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Abstract 

A stochastic ensemble model composed of three functional forecasting models has been 

developed to forecast >2 MeV electron flux at geosynchronous (GEO) orbit.  The REFM 

model is based on a statistical link between electron flux and solar wind speed using 

empirically derived linear filter coefficients, the Li model solves a radial diffusion 

equation with a diffusion coefficient that is a function of the solar wind velocity and 

interplanetary magnetic field, and the FLUXPRED model is a multi-layer feed-forward 

neural network with electron flux and summed Kp as input.  Individual model results 

were combined using a multivariate regression to produce significantly better predictive 

results than any of the individual models alone.  A stochastic model is then developed to 

forecast the probability that a fluence threshold will be exceeded.  The regression 

technique, model optimization, and calculation of forecast probability will be discussed 

in reference to the ensemble model.  
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Chapter 1 

Introduction 

1.1 Motivation  

Charged particle radiation is known to be deleterious to spacecraft electronics, leading to 

temporary and sometimes permanent degradation.  Sustained periods of high energy 

electron fluxes (>2 MeV) can cause an electric field to form within an insulating material 

internal to the spacecraft.  Once this field exceeds the material’s breakdown voltage, a 

discharge may occur that couples to other internal electronics.  This phenomenon, known 

as deep dielectric charging, can lead to considerable side effects such as spacecraft 

shutdown, thruster ignition, or control anomalies, to name a few. Particularly of interest is 

the radiation environment at geosynchronous (GEO) orbit where a large number of 

important commercial and military satellites operate.  In fact, anomalous control was seen 

during momentum wheel malfunction on two Canadian ANIK communications 

spacecraft in January 1994 as a result of sustained high energy electron flux for seven 

days prior to the event.  February 1994 is another famous example of deep dielectric 

charging; the satellite feed relaying the Winter Olympic Games on the BS-3a spacecraft 

was interrupted during a final historical ski jump for the Japanese team due to a prior 

two-week period of high energy electron flux [Shea and Smart, 1998].      

Thus, the usefulness in predicting when the radiation environment becomes hazardous is 
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apparent for protecting both commercial and military assets in space.    A variety of 

attempts have been made to forecast high energy flux (>2 MeV) at GEO [Nagai 1988; 

Baker et. al 1990; Koons and Gorney 1991; Li 2004; Ling et. al 2010].  An ensemble 

forecasting model is proposed with the idea that contributing the strengths of these 

models should result in a better answer than any one of the models alone.  The three 

models chosen for this ensemble each use separate approaches to model the relativistic 

geosynchronous electron flux.  The Relativistic Electron Flux Model (REFM) model is 

based on a linear predictive filter [Baker et. al, 1990], the Li model is based on radial 

diffusion [Li, 2004], and the Fluxpred model employs a neural network [Ling et. al 2010].  

 

1.2 Background  

The earth’s magnetosphere forms a teardrop-shaped cavity in which the earth resides.  

The shape of this cavity is a result of the deflection of solar wind particles from the 

intrinsic magnetic field generated around the earth.  The solar wind energy input into the 

magnetosphere is greatly dependent on the direction of the z-component of the 

interplanetary magnetic field (IMF), also known as Bz.  When the Bz points northward, 

magnetic field lines tend to “pile up” on the earth’s magnetopause (the boundary between 

the earth’s magnetic field and the solar wind) and magnetic reconnection occurs in the tail 

region, as shown in Figure 1.  
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Figure 1.  Magnetic field line configuration during a northward pointing Bz (IMF).  Excerpted from  

[Crown et al., 2000].   

 

When the Bz points southward, magnetic reconnection (a process by which separate 

magnetic field lines splice together to form a new field line) occurs on the “nose” of the 

magnetopause.  This allows the solar wind to penetrate closer to the earth and entrain 

much of the solar wind plasma into the night-side magnetosphere, some of which appears 

on the earth as aurora.  The configuration of this process is illustrated in Figure 2. 
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Figure 2.  Magnetic field line configuration during a southward pointing Bz (IMF).  Excerpted from [Crown 

et al., 2000].   

 

Geomagnetic activity is therefore highly dependent on the IMF orientation.  One measure 

of geomagnetic activity is a quantity known as the Kp index.    The official planetary Kp-

index is computed through a weighted average from a worldwide geomagnetic 

observatory network.  The Kp-index is a quantification of the earth’s horizontal magnetic 

field disturbance that ranges semi-logarithmically from 0-9, with Kp = 1 indicating calm 

whether and Kp > 5 indicating a geomagnetic storm.  This index is computed at regular 

3-hour intervals where the maximum positive and negative deviations are summed to get 

the total maximum fluctuation, and this is the value known as  𝐾𝑝.  These geomagnetic 

storms are triggered from solar events such as coronal mass ejections (CMEs), high-

speed streams from coronal holes, and solar flares. 

Existing in the magnetospheric cavity are the inner and outer radiation belts, as illustrated 
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in Figure 3. 

 
Figure 3.  Illustration of the inner and outer radiation belts.  Excerpted from [Crown et al., 2000].   

The inner radiation belt extends from ~100-10,000 km above the earth’s surface.  This is 

commonly denoted as extending from 0.01 to 1.5 earth radii, or from L ~ 0.01 to L ~ 1.5.  

The inner belt is a relatively stable region that consists primarily of high energy protons, 

with particles sometimes being trapped for hundreds of years.  The outer radiation belt 

extends from ~L = 3 to L =7, and consists primarily of high-energy electrons.  Converse 

to the inner belt, the particle population is highly dynamic, with the average electron 

lifetime on the order of 1-3 days.     

Charged particles found on these magnetic field lines conserve what are known as the 

three adiabatic invariants.  The first is associated with a particle gyrating around a field 

line, the second is associated with a particle bouncing back and forth from pole to pole, 

and the third is associated with the slow drift of the bouncing, gyrating particle around 

the earth.  An illustration of these is shown in Figure 4. 
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Figure 4.  Illustration of the three adiabatic invariants.  Excerpted from [Kivelson et al., 1995].  

 

Waves resonant with any of these invariants can transfer energy to particles traveling 

along the magnetic field lines, where a number of effects can occur.  If either the first or 

second invariant is violated, the period of the particle bouncing back and forth will be 

changed, and in some cases provide it enough energy to have its “bounce point” 

(commonly denoted the mirror point) within the atmosphere, and thus be lost due to 

frictional effects.  This occurs in the slot region between the radiation belts, which is why 

there is an absence of particles present in this location.  Ultra low frequency (ULF) waves 

can be resonant with the particle drift period for a narrow range of particle energies that 

are located outside the outer radiation belt, causing the drift velocity Vd to increase.  This 

then has the effect of migrating the particle inward to conserve the third adiabatic 

invariant, and thus the process of radial diffusion occurs.  It is this mechanism by which 

the outer radiation belts are assumed populated.  A physical analogy would be to consider 

the magnetosphere as a bell and the solar wind as a hammer:  when the bell is struck, 

sound waves emanate from it; conversely, when the magnetosphere is “struck,” ULF 

waves are emitted from it [Engebretson et al., 1998], energizing the particles further out 

and causing them to diffuse inward.  The flux of these high energy electrons (> 2 MeV) 
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migrating inward is the quantity that is sought to be predicted, specifically at GEO (L = 

6.6).   

  

1.3 Input Parameters for Forecasting Models 

There are many possible drivers for a geosynchronous electron flux forecasting model, 

and the task of reducing these to a manageable set can be quite daunting.  It is apparent 

from the preceding discussion that both the solar wind and geomagnetic fluctuations are 

correlated with the electron flux at GEO.  This relationship is described by Baker et al. 

[1990].  Figure 5a shows the data between April and July of 1982 for solar wind speed 

and 3- to 5-MeV electron count rate at GEO, as measured by the Advanced Composition 

Explorer (ACE) and a Geostationary Operational Environment Satellite (GOES), 

respectively.  Details of these satellites will be discussed in Chapter 2.  Figure 5b shows 

the same for the period between July and October of 1985.   
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Figure 5.  (a) Solar wind speed (top curve) and 3- to 5-MeV electron count rates (bottom curve) for April 

through July 1982, with the left axis corresponding to the bottom curve and the right axis corresponding to 

the top curve.   (b) Similar to 5a for the period July to October 1985.  Excerpted from [Baker et al., 1990]. 

 

It can be seen that the 3-5 MeV electron counting rates tend to increase on the declining 

side of the solar wind speed peaks.  The quality of the data in part b is much poorer, but 

the correlation between electron flux and solar wind speed can still be seen.  The electron 

count rate E1 is shown as a daily average to remove diurnal variations and plotted as the 

logarithm.  This suggests that fluctuations in solar wind velocity can be correlated with 

fluctuations in electron flux after a certain amount of time lag.  Baker et al. [1990] did 

their correlation analysis as follows.  The data was detrended so that both quantities have 

a mean of zero, and just the fluctuations are being compared.  This was done by 
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constructing 50-day running means of the input and output time series, fitting 5
th

-order 

polynomials to the sequence of means, and removing this polynomial from the raw data.  

After detrending the data, the autocovariance and cross covariance of the solar wind 

speed V (the input time series) and the electron count rate E1 (the output time series) was 

determined, with the results shown in Figure 6. 

 

Figure 6.  (a) The autocovariance of available solar wind speed daily averages (1982-1985).  (b) The 

autocovariance of the log of the 3- to 5-MeV electron counting rates (1982-1985).  (c) The cross covariance 

of the parameters analyzed in Figures 6a and 6b.  Excerpted from [Baker et al., 1990]. 

 

The solar wind velocity (Figure 6a) shows a strong autocovariance peak for 27 days lag 

and a weaker peak for 13 days lag.  The same relationship is shown for the logarithmic 

electron flux (Figure 6b).  These are related to the period of a solar rotation being 27 

days.  The cross covariance of log E1 and solar wind speed shows a strong correlation 

with a 2-3 day lag, with additional peaks at + 27 days.   
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The same analysis done by Baker et al. [1990] using summed Kp fluctuations as the input 

time series and multi-MeV electron flux fluctuations as the output time series is an 

extension of earlier work done by Nagai [1988], and can be seen in Figure 7.   

 

Figure 7.  (a) The autocovariance of the  𝐾𝑝data between April 1982 and 1985.  (b) The autocovariance of 

the log of the 3- to 5-MeV electron counting rates (1982-1985).  (c) The cross covariance of  𝐾𝑝  and log 

E1 (1982-1985).  Excerpted from [Baker et al., 1990]. 

 

As can be seen, the cross covariance of log E1 and summed Kp shows a strong 

correlation with a 1-2 day lag, with additional peaks at + 27, 54, and 81 days.  It is for 

this reason that the ensemble model uses both solar wind velocity and summed Kp data 

as inputs to produce an electron flux forecast at GEO a maximum of 72 hours in advance.   
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Chapter 2 

Methods and Models 

2.1 Data Preprocessing 

The >2 MeV electron flux used as both input and validation data to the ensemble model 

is measured at GEO by the Geostationary Operational Environmental Satellite (GOES) 

family of satellites.  These satellites perform a number of functions such as weather 

forecasting, storm tracking, and meteorology research, and have been in continuous use 

since the launch of GOES-1 on October 16, 1975.  From the beginning, this series of 

spacecraft has carried a Space Environment Monitor (SEM) package.  The SEM contains 

four instruments: the energetic particles sensor (EPS), the high energy proton and alpha 

detector (HEPAD), the X-ray sensor (XRS), and a magnetometer.  The EPS unit contains 

three channels for measuring electrons (E1, E2, and E3) that correspond to three different 

energy levels (> 0.6 MeV, > 2 MeV, and > 0.6 MeV, respectively).  Each channel is a set 

of two 1500-µm, 25-mm
2
, silicon surface detectors that each have an independent field of 

view with a different thickness moderator in front of them corresponding to the desired 

energy threshold.  The silicon surface detectors output charge pulses to a preamplifier, 

which converts them to voltage pulses before being sent to a signal analyzer unit/data 
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processing unit (SAU/DPU) [Space Systems-Loral, 1994].  From GOES-8 onward, the 

SEM instruments all showed a strong linear correlation with each other, as shown in 

Figure 8. 

 

Figure 8.  Daily averages of the >2 MeV electron flux for selected GOES satellite pairs.  Excerpted from 

[Ling et al., 2010]. 

 

GOES-8 and GOES-7 are arguably correlated, but this relationship is much more 

ambiguous than in the later satellite packages; GOES-7 and GOES-6 show too large of a 

spread to determine a meaningful correlation.  It is for this reason that only data from 

GOES-8 onward is used, with the objective being to have at least a solar cycle’s worth of 

data, or ~11 years.  The reasons for this time interval selection will be detailed in Section 

2.5.  The availability of all GOES data from GOES-5 onward is shown in Figure 9.
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Figure 9.  The times for which >2 MeV electron flux data is available for each GOES satellite. Excerpted 

from [Ling et al., 2010]. 

 

The >2 MeV electron flux data used in this study is from 1 July 1995 to 31 December 

2008, coincident with GOES-8 onward.  A desired aspect of the data is that the variation 

of small values should not be less significant than the variation of large values when 

considered locally, so the logarithm of the electron flux is used for all computations.  The 

>2 MeV logarithmic electron flux data was combined from each operational satellite at 

the time to get an average for geosynchronous orbit rather than the value at one particular 

orbit location.  This was accomplished by normalizing all satellite data to GOES-8 

through normalization parameters developed by Ling et al. [2010] and reproduced below:  
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Table 1.  GOES >2 MeV electron flux normalization parameters.  Excerpted from [Ling et al., 2010]. 

 

The σ
2
 value is defined by the author as the average squared deviation of the log of the 

data from the log of the normalized data.  Note that since GOES-12 was not operational 

at the same time as GOES-8, the GOES-12 data is first normalized to GOES-10 and the 

result is then normalized to GOES-8.   Once normalized, the mean of the logarithmic flux 

values is then used as the electron flux for that given time.   GOES electron flux data is 

recorded in 5-minute intervals, so there are 288 of these mean logarithmic flux values for 

any given day.  These were averaged to provide one mean logarithmic flux value for the 

day, and this is the electron flux that was input to each of the models.  It is known that 

proton contamination can occur for >2 MeV electron flux data during times of high 

proton flux, so when the average >30 MeV proton flux of all relevant GOES satellites 

exceeded 50 pfu, this data was treated as missing.
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Solar wind velocity data is gathered from the Advanced Composition Explorer (ACE), 

located at the L1 Lagrange point between the sun and earth.  Lagrangian points are a set 

of five points between two orbital bodies where gravitational effects exactly cancel out 

such that an object in one of these points can remain stationary.  This data is available 

real-time in minute increments to provide advance warning of geomagnetic storms.  

These 1-minute values were daily-averaged to get a single solar wind velocity 

approximation for each particular day coincident with the electron flux dataset.  Also, the 

3-hour indices for the summed Kp data were summed for the day to get a total measure of 

daily fluctuation.  

 

  2.2 REFM Model 

The Relativistic Electron Flux Model (REFM) uses a linear prediction filtering technique 

successfully described in [Baker et al., 1990] to couple the solar wind velocity with the 

electron flux at geosynchronous orbit.  This method assumes that a filter g(τ) can describe 

the relationship between an input time series I(t) and an output time series O(t) as  

𝑂 𝑡 =   𝑔 𝜏 𝐼 𝑡 − 𝜏 𝑑𝜏
∞

0
,  

with t being the observation time and Ƭ being the time lag.  The system is assumed to be 

linear and time stationary so that the output O(t) can be described by the input I(t) as it 

responds to the impulse response function g(τ).  One can Fourier transform into the 

frequency domain to solve 

𝐺 𝜔 =  𝑂 𝜔  /[𝐼 𝜔 ], 

 and then transform back into the time domain to get the corresponding g(τ).  Essentially, 

the impulse response can be thought of as the array of elements a that is the solution of
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𝑅𝑖𝑛𝑎 =  𝐶𝐼𝑂, 

where Rin is the input time series autocovariance matrix, and CIO are the cross covariance 

elements between the input and output time series.  The impulse response function for 

logarithmic electron flux E1 due to solar wind velocity V is shown in Figure 10. 

 

Figure 10.  The linear predicition filter between V and the log of the 3- to 5-MeV electron count rates at 

geosynchronous orbit.  Excerpted from [Baker et al., 1990]. 

 

As can be seen, the linear prediction filter exhibits a large negative value at zero lag and a 

large positive value at about 1 day, falling rapidly by day 3.  This is the basis for the 1-, 2-

, and 3-day forecasts provided by REFM.  The coefficients for this linear predictive filter 

method along with past daily-averaged solar wind velocity are used in REFM to make a 

72-hour prediction.  Both coefficients ci and daily-averaged solar wind velocity vi are 

used for the last 30 days to get the raw forecast as in 

𝑟𝑎𝑤𝑓𝑐 =   𝑐𝑖𝑣𝑖

30

𝑖=1

 

Once the raw forecast has been made, a ratio between the previous day's forecast and 
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observed value is used to modify the forecast such as 

𝑚𝑜𝑑𝑓𝑐𝑖 =
𝑟𝑎𝑤𝑓𝑐𝑖 ∗ 𝑜𝑏𝑠𝑖−1

𝑟𝑎𝑤𝑓𝑐𝑖−1
 

This is done to catch any sudden electron events that the solar wind parameter did not 

characterize or to account for physical changes in the magnetosphere.  The difference 

between including this correction factor and not can be seen in Figure 11. 

 

Figure 11.  Demonstration of the flux correction factor in the REFM 1 day forecast model output.  

Excerpted from [Onsager et al.] 

 

REFM deems electron flux data bad if the >30 MeV proton flux exceeded 50 pfu, the 

logarithm of electron fluence is greater than 10, the solar wind speed is greater than 1200 

m/s or less than 200 m/s, or there is missing data.  Since time dependence is integral to 

the analysis being performed, persistence was substituted for these values, or the last 

known daily-averaged electron flux, to get a coherent time series spanning the 11-year 

testing period.
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  2.3 Fluxpred Model 

The Fluxpred model developed by Ling et al.[2010] is a multi-layer feed-forward neural 

network (MLFN) with one hidden layer, shown schematically in Figure 12.   

 

Figure 12.  Schematic of a multi-layer feed-forward neural network having 1 hidden layer.  Neurons are 

shown as filled black circles and solid lines indicate the left to right flow of data.  Ellipses indicate omitted 

neurons for clarity of presentation.  Excerpted from [Ling et al. 2010].   

 

The output Ot+T is produced from a time series of N inputs (It-τ, where τ is the time lag) 

after being fed through N input neurons and one hidden layer.  With the exception of the 

input neurons, the output λj of each neuron j is given by 

𝜆𝑗 = 𝑓(𝛼𝑗 ), 

where αj is the net input to a neuron j given by 

𝛼𝑗 =  𝑥𝑖𝑤𝑖𝑗 + 𝑇𝑗
𝑁−1
𝑖=0 ,
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 and xi is the ith input to neuron j, wij is the weight of input i to neuron j, and Tj is a 

threshold for neuron j.  This net input αj is evaluated in an activation function  

𝑓𝑗 (𝛼𝑗 ) =
1

1 + 𝑒−𝛼𝑗
 

Each wij and Tj are determined through network training.  This is accomplished by first 

initializing the weights through a genetic optimization algorithm [Whitley, 1994].  Each 

member of the initial population is a binary string containing a set of weights which are 

randomly generated.  The members are then evaluated by using their weights on each of 

the corresponding variables and calculating the error associated with the answer; in this 

case the observed electron flux value.    Each string is then assigned a “fitness” value 

based on this error, with the desire that smaller values of error will map to larger values 

of fitness.  This mapping function is defined as 

𝑓 𝑣 = 𝑒𝑘𝑣 , 

where v is the error and k is chosen to be -20, which maps an error of 0.001 to a fitness 

value of 0.98, 0.01 to 0.82, and so on and so forth.  The fitness for each string is 

normalized with respect to the average fitness of the population, i.e fi/fave.  The selection 

process of the strings from the current population to the intermediate population is done 

by a process called remainder stochastic sampling.  For each string where the normalized 

fitness is greater than one, the integer portion determines how many copies of that string 

are placed directly into the intermediate population.  The fractional portion of this ratio is 

then used to determine the probability that an additional copy of the string will be placed 

in the intermediate population.  For example, a normalized fitness value of 1.81 places 

one copy of the string into the intermediate population and then gets a 0.81 chance of 

placing a second copy.  For any normalized fitness value below one, the corresponding 



Chapter 2.  Methods and Models 

20 

 

string has this value's chance of being inserted into the intermediate population.  This is 

done by initially filling the population with the integer strings till all strings only have 

fractional values, and then one of these is randomly chosen and its fractional value is 

compared to a random number between 0 and 1.  If its fractional fitness value is greater 

than this random probability, it is chosen and inserted into the intermediate population 

after removal from the fractional fitness population. After the intermediate population is 

produced, recombination is used to create the next population.  Two parents are randomly 

chosen from the intermediate population to reproduce with a probability of 0.80.  A 

random probability is generated like above and compared to see if 0.80 is greater than it.  

If so, then a crossover point is randomly determined and the parents reproduce.  For 

example, consider a binary string 10010110 and a binary string xxyxyyyx (where x and y 

are 1 and 0 but represented like this for clarity).  Say the parents pass the probability test 

and the crossover point turns out to be in the middle of these, so that these parents would 

produce offspring of 1001yyyx and xxyx0110.  After this recombination occurs, a 0.0001 

probability of mutation can occur, in which a random bit in the child is flipped.  This 

process of evaluation, selection, recombination and mutation constitutes one generation 

of the genetic algorithm.   Fluxpred does this for three generations to initialize weights 

before the training begins, with a population size of 50 for each generation. 

After initialization, the weights wij and thresholds Tj were optimized through minimizing 

the mean squared error E, 

𝐸 =  
1

𝑁𝑇𝑆
 𝐸𝑛

𝑁𝑇𝑆 −1
𝑛=0 , 

with NTS being the number of training samples and En the error for a single training 

sample,
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𝐸𝑛 = (𝑓𝑗
′ − 𝑓𝑗 )2, 

where fj is the actual (model) activation function of the output neuron j and 𝑓𝑗
′  is the 

correct (data) activation of the output neuron.  A conjugate gradient method was used to 

minimize E, with the partial derivative of E being with respect to each network weight wij 

as in 

𝜕𝐸

𝜕𝑤 𝑖𝑗
= −𝜆𝑗

𝜕𝑓𝑗

𝜕𝛼𝑗
(𝜆𝑗

′ − 𝜆𝑗 ), 

where 𝜆𝑗
′  is the desired output of neuron j and 𝜆𝑗  is the actual output of neuron j. A 

cumulative set of partial derivatives over the training set results in a weight gradient 

vector.  Steps in wij-space are then taken in the direction of the vector until E is 

minimized.  

For a MLFN comprised of NL layers, the number of parameters needed to define the 

network through weights and thresholds is given by 

𝑁𝑊𝑇 =  (𝑁𝑖 + 1)
𝑁𝐿−1
𝑖=0 𝑁𝑖+1, 

with Ni being the number of neurons in layer i.  The number of degrees of freedom this 

network has is then defined by  

𝑣 =  𝑁𝑇𝑆 −  𝑁𝑊𝑇 , 

leading to the requirement that v > 0 for a unique solution of minimizing E to exist.  This 

condition was applied to an earlier neural network model for electron flux at 

geosynchronous orbit developed by Koons and Gorney [1991] (KG), which was the 

starting point for Fluxpred.  The KG model had 10 input neurons, 6 hidden-layer neurons, 

and one output neuron, resulting in a network with 73 weights.  The training period for 

the KG model was 62 days of data, of which 10 consecutive days were of summed Kp  

index for input to the network.  This implied a training sample size of 52, meaning the 
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number of free parameters (weights and thresholds) exceeded the number of data points.  

To decrease the possibility of over fitting in Fluxpred, all networks satisfied the condition 

𝑁𝑇𝑆 > 2𝑁𝑊𝑇 .  

Each Fluxpred network was evaluated on its ability to reproduce the electron flux data 

used to train it and its ability to reproduce electron flux data not in the training set.  It was 

found that summed Kp data by itself was inadequate to even now-cast electron flux, and 

certainly not to forecast it.  The network was then modified to include current and 

historical electron flux along with summed Kp data, with an optimized network resulting 

in 10 electron flux input neurons corresponding to the last 10 days of daily-averaged 

electron flux, 7 summed Kp index input neurons corresponding to the last 7 days of daily 

summed Kp, and 2 hidden layer neurons. 

Once the optimal network structure is found, the training period duration and the time 

between retraining need to be determined.  Given the seasonal variations of the data 

[Cliver et al. 2000], it is important to choose a training set size of at least one year to 

minimize any data asymmetry.  Networks of 1, 1.5, and 2 years of training data are 

examined with a 6-month retraining period, and the results are shown in Figure 13.  
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Figure 13.  The mean skill scores for 1-day (top), 2-day (middle), and 3-day (bottom) electron flux 

forecasting as a function of the retraining period for 6-month test intervals over the period 1998-2008.  The 

black filled circles denote a 1-year training set size, the black open circles an 18-month training set size, 

and the red filled circles a 2-year training set size.  Excerpted from [Ling et al. 2010].  

 

As can be seen, the 2-year training set size is the best on average.  Retraining every 6 

months versus every day was investigated, with the results shown in Figure 14.
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Figure 14.  Electron Flux as a function of time for 1-day (top), 2-day (middle), and 3-day (bottom) 

forecasts for the test interval 1 July 2003-31 December 2003.  The black lines indicate the actual data, and 

the blue (red) lines indicate a retraining period ending 6 months (1 day) prior to the test period.  The 

training set size for all networks is 2 years.  Excerpted from [Ling et al., 2010]. 

 

The data indicates daily retraining is superior to every 6 months, so the model is 

optimized with a 2 year training period to predict 1, 2, and 3 days into the future, with 

daily retraining.     

 

  2.4 Li Model 

A model developed by Xinlin Li [Li, 2004] uses solar wind data to model the radial 

diffusion rate and in turn predict MeV electron fluxes at geosynchronous orbit.  The 

model uses the standard radial diffusion equation proposed by [Schulz and Lanzerotti, 

1974] and shown below:
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𝜕𝑓

𝜕𝑡
= 𝐿2

𝜕

𝜕𝐿
 
𝐷𝐿𝐿

𝐿2

𝜕𝑓

𝜕𝐿
 −

𝑓

𝜏
 

In this equation, 𝐷𝐿𝐿  is the diffusion coefficient, τ is the average electron life time, and f 

is the electron phase space density. This is related to differential flux j by  

𝑓 =
𝑗

𝑝2
 

where p is the relativistic electron momentum.  L is an adiabatic invariant related to the 

third, but by approximating the earth’s magnetic field as a dipole, L is also the distance in 

earth radii at the equator.  Both DLL and τ are functions of L, given by 

𝐷𝐿𝐿 = 𝐷0(𝐿 6.6 )10 

𝜏 = 𝜏0(6.6
𝐿 )9 

Average electron lifetime τ0 is found to be 2.86 days for a 1.8-3.5 MeV electron, and D0 

is a function of solar wind and interplanetary magnetic field (IMF) given by 

𝐷0 = 𝐶(𝑣/𝑣0)𝛾1 1 + ((𝑣𝑥𝑏𝑧 +  𝑣𝑥𝑏𝑧  )/𝛼)2  𝛾2  (
∆𝑣2

∆𝑡
)2/𝛽  𝛾3  

In the first term, v is the solar wind velocity and v0 is the nominal value of solar wind 

velocity (425 km/s).  The second term is a function of the solar wind electric field y-

component that varies only when bz (the IMF z-component in GSM coordinates) is 

negative, since vx is always negative.  The third term deals with solar wind velocity 

fluctuations window-averaged over 1.5 hours for 10 minute data resolution, and β is the 

average of the fluctuations over 1995-1996, having a value of 9000 km
4
/min

6
.  The 

constants were optimized by author for the period of 1995-1999 to minimize χ
2
, given by
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𝜒2 =
1

𝑁
  log10 𝑗𝑖 − log10(𝑗𝑖

′) 

𝑁

𝑖

 2 

where ji is the modeled result and 𝑗𝑖
′  is the true (data) result.  The parameters for 1.8-3.5 

MeV electrons are C = 0.021/day, α = 68.0 km/s nT, γ1= 1.98, γ2= 0.160, and γ3= 0.032.  

The inner boundary for the diffusion process is set at L = 4.5 and the outer boundary is 

set at L = 11, chosen for its association with the last closed drift orbit.  The radial 

diffusion equation is solved by setting (fouter / finner ) = 10
4
, resulting in a radial gradient 

and thus diffusion.  This value was chosen due to its approximate agreement with data [Li 

et al., 1997].  The time for electrons to diffuse inward to geosynchronous orbit from L = 

11 is then found to be 1-2 days, in close agreement with observations [Li, 2004].  On day 

0, the model steps through a day of solar wind data, solving the diffusion equation at each 

time step of 10 minutes.  This results in unit-less electron flux values between L = 4.5 and 

L = 11.  The results at L = 6.6 (geosynchronous orbit) are daily-averaged to get a unit-less 

electron flux value.  Measured electron flux value from GOES is then averaged over the 

same time period and the model finds a factor to scale the result with as 

    0.0016 + scale*model = measured 

Forecasting is done by averaging the diffusion coefficient over the last 2 hours and then 

using this value to run the diffusion equation for the next 2 days.  The results are daily- 

averaged and scaled by the aforementioned factor, resulting in 1- and 2-day forecasts.   

 

2.5 Ensemble Model 

Owing to the 2 year training period that was deemed optimal for Fluxpred’s neural 

network, the data used for testing the ensemble now begins at 1 July 1997, with the end 
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as previously stated at 15 August 2008.  The total number of data points is 4064, which 

equates to 11.13 years.  A solar cycle is ~11 years, during which the sun’s activity peaks 

to maximum and then diminishes to a minimum. Recurrence, or the value of electron flux 

27 days into the past, is a much better estimate than persistence during solar minimum, 

where active regions on the sun can persist for multiple rotations.  Persistence, however, 

is a much better estimate during solar maximum, where many active regions are coming 

and going that change the configuration.  Also, CMEs may change the structures built up 

in the solar wind rather quickly, leaving the best “guess” at the electron flux as the last 

known value.  It is for this reason that a data set of ~11 years is optimum for analysis, 

since the relevant physics of both persistence and recurrence are represented equally 

throughout the cycle, and one phenomenon is not biased over the other. 

 On any given day, a model will make predictions for the next three days (two for Li).  

This is represented as: 

Table 2: Prediction designations for individual models.  

Model Day +1  Day +2  Day +3 

REFM fcr1 fcr2 fcr3 

FLUXPRED fcf1 fcf2 fcf3 

Li fcl1 fcl2 
  

The goal of the ensemble model is to find a forecast of the form 

𝑓 ′ = 𝛼 ∗ 𝑓𝑐𝑟1 +  𝛽 ∗ 𝑓𝑐𝑓1 + 𝛾 ∗ 𝑓𝑐𝑙1, 

where α, β, and γ are constants to be determined by a multivariate least squares regression 

over some time interval in the past.  The multivariate least squares regression proceeds as 

follows.  A fitting matrix (or regressor) B is formed, where for the 1-day forecast  
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B =   

𝑓𝑐𝑟11 𝑓𝑐𝑓11 𝑓𝑐𝑙11

𝑓𝑐𝑟12 𝑓𝑐𝑓12 𝑓𝑐𝑙12

⋮ ⋮ ⋮
𝑓𝑐𝑟1𝑛 𝑓𝑐𝑓1𝑛 𝑓𝑐𝑙1𝑛

 . 

A data vector d is also formed,  

d =  

𝑜𝑏𝑠1
𝑜𝑏𝑠2

⋮
𝑜𝑏𝑠𝑛

 , 

where the observed values are the actual daily-averaged electron flux values on the date 

the forecast was made for. The scale factors x are then found from 

𝑥 = (𝐵′𝐵)−𝟏𝐵′𝑑, 

where 𝐵′𝐵 is the covariance matrix.  The result of this minimizes d – Bx, or minimizes 

the difference between the observed and forecast values for all vectors.   

For analysis purposes, it is more convenient to line up the data according to date forecast 

for rather than date forecast on, as shown in Table 3: 

Table 3: Data alignment for statistical calculations. 

Day 
REFM 
fc1 

REFM 
fc2  

REFM 
fc3 

FPRED 
fc1 

FPRED 
fc2 

FPRED 
fc3 Li fc1 Li fc2 Li fc3 

day+
0 

         day+
1 fcr1_0 

  
fcf1_0 

  
fcl1_0 

  day+
2 fcr1_1 fcr2_0 

 
fcf1_1 fcf2_0 

 
fcl1_1 fcl2_0 

 day+
3 fcr1_2 fcr2_1 fcr3_0 fcf1_2 fcf2_1 fcf3_0 fcl1_2 fcl2_1 fcl3_0 

day+
4 fcr1_3 fcr2_2 fcr3_1 fccf1_3 fcf2_2 fcf3_1 fcl1_3 fcl2_2 fcl3_1 

 

Where, for example, fcr1_0 indicates an REFM forecast made on day 0 for 1 day into the 

future, fcf3_1 indicates a Fluxpred forecast made on day 1 for 3 days into the future, etc.  

Arranging the data in this manner then allows comparisons of accuracy between the 
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relevant 1-, 2-, and 3-day forecasts for any particular date.  If day+0 is considered the 

starting day of the data set, then relevant statistics cannot be computed until day+3, when 

it is possible to check the 3-day forecast.  Thus, the first 3 days of the dataset are not 

used.   

Model performance is evaluated by two different methods.  The first is the prediction 

efficiency, defined as 

Prediction Efficiency =1- 
𝑀𝑆𝐸

𝜎2 , 

where MSE is the mean squared error defined as  

MSE = 
 (𝑃𝑖−𝑇𝑖)

2𝑁
𝑖=1

𝑁−1
, 

where Pi is the log of the predicted value for the ith element of the time series, Ti is the 

log of the observed value for the same time element as given by the data, the sum is over 

the number of days, N, in the series, and 𝜎2 is the variance of the data about the mean.  

The prediction efficiency is then a measure of how much better the model does when 

compared to just forecasting the mean µ for each day.  A value of one would be 

considered perfect prediction efficiency, whereas a value of zero indicates that the model 

is just as good as the mean at forecasting the electron flux.  Prediction efficiency can go 

negative, indicating that the mean would have been a better forecast than the result from 

the model.  The second performance parameter is the relative error of the forecast, 

defined as 

Relative Error = 
  𝑃𝑖−𝑇𝑖 

𝑁
𝑖=1

  𝑇𝑖 
𝑁
𝑖=1

 

The absolute value of the numerator and denominator are taken separately because both 

can be both positive and negative.  Daily-averaged flux is related to fluence through
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< 𝑓𝑙𝑢𝑥 >=
𝑓𝑙𝑢𝑒𝑛𝑐𝑒

#𝑠𝑒𝑐/𝑑𝑎𝑦
 , 

And daily-averaged logarithmic flux is related to logarithmic fluence through 

log10 < 𝑓𝑙𝑢𝑥 > = log10(
𝑓𝑙𝑢𝑒𝑛𝑐𝑒

86400
) = log10 𝑓𝑙𝑢𝑒𝑛𝑐𝑒 − log10 86400. 

Therefore, if the logarithmic fluence is less than log1086400, the daily-averaged 

logarithmic flux will be negative.  Absolute value is used because the primary concern is 

how far off of the true value the forecast was.  Summations are used in both the 

numerator and denominator to smooth out local effects.  If the relative error was defined 

by a single summation of each of the individual relative errors, then it could be artificially 

influenced by our chosen range, since zero is a valid value for daily-averaged logarithmic 

flux Ti.   

The accuracy of our measurements should be discussed in the context of significant 

figures.  GOES design and manufacturing is done by NASA, and once in orbit all satellite 

operations are conducted by the National Oceanic and Atmospheric Administration 

(NOAA).   According to NOAA operators, GOES-1 to GOES-15 had no requirements for 

either absolute or relative accuracy, and thus the errors of the instruments are unknown.  

Starting with GOES-16, set to launch in 2015, there is a requirement for flux 

measurement accuracy to within 25%.  This being the case, the significant digits will be 

carried out to the number given in the input data, which is three.  Three significant digits 

was also the number recommended by NOAA operators when quoting values derived 

from GOES electron flux data.     
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Chapter 3 

Results 

3.1 Historical Ensemble Model 

An analysis over the full 11-year period is first done for validation, and the variance is 

with respect to the mean logarithmic electron flux for the 11-year period, given by 

𝜇 =
 log 10 𝑓𝑖

𝑁
𝑖=1

𝑁
, 

where fi is the electron flux for a particular day i, N =4064 for the present 11-year 

analysis, and µ is found to be 2.078.  The prediction efficiency comparison with respect 

to µ is shown in Table 4, and the relative error comparison is shown in Table 5: 

Table 4: Prediction efficiency comparison for the 11-year dataset. 

Day REFM(PE) FP(PE) LI(PE) ENSEMBLE(PE) 

1 0.702 0.762 0.726 0.786 

2 0.312 0.597 0.475 0.642 

3 0.200 0.464 0 0.501       
 

Table 5: Relative error comparison for 11-year dataset. 

Day REFM(ERROR) FP(ERROR) LI(ERROR) ENSEMBLE(ERROR) 

1 0.183 0.161 0.164 0.151 

2 0.297 0.220 0.239 0.206 

3 0.319 0.258 0 0.249 

 

As can be seen, the ensemble model has both a higher prediction efficiency and a lower 
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relative error than any one of the other three models, with FLUXPRED a close second.  

Since the Li model only makes predictions up to 2 days in advance, the 3 day ensemble 

may benefit from having a third regressor like the previous days.  Recurrence is inserted 

on day 3 to fill this parameter, with the results shown in Tables 6 and 7: 

Table 6: Prediction efficiency comparison for 11-year dataset with recurrence added on day 3. 

Day REFM(PE) FP(PE) LI(PE) ENSEMBLE(PE) 

1 0.702 0.762 0.726 0.786 

2 0.312 0.597 0.475 0.642 

3 0.200 0.464 -0.0623 0.523 

 

Table 7: Relative error comparison for 11-year dataset with recurrence added on day 3. 

Day REFM(ERROR) FP(ERROR) LI(ERROR) ENSEMBLE(ERROR) 

1 0.183 0.161 0.164 0.151 

2 0.297 0.220 0.239 0.206 

3 0.319 0.258 0.363 0.245 

 

The prediction efficiency is negative for recurrence, which suggests that the 11-year solar 

mean would be better at predicting the electron flux rather than recurrence on forecast 

day 3.  This, however, is for analysis over the full 11-year period, and it will be shown in 

the following section why recurrence is a better parameter.  The overall effects of adding 

recurrence on forecast day 3 are beneficial to the ensemble model, as its prediction 

efficiency increases by ~2.2% and its error goes down by ~0.4%.   

It is of interest to examine the weights that the multivariate regression assigns to the 

individual models to see the effects of adding recurrence for forecast day 3, as this is a 

measure of how much the ensemble “trusts” each model.  The non-normalized weights 

are shown both before and after the forecast day 3 recurrence addition in Tables 9 and 10.



Chapter 3.  Results 

33 

 

Table 8.  Weights for each of the models as determined by the multivariate regression. 

Day REFM FP LI 

1 0.211 0.560 0.217 

2 0.216 0.517 0.263 

3 0.258 0.736 
  

Table 9.  Weights for each of the models after recurrence is added on forecast day 3 as determined by the 

multivariate regression. 

Day REFM FP LI 

1 0.211 0.560 0.217 

2 0.216 0.517 0.263 

3 0.209 0.627 0.165 

 

As expected, Fluxpred is weighted the heaviest for all three forecast days.  The REFM 

and Li models are equally trusted on forecast day 1, but then the Li model becomes much 

more influential on forecast day 2.  With the addition of recurrence for forecast day 3, 

Both REFM and Fluxpred lose some credibility from the ensemble’s perspective, and 

thus recurrence is added as a forecast day 3 model for the final ensemble form.  

 

3.2 Predictive Ensemble Model 

The previous section’s results were predictive in the sense that the 1-, 2-, and 3-day 

forecasts from each model were compared to the actual values, but the multivariate 

regression was done over 11 years, thus providing the best result possible for the dataset 

since the coefficients generated were optimized for the entire period.  In reality, the 

forecaster will need to decide how many days of historical data to use to determine the 

regression coefficients, so an algorithm was developed to optimize this.  It was 

experimentally determined that a model using the last 10 days of historical data to 

calculate its coefficients is the minimum length of time for a coherent prediction, with 
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anything less prone to undesirable results.  Because the data set being used to find the 

optimum time is limited to ~11 years, it was important to not choose too large of an upper 

limit for historical data in building the model, as a certain portion of the dominant physics 

present in either solar maximum or solar minimum will not be given an equal 

representation.  For example, if 1000 days of historical data is used to build the model, 

then the model can only test itself on the remaining 3064 points in the time series, which 

may be unfairly skewed towards effects dominated by either solar minimum or solar 

maximum.  The upper limit is initially chosen as 1000 days to characterize the 

relationship and ensure that there is not a global optimization minimum that is missed 

later on.  A plot of error versus number of days to build the model is shown in Figure 15. 

 

Figure 15.  Relative error versus number of days used to build the ensemble, with day 1(red), day 2(blue), 

and day 3(black) forecasts.  Each relative error is an average of the error for 3000 models of x-day 

historical data. 

 

This optimization uses a sliding model to compute an average more indicative of an 

ensemble model characterized by those days.  For instance, the 10-day model will take 
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the data from days 1-10, calculate coefficients, and forecast 1, 2 and 3 days out on day 

11.   It will then build another 10-day model from days 2-12 and forecast, then 3-13 and 

forecast, and so and so forth.  These 1-, 2-, and 3-day predictions are then compared to 

the actual electron flux values to calculate relative error.  Prediction efficiency is not used 

in this case since the data for the mean would only be built from the last 10 days of 

electron flux, so when a 1000-day model is built the average will be much closer to the 

real value.  This then makes a comparison between the different ensembles impossible 

since the prediction efficiency is entirely relative to the electron flux mean.   

Another parameter that is held constant between each of the ensemble models is the 

number of times it shifts.  As previously discussed, a 1000-day ensemble model has 3064 

days to shift through, whereas a 10-day ensemble model would have 4054 days available 

to shift through.  This leads to another parameter that will vary between the different 

ensemble models, so the number of times each ensemble model shifts needs to be set 

constant regardless of how many days of historical data make up that model.  This is 

determined by the largest model built, in this case 1000 days, so that 3000 shifts are used 

to characterize each model in Figure 15.  This then means that for an x-day historical 

model the relative error shown is an average of 3000 models all comprised of x days of 

historical data, so that solar cycle variations do not influence the result (although they do 

in this case, for the unfair physics representation mentioned earlier).  Unfair physics 

representation can be eliminated by choosing a smaller upper limit to build the ensemble 

models, so that ~11 years worth of data will be available to shift through.  Figure 15 

shows the majority of the error decrease occurs before 200 days, with the relative error 

gradually declining as the coefficients account for more of the 11-year data.  The 
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optimization is then recomputed for an upper limit of 180 days, with 3800 shifts allowed 

to characterize an x-day historical data model.  The results are shown in Figure 16.   

 

Figure 16.  Relative error versus number of days used to build the ensemble, with day 1(red), day 2(blue), 

and day 3(black) forecasts.  Each relative error is an average of the error for 3800 models of x-day 

historical data. 

 

The error for forecast day 1 and forecast day 2 decreases rapidly leading up to a model 

comprised of 27 days of historical data, with forecast day 3 lagging slightly behind.  This 

is as expected since the solar rotation is 27 days, so the majority of the error can be 

accounted for by having a historical model comprised at least of this, especially during 

solar minimum when recurrence dominates.  Three solar rotations are chosen to include 

any additional error decrease, so the predictive ensemble model is built using 81 days of 

historical data. 

As a comparison, the performance of each model in reference to the above analysis is 

shown in Figures 17, 18, and19 for forecast days 1, 2, and 3, respectively.  
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Figure 17.  Relative error versus number of days used to build the model for forecast day 1, with ensemble 

(black), FLUXPRED (red), Li (green), and REFM (blue). 
 

 

Figure 18.  Relative error versus number of days used to build the model for forecast day 2, with ensemble 

(black), FLUXPRED (red), Li (green), and REFM (blue).
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Figure 19.  Relative error versus number of days used to build the model for forecast day 3, with ensemble 

(black), FLUXPRED (red), recurrence (green), and REFM (blue). 
 

It should be noted that the functions for each of these models are approximately linear 

since the forecast for any particular model that isn’t the ensemble is not dependent on the 

days used to build the model like the ensemble is.  Essentially then, it is the characteristic 

error of the model.  Fluxpred is the closest to the ensemble on all days, with error 

differences comparable to the values shown in Tables 6 and 7.   A sliding average of the 

81-day historical data ensemble model is done using 3800 shifts, with the results shown 

in Table 10: 

Table 10.  Relative error comparison for 81-day historical data ensemble model with recurrence added in 

Li’s day 3 column.  

Day REFM(ERROR) FP(ERROR) LI(ERROR) ENSEMBLE(ERROR) 

1 0.183 0.161 0.164 0.155 

2 0.297 0.219 0.238 0.208 

3 0.318 0.258 0.361 0.246 
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The results are similar to the relationship between the models shown earlier, with 

Fluxpred very close in accuracy to the ensemble.  The ensemble has lower relative error 

by ~0.6%, ~1.1%, and ~1.2% for forecast days 1, 2, and 3, respectively.  From the 

forecaster’s perspective, this may not warrant the use of the ensemble model over 

Fluxpred due to the added complexity of running two additional models.  However, there 

is a definite advantage to using the ensemble over Fluxpred in terms of a stochastic 

(probability-based) forecast, as shown in Section 3.3. 

 

3.3 Stochastic Ensemble Model 

The Air Force Weather Agency (AFWA) mandates that if the 3-day fluence (flux*time) 

either exceeds or is expected to exceed 1 billion particles that a warning should be issued 

for deep dielectric charging.  A stochastic ensemble forecasting model was created by 

analyzing the error over the past 81-day historical dataset used to build the model and 

applying each of the 81 errors to the current forecast to get a distribution of forecasts.  

This was done for 1-, 2-, and 3-day forecasts, with a separate 81-day error set associated 

with each respected day.  These three distributions are then used to form a probability of 

the 3-day fluence exceeding 1 billion particles.  All permutations need to be considered 

for this probability, as any given forecast can assume any one of the errors it had in the 

last 81 days.  This is done by adding the first error from the 1-day forecast error 

distribution to the current 1-day forecast value, adding the first error from the 2-day 

forecast error distribution to the current 2-day forecast value, and adding each of the 3-

day forecast errors from the last 81 days to the current 3-day forecast value and checking 

whether each 3-day fluence would cause the fluence to exceed 1 billion particles.  Next, 
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the same first error from the 1-day forecast error distribution is kept for the current 1-day 

forecast value, the second error from the 2-day forecast error distribution is added to the 

current 2-day forecast value, and each of the errors from the 3-day forecast error 

distribution is again added to the current 3-day forecast value to check whether the 

fluence exceeds 1 billion particles.  This continues on until all permutations are 

considered; thus, for an 81 day model, 81
3
 = 531441 chances are evaluated that the 

fluence will exceed 1 billion particles over the next three days.  The number of times the 

3-day fluence exceeded the threshold is divided by the total number of chances (531441) 

it had to exceed the threshold to get the probability that the 3-day fluence will exceed 1 

billion particles.  These are calculated each day for the 11-year data set and compared to 

the days that actually exceeded the 1 billion particle count threshold.  This comparison is 

done using a Brier Score (BS), which measures the accuracy of a set of probabilities, and 

is given by 

𝐵𝑆 =  
1

𝑁
 (𝑓𝑖 − 𝑜𝑖)

2𝑁
𝑖=1 , 

where fi is the forecast probability and oi is the actual outcome (either a 1 or 0) for 

exceeding the threshold [Brier, 1950].  This is done for the 1, 2, and 3-day forecast mode 

discussed above for both the ensemble and Fluxpred to compare their performance.  For 

the 11-year period, the ensemble was found to have a BS of 0.0321, whereas Fluxpred 

was found to have a BS of 0.0327.  Thus, the ensemble did ~2% better at predicting 

probabilities on average, since a lower score is better.   

The 3-day fluence addition is done as a sliding sum, so on any given day using a 3-day 

forecasting model three separate fluence checks can be performed, as shown in Table 11.
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Table 11.  Fluence forecasting that could be performed on any given day. 

Day 1st fluence 2nd fluence 3rd fluence For day 

0 fc1_0 fc2_0 fc3_0 3 

1 fc1_1 fc2_1 fc3_1 4 

 
fc1_0 fc1_1 fc2_1 3 

 
observed_0 fc1_0 fc1_1 2 

2 fc1_2 fc2_2 fc3_2 5 

 
fc1_1 fc1_2 fc2_2 4 

 
observed_1 fc1_1 fc1_2 3 

3 fc1_3 fc2_3 fc3_3 6 

 
fc1_2 fc1_3 fc2_3 5 

 
observed_2 fc1_2 fc1_3 4 

 

If day 0 was the first day that the model used, it could only make a 1-, 2-, and 3-day 

forecast, and thus only one 3-day total fluence forecast.  On day 1, the same can be done 

as previously mentioned, but with two additional fluence forecasts.  One can be made for 

2 days out using the forecast made yesterday for the current day, the forecast made today 

for tomorrow, and the forecast made today for the day after tomorrow.  Additionally, a 3-

day fluence forecast can be made for tomorrow using the actual fluence from yesterday, 

the forecast made yesterday for the current day, and the forecast made for tomorrow.  In 

essence, the steady state operation of the model allows 3-day fluence checks for 1, 2, and 

3 days into the future.  

It is clear that the 1-day forecast is the most important, since it is the closest to the time of 

incident.  Also, it is used twice along with observed data to forecast tomorrow’s 3-day 

fluence, as shown in Table 11.  Consider then a stochastic model built entirely of 1-day 

forecasts, where 

3 𝑑𝑎𝑦 𝑓𝑙𝑢𝑒𝑛𝑐𝑒 = 𝑓𝑐1𝑖−2 + 𝑓𝑐1𝑖−1 + 𝑓𝑐1𝑖 , 

where the subscript indicates the ith day forecasted on.  The BS for this mode is then 
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calculated for the 11-year period and the ensemble was found to have a BS of 0.0185, 

whereas Fluxpred was found to have a BS of 0.0210.  Thus, the ensemble did ~12% 

better at predicting probabilities on average than its best member (Fluxpred).  This 

analysis can be done for both a model built entirely of 2-day forecasts and a model built 

entirely of 3-day forecasts (although in actuality a forecaster would not use these models) 

to characterize how accurate the probability predictions for 2-day and 3-day forecasts are.  

The full results are shown in Table 12, with the current day chosen to be day 3 both as an 

example and in reference to the above Table 11.  The first fluence member set is for 3 

days into the future (day 6) as was first discussed, whereas the last three fluence members 

are models composed entirely of 1-, 2-, or 3-day forecasts to predict whether the fluence 

will exceed the threshold tomorrow (day 4).  Keep in mind the current day being day 3 is 

only chosen for clarity to see the originating day for the forecasts, and the actual analysis 

is done over the full 11 years.  

Table 12.  Brier Score results for both the ensemble and FLUXPRED. 

Fluence Members Ensemble BS FLUXPRED BS Percent better 

fc1_3,fc2_3,fc3_3 0.0321 0.0327 1.89 

fc1_1,fc1_2,fc1_3 0.0185 0.0210 11.9 

fc2_0,fc2_1,fc2_2 0.0272 0.0305 11.0 

fc3_-1,fc3_0,fc3_1 0.0340 0.0341 0.154 

 

For forecasting both day 1 and day 2 probabilities the stochastic ensemble did 

considerably better than FLUXPRED, but was barely better for day 3.  This is probably 

due to the fact that recurrence is used as a model on day 3 since the Li model does not 

forecast this, and is a rather inaccurate model to use for an entire solar cycle.  Thus, the 

set of physics encompassing radial diffusion is not represented in day 3, and probability 

information based on these physics is also lost.  
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The performance of the stochastic 1-day forecast ensemble model should be investigated 

further as its probabilities are the most important for predicting whether or not the 3-day 

fluence will exceed 1 billion particles.  This is done by comparing the probability plot to 

past occurrences where the 3-day fluence did exceed 1 billion particles and looking for a 

correlation.  This occurred for 159 days in the 11-year period of study.  Figure 20 shows 

the entire 11-year probability set, with a red vertical bar around the days that the fluence 

exceeded the threshold. 

 

Figure 20.  Probability of exceeding threshold versus day in the 11-year period, with a red bar around the 

days that threshold was in fact exceeded.  

 

Since it is rather hard to see how well the probabilities are correlated to the events, the 

above is graphed on a year-by-year basis so that the results can be analyzed in further 

detail.  The ensemble model dataset starts in July of 2007, but 81 days are needed to build 

the model, and 81 additional days of ensemble forecast are needed to make an error 

distribution, so the stochastic dataset begins the following January.  Figure 21 shows the 
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first year of the dataset, which is January 1998 – January 1999.  

 

Figure 21.  Probability of exceeding threshold versus day for January 1998-January 1999, with a red bar 

around the days that threshold was in fact exceeded.  

 

The two highest probability peaks corresponded to the two actual events, but some sort of 

quantitative comparison should be done to evaluate false positives/false negatives and 

thus the performance of this model.  Technically speaking, false positives and false 

negatives only apply to a deterministic model and do not have meaning in a stochastic 

model, but if a probability threshold is selected as reference then they can be evaluated 

accordingly.  Choosing anything over 50% as a positive, and anything under 50% as a 

negative, it can be seen that Figure 21 contains neither false positives nor false negatives, 

as every instance where the probability was over 50% corresponded with an actual event.  

Year 2 of the 11-year period is shown in Figure 22.
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Figure 22.  Probability of exceeding threshold versus day for January 1999-January 2000, with a red bar 

around the days that threshold was in fact exceeded.  

 

Again, there are no false positives or false negatives for the year.  Figures 23, 24, and 25, 

corresponding to the period between January 2000 and January 2003, all had no events 

occurring but are shown below for instances of false positives.
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 Figure 23.  Probability of exceeding threshold versus day for January 2000-January 2001, with a red bar 

around the days that threshold was in fact exceeded.  

 
Figure 24.  Probability of exceeding threshold versus day for January 2001-January 2002, with a red bar 

around the days that threshold was in fact exceeded. 

False Positive 



Chapter 3.  Results 

47 

 

 
Figure 25.  Probability of exceeding threshold versus day for January 2002-January 2003, with a red bar 

around the days that threshold was in fact exceeded.  

 

Figure 23 shows one false positive, whereas figures 24 and 25 contain none.  Electron 

events start picking up as solar maximum declines to solar minimum, as is seen for 

Figure 26. 
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Figure 26.  Probability of exceeding threshold versus day for January 2003-January 2004, with a red bar 

around the days that threshold was in fact exceeded.  

 

The first instance of a false negative can be seen in Figure 26, occurring near day 100.  A 

second one occurs farther on a few days after a correctly predicted event.  There are no 

false positives for this year, as every probability over 50% corresponded to an event.   

Figures 27-31 show the probabilities for the remaining years.

False 

Negative 

False 

Negative 
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Figure 27.  Probability of exceeding threshold versus day for January 2004-January 2005, with a red bar 

around the days that threshold was in fact exceeded.  

 

 

 

Figure 28.  Probability of exceeding threshold versus day for January 2005-January 2006, with a red bar 

around the days that threshold was in fact exceeded.  
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Figure 29.  Probability of exceeding threshold versus day for January 2006-January 2007, with a red bar 

around the days that threshold was in fact exceeded.  

 

 

 

Figure 30.  Probability of exceeding threshold versus day for January 2007-January 2008, with a red bar 

around the days that threshold was in fact exceeded. 
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Figure 31.  Probability of exceeding threshold versus day for January 2008-August 2008, with a red bar 

around the days that threshold was in fact exceeded.  

 

It is clear that the false negative cases are the most important parameter, as a forecaster 

would not want to miss an event.  The first false negative occurred for one day, the 

second for two days, the third for three days, the fourth for two days, and the fifth for one 

day, giving a total of ten days of false negatives out of 159 days of occurrences.  149 out 

of 159 days correct yields a probability of 93.7% that the stochastic ensemble will predict 

an event 1 day in advance, given that prediction of an event corresponds to a probability 

over 50%.  

With the exception of the first false negative (shown slightly after day 100 in Figure 26), 

all of the false negatives had a probability of at least 40%.  It is then reasonable to say 

that if the forecaster defined false positives and false negatives differently, i.e. with 

respect to a 40% probability, then 158 out of 159 days would be correctly predicted 1 day 

in advance, corresponding to a probability of 99.4%.  This, however, will also increase 
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False 
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the number of false positives issued, and analysis of the above images shows four 

additional ones.  This is certainly acceptable from a forecaster’s perspective and well 

worth the trade-off in correctly guessing four valid events.     

The first false negative event bears closer scrutiny to determine why the stochastic model 

missed it.  The 3-day fluence for this event exceeded the threshold on 22 March 2003.  

Figure 32 shows NASA SOHO Extreme Ultraviolet Imaging Telescope (EIT) data for the 

time period just before the event and the time period 27 days prior. 

 

Figure 32.  NASA SOHO EITS 195 images, courtesy of http://sohowww.nascom.nasa.gov/data/. 

The first thing to note is the differences in the coronal holes between the two solar 

rotations.  In February the coronal hole is fairly narrow overall, and only produced 

minimal geomagnetic storming at active levels (summed Kp = 4), with >2 MeV electron 

flux levels exceeding 1e03 pfu for seven days post storming.  The coronal hole next 

rotation is wider and produces significant geomagnetic storming for six days beginning 

on 16 March, 2003.  This storming reached major geomagnetic storming (summed Kp = 

6) with severe geomagnetic storming (summed Kp = 8) at high latitudes for the first two 

http://sohowww.nascom.nasa.gov/data/
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 days of the stream.  Another contributing factor to the increased storming levels was a 

coronal mass ejection that arrived on 20 March, 2003, which further pushed already 

unsettled geomagnetic storming up to what is considered minor storming levels (summed 

Kp = 5) for a day and a half.  The electron flux during and after this storming period 

became elevated beginning on 16 March, 2003, and remained near or at 1e4 pfu, which 

sustained is enough to surpass the 1 billion particle fluence limit (i.e., 3*86400*1e4 is 

greater than 1 billion). Electron flux data for both the event and one month prior are 

shown in Figures 33 and 34, respectively, with the red and blue lines corresponding to the 

>2 MeV electron flux.  

 

Figure 33.  NOAA SWPC GOES electron flux data 1 month prior to the event, with the red and blue lines 

corresponding to >2 MeV electron flux as measured from GOES 8 and GOES 10, respectively.   
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Figure 34.  NOAA SWPC GOES electron flux data for the event, with the red and blue lines corresponding 

to >2 MeV electron flux as measured from GOES 8 and GOES 10, respectively.   

 

The models cannot accurately account for CMEs, and the probability calculation is based 

on the last 81 days of error.  This event matured mid rotation, and thus the model had 

very little information to be able to detect this event.  There is a probability spike at this 

point which is due to the elevated background flux levels leading up to the event, and the 

combination of this plus the arrival of a CME two days prior was enough to push the 

electron count over the threshold.  This situation is assumedly the exception to the rule, 

as it does not occur anywhere else in the 11-year period.     
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Chapter 4 

Conclusions 

As mankind becomes more dependent on satellites, energetic particles leading to satellite 

failure through radiation damage become increasingly important.  Geosynchronous orbit 

has a radiation environment that is of primary concern due to the large number of 

commercial and military satellites operating there.  Thus, forecasting energetic electron 

fluxes that can lead to satellite failure is a valuable tool in protecting space assets.   

The ensemble model presented here, comprised of three separate models, is found to have 

both lower relative error and significantly better prediction efficiency than any one of its 

individual members.  Additionally, a stochastic version of this model is presented to 

forecast the probability that an electron event threshold will be crossed.  Out of 159 days 

that the threshold was in fact exceeded during the 11-year period of study, the stochastic 

model missed only one of these (issuing a false negative in relation to a 40% probability 

threshold).  This missed event was correlated with elevated background flux levels and 

the arrival of a CME that contributed enough to push the 3-day electron fluence over the 

threshold.   

Ensemble forecasting is an important tool to have in a system whose physics are not yet 

fully-known.  Ensemble forecasting is in its infancy in the space weather field, as very 
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little research has been done in this respect, so the true potential has yet to be explored.  

Additionally, the majority of space weather forecasting models are deterministic, so a 

stochastic ensemble model is ground-breaking research in this field.  There are currently 

no known ensemble models, either stochastic or deterministic, in operational space 

weather forecasting; this is the first of its kind.   
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