 

Figure 2-3.  Heterodyne interferometer using two separate sources, “Excerpted from [Gilmore]” 
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𝑑𝜙
𝑑𝑡

 is the phase shift 

There are other advantages to a heterodyne 

system that offset the added complexity and cost.  

An obvious additional advantage to the heterodyne 

system is that it will have more power available.  

With the local oscillator signal powered by a 

separate source, all of the power from the original 

Gunn can be used for the beam that passes through 

the plasma.  The shift in the equilibrium output of 

the mixers also eliminates the necessity of detecting 

DC outputs. 

Another method used to increase the accuracy 

of an interferometer, while again adding complexity, is to include an I-Q mixer to provide 

the final output signals. 

2.5 I-Q Mixer 

 A primary concern when using a homodyne interferometer is the inability to 

distinguish between a change in amplitude and a change in phase.  An I-Q mixer can be 

used to extract the phase change information by providing two output signals.  One 

output gives the same signal as a basic homodyne interferometer.  The second output is 

identical, except that it is 90 degrees out of phase. 

 The two outputs have signals given by 

 𝐼 = 𝐴 cos(Δ𝜙) 

𝑄 = 𝐴 sin(Δ𝜙) 

(2.11) 

(2.12) 

Figure 2-4: Frequency shifts resulting from 
(above) homodyne and (below) heterodyne 
interferometers 
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In theory, the two signals will have identical amplitudes.  By dividing one signal by the 

other, this amplitude can be eliminated, leaving a signal that varies only with phase 

change. 

 𝑄
𝐼

=
𝐴 sin(Δ𝜙)
𝐴 cos(Δ𝜙) = tan(Δ𝜙) (2.13) 

 
Δ𝜙 = tan−1 �

𝑄
𝐼
� (2.14) 

In practice the amplitudes will not be identical, so the system must be calibrated to find 

the actual relationship.  Once the system is calibrated, amplitude changes caused by the 

plasma should no longer affect the output.  A decrease in the amplitude of the I channel 

with coincide with a proportional decrease in the amplitude of the Q channel. 

2.6 Building an I-Q Mixer 

 It is possible to purchase an I-Q mixer that has already been built.  In our case, the 

cost of an I-Q mixer that operated at the specific frequencies we are dealing with was too 

high.  As a result we built a circuit that serves the same function. 

 Figure 2-5 shows the circuit that was built.  We selected Gunn oscillators that 

were 500MHz apart.  The first two mixers use the second Gunn, operating at 94.5GHz, as 

the local oscillator.  One mixer has a direct path from the 94GHz RF Gunn as the other 

input, while the other uses the signal after it passes through the plasma.  This gives us 

two signals 

 𝑉𝐼𝐹
(1) = 𝐴(1) cos �(𝜔1 − 𝜔2)𝑡 + Δ𝜙(1)� (2.15) 

 𝑉𝐼𝐹
(2) = 𝐴(2) cos �(𝜔1 − 𝜔2)𝑡 + Δ𝜙(2)� (2.16) 

where 

𝜔1 is the frequency of the RF Gunn 
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𝜔2 is the frequency of the LO Gunn 

and the signals have different amplitude and Δ𝜙 values.  These outputs are put through 

amplifiers and into power splitters.  One of the power splitters has two identical outputs.  

The other splitter has outputs that are 90 degrees out of phase.  The two outputs of one 

splitter are each mixed with one of the outputs of the other splitter.  The resulting signals 

are 

 
𝐼 =

𝐴(1)𝐴(2)

2
�cos�2𝜔0𝑡 + Δ𝜙(1) + Δ𝜙(2)� + cos�Δ𝜙(1) − Δ𝜙(2)�� (2.17) 

 
𝑄 =

𝐴(1)𝐴(2)

2
�cos �2𝜔0𝑡 + Δ𝜙(1) + Δ𝜙(2) +

𝜋
2
� + cos �Δ𝜙(1) − Δ𝜙(2) −

𝜋
2
�� (2.18) 

Figure 2-5:  Schematic of the actual I-Q mixer that was built for our system 
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where 𝜔0 is (𝜔1 − 𝜔2) 

 There is an additional complication now that there are two different phase shifts 

to consider.  This additional phase shift can be calibrated out by finding Δ𝜙(1), resulting 

from the reference leg of the system, which should not change.  These signals are put 

through amplifiers that pass the lower frequency portion of the signal yielding 

 𝐼 = 𝐴 cos�Δ𝜙(2) + 𝐶� (2.19) 

 𝑄 = 𝐴 cos �Δ𝜙(2) + 𝐶 +
𝜋
2
� (2.20) 

where 

A is 𝐴
(1)𝐴(2)

2
 

C is the constant found from calibrating Δ𝜙(1) 

2.7 Actual Interferometer Circuit 

 Figure 2-6 shows the interferometer circuit that was built.  We used a heterodyne 

system with an RF Gunn oscillator that operated at 94 GHz.  The local oscillator Gunn 

runs at 94.5 GHz.  This yields a 𝜔0 value of 500 MHz.  Attenuators were placed between 

the Gunns and the LO input of the mixers to keep the power between 10 and 13 dBm.  

Before measuring the signal, the outputs from our I-Q mixer are put through amplifiers 

with variable gains between 60 and 80 dBm. 

2.8 Calculating the Plasma Density 

 The geometry of the entire system is important to consider, particularly the 

relationship between the direction of propagation and the magnetic field.  In the case of 

our plasma, the direction of propagation for our wave is parallel to the magnetic field in 
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the plasma.  As a result, there are two kinds of waves that will propagate; left-hand waves 

and right-hand waves.  As discussed previously, by using a high enough frequency these 

waves can be treated as ordinary waves. 

 The effect the plasma density has on the total phase shift of the signal is given by 

 𝜙 = �𝑘𝑑𝑙 = �𝑛0
𝜔
𝑐
𝑑𝑙 (2.21) 

where 

𝜙 is the total phase lag 

𝜔 is the frequency of the beam 

k is the wave number 

c is the speed of light in free space [Hutchinson] 

and 𝑛0 is the refractive index of the plasma in O-mode, defined as 

Figure 2-6:  Schematic for our 94 GHz interferometer.  Also included is the 136 GHz refractometer 
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𝑛02 = 1 −

𝜔𝑝2

𝜔2 = 1 −
𝑛𝑒
𝑛𝑐

 (2.22) 

where 

𝑛𝑒 is the time varying electron plasma density 

and 𝑛𝑐 is the cutoff density where the O-mode waves will no longer propagate.  One of 

the reasons why it is easier to consider O-mode waves is that they do not depend on the 

magnetic field.  The cutoff density is 

 
𝑛𝑐 =

𝜔2𝑚𝑒𝜖0
𝑒2

 (2.23) 

Where 

𝑚𝑒 is the mass of an electron 

𝜖0 is the permittivity in free space 

e is the charge of an electron 

 The equation for the phase lag has a single value that varies with position in the 

plasma and that is 𝑛𝑒.  Since we cannot measure each point separately we can replace this 

term with a constant 𝑛𝑎𝑣𝑔 and solve for the line average density.  In this case, after 

pulling everything out of the integral the equation becomes 

 
𝜙 =

𝜔
𝑐 �

1 −
𝑛𝑎𝑣𝑔
𝑛𝑐

�𝑑𝑙 =
𝜔𝑙
𝑐 �1 −

𝑛𝑎𝑣𝑔
𝑛𝑐

 (2.24) 

where l is the path length through the plasma. [Hutchinson] 

 This allows us to compare the density to the total phase lag, but the output of our 

interferometer gives us the phase change over time.  We can change 𝜙 to Δ𝜙 by writing 

the equation instead as 
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 𝜙 = ��𝑘𝑝𝑙𝑎𝑠𝑚𝑎 − 𝑘0�𝑑𝑙 (2.25) 

where 

𝑘𝑝𝑙𝑎𝑠𝑚𝑎 is the wave number with a plasma present 

𝑘0 is the wave number without a plasma 

 Without a plasma the wave number 𝑘0 = 𝜔 𝑐⁄  so equation 2.24 becomes 

 
Δ𝜙 =

𝜔𝑙
𝑐
��1 −

𝑛𝑎𝑣𝑔
𝑛𝑐

− 1� (2.26) 

which can be solved for 

 
𝑛𝑎𝑣𝑔 = 𝑛𝑐 �1 − �1 +

𝑐Δ𝜙
𝜔𝑙

�
2

� 

[Hutchinson] 

(2.27)  

This yields the line average density which is the best that can be done using the 

interferometer.   

2.9 O-mode Assumption 

 Now that we have a formula for finding the density of a plasma based on the 

assumption that waves are in O-mode, it is important to verify that this is a reasonable 

approximation for the R and L modes that are actually propagating.  The simple formula 

for nc in equation 2.23 holds true for O-mode waves.  The cutoff for R and L waves are 

more complicated, given by 

 
𝑛𝑐 =

𝜖0𝜔
𝑒2

�
𝑚𝑖𝑚𝑒(𝜔 + 𝜔𝑐𝑖)(𝜔 − 𝜔𝑐𝑒)
𝑚𝑖(𝜔 − 𝜔𝑐𝑒) + 𝑚𝑒(𝜔 + 𝜔𝑐𝑖)

� (2.28) 
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𝑛𝑐 =

𝜖0𝜔
𝑒2

�
𝑚𝑖𝑚𝑒(𝜔 − 𝜔𝑐𝑖)(𝜔 + 𝜔𝑐𝑒)
𝑚𝑖(𝜔 + 𝜔𝑐𝑒) + 𝑚𝑒(𝜔 − 𝜔𝑐𝑖)

� (2.29) 

where mi is the mass of the ions 

for R and L mode, respectively.  For our particular system the frequency is 94GHz, 

deuterium is the ion species, the plasma is assumed to be 18cm in diameter, and a 

magnetic field strength of .17 T is approximately what the beam will encounter as it 

passes through the plane of a coil. 

 Using these values, along with equation 2.27, we can find the density that 

corresponds to a 2π phase shift for each kind of wave.  In each case a 2π phase shift 

indicates a density of 3.93*1018 m-3.  The difference between the O-mode density and the 

R or L mode densities is on the order of 1015.  This is why high frequency was selected.  

As ω → ∞ the part of 2.28 and 2.29 in brackets approaches ω.  So as the frequency 

increases, the R and L mode cutoff densities approach 2.23, the O-mode cutoff. 
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3.1 Gaussian Beam Propagation 

 It would be extremely difficult to solve the full wave equation for our system.  We 

would need to describe an electromagnetic wave that is transmitted by a corrugated horn 

antenna before passing through a lens, two ports of a chamber and a plasma.  Fortunately 

the beam exiting our antenna can be well approximated as a Gaussian beam.  In Gaussian 

optics the wave equation is simplified using the paraxial approximation, which assumes a 

wave that is relatively collimated.  The approximation holds true provided that the angle 

of divergence is less than ~30 degrees from the direction of propagation.  When our beam 

leaves the antenna it has a divergence angle of ~ 19 degrees.  It is even smaller once the 

beam interacts with the lens.  Another criterion for using Gaussian optics is that all 

optical components must be large compared to the wavelength.  This can lead to some 

challenges when building the physical system. 

 The intensity of the beam has a Gaussian distribution as we move radially 

outward from the center.  We define the spot size of the beam as the distance from the 

beam’s center at which the intensity drops to 𝑒−2 of the peak intensity.  Displaying the 

spot size of a beam as it propagates, therefore, will only account for 86.5% of the power 

contained in the entire beam. 

 For a specific wavelength the complex beam parameter is used to fully describe a 

beam at each point as it propagates.  The real term, z, tells how far a point is from the 

beam waist.  The imaginary term, 𝑧𝑅, is the Rayleigh length which is the distance from 

the beam waist to the point where the beam area doubles.  This term contains the 

information about the angle of divergence and the spots size at the beam’s waist. 
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𝑧𝑅 =

𝜋𝜔0
2

𝜆
 (3.1) 

where: 

𝜔0 is the beam waist 

𝜆 is the wavelength. 

Figure 3-1 plots the spots size of a Gaussian beam as it propagates from left to 

right.  The imaginary part of the complex beam parameter defines the shape of the entire 

beam.  The real part simply tells us where the beam waist is located.  When the real part 

is negative, it indicates that the beam is focusing and tells us how far the beam must 

travel before it is fully focused.  A positive real part indicates that the beam is expanding 

and the magnitude reflects how far the beam has traveled past its waist. 

3.2 Corrugated Horn Antenna 

Figure 3-1: Gaussian beam propagating from left to right. 
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 Most horn antennas have a small enough divergence angle such that the paraxial 

approximation holds.   We selected our particular antenna to maximize the correlation 

between the transmitted signal and an ideal Gaussian beam.  Table 3-1 shows how well 

the signal transmitted by horns with different geometries can be coupled to a Gaussian 

beam.  The |𝑐0|2 column indicates how strongly the beam couples to a true Gaussian 

beam while the w/a column indicates the spot size of the beam depending on the size of 

the aperture.  Ideally we aren’t concerned with the polarization of the beam, indicated by 

𝜖𝑝𝑜𝑙, though as we will discuss later, this could play a role in the real system.  The best 

coupling occurs when a corrugated horn is used. 

Table 3-1: Parameters for optimum coupling for different feed horn geometries [Goldsmith] 
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 The improved coupling in corrugated horns is a result of the reactance created by 

the grooves.  Figure 3-2 shows the cross section of a corrugated feed horn.  The reactance 

caused by the grooves related to the impedance of free space by 

 𝑋𝑠
𝑍0

= tan �
2𝜋𝑑
𝜆
� (3.2) 

where 

d is the depth of the grooves 

𝑋𝑠 is the reactance 

𝑍0 is the impedance of free space 

 When the depth of the grooves is a quarter of the signal’s wavelength the 

reactance is infinite.  This is referred to as the balance hybrid condition and results in the 

strongest correlation between the transmitted wave and a true Gaussian beam.  The 

relationship between the groove depth and the wavelength means that a particular 

corrugated horn will only work well for a small range of frequencies.  This relationship 

Figure 3-2:  Cross section of a corrugated feed horn 
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also exists for the spacing of the grooves, which must be significantly less than a 

wavelength.  It is important to note that the grooves farthest from the aperture are deeper 

than the rest.  This transition from deep grooves to the quarter wavelength grooves 

ensures that the wave transmitted operates in the principle 𝐻𝐸11 mode, converted from 

the 𝑇𝐸11 mode propagating in the waveguide.  

 As we have seen, in order to define the Gaussian beam produced by a feed horn 

we need to find the position and size of the beam waist.  Locating the waist of a Gaussian 

beam can be done a number of ways, one of which is to find the beam’s radius of 

curvature.  The radius of curvature is the shape of the wave front at which the signal has a 

constant phase.  For the beam exiting a feed horn, the radius of curvature is equivalent to 

the horn’s slant length.  Figure 3-3 shows the beam transmitted by a feed horn.  While the 

Figure 3-3: Cross section of the Gaussian beam transmitted by a feed horn 
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horn will not physically come to a point as shown, the horn slant length can be solved for 

using: 

 𝑅ℎ =
𝑎

sin𝛼
 (3.3) 

 

where 

𝑅ℎ is the slant length 

a is the aperture radius 

𝛼 is the flare angle 

The spot size leaving the antenna depends on the type of horn we are using.  The 

previously referenced Table 1 not only shows how strong the coupling is for a particular 

geometry, it also tells us how the spot size leaving the lens corresponds to the aperture 

radius.  For a corrugated circular horn the relationship is w/a = .644. 

 Once we have the radius of curvature and the spot size leaving the lens, the 

following equations can be used to find the spot size and location of the waist 

 𝜔0 =
𝜔

�1 + �𝜋𝜔2
𝜆𝑅� �

2
 

 

(3.4) 

 𝑧 =
𝑅

1 + �𝜆𝑅 𝜋𝜔2� �
2 (3.5) 

Using 𝜔0 to solve for 𝑧𝑅 gives us the complex beam parameter for the Gaussian beam 

which best approximates the wave transmitted by the feed horn. 
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3.3 Ray Transfer Matrix 

One of the benefits of defining a Gaussian beam using its complex beam 

parameter is that it allows us to easily calculate the beam that is created when the beam 

propagates through different quasi-optical components.  The formula for calculating a 

new beam is: 

 �𝑞21 � = 𝑘 �𝐴 𝐵
𝐶 𝐷� �

𝑞1
1 � (3.6) 

 

where 

𝑞1 is the original complex beam parameter 

𝑞2 is the new complex beam parameter 

k normalizes the second term to 1 

and the ABCD matrix defines the path that the beam has taken. 

The path of our beam can be divided into two distinct situations.  The first is a 

beam traveling a distance L through any uniform medium.  The corresponding ABCD 

matrix is given by: 

 �1 𝐿
0 1� (3.7) 

When a beam is propagating through a uniform medium it is not necessary to use the ray 

transfer matrix.  The real part of the beam tells us how far we are from the waist, so 

propagating a distance L simply requires us to add L to the complex beam parameter, 

leaving the imaginary part unchanged.  The value of having an ABCD matrix for this 

scenario arises when the beam passes into new mediums and the entire path needs to be 

combined into a single matrix. 
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The second situation occurs when a beam passes through a curved interface.  The 

ABCD matrix is: 

 
�

1 0
𝑛2 − 𝑛1
𝑛2𝑅

𝑛1
𝑛2
� (3.8) 

where 𝑛1 and 𝑛2 are the refractive indexes of the first and second materials, respectively, 

and R is the radius of curvature.  R > 0 corresponds to a surface that is concave to the left 

for a beam propagating right.  For a flat surface, we take 𝑅 → ∞.  When a beam passes 

through any interface between two different mediums with different indexes of refraction 

both the real and imaginary terms in the complex beam parameter will be altered. 

 Any path of propagation can be defined by a single ABCD matrix.  In order to 

find this matrix, the separate matrices of each interface and each length of propagation 

through constant media are multiplied together in the reverse order in which the wave 

encounters them.  The system we are designing involves propagation through free space 

to the first curved interface of the lens, followed by propagation through the lens material 

to the flat interface of the lens, and finally, propagation through free space to the 

receiving end of the chamber.  The resulting ABCD matrix for the beam leaving our lens 

looks like: 

 
�

1 0
0

𝑛2
𝑛1
� ∙ �1 𝐿

0 1� ∙ �
1 0

𝑛2 − 𝑛1
𝑛2𝑅

𝑛1
𝑛2
� 

 
⇒

⎝

⎛
1 +

(𝑛2 − 𝑛1)𝐿
𝑛2𝑅

𝑛1𝐿
𝑛2

𝑛2 − 𝑛1
𝑛1𝑅

1
⎠

⎞ 

(3.9) 

Solving for the real and imaginary parts of the new complex beam parameter can be done 

using: 
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𝑅𝑒[𝑞2] =

(𝑅𝑒[𝑞1])2𝐴𝐶 + 𝑅𝑒[𝑞1]𝐴𝐷 + (𝐼𝑚[𝑞1])2𝐴𝐶 + 𝑅𝑒[𝑞1]𝐶𝐵 + 𝐵𝐷
(𝑅𝑒[𝑞1]𝐶)2 + 2𝑅𝑒[𝑞1]𝐶𝐷 + 𝐷2 + (𝐼𝑚[𝑞1]𝐶)2  (3.10) 

 
𝐼𝑚[𝑞2] =

𝐼𝑚[𝑞1](𝐴𝐷 − 𝐵𝐶)
(𝑅𝑒[𝑞1]𝐶)2 + 2𝑅𝑒[𝑞1]𝐶𝐷 + 𝐷2 + (𝐼𝑚[𝑞1]𝐶)2 (3.11) 

 When the final system is used as an interferometer the beam will also pass 

through a plasma.  Unfortunately we know very little about the plasma that we will be 

dealing with so it is impossible to say what affect it will have on the shape of our beam.  

The hope is that the beam encounters a plasma that is relatively symmetrical about the 

center of the chamber, so that each effective interface that the beam encounters as it 

propagates toward the center of the plasma will correspond to a similar, but reversed, 

interface as it propagates out of the plasma.  For our interferometer we expect this 

approximation to be sufficient.  When we begin to examine the beam in our refractometer 

the exact density profile of the plasma will be of vital importance. 

3.4 Desired Gaussian Beam 

 The goal of this experiment is to propagate a Gaussian beam through the center of 

a plasma, receive the signal and determine the phase shift.  The ideal wave would be a 

very narrow, collimated beam.  A narrow beam entering the chamber would allow us to 

use smaller optical components and transmit multiple beams into the chamber 

simultaneously.  A narrow beam passing through the plasma will assure us that we are 

sampling a thin chord and our results are not being affected by the entire plasma.  It may 

be most important to have a narrow beam at the receiver.  A smaller spot size as the beam 

exits the chamber will result in a higher percentage of the beam’s power passing through 

the aperture of our receiver antenna. 
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 Unfortunately, the waist size of a Gaussian beam is inversely proportional to its 

angle of divergence by: 

 
𝜃 ≅

𝜆
𝜋𝜔0

 (3.12) 

As a result, the more collimated our beam is, the larger the waist.  Figure 3-4 shows how 

this looks for three different beam waists.  The chamber is ~2 meters wide and our 

vacuum wavelength is 3.1915mm.  In each case the waist is located at the center of the 

chamber.  It is easy to see that creating a narrow beam in the plasma itself will increase 

the size of our front-end optics and decrease the power received.  This is what dictates 

our physical limits.  We need to have enough power received to interpret the signal, and 

we only have a 12-inch window to launch the beam through. 

3.5 Diffraction Limit 

 Sending a Gaussian beam through any aperture will result in some beam 

truncation.  The spot size of a beam is drawn as a solid line showing the shape of the 

beam, but that line represents a portion of the beam which only contains 86.5% of the 

total power.  In order to avoid large diffraction effects, it is best to use optical 

components that have a diameter at least four times the spot size of the Gaussian beam 

passing through it [Goldsmith]. 

 A more rigorous method of dealing with beam truncation can be done which finds 

a different Gaussian beam created by the aperture.  It is far from a perfect system, as it 

ignores the effect of the truncation on side lobes, instead focusing on how the main lobe 

is broadened by the aperture.  The relationship between the original beam and the new 

effective beam for moderate levels of truncation, ≤ 20𝑑𝐵, is found using: 
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Figure 3-4: Gaussian beams with different waist sizes located in the center of the chamber 
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 𝜔0𝑒𝑓𝑓

𝜔0
=

0.40�𝑇𝑒(𝑑𝐵)
1.6 + 0.021𝑇𝑒(𝑑𝐵) (3.13) 

where 

𝜔0𝑒𝑓𝑓 is the new effective beam waist 

𝜔0 is the original beam waist 

Te (dB) is power lost due to the beam truncation. 

 This results in two separate problems.  In addition to simply losing power as the 

beam passes through an aperture, the effective waist of the new beam is smaller.  A 

smaller waist means that our beam will have a larger angle of divergence.  Since we want 

our beam to be as collimated as possible, it is this result that prevents us from simply 

using lenses with a smaller diameter. 

3.6 Beam Waist Position  

 The limitation placed on the size of our front end optics comes from space 

constraints on the physical system.  We intend to aim the interferometer channel through 

the center of a 12-inch diameter window.  Also sending signals into the chamber is a 

refractometer channel.  While the operation of the refractometer is quite a bit different, 

the front-end optics are almost identical.  Eventually, the hope is to add a second 

refractometer channel.  Figure 3-5 shows this desired geometry.  Not only are the 

refractometers supposed to fit next to the interferometer, but they are also supposed to 

have range of motion.  We want it to be able to move parallel to the port window along 

one dimension so that we can take measurements through different chords.  In order to 

have space for multiple lenses, and space left over for range of motion, these lenses 

needed to be kept as small as possible. 
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 This leads to a new 

challenge.  Once we set a 

maximum spot size for our 

beam as it leaves the lens, 

we have fully specified a set 

of possible beams that can 

be transmitted.  If this spot 

size is not large enough, the 

set may not contain a beam 

with a waist in the center of 

the chamber.  To see this 

limit, a Mathematica script 

was written to find the maximum distance from the waist a signal could be when it has a 

given spot size.  I used the equation 

 
𝑧 = ±

𝜋𝜔0
2

𝜆
��

𝜔
𝜔0
�
2
− 1 (3.14) 

where 

z is the distance from the waist 

𝜔0 is the spot size at the waist 

𝜆 is the wavelength of the beam 

𝜔 is the spot size leaving the lens 

 Even if we know the spot size leaving the lens the beam can take on many 

different shapes, defined by the beam’s waist.  The largest possible waist size is the spot 

Figure 3-5: Layout of front-end optics using 2 inch lenses 
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size of the beam leaving the lens.  The smallest spot size approaches zero.  My code finds 

the waist size in this range that will be located as far as possible from the lens.  The 

results are plotted in Figure 3-6.  

The first thing to notice is that we need a fairly large beam to put the waist in the 

center of the chamber, 1 meter away.  In fact, it isn’t even until the spot size is nearly 5 

cm that we can put the waist where we want it to be.  As previously mentioned, the 

diameter of any optical component needs to be at least 4 times the spot size before we can 

even think about ignoring diffraction.  Unfortunately, this would require us to use lenses 

that are 20 cm in diameter.  Two lenses of this size couldn’t fit side by side in the 

window, and we certainly couldn’t have one centered in the window and use the other in 

any way. 

 When the decision was made to use optics smaller than this, another issue 

was raised.  While having the waist in the center of the chamber was our best-case 
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scenario, if this is not possible we don’t necessarily want the waist as far into the 

chamber as possible.  The reason for this is the inverse correlation between the waist size 

and the angle of divergence that we saw in a previous section.  This can be seen clearly in 

Figure 3-7. 

The blue plot represents the spot size at the receiver that results when the waist is 

as far from the lens as possible.  The red plot shows the spot size at the receiver when the 

waist is located at the lens.  When we can put the waist close to the center it is best to do 

so.  On the other hand, when we can only put the waist half a meter into the chamber or 

less, it is actually to our advantage for the waist to be larger and located at the lens. 

 There is an additional advantage to a beam with its waist located at the lens.  As 

the beam passes through the plasma, we would like the beam to be as collimated as 

possible.  If the beam has a narrow waist located just before encountering the plasma, it 

will expand quickly and the portion of the beam measured by our receiver will represent 

a chord that is quite a bit larger as it passes through the second half of the plasma.  There 
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are only two ways that we can create a more collimated beam.  The first is to increase the 

frequency.  Since this wasn’t an option, the only other way in to increase the waist size.  

The largest possible waist size is created when the waist is located at the lens. 

3.7 Received Power 

 There are two characteristics we want to see from our beam at the receiver.  The 

first is that we would like the spots size to be the same as it was entering the chamber.  

This would tell us that we have put the beam waist at the center of the plasma.  If we 

aren’t able to achieve this, then we want as small a beam as possible.  A smaller spot size 

will lead to more power received in the small fixed aperture at the entrance to our 

receiving horn antenna. 

 Calculating the percent of the total power passing through an aperture is made 

easier by our selection of a circular receiving horn.  When a Gaussian beam passes 

through a round aperture, the power that is transmitted is given by 

 𝑃 = 𝑃0 �1 − 𝑒
−2𝑟2

𝜔2� � (3.15) 

where 

𝑃0 is the total power in the beam 

r is the radius of the aperture 

𝜔 is the spot size of the beam  

 Figure 3-8 shows how the spot size affects the power received for the antenna we 

are using.  The radius of our receiving horn is .653 cm.  Having such a small aperture 

allows us to take a more accurate measurement.  The portion of the beam collected by our 

antenna should have passed through a very narrow portion of the plasma.  As we can see 
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from the figure, we are expecting to detect only a small portion of the entire beam.  

Additional power will be lost by absorption and refraction in the plasma. 

To make sure we are able to receive a signal that can be carefully measured, we 

need to use Gunn oscillators that can create a powerful beam.  The signal leaving our 

Gunn has a power measured at 17 dBm.  This power is split into two beams, one that is 

sent through the plasma and the other that is simply a reference.  Because of the power 

need by the transmitted beam, the power is split using a 10 dB directional coupler.  As a 

result, the power in the transmitted beam is still around 16.5 dBm. 

3.8 Lens Selection 

 Much of what was considered in the previous sections could not be implemented 

on this experiment due to space limitations.  As a result, we designed a lens that would 

put the waist in the middle of the chamber, but was only 14 cm in diameter.  The 

Figure 3-8: Power received for different spot sizes at the receiver 
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complexities created by the introduction of diffraction increased the importance of bench 

tests to find the actual behavior of the optics. 

 In order to create a lens, first we need to know the beam we want to exit the lens.  

In our case we wanted a beam that was 1 meter from the waist and with the smallest 

possible spot size leaving the lens.  From Figure 3-6 we can see in order to put the waist 

in the center of the chamber the spot size leaving the lens cannot be smaller than ~4.8cm.  

When we solve for the corresponding beam waist, it is approximately 3cm.  This results 

in a complex beam parameter of 

 z = -1 + .885929i (3.16) 

where the negative real term indicates that the beam leaving the lens is focusing. 

 Once we know the beam we want leaving the lens we can begin working 

backward.  The next easy step is to find the beam just before it leaves the lens.  The side 

of the lens facing our chamber is flat.  The ABCD matrix for a beam passing through a 

flat interface is 

 
�

1 0
0

𝑛1
𝑛2
� (3.17) 

where 

𝑛1 is the refractive index of the first material, in this case high density polyethylene 

(HDPE = 1.5187) 

𝑛2 is the refractive index of the second material, in this case free space (1.0) 

Solving for the beam in the lens gives us 

 z = -1.5187 + 1.3455i (3.18) 

 Now we need to consider the beam leaving the antenna.  The beam in the lens is a 

constant value that we are trying to create.  There are a number of variables that we can 
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change.  The first obvious one is the curvature of the lens.  The other two variables both 

relate to how the complex beam parameter changes as it propagates through a constant 

medium.  The ABCD matrix is 

 �1 𝐿
0 1� (3.19) 

where L is the distance traveled.  The new complex beam parameter will have the same 

imaginary term, but will have L added to the imaginary term. 

 Propagation in a constant medium occurs in two parts of our system.  First, the 

beam leaving the antenna travels through free space until it hits the curved portion of the 

lens.  We can alter the distance between the lens and antenna to change the beam 

parameter entering the lens.  After encountering the curved face of the lens the beam will 

again propagate through a constant medium, now HDPE, until it reaches the flat 

interface.  So by changing the thickness of the lens, we are able to change the beam that 

must be created by the curved interface. 

 While it is a possible variable, increasing the thickness of the lens is not 

something we want.  The beam is focusing in the lens, so increasing the thickness will 

require a larger beam at the curved surface.  Since we are limited by how large our optics 

can be to begin with, we do not want the lens to be any thicker than necessary. 

This leaves us with two variables to change.  The beam leaving our antenna has a 

complex beam parameter of 

 z = .00241795 + .0092288i (3.20) 

By moving the antenna back from the lens we can increase the real term for the beam as 

it encounters the lens.  We already know what the beam parameter will be after the 

curved interface.  We can use this to find the spot size of the beam just as it leaves the 
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curved interface.  While the curvature will affect the beam waist and angle of divergence, 

the spots size should not change immediately after encountering the lens.  This means 

that we want to put the antenna far enough from the lens that the beam has expanded to 

the size we have calculated for the beam just after it enters the lens. 

 This leaves us with only the radius of curvature of the lens as the last remaining 

variable.  The ABCD matrix for a curved interface is given by 

 
�

1 0
𝑛2 − 𝑛1
𝑛2𝑅

𝑛1
𝑛2
� (3.21) 

where 

R is the radius of curvature 

𝑛1 in this case is free space 

𝑛2 in this case is HDPE 

It is a now an algebra problem to solve for the R which creates our desired beam.  In our 

case, this radius of curvature is 6.9596 cm and the horn must be 14.2 cm away from the 

lens. 

3.9 One Lens vs. Multiple Lenses 

 With the approach we have just taken, where diffraction is ignored, we will 

always find a solution to the problem which allows us to create whatever beam we want 

with a single lens.  One of the downsides of the optical software that we used is that it 

works strictly from the formulas I have shown.  There are many real situations where a 

second or even a third lens is necessary.  These situations are the result of the physical 

limitations that lens curvature puts on the lens diameter. 

 As we have already seen, one of the primary concerns we were faced with was the 

diameter of our lens.  We were only given 14 cm when we would have liked closer to 20 
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cm.  When I solved for a lens curvature following the algorithm in the previous section, I 

arrived at a radius of curvature just under 7 cm.  Obviously, it is not possible to have 20 

cm diameter lens with a radius of curvature less than 7 cm.  In such an event, we are now 

faced with the necessity of an additional lens.  While the first lens may not focus the 

beam as much as we will eventually need, it can create a more collimated beam, which a 

second lens is capable of turning into the beam we are looking for.  Any number of lenses 

would not have remedied our concern in this particular experiment.  Unless we were able 

to use a large second lens, we would still be faced with the same concerns. 
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4. Refractometer 

Density measurements taken with an interferometer can be used to find the 

average density over the path being sampled.  The goal of the refractometer is to give a 

more thorough description of the density profile of the plasma.  In a polywell fusion 

device the distribution of particles is extremely important. 

In order to map the density profile we need to be able to send the beam through 

different chords of the plasma.  While this could be done with the interferometer, a 

problem arises when trying to collect the beam.  With the exception of the central chord, 

any other path will encounter density gradients that are not strictly perpendicular to the 

direction of propagation.  As a result, without knowing the density profile beforehand, it 

is impossible to predict the location and direction of the beam exiting the plasma. 

Unlike the interferometer, which has a single receiving antenna, our refractometer 

has an array of receiving antennas.  Instead of analyzing the phase of the received signal, 

each antenna is attached to a detector which measures the power of the signal.  This array 

allows us to take measurements without guessing where to place a single receiving 

antenna.  The challenges that arise when considering the problem with Gaussian optics 

are presented in the next chapter. 

4.1 Geometric Optics 

  While the wavelengths we are dealing with are too large for us to treat our beam 

with geometric optics, we can use it to show the goal and general behavior of the 

refractometer.  In geometric optics, waves are treated as a collection of rays, each of 

which behaves independently from the other rays.  When a ray encounters an interface 

across which there is a change in the index of refraction, the behavior of the ray changes.  
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Interaction normal to the interface will simply change the phase velocity of the wave.  If 

the interaction occurs at any other angle, then the new wave will change according to 

Snell’s Law: 

 𝑛1 sin𝜃1 = 𝑛2 sin𝜃2 (4.1) 

where 

𝑛1is the index of refraction in the first medium 

𝑛2is the index of refraction in the second medium 

𝜃1is the angle between the direction of propagation of the ray prior to reaching the 

interface and the normal of the interface 

𝜃2 the angle between the direction of propagation of the ray after reaching the interface 

and the normal of the interface 

As discussed in Chapter 3, the index of refraction encountered in a plasma 

depends on the wavelength of the signal, the density of the plasma, and the mode of the 

wave we are considering.  In our case we are assuming waves in O-mode.  Since our 

frequency is controlled, changes in the index of refraction are indications of a change in 

electron density.  By measuring the position of the ray at our observation window, and 

using the relationship given in equation 4.1, it is possible to find information about the 

density profile encountered by the beam. 

Figure 4.1 shows how rays will react to different density profiles for two plasmas 

which are both 18cm in diameter.  Simulating a plasma with a constant density simply 

requires a single spherical lens with an index of refraction equal to that found in the 

plasma being modeled.  In order to simulate a plasma with a Gaussian density 

distribution 15 nested spherical lenses were used.  The index of refraction for each  



44 
 

  

Table 4-1: For rays sent through the plasma at different distances from center the position of the beam 
when it reaches the edge of the chamber is given.  

Figure 4-1:  The behavior of rays as they pass through a plasma with (a) Gaussian density 
distribution and (b) constant density.  The plasmas are both 18 cm in diameter and the screen is 1 
meter from the center of the plasma. 
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smaller sphere represents a plasma with a higher density.  The result is a discrete version 

of what the beam will encounter as it travels along a density gradient.  An interferometer 

output for both plasmas will show a line average density through the center of ~1.41 ∗

1013𝑐𝑚−3.  In spite of this similarity, the two plasma’s have very different density 

profiles.  The first has a constant density over the entire plasma.  The second has a 

Gaussian distribution with a peak density of 2.0 ∗ 1013𝑐𝑚−3at the center.  In Table 4.1 it 

is clear that the refractometer output for these two plasmas will be quite different.  The 

direction of refraction (away from the center of the chamber) results from the fact that 

plasma, unlike most other materials, can have an index of refraction less than one. 

It is also important that each of these rays can be collected by our refractometer.  

Of the 12 rays shown between the two plasmas, 11 will exit through the main observation 

port and the final ray will exit through the smaller side port.  Provided that the plasma 

isn’t much larger than expected, geometric optics predicts that our refractometer should 

be able to collect data. 

4.2 Actual Circuit 

 While the system as a whole is less complicated than the interferometer, the 

refractometer Gunn circuit is more complex.  Figure 4.2 shows the Gunn circuit that was 

built.  The refractometer is designed to transmit waves with a frequency of 136 GHz.  

This keeps us safely above the plasma frequency while also being easily differentiated 

from our 94GHz interferometer signal.   

 The Gunn we used operates at 68GHz.  The signal is then amplified and put 

through a frequency doubler, leading to our desired 136GHz beam.  Using the doubler 

causes much of the increased complexity of the circuit.  Putting a signal into the doubler 
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before it is properly biased can damage it.  So in addition to carefully regulating voltage 

throughout the circuit, power is not supplied to the amplifier until the doubler is biased to 

-24VDC.  The power in the transmitted wave approaches 200mW.  Having such a strong 

signal should allow us to detect even the lower intensity portion of our Gaussian beam 

and give us a better picture of the shape of the beam we are receiving.  In order to 

produce this signal, the Gunn draws nearly 2A. 

4.3 Space Concerns 

 In order to maximize the data gathered in each shot, the goal of this experiment is 

to have the interferometer and refractometer channels working simultaneously.  If we 

were working in the geometric optics limit, this would not be a problem.  A more 

Figure 4-2:  The refractometer Gunn circuit that was built 
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compete discussion of the limitations caused by Gaussian optics follows in the next 

chapter. 

 In order to maximize space, the decision was made to ignore diffraction for both 

channels.  Figure 4.3 shows the layout of the front end optics that was used.  After 

passing through the lenses, the beam from each channel is apertured to create a beam 

with a diameter of 2 inches.  While there was consideration given to aiming the 

interferometer beam at an angle across the center of the plasma, it was decided that a 

beam sent straight through will encounter a more symmetrical plasma.  

Figure 4-3: Front end optics including both the interferometer channel and the refractometer channel with a 
translating mirror (units in inches) 
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Rather than move the entire refractometer Gunn when sampling different chords, 

the Gunn is located to the side of the viewing port and a mirror at a 45 degree angle 

directs the beam parallel to the window.  The only moving part is a second mirror which 

directs the beam through the window, 

parallel to the original beam.  This 

setup will allow for a range of motion 

of nearly 7.5cm for the center of the 

refractometer beam. 

An advantage to using 

Gaussian optics is that it allows us 

model the shape of the beam despite 

the fact that we are unable to collect 

much of the signal.  Figure 4-4 shows 

the receiving end of the chamber.  

The main viewing port has seven 

antennas shown.  The antenna in the 

center of the window will also collect 

the signal for the interferometer.  

There are spaces between the 

antennas where a single ray could go 

undetected all together.  In particular 

between the main window and the small side 

window, shown with three antennas, a narrow 

Figure 4-4:  Receiving wall of the chamber with 7 
antennas on the main port and three on the 
smaller viewing port. 
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beam could be easily missed.  In ray tracing, the behavior of one ray is treated 

independently from the rest of the signal.  This makes it challenging to use the received 

power to interpret the behavior of the rest of the beam.  If the beam maintains a Gaussian 

distribution, the relative power of the beam between detectors can be more accurately 

approximated.  
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5. Bench Testing 

 There were two different approaches to bench testing the interferometer.  From a 

purely practical point of view it is important to align the front end optics to maximize the 

power received by a circular horn antenna located two meters away.   But beyond the 

particular application of our system, I also tested the behavior of the beam as the 

positioning of the front end optics changed.  This provides a more thorough description 

of the beam as it passes through the plasma.  It also helps illustrate the effect that 

diffraction has on the beam and how well it can still be modeled using Gaussian optics. 

 On one end of the test setup was the transmitting antenna on a translation stage.  

In front of that was the lens, which could be tilted as well as translated horizontally and 

vertically, shown in Figure 5-1.  Two meters away was the receiver.  When evaluating the 

system for the sole 

purpose of maximizing 

the power detected, the 

receiver was the horn 

antenna that will be 

used in the actual 

system.  When the goal 

was to obtain a more 

thorough description of 

the beam itself the 

receiver was an open 

ended WR-10 Figure 5-1: Launch end of bench testing optics 
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waveguide.  The receiver was mounted on a pair of translation stages that allowed us to 

examine the full E-plane and H-plane fields of the received signal, shown in Figure 5-2.  

In every case during the testing, the difference between the E-plane and H-plane was 

minimal.  The plots I have included in this chapter show simply the E-plane for this 

reason. 

5.1 Horn Antenna 

 Before introducing the lens to the system, I first verified that the signal leaving 

our corrugated horn antenna was the beam we were expecting.  To achieve this, I took 

measurements of the intensity of the beam at three locations; 1.5, 2.5 and 3.5 cm from the 

aperture of the antenna.  For the horn used the theoretical complex beam parameter is 

.002417 + i.0092288.  Figure 5-4 

shows the plot of the theoretical 

beam distribution at each distance 

overlaid with the measured values.  

The measured points were taken 

with an open-ended waveguide 

moved in increments of quarter 

centimeters.  These measurements 

verified that the physical beam is 

well modeled by the Gaussian beam 

we were predicting. 

 
 
 
 

Figure 5-2: Receiving end of bench testing optics 
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5.2 Detector 

 There were two methods used to detect the signal.  Initially a diode detector with 

its output read by a voltmeter was used.  Until it is saturated, a diode detector’s output 

will be a voltage that has a square-law scaling relative to the input power.  In order to 

examine the shape of the beam, it is sufficient to find the relative power over the E and 

H-planes.  For the practical use of the interferometer, it is useful to know the actual 

power received as well.  In order to scale the diode detector I connected it through a 

series of couplers to the Gunn oscillator.  The Gunn had a measured power output of 

17dBm.  By using different combinations of 3dB, 6dB and 10dB couplers, I recorded the 

detector outputs for different known power inputs.  Figure 5-3 displays a log plot of the 

measured values, showing the operating region of the diode in addition to  
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Figure 5-3: Scaling of the detector by measuring the output voltage while a beam with a known power is 
applied. 
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Figure 5-4: Beam profile of the actual beam leaving the antenna compared to an ideal Gaussian beam. 
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providing reference values for the diode output.  When we aligned our antenna and lens 

to maximize the power received 2 meters away, the largest output we measured was 

137mV.  This corresponds to roughly –4.2dBm.  The majority of this chapter will be 

more concerned with an examination of the shape and behavior of the beam.  Maximum 

received power is a practical measurement of the system.  Unfortunately the diode 

detector stopped working halfway through taking the measurements.  Figure 5-5 shows 

the system used to replace it.  Now the received signal is mixed with the attenuated signal 

from the other Gunn oscillator.  This 

will have an output of 

approximately  

𝐴1𝐴2
2

cos 500𝑀𝐻𝑧 

where A1 is the constant power from 

the Gunn and A2 is the varying 

power from the received signal.  The 

output of the mixer was then sent 

through a crystal detector, giving us 
Figure 5-6: Mixer used as a detector after the original 
detector failed. 
 

Figure 5-5: Schematic of mixer used as relative power detector 
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an output similar to the original diode detector.  It isn’t important to know the actual 

power received when examining the shape of the beam, the relative power is sufficient.  

For this reason I did not scale this detector as I did for the original diode detector since I 

already had the only scaled power measurement that I needed. 

5.3 Examining the Optimum Beam 

 As an extension of the practical part of this experiment, before looking at a range 

of other beams, it is helpful to examine the behavior of the beam that delivered the 

maximum power to our receiver.  Figure 5-7 shows the actual beam that created our 

strongest signal.  This was measured at different points along the path, with the two most 

important points being the center of the chamber and the receiving end of the chamber. 

 To find the spot size of the beam 2 meters from the lens, we need to find where 

the relative power drops to 13.5% of the central beam power or e-2.  For our beam the 

spot size is 7.5 cm.  Figure 5-8 shows that the beam I measured is nearly identical in 

shape to an ideal Gaussian beam with the same spot size. 

Figure 5-7: Actual Measured Gaussian Beam 
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 In addition to examining the correlation between the measured beam and an ideal 

beam, I also needed to verify that the power at the center of the beam was consistent over 

the full distance that the beam propagates.  Based on the power measured at the center of 

the beam 2 meters from the lens we can calculate what the peak values should be at every 

point along the beam.  Figure 5-9 shows the beam that was measured at the center of the 

chamber, 1 meter from the lens, as well as the expected beam that would be consistent 

with our 2 meters measurements.  We can see that the beam correlates strongly and that 

the entire beam behaves like the beam shown previously in Figure 5-7 which is described 

by the beam parameter z = .472 + i1.43827 leaving the lens.  

 In order for diffraction effects to be negligible in Gaussian optics it is ideal to 

have the diameter of all apertures be four times the spot size of the beam passing through 

it.  By the time the entire beam has hit the lens for the optimum beam, the spot size is 

barely half the diameter of the lens, so we knew beforehand that diffraction would be a 

concern.  It is very positive to see that while significant power is lost, and the beam is 

Figure 5-8:  Measured beam profile of the strongest received beam compared to an ideal Gaussian beam 
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quite different than it would have been 

without diffraction, we still are dealing 

with a beam that is well approximated 

by Gaussian optics.  Table 5-1 shows 

the difference between the beam we 

expected if we ignored diffraction and the actual beam that was measured. 

 The amount of power lost is quite significant.  For the aperture size we should 

expect to lose about 4% of the power in the beam as it passes through the lens.  The 

initial beam has 50mW of power so we should expect the receiver antenna to pick up 

0.7mW of power from a beam with a spot size of 7.5cm.  Our antenna actually picked up 

0.38mW of power which indicates that there is loss elsewhere in the system.  While there 

was likely some power lost as the beam propagated through the lens and then 2 meters 

through air, it is also likely that diffraction increased the power in the side lobes outside 

Table 5-1: Comparison between the measured signal 
and the theoretically expected signal. 
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Figure 5-9:  Measured beam profile of the strongest received beam when observed from the center of the 
chamber compared to an ideal Gaussian beam 
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the range of motion of our testing apparatus.  

5.4 Diffraction 

 We expected diffraction to create beam profiles that differed from our models 

leaving us with two major questions to examine.  The first is whether or not the beam can 

continue to be approximated using Gaussian optics.  This will be crucial in the 

refractometer as we need to know the profile of the beam entering the plasma for the 

profile leaving the plasma to contain any information.  Our second concern is how much 

power is contained in the beam’s primary lobe.  I examined both of these questions by 

measuring the beam profiles as I changed the spacing between the transmitting horn and 

the lens.  A shorter distance results in a smaller beam entering the lens and, as a result, 

less diffraction. 

  When examining the optimum beam, we saw that this beam is well represented  

  

Figure 5-10: Comparison of the measured spot sizes of different beams and the theoretically expected beams. 
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Figure 5-11: Beam profile at the receiving end on the chamber for the two most extreme beams measured; 
5cm and 13cm from antenna to lens. 
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by Gaussian optics.  In that case, the distance between the antenna and the lens was 9.4 

cm.  I also examined beams where this distance ranged from 5 cm to 13 cm.  In each 

case, the profile of the beam was Gaussian.  Figure 5-11 shows the profile of the beam 2 

meters after leaving the lens for the two extreme cases, plotted with their ideal Gaussian 

profile.  Again we see that the approximation still holds.  This is great news for the 

refractometer as it shows that we may be able to aperture our beam while still operating 

in the realm of Gaussian optics.  Figure 5-12 plots the spot size of our measured beam 

alongside the expected spot size.  Even for a 5 cm distance between horn and lens, more 

than 7 cm less that our ideal model calls for, the shape of the beam is significantly 

altered. 

 While the main lobe of the wave continues to behave as a Gaussian beam, power 

is lost quickly when the beam spot size entering the lens is increased.  Figure 5-12 uses 
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Figure 5-12: Approximate spot size of our measured beam compared with the expected theoretical power. 
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the 5cm spacing as a reference for the peak power of a beam with a given spot size.  

When we did this earlier in this chapter to look at our optimum beam, we accurately 

predicted the peak intensity at the center of the chamber based on the beam exiting the 

chamber.  In the same way, Figure 5-12 shows what the peak intensity should be for each 

beam, based on the spots size.  When the spacing is 6 cm the intensity is predicted almost 

exactly.  By the time the spacing is up to 8 cm, the correlation is terrible.  A valuable 

comparison is the 11 and 12 cm spaced beams.  In both cases the spot size is 7 cm, but 

the 12 cm beam has only 85% as much power.  The fact that the beam is larger entering 

the lens would only account for the 12cm beam containing 97% of the power in the 11cm 

beam.  This means that there is a great deal of power contained in the side lobes. 

5.5 Interferometer Circuit 

 Until the interferometer is connected to the actual polywell chamber, I won’t be 

able to calibrate it in a meaningful way.  Therefore, in order to verify that the circuit is 

working, I used a mirror to reflect the transmitted signal back to the receiving antenna.  

When the mirror is perfectly still the I and Q signals showed a DC value.  Figure 5-13 

shows the oscilloscope screen for two different scenarios.  The image on the left shows 

the output when the mirror is moved slowly.  In this case the signals have a low 

frequency signal.  The image on the right shows a high frequency signal resulting from 

moving the mirror rapidly.  In both cases the two signals are correctly 90 degrees out of 

phase. 
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5.6 Refractometer 

 The difficulty in predicting the refraction 

of a beam led to the use of a 200mW source to 

insure that there was enough power available at 

the receivers.  While it would still be 

advantageous to have a Gaussian beam, two 

characteristics of the beam are more important.  

The first is that we want as narrow a beam as 

possible in the center of the chamber.  Secondly, 

the beam needs to have a distinct center. 

I took advantage of the fact that I had 

multiple 136GHz detectors in order to minimize 

the beam’s size as it passes through the plasma.  

Instead of using a single detector 1 meter from 

the plasma, I used two detectors that were 2.85 

cm apart.  With on detector at the beam center, I was less concerned with the raw power 

in the center, and more concerned with the drop in power seen in the second detector.  A 

Distance 
from 
Antenna to 
Lens (cm)

Power at 
Beam Center

Power 
2.85cm from 
Beam Center

16 81 57
15 110 65
14 144 85
13 186 111
12 234 148
11 277 132
10 286 138
9 167 95

Table 5-2:  Measued beam strength at the 
beam waist and 2.85cm from the beam waist 
 

Figure 5-13: Oscilloscope output from the interferometer showing different rates of phase change. 
 



63 
 

quicker drop indicates a narrower beam.  Table 5-2 shows the power in the two detectors 

as the distance between the antenna and lens changes.  The narrowest beam occurs 

between 10 and 11cm.  Testing solely in that region we see that the best beam occurs 

when the spacing is 10.2cm.  This is also nearly the peak central power.  A more 

complete testing of this spacing shows that the beam waist is 61cm into the chamber.  

Because the frequency is higher than the interferometer, the same size optics are now 

able to put the waist inside the chamber. 

5.7 Mirrors 

 The real concern for the refractometer is how the beam will respond to being 

reflected off two small mirrors that will work as essentially 2 inch apertures.  Figure 5-14 

shows the beam profile 2 meters away from the last optical component when that 

component is the lens, a single mirror, or the second of two mirrors.  As expected the 
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Figure 5-14: Comparison between the shape and power of beam at the receiving end of the chamber when the 
signal is aperture by a mirror once, twice, and not at all. 
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beam losses power and spreads out each time it is apertured.  Fortunately, the power loss 

is not a major concern to begin with and, while the beam spreads out, there is still a clear 

beam center.  Nevertheless, as a result of this test the front end optics are being 

redesigned to use a single mirror, rather than two.  
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6. Experimental Results 

Once the interferometer was built it was attached to the WB-8 machine as shown 

in Figures 6-1 and 6-2.  The receiving end of the chamber is shown in Figure 6-1.  The 

interferometer box is mounted such that the receiving antenna is in the center of the 

window.  Waveguide is used to guide the signal around the chamber to the front end, 

which is shown in Figure 6-2.  The waveguide ends with a corrugated horn antenna 

which transmits the signal through the lens and into the chamber.  This chapter will 

discuss the early plasma density results found using the interferometer. 

 

Figure 6-1: Receiving end of the interferometer system 
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Figure 6- 2: Transmitting end of the interferometer system 
 
6.1 Calibration 

 In order to calculate the plasma density from the I-Q signals, first we need to 

know the range of these signals.  Both the I and Q outputs are sinusoidal.  Calibrating the 

system requires us to find the amplitude of the signals, as well as any offset.  This was 

done without a plasma in the chamber using the phase shifter built into the 

interferometer.  The phase shifter changes the phase of the signal which propagates 

through the chamber.  This clearly changes the phase difference between that signal and 

the reference signal.  I was able to determine the amplitude and offset of the two signals, 

shown in Table 1, for the first set of measurements.  Any time the amplifiers or 

attenuators are altered this calibration will need to be repeated. 
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6.2 Raw Signal 

 One of the first sets of data I was given to analyze was for a plasma created using 

a 2 ms shot from a plasma gun with all six coils on and a B-field of approximately 2 

kilogauss.  Figure 6-3 shows the raw interferometer output.  Before and after the shot the 

two channels have a nearly constant signal.  At the beginning of the shot, and again near 

the end, there is a rapid change in the I-Q outputs as the phase changes rapidly.  In the 

middle of the shot there is some change, but it is less extreme.  In order to remove some 

of the noise from the signal, a smoothed version was created and analyzed.  A moving 

average was used to create the smoothed plot in Figure 6-4. 

6.3 Line Average Density 

 Using the method considered in Chapter 2, these two interferometer outputs can 

be used to find a line average density for the plasma being measured.  First, the I and Q 

signals are used to find the phase shift during the shot.  Figure 6-5 shows the phase plot 

that is obtained from simply taking the inverse tangent of the I data divided by the Q data.  
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Figure 6-3: Raw I and Q signals from the interferometer during a 2ms plasma shot 
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Getting from the phase plot to the density is simply a matter of scaling and adding an 

offset.  This plot seems to imply that the density of the plasma rose quickly, then almost 

instantly dropped to a lower density than we started with.  The real cause of this rapid 

drop is that the inverse tangent function will not give a phase greater than π or less than –

π.  Once the phase became larger than π it loops back around to –π.  In order to have a 
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Figure 6-4: Smoothed I and Q signals from the interferometer during a 2ms plasma shot 
 

Figure 6-5: Phase shift data from a 2 ms plasma shot 
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meaningful density plot we have to differentiate between one of these fringe jumps and 

actual phase changes.  In order to achieve this, my code follows the method used in 

[Ejiri].  The raw phase data is convolved with a short pulse.  When a portion of the phase 

data changes more rapidly than the surrounding data, the output of the convolution is 

large.  Changing the width and amplitude of the pulse changes the parameters of what is 

considered a fringe jump. 

Once the fringe jump is removed and the data is scaled the density plot can be 

seen in Figure 6-6.  The density has a rapid increase which slows for most of the shot 

before rapidly decaying at the end.  This particular shot used all 6 coils but no electron 

gun.  The coils will eventually be charged up to 25kV.  For this shot the coils were not 

charged.  Assuming that the plasma is approximately 20cm in diameter, the peak density 

is around 4.2e12 cm^-3.   
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Figure 6-6: Line average density after eliminating fringe jumps from a 2 ms plasma shot 
(assuming a plasma diameter of 20cm) 
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6.4 Density Decay 

 The most interesting behavior exists once the plasma source has been turned off.  

Until that point it is impossible to know what portion of the density to attribute to 

successful confinement and what portion results from simply adding more plasma to the 

system.  Figure 6-7 shows the how the density decays next to the current from the plasma 

source.  In addition to the peak density, the rate of decay in this region will give us a 

good idea of how well the plasma is being confined.  
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Figure 6-7: Line average density decay once the plasma source is turned off. 
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7. Conclusion 

 The 94 GHz interferometer mounted on EMC2’s WB-8 chamber provides 

information about the line average density of a cord through the center of the plasma.  

This measurement is crucial for a fusion plasma, where density is a major limiting factor 

for the frequency of fusion events. 

 A heterodyne configuration was chosen for the interferometer in order to increase 

power in the system and to eliminate some ambiguity in the received signal.  Unlike a 

homodyne interferometer, our system can detect the direction of a phase shift since it 

moves from 500 MHz rather than from 0.  An I-Q mixer further clarifies the signal by 

decoupling signal changes that result from phase shifts, which we are interested in, from 

those caused by amplitude changes. 

 In order to test a chord through the plasma, a lens system was designed to transmit 

our desired beam through the chamber.  Ideally, this beam should be as narrow as 

possible and collimated as it passes through the plasma.  Modeling the beam was 

simplified by using a corrugated horn antenna which transmits an approximately 

Gaussian beam.  

 Gaussian optics were used to model the behavior of the beam as it leaves the 

antenna, passes through a lens and then propagates approximately two meters through the 

chamber to a receiving horn.   Physical space limitations in the system prevented the use 

of a lens large enough that diffraction effects could be ignored.  As a result, bench testing 

of the optical system was needed to ensure that the beam profile was understood.  While 

diffraction changed the waist size of the beam, the profile remained Gaussian and very 

little power was lost. 
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 Interpreting the density from the received signal requires solving the dispersion 

relation for the propagating waves.  Interferometers are typically oriented with the beam 

travelling perpendicular to magnetic field lines.  As a result O-mode waves are received 

which have a simple dispersion relation.  The geometry of WB-8 makes it impossible to 

avoid sending the interferometer beam parallel to field lines.  By choosing a high 

frequency the R and L mode waves can be well approximated by using the O-mode 

dispersion relation. 

 One major limitation of the interferometer is that it doesn’t provide any 

information about the distribution of the density.  A refractometer was also designed to 

give a more thorough picture of the density profile.  The optics are similar to the 

interferometer, but the receiver is an array of horns with power detectors.  The system has 

been designed but has not yet been used on the machine. 

 In many ways WB-8 is still operating well under capacity.  The Marx Bank which 

charges the coils has been turned on, but only seven of the eventual 20 capacitors are 

connected.  Even those seven capacitors have not yet been fully charged.  The electron 

gun is being repaired and has not been used with the interferometer mounted.  Density 

measurements from the interferometer will be vital as these and other systems are 

implemented.  The measurements have already provided information about the plasma 

currently being made. 

 An important next step will be to complete and mount the refractometer.  The 

optics are finished and all parts have been purchased and received.  Once the scheme for 

mounting the system on the Polywell chamber is finalized I can begin to wire the 

receiving array.  The Gunn oscillator is already wired and ready to be mounted.  While 
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there will be challenges in interpreting the density profile of the plasma even with the 

Refractometer, it should be possible to get a better sense of the size and profile of the 

plasma being measured. 



74 
 

PARTS LIST 

OPTICS Quantity Vendor 
U100-P Precision Platform Mirror Mount 2 Newport Optics 
UPA-PA1 Horizontal Adaptor 2 Newport Optics 
SP-2 Standard Post 2 Newport Optics 
SP-1 Standard Post 2 Newport Optics 
VPT-2 Translating Post Holder 2 Newport Optics 
PRL-12 Precision Optical Rail 1 Newport Optics 
PRC-1 Rail Carrier 2 Newport Optics 
AJS100-0.5K Adjustment Screw 4 Newport Optics 
M-EL80 Lab Jack 2 Newport Optics 
TGN80 Tilt Platform 2 Newport Optics 
423 Linear Stage 2 Newport Optics 
High Density Polyethylene Lens 2 

 
   INTERFEROMETER 

  94.0 GHz 17 dBm Gunn with isolator (0.6 db) 1 HXI 
93.5 GHz 17 dBm Gunn with isolator (0.6 db) 1 HXI 
10 dB directional coupler  1 Hughes 
Balance mixers (93-95 GHz), 110-13 dBm LO power 2 Millitech 
        with IF amplifer (0.1 - 1GHz) 

  Attenuator (0-20 dB) set screw 2 Hughes 
0-180 degree phase shifter 1 Millitech 
3 dB coupler 1 Baytron 
Corrugated Horn antenna - Lauching at 94GHz 1 Millitech 
3 dB power splitter 1 Millitech 
Various waveguides + flanges, screws 1 Penn Engineering 
Low frequency mixer and  baseband amplifer 1 Mini circuit 
Band Bass filter - 8921Z 1 Pacific Millimeter 
IF amplifiers (351A-3-4.7-NI) 2 Analog Modules 
Horn antenna - Receiving at 94 and 136 GHz 1 Penn Engineering 
Transition WR-10 to WR-22 2 Penn Engineering 
Transition WR-8 to WR-10 1 Penn Engineering 

   REFRACTOMETER 
  136 GHz, 23 dBm (200 mW) source 1 Millitech 

Corrugated Horn antenna - Launching at136 GHz  1 Millitech 
Horn antenna - Receiving at 94 and 136 GHz 8 Penn Engineering 
High Pass filter - 136HPF (pass 136, reject 94 and 120) 1 Pacific Millimeter 
136 GHz detector w/ Video Amplifier 8 Millitech 
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