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Abstract 

There is strong interest in the development of dynamically reconfigurable systems that 

can meet real-time constraints in energy/power-performance-accuracy (EPA/PPA). In 

this dissertation, I introduce a framework for implementing dynamically reconfigurable 

digital signal, image, and video processing systems. 

The basic idea is to first generate a collection of Pareto-optimal realizations in the 

EPA/PPA space. Dynamic EPA/PPA management is then achieved by selecting the 
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Pareto-optimal implementations that can meet the real-time constraints. The systems are 

then demonstrated using Dynamic Partial Reconfiguration (DPR) and dynamic frequency 

control on FPGAs.  

The framework is demonstrated on: i) a dynamic pixel processor, i) a dynamically 

reconfigurable 1-D digital filtering architecture, and iii) a dynamically reconfigurable 2-

D separable digital filtering system. 

Efficient implementations of the pixel processor are based on the use of look-up tables 

and local-multiplexes to minimize FPGA resources. For the pixel-processor, different 

realizations are generated based on the number of input bits, the number of cores, the 

number of output bits, and the frequency of operation. For each parameters combination, 

there is a different pixel-processor realization. Pareto-optimal realizations are selected 

based on measurements of energy per frame, PSNR accuracy, and performance in terms 

of frames per second. Dynamic EPA/PPA management is demonstrated for a sequential 

list of real-time constraints by selecting optimal realizations and implementing using 

DPR and dynamic frequency control. 

 Efficient FPGA implementations for the 1-D and 2-D FIR filters are based on the use 

a distributed arithmetic technique. Different realizations are generated by varying the 

number of coefficients, coefficient bitwidth, and output bitwidth. Pareto-optimal 

realizations are selected in the EPA space. Dynamic EPA management is demonstrated 

on the application of real-time EPA constraints on a digital video. 

The results suggest that the general framework can be applied to a variety of digital 

signal, image, and video processing systems. It is based on the use of offline-processing 

that is used to determine the Pareto-optimal realizations. Real-time constraints are met by 
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selecting Pareto-optimal realizations pre-loaded in memory that are then implemented 

efficiently using DPR and/or dynamic frequency control. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

There is a strong interest in developing effective methods that can provide hardware 

systems that respond to run-time constraints on energy/power, performance, and 

accuracy. For example, it is interesting to consider scalable solutions that can deliver 

different performances based on energy constraints. Here, a low-energy solution will be 

needed when there is a requirement for long-time operation. On the other hand, a high-

performance solution is often considered when there are no power (or energy) 

constraints. 

Effective run-time management of hardware resources can be effectively handled 

through the use of Dynamic Partial Reconfiguration (DPR). DPR technology, currently 

available on Field Programmable Gate Arrays (FPGAs), enables the run-time allocation 

and de-allocation of hardware resources by modifying or switching off portions of the 

FPGA while the rest remains intact, continuing its operation. In addition to modifying 

resources, FPGAs with Digital Clock Managers (DCMs) also allow for real time 

modification of the operating frequency. These two technologies enable the development 

of dynamically reconfigurable systems that can meet constraints in power/energy, 

performance, and accuracy. 

We consider digital Signal, Image, and Video Processing systems that are 

characterized in terms of their requirements on energy/power, performance, and 

precision. The goal of the dynamically reconfigurable system is to select an optimal 
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architecture that satisfies time-varying energy/power, performance, and accuracy 

(EPA/PPA) constraints. Thus, the process of determining an optimal solution is defined 

in terms of multi-objective optimization, with the goal of reducing energy/power 

consumption, while maximizing performance and accuracy, subject to time-varying 

EPA/PPA constraints. 

The process of controlling Energy/Power, Performance, and Accuracy at run-time is 

referred as Dynamic Energy/Power-Performance-Accuracy (DEPA/DPPA) management. 

As an example of DPPA management, consider a simple example. Suppose that a video 

processing system is assigned the task of delivering performance at 30 frames per second 

(fps) on limited battery life that will also need to operate for at least 10 hours. If we can 

meet the performance and power requirements, we can then select the system realization 

with the highest accuracy. Then, after one hour, suppose that a fast moving target is 

observed. This will likely change the requirements to an increased frame rate. Now, 

suppose that we are asked to deliver performance at 100 fps at some minimum level of 

accuracy. This will certainly increase the minimum power requirements. In this case, we 

will select the hardware realization that has the lowest power requirements while meeting 

the performance (≥100 fps) and accuracy constraints. Thus, we see that DPPA 

management is especially important for video systems for which PPA requirements can 

vary over time. 

Dynamic EPA/PPA management is more effective when applied to hardware 

architectures that are efficient in terms of resource consumption. We demonstrate 

dynamic EPA/PPA management on two resource-effective architectures associated with 

real-time video processing (that demands significant processing requirements). 
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The first application is the development of the dynamic pixel processor. Single-pixel 

operations include the implementation of functions that perform gamma correction, 

contrast enhancement, histogram equalization, histogram shaping, thresholding, Huffman 

table encoding, and quantization. Here, after computing an appropriate function, each 

output pixel only depends on the corresponding input pixel. 

The second application is the development of the dynamic 2-D FIR filtering system. 

Here, the focus on 2-D FIR filtering comes from the large number of possible 

applications. The list of applications includes image and video denoising, linear image 

and video enhancement, image restoration, edge detection, face recognition, etc. 

 

1.2 Thesis statement 

The main objective of this PhD dissertation is the development of a dynamic 

energy/power-performance-accuracy management approach for digital signal, image, and 

video processing architectures. This is possible by the use of Dynamic Partial 

Reconfiguration (DPR) and Dynamic Frequency Control on FPGAs. The dynamically 

reconfigurable architectures are evaluated in terms of energy/power-performance-

accuracy trade-offs. In addition, the architectures presented in this work use techniques 

that minimize the amount of computational resources and make intensive use of DPR. 

In particular, the research is focused on the development of a dynamic pixel processor, 

and a dynamic 2-D FIR filtering system. The energy/power-performance-accuracy 

(EPA/PPA) spaces for both the pixel processor and the 2-D FIR filter are explored. 

Moreover, the optimal realizations (in the multi-objective sense) are extracted from the 
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EPA/PPA space. The optimal realizations are then used in a dynamic management 

system to meet real-time varying constraints in the EPA/PPA spaces. 

 

1.3 Innovations and Contributions 

A list of the primary innovations and contributions includes: 

� Development of fully-parameterized hardware cores for signal, image, and video 

processing applications. The architectures are implemented with techniques that 

minimize the amount of computing resources and take advantage of Dynamic Partial 

Reconfiguration. 

� Characterization of the optimal (in the multi-objective sense) hardware realizations 

from the EPA/PPA space for the architectures presented. 

� A new framework for dynamic energy/power, performance, and accuracy (EPA/PPA) 

management based on a multi-objective optimization approach that guarantees low 

energy, high accuracy, and high performance. The framework is applicable to a wide 

array of signal, image, and video processing architectures. 

� Development of hardware systems that support dynamic energy/power, performance, 

and accuracy management that meet real-time EPA/PPA constraints. On hardware, 

dynamic EPA/PPA management is based on the run-time control of hardware 

resources and frequency of operation. 

 

1.4 Organization 

This dissertation is organized into six chapters. In what follows, a summary of each 

chapter is provided. 
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Chapter 2 presents the dynamic pixel processor architecture and its corresponding 

dynamic energy/power-performance-accuracy management. The material presented in 

this chapter has been submitted for publication: 

D. Llamocca and Marios Pattichis, “A dynamically Reconfigurable Pixel Processor 

system based on Power/Energy-Performance-Accuracy Optimization”, in review, 

IEEE Transactions on Circuits and Systems for Video Technology. 

The next two chapters deal with the details of the hardware implementation of a 2D 

FIR separable filtering system, with the ultimate goal of presenting the dynamic 

EPA/PPA management of the system in chapter 5. 

In Chapter 3, a detailed description of a 1D FIR filter architecture is presented along 

with an efficient approach for dynamically modifying the filter parameters. The material 

presented in this chapter has been published in: 

D. Llamocca, M. Pattichis, and G. Alonzo Vera, “Partial Reconfigurable FIR Filtering 

system using Distributed Arithmetic”, International Journal of Reconfigurable 

Computing, vol. 2010, Article ID 357978, 14 pages, 2010. 

Chapter 4 presents the 2D separable FIR filter implementation based on dynamic 

partial reconfiguration. By varying the number of coefficients and frame size, a limited 

version of the energy-accuracy space for 2D filter realizations is shown, and a 

comparison of the embedded system results with a GPU implementation is provided. The 

material presented in this chapter has been published in: 

D. Llamocca, C. Carranza, and Marios Pattichis, “Separable FIR filtering in FPGA 

and GPU implementations: energy, performance, and accuracy considerations”, in 
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Proceedings of the IEEE International Conference on Field Programmable Logic and 

Applications FPL’2011, Chania, Greece, Sept. 2011. 

Chapter 5 develops the dynamic energy-performance-accuracy management for the 

2D separable FIR filter. The material presented in this chapter is to be submitted to: 

D. Llamocca and Marios Pattichis, “Dynamic Energy, Performance, and Accuracy 

Optimization and Management for Separable 2-D FIR Filtering for Digital Video” to 

be submitted to IEEE Transactions on Image Processing. 

Chapter 6 presents conclusions, future work, and scope of the dissertation. 

Additionally the document has three appendices that include: i) a brief description of the 

VHDL code, ii) a discussion of the reliability of reconfiguring (whether fully or partial) 

the FPGA, and iii) a list of publications related with this dissertation. 
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Chapter 2 

 

A Dynamically Reconfigurable Pixel Processor System based 

on Power/Energy-Performance-Accuracy Optimization 

 

Abstract 

We introduce a dynamically reconfiguration framework for implementing single-pixel 

operations. The system relies on a multi-objective optimization scheme that generates 

Pareto-optimal implementations in the Power/Energy-Performance-Accuracy (PPA/EPA) 

spaces. The Pareto-optimal implementations and their PPA/EPA values are stored in 

DDR-SDRAM and can be chosen dynamically to meet time-varying constraints. 

Results are shown in terms of power, accuracy (PSNR) of the resulting image, and 

performance in frames per second (fps). Dynamic PPA/EPA management is implemented 

using Dynamic Partial Reconfiguration (DPR) and dynamic frequency control. 

Index Terms—Dynamic Partial Reconfiguration, Field-programmable gate-array 

(FPGA), LUT-based architectures. 

 

2.1 Introduction 

There is a strong interest in developing effective methods that can provide hardware 

systems that respond to run-time constraints on power and performance. For example, it 

is interesting to consider scalable solutions that can deliver different performances based 

on energy constraints. Here, a low-energy solution will be needed when there is a 
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requirement for long-time operation. On the other hand, a high-performance solution is 

often considered when there are no power (or energy) constraints. 

Effective run-time management of hardware resources can be effectively handled 

through the use of Dynamic Partial Reconfiguration (DPR). DPR technology, currently 

available on FPGAs, enables the run-time allocation and de-allocation of hardware 

resources without requiring system restart. In addition to modifying resources, FPGAs 

with Digital Clock Managers (DCMs) also allow for real time modification of the 

operating frequency. 

Given the significant processing requirements associated with real-time video 

processing, it is interesting to consider applications associated with digital video. Here, 

we are primarily concerned with common single-pixel operations [1]. Single-pixel 

operations include the implementation of functions that perform gamma correction, 

contrast enhancement, histogram equalization, histogram shaping, thresholding, Huffman 

table encoding, and quantization. Here, after computing an appropriate function, each 

output pixel only depends on the corresponding input pixel. For example, in gamma 

correction, the output pixels are given by γ×α= IO  , where I denotes the image 

intensity of the input pixel for suitable values of  α , and γ  . Similarly, in histogram 

equalization, a mapping is first computed between the input and output pixel. 

( )⋅= HistEqeq_I . Here,  ( )⋅HistEq   is a single-pixel operation. 

To compare among different single-pixel realizations, we consider power 

requirements, performance in terms of frame rates, and accuracy (PPA). Then, the goal of 

the dynamically reconfigurable pixel processor is to select an optimal architecture that 

satisfies time-varying PPA constraints. Thus, the process of determining an optimal 
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solution is defined in terms of multi-objective optimization, with the goal of reducing 

power consumption, while maximizing performance and accuracy, subject to time-

varying PPA constraints. 

We refer to the process of controlling Power, Performance and Accuracy at run-time 

as Dynamic Power-Performance-Accuracy (DPPA) management. As an example of 

DPPA management, we consider a simple example. Suppose that a video processing 

system is assigned the task of delivering performance at 30 frames per second (fps) on 

limited battery life that will also need to operate for at least 100 hours. If we can meet the 

performance and energy requirements, we can then select the system realization with the 

highest accuracy. Then, after one hour, suppose that a fast moving target is observed. 

This will likely change the requirements to an increased frame rate. Now, suppose that 

we are asked to deliver performance at 100 fps at some minimum level of accuracy. This 

will certainly increase the minimum power requirements. In this case, we will select the 

hardware realization that has the lowest power requirements while meeting the 

performance (≥100 fps) and accuracy constraints. Thus, we see that DPPA management 

is especially important for video systems for which PPA requirements can vary over time 

(also see motivation in [2]). 

DPPA management for audio and video processing had been suggested in earlier 

works (e.g. [3], [4]). In [3], [4], the authors suggested that DPR could be used for 

management of power and accuracy. More recently, we have the implementation of 

DPPA management using DPR in networking [5], dynamic arithmetic [6], DCT 

implementation [7]. In these papers, DPR was used to trade-off between power and 
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performance requirements. In [6], the authors considered trade-offs between power, 

performance, and precision. 

To achieve DPPA management, a space of different realizations is generated. We use 

the term PPA space for the different realizations that we can generate. Then, we 

determine optimal realizations in the multi-objective sense. In other words, we determine 

the Pareto optimal front of all realizations [8]. To generate the PPA space, we produce a 

parameterized architecture based on the input bit-width, output bit-width, the number of 

cores, and the frequency of operation. An early version of a single-pixel architecture that 

allowed switching between function was presented in [9]. 

In terms of application, we are primarily interested in cases where the dynamic 

reconfiguration rate is relatively low. We do not expect run-time constraints to change 

faster than once a second. In this case, the DPR overhead is not significant. On the other 

hand, we note that the reduction of DPR overhead is an area of active research (e.g. [10], 

[11], [7], [12]). 

The proposed DPPA management system is based on a bottom-up approach. First, we 

develop an efficient architecture for implementing single-pixel operations. Then, we 

parameterize the hardware description and vary the parameters to generate the PPA 

space. Third, we use multi-objective optimization to determine the Pareto-optimal 

realizations. The Pareto-optimal realizations are then stored in memory. DPPA 

management selects among Pareto-optimal realizations to meet time-varying constraints. 

The main contributions of this work include: i) an optimization framework for 

dynamic PPA management of the pixel processor, ii) the development of a fully-
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customizable intellectual property (IP) core in VHDL, and iii) a method to dynamically 

reconfigure via DPR and run-time reconfiguration of the operating frequency. 

The rest of the work is organized as follows. Section 2.2 presents background and 

related work. Section 2.3 details the internal architecture and parameterization of the 

pixel processor. Section 2.4 explains how the pixel processor can switch among single-

pixel realizations, and modify its frequency of operations at run-time. Section 2.5 details 

the multi-objective optimization framework. Section 2.6 presents the experimental setup. 

Then, the results are presented in Section 2.7. Finally, Section 2.8 lists the conclusions. 

 

2.2 Background and Related work 

We begin with a summary of related work on the implementation of image processing 

systems based on Dynamic Partial Reconfiguration (DPR). In [7], the authors presented a 

design that dynamically reconfigures among Discrete Cosine Transform (DCT) modules 

of different sizes. The different DCT configurations were studied in terms of power, 

throughput, and (standard) image quality metrics. A dynamic systolic array accelerator 

for Kalman and Wavelet filters was presented in [13]. In [14], the authors presented a 

fingerprint image processing hardware whose stages (segmentation, normalization, 

smoothing, etc) are multiplexed in time via DPR. The 3D Haar Wavelet Transform 

(HWT) was implemented by dynamically reconfiguring a 1D HWT core thrice in [15]. A 

JPEG2000 decoder where the blocks are dynamically swapped is shown in [16]. In [17], 

an efficient 1D FIR Filtering system that combined the Distributed Arithmetic (DA) 

technique with DPR was presented. 
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There has also been some related work on the implementation of single-pixel 

processing functions, which usually entails two methods: LUT-based and custom 

hardware. In earlier work [9], we presented a basic architecture for single-pixel functions 

(8-bit input, 8-bit output) that stores the output pixel values in look-up tables (LUTs). The 

system could be dynamically reconfigured to perform arbitrary single-pixel functions. In 

[18], the authors presented custom architectures for 3 single-pixel functions (8-bit input, 

8-bit output). A Xilinx® core for implementing gamma correction is described in [19]. In 

this implementation, the architecture is based on BlockRAMs whose contents can be 

modified on-demand. An ALTERA® LUT-based core allows for the run-time 

modification of LUT contents via a special interface [20]. These approaches do not 

address issues associated with run-time modifications of the input/output bit-widths or 

the frequency of operation. 

A custom architecture for precise gamma correction is presented in [21]. In [22], the 

authors presented a contrast enhancement hardware that self-adjusts based on the 

histogram of the current frame. [23] presents a histogram equalization architecture. [24] 

performs image enhancement using a Successive Mean Quantization Transform. These 

architectures lack the versatility of the LUT-based approaches, but they can require far 

fewer resources for large input pixel bit-widths. 

The trade-offs between power, performance, and accuracy for different architectures 

have also been investigated in the literature. Early work dealt with one or two of these 

properties at a time. In [25], the authors analyzed the precision requirements of a subset 

of recursive algorithms. In [3], the authors proposed the use of reconfiguration based on 

perceptual limits and the non-uniformity of video content in order to dynamically manage 
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power consumption, over which accuracy and performance depend on. Another example 

of power and precision trade-off is in [4], where the impact of numerical precision on 

power consumption is studied for audio processing applications. In [6], an application in 

dynamic arithmetic is presented where arithmetic cores are measured in terms of their 

power, performance, and precision requirements. Here, the use of DPR was shown to 

provide a low-energy example where the use of dynamic dual-fixed arithmetic cores was 

shown to perform as well as double floating point in an example from Linear Algebra. In 

[7], the authors presented a configuration manager that can dynamically adapt DCTs of 

different sizes based on PPA considerations. 

To the best of our knowledge, no previous work has explored the Power-Performance-

Accuracy space using a multi-objective optimization approach as proposed here. As it 

will be demonstrated by example, this approach offers some unique advantages, in that it 

allows for both joint and separable optimization based on a range of criteria and 

constraints. 

This work seeks to extend prior research in the area of single-pixel operations for 

image enhancement by utilizing the LUT-based hardware presented in [9] and developing 

a fully-parameterized architecture that make use of DPR and dynamic frequency control 

to control the PPA space. In addition, we propose a multi-objective optimization 

framework to derive a set of optimal pixel processor realizations over which we can 

dynamically reconfigure to meet PPA constraints. 
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2.3 Pixel Processor Architecture 

The pixel processor architecture is detailed here. An earlier version of this architecture 

appears in [9]. Here, a fully-parameterized hardware architecture based on efficient 

mapping of LUTs is presented. 

2.3.1 Implementation of an NI-to-NO Look-Up Table (LUT) 

1) LUT NI-to-1: This module uses NI input bits and one output bit. Xilinx® FPGAs 

contain hardwired L-to-1 LUT primitives with L = 4 (Virtex-II Pro, Virtex-4), and L = 6 

(Virtex-5, Virtex-6). LUTs with higher number of input bits are built by combining the 

basic LUT primitives with multiplexers. Xilinx® devices let us instantiate primitives of 

optimized NI-to-1 LUTs for NI up to 8 [9]. Figure 2.1(a) shows the implementation of a 

LUT8-to-1. LUTs with NI > 8 are implemented by recursively combining two ‘NI-1-to-

Figure 2.1. Pixel processor architecture. (a) Virtex-4 LUT8-to-1 implementation. Note the recursive 
implementation with specific CLB primitives (LUT4., MUXF5/6/7/8), LUT4 ≡ LUT4-to-1. (b) Recursive 

implementation of a NI-to-1 LUT. (c) Implementation of a NI-to-NO LUT. (d) Pixel processor core. 
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1’ LUTs with a multiplexer, as in Fig. 1(b). The hardware complexity grows 

exponentially as NI increases, and thus there is a point at which a NI-to-1 LUT becomes 

unfeasible. 

2) LUT NI-to-NO: Figure 2.1(c) depicts how a LUT NI-to-NO is built based on ‘NO’ 

LUTs NI-to-1. Each LUT NI-to-1 implements a column of the LUT NI-to-NO. 

2.3.2 Pixel Processor Architecture 

The pixel processor architecture core is depicted in Fig. 2.1(d). It consists of a collection 

of ‘NC’ NI-to-NO LUTs. It provides the following parameters: 

� NC: Number of single-pixel processor cores. 

� NI: Number of input bits of each single-pixel processor (or the number of bits of the 

input pixel). 

� NO: Number of output bits of each single-pixel processor (or the number of bits of 

the output pixel). 

� LUT contents: provided in a text file. These values specify a unique single-pixel 

function (e.g. gamma correction, contrast stretching, etc).  

Depending on the application, the LUT contents of each core can be identical or 

different. In addition, there might be applications in which NI and NO need to be 

different for each single-pixel processor core. However, for the vast majority of 

applications, NI and NO remain constant for all the cores. 

 

2.4 Dynamic Frequency Control and Reconfiguration of the Pixel 

Processor 
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The pixel processor core parameters can be modified at run-time via Dynamic Partial 

Reconfiguration (DPR). This technology allows us to dynamically allocate resources as 

needed by particular applications. For the pixel processor, DPR allows the modification 

of the single-pixel function by re-using the same resources. To reduce resources, DPR 

allows us to reduce the number of input and/or output bits at the expense of degraded 

accuracy. To increase performance, we can use DPR to increase the number of cores. In 

addition, the frequency of operation can be dynamically modified by controlling the 

Digital Clock Manager (DCM). The DCM feature provides us with the ability to directly 

control power and performance. The combination of DPR and dynamic frequency control 

allows us to switch between different realizations. 

2.4.1 Dynamic Reconfiguration of the Pixel Processor: 

DPR allows us to control NC (number of cores), NI (number of input bits), NO (number 

of output bits), and the LUT contents. A design where only the LUT contents can be 

dynamically altered was presented in [9].  Fig. 2.2(a) depicts the block diagram of an 

embedded system that allows for DPR. 

 

 

 

 

 

 

 

 

Figure 2.2. Embedded system over which we can perform DPPA management. (a) Embedded system that 
supports DPR and frequency control. The memory holds ‘n’ unique bitstreams that are needed for the 

Pareto front. The pixel processor can be connected to any interface (b) An example of a Pareto front with 
‘m’ Pareto points (note that m ≤ n). A Pareto point is a unique combination of a bitstream and frequency. 
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The processor can be hard-core (PowerPC) or soft-core (e.g., MicroBlaze, ARM). A 

Compact Flash (CF) stores partial bitstreams and input frames. The memory stores data 

needed at run-time (e.g. input video frames, processed video frames, and partial 

bitstreams). For fast data processing, a Direct Memory Access (DMA) controller can be 

used. The Ethernet core lets us get new partial bitstreams or video frames from a PC and 

to send processed video frames to the PC. It is also an interface for throughput 

measurements and system status. The Ethernet connection lets us perform DPR from the 

PC (and possibly a remote location). 

To perform DPR, the Partial Reconfiguration Region (PRR) must be defined. In this 

case, the PRR is composed of ‘NC’ NI-to-NO LUTs and it is dynamically reconfigured 

via the internal configuration access port (ICAP), which is driven by the ICAP controller. 

The pixel processor I/O interface depends on the application (e.g., PLB interface, FSL 

interface as in [9], external, etc). The frequency control core, connected to the processor 

via the Device Control Register (DCR) bus, provides a clock to the pixel processor. 

2.4.2 Dynamic Reconfiguration of Frequency: 

Digital Clock Managers (DCMs) inside FPGAs provide a wide range of clock 

management features [26]. Virtex-4 and Virtex-5 FPGAs use DCM, whereas Virtex-6 

devices use a Mixed-Mode Clock Manager (MMCM). 

The Dynamic Reconfiguration Port (DRP) of the DCM is used to dynamically adjust 

the frequency without reloading a new bitstream to the FPGA. The DRP uses register 

based control of the DCM frequency and phase. 

Fig. 2.3 depicts the architecture for dynamic frequency control. The Xilinx® DCM 

primitive is named ‘DCM_ADV’ (MMCM_ADV for Virtex-6 FPGAs). We connect the 



 18 

DCM to the Device Control Register (DCR) bus by means of a DCR Slave interface. The 

processor becomes the DCR Master. The specific architecture of the DCR Slave interface 

varies as different FPGA families provide a slightly different approach to load the M and 

D values. The frequency is dynamically controlled by modifying the ratio of M to D (see 

in Fig. 2.3). 

 

 

 

 

 

 

2.5 Optimization Framework for the Pixel Processor 

The goal is to create a system that can select optimal realizations based on PPA 

constraints. The optimization is carried out for a specific single-pixel function. In this 

section, we detail: i) how a complete set of pixel processors is generated; ii) the manner 

in which Power, Performance, and Accuracy are measured; iii) how the optimal pixel 

processors are generated from the complete set; and iv) how we adjust pixel processor 

parameters and/or frequency based on PPA constraints. 

2.5.1 Generation of the set of single-pixel processors 

The space of pixel processor realizations is generated by modifying the pixel processor 

parameters (NI, NO, and NC), and the frequency of operation. The LUT contents depend 

on NI and NO. The selection of the parameters and/or frequency combinations depends 

on the application. 
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The Power-Performance-Accuracy (PPA) space consists of the measurements for 

every single pixel processor realization. The generation of the PPA space is a lengthy 

process, and it is done offline. 

2.5.2 Performance measurements 

Performance can be measured as the number of pixels (or bytes) processed per second, or 

by frames per second. The bytes per second processed is determined by the pixel size. 

Input pixels are usually 8-bit wide. 

We are interested in measuring the performance of the IP shown in Fig. 2.2. The aim 

is to provide results from the IP angle, i.e. assuming that at every clock cycle NI×NC bits 

can be processed and NO×NC bits can be released. The performance of the entire 

embedded system depends on many factors (cache size, processor instruction execution, 

bus type and usage, etc.) that are subject to change. Here, the embedded system is just a 

generic test-bed. 

The IP can process NI×NC bits and output NO×NC bits per clock cycle. Then, the 

number of bits it can process per unit of time is given by: 

 ( ) ( )MHzfNCNIMbpsePerformanc ××=   (2.1) 

For digital video processing, performance is measured in terms of frames per second 

(fps) given by: 

 
( )

( )
( ) NC

sizeframe

MHzf
usTframe,

usTframe
fps ×==

1106
  (2.2) 

Note that ‘fps’ does not take into account the number of bits of the input pixels (NI) 
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2.5.3 Power measurements 

In this subsection, we detail the IP power consumption measurement. The IP (shown in 

Fig. 2.1) is the sole component included in the Partial Reconfiguration Region (PRR). 

Table 2.1 provides a concise description of different power types that need to be 

considered. The device static power depends on the environment, the size of the device, 

and the device family. For all practical purposes, it is assumed to be constant. Since it 

does not depend on the IP implementation, we report it separately in Table 2.1 for the 

XC4VFX60 device. 

 

Table 2.1: Different types of power consumed at each rail for an FPGA. For the XC4VFX60 Virtex-4, the 

device static power is 0.44W (at 25ºC). 

Drawn by the device when it is powered up, configured with 
user logic, and there is no switching activity. 

Device 
static 

Consumed by the device when it is powered up 
and without programming the user logic. 

Static 

Design 
static 

Consumed by the user logic when the device is 
programmed and without any switching activity. 

Dynamic 
It is the fluctuating power as the design runs; it is generated by 
the switching user logic and routing. 

 

In terms of comparing among different cases, we will only consider the sum of the 

dynamic and design static power (see Table 2.1). In order to estimate this power 

consumption, we use the FPGA power supply rails: (i) internal supply rail voltage 

VCCINT with current ICCINT, and (ii) auxiliary supply rail voltage VCCAUX with 

current ICCAUX. Here, we will not consider the output supply power since it is only 

associated with the power consumed by the external pins. Thus, the IP power is given by: 

 ICCAUXpVCCAUXICCINTpVCCINTIPPower ×+×=  (2.3) 

where the currents are given by: 
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ICCAUXQICCAUXICCAUXp

ICCINTQICCINTICCINTp

−=

−=
  (2.4) 

and ICCINTQ, ICCAUXQ are defined as the device static supply currents (of their 

respective voltage rails). 

Measuring power directly (e.g. [6]) requires custom-built boards that provide access to 

the voltage rails themselves. Instead, we can accurately estimate power consumption 

using software tools that would be widely applicable to all devices. For the purposes of 

this work, the Xilinx Power Analyzer (XPA) is employed for these measurements (at 

25ºC). XPA provides an accurate estimate based on simulated switching activity of the 

place-and-routed circuit and exact utilization statistics. [27]. 

We also consider power consumption during dynamic partial reconfiguration. 

Unfortunately, there is no software tool available that can provide an estimate of this 

power consumption. In [6], through hardware measurements, it was determined that 

during DPR, the only supply current that increases is ICCAUX (Virtex-II Pro and Virtex-

4). Thus, the DPR power can be estimated using: 

 ( )increaseICCAUXVCCAUXPower.cRe ×=  (2.5) 

From [6], we have that ICCAUX increases by 170 mA and 25 mA for the Virtex-II Pro 

(XC2VP30) and Virtex-4 (XC4VFX12) respectively. Assuming that these dynamic 

current measurements remain the same within the same device family, we can use these 

values in (2.5) and (2.6). 

Furthermore, for our application in digital image and video, we will report energy 

consumption in terms of energy spent for processing a single frame: 

 ( ) ( )usTframePoweruJframeperEnergy ×=  (2.6) 
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For completeness, the frame size will also be reported along with the energy spent per 

frame (see (2.2)). 

2.5.4 Accuracy measurements 

The accuracy is measured using the peak signal-to-noise ratio (PSNR). This is given by: 

 ( )













×=

MSE

MAXValue
logdBPSNR

2

1010  (2.7) 

where the MSE is the mean squared error between the pixel processor output and the 

result using double floating-point arithmetic. 

2.5.5 Generation of optimal Pixel Processor realizations  

Based on the power, performance, and accuracy (PPA) measurements, we can select 

optimal pixel processor realizations. Here, we define a pixel processor realization to be 

optimal in the Pareto (multi-objective) sense [8]. A pixel realization is considered to be 

Pareto optimal if we cannot improve on its Power-Performance-Accuracy measurements 

without decreasing on at least one of them. We will next provide an example. 

The goal is to minimize power, maximize performance, and maximize accuracy. For a 

given set of pixel processors, we want to find a subset of realizations whose results 

cannot be improved by any other realization for all three (PPA). The collection of all 

Pareto-optimal points forms a Pareto front (see Fig. 2.4). In Fig. 2.4, we are plotting 

realizations as points against power, and the negatives of performance and accuracy. 

Thus, optimal realizations appear lower-left in 2-D (see Fig. 2.4(a)). The idea is then 

extended to 3-D in Fig. 2.4(b). 

We can also extend the example for satisfying multi-objective constraints. The idea is 

demonstrated in Fig. 2.4(c) and 2.4(d). Independent constraints appear as lines in 2-D and 
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planes in 3-D. Optimal realizations are then selected among the Pareto-optimal points 

that also satisfy the constraints. Dynamic constraint satisfaction only requires that we 

select Pareto optimal points when the constraints change. In the next section, we provide 

more details on the hardware implementation of this idea. 

 

 

 

 

 

 

 

 

 

 

 

2.5.6 Dynamic PPA Management based on DPR and dynamic frequency control 

In hardware, Pareto-optimal realizations are represented by their associated partial 

bitstreams, frequency of operation, and PPA measurements. The realizations and 

associated parameters are stored in memory. We demonstrate the basic DPPA 

management framework in Fig. 2.2. 

Dynamic PPA management is based on selecting a single realization that satisfies the 

dynamic constraints. An example of a single set of constraints is shown in Fig. 2.4(c) for 

two constraints (PA). Here, the Pareto-optimal points are plotted in yellow. Note that we 
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are interested in coming up with a single realization. When only PPA constraints are 

given, we can have more than one solution. Thus, it makes sense to consider the case 

where we are minimizing one objective while imposing constraints on the other two. We 

next consider an example to demonstrate the idea. 

Without loss of generality, suppose that we want the minimum power realization ( Ri ) 

subject to minimum accuracy and performance requirements. In this case, we want to 

solve: 

 

( )

( )

( ) fpsRiePerformanc

dBRiAccuracy
:tosubject

,RiPowermin
Ri

30

50

≥

≥  (2.8) 

In this case, the Pareto-optimal points that satisfy the constraints are shown in yellow 

in Fig. 2.4(d). The realization that also minimizes power is circled. This is the optimal 

realization that is selected for DPR and/or dynamic frequency control. Note that if we 

also want the optimal solution to satisfy a power constraint, we can simply check whether 

the minimum power solution meets this constraint. 

The implementation of Ri  comes with specific values for the pixel processor 

parameters and frequency of operation. 

Fig. 2.2(a) shows an embedded system that can modify the pixel processor parameters 

and the frequency of operation. Thus, each realization is represented in terms of its 

unique combination of partial bitstream and frequency of operation. Also, the Pareto-

optimal front can contain bitstreams that are associated with more than one frequency. 

Fig. 2.2(b) illustrates how the user moves dynamically along the Pareto front via DPR 

and/or dynamic frequency control of the DCM. 
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2.6 Experimental Setup 

In this section, we provide specific details of the platform and the scenarios under which 

we test the pixel processor. We also provide details on the PLB interface and frequency 

control in Section 2.6.2. 

2.6.1 Platform testing scheme 

Fig. 2.2(a) showed a generic embedded system. Here, the pixel processor system was 

implemented on the ML410 Xilinx® Development Board that houses a XC4VFX60-

11FF1152 Virtex-4 FPGA. The PowerPC processor is selected and it is clocked at 300 

MHz, with peripherals running at 100 MHz. Here, we note that the PowerPC has internal 

data and instruction caches that are used for data and instruction fetches from memory 

(64 MB DDR-SDRAM). The pixel processor IP is connected to the PLB Bus. The ICAP 

core used is provided by Xilinx®. The embedded system serves as a validating platform 

from which we extract the processed images. 

2.6.2 PLB Interface and frequency control 

The pixel processor is connected to the PLB bus (32-bit PLB Slave Burst interface). For 

the DMA core, we are using the Xilinx® Central Direct Memory Access (DMA) core 

with a PLB interface that supports burst transfers. The 32-bit PLB transaction requires 

NI×NC ≤ 32 and NO×NC ≤ 32 for optimal bus usage. 

The frequency control core is shown in Fig. 2.3. The core acts as a slave to the DCR 

bus. The reference clock ‘clkin’ is the PLB clock (100 MHz). Thus, 

( ) MHzDMclkfx 100×= . 

Special care must be taken when varying ‘clkfx’. For Virtex-4 devices, ‘clkfx’ is 

limited to 32-210 MHz in the ‘low frequency mode’, and to 210-350 MHz in the ‘high 
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frequency mode’ [28]. Switching frequency modes requires a sequence of reads/writes on 

the DCM dynamic reconfiguration port (DRP). To minimize overhead required for 

implementing clock speeds above ‘PLB_clock’, we have constrained ‘clkfx’ to be lower 

or equal than ‘PLB_clock’. Thus, any M/D combination has to yield a ‘clkfx’ in the range 

of 32-100 MHz. 

In Fig. 2.5, we show the Pixel processor implemented as a peripheral to the PLB. We 

handle the difference between the PLB and the Pixel Processor clocks by using input and 

output FIFOs and separate clock regions (‘PLB_clock’ and ‘clkfx’). FSMs are used to 

control the signals for each clock region. We clock the pixel processor coress (the PRR) 

at ‘clkfx’, while the rest is clocked at ‘PLB_clk’. Modifying the ‘PLB_clk’ directly (i.e. 

‘PLB_clk = clkfx’) is undesirable since other peripherals (e.g. SystemACE, Ethernet 

core) use the ‘PLB_clk’ value as a parameter, requiring the dynamic reconfiguration of 

these IPs each time we modify ‘clkfx’. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. (a) Pixel Processor Slave PLB interface. In the figure, NI=NO=8, NC=4. The PRR can change 
as long as NI×NC ≤ 32 and NO×NC ≤ 32. (b) State Machines for each clock region 

o
rd

e
n

ir
d
e
n

LUT

8-to-8

LUT

8-to-8

LUT

8-to-8

3
2 3
2

upix_ip

LUT

8-to-8

B
u
s
2
IP

_
D

a
ta

Slave

Reg 0

oFIFO
FWFT mode

DO

rden

IP
2
B

u
s
_
D

a
ta

3
2 IP

2
B

u
s
_
W

ra
c
k

IP
2
B

u
s
_
R

d
a
c
k

B
u
s
2
IP

_
W

rC
E

(0
)

B
u

s
2
IP

_
R

d
C

E
(1

)

FSM

B
u
s

2
IP

_
C

lk

DI

w ren

PLB Bus

PLB Interface

512x32

B
u
s

2
IP

_
B

E

rd
w r

(a)

IP
2
B

u
s
_
A

d
d
rA

c
k

PLB46 Slave Burst IP

B
u
s
2
IP

_
R

d
R

e
q

B
u
s
2
IP

_
W

rR
e

q

fu
ll

e
m

p
ty

o
w

re
n

ofull oempty

iFIFO
FWFT mode

DO

rden

DI

w ren

fu
ll

e
m

p
ty

iw
re

n

ifull iempty

FSM

clkfx

iw ren

Slave

Reg 1

iw
re

n

512x32

iwren←1

S1

oempty

ifull

wr=1 &

BE=1111

orden←1

S2

resetn=0

yes

no 1

0
1

0

1

0

1

0

oempty

rd

irden ← 1

owren ← 1

S1

iempty

iempty=0

& ofull=0

S2

resetn=0

yes

1

0

no

(b)

FSM at Bus2IP_Clk

FSM at clkfx

PRR



 27 

2.6.3 Selection of pixel processor parameters and frequency of operation for the 

generation of the set of pixel processors 

Typical image and video formats are limited to a maximum of 12 bits per sample (for 

each color channel). Thus, we work with 12-bit and 8-bit images. For reducing the input 

bitwidth, we simply select the most significant bits. To maintain high accuracy in the 

results, we require the number of outputs bits to be equal or above the number of input 

bits (NO≥NI). For the adjustable frequency of operation ‘clkfx’, we select five different 

frequencies (MHz): 100.00 (M=2,D=2), 66.66 (M=2,D=3), 50.00 (M=2,D=4), 40.00 

(M=2,D=5), and 33.33 (M=2,D=6). 

Three different testing scenarios are considered for the Pixel Processor: (i) 32-bit I/O 

constrained implementations, (ii) 8/12 input constrained implementations, and (iii) fixed-

frequency constrained implementations. The parameters for each scenario are 

summarized in Tables 2.2, 2.3, and 2.4. 

1) 32-bit I/O constrained implementations: Here, the pixel processor is implemented 

in the 32-bit embedded system of Subsection 2.6.1. The selection of the parameters NI, 

NO, NC (number of cores) depends upon the resource availability and the constraints 

NI×NC≤32 and NO×NC≤32. Table 2.2 shows the combination of parameters chosen for 

both 12-bit (NI: 12�5) and 8-bit images (NI: 8�5). In this case, we consider the power 

and resource measurements for implementing both the LUT-cores and the PLB interface. 

2) 8/12 bit input constrained implementations: In this case, NI is either 8 or 12. We do 

not restrict NO and NC (except for NO≥NI). NC can be as high as the FPGA device can 

allow. Table 2.3 lists the parameters and frequency combinations. Power and resources 

measurements only consider the implementation of the LUT cores (NC NI-to-NO LUTs). 
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3) Fixed-frequency constrained implementations: This case is similar to the previous 

(8/12 bit input) case. However, the frequency is fixed and we allow the input bitwidth 

(NI) to vary. Table 2.4 lists the possible combinations. Power and resources 

measurements only consider the implementation of the LUT cores (NC NI-to-NO LUTs). 

 
Table 2.2: 32-bit I/O pixel processor constrained implementations. 8-bit images: upper side of table. 12-bit 

images: entire table. Each case is tested for 5 different frequencies: 100, 66.66, 50, 40, and 33.33 MHz 

NI NO (NC) 

5 5(4) 6 4) 7(4) 8(4) 9(2) 10(2) 11(2) 12(2) 
6  6(4) 7(4) 8(4) 9(2) 10(2) 11(2) 12(2) 
7  7(4) 8(4) 9(2) 10(2) 11(2) 12(2) 
8  8(4) 9(2) 10(2) 11(2) 12(2) 
9 9(2) 10(2) 11(2) 12(2) 13(2) 14(2) 15(2) 16(2) 

10  10(2) 11(2) 12(2) 13(2) 14(2) 15(2) 16(2) 
11  11(2) 12(2) 13(2) 14(2) 15(2) 16(2) 
12  12(2) 13(2) 14(2) 15(2) 16(2) 

 

Table 2.3: Pixel Processor Implementations for 8/12 bit input images unrestricted by I/O bitwidth. Each 

implementation is tested for 5 different frequencies: 100.00, 66.66, 50.00, 40.00, and 33.33 MHz. 

Image NI NC NO 

2 
4 
6 
8 

8-bit  8 

10 

8 9 10 11 12 

2 
4 
6 12-bit 12 
8 

12 13 14 15 16 

 

Table 2.4: Pixel Processor implementations restricted at 100 MHz with unrestricted I/O bitwidths. 

Image 
N

I 
NO NC 

5 5 6 7 8 9 10 11 12 
6  6 7 8 9 10 11 12 
7  7 8 9 10 11 12 
8  8 9 10 11 12 

8-bit 

 

2 
4 
6 
8 

10 

9 9 10 11 12 13 14 15 16 
10  10 11 12 13 14 15 16 
11  11 12 13 14 15 16 

12-bit 

12  12 13 14 15 16 

2 
4 
6 
8 
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2.7 Results and Analysis 

This section details hardware resource utilization, optimization of the PPA space for the 3 

scenarios of Section 2.6.3, and a discussion of the results. For demonstrating the results 

for 8-bit images, we use the ‘lena’ image of size 640x480. For 12-bit images, we use the 

‘oilp’ image of size 512x512. Here, we note that the problem of assessing the accuracy of 

the results is closely related to the problem of video quality assessment [1]. In the 

proposed setup, we expect the users to dynamically adjust the accuracy constraints to 

meet their expectations. An example is provided in Section 2.7.4. 

Fig. 2.6 shows some output results for image ‘oilp’, shown along with the selected I/O 

bit-widths and their accuracy. Note that the result images for NI=8,12 are nearly identical 

to those of the double floating point case. For NI=5, there are some clear artifacts in the 

lower right portion of the image; they appear for PSNR levels around 50dB. 

 

 

 

 

 

 

 

 

 

 

 

Double output NI=12, NO=16, psnr=128.59dB

NI=8, NO=8, psnr=66.56dB NI=5, NO=8, psnr=47.87dB

(a) (b)

(c) (d)

Figure 2.6. Output ‘oilp’ image results for various input/output cases. 
Accuracy results are shown as well (simulated gamma correction for γ=0.5) 
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While the accuracy values do depend on specific images, we did not see the Pareto 

front to vary significantly from image to image. Clearly, the PSNR accuracy of the single 

pixel functions depends on the histogram of the image (see histograms for ‘lena’ and 

‘oilp’ in Fig. 2.7). 

 

 

 

 

 

 

 

 

 

 

2.7.1 Embedded System results for 32-bit I/O constrained implementations 

In this case, we report on the pixel processor implementations described in Table 2.2. In 

terms of the embedded system implementation, we consider the 8-bit and 12-bit systems 

separately. In each case, we define the PRR region to be sufficiently large for 

implementing the largest possible realization. Note that this constraint does not imply that 

the power consumption will be the same for all 8-bit or 12-bit implementations. Here, 

note that power consumption is a function of the utilized resources (not allocated 

resources). 

For the 8-bit system, the PRR occupies a tightly packed area of 16×22=352 Slices with 

Figure 2.7. Histograms for both 8-bit ‘lena’ and 12-bit ‘oilp’ images 
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a bitstream size of 47194 bytes. In the case of the 12-bit system, the PRR occupies 

36×128=4608 Slices with a bitstream size of 449015 bytes. 

A summary of resource utilization results are given in Table 2.5. Note that the largest 

pixel processor in the 8-bit case (4 LUT8tot8) occupies 320 Slices (91% of the allocated 

space for the PRR), and in the 12-bit case (2 LUT12to16) it occupies 4318 Slices (93% of 

the allocated PRR Slices). 

Table 2.5: Embedded Pixel Processor. Resource utilization (XCV4FX60). Case I:  8-bit inputs: NI=NO=8, 

NC=4. Case II: 12-bitinputs:  NI=12,NO=16,NC=2 

Module Slice (%) FF (%) LUT % 
Static Region 5308 21% 5519 11% 6517 13% 
PRR (Case I) 320 1% 0 0% 576 1% 
PRR (Case II) 4318 17% 0 0% 8576 17% 
Overall (Case I) 5628 22% 5519 11% 7093 14% 
Overall (Case II) 9626 38% 5519 11% 15093 30% 

 

The average processing speed resulted in 352.85 Mbps, i.e. a video of size 640x480 

can be processed at 143 fps. 

Recall that in our applications, we expect that the dynamic reconfiguration rate will be 

small (in the order of seconds). A reconfiguration speed of 16.28 MB/s is obtained by 

using the Xilinx® ICAP core, resulting in 2.89 ms and 27.58 ms of reconfiguration time 

for the 8-bit and 12-bit cases respectively. On the other hand, a dynamic rate of 295.4 

MB/s reported in [10] has been achieved using a custom-built DPR controller. However, 

note that additional hardware overhead is required for achieving faster rates. During 

reconfiguration, power increase was estimated to be 62.5 mW [6]. 

2.7.2 Pixel Processor IP resource utilization 

We demonstrate the resource scalability of the approach in Fig. 2.8. Here, the results are 

independent of the clock frequency. Instead, the resource consumption is a function of 
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NI, NO, and NC. The hardware resource utilization, based on the number of NI-to-NO 

LUT cores (NC) is shown in Fig. 2.8 for the cases listed in Table 2.4. 

Resource requirements (slices) are clearly clustered for each NI and they grow 

exponentially as NI increases (e.g. 15,30,63,136 for NI=NO=5,6,7,8 in Fig. 2.8(a)). The 

amount of resources increases linearly with the number of cores (NC). When we increase 

the number of output bits (NO), the amount of resources also increases linearly with a 

less steep slope (e.g. 306 to 547 for NO=9 to 16, NI=9, in Fig. 2.8(b)). The case with 

NI=12, NO=16, NC=8 requires the largest amount of resources that we have tested in the 

XC4VFX60 FPGA. Furthermore, for the given device, based on the diversity of the 

testing, it did not make sense to consider cases for NI>12.  

It is also worth noting that resource consumption does not vary significantly with the 

optimized architecture shown in Fig. 2.1. Thus, we have directed the Xilinx® ISE 

synthesizer to implement the LUTs without optimizing for the LUT contents, allowing us 

to effectively swap functions as needed. 
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2.7.3 Multi-objective Optimization of the PPA space 

We present the results from multi-objective (PPA) optimization of the pixel processor for 

the 3 scenarios of Section 2.6.3. For comparison, we use gamma correction (γ=0.5) which 

represents a non-linear function that is used for image and video display (see example in 

Fig. 2.6). 

In Fig. 2.9(a), we show the PPA space and the Pareto front for the 32-bit I/O 

constrained implementations (12-bit image, NI: 12→5). The Pareto front appears to lie on 

a piecewise planar surface that includes 43% of all possible realizations. They also cover 

a wide range of the PPA space, suggesting that the approach is effective in generating a 

wide range of options. Maximum accuracy of 128.6 dB is achieved at 245 fps and power 

of 156.7 mW. Maximum performance is achieved at 1526 fps with an accuracy of 48.14 

dB and power of 48.15 mW. As shown in Fig. 2.9(b), performance increases with 

frequency and the number of cores. In addition, it is important to note that the accuracy 

depends on NI and NO in Fig. 2.9(a). 
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Figure 2.9. 32-bit I/O constrained implementations for 12-bit images. (a)  PPA Results and Pareto Front 
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circled, the rest are the cases with NC=2. 



 34 

 

 

 

 

 

 

 

 

 

Fig. 2.10(a) shows the PPA space, the Pareto front for the 8-bit input constrained 

implementations (upper half of Table 2.3), and the extreme implementations (max. 

accuracy, min. power, max. performance). The Pareto optimal points are easily clustered 

as a function of NO. Fig. 2.10(b) shows how power and performance depend on 

frequency within an NO cluster. A similar trend occurs with an increase in NC. Unlike 

the I/O constrained case of Fig. 2.9, the effect of frequency on power is more noticeable 

in Fig. 2.10(b) because it only depends on the LUT cores. It is also interesting to note that 

the Pareto front includes 40% of the PPA space. As before, this suggests that parameters 

variation worked well in that it generated a relatively large number of optimal points. We 

also note that the 12-bit input constrained implementations gave similar trends as the 8-

bit case. Thus, this case is not repeated here. 

Instead of PPA optimization, we also considered optimization with respect to Energy, 

Performance, and Accuracy (EPA). Here, we computed the energy required to process a 

single video frame. In this case, for both the 32-bit I/O and the 8-bit input constrained 
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implementations, the 3-D Pareto front lied completely at the maximum frequency of 100 

MHz. This implies that frequency variation did not work for EPA optimization. In other 

words, better implementations were obtained by varying the NI, NO, and NC parameters. 

This motivates the last scenario that considers the case for fixed-frequency. 

Fig. 2.11 shows the EPA space for fixed-frequency (100 MHz) constrained 

implementations for 12-bit input images (NI:12→9). In Fig. 2.11(b), we can see that 

performance clusters are defined in terms of the number of cores (NC). Most of the 

Pareto optimal points occur for 8 cores. For fewer cores, we have three optimal cases: (i) 

NI=10, NO=11, NC=6, (ii) NI=NO=11, NC=6, (iii) NI=11, NO=12, NC=4. In Fig. 

2.11(a), we can see that as NO decreases (for fixed NI and NC), the energy per frame and 

the accuracy decrease.  As expected, the performance (fps) is only affected by NC. So, 

for NC=8, the Pareto front is defined in terms of NI and NO. Table 2.6 shows the 17 

points (out of 104) that make up the 3D Pareto front. 
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Table 2.6: Fixed-frequency (100 MHz) constrained implementations: Pareto Optimal points (12-bit image) 

NI NO NC psnr(dB) fps Energy per frame (uJ) 
9 9 8 73.1611 3051.7578 29.4850 
9 11 8 73.1667 3051.7578 36.0877 

10 10 8 77.9215 3051.7578 46.6695 
10 11 6 78.0665 2288.8184 57.8377 
10 11 8 78.0665 3051.7578 59.8193 
11 11 6 83.8819 2288.8184 81.0746 
11 11 8 83.8819 3051.7578 81.6185 
11 12 4 83.9695 1525.8789 92.4202 
11 12 8 83.9695 3051.7578 93.7453 
11 13 8 83.9751 3051.7578 102.4708 
11 14 8 83.9875 3051.7578 110.5668 
11 15 8 83.9922 3051.7578 125.3556 
12 12 8 104.7546 3051.7578 146.9356 
12 13 8 110.8823 3051.7578 163.8397 
12 14 8 116.6600 3051.7578 179.2773 
12 15 8 122.6959 3051.7578 201.4623 
12 16 8 128.5966 3051.7578 217.2102 

 

2.7.4 Dynamic PPA and EPA management optimization 

Given the Pareto-optimal implementations, we are now ready to provide results on 

dynamic PPA management (DPPA). DPPA management allows us to provide optimized 

solutions based on time-varying constraints. The basic idea is to select Pareto-optimal 

implementations that satisfy the constraints and then implement them using DPR and 

dynamic frequency control (see Section 2.5.6). 

First, note that performance constraints are relatively easy to meet since frame rates 

are always above 300 fps. This motivates the simplification of PPA management to the 

case of Power-Accuracy management. In this case, for 32-bit I/O and 8-bit input 

constrained implementations, the Pareto front is obtained for the lowest frequency of 33 

MHz. For the fixed-frequency constrained implementation, the Pareto front is obtained 

for implementations with NC=2. 

For finite energy applications (e.g. battery-operated), we are very interested in 

dynamic EPA management. As mentioned in Section 2.7.3, the Pareto front for EPA 
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optimization occurs for the maximum frequency of 100 MHz. Also, in this case, 

performance constraints are still easy to meet. Thus, we switch to optimization in the 

Energy-Accuracy space as shown in Fig. 2.12(a) for fixed-frequency constrained 

implementations. 

 

 

 

 

 

 

 

 

 

To demonstrate dynamic Energy-Accuracy management, we consider an example with 

time-varying constraints. Sequentially, we list the dynamic constrained and unconstrained 

optimization requirements as follows: 

1. Require Accuracy≥80dB and Energy≤0.16mJ per frame. 

2. Minimize Energy subject to Accuracy≥100dB. 

3. Maximize Accuracy. 

4. Minimize Energy consumption. 

The resulting Dynamic Energy-Accuracy management is demonstrated in Fig. 2.12(b). 

First, we choose the implementation with NI=NO=11, NC=6 that meets the constraints 

while also minimizing energy consumption (see point ‘1’). The rest of the constraints are 
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met by the realizations marked as ‘2’, ‘3’, and ‘4’ in Fig. 12(b). The full DPR 

implementation details are given in Section 2.5.6. 

In the proposed solution, we do recognize that we cannot have ‘hard’ accuracy 

constraints. Clearly, accuracy varies from frame to frame. The recommendation is simple. 

The user can dynamically increase or decrease the accuracy constraint based on whether 

his or her expectations are met. In the example, the user specifies an increase in accuracy 

from 80 dB (constraint # 1) to 100 dB (constraint # 2). 

2.7.5 Comparison with other pixel processor implementations 

Table 2.7 provides a comparison between the 8-bit input/8-bit output core and similar 

implementations found in the literature. Clearly, this comparison does not capture the rich 

number of implementations described here. However, it provides a reference point that 

can be used to measure the effectiveness of the basic LUT implementation. 

The closest implementation to ours is the Xilinx® core [19]. In [19], the use of 3 

BRAM18 resources can be considered as an expensive option. The implementations of 

[18] and [24] are custom static architectures whose resource consumption exceeds ours. 

The implementation in [21] is a 12-bit input/8-bit output function that only uses 146 

Slices and 1 DSP Slice. This is a custom-built implementation of the gamma-correction 

function alone and cannot be generalized to other single-pixel processors. While our 8-bit 

input/8-bit output implementation requires fewer resources, our 12-bit input/12-bit output 

case requires significantly more resources at 1662 Slices. In Fig. 2.6(c), we show that the 

reduction of the 12-bit input to an 8-bit input for use with the proposed approach of Table 

2.7 can give satisfactory results. In other words, there are no visible artifacts between the 

proposed approach of Fig. 2.6(c) and the double floating point implementation of Fig. 2.6 
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(a). However, in general, we do not recommend the use of the LUT-approach for input 

bitwidth above 12 bits. 

Table 2.7: Comparison against other single-pixel architectures (1 core). For comparing to [21], we note that 

the proposed 12-bit input/12-bit output core requires 1662 slices. 

 Proposed [19] [21] [18] [24] 

Function type Programmable Programmable 
Precise 
gamma 

correction 

Histogram 
equalization 

Successive Mean 
Quantization 

Transformation 

Implementation LUT-approach 
LUT-

approach 
Custom 

hardware 
Custom 

hardware 
Custom hardware 

Test case 
8-bit input 
8-bit output 

8-bit input 
8-bit output 

12-bit input 
8-bit output 

8-bit input 
8-bit output 

8-bit input 
8-bit output 

Device Virtex-4 Virtex-5 Virtex-4 Virtex-II Pro Actel APA600 

Resources 
128 LUT4, 16 

FFs 
68 Slices 

57 LUT5, 57 
FFs 

3 BRAM18 

146 Slices 
1 DSP Slice 

269 LUT4, 
 172 FFs,  
16 BRAM 

1 MULT18x18 

2123 Cells 
48 BRAM 

Max. 
Frequency (IP) 

229.358 MHz 324 MHz 378 MHz 200 MHz - 

 

2.8 Conclusions 

We have presented a framework for generating Pareto-optimal PPA/EPA 

implementations based on PPA/EPA constraints. The framework allows for dynamic 

PPA and EPA management for single-pixel processing architectures. A dynamic 

reconfiguration system selects the Pareto-optimal realization that meets time-varying 

constraints. 

The Pareto optimal points are computed offline by considering different clock 

frequencies, the number of pixel processor cores, and the number of inputs and output 

bits. The validity of the approach is verified by the fact that over 40% of the considered 

implementations are found to be Pareto-optimal. Furthermore, the scenarios provide 

practical implementations for 32-bit I/O, 8/12-bit inputs, and fixed clock frequency. 

We also demonstrated dynamic EPA management for 12-bit bitwidths. The proposed 
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framework was used to show how we can meet dynamic constraints in energy and 

accuracy. Here, performance constraints were met by the fact that all implementations 

operated over 300 fps. In general though, when the pixel processor is implemented in a 

larger system, we expect that performance requirements may have to be added. 
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Chapter 3 

 

Partial Reconfigurable FIR Filtering system using Distributed 

Arithmetic 

 

Abstract 

Dynamic partial reconfiguration (DPR) allows us to adapt hardware resources to meet 

time-varying requirements in power, resources or performance. In this chapter, we 

present two new DPR systems that allow for efficient implementations of 1-D FIR filters 

on modern FPGA devices. To minimize the required partial reconfiguration region 

(PRR), both implementations are based on distributed arithmetic. For a smaller required 

PRR, the first system only allows changes to the filter coefficient values while keeping 

the rest of the architecture fixed. The second DPR system allows full FIR-filter 

reconfiguration while requiring a larger PR region. We investigate the proposed system 

performance in terms of the dynamic reconfiguration rates. At low reconfiguration rates 

the DPR systems can maintain much higher throughputs. We also present an example that 

demonstrates that the system can maintain a throughput of 10 Mega-samples per second 

while fully reconfiguring about seventy times per second. 

 

3.1 Introduction 

Dynamically reconfigurable systems offer unique advantages over non-dynamic systems. 

Dynamic adaptation provides us with the ability to adapt hardware resources to match 
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real-time varying requirements. The majority of the 1-D FIR filtering literature is 

dominated by static implementations. Here, we use the term static to refer to both CMOS 

implementations (e.g. [29-33]) and reconfigurable hardware (non-dynamic) (e.g. [34,35]). 

Some implementations use the label reconfigurable in the sense of having the capability 

to load different filter coefficients on demand (e.g. [30-33]). In the context of this work, 

such implementations are considered static since the underlying hardware is not changed 

or reconfigured.  

For reconfigurable hardware, the most efficient implementations are based on 

Distributed Arithmetic (DA) [36]. These filters have coefficients fixed or hardwired 

within the filter's logic. This approach allows fast and efficient implementations while 

sacrificing some flexibility since coefficients can not be changed at run time. Dynamic 

partial reconfiguration (DPR) can be used in this scenario to provide the flexibility of 

coefficients’ values changes without having to turn off the device and only re-writing a 

section of the configuration memory. The efficiency of DPR over the full reconfiguration 

alternative and the savings in terms of power and resources is a function of the relative 

size of the portion being reconfigured [37].  

We consider a DPR approach that allows us to change the filter’s structural 

configuration and/or the number of taps. The proposed approach provides a level of 

flexibility that can not be efficiently accomplished with traditional static 

implementations. In particular, we develop a dynamically reconfigurable DA-based FIR 

system that uses DPR to adapt the number and value of the coefficients, the filter's 

symmetry and output truncation scheme. Two systems are presented that allow the 

flexibility to change all these filter's characteristics: (i) a system that only allows changes 
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to the coefficients values, and (ii) a system that allows changes to the number and value 

of the coefficients, the symmetry, and the output truncation scheme. 

Previous research on dynamically reconfigurable FIR filters has focused on Multiply-

Accumulate based implementations and coarse reconfiguration. The first system 

described in this work is based on dynamically reconfiguring at a coarse level, i.e. the 

entire FIR filter. The second system is based on dynamically reconfiguring at the finest 

possible level, the LUTs that store the coefficients, with a small dynamic reconfiguration 

area. We have demonstrated a related, LUT-based approach in a dynamically 

reconfigurable pixel processor [9]. The paper also explores different ways to execute 

dynamic partial reconfiguration and elaborates on the impact over reconfiguration time 

overhead of the different approaches.  

This work provides an extended version of the conference paper presented in [38]. The 

work has been extended to provide: (i) extended background information, (ii) more 

implementation details, (iii) extended methodology, (iv) architectural extensions to allow 

changes on the filter's internal structure, and (v) new results.  

The rest of this chapter is organized as follows: Section 3.2 presents background and 

related work. Section 3.3 describes the FIR filter core implementation. Section 3.4 

introduces the dynamically reconfigurable system. Results and conclusions are presented 

in section 3.5 and 3.6 respectively.  

 

3.2 Background and related work 

Reconfigurable logic has established itself as a popular alternative to implement digital 

signal processing algorithms [39]. Furthermore, a number of articles have been published 
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on using DPR to implement different signal processing algorithms [40, 41, 38, 37]. In 

particular, [42-44] report different approaches for taking advantage of DPR in FIR filter 

implementations. The capability of reconfiguring a filter at run time is of special interest 

for applications such as wireless communications and software radio.  

Hardware realizations of FIR filters can be divided into constant-coefficients and 

multiplier-based implementations [42]. In the latter case, DPR is mainly used to change a 

filter's overall structure [43, 44], or other filter-wide characteristic. At a higher level, 

DPR is also used to simply change the level of parallelism of an implementation by 

changing the number of filter cores in an application’s critical path. In all these cases, 

changes are usually initiated from a desire to implement a new filter, based on power or 

resources considerations, or simply to obtain new functionality. A change in coefficients 

does not require reconfiguration for this type of filter implementation. Thus, for these 

cases, DPR has milder constraints in terms of reconfiguration speed and reconfigurable 

logic partition. 

The case of constant-coefficients implementation is considerably more complex since 

DPR is used to change inner characteristics of the filters (coefficients are not easily 

isolated within the filter structure). This requires more complex schemas to segment logic 

into reconfigurable tiles and more efficient reconfiguration mechanism in order to reduce 

the amount of time it takes to reconfigurable a filter.  

DA filters in Xilinx® FPGAs are introduced in [45, 46], where the authors exploit 

common characteristics between the Xilinx's FPGA architecture and the filter 

architecture. In [35], the authors present other approaches for flexible FPGA 
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implementations of FIR filters by combining pipelined multipliers and parallel, 

distributed arithmetic. 

In [42], the authors consider different DPR architectures for extending constant-

coefficients approaches to implement adaptive filters. This relatively early study already 

provides insights on the advantages of using run-time partial reconfiguration to modify a 

filter's behavior at run-time. The study used an earlier device (currently unavailable) and 

explored architectures different than DA, which were a natural fit for such device. Their 

results in terms of performance can not be compared to the results of this work due to the 

inherent difference between the reconfigurable devices used.  

In [44] the authors describe a self-reconfigurable adaptive FIR filter system composed 

of up to three multiplier-based filter modules. These modules can be reconfigured at run-

time by a control manager that uses SystemACE to store and fetch the corresponding 

partial bitstream. This system only allows a full filter reconfiguration instead of finer 

reconfiguration schemas such as coefficient-only reconfiguration. In this paper, speed 

results are not clearly presented. The authors report different reconfiguration overhead 

times for different filters that apparently occupy the same reconfigurable region in the 

device. These results are surprising since reconfiguration time overhead depends mainly 

on the bitstream size, which depends on the size of the partial reconfigurable area, not on 

the number of resources used within that area. It is also worth mentioning that 

reconfiguration speeds reported are slower than speeds reported on other DPR papers [10, 

6]. 
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In [43] a similar system is described although in this case it is not self-reconfigurable 

and uses an external PC to perform reconfiguration. Reconfiguration times reported are 

also considerably slower than other reported methods.  

In [47], the authors describe a tool-flow to map applications to a self-reconfiguring 

application. The authors use a 32-tap MAC based FIR filter as an example. The paper 

compares the performance of simply reloading coefficients by writing over specific 

registers and using DPR to reconfigure the whole filter. In this paper, the reconfiguration 

time overhead is large but dismissed as an acceptable handicap for the paper’s goals. 

In general, the reconfiguration time overhead is an important factor in the evaluation 

of systems using DPR. Several approaches exist to deal with the overhead. One approach 

is to hide it by using efficient hardware scheduling strategies (e.g [48]). A more 

simplified approach is to select carefully the elements of an architecture that requires 

reconfiguration for a desired change in functionality (e.g [6,38]). By doing so, one can 

reduce drastically the size of the partial bitstream used to execute the DPR, thus reducing 

the reconfiguration time overhead. Finally, there is also the approach of maximizing the 

access speed to the configuration memory (e.g [10]). Unfortunately this approach has a 

limit determined by the device. In the case of Virtex-4 FPGAs the maximum speed is 

3.2Gbps (32 bit wide bus @100MHz). A combination of the last two approaches is used 

in this work to deal with reconfiguration time overhead. 

This work seeks to extend prior research in this area by primarily focusing on 

developing, analyzing, and improving DPR systems in terms of the dynamic 

reconfiguration rate on modern devices. This leads us to consider a DA implementation 

that allows efficient implementations with small hardware footprints on modern FPGA 
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devices. Then, we consider a scalable approach where we have two systems: (i) a DPR 

system that allows for faster dynamic reconfigurations of coefficient values while fixing 

the number of taps, and (ii) a second DPR system that allows flexibility in the number of 

taps, the filtering structure, and truncation characteristics while allowing for a slower 

dynamic reconfiguration rate. 

 

3.3 Stand-alone FIR Filter core implementation 

A high performance FIR implementation based on Distributed Arithmetic is described in 

this section (also see [38]). The approach was coded in VHDL, so as to achieve a level of 

portability. Specific LUT primitives are employed when the system is compiled in 

Xilinx® devices. We will consider two dynamic realizations based on this core in Section 

3.4. 

 

 

 

 

 

 

 

3.1. Description 

The FIR filter module is shown in Fig. 3.1. It shows the FIR filter module with its inputs, 

outputs, and parameters. Signal ‘E’ controls the input validity. Clearing the register chain 
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(‘sclr’ signal) at will is an important requirement when performing filtering on finite size 

signals. 

Two filter implementations are presented in Fig. 3.2. A simplified approach is possible 

for symmetric filters (see Fig. 3.2) [49]. The more general, non-symmetric case is also 

presented in Fig. 3.2. 

Here, N denotes the number of taps, NH represents the input/coefficients bitwidth, L is 

the LUT input size (explained in next subsection). We also use OP for controlling the 

output truncation scheme: (i) LSB Truncation then Saturation, (ii) LSB and MSB 

Truncation, and (iii) no Truncation. We use the parameter format [NO NQ] to denote the 

fixed-point output format for NO bits with NQ fractional bits. The filter coefficients are 

specified in an input text file. 

We define  2NM = , 1+= NHsizeI  for symmetric filters, and NM = , 

NHsizeI =  for non-symmetric filters. The inputs/coefficients format is set at [NH NH-

1], which restricts values to )[ 11,− . As a result, the maximum number of output integer 

and fractional bits results: 

( ) ( )  ( )[ ]121112 2 −+++− NHNlogNH    (3.1) 

3.3.2 FIR DA Implementation 

The Distributed Arithmetic technique rearranges the input sequence samples (be it x[n] or 

s[n]) into vectors of length M, which require an array of sizeI  M-input LUTs. This 

becomes prohibitively expensive when M is large. For efficient implementation, we 

divide the filter into 
L

M  filter blocks [49], as illustrated in Fig. 3.2. Each filter block 

works on L coefficients requiring sizeI  L-input LUTs (each vector of size L goes to one 

L-input LUT, see Fig. 3.3). Table 3.1 summarizes the resources savings associated with 
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the filter blocks approach. An advantage of using FIR filter blocks is that it allows for 

efficient routing while mapping the implementation to the specific LUT primitives found 

in an FPGA. As shown in [9], the approach is scalable in that can be easily ported to 

different LUT sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: FIR Filter implementation savings due to the use of filter blocks 

Implementation Resource requirements 
1 Filter block of size M. LUTs have M inputs MsizeI 2×  words 

LM  filter blocks of size L. LUTs have L inputs LM2sizeI L ××  words 

 

To demonstrate the savings, we consider a particular example. Using the formulae of 

Table 3.1, for M=16, L=4, we have significant savings since 216 >> 24x16/4. It does 
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require an additional adder tree structure (see Fig. 3.2). However, compared to the savings, 

the overhead is not significant. 

A pipelined implementation of a symmetric filter block example is shown in Figure 

3.3. Here, we have the parameters SYMMETRY = YES and NH = 8. It consists of an 

array of L-input LUTs, an adder tree, shifters, and registers. The number of register levels 

is given by the following formula: 

( ) sizeIlogBlockFilterinlevelsregisterof# 2=    (3.2) 
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The L-input LUT sub-blocks are shown in Fig. 3.4. Here the output word size of each 

L-input LUT is given by ( ) LlogNHLO 2+= . It also shows its decomposition into LO 

L-to-1 LUTs, useful for efficient FPGA implementation. Xilinx® FPGA devices contain 

L-to-1 LUT primitives with L = 4 (Spartan-3, Virtex-II Pro, Virtex-4) and L = 6 (Virtex-

5). Thus, L = 4 or L = 6 are optimum values of choice. Moreover, as explained in [9] for 

Virtex-4, optimal LUT implementations can also be obtained for L = 5, 6, 7, 8. 

Fig. 3.5 depicts the internal pipelined architecture of the adder tree that is used for 

adding the Filter blocks outputs. The result is stored in an output register. The number of 

register levels of the adder structure is given by: 

( ) LMlogStructureAdderFilterinlevelsregisterof# 2=    (3.3) 

Since we can quantize the LUT table values (i.e. the summations), rather than the 

coefficients, this FIR DA Implementation is slightly less sensitive to quantization noise 

than a normal implementation, with quantized coefficients. The latency of the pipelined 

system is shown in Fig. 3.6. The latency (input-output delay) is given by 

( )  ( )  222 ++= LMlogsizeIlogLEVELS_REG  cycles, where REG_LEVELS is the 

number of register levels between the input and the output. 
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3.4 Dynamically Reconfigurable FIR Filtering System 

The basic FIR filter core is now extended to be dynamically reconfigurable. We allow for 

the dynamic reconfiguration of both the number and the filter coefficients themselves in 

an embedded system. The basic system is shown in Fig. 3.7. By means of Dynamic 

Partial Reconfiguration, a constant coefficient FIR filter is turned into an adaptive FIR 

filter. 

The basic approach requires that we pre-specify the Partial Reconfiguration Region 

(PRR). Two dynamically reconfigurable realizations are considered: 

(1)  Coefficient-only reconfiguration: The PRR allows modifications to the filter 

coefficient values, while keeping the rest of the architecture intact. 

(2)  Full filter reconfiguration: The PRR allows modification to the number of 

coefficients, the coefficient values, and the filter symmetry. 

We start by describing the system architecture and FIR filter dataflow, which are not 

affected by the PRR definition.  Then, we explain each of the dynamic realizations by 

providing a detailing representation of the PRR in the context of the FIR filter 

architecture. 

 

3.4.1 System Architecture 

From Fig. 3.7, we can see that the dynamic FIR core and the PowerPC (PPC) 

communicate using the high speed FSL Bus. The Partial Reconfiguration Region (PRR) 

is dynamically reconfigured via the internal configuration access port (ICAP), driven by 

the ICAP controller core. 



 54 

The DDRRAM stores volatile data needed at run-time, e.g.: input streams, processed 

streams and partial bitstreams. At power-up, SystemACE reads a Compact Flash (CF) 

Card that stores the partial bitstreams and input streams. The processed streams are 

written back to the DDRRAM. The Ethernet core provides reliable communication with a 

PC, and allows us to get new partial bitstreams or new input streams, and to send 

processed streams to the PC for its verification or storage. Also, it serves as an interface 

for throughput measurements and system status. 

Fig. 3.8 depicts the interfacing of the FIR filter processor and the PPC for both 

dynamic realizations. The FIR Filter processor, as shown in Fig. 3.7, consists of the FIR 

filter core and a control unit that provides interfacing with the 32-bitwide FSL bus. Fig. 

3.8 shows a special case when the filter input size is NH = 8 bits. Here, the input is 

processed sample by sample (one byte at a time). After 32 output samples are computed, 

they are transmitted through the FSL bus. Other input/output bit-width configurations 

require different logic and control. 

We next provide a description of the different possible modes of operation. First, we 

note that an FIR Filter with N coefficients and NX input values can output a maximum of 

NX+N-1 values. The three modes of operation are implemented through a finite state 

machine as follows: 

� Basic output mode: The system computes the first NX output values. This mode is 

useful for finite 1D signals. 

� Symmetric output mode: The system computes the central NX output samples (i.e., in 

the range    2NNX:12N ++ ). This mode is useful when performing 2D separable 

convolution on images. 
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� Streaming mode: with infinite number of input samples, i.e. NX = ∞ 

3.4.2 FIR Filter processor data flow 

The FIR Filter processor receives and sends 32 bits at a time via the FSL bus. Due to the 

FIFO-like nature of the FSL bus [50], the PPC processor sends a data stream to FIFOw to 

be grabbed by the FIR Filter processor that in turn writes an output data stream on FIFOr 

to be retrieved by the PPC processor (see Fig. 3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

We optimize FSL bus usage by letting the PPC write a large block of data on FIFOw. 

The FIR Filter processor then processes the data and writes the results on FIFOr in a 

pipelined fashion. After reading all data in FIFOr, the PPC writes another large block of 

data on FIFOw, i.e. the PowerPC is busy only when reading/writing each large block of 

data. In addition, the FIR filter processor starts reading the next available block of data on 

Figure 3.8. Dynamic FIR Filter processor interfacing with FSL. PRR for dynamic reconfiguration of the 
coefficients (left) and PRR for dynamic reconfiguration of the number of coefficients, their values and 

symmetry (right) 
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FIFOw right after writing a processed chunk of data on FIFOr. Each FIFO depth has been 

set to 64 words (32-bit words). 

 

3.4.3 Dynamic Partial Reconfiguration Setup 

Fig. 3.8 presents two dynamically reconfigurable systems and the associated PRRs. In the 

full-filter reconfiguration case, we do not allow any changes to the I/O bit-width. Here, 

we note that a change to the I/O bit-width would also require a generalized FSL interface 

to be included in the PRR, further complicating the design. Despite the complexity of 

doing so, this will be of interest for allowing us to build a dynamic precision system. 

The static region is defined by everything else outside the PRR, including FSL 

interface, FSL circuitry, peripheral controllers, and the FIR filter core static portion 

(coefficient-only reconfiguration). 

All signals between the dynamic region (PRR) and the static part are connected by 

pre-routed Bus Macros in order to lock the wiring. Also, the PRR I/Os are registered as 

the reconfiguration guidelines advise [51]. To perform DPR, the partial bitstreams are 

read from a CF card and stored in DDRRAM. When needed, they are written to the ICAP 

port. This fairly simple technique is explained in [6]. 

For throughput measurement purposes, the partial bitstreams and the input set of 

streams reside on DDRRAM. The streams are sent to the FIR Filter processor, and the 

output streams are written back to the DDRRAM. This process is repeated with different 

partial reconfiguration bitstreams loaded at specific rates, so as to get different filter 

responses and measure performance as the reconfiguration rate varies. 
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3.4.3.1 Coefficient-only reconfiguration 

In this dynamic realization, the dynamic region is made of ( ) sizeILM ×  L-to-1 LUTs, 

resulting in a PRR with ( ) LsizeILM ××  inputs and ( ) LOsizeILM ××  outputs. Fig. 3.9 depicts 
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the PRR along with the Bus Macros when SYMMETRY = NO, NH = 8, N = 8, L = 4.  

The PRR is depicted in the context of the FIR filter core. 

This realization is very useful for applications that only require filter coefficients 

modification, and it exhibits a smaller reconfiguration time overhead than the full 

reconfiguration case. Also, since only the LUT values are modified, the routing inside the 

PRR does not change. This has potential advantages in the area of run-time bitstream 

generation, as there is no need for run-time place-and-route operation. Fast routing is a 

very demanding task, and in most cases cannot be performed at run-time [52]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.10. FIR filter processor where the PRR is the FIR Filter core. Note the parameters we can modify. 
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3.4.3.2 Full filter reconfiguration 

In this case, the PRR involves the entire FIR filter core. It enables us dynamically modify 

the coefficients, number of coefficients, symmetry, and LUT input size. Fig. 3.10 depicts 

the PRR along with the Bus Macros in the context of the FIR Filter processor (with the 

FSL interface). We can see that the PRR has 2NH +  inputs and NH  outputs 

 

3.5. Results 

3.5.1 Stand-Alone FIR Filter core 

Fig. 3.11 shows hardware resource utilization as a function of the number of coefficients 

(N), input bitwidth (NH), and symmetry (dotted lines: non-symmetric filters, solid lines: 

symmetric ones). Also, we set OP = 0, L = 4. Here, we use the XC4VFX20-11FF672 

Virtex-4 device, with 8544 slices.  

In addition, for each input bitwidth, we are considering the largest output format 

attainable (in the range )[ 1,1− ). The output format ([NO NQ]) plays a negligible role in 

resource consumption (a difference of at most 12 slices). 

Regarding frequency of operation, the goal of 200 MHz minimum frequency of 

operation was attained in all cases. 

In addition, an error analysis is performed for the same parameters. Fig. 3.12 shows 

the relative error curves for three cases (input stream = 1024 sinusoid samples). The error 

metric is: 

valueideal

outputFPGAvalueideal
errorlativeRe

−
=  

  (3.4) 
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Fig. 3.12 shows that in most cases the relative error is below 5%. The peaks 

correspond to FPGA values of zero and ideal values close to zero, resulting in a deceptive 

100% error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.2 Embedded System 

Results are shown using the following FIR Filter core parameters: N = 32, NH = 8, [NO 

NQ] = [8 7], L = 4, OP = 0, SYMMETRY = YES.  
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NH = 8, [NO NQ] = [15 14]

NH = 12, [NO NQ] = [23 22]

NH = 16, [NO NQ] = [31 30]

Figure 3.11. Resources vs number of coefficients and input bitwidth. Solid lines represent the 
symmetric case. Dotted lines represent the non-symmetric case 
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Figure 3.12. Relative error, N = 32. Three bitwidth cases. 
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The system is implemented on the ML405 Xilinx® Development Board that houses a 

XC4VFX20-11FF672 Virtex-4 FPGA. The PPC is clocked at 300 MHZ and the 

peripherals run at 100 MHz. In order to improve performance, the DDRRAM memory 

space is cached. Also, the dynamic systems are tested in the basic output mode, i.e. only 

the first NX outputs are considered. 

3.5.2.1 Hardware resource utilization 

Results for this section depend on the specific dynamic realization. Tables 3.2 and 3.3 

show hardware resource utilization for two DPR systems: (i) Coefficient-only 

reconfiguration, and (ii) Full filter reconfiguration. It shows the static region, dynamic 

region and the entire system resource usage. The module ‘PRR interface’ is the gluing 

static logic needed to join the static and dynamic regions. 

As expected, the overall resource utilization is about the same. What varies is the 

static region size, which is larger in the coefficient-only reconfiguration case. 

Table 3.2. Hardware Utilization on Virtex-4 XC4VFX20-11FF672 for coefficient-only reconfiguration 

Module FF (%) Slice (%) LUT % 
PRR 0 0% 180 2% 360 2% 
Static Region 5303 31% 6130 72% 8698 51% 
PRR interface 1313 8% 786 9% 885 5% 
Overall 5203 31% 6310 74% 9058 53% 

 
Table 3.3. Hardware Utilization on Virtex-4 XC4VFX20-11FF672 for  full filter reconfiguration 

Module FF (%) Slice (%) LUT % 
PRR 1324 8% 818 10% 1306 8% 
Static Region 4017 24% 5515 65% 8072 47% 
PRR interface 6 0% 5 0% 107 1% 
Overall 5341 31% 6333 74% 9378 55% 

 

Table 3.4 shows the reconfiguration size and its partial bitstream size. Note that the PRR 

in the first case is somewhat larger than expected (about 62% of the second case). This 

can also be appreciated in Fig. 3.13 that shows the dynamic region (PRR) for both 

realizations, which are functionally the same. 
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Table 3.4. PRR measures for both dynamic partial reconfiguration system realizations 

Dynamic Realization 
PRR size 
(Slices) 

Bitstream 
size (bytes) 

1.Coefficient-only reconfiguration 90x6 = 540 43000 
2. Full-filter reconfiguration 44x20 = 880 83000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reason for the large PRR in the first case is the large number of required Bus 

Macros I/Os. In the coefficient-only reconfiguration case, the system needs access to the 

LUTs (see Section 3.4.3.1). As a result, for the special case shown, we require 

( ) 144494LsizeILM =××=××  inputs and ( ) 3601094LOsizeILM =××=××  outputs.  

As explained in Section 3.4.3.2, in the second case (full filter reconfiguration), we 

only need 102NH =+  inputs and 8NH =  outputs. So, the PRR in the first case is larger than 

 

Figure 3.13. Dynamic reconfiguration region for (i) coefficient-only reconfiguration system (left), and 
(ii) full filter reconfiguration system (right) 
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what it is actually needed for the L-to-1 LUT array, thereby wasting hardware resources 

in order to accommodate the large number of Bus Macros I/Os. 

3.5.2.2 FIR Filter processor performance bounds 

The maximum throughput of this particular FIR filter processor (NH = 8) is given by: 

Gbps.
ns

bits

cycle

byte
Throughput.Max 80

10

8

1

1
===  

  (3.5) 

Note that since the system is pipelined, there is an initial setup delay that becomes 

negligible over time. Actual throughput depends on many factors, such as cache size, 

PPC instruction execution, and FSL usage. Note that the maximum throughput of (3.5) 

can not be attained since the PPC can not read and write into the FIFOs at the same time. 

3.5.2.3 Reconfiguration Time 

Table 3.5 shows the reconfiguration time for 3 scenarios. Both dynamic realizations are 

included. In our setup, called Scenario 1, we used the Xilinx® ICAP core and obtained a 

reconfiguration average speed of 3.28 MB/s. The reconfiguration time of Scenario 2 is 

computed based on the speed results reported in [47]. The dramatic improvement in 

reconfiguration lies on the use of a custom ICAP controller, DMA access, and burst 

transfers. Scenario 3 is the maximum theoretical throughput, which for the Virtex-4 is 400 

MB/s [6].  

Table 3.5.  Reconfiguration time for both DPR system Realizations. The 43 KB Bitstream corresponds to 

coefficient-only reconfiguration case. The 83 kb bitstream corresponds to full-filter reconfiguration 

Reconfiguration Time 
Scenario 

Reconfiguration 
Speed 43 KB 

bitstream 
83 KB 

bitstream 
1. Current 3.28 MB/s 13.10 ms 25.30 ms 
2. Custom [10] 295.4 MB/s 0.145 ms 0.280 ms 
3. Ideal 400 MB/s 0.107 ms 0.207 ms 
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3.5.2.4 Dynamic performance 

We use software timers to measure the elapsed time from the moment we start reading 

the input stream from DDRRAM until the processed stream is written back on 

DDRRAM. We are considering sinusoids as the input stimuli. Please refer to Section 

3.4.3 for some of the details that will be discussed in this section. 

In order to evaluate the dynamic performance of the system, we use a stream of 

102400 samples (1 sample = 8 bits). The stream is processed a number of times (100 

runs). Within the 100 runs, partial bitstreams are loaded at a specific rate. Each partial 

bitstream amounts to a different filter response. Note that for the coefficient-only 

reconfiguration case, we only load a different set of coefficient values. 

For the full-reconfiguration case, we switch between a filter with N = 32 coefficients 

and one with N = 16 coefficients. The PRR size is defined to be sufficiently large so as to 

allow implementation of the larger filter, i.e. the N = 32 filter case. The filter with N = 16 

requires only one fewer latency cycle (Equation 3.3). As a result, the static performance 

improvement of the smaller filter is not significant. 

We report the average throughput over the 100 runs. Here, we define the dynamic 

reconfiguration rate in terms of the inverse of the number o samples that are being 

processed prior to a hardware reconfiguration. For better visualization, we report 

throughput in terms of the number of processed Mega samples per second (MSPS). This 

corresponds to the inverse of the reconfiguration rate. 

Figures 3.14 and 3.15 show the dynamic performance over 100 runs for both dynamic 

realizations. There are 3 curves that correspond to the 3 scenarios shown in Table 3.5. In 

the limit, at zero reconfiguration rate, we have static performance. The performance 
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results converge for the static case. From Fig. 3.14 (coefficient-only reconfiguration), we 

see that for Scenario 1 (actual measurements), the static performance resulted in 29.25 

MSPS. At the maximum reconfiguration rate (one per stream), the dynamic performance 

was 6.16 MSPS. The other curves (Scenarios 2 and 3) provide performance bounds based 

on the static performance and reconfiguration speeds of Table3.5. 

We can see that the dynamic performance of the full filter reconfiguration case is 

slightly lower than the coefficient-only reconfiguration. This is due to differences in the 

PRR size. But as we increase the number of samples before a reconfiguration, or use a 

Scenario other than the first one, this effect is less noticeable. 

As expected, the dynamic performance heavily depends on reconfiguration speed and 

input stream size. Better reconfiguration speeds offset the reconfiguration time overhead 

(Scenarios 2 and 3). We have the same effect for smaller dynamic regions. The slower 

reconfiguration rates due to longer data streams help to offset the reconfiguration 

overhead as well. 

In Table 3.6, we present the full filter reconfiguration system throughput as a function 

of the time between reconfigurations. It is quite clear from the results that even for the 

slowest scenario, we can maintain throughputs over ten MSPS while dynamically 

reconfiguring seventy times per second. 

Table 3.6. DPR system throughput (MSPS) as function of delay between reconfigurations for 1-D FIR 

filtering with Full filter reconfiguration 

Number of samples between reconfigurations 
2048K 1024K 409.6K 204.8K 102.4K 

Amount of time between reconfigurations 
Scenario 

68ms 34ms 13.6ms 6.8ms 3.4ms 

1. Current 21.9 17.2 10.5 6.3 3.5 
2. Custom [10] 29.9 29.8 29.5 28.9 27.8 
3. Ideal 30.0 29.9 29.6 29.2 28.3 
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Figure 3.14. DPR system performance for coefficient -only reconfiguration 
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Figure 3.15. DPR system performance for full filter reconfiguration 
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3.5.3 Experimental results with ECG processing 

We present an example application for electrocardiogram (ECG) characterization (R-

wave detection). Here, we consider coefficient-only reconfiguration for implementing a 

3-channel, 1-D filterbank. We make use of the embedded system detailed in Section 

3.5.2. Each channel filter is symmetric, with 32 8-bit coefficients for 8-bit I/O, using 

truncation (saturation) arithmetic for the outputs. The approach here is to implement a 

variation of the ECG processing algorithms presented in [53]. ECG signal processing is 

of great interest for emergency applications, including the detection of cardiac 

arrhythmias [54] and stenosis assessment for atherosclerotic plaque video analysis [55]. 

A popular approach based on [53] is to use the outputs of a Wavelet filterbank for ECG 

analysis. As in Wavelet analysis, we design a dyadic filterbank to cover the entire, 

discrete frequency space. We have a high-pass filter with a positive frequency pass-band 

from 2π  to π , a band-pass filter from 4π  to 2π , and a low-pass filter for frequencies up 

to 4π . For each channel filter, we consider efficient implementations using 32 8-bit 

coefficients. The magnitude response of the designed filterbank is shown in Fig. 3.16. 
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For testing the implementation, we use the first recording (record 100) from the MIT 

arrhythmia database [56]. In this record, we have 2 channels with 650K samples sampled 

at 360 Hz and quantized at 11-bits over a 10mV range. We further quantized the input 

down to 8 bits, downloaded them to the DDRRAM using the Ethernet core and tested 

using the procedure outlined in Fig. 3.17. 

Based on [53], we implemented a simple R-wave detection algorithm. For detection, 

we look for thresholds in the outputs. In the example of Figure 3.18, we threshold as 

follows: Low pass filter ( [ ]321321 ,− ), band-pass ( [ ]321321 ,− ), high-pass ( 641> ). This 

results in perfect R-wave detection for the first 5 cycles of the second channel (1500 

samples). We refer to [53] for more details on how to adjust thresholds in such algorithms 

for near-perfect results verified over the entire database. The goal is to simply 

demonstrate the DPR FIR system on real signals. 
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The detection algorithm is included in the embedded PowerPC software routines, and 

the resulting signal is stored into the DDRRAM. We note that performance improves 

with larger input signals (see Fig. 3.14). The detection algorithm is performed at the end 

of the operations, and takes about 80 ms. Dynamic reconfiguration of a channel filter 

requires 13.1 ms. At a sampling rate of 360 Hz, the system allows significant time for 

implementing real-time detection algorithms and DPR. As a result, the number of 

samples that are processed prior to reconfiguration can be significantly reduced. By 

processing every 2000 samples, the processing rate stands at 4.62 MSPS (2000 samples 

takes 140 ms to process). Thus, after 5.5 seconds spent in acquiring 2000 samples, we get 

a detection response in 140 ms. 

 

3.5.4 Comparison with other PR systems for FIR filtering 

The majority of previously reported work on FIR filtering is based on multiply-and-

add approaches [41, 43, 44, 47]. In [41], the authors reported a reconfiguration time of 
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1.5 ms for changing the coefficients and their number on a Virtex-II (74.7 KB bitstream). 

In [43, 44], the authors presented a DPR FIR system that only allowed for changes in the 

number of coefficients. Reconfiguration time for 8794 slices for a 20-tap filter required 

700 ms. The filter presented in [47] most closely resembles our FIR filter: 32-taps, 8-bit 

coefficients, 8-bit input, but with multiply-and-add approach. It required 1985 LUTs for a 

13.1 ms reconfiguration time. We can change the entire filter using a 83KB bitstream for 

a reconfiguration time of 25.3 ms. 

As mentioned earlier, for FPGA implementations, the distributed arithmetic presented 

here is far better suited than these multiply-and-add approaches. DA approaches allow for 

efficient use of hardware resources. Beyond this, multiply-and-add approaches tend to 

have fixed input/output characteristics as opposed to the flexible, dynamically 

reconfigurable arithmetic representations presented here. 

The constant-coefficient filter with DPR is mentioned in [42], but the work is more 

theoretical and the results are non-comparable with ours, as stated in Section 3.2. 

 

3.6 Conclusions 

We presented two efficient dynamic partial reconfiguration systems that allow us to 

implement a wide range of 1-D FIR filters. Requiring a significant smaller partial 

reconfiguration region, the first system allows changes to the FIR filter coefficients while 

keeping the rest of the architecture intact. Using a larger partial reconfiguration region, 

the second system allows full filter reconfiguration. This system can be used to switch 

between FIR filters based on power, performance, and resources considerations. 
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For both systems, the required partial reconfiguration region is kept small by using 

Distributed Arithmetic implementations. System performance is evaluated in terms of the 

dynamic reconfiguration rate. For a representative example, it is shown that we can 

process over ten Mega samples per second while dynamically reconfiguring about 

seventy times per second. The introduction of faster dynamic reconfiguration controllers 

can lead to much higher throughputs for the same number of reconfigurations per second. 

Alternatively, we can maintain much higher throughputs at much lower reconfiguration 

rates. 

The results have encouraged us to explore the use of dynamically reconfigurable 

filtering for digital image and video processing applications. As seen from the results of 

this work, it is possible to dynamically reconfigure at real-time frame rates. For such 

applications, the DPR systems can be extended to separate implementations of 2-D 

dynamically reconfigurable filterbanks. 
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Chapter 4 

 

Separable FIR Filtering in FPGA and GPU Implementations: 

Energy, Performance, and Accuracy Considerations 

 

Abstract 

Digital video processing requires significant hardware resources to achieve acceptable 

performance. Digital video processing based on dynamic partial reconfiguration (DPR) 

allows the designers to control resources based on energy, performance, and accuracy 

considerations. 

In this chapter, we present a dynamically reconfigurable implementation of a 2D FIR 

filter where the number of coefficients and coefficients values can be varied to control 

energy, performance, and precision requirements. We also present a high-performance 

GPU implementation to help understand the trade-offs between these two technologies. 

Results using a standard example of 2D Difference of Gaussians (DOG) filter indicate 

that the DPR implementation can deliver real-time performance with energy per frame 

consumption that is an order of magnitude less than the GPU. On the other hand, at 

significantly higher energy consumption levels, the GPU implementation can deliver very 

high performance. 
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4.1. Introduction 

Hardware implementations of digital video processing methods are of great interest 

because of the ubiquitous applications. In terms of performance acceleration, many image 

and video processing algorithms require efficient implementation of 2D FIR filters [57]. 

Dynamic partial reconfiguration (DPR) allows FPGA designers to explore different 

implementations based on energy, performance, and accuracy requirements. In addition 

to DPR, efficient filter implementations are based on the direct use of LUTs [9], the 

distributed arithmetic technique [17], and separable designs [58,59]. 

On the other hand, Graphic Processing Units (GPUs) offer high-performance floating 

point capabilities at significant energy consumption levels [60]. With the introduction of 

OpenCL and CUDA (Compute Unified Device Architecture), there has been a significant 

growth of GPU implementations; with [61] and [62] as examples of 2D FIR 

implementations. 

In this work, we are interested in exploring the energy, performance, and accuracy 

trade-offs between DPR FPGA and the corresponding GPU implementations. Some 

trade-offs have been explored in [62] and [63]. The goal is to provide recommendations 

for different implementations based on specific energy and performance requirements. 

This work is organized as follows: Section 4.2 describes the embedded filter 

implementation on the FPGA. Section 4.3 details the GPU filter implementation. Section 

4.4 explains the measurement setup for both implementations. Section 4.5 presents the 

results in terms of Energy, performance, and accuracy. Finally, Section 4.6 summarizes 

the work. 
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4.2 2D FIR Filter System on the FPGA 

We consider a 2D separable filtering implementation that is an extension of prior work 

presented in [17] and [58]. Here, we extend prior research to allow DPR of the entire FIR 

core, its FSL (Fast Simplex Link) bus interface, and the Partial Reconfiguration Region 

(PRR) control interface. 

4.2.1 System Architecture 

Figure 4.1 depicts the block diagram of the embedded system. The 1D FIR Filter 

processor core and the PowerPC (PPC) interact via the Fast Simplex Link (FSL) bus. The 

PRR is reconfigured via the internal configuration access port (ICAP). The Compact 

Flash (CF) card holds the partial bitstreams and input data. Bus macros are no longer 

needed in the Xilinx ISE 12.2 Partial Reconfiguration Tools. 

In the context of the embedded system of Fig. 4.1 a 2D separable filter is realized by i) 

filtering the rows, ii) turning a row filter into a column filter via DPR, and iii) filtering 

the columns. Figure 4.2 depicts this scheme, where the 2D filter can be modified at run-

time by using a different pair of row and column filters. 
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The filtered images (row and column-wise) are stored in the DDRRAM. The row-wise 

filtered image is transposed in the memory before it is streamed to the column filter. The 

system is implemented in the ML405 Xilinx Dev. Board that houses a XC4VFX20 

Virtex-4 FPGA. The PPC is clocked at 300 MHz and the peripherals at 100 MHz. 

4.2.2 1D FIR filter core 

This fixed-point core is based on the one presented in [17]. We allow for full-

reconfiguration, i.e. the entire filter is included in the PRR. Several modifications are 

introduced: 

� A new parameter ‘B’ allows the specification of the input data bit-width. This is 

different from the coefficients’ bit-width. 
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Figure 4.2. 2D separable FIR filter implementation. 
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� The frame size determines the input length of both the row and column filter. The 

input length is a parameter to the Finite State Machine (FSM) that controls the FSL 

interface. As a result, the FSL interface has to be included in the PRR (see Fig. 4.1). 

� An interface that disables the PRR outputs during reconfiguration is required since 

the PRR outputs now include FSL interface signals (shown in Fig. 4.1). 

Here, the 2D filter requires 2 bitstreams: one for the row filter and one for the column 

filter. The PRR must accommodate the largest filter. 

 

4.3 Filter implementation on the GPU 

We consider a parallel FIR algorithm implementation in the CUDA environment [64]. 

Here, parallelism is achieved by a grid that consists of blocks, with each block having a 

number of threads. All threads within a block are run in parallel from the software 

perspective. The actual number of blocks that can run in parallel is bounded by the 

number of streaming multiprocessors (SMs). Here, we can run a single block on each 

SM. Also, the number of threads that can be run in parallel at each SM is given by the 

number of CUDA cores inside each SM. 

For the purposes of this work, we will report energy and performance measurements 

on the GPU (termed the device) as opposed to the CPU (termed the host). Here, GPU 

memory is divided into global memory, shared memory, constant memory, and texture 

memory. 

The algorithm exposes and exploits parallelism of the 2D FIR filter in order to obtain 

significant speed up gains. It is based on ideas exposed in [61]. Double precision (64 bits) 
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is utilized. The filter symmetry and its separability are taken advantage of. The algorithm 

steps are summarized below: 

1. The image and the filter kernel are transferred form the host to the device (global 

memory). 

2. The image is then divided into blocks. Each image block is filtered by a thread block 

by rows. 

3. The row-filtered image is also divided into blocks. Each image block is column- 

filtered by a thread block. 

4. The final filtered image is transferred to the host.  

To further describe the algorithm, we let the input image to be of size HxW (H rows 

by W columns) and a filter kernel of size KxK (row and column filter of same length). 

We refer to [61] for more details on the separable implementation. Performance is 

achieved based on: i) loop unrolling, ii) storing image blocks in shared memory, and iii) 

storing the filtering coefficients in constant memory. 

Each image block is processed as follows: It is first loaded to the shared memory (with 

extra  2K  pixels on both sides for correct filtering). Then, for row filtering, each thread 

inside a block performs a point-wise multiplication between the row kernel and a row 

portion of the image; and then adds up each product producing an output pixel. This 

process continues until the filtered image block is obtained.  

Figure 4.3 shows the setup of a thread block for row filtering. Since all thread blocks 

work concurrently (from the software perspective), we are left with the row-filtering 

image in the global memory at the end of the previous process. This image (in blocks) is 

loaded again in shared memory, this time to perform column filtering. A thread block 
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does not transpose the column-ordered data since the image block is small and it is not 

worth the effort. Thus, this division of the image in blocks effectively avoids transposing 

the entire image prior to column filtering. 

For row processing, the dimension of the thread block in the x direction must be 

higher or equal than  2K  (effective size of the kernel). For the dimension in y 

direction, any power of 2 is suitable as long as H is its multiple. For column processing, 

the dimension of the thread block in the y direction must be higher or equal than  2K . 

For the dimension in x direction, any power of 2 is suitable as long as W is its multiple. 

The device utilized is a NVIDIA GeForce GTX465, with 11x32 CUDA cores running 

at 607 MHz. There are 11 Streaming Multiprocessors that run at 1.215 GHz, each with 32 

CUDA cores. 1 GB of GDDR5 memory is available and runs at 1603 MHz with a 

bandwidth of 102.6 GB/s. There are 48K bytes of shared memory per block. The 

maximum power dissipation of the board is 200 W. 

The GPUs are tested in a desktop environment with an Intel® Xeon W3520 running at 

2.67 GHz, with 6GB of DRAM. The software configuration uses Windows 7 Ultimate 

(64-bits) with CUDA 3.2. 
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Figure 4.3. Thread block configuration for row filtering 
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4.4 Experimental Setup 

This section details how the results were obtained. The set of filters for the test are first 

described. Then we detail how performance, energy, and accuracy were measured.  

4.4.1 Set of filters for testing 

To demonstrate the system, we consider a popular bandpass filter implementation based 

on the Difference of Gaussians (DOG) filter with 42 21 =σ=σ ,  [57]. For comparison, 

we implement the DOG filter using 48 coefficients and double precision arithmetic 

precision. 

The input image selected is the standard grayscale level  (8 bits) image ‘Lena’. Fig. 4.4 

shows the ideal frequency response of the filter with the input and output images. 

We consider 6 filter implementations, each with a different number of coefficients (N 

= 8, 12, 16, 20, 24, 32). In addition, we consider 3 different frame sizes: 640x480 (VGA), 

352x288 (CIF), 176x144 (QCIF), derived from cropped versions of ‘Lena’ (to preserve 

the frequencies). This results in 18 filtered images. 

In the case of the FPGA implementation, the bit-width of the coefficients is set at 16 

bits. The row filter receives 8-bit pixels at the input and outputs 16-bit pixels. The 

column filter receives and outputs 16-bits pixels, taking advantage of the symmetry of the 

filter [17]. The system switches to a different 2D filter via DPR. This is realized by 

reconfiguring a different row filter at step 4 in Figure 4.2. Then, having streamed the 

Input image

42 21 =σ=σ ,:DoG

N = 48

Figure 4.4. Frequency response – ideal filter with N = 48 
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image through the new row filter, we load the respective column filter at step 2. After 

that, we keep switching between these new row and column filters. As a result, the PRR 

size is that of largest column filter. 

In the case of the GPU implementation, the system is implemented with double 

floating point numerical precision, although it can be programmed with fixed-point. 

4.4.2 Energy, performance, and accuracy measurements 

We measure performance in terms of frames per second (fps). In the case of the FPGA 

implementation, the processing time per frame includes: i) row filtering process, ii) 

column filtering process, iii) transposing row-filtered image, and iv) PRR reconfiguration 

(twice). The transposing of the row-filtered image occurs right after the filtering of the 

rows is completed. Two reconfigurations are needed per frame. Then, the performance 

(fps) is given by: 

 ( )reconfigtransposecolsrowsFPGA ttttfps ×+++= 21   (4.1) 

In the case of the GPU implementation, the processing time per frame includes: i) 

Allocation of memory and data transfer from host to device, ii) Frame processing, and iii) 

data transfer from device to host. We run the filters 1000 times and get an average 

quantity of each of these times. 

 ( ))hd(transfprocess)dh(transfallocGPU tttfps >−>−+ ++= 1  (4.2) 

With regard to energy measurements, we consider the energy consumption per frame. 

In the FPGA case, the power spent by the three Virtex-4 FPGA power sources (VCCINT, 

VCCAUX, VCCO) is obtained, which amounts to the embedded system power 

consumption. We use the Xilinx Power Analyzer (XPA) tool that provides a more 

accurate estimate than the Xilinx Power Estimator (XPE) because it is based on simulated 
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switching activity of the place-and-routed circuit [27]. Our results are obtained with XPA 

at 25ºC. We get the power drawn by both the row  ( rowP ) and column filter ( colP ). 

Each filter variation amounts to a difference in resource usage, and in turn in different 

power consumption. However, the filter core is small compared to the rest of the 

embedded system, so the power difference is not noticeable. As a result, it is more useful 

to consider the power drawn (both rowP and colP ) just by the FIR Filter IP core. 

The power consumption during reconfiguration is an important quantity since the 2D 

FIR filter makes intensive use of DPR. Unfortunately, there is no tool available that can 

provide an estimate of this power consumption. In [6], hardware measurements 

determined that only the VCCAUX supply current increased during reconfiguration, and 

it increased by 25 mA for the XC4VFX12 device. This dynamic current does not depend 

on the device size, so we use this current for the XC4VFX20 device. The reconfiguration 

power then results: 

 
( )

( ) VCCAUXmAPP

VCCAUXmAPP

colcolreconfig

rowrowreconfig

×+=

×+=

−

−

25

25
 (4.3) 

Note that rowreconfigP −  is the power during reconfiguration of the row filter into a 

column filter. colreconfigP −  is defined in a analogous fashion. 

With the processing times of the row and column filter, and the reconfiguration time, 

the energy per frame results: 

 ( ) reconfigcolreconfigrowreconfig

colscolrowsrowFPGA

tPP

tPtPepf

×+

+×+×=

−−
 (4.4) 

In the case of the GPU implementation, similarly to [60], the current is measured with 

the clamp sensor ESI 687 on the power connectors. Both the external power of the GPU 
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and the power provided to the PCIe bus (20 W max.) are considered. Note that we 

measure the power consumption of the whole board that includes the GPU, memory, and 

other components. The average power during the tasks is measured, thus the energy per 

frame results: 

 
( ))hd(transfprocess)dh(transfalloc

clampaverageGPU

ttt

Pepf

>−>−+

−

++

×=
 (4.5) 

Since the transferring and allocation times can be considered as an offset any GPU 

implementation has to deal with, we might also be interested in measuring the energy per 

frame spent only during the processing stage: 

 processclampaverageGPU tPepf ×= −  (4.6) 

For accuracy measurements, we define accuracy as the relative error between the 

FPGA or GPU processed frame and the results using double precision with 48 

coefficients. Consequently, we measure accuracy using the PSNR between the FPGA or 

GPU outputs and the double precision implementation (48 coefficients). Here, note that 

GPU implementation is also using double precision but with variable number of 

coefficients. On the other hand, for the FPGA, the error is due to truncation in the number 

of coefficients and the use of fixed-point arithmetic (16 bits). 

 

4.5 Results 

4.5.1 FPGA resource usage and reconfiguration time 

The PRR must accommodate the largest filter (column filter with N = 32). Thus, the PRR 

occupies a tightly packed area of 24×90=2160 Virtex-4 slices with a bitstream size of 

183754 bytes. It takes about 25% of the FPGA fabric. 
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Table 4.1. Embedded FIR Filtering system resource utilization (Virtex-4 XCVFX20-11FF672) 

Module Slice (%) FF (%) LUT % 
PRR (col filter) 2125 25% 3680 21% 3812 22% 
Static Region 4973 58% 5226 31% 5998 35% 
Overall 7098 83% 8906 52% 9810 57% 

 

Table 4.1 shows the hardware resource usage of the embedded FIR filtering system of 

Figure 4.1. It reveals the actual resource usage of the PRR and the static region. Note that 

the largest column filter (N = 32) occupies 2125 Slices (98% of the PRR Slices). 

A reconfiguration speed of 3.28 MB/s is obtained with the Xilinx® ICAP core, 

resulting in 56.02 ms of reconfiguration time for the given bitstream size. 

4.5.2 Running times 

In the FPGA case, rowst  and colst  are in line with the FSL transfer speed of 226 Mbps 

reported in [9]. For example, for N = 32,  rowst = 10971, 3620, and 905 us for the VGA, 

CIF, and QCIF frame sizes respectively. The number of coefficients plays a negligible 

role in the processing time because the FIR filter is a fully pipelined system in which the 

number of coefficients only increments the register levels, which in turn increases the 

initial latency of the pipeline (that fades out for an input length larger than the number of 

coefficients). This effect is usually masked by the bus speed with bus cycles larger than 

the register levels of the pipeline. System performance is limited by the time spent in 

transposing the image (about 4152 us, 1453 us, and 379 us for the VGA, CIF, and QCIF 

frame sizes respectively) and the reconfiguration time (about 56.02 ms). 

The reconfiguration time of 56.02 ms achieved with the Xilinx® ICAP controller 

significantly limits real-time system performance. With the use of the custom-made ICAP 

controller presented in [10], the reconfiguration time would be 0.622 ms. For a good 

comparison with the GPU, this reconfiguration time is used instead. Note that the custom 



 84 

ICAP core has different power requirements than the Xilinx® ICAP core. In practice, we 

expect the power difference to be negligible since the custom ICAP core is a small (and 

low-power) circuit. 

In the case of the GPU, we found that most of the time is consumed by the allocation 

of memory and data transfers from/to host to/from device. Table 4.2 shows these times. 

Note that )dh(transfalloct >−+  and )hd(transft >−  are about the same for a given frame 

size. Also, the processing times do vary according to the number of coefficients, unlike in 

the case of the FPGAs. 

Table 4.2. GPU running times (ms). N: number of coefficients 

 N processt  )dh(transfalloct >−+  )hd(transft >−  

8 0.4099 2.0 1.9 
12 0.4661 1.9 1.8 
16 0.5096 2.0 1.6 
20 0.5801 1.9 1.8 
24 0.6481 1.9 1.9 64

0x
48

0 

32 0.7777 1.9 1.8 
8 0.2536 1.14 0.86 

12 0.3031 1.12 0.94 
16 0.3486 1.10 0.90 
20 0.3527 1.40 0.75 
24 0.3975 1.73 0.70 35

2x
28

8 

32 0.4610 1.40 0.60 
8 0.1998 0.60 0.30 

12 0.2105 0.75 0.35 
16 0.2371 0.60 0.30 
20 0.2417 0.70 0.30 
24 0.2729 0.80 0.30 17

6x
14

4 

32 0.2853 0.80 0.30 
 

 

4.5.3 Power measurements 

In the case of the FPGA, the power consumption is not dependent upon the frame size. 

Thus, it makes sense to report the result in terms of energy consumption per frame. Table 

4.3 shows that the embedded system’s power fluctuations due to the number of 

coefficients are negligible since only the filter IP core is modified. It is then more 
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meaningful to consider the power of the FIR Filter core which does vary according to N 

(number of coefficients). 

Device static power does depend exclusively on the device size and operating 

temperature, called ‘device static power’ [27]. It is consumed by the device when it is 

powered up and without programming the user logic. For the XCVFX20 device, it 

amounts to 166 mW (all 3 voltage rails), at 25 ºC. If the power results are to be 

meaningful across different devices, this quantity must be considered as an offset that 

will vary across devices. 

In the case of the GPU, we found that on average, it consumes 96.8, 92.5, and 88 

Watts for VGA, CIF, and QCIF frame sizes respectively. Variations for different number 

of coefficients are negligible (around 0.1 W) since the algorithm uses the maximum 

number of cores regardless of the number of coefficients of the filter. The power 

fluctuations for different frame sizes are due to the fact that for smaller frame sizes, the 

GPU is moving data over a longer period of time than when it is processing. 

Table 4.3. Embedded system Power consumption (Watts) on the XCVFX20-11FF672 Virtex-4 FPGA 

 
rowsP  colsP  rowreconfigP −  colreconfigP −  

Mean 1.2410 1.2472 1.3035 1.3097 
Std 0.0059 0.0140 0.0059 0.0140 

 

4.5.4 Energy, Performance, and accuracy results 

For comparing energy consumption, we only consider the energy spent by the filtering 

process. Thus, for the FPGA, we consider the energy consumed by the FIR filter and the 

ICAP cores. For the GPUs, we will also consider the energy spent during actual video 

processing (Equation. 4.6). 
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Figure 4.5 shows the energy per frame, performance (achieved frames per seconds) 

and accuracy results. Note that in the case of performance, we report the mean fps with 

its standard deviation for a given frame size. We observe an energy dependence on the 

number of coefficients in the FPGA case, although it is more pronounced in the GPU 

case. In addition, the performance dependence on the number of coefficients is negligible 

in the FPGA case, but noticeable in the GPU case. 

In terms of PSNR (dB), the GPU gives better results due to its use of double precision. 

However, there is no significant difference at the output except for N = 32. In this case, 

we have very high PSNR values that exceed 80dB.  

In terms of performance, the GPU always prevails due to the massive amount of 

parallelization achieved in the algorithm coupled with the high operating frequencies. 

The speed up (GPU over FPGA) is about 9X, 5X, and 3.3X for VGA, CIF, and QCIF 

frame sizes respectively. For smaller frame sizes, the time consumed in allocations and 

transfers is closer to the processing times. 

102030405060708090
10

20

30

40

50

60

70

80  
GPU Results

psnr(dB)

 

E
n
e
rg

y
 p

e
r 

fr
a
m

e
 -

 P
ro

c
e
s
s
in

g
 s

ta
g
e
 (

m
J
)

640x480

352x288

176x144

1020304050607080
0

2

4

6

8

10

12  
FPGA results

psnr(dB)

 

E
n
e
rg

y
 p

e
r 

fr
a
m

e
 -

 F
IR

 c
o
re

(m
J
)

640x480

352x288

176x144

N
 =

 3
2

N
 =

 2
4

N
 =

 2
0

N
 =

 1
6

N
 =

 1
2

N
 =

 8

N
 =

 3
2

N
 =

 2
4

N
 =

 2
0

N
 =

 1
6

N
 =

 1
2

N
 =

 8

fps (avg) = 26.2898, std = 0.0272

fps (avg) = 73.8375, std = 0.0616

fps (avg) = 231.2454, std = 0.6171

fps (avg) = 233, std = 7.1579

fps (avg) = 408, std = 11.9688

fps (avg) = 793.3516, std = 21.0552

Figure 4.5. Performance, energy, and accuracy results for both FPGA and GPU. N: number of coefficients 



 87 

In terms of energy per frame, the FPGA implementation is much better than the GPU. 

The GPU implementation consumes 6, 9, and 19 times more energy than the FPGA’s for 

VGA, CIF, and QCIF frame sizes respectively.  

The results suggest that the FPGA implementation provides a low-energy solution at 

near real-time performance. Here, we refer to frame rates that are over 30 fps as 

achieving real-time performance. On the other hand, when energy consumption is not an 

issue, the GPU implementation is superior, delivering much higher performance at 

slightly better accuracy. 

 

4.6 Conclusions 

This work successfully compares energy, performance (in frames per second), and 

accuracy for both FPGA and GPU implementations. Moreover, these 2 implementations 

allow the user to modify the 2D FIR Filter at run-time. The results indicate that separable 

2D FIR filtering implementations can deliver excellent accuracy for both the FPGAs and 

the GPUs. However, based on energy consumption, FPGAs are preferred for low-energy 

applications. On the other hand, GPUs should be considered for high-performance, high-

power (high-energy) applications. 
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Chapter 5 

 

Dynamic Energy, Performance, and Accuracy Optimization 

and Management for Separable 2-D FIR Filtering for Digital 

Video 

 

Abstract 

In this work, we develop a dynamically reconfigurable 2D FIR filtering system that can 

meet real-time constraints in Energy, Performance, and Accuracy (EPA). To meet the 

EPA constraints, we generate a set of Pareto-optimal realizations, described by their EPA 

values and associated 2D FIR hardware description bitstreams. Dynamic management is 

achieved by selecting Pareto-optimal realizations that meet the time-varying constraints. 

For efficient implementation, the Pareto-optimal realizations are stored in DDR-SDRAM. 

We validate the approach using three different 2D Gaussian filters. Filter realizations 

are evaluated in terms of the required energy per frame, accuracy of the resulting image, 

and performance in frames per second. We demonstrate dynamic EPA management using 

a Difference of Gaussians (DoG) applied to a standar video sequence. 

Index Terms—Dynamic Partial Reconfiguration, Field-programmable gate-array 

(FPGA), Distributed Arithmetic, 2D separable FIR filtering. 

 

5.1 Introduction 
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The recent introduction of Dynamic Partial Reconfiguration (DPR) provides a framework 

for managing hardware resources in real-time. In particular, the use of DPR enables the 

development of dynamically reconfigurable systems that can meet constraints in energy, 

performance, and accuracy (EPA). 

In this work, we are interested in the development of a dynamically reconfigurable 2-

D FIR filtering system for digital video processing applications. Here, the focus on 2-D 

FIR filtering comes from the large number of possible applications. The list of 

applications includes image and video denoising, linear image and video enhancement, 

image restoration, edge detection, face recognition, etc [65], [1]. Depending on the 

application, we can have very different EPA requirements. Furthermore, we can have 

real-time constraints that are imposed during the execution of a particular application. In 

what follows, we present an example. 

Suppose that we have the use of a 2-D FIR filtering system in a real-time video 

analysis application. First, suppose that during real-time video acquisition, we determine 

that there is nothing interesting in the scene. In such a case, we may want to save energy 

until something interesting occurs. In this case, we may be willing to sacrifice accuracy 

and performance to allow us to operate longer. In this case, we will want to dynamically 

reconfigure the 2-D FIR filter to minimize energy consumption. Now, suppose that the 

real-time video scene changes to something much more interesting. In this case, we want 

to improve accuracy and performance while willing to sacrifice energy. 

The example motivates the development of a management system that can be used to 

dynamically reconfigure hardware resources to meet real-time constraints in energy, 

performance, and accuracy. Here, we measure performance in terms of frames per second 
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(fps) and estimate accuracy in terms of achieved PSNR on a test image. Dynamic 

management is based on using dynamic partial reconfiguration to implement pre-

computed realizations. We are only interested in implementing realizations that are 

Pareto-optimal in the EPA space (see Fig. 1, [8]). As shown in Fig. 1(b), dynamic EPA 

management is achieved by swapping among Pareto-optimal realizations that meet or 

exceed real-time constraints. More specifically, Pareto-optimal realizations will 

simultaneously minimize energy and maximize accuracy and performance. When 

multiple realizations meet the constraints, we will pick the one that also minimizes 

energy consumption. 

Energy (or power) and accuracy are intrinsically linked to performance. Dynamic 

Energy-Performance-Accuracy (EPA) management has been hinted in some earlier work 

(e.g. [3], [4]). Here, it was suggested that one of these three system properties could be 

potentially modified via DPR. As the design flow for DPR matured, more work on this 

regard has appeared (e.g. [5], [66], [7]). Power, performance and accuracy were variables 

commonly changed using DPR by trading off one by the other. A dynamic arithmetic 

example for controlling precision in real-time was presented in [66]. 
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Figure 5.1.  Multi-objective optimization of the EPA space. 
(a) 3-D Pareto Front. (b) 3 constraints applied to the 3-D Pareto Front. Minimum energy point is circled 
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For efficient hardware realizations, we will focus on 2D FIR separable filtering. Here, 

we note that separable filters allow for efficient implementations by means of two 1D 

FIR filters. Furthermore, note that non-separable 2D filters can be expressed as a sum of 

separable kernels through the use of Singular Value Decomposition [67]. This technique 

can be either exact (no error introduced) or inexact (certain approximation error is 

allowed). Thus, without loss of generality, we focus on separable 2D filters. This 

separability property allows us to consider a DPR approach that keeps only one filter 

(row or column) at a time and changes to the other 1D filter when needed. 

We presented some related earlier work in [17], [68]. In [17], we presented an efficient 

1D FIR Filtering system that combined the Distributed Arithmetic (DA) technique with 

DPR. In the conference paper in [68], we presented the 2-D FIR Filter. The main 

contributions of the current work include: i) an optimization framework for dynamic EPA 

management of 2D FIR filters; ii) a platform to generate the EPA space of 2D FIR filters, 

iii) an analysis of the behavior of the EPA space of 2D FIR filters when the parameters 

and the filter types vary, and iv) a demonstration of dynamic EPA management on a 

standard video sequence. 

The proposed system relies on an efficient DPR controller. This is required since the 

2D FIR filter is implemented through the use of DPR of 1D FIR filters. For research 

related to the development of efficient DPR controller, we refer to [10] [7] [11] [12]. 

The rest of this chapter is organized as follows: Section 5.2 presents background and 

related work. Section 5.3 provides details on the dynamic video filter implementation. 

Section 5.4 presents the optimization framework for 2D filters. Section 5.5 presents the 

experimental setup. Section 5.6 presents the results; and Section 5.7 lists the conclusions. 
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5.2. Background and related work 

Static FPGA image processing examples include MPEG buffer analyzer [69], JPEG 

decoders [70], JPEG2000 encoders [71], face detection systems [72],[73], reconfigurable 

embedded systems for real-time vision [74] and ultrasonic imaging [75], 2D Discrete 

wavelet transform using the residue number system [76], and binary morphology 

architectures [77]. 

More recently, we also have DPR implementations of image processing systems. In 

[7], the authors presented a design that dynamically reconfigures among Discrete Cosine 

Transform (DCT) modules of different sizes (e.g. 8x8, 5x5, 4x4). The different DCT 

configurations are studied in terms of power, throughput, and image quality. A dynamic 

systolic array accelerator for Kalman and Wavelet filters was presented in [13]. In [14], 

the authors present a fingerprint image processing algorithm whose stages (e.g., 

segmentation, normalization, smoothing, etc) are time-multiplexed via DPR. A system 

that can reconfigure among single-pixel operations is presented in [9]. The 3D Haar 

Wavelet Transform (HWT) was implemented by dynamically reconfiguring a 1D HWT 

core thrice in [15]. A JPEG2000 decoder where the blocks are dynamically swapped is 

shown in [16]. 

For 2D FIR Filtering, the authors in [78] presented a multiply-and-add implementation 

of separable Gaussian filters. Similarly, 2D separable filter implementations using 

multiply-and-add approaches are presented in [59]. In [79], the authors present a novel 

design methodology that decomposes a 2D filter into 2D separable and non-separable 
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filters, and efficiently allocates the heterogeneous resources (embedded multipliers, 

LUTs, FFs) on an FPGA. 

There is also some related work on the implementation of 2D Filters based on DPR. In 

related work in [58], a 2D filterbank implementation based on the run-time coefficient-

only reconfiguration of a single 1D FIR Filter was presented. In [80], the authors 

presented a system that switches between a median filter (nonlinear) and an averaging 

filter via DPR on a custom-built FPGA device (180nm CMOS technology). Similarly, the 

authors in [81] used DPR management to switch between mean and median filter 

implementations on a Xilinx® FPGA. In [82], the system dynamically reconfigures a 3x3 

2D FIR filter by changing the coefficients. In earlier work in [68], a 2D FIR filter is 

implemented by dynamically reconfiguring between the row and column filter. 

There has also been some earlier research related to Dynamic EPA management. Early 

work dealt with one or two objectives at a time. For instance, in [25], the authors analyze 

the precision requirements of a subset of recursive algorithms. In [3], the authors propose 

the use of reconfiguration to take advantage of perceptual tolerance and the non-

uniformity of video content in order to dynamically manage power consumption, over 

which accuracy and performance depend on. Another example of power and accuracy 

trade-off is [4], where the impact of numerical precision on power consumption is studied 

for audio processing applications. In [83], the authors presented a static iterative 

hardware implementation for particle filters that allowed run-time modification of the 

number of particles (for trading off accuracy and performance), and the degree of 

parallelism of some components (for trading off power and performance). This was 

accomplished by tuning buffer controller parameters and interconnection switches. In 
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[66], an application in dynamic arithmetic is presented where arithmetic cores are 

measured in terms of their power, performance, and precision requirements. In [7], the 

authors presented a configuration manager that can dynamically adapt DCTs of different 

sizes based on power, performance and accuracy considerations. In earlier work in [68], 

we presented a comparison of the energy-accuracy space of a 2D FIR Filter for both 

FPGA with DPR and GPU implementations. 

In the current work, we evaluate different realizations based on their Energy-

Performance-Accuracy characteristics. Here, each realization comes with its own EPA 

values. However, we are only interested in realizations that are Pareto-optimal [8]. In 

other words, we select EPA realizations that cannot be improved upon without sacrificing 

in at least one of the EPA characteristics (see Fig. 5.1(a)). As discussed earlier, the 

framework allows us to meet real-time constraints by simply selecting the realization 

with minimum energy (see Fig. 5.1(b)). 

As mentioned earlier, reconfiguration time overhead is a limiting factor in the use of 

DPR. Techniques to reduce the DPR overhead include improving the access speed to the 

configuration memory [10], reducing the size of the reconfigurable area [84], and 

reducing the reconfiguration rate [85]. In [7], the authors improved the configuration 

memory access speed by compressing the partial bitstreams while they are moved 

through the slow parts of the system. In [12], the reconfiguration overhead is less of a 

concern since the approach allows the processor to multi-task will full access to the 

peripheral bus. 

This work seeks to extend prior research in the area of 2D filtering by using the 2D 

separable FIR filter implementation with DPR presented in [68], and study its EPA space. 
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Furthermore, we propose a multi-objective framework to derive a set of optimal filter 

realizations over which we can dynamically reconfigure to meet EPA constraints. 

 

5.3 Video filtering using Dynamic Partial Reconfiguration 

This section presents the architectural framework that allows the generation of different 

2D FIR filter realizations. The approach is to consider realizations based on the number 

of coefficients, the coefficient bit-width, and the output bit-width. 

5.3.1 Distributed Arithmetic Stand-Alone 1D FIR Filter 

We present the 1-D FIR filter core in Fig. 5.2. The core can be used to implement the row 

or the column filter. 

 

 

 

 

 

 

We next consider the largest possible format based on the input and coefficient 

formats. First, we let NO represent the number of output bits with NQ fractional bits. The 

output format is then expressed as [NO NQ]. Both symmetric and non-symmetric filters 

are supported (see Fig. 5.3). Second, we let the fixed-point input format be [B B-1] and 

the coefficients’ format be [NH NH-1], so that we normalize the inputs/coefficients to 

[-1,1). The required largest output format is then given by: 

 ( ) [ ]211log2 2 −++++−+ BNHNBNH  (5.1) 
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Figure 5.2. FIR Filter Intellectual Property (IP) core. Here, N denotes the number of coefficients, NH the 
coefficients’ bitwidth, B the input bitwidth, L the LUT input size (FPGA device dependent), [NO NQ] the 

output fixed-point format, and OP the output truncation scheme. 
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Clearly, we do not need to have an output format that exceeds the largest possible. On 

the other hand, we are interested in investigating the EPA space for formats that do not 

exceed (5.1). When considering smaller output formats, overflow is avoided by using 

LSB truncation and saturation (controller by parameter OP, see Fig. 5.2). 

We refer to [17] for details on how to implement each 1-D FIR filter core using 

distributed arithmetic. In the extended core considered here, we have expanded the core 

of [17] to also allow the number of input bits (B) to be independent of the coefficients 

bitwidth (NH). Our new 1-D FIR core was summarized in [68]. Here, we want to provide 

more implementation details for the new core of [68]. 

The FIR filter latency (register levels between input and output, or I/O delay, in 

cycles) results in ( )    2loglog_ 22 ++= LMsizeILEVELSREG  cycles, where (i) 

Figure 5.3.  High Performance FIR filter implementation. Nonsymmetric filter (left), symmetric filter 
(right). B and NH are independent parameters here.  Refer to [17] for details on the Filter Block 

implementation. The L-input, LO-outputs LUT (LUT L-to-LO) is a 2L-word LUT 
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 2NM =   and 1+= BsizeI   for symmetric filters, and (ii)  NM =  and BsizeI =   for 

non-symmetric filters. Here, note that sizeI is different from [17]. 

5.3.2 Dynamic 1D FIR Filter Core Architecture 

The constant-coefficient filter is turned into an efficient and flexible FIR filter via DPR, 

as described in [17]. Two dynamic realizations were presented: coefficient-only 

reconfiguration and Full-filter reconfiguration. We focus on the full-filter reconfiguration 

case, where the entire filter is included in the Partial Reconfiguration Region (PRR). This 

allows us to generate many realizations for exploring the EPA space by allowing us to 

modify all the parameters independently. The PRR has B+2 inputs and B outputs. 

Fig. 5.4(a) shows an embedded system that allows for Full-filter reconfiguration. The 

FIR Filter processor IP and the processor communicate via the 32-bit Fast Simplex Link 

(FSL) bus. At power-up, the partial bitstreams and input data are stored in Compact Flash 

(CF). During run-time, we store the input data, the DPR bitstreams of the filter 

realizations, and the output in the DDR-SDRAM. The Ethernet core allows us to get new 

partial bitstreams or new input streams from a PC and to send processed streams to the 

PC. It also provides an interface for throughput measurements and system status. 

 

 

 

 

 

 

 
Figure 5.4.  Embedded system over which we can apply Dynamic EPA management. (a) Embedded system 
that supports DPR. The memory holds the ‘n’ unique bitstreams that are needed for the Pareto front. (b) An 

example of a Pareto front with ‘n’ points. 
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The static region is defined by the logic outside the PRR. The PRR I/Os are registered 

as the reconfiguration guidelines advise [86]. The partial bitstreams are read from a CF 

card and stored in memory. To perform DPR, the bitstreams in memory are streamed to 

the ICAP port [66]. 

During DPR, we want to allow changes to the I/O bit-width. This is accomplished by 

including the FSL interface in the PRR. This also allows us to dynamically control the 

input stream length (NX). 

Each FIR convolution generates NX+N-1 values where N is the number of coefficients 

and NX denotes the number of input values. The FSL interface offers four output choices 

for storing the convolution results: (i) basic: first NX output samples, (ii) centered: NX 

samples in the range    2:12 NNXN ++ , (iii) full: All the NX+N-1 samples, and (iv) 

streaming: ∞=NX , infinite output samples. 

For proper DPR operation, we include a DPR control block that addresses two issues 

that arise due to the fact that the FSL interface is inside the PRR. First, during DPR, the 

PRR outputs are disabled so as to avoid erratic FSL control behavior. Second, to avoid 

erroneous results, the DPR control block resets the PRR flip-flops after each partial 

reconfiguration. This is needed since the flip-flops are not reset automatically as it is the 

case for full reconfiguration [86]. 

Fig. 5.5 shows the dynamic FIR Filter core along with the DPR control block. The 

FSL bus uses two FIFOs (FIFOw and FIFOr) to communicate with the FIR filter core. 
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5.3.3 2D separable FIR filtering 

In the context of the embedded system of Fig. 5.4(a), a 2D separable FIR filter is 

represented by 2 bistreams (one for the row and one for the column filter). A 2D filter is 

implemented by cyclically swapping the row filter with the column filter via DPR [68].  

The implementation of the 2D separable FIR filter includes the following 

considerations: 

1) The 2D filtering process usually requires the output image to be of equal size as the 

input image. As a result, the dynamic FIR Filter IP of Section 5.3.2 needs to be in the 

centered output mode. 

2) The column filter is not necessarily the same as the row filter with coefficients 

modified. It usually requires other parameters to be modified (e.g. number of coefficients, 

I/O format). This requires a full filter reconfiguration. 
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3) The length of the input signal in the row filtering case is different than in the 

column case (unless the image is square). This means that we have to change NX to 

match the input size. 

4) Two reconfigurations are performed per frame. The row filter processes and stores 

the result in a sequential row-by-row fashion, but the column filter does so in a sequential 

column-by-column fashion. For the purposes of this work, the row-filtered output images 

are transposed prior to column filtering. 

5.3.4 General Filterbank implementations 

The extension of the current framework for implementing general filterbanks is 

straightforward. To do this, we only need to implement each filter using a 2-D separable 

approximation (e.g. [67]). Here, a non-separable filter is approximated by a sum of 

separable filters. 

For implementing the full filterbank, we will have to sequentially apply DPR for each 

filter’s row and column bitstream(s). This way we switch among 2D FIR filters. Note that 

this does not incur in any performance penalty since we are always performing DPR 

twice per frame. In other words, execution time grows linearly with the number of 2-D 

separable filters. We refer to [58] for an example based on changing filter coefficients 

(not full-filter reconfiguration). 

5.3.5 Resource considerations 

The proposed dynamic DPR approach only requires resources for a single 1-D FIR filter 

at a time. Thus, this approach can yield significant savings over static implementations of 

the full 2-D filters. Naturally, this assumes that the DPR controller does not require 
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significant resources. It is expected that the DPR controller resource consumption will be 

negligible when compared to the resources needed for larger 2-D filters. 

 

5.4 Optimization framework for Video Filters 

This section describes a framework for extracting an optimal set of 2D filter realizations 

from the EPA space. Then, we provide a framework for selecting optimal realizations 

that meet dynamic EPA constraints. We detail: i) how we generate a collection of FIR 

filter possibilities, ii) how we measure energy, performance, and accuracy, iii) how we 

select the Pareto-optimal filters, and iv) how we perform dynamic EPA management that 

meets the EPA constraints. 

5.4.1 Generation of the set of 2D filters 

We want to devise a procedure that allows us to meet energy, performance, and accuracy 

constraints by considering different filter implementations. We first create a large set of 

filters from which the optimal set would be extracted. Note that this space is generated 

offline. 

This space of possible 2D FIR filter realizations is generated by varying the 

parameters discussed in Section 5.3. Here, for each 2D filter, we assume N, L, NH to stay 

the same for both row and column filters, while B and [NO NQ] can be different. By 

varying the input stream length NX, which is usually different for both the row and 

column filters, we can explore different frame sizes. The collection of EPA 

measurements for each filter realization forms the “EPA space” of possibilities. 

5.4.2 Performance measurements 
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The performance of the embedded system depends on many factors (cache size, 

processor instruction execution, bus usage, etc) that can easily change. For the purposed 

of this work, the embedded system is just a generic test-bed. To avoid dependence on the 

embedded system characteristics, we are interested in direct measurements of the 

dynamic FIR core shown in Fig. 5.5. This is often referred to as the intellectual property 

(IP) angle. Here, we also assume a continuous streaming of the input signal. In what 

follows, we explain how we measure filter performance based on filter processing time 

and reconfiguration time. 

1) Filter processing time: The 2-D filter operates on a row-by-row or column-by-

column basis. We use the term stream to refer to a single row or column. After each 

stream is processed, the register chain in the FIR filter is cleared, ready for a new stream. 

Let the lengths of the input streams be defined as NXr  and NXc for the row filter and 

column filter respectively. Here, NXc is the number of rows, and NXr the number of 

columns of the input video frame. For the time taken, we have: 

 
( )  ( )

( )  ( ) cyclecols

cyclerows

TNXrLEVELScREGNcNXct

TNXcLEVELSrREGNrNXrt

××++=

××++=

_2sec

_2sec
 (5.2) 

where Nr, Nc represent the number of row and column filter coefficients respectively. 

REG_LEVELSr, REG_LEVELSc denote an initial latency (see Section 5.3.1) and cycleT   is 

the clock period. Here, note that  2Nr ,  2Nc  cycles are needed to provide centered 

row/columns convolution outputs. 

2) Reconfiguration Time: Based on the PRR bitstream size and the reconfiguration 

speed, the reconfiguration time is given by: 

 ( )
( )

( )sec.Re
sec

perbytesspeedc

bytesinsizePRR
treconfig =   (5.3) 
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The maximum reconfiguration speed is achieved if there is a direct link between the 

ICAP port and the memory that holds the partial bitstreams (400 MB/s for Virtex-4). If 

the DPR bitstreams are loaded in the BRAM (local memory inside the FPGA), it is 

possible to get the maximum reconfiguration speed [84]. However, the size and quantity 

of partial bitstreams is limited by the available BRAMs. While BRAMs are rather limited 

in Virtex-4 devices, there are significantly more BRAM resources in the (newer) Virtex-6 

devices [87]. This provides the opportunity to build an ICAP controller that is directly 

attached to BRAM. In what follows, we will assume the maximum reconfiguration speed 

as reported in [84], [11]. 

3) Filter Performance: Based on the processing and reconfiguration times, we can 

define the filter performance. A frame of   pixels goes to both the row and column filter 

and thru two partial reconfigurations. Thus, the performance (in frames per second) is 

given by: 

 
reconfigcolsrows ttt

fps
×++

=
2

1
 (5.4) 

Please note that Eq. (5.4) only measures the performance of the FIR filter architecture 

of Fig. 5.3. It does not account for the time needed to transpose the row-filtered image. 

Here, we note that the transposition time is a function of the image size and the 

embedded platform over which the system is tested. Thus, it does not depend on the DPR 

filter architecture. For an embedded system example that includes transposition time, we 

refer to [68]. Also, for completeness, in the results section, we will report the 

transposition time. 

 

5.4.3 Energy measurements 
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In this sub-section, we detail the IP core energy consumption measurement. The IP core 

consists of the PRR (FIR filter and the FSL interface) and the DPR control block. In the 

context of our system, energy per frame provides more information than power since the 

system goes through several stages that draw different amounts of power. 

We will report the energy consumption in terms of energy spent for processing a 

single frame. This is estimated as the sum of the products of the power and processing 

times of the row filter, the column filter, and the reconfiguration process. 

1) Power measurements: Power inside the FPGA is drawn by the following power 

supply rails: (i) internal supply voltage VCCINT with current ICCINT, and (ii) auxiliary 

supply voltage VCCAUX with current ICCAUX. Here, we will not consider the output 

supply power since it is only associated with the power drawn by the external pins. 

Power at each supply rail is divided into static and dynamic power. The static power is 

drawn by the device when it is powered up, configured with user logic, and with no 

switching activity. It is divided into: i) device static power: drawn by the device when it 

is powered up and not programmed, and ii) design static power: drawn by the user logic 

when the device is programmed and with no switching activity. The dynamic power is the 

fluctuating power as the design runs; it is generated by the switching user logic and 

routing [27]. 

For comparing among different cases, we will only consider the sum of the dynamic 

and design static power while ignoring the device static power. The device static power 

depends on the environment, the device size, and the device family. FPGA datasheets 

provide the device static current as constant values (at 25º C) for each supply rail. For the 

purposed of this work, for the XC4VFX20 Virtex-4 FPGA, the voltage supply values can 
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be fixed while the device static current are constant and given by ICCINTQ=71mA and 

ICCAUXQ=35mA. The FIR filter core power for row or column filtering is then given 

by: 

 ICCAUXpVCCAUXICCINTpVCCINTP colrow ×+×=/  (5.5) 

where the currents are given by: 

  
ICCAUXQICCAUXICCAUXp

ICCINTQICCINTICCINTp

−=

−=
 

Power measurement amounts to current measurement, assuming minimum fluctuation 

of the voltage values. Direct power measurement, (e.g., [66]) requires custom-built 

boards that allows for current measurement on the supply rails. Instead, power 

consumption can be accurately estimated using software tools that are widely applicable 

to all devices. To estimate the current measurements (at 25 ºC), we are using the Xilinx 

Power Analyzer (XPA) that provides an accurate estimate based on simulated switching 

activity of the place-and-routed circuit and exact utilization statistics [27].  

We next consider the power consumption during dynamic partial reconfiguration. 

Unfortunately, no software tool exists that can provide an estimate of this power 

consumption. In [66], by direct current measurements, it was determined that the only 

supply current that increased during DPR was ICCAUX (Virtex-II Pro and Virtex-4). The 

DPR power (power drawn by the user logic and the increase due to DPR) is then 

estimated by: 

 
( )

( )increaseICCAUXVCCAUXPP

increaseICCAUXVCCAUXPP

colcolreconfig

rowrowreconfig

×+=

×+=

−

−
 (5.6) 

In [66], the authors found that ICCAUX increased by 200mA and 25mA for the 

Virtex-II Pro (XC2VP30) and Virtex-4 (XC4VFX12) respectively. Assuming the 
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dynamic behavior of ICCAUX only depends on the user logic, we expect that these 

current values will remain the same within the same device family. 

2) Energy per frame: The total energy per frame is the sum of the energy consumed by 

the following processes: i) row filtering, ii) turning a row filter into a column filter via 

DPR, iii) column filtering, and iv) turning a column filter into a row filter via DPR. Using 

the power and the processing times of each process, the energy per frame (in Joules) is 

given by:  

 ( ) reconfigcolreconfigrowreconfig

colscolsrowsrows

tPP

tPtPframeperEnergy

×++

×+×=

−−

 (5.7) 

5.4.4 Accuracy measurements 

We measure the accuracy of the 2-D impulse response and the filtered images using the 

peak signal-to-noise ratio (PSNR). This is given by: 

 









∗=

MSE

ValueMAX
PSNR

2

10log10  (5.8) 

where the MSE is the mean squared error between the fixed-point filter output and the 

output of the filter implemented with double floating point precision. 

5.4.5 Generation of optimal Filter realizations 

Based on energy per frame, performance, and accuracy (EPA) measurements, we create 

the EPA space, from which we extract the optimal realizations. A 2D filter realization is 

defined to be optimal in the multi-objective (Pareto) sense if we cannot improve on its 

EPA measurements without decreasing on at least one of them. 

The goal is to minimize the energy per frame consumption and to maximize 

performance and accuracy. For a given EPA space, the collection of all Pareto optimal 
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realizations forms a Pareto front (see Fig. 5.1(a)). The points are plotted against energy, 

and the negatives of performance and accuracy. 

Fig. 5.1(a) shows the EPA space along with the Pareto front. Independent constraints 

appear as planes in 3-D. Optimal realizations are then selected among the Pareto optimal 

points that also satisfy the constraints (see golden points in Fig. 5.1(b)). Dynamic EPA 

constraints satisfaction only requires that we select Pareto-optimal points when the 

constraints change. The computation of the Pareto points is straightforward. Here, we are 

interested in understanding how the FIR core parameters generate Pareto-optimal 

realizations. 

5.4.6 Dynamic EPA management based on DPR 

In hardware, a 2D filter Pareto-optimal realization is represented by its two associated 

bitstreams (row and column filters), and the EPA measurements. The realizations and 

associated parameters are stored in memory. The dynamic EPA management framework 

is shown in Fig. 5.4. Fig. 5.4(a) shows an embedded system that can dynamically modify 

the 2D FIR filter realization. Fig. 5.4(b) illustrates how the system moves dynamically 

along the Pareto front via DPR. 

EPA constraints can be met by selecting solutions along the Pareto front. For certain 

EPA constraints, we are left with the feasible set (see golden-colored points in Fig. 

5.1(b)). Fig. 5.1(b) depicts a case in which a system sets a maximum value for the energy 

per frame, but requires minimum levels of performance and accuracy. The 2D FIR filter 

realizations represented by the golden points meet these specifications. The selected 2D 

FIR filter realization is chosen to be the one that also minimizes the energy consumption. 
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5.5 Experimental Setup  

5.5.1 Generation of the set of 2D separable filters 

The FIR core platform is tested using Gaussian filters of different spreads (sigmas) and 

frequency characteristics. Gaussian filters are selected since they have several 

applications in image processing (e.g., image restoration, image analysis, and computer 

vision [65]). 

To cover a variety of possibilities, we investigate the performance for: (i) isotropic, 

low-pass, Gaussian filter with σ=1.5, (ii) anisotropic, low-pass, Gaussian filter with σx=4, 

σy=2, and (iii) isotropic, band-pass filter based on a Difference of Gaussians (DoG), with 

σ1=2, σ2=4. Please note that all of these filters are 2-D separable and symmetric. Fig. 5.6 

shows the magnitude-frequency response of the three filters using double-precision 

arithmetic. 

5.5.2 FIR Filter core parameters 

For the filters, we use symmetric implementations, with an arithmetic mode that uses 

truncation of the LSB, followed by saturation. In all cases, we consider 8-bit input images 
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(for row filter input bit-width). We also constrain the output to be in the same range as 

the input [ )1,1 +−  (NQ=NO-1), and keep the same number of output bits for the row and 

column filters. We define OB as the 2D filter output bitwidth. 

For simplicity, we keep N, L, NH the same for both the row and column filters (see 

Fig. 5.2 for definitions). Here, for the anisotropic cases, note that accuracy could be 

improved if we considered separate numbers of coefficients for each dimension (as a 

function of sigma). For the isotropic cases, the optimal case is to keep the number of 

coefficients the same as we do here. We summarize the parameter values for N, NH, OB, 

NXr, and NXc as shown in Table 5.1. 

 
Table 5.1. Parameters combinations (108) for the set of 2D Filters. The choice of OB=8,16 is based on the 

fact that the FSL bus width is 32 bits. We fix the LUT input size (L) for a given N. 

Frame Size (NXc× NXr) 640x480 (VGA) 352x288 (CIF) 176x144 (QCIF) 
Number of coefficients (N)  
( LUT input size (L) ) 

8 (4) 12 (6) 16 (4) 20 (5) 24 (6) 32 (4) 

Coefficients bit-width (NH) 10 12 16 
Output bit-width (OB) 8 16 

 

5.5.3 Platform testing scheme 

The 2D FIR filtering system of Fig. 5.4(a) was implemented on the ML405 Xilinx 

Development Board that houses a XC4VFX20-11FF672 Virtex-4 FPGA. The selected 

processor (PowerPC) is clocked at 300 MHz, peripherals run at 100 MHz, and the 

128MB DDR-SDRAM memory space is cached. The system was tested with the Xilinx® 

ICAP core. 
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5.6 Results and analysis 

5.6.1 Hardware resource utilization 

1) FIR IP Utilization:  Fig. 5.7 presents the numbers of slices required by the column 

filter core (PRR and the DPR control block) as a function of the number of coefficients, 

coefficient bit-width, and output bits. Refer to Table 5.1 for parameter combinations. 

Here for OB=8, the row filter core resources are only slightly different (by 2-5 slices) 

than what is shown for the column filter case. Also note that the ISE synthesizer was 

directed to avoid optimizing the LUT values themselves, thus giving essentially the same 

resource consumption for the three filter types. Furthermore, since the input size is fixed 

at 8 bits, for the row filters (only), changing the output bits from 8 to 16 requires minimal 

additional resources (1-8 slices).       

The range of required resources in Fig. 7 varies significantly. For example, the use of 

8 10-bit coefficients with 8-bit output bits requires the minimum of 273 slices. The use of 

32 16-bit coefficients with 16-bit output bits requires the maximum of 2076 slices. As we 
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Figure 5.7. Hardware resource utilization for the column filters. For all filter types, the resources depend on 
the number of symmetric coefficients (N), the coefficient bitwidth(NH), and the output bits(OB). Hardware 
resources for the row filters are very close to the required resources for the column filters for OB=8 (see text 

for details). 
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shall see, this strong variation in resource consumption will enable an effective 

optimization of the EPA space. 

2) Size of Reconfigurable Area: The PRR size is set to the largest possible filter 

realization (be it row or column). This largest realization is given by the column filter 

with N=32, NH=16, OB=16. The PRR occupies a tightly packed area of 24×94=2256  

slices for a bitstream size of 183,754 bytes. 

3) Embedded system resource utilization: Table 5.2 shows the hardware resource 

utilization of the embedded FIR Filtering system of Fig. 5.4(a), detailed in Section 5.4 

under the parameter setup of Table 5.1. The PRR includes a 1D filter and the FSL 

interface. The largest realization occupies 2125 Slices (94% of the allocated space for the 

PRR). This is slightly higher than what Fig. 5.7 reports since the results are obtained by 

compiling the embedded system. For transposition of the row-filtered image, we have 

4152µs, 1453µs, and 379µs for the VGA, CIF, and QCIF frame sizes respectively. 

Table 5.3 shows the reconfiguration time for 3 scenarios. In our setup, we used the 

Xilinx® ICAP core. We obtained an average reconfiguration speed of 16.28 MB/s. 

Significant improvements can be obtained through the use of custom-built controllers as 

reported in Table 5.3. 

 
Table 5.2. Embedded FIR Filtering system resource utilization (Virtex-4 XCVFX20-11FF672). Largest 

column filter: N = 32, NH=16, OB=16 

Module Slice (%) FF (%) LUT % 
PRR (column filter) 2125 25% 3680 21% 3812 22% 
Static Region 4973 58% 5226 31% 5998 35% 
Overall 7098 83% 8906 52% 9810 57% 

 
Table 5.3. Reconfiguration time for a 178KB bitstream (XCVFX20-11FF672). 

Scenario Reconfiguration speed Reconfiguration Time 
Current 16.28MB/s 11.28ms 

Custom [10] 295.4MB/s 0.622ms 
Ideal ([84],[11]) 400MB/s 0.459ms 



 112 

Table 5.4. Implementation Comparisons for 2D FIR Filters 

 DPR-DA 
(proposed) 

[78] [80] [81] [82] [59] 

Filter type NCxNR 7x7 Gaussian 5x5 mean 5x5 mean 3x3  NCxNR 
Separable Yes Yes Yes Yes No Yes 

Coefficients 
Variable at 
run-time via DPR 

Fixed Fixed Fixed 
Variable at run-
time 

Can be modified 
at compilation 
time 

Size 
NC, NR variable 
at run-time 

Fixed Fixed Fixed Fixed 
NC, NR variable 
at compilation 
time 

Implementation DA-based 
Multiply-and-
add 

Multiply-and-
add 

Multiply-
and-add 

Multiply-and-
add 

Multiply-and-add 

Test case 

16x16 symmetric 
8-bit input, 
16-bit coeffs, 
16-bit output 

Symmetric 
filter 
8-bit input 

Symmetric 
filter 
8-bit input 

Symmetric 
filter 
8-bit input 

8-bit input 

15x15 symmetric 
8-bit input, 
12-bit coeffs, 
12-bit output 

Device Virtex-4 StratixII 
Custom-made 
FPGA 

Virtex-4 Virtex-5 Virtex-II Pro 

Bitstream size 
(DPR designs) 

120KB N/A 28 KB 242 KB N/A N/A 

Resources 
1098 Slices 
0 BRAMs 
0 DSP48 

320 ALUT 
7 M4K 
16 DSP 

246K logic 
gates 

3410 Slices 
5590 LUTs 
5 BRAM 

406 LUTs, 402 
FFs, 
1 BRAM 
9 DSP48E 

727 slices 
15 BRAMs 
16 DSP48 

Max. Clock 
frequency (IP) 

202 MHz 264 MHz - - 125 MHz 201 MHz 

Notes 
Column and row 
filter are swapped 
via DPR 

Implemented 
with 
ALTERA 
DSP Builder 

Reported: 
36.78 dB 
(Lena) 

  
Xilinx reference 
design 

 

4) Comparison with other systems: Table 5.4 compares the proposed approach with 

related 2D FIR implementations found in the literature. For comparison purposes, we 

chose the symmetric filter with N=16, NH=16, OB=16, requiring a 120KB partial 

bitstream (if this filter were the largest realization). 

A fundamental difference between the proposed 2-D implementation and the ones 

reported in Table 5.4 is the use of a distributed arithmetic approach as opposed to 

multiply-and-add based methods. Also, note that another advantage of the proposed 

approach comes from the fact that we only implement one 1-D filter at a time. The use of 

separable filtering by other approaches requires the allocation of resources for both the 

row and column filters at all times. 
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The closest related implementation is given by the Xilinx reference design [59] shown 

in the last column of Table 5.4. Here, we note that the proposed approach requires more 

slices but saves on the use of expensive DSP48 blocks and BRAM resources. 

The filter reported by [78] uses an ALTERA device that makes use of Adaptive LUTs 

(ALUT) which can pack more logic than a Xilinx slice. However, as for the Xilinx case, 

this implementation makes use of 16 DSPs. Similarly, the proposed implementation does 

compare favorably against [80], [81], and [82]. 

5.6.2 Multi-objective optimization of the EPA space 

This section summarizes the results for EPA optimization for all filter types. For testing 

different image sizes (VGA, CIF, QCIF), we use the cropped regions of the ‘lena’ image 

as presented in Fig. 5.8. For the DoG filter, refer to Table 5.1 for the different parameter 

combinations that are considered. For the considered spreads of the low-pass filter cases, 

the quantized coefficients gave zero (or near-zero) values for N>24 (note that 12=3σmax, 

σmax=4). 
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In what follows, we designate Pareto-optimal 2D filter realizations using ‘E’, ‘P’, ‘A’ 

for energy, performance, and accuracy values. Similarly, we use ‘L’ for the lowest-

possible value and ‘H’ for the highest. Thus, ‘HA’ refers to a realization with the highest 

accuracy. The filter realization with the highest performance is denoted by ‘HP’. The 

filter realization with lowest energy realization is given by ‘LE’. 

Fig. 5.9 presents the results from EPA space optimization for all filter types and image 

sizes. Clearly, when using only 8 output bits (OB=8), the lowest energy realizations and 

lowest accuracy results (LE, LA) are obtained. The highest accuracy is achieved by 
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Figure 5.9. Pareto optimal realizations for the three filters and different image sizes. (a) Results for 
isotropic low-pass filtering. (b) Results for anisotropic low-pass filtering. (c) Results for DoG filtering. (d) 
Results for impulse response for isotropic low-pass filter. (e) Results for impulse response for anisotropic 
low-pass filter. (f) Results for impulse response for DoG filter. For (a), (b), (c), refer to Fig. 8 for the input 

images. Here, ‘LE’ refers to the lowest energy realization and ‘HA’ refers to the highest accuracy 
realization. The Pareto optimal points are circled. 
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increasing the number of coefficients, the coefficient bitwidth, and with 16 output bits. 

As the frame size increases, we also see a significant increase in the required energy per 

frame. Thus, we are presenting the Pareto-optimal results independently of each frame 

size. 

Figs. 5.10-5.12 show the EPA space and Pareto front for processing the ‘lena’ image 

at CIF resolution. For each figure, we show the Pareto-optimal realizations as a function 

of N, NH, and OB (OB=8 is grouped in a polygon). Corresponding to Fig. 5.10, Table 5.5 

lists the Pareto-optimal realizations and their EPA values for the case of the isotropic 

low-pass Gaussian filter. In Table 5.5, it is interesting to note that there is not much 

variation in performance. Performance variations only occur for different frame sizes as 

demonstrated in Fig. 5.9. Furthermore, with the exception of HP5, it is also interesting to 

note that accuracy increases with energy consumption. 
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Figure 5.10. Pareto-optimal realizations for the isotropic low pass Gaussian filter (σ=1.5) for CIF resolution: 
(a) Graph showing dependence on the number of coefficients N. (b) Graph showing dependence on the 
coefficient bitwidth NH. Pareto-optimal points are circled. Refer to Table V for EPA measurements and 
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Even at the largest frame size (VGA), performance results are always over 100 fps. 

For CIF resolution, performance exceeds 300 fps. Overall, for a fixed frame size, 

performance does not change significantly. Thus, in what follows, we will restrict the 

attention to the energy-accuracy space. 
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Figure 5.11. Pareto-optimal realizations for anisotropic low-pass Gaussian filter (σx=4, σy=2) for CIF 
resolution: (a) Graph showing dependence on the number of coefficients N. (b) Graph showing dependence 
on the coefficient bitwidth NH. OB refers to the output bitwidth. Refer to text for definitions of ‘HP’, ‘LE’, 

‘HA’, ‘LP’, ‘HE’, and ‘LA’. 

Figure 5.12. Pareto-optimal realizations for DoG filter (σ1=2, σ2=4) for CIF resolution: (a) Graph showing 
dependence on the number of coefficients N. (b) Graph showing dependence on coefficient bitwidth NH. OB 
refers to the number of output bits. Refer to text for definitions of ‘HP’, ‘LE’, ‘HA’, ‘LP’, ‘HE’, and ‘LA’. 
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Table 5.5. Pareto Optimal realizations for the isotropic, low-pass Gaussian filtering of the lena image at 

CIF resolution (σx=σy=1.5). Realizations are sorted by energy consumption. Refer to text for acroynms. 

U1-6 represent intermediate points. 

 N/σ N NH OB psnr(dB) Energy per frame (mJ) fps 

LE 5.33 8 12 8 51.2898 0.1548 332.19 
HP2 5.33 8 16 8 51.2974 0.1661 332.19 
U1 8.00 12 10 8 52.0870 0.1736 330.78 
U2 8.00 12 12 8 52.1495 0.2003 330.78 
U3 8.00 12 16 8 52.1500 0.2010 330.78 

HP3 5.33 8 10 16 58.0208 0.2021 332.19 
HP4 5.33 8 12 16 58.6846 0.2124 332.19 
U4 8.00 12 10 16 70.2218 0.2287 330.78 

HP5 5.33 8 16 16 58.7053 0.2414 332.19 
U5 8.00 12 12 16 82.2992 0.2667 330.78 
U6 8.00 12 16 16 95.5084 0.2724 330.78 
HA 10.6 16 16 16 100.0664 0.2914 328.69 

 
Table 5.6. Pareto Optimal realizations for DoG filtering of lena at CIF resolution (σ1=2,σ2=4). realizations 

are sorted by energy consumption. Refer to text for acronyms. U1-11 represent intermediate points. 

 N NH OB psnr(dB) Energy per frame (mJ) 
LE 8 12 8 23.6345 0.1551 
U1 12 10 8 31.7124 0.1780 
U2 16 10 8 40.2984 0.2062 
U3 20 10 8 49.5758 0.2139 
U4 24 12 8 49.6447 0.2416 
U5 24 10 8 49.8104 0.2508 
U6 24 16 8 49.9967 0.2704 
U7 32 10 8 51.6392 0.2781 
U8 24 10 16 62.3297 0.2807 
U9 24 12 16 63.1992 0.3276 
U10 24 16 16 65.8199 0.3464 
U11 32 12 16 78.7569 0.3586 
HA 32 16 16 84.4371 0.3991 

 

Fig. 5.13 shows the results from energy-accuracy space optimization for all filters. 

Results refer to filtering the ‘lena’ image at CIF resolution. Table 5.6 lists the 2D Pareto-

optimal realizations for the DoG filter. Here, it is interesting to note that accuracy 

increases with energy consumption and the number of output bits. 
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5.6.3 Dynamic EPA management optimization 

We next demonstrate dynamic EPA management on a video example. In this case, we 

consider a time-varying sequence of energy-accuracy constraints for the DoG filter as 

listed on the top of Fig. 5.14(a). The goal of the proposed dynamic management approach 

is to meet the constraints by using Pareto-optimal realizations listed in Table 5.6. 
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Figure 5.13. 2D Pareto-optimal realizations for Energy-Accuracy space for all filter types at CIF resolution: 
(a) Isotropic, low-pass filter. (b) Anisotropic, low-pass filter. (c) DoG filter. In all cases, we also summarize 
performance in terms of the minimum and maximum fps. Here, ‘LE’ refers to the lowest energy realization, 

and ‘HA’ refers to the highest accuracy realization. 
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displayed above the graph. (b) Video filtering accuracy achieved by dynamic EPA management. 
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In the proposed approach, it is assumed that the accuracy results from the ‘lena’ image 

will also work for the ‘foreman’ video sequence. More generally, we will need to know 

that the video images used in estimating accuracy will correspond to the testing cases. As 

we shall see, this assumption seems to apply here. Nevertheless, even if the assumption 

does not hold, a user can dynamically adjust the constraints to match expectations. The 

time-varying constraints are: 

1. Require Accuracy≥45 dB and Energy≤0.3mJ per frame. 

2. Maximize Accuracy subject to Energy≤0.3mJ per frame. 

3. Minimize Energy consumption per frame. 

4. Minimize Energy per frame subject to Accuracy≥65dB. 

5. Maximize Accuracy. 

Here, recall that when different realizations are possible, we select the one with 

minimum energy (e.g. see point �). The management of the EPA constraints leads to the 

2D FIR filter realizations shown in Fig. 5.14(a). Furthermore, as shown in Fig. 5.14(b), 

the accuracy constraints are well met. 

 

5.7 Conclusions 

We have presented a 2D FIR filtering framework for determining Pareto-optimal 

realizations in the Energy-Performance-Accuracy (EPA) space. We also demonstrate how 

the use the Pareto-optimal realizations can be used to meet time-varying EPA constraints. 

This provided for an effective method for dynamic EPA management. 
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We presented results over three 2D Gaussian filters. In each case, we provide a 

collection of Pareto-optimal solutions based on maximizing accuracy and performance, 

while minimized consumption of energy per frame. 

Dynamic EPA management is demonstrated on a standard video sequence. Here, it 

was clearly demonstrated how energy-accuracy constraints and optimization 

requirements can be easily met using a pre-computed set of Pareto-optimal realizations. 

Future work can focus on the automatic generation of time-varying constraints. For 

example, the detection of a scene change may trigger a requirement for an increase in 

accuracy. Similarly, when a scene remains the same over a long period of time, we may 

want to trigger a requirement for a decrease in energy consumption. 
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Chapter 6 

 

Concluding Remarks, Future Work, and Recommendations 

 

6.1 Concluding remarks 

A framework has been presented for the generation of optimal implementations in the 

Power/Energy, Performance, and Accuracy (PPA/EPA) spaces. The framework allows 

for dynamic PPA/EPA management for digital signal, image, and video processing 

applications that can meet real-time PPA/EPA constraints. 

The framework was tested on the development of single-pixel processors, 1-D FIR, 

and 2-D FIR filtering architectures. In addition, dynamic management was performed 

using Pareto-optimal realizations that can be used to meet time-varying PPA/EPA 

constraints. This provided for an effective method for dynamic PPA/EPA management. 

In the case of the pixel processor core, the Pareto optimal points were generated by 

considering different number of pixel processor cores, number of inputs bits, number of 

output bits, and clock frequencies. The validity of the approach was verified by the fact 

that over 40% of the considered implementations were found to be Pareto-optimal.  

As for the 2D FIR filtering system, the Pareto optimal points were generated by 

considering different numbers of coefficients, coefficient bit-width, and output bitwidth. 

Results were presented for three different 2D Gaussian filters. The approach worked in 

the sense that the Pareto-optimal realizations were generated based on combinations of 

different parameters, i.e. no parameter predominated. 
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For both the pixel processor and the 2D FIR filter, a collection of Pareto-optimal 

solutions (computed offline) was provided. These solutions were based on maximizing 

accuracy and performance, while minimizing consumption of power/energy per frame. 

Dynamic PPA/EPA management was demonstrated on a standard video sequence and 

a standard image. Here, it was clearly demonstrated how power/energy-performance-

accuracy constraints and optimization requirements can be easily met using a pre-

computed set of Pareto-optimal realizations. 

The results suggest that the general framework can be applied to a variety of digital 

signal, image, and video processing systems. This framework can be greatly improved by 

the automatic generation of time-varying constraints. For example, the detection of a 

scene change may trigger a requirement for an increase in accuracy. Similarly, when a 

scene remains the same over a long period of time, we may want to trigger a requirement 

for a decrease in power/energy consumption. Ultimately, this framework will lead to 

exciting new methods that allow for systems to only switch between architectures that are 

optimal in the multi-objective sense. 

 

6.2 Future Work and Recommendations 

In what follows, I provide a set of recommendations for future work: 

� The framework for dynamic management presented here has been tested on a 

medium-sized Virtex-4 FPGA, where the static power consumption was not too much 

of a problem. Newer high-end FPGA families (e.g., Virtex-5, Virtex-6, Virtex-7, and 

Kirtex-7) exhibit very high static power consumption even for the smallest device in 

the family. A way to deal with this issue is to use low-power FPGA families that 
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support dynamic partial reconfiguration/dynamic frequency control (e.g., Spartan-6, 

Artix-7). Another option is to consider dynamic reconfiguration with architectures that 

exhibit large variations in resource consumption. In this case, dynamic power 

consumption variation will be comparable to the static power consumption. This 

second approach will still not reduce device static power. Thus, the basic 

recommendation here is to consider re-implementation on the latest, low-power device 

(e.g., Artix-7). 

� Direct current measurement requires custom-built boards that provide access to the 

power rails. Newer FPGAs can measure voltage in real-time via the System Monitor, 

so the power measurement capability depends on the board. Most commercial boards 

allow for power measurement on only one rail (if any). As a result, throughout this 

Dissertation, the Xilinx Power Analyzer was used, whose accuracy has been 

corroborated with direct power measurements available in the ML605 Development 

Board (the power regulators provide information through I2C). Thus, we consider the 

use of power estimation software tools to be the most convenient option that provides 

decent estimates and allows us to apply the framework to any device. 

� It would be interesting to test the approach using different objective functions. Instead 

of PSNR, we can use SSIM (structural similarity). Instead of frames per second, 

bandwidth could be more informative. Note that the conversion from frames per 

second to bandwidth is straightforward. We just need to use the number of frames per 

second, the frame size, and the I/O bitwidth to determine the I/O bandwidth. Instead of 

energy/power, we might also want to use hardware resource consumption. 
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� There are limits to the use of dynamic partial reconfiguration. The basic idea is that 

DPR makes sense when the dynamic reconfiguration rate overhead is low. Thus, it 

does not make sense to have high reconfiguration rates. For the architectures shown, 

we studied the effect of the reconfiguration rate ([9], [17]) and found that 

reconfiguring made sense for our applications. Therefore, before attempting to apply 

this proposed framework, one should assess whether the reconfiguration rate makes 

sense. On the other hand, the reconfiguration overhead is not a problem for dynamic 

frequency control since it can be accomplished in tens of cycles. Alternatively, 

dynamic reconfiguration time can be reduced by context switching. Here, dynamic 

reconfiguration would require two different regions. This allows the system to work 

with one region while dynamically reconfiguring the other. Clearly, this requires that 

we have prior specification of the requirements for the dynamic region, additional 

resources overhead, and a DPR controller that can operate in parallel with the rest of 

the system. 

� FPGA vendors should develop methods to speed up the process of dynamic partial 

reconfiguration, including: i) increasing the bit-width of the ICAP from 32 to 64 bits, 

ii) allowing for a dedicated bus that supports data streaming at high frequencies (e.g. 

200 MHz), iii) allowing the streaming of compressed partial bitstreams to the ICAP. 

The reconfiguration overhead can be made negligible by the application of these three 

techniques, and it would enable a new frontier where DPR becomes a common 

technique. Naturally the usefulness of this approach assumes that the DPR controller 

overhead should remain relatively low as compared to the whole design. 
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� Another recommendation for FPGA vendors is to develop a built-in capability to 

measure current for all the FPGA power rails. Currently, some Xilinx® FPGAs offer 

voltage measurement, and current measurement capability depends on the board. This 

would certainly take dynamic power management a step further. 

� The reconfiguration controller presented only accepts external constraints, but does 

not generate them. Future work will deal with the devising of a reconfiguration 

controller that is content-based and power-aware (System Monitor). It will reconfigure 

based on both dynamic hardware sensing and dynamic software constraint generation. 

Dynamic hardware sensing can be based on real-time measurement of power. 

Dynamic software constraints can be generated from video scene changes, or a 

detection of an object of interest, etc. 
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Appendix A 

VHDL code description 

 

A.1 Pixel Processor and 1D FIR filter architectures 

The parameterized VHDL code for these architectures is depicted in Fig. A.1. Both cores 

are fully parameterized architectures that allow for the creation of a large set of hardware 

realizations. The pixel processor architecture was presented in Fig. 2.1; the file 

‘LUT_NItoNO.vhd’ implements a NI-to-NO LUT, and the file ‘LUT_NIto1.vhd’ 

implements a NI-to1 LUT. The 1D FIR architecture was presented in Fig. 5.3; the file 

‘fir_block.vhd’ describes the FIR filter block, and the file ‘LUTn.vhd’ describes a LUT 

with L inputs and LO outputs. 

 

 

 

 

 

As an example of parameterization, Fig. A.2 shows the entity VHDL declaration of the 

pixel processor core with all the generic parameters. 

 

 

 

 

 

Figure A.1 VHDL code for Pixel Processor and 1D FIR filter 

Figure A.2 VHDL code (‘entity’ declaration) for the Pixel Processor architecture 

pix_processor.vhd

LUT_NItoNO.vhd

LUT_NIto1.vhd (recursive)

fir_da.vhd

fir_block.vhd

LUTn.vhd

Pixel Processor 1D FIR architecture

(a) (b)
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Recall that the utilization of these cores within an embedded system requires the 

development of hardware interfaces, which were developed in VHDL. In the case of the 

pixel processor, the interface was connected to the PLB bus with burst support (see Fig. 

2.5). For the 1D FIR filter processor, an interface that connects to the Fast Simplex Link 

bus, was designed around the 1D FIR filter core (see Fig. 3.8). Finally, for the 2D FIR 

filter processor, the interface was attached to the Fast Simplex Link Bus. Here, the 2D 

filter is implemented by cyclic swapping of the row and column filters (see Fig. 4.2) 

 

A.2 Dynamic Frequency Control core 

A core that allows the dynamic modification of the frequency of operation was described 

in Fig. 2.3. The core is made of two VHDL files. The first file (‘dcm_ctrl.vhd’) is a stand-

alone DCM control core (not connected to any bus) that allows the for the run-time 

modification of frequency. The second file (‘dcmctrl_DCRslv.vhd’) is a Device Control 

Register (DCR) slave interface around the stand-alone DCM control core that receives 

orders from the embedded processor so as to be able to manage the DCM control core. 
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Appendix B 

Reconfigurability on FPGAs 

 

An FPGA is a programmable device consisting of an array of programmable logic blocks, 

surrounded by programmable I/O blocks, and a programmable interconnection network. 

A function to be implemented in FPGA is partitioned in modules, each of which can 

be implemented in a logic block. The logic blocks are then connected together using the 

programmable interconnection. All three basic components of an FPGA (logic blocks, 

I/O blocks, and interconnection network) can be re-programmed by the user [88]. 

B.1 Dynamic Partial Reconfiguration 

Dynamic Partial Reconfiguration enables the run-time allocation and de-allocation of 

hardware resources by modifying or switching off portions of the FPGA while the rest 

remains intact, continuing its operation. 

The operating FPGA design is modified by loading a partial configuration file, usually 

a partial bit file. After a full bit file configures the FPGA (full reconfiguration), partial bit 

files can be downloaded to modify reconfigurable regions in the FPGA without 

compromising the integrity of the applications running on those parts of the device that 

are not being reconfiguration. Fig. B.1 illustrates the idea where the Block A (user-

defined reconfigurable region) can be modified by any of the partial bit files (A1.bit, 

A2.bit, A3.bit, or A4.bit). The static region remains functioning and it is completely 

unaffected by the loading of a partial bit file [86]. 

This technology can dramatically extend the capabilities of FPGAs. In addition to 

potentially reducing size, weight, power, and cost, dynamic partial reconfiguration 
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enables new types of FPGA designs that provide efficiencies not attainable with 

conventional design techniques. The main FPGA vendors, ALTERA and Xilinx provide 

commercial support for this technology. 

 

 

 

 

 

B.2 Technology that enables reconfiguration (full/partial) of FPGAs 

Current ALTERA and Xilinx FPGAs use a memory-based paradigm for computations as 

well as for the realization of interconnections. Among the programmable technologies 

available, we can list SRAM, EEPROM, and Flash-based [88]. SRAM devices, the 

dominate technology for FPGAs, are based on static CMOS memory technology, and are 

re- and in-system programmable. 

 

 

 

 

 

 

 

 

 

A4.bit

A3.bit

Reconfig

Block "A"

FPGA

Static Region
A2.bit

A1.bit

Figure B.1. Basic premise of Partial Reconfiguration ([86]) 

Figure B.2. Basic Xilinx SRAM cell [88]. 
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In an SRAM-based FPGA, the states of the logic blocks, I/O blocks, and 

interconnections, are controlled by the output of SRAM cells (figure B.2). The basic 

SRAM configuration cell (Fig. B.2) is constructed from two cross-coupled inverters and 

uses a standard CMOS-process. The major advantage of this technology is that FPGAs 

can be configured indefinitely. A new connection or function is implemented by a change 

on the SRAM cells values. Moreover, the device can be reconfigured in-circuit (while it 

is mounted on the circuit board with the other components) very quickly and on-the-fly 

(while the device is operating). 

A major disadvantage of SRAM programming technology is its large area. It takes at 

least five transistors to implement an SRAM cell, plus at least one transistor to serve as 

programmable switch [89]. Furthermore, the device is volatile, i.e. the configuration of 

the device stored in the SRAM-cells is lost if the power is cut off. Thus, external storage 

or non-volatile devices such as CPLDs, EPROM or Flash devices, are required to store 

the configuration and load it into the FPGA-device at power-on. 
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Appendix C 

Related publications 

 

This section lists published work related with the dissertation: A system that reconfigures 

among single-pixel operations is presented in [C.1]. A FIR filter implemented with 

distributed arithmetic, whose coefficients can be modified, is presented in [C.2]. A 

platform that allows for rapid swapping of image processing algorithms is presented in 

[C.3]. A revamped version of the FIR filter, where it is also possible to modify the entire 

filter structure is presented in [C.4]. Preliminary results of a 2D separable filterbank are 

presented in [C.5]. Some ancillary work has also been presented. A dynamically 

reconfigurable computing model for video processing applications is presented in [C.6]. 

In addition, [C.7] describes a system that can automatically obtain partial bitstreams at 

running-time via the Ethernet link.  In [C.8], a comparison of the energy-accuracy space 

of a 2D FIR Filter for both FPGA with DPR and GPU implementations is presented. 

 

[C.1] D. Llamocca, M. Pattichis, and A. Vera, “A Dynamically Reconfigurable Parallel 

Pixel Processing System”, in Proceedings of 2009 International Conference on 

Field Programmable Logic and Applications, Prague, Czech Republic, Sep. 2009. 

[C.2] D. Llamocca, M. Pattichis, and A. Vera, “A dynamically reconfigurable platform 

for fixed-point FIR filters,” in Proceedings of the International Conference on 

ReConFigurable Computing and FPGAs (ReConFig ’09), pp. 332–337, Cancun, 

Mexico, Dec. 2009. 

[C.3] D. Llamocca, M.S. Pattichis, and G. A. Vera, “A dynamic computing platform for 

image and video processing applications,” in Proceedings of the 43rd Asilomar 

Conference on Signals, Systems and Computers, pp. 327–331, Pacific Grove, CA, 

USA, Nov. 2009. 
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[C.4] D. Llamocca, M. Pattichis, and G. Alonzo Vera, “Partial Reconfigurable FIR 

Filtering system using Distributed Arithmetic”, International Journal of 

Reconfigurable Computing, vol. 2010, Article ID 357978, 14 pages, 2010. 

[C.5] D. Llamocca, M. Pattichis, “Real-time dynamically reconfigurable 2-D 

filterbanks”, in Proceedings of 2010 IEEE Southwest Symposium on Image 

Analysis & Interpretation, Austin, TX, May. 2010. 

[C.6] G. A. Vera, D. Llamocca, M. S. Pattichis, and J. Lyke, “A dynamically 

reconfigurable computing model for video processing applications,” in 

Proceedings of the 43rd Asilomar Conference on Signals, Systems and 

Computers, pp. 327–331, Pacific Grove, Calif, USA, November 2009. 

[C.7] D. Llamocca, M.S. Pattichis, G. A. Vera, and J. Lyke, “Dynamic Partial 

Reconfiguration through Ethernet Link”, in Proceedings of the 2010 AIAA 

Infotech Conference at Aerospace, Atlanta, GA, USA, April 2010. 

[C.8]  D. Llamocca, C. Carranza, and M. Pattichis, “Separable FIR Filtering in FPGA 

and GPU implementations: Energy, Performance, and Accuracy considerations”, 

in Proceedings of 2011 International Conference on Field Programmable Logic 

and Applications FPL’2011, Chania, Greece, Sep. 2011. 

 

Other publications: 
 

[C.9] A. Vera, D. Llamocca, M. Pattichis, W. Kemp, D. Alexander, and J. Lyke, “Dose 

Rate Upset Investigations on the Xilinx IV Field Programmable Gate Arrays”, in 

Proceedings of the 2007 IEEE Radiation Effects Data Workshop, Honolulu, HI, 

Oct. 2007. 

[C.10] A. Vera, D. Llamocca, J. Fabula, W. Kemp, R. Marquez, W. Shedd, D. 

Alexander, “Xilinx Virtex V Field Programmable Gate Array Dose Rate Upset 

Investigations”, in Proceedings of the 2008 IEEE Radiation Effects Data 

Workshop, Tucson, AZ, Oct. 2008. 

[C.11] I. Steinwart, J. Theiler, and D. Llamocca, “Using support vector machines for 

anomalous change detection”, in Proceedings of the 2010 IEEE International 

Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, July 2010. 



 133 

References 

[1] Alan Bovik ed., The Essential Guide to Video Processing, Academic Press, 

Elsevier, 2nd Edition, 2009. 

[2] A. Laffely, J. Liang, P. Jain, N. Weng, W. Burleson, R. Tessier, “Adaptive System 

on a Chip (aSoC) for Low Power Signal Processing”, in Proc. of the Asilomar 

Conference of Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2001. 

[3] W. P. Burleson, P. Jain, and S. Venkatraman, “Dynamically parameterized 

architecture for power-aware video coding: Motion estimation and DCT”, in Proc. 

2nd USF Int. Workshop Digital and Computational Video, 2001, pp. 8-12. 

[4] R. Chamberlain, E. Hemmeter, R. Morley, and J. White, “Modeling the power 

consumption of audio signal processing computations using customized numerical 

representations”, in Proc. of the 36th Annual Simulation Symposium, pp..249-255, 

April 2003. 

[5] J. Noguera, I.O. Kennedy, “Power Reduction in Network Equipment through 

Adaptive Partial Reconfiguration”, in Proceedings of the 2007 International 

Conference on Field Programmable Logic and Applications (FPL’07), pp. 240-245, 

Amsterdam, The Netherlands, Nov. 2007. 

[6] G.A. Vera, “A dynamic arithmetic architecture: precision, power, and performance 

considerations”, Ph.D. Dissertation, University of New Mexico, Albuquerque, NM, 

USA, May 2008. 

[7] J. Huang, J. Lee, “A Self-Reconfigurable Platform for Scalable DCT Computation 

using compressed partial bitstreams and BlockRAM Prefetching”, IEEE Trans. On 

Circuits and Systems for Video Technology, vol. 19, pp. 1623-1632, Nov. 2009. 

[8] S. Boyd and L. Vanderberghe, Convex Optimization. Cambridge, U.K: Cambridge 

Univ. Press, 2004. 

[9] D. Llamocca, M. Pattichis, and A. Vera, “A Dynamically Reconfigurable Parallel 

Pixel Processing System”, in Proceedings of 2009 International Conference on 

Field Programmable Logic and Applications FPL’2009, Prague, Czech Republic, 

Sep. 2009. 



 134 

[10] C. Claus et al., “A multi-platform controller allowing for maximum dynamic partial 

reconfiguration throughput”, in Proceedings of the International Conference on 

Field Programmable Logic and Applications (FPL’08), pp.535-538, Heidelberg, 

Germany, Sept. 2008. 

[11] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-Time Partial Reconfiguration 

Speed Investigation and architectural design space exploration”, in Proceedings of 

the International Conference on Field Programmable Logic and Applications 

FPL’2009, Prague, Czech Republic, Sept. 2009. 

[12] J.C. Hoffman and M.S. Pattichis, “A High-Speed Dynamic Partial Reconfiguration 

Controller using Direct Memory Access through a Multiport Memory Controller 

and Overclocking with Active Feedback”, International Journal of Reconfigurable 

Computing, vol. 2011, Article ID 439072, 10 pages, 2011. 

[13] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically 

reconfigurable systolic array accelerators: A case study with extended Kalman filter 

and discrete wavelet transform algorithms”, Computers & Digital Techniques, IET, 

vol. 2, issue 2, March 2010. 

[14] M. Fons, F. Fons, and E. Cantó, “Fingerprint Image processing acceleration through 

run-time reconfigurable hardware”, IEEE Trans. On Circuits and Systems II: 

Express Briefs, vol. 47, No. 12, Dec. 2010. 

[15] A. Afandi, A. Abbes, “Efficient reconfigurable architectures for 3D medical image 

compression”, in Proceedings of International Conference on Field-Programmable 

Technology, Sydney, Australia, Dec. 2009. 

[16] S. Bouchoux, E.-B. Bourennane, and M. Paindavoine, “Implementation of 

JPEG2000 arithmetic decoder using dynamic reconfiguration of FPGA”,  in 

Proceedings of the 2004 International Conference on Image Processing ICIP’04,  

Singapore, Oct. 2004. 

[17] D. Llamocca, M. Pattichis, and G. Alonzo Vera, “Partial Reconfigurable FIR 

Filtering system using Distributed Arithmetic”, International Journal of 

Reconfigurable Computing, vol. 2010, Article ID 357978, 14 pages, 2010. 



 135 

[18] S. Sowmya, R. Paily, “FPGA Implementation of Image Enhancement Algorihtms”, 

in Proceedings of the International Conference on Communications and Signal 

Processing ICCSP’2011, Kozhikode, India, Feb. 2011. 

[19] LogiCORE IP Gamma Correction (DS719), v3.0 ed., Xilinx Inc., 2100 Logic Drive, 

San Jose, CA,  September 2010. 

[20] Video and Image Processing Suite User Guide, v11.0 ed., Altera Corp, 101 

Innovation Drive, San Jose, CA, May 2011 

[21] Dong-U Lee, R.C.C. Cheung, J.D. Villasenor, “A flexible architecture for precise 

gamma correction”, IEEE Trans. On Very Large Scale Integration (VLSI) Systems, 

vol. 15, issue 4, pp.474-478, April 2007. 

[22] Wang Bing-jian, Liu Shang-qian, Li Qing, and Zhou Hui-xin, “A real-time contrast 

enhancement algorithm for infrared images based on plateau histogram”, Infrared 

Physics and Technology, Elsevier, pp. 77-82, July 2005. 

[23] A. M. Alsuwailem and S.A. Alshebeili, “A new approach for real-time histogram 

equalization using FPGA”, in Proceedings of International Symposium on 

Intelligent Signal Processing and Communication Systems, Dec. 2005. 

[24] M. Chandrashekar, U. N. Kumar, K. S. Readdy, and K.N. Raju, “FPGA 

implementation of high speed infrared image enhancement”, International Journal 

of Electronic Engineering Research, vol. 1, no. 3, pp. 1480-1485, 2002. 

[25] K. Bondalapati, V.K. Prasanna, “Dynamic precision management for loop 

computations on reconfigurable architectures”, in Proceedings of the Seventh 

Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 

Napa Valley, CA, April 1999. 

[26] Virtex-4 FPGA User Guide (UG070), v2.6 ed., Xilinx Inc., 2100 Logic Drive, San 

Jose, CA, December 2008. 

[27] Power Methodology Guide (UG786), v13.1 ed., Xilinx Inc., 2100 Logic Drive, San 

Jose, CA, March 2011. 

[28] Virtex-4 FPGA Data Sheet: DC and Switching Characteristics (DS302), v3.3 ed., 

Xilinx Inc., 2100 Logic Drive, San Jose, CA, June 2008. 



 136 

[29] M. Hatamian, and G.L. Cash, “A 70 MHz 8 bit x 8 bit parallel pipelined multiplier 

in 2.5 µm CMOS”, IEEE J. Solid-State Circuits, vol. SC-21, pp. 505-513, Aug. 

1986.  

[30] K.G. Smitha, and A. P. Vinod, “A reconfigurable high-speed RNS-FIR channel 

filter for multi-standard software radio receivers”, in Proceedings of 11
th

 IEEE 

Singapore International Conference on Communication Systems, Jan. 2009, pp 

1354-1358. 

[31] Gallazzi, F., Torelli, G., Malcovati, P., and Ferragina, V., “A digital multistandard 

reconfigurable FIR filter for wireless applications”, Proceedings of 14
th

 IEEE 

International Conference on Electronics, Circuits and Systems, 2007, pp 808-811. 

[32] H. Bruce, R. Veljanovski, V. Owall, and J. Singh, “Power optimization of a 

reconfigurable FIR-filter”, IEEE workshop on Signal Processing Systems, 2004.  

[33] R. Mahesh, and A.P. Vinod, “New reconfigurable architectures for implementing 

FIR filters with low complexity”, IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, January 2010, pp 275-288. 

[34] C. Chou, S. Mohanakrishman, and J. B. Evans, “FPGA implementation of digital 

filters”, in Proceedings of Signal Processing Applications Technol., Santa Clara, 

CA, 1993. 

[35] T. Do, H. Kropp, C. Reuter, and P. Pirsch. “A Flexible Implementation of High-

Performance FIR Filter on Xilinx FPGAs”; Field-Programmable Logic and 

Applications. From FPGAs to Computing Paradigm: 8th International Workshop, 

FPL '98, 1998, pp. 441-445. 

[36] S. White, “Applications of Distributed Arithmetic to Digital Signal Processing: A 

Tutorial Review”, IEEE Transactions on Acoustics, Speech and Signal Processing 

Magazine, 4-19, 1989. 

[37] A. Vera, D. Llamocca, M. Pattichis, and J. Lyke, “A Dynamically Reconfigurable 

Computing Model for Video Processing Applications”, in Proceedings of the 2009 

Asilomar Conference on Signal, Systems and Computers, Pacific Grove, CA, Nov. 

2009. 



 137 

[38] D. Llamocca, M. Pattichis, A. Vera, “A Dynamically Reconfigurable Platform for 

Fixed-Point FIR Filters”, in Proceedings of ReConFig’09, Cancun, Mexico, Nov. 

2009, pp. 332-337. 

[39] E. Tan, A. Wahab, and K. Wong, “Programmable DSP systems using FPGA,” in 

Proceedings of the IEEE conference on Digital Signal Processing Applications, vol. 

2, 1996, pp. 654–658. 

[40] R. Sidhu, and V. K. Prasanna, “Efficient Metacomputation Using Self-

Reconfiguration”, Field-Programmable Logic and Applications. Reconfigurable 

Computing Is Going Mainstream 12th International Conference, FPL 2002, 

Montpellier, France, 2002, pp. 85-92. 

[41] Delahaye, J., Palicot, J., Moy, C., and Leray, P., “Partial Reconfiguration of FPGAs 

for Dynamical Reconfiguration of a Software Radio Platform”, in Proceedings of 

2007 Mobile and Wireless Communications Summit, Budapest, Hungary, July 2007, 

pp. 1-5.  

[42] T. Rissa, R. Uusikartano, and J. Niittylahti, “Adaptive FIR filter architectures for 

run-time reconfigurable FPGAs”, in Proceedings of 2002 IEEE International 

Conference on  Field-Programmable Technology, 2002, pp 52-59. 

[43] C. Choi, and H. Lee, “A Reconfigurable FIR Filter Design on a Partial 

Reconfigurable Platform”, in Proceedings of ICCE’06, Hanoi, Vietnam, Oct. 2006, 

pp. 352-355.  

[44] C. Choi, and H. Lee, “A self-reconfigurable adaptive FIR filter system on Partial 

Reconfigurable Platform”, in IEICE Transactions in Information and Systems, Vol. 

E90-D, No. 12, Dec. 2007, pp. 1932-1938.  

[45] Ken Chapman, Xilinx's Application Note 054, “Constant Coefficient Multipliers for 

the XC4000E”, Xilinx Inc., 2100 Logic Drive, San Jose, CA, 95124, Dec. 1996. 

[46]  “Distributed Arithmetic FIR Filter (DS240)”, v9.0 ed., Xilinx Inc., 2100 Logic 

Drive, San Jose, Ca, 05124, April 2005. 

[47] K. Bruneel, F. Abouelella, and D. Stroobandt, “Automatically mapping applications 

to a self-reconfiguring platform”, in Proceedings of Design, Automation, and Test 

in Europe, 2009. 



 138 

[48] S. Chevobbe, and S. Guyetant, “Reducing Reconfiguration Overheads in 

Heterogeneous Multicore RSoCs with Predictive Configuration Management”, 

International Journal of Reconfigurable Computing, Volume 2009 (2009), Article 

ID 390167. 

[49]  “Implementing FIR Filters in FLEX Devices (AN73)”, v1.01 ed., Altera Corp., 101 

Innovation Drive, San Jose, CA, 95134, Feb. 1998. 

[50]  “Fast Simplex Link (FSL) Bus Product Specification (DS449)”, v2.11a ed., Xilinx 

Inc., 2100 Logic Drive, San Jose, CA, 95124, Jun. 2007. 

[51]  “Early Access Partial Reconfiguration User Guide for ISE 9.204i (UG208)”, v1.2 

ed., Xilinx Inc., 2100 Logic Drive, San Jose, CA, 95124, Sep. 2008. 

[52] A. DeHon, R. Huang, and J. Wawrzynek, “Hardware-assisted fast routing”, in Proc. 

IEEE FCCM’92, Apr. 2002. 

[53] Sahambi, J.S., Tandon, S.N., and Bhatt, R.K.P., “Using wavelet transforms for ECG 

characterization. An online digital signal processing system”, IEEE Engineering in 

Medicine and Biology Magazine, vol. 16, Issue 1, pp. 77-83, 1997. 

[54] E. Kyriacou, C. Pattichis, M. Pattichis, A. Jossif, L. Paraskeva, A. Konstantinides, 

and D. Vogiatzis, "An m-Health Monitoring System for Children with Suspected 

Arrythmias," in Procedings of the 29th Annual International Conference of the 

IEEE EMBS, 2007, pp. 1794-1797. 

[55] A. Panayides, M.S. Pattichis, C.S. Pattichis, C.P. Loizou, M. Pantziaris, A. 

Pitsillides, "Robust and Efficient Ultrasound Video Coding in Noisy Channels 

Using H.264," in Proceedings of the 31st Annual International Conference of the 

IEEE EMBS, 2009, pp. 5143-5146.  

[56] G.B. Moody, R.G. Mark, "The MIT-BIH Arrhythmia Database on CD-ROM and 

Software for use with it," Computers in Cardiology, 1990, pp. 185-188. 

[57] Alan Bovik ed., Handbook of Image and Video Processing. Academic Press, 1st 

Edition, May 2000. 

[58] D. Llamocca, M. Pattichis, “Real-time dynamically reconfigurable 2-D filterbanks”, 

in Proceedings of the 2010 IEEE Southwest Symposium on Image Analysis & 

Interpretation, Austin, TX,  May. 2010. 



 139 

[59] “Two-dimensional Linear Filtering (XAPP933) by Robert Turney”, v1.1 ed., Xilinx 

Inc., 2100 Logic Drive, San Jose, CA, 95124, Oct. 2007. 

[60] S. Collange, D. Defour, A. Tisserand, “Power Consumption of GPUs from a 

Software Perspective”, in Proceedings of the 9th International Conference on 

Computational Science (ICCS’09), pp.914-923, Springer, 2009. 

[61] V. Podlozhnyuk, “Image Convolution with CUDA”, NVIDIA, June 2007. 

[62] Cope, B., Cheung, P.Y.K., Luk, W., Witt, S., “Have GPUs made FPGAs redundant 

in the field of video processing?”, in Proceedings of the 2005 IEEE International 

Conference on Field Programmable Technology, pp. 111-118, Singapore, Dec. 

2005. 

[63] Jones, D.H., Powell, A., Bouganis, C.-S., Cheung, P.Y.K., “GPU versus FPGA for 

High Productivity Computing”, in Proceedings of the International Conference on 

Field Programmable Logic and Applications FPL’2010, Milan, Italy, Sep.2010.  

[64] CUDA C Programming Guide, NVIDIA, v 3.2, Sept. 2010.  

[65] Alan Bovik ed., The Essential Guide to Image Processing, Academic Press, 

Elsevier, 2nd Edition, 2009. 

[66] G. Alonzo Vera, Marios Pattichis, and James Lyke, “A dynamic dual fixed-point 

arithmetic architecture for FPGAs”, International Journal of Reconfigurable 

Computing, vol. 2011, Article ID 518602, 19 pages, 2011.  

[67] M.S. Andrews, “Architectures for generalized 2d FIR filtering using separable filter 

structures”, in Proceedings of the IEEE International Conference on Acoustics, 

Speech, and Signal Processing (ICASSP 1999), Phoenix, AZ, March 1999. 

[68] D. Llamocca, C. Carranza, M. Pattichis, “Separable FIR filtering in FPGA and GPU 

implementations: Energy, Performance, and Accuracy considerations”, in 

Proceedings of 2011 International Conference on Field Programmable Logic and 

Applications FPL’2011, Chania, Greece, Sep. 2011.  

[69] C. Tanougast, M. Janiaut, Y. Berviller, H. Rabah, S. Weber, and A Bouridane, “An 

embedded and Programmable System based FPGA for Real Time MPEG Stream 

Buffer Analysis”, IEEE Trans. On Circuits and Systems for Video Technology, vol. 

19, No. 2, Feb. 2009. 



 140 

[70] K. Mei, N. Zheng, C. Huang, Y. Liu, and Q. Zeng, “VLSI design of a high-speed 

and area-efficient JPEG2000 decoder”, IEEE Trans. On Circuits and Systems for 

Video Technology, vol. 17, No. 8, Aug. 2007.  

[71] K. Varma, H. Damecharla, A. Bell, J. Carletta, and G. Back, “A fast JPEG2000 

encoder that preserves coding efficiency: The split arithmetic encoder”, IEEE 

Trans. On Circuits and Systems – Part I: Regular Papers, vol. 55, No. 11, pp. 

3711-3722, Dec. 2008. 

[72] N. Farrugia, F. Mamalet, S. Roux, F. Yang, and M. Paindavoine, “Fast and Robust 

Face Detection on a Parallel Optimized Architecture implemented on FPGA”, IEEE 

Trans. On Circuits and Systems for Video Technology, vol. 19, No. 4, April 2009. 

[73] D. Nguyen, D. Halupka, P. Aarabi, and A. Sheikholeslami, “Real-Time Face 

Detection al lip feature extraction using field programmable gate arrays”, IEEE 

Trans. On Systems, man, and Cybernetics, vol. 36, No. 4, Aug. 2006.  

[74] T. Komuro, T. Tabata, and M. Ishikawa, “A Reconfigurable embedded system for 

1000 f/s Real-Time Vision”, IEEE Trans. On Circuits and Systems for Video 

Technology, vol. 20, No. 4, April 2010. 

[75] E. Oruklu, and J. Saniie, “Dynamically Reconfigurable Architecture design for 

Ultrasonic Imaging”, IEEE Trans. On Instrumentation and Measurement, vol. 58, 

No. 8, Aug. 2009. 

[76] Y. Liu, and E. M-K Lai, “Design and Implementation of an RNS-Based 2-D DWT 

Processor”, IEEE Trans. On Consumer Electronics, Vol. 50, No. 1, Feb. 2004. 

[77] H. Hedberg, F. Kristensen, and V. Öwall, “Low-complexity binary morphology 

architectures with flat rectangular structural elements”, IEEE Trans. On Circuits 

and Systems – Part I: Regular Papers, vol. 55, No. 8, pp. 2216-2225, Aug. 2008. 

[78] H. S. Neoh, A. Hazanchuk, “Adaptive edge detection for real-time video processing 

using FPGAs”, in Proc.GSPx2004 Conference, 2004. 

[79] C.-S. Bouganis, S.-B. Park, G.A. Constantinides, and P.Y.K. Cheung, “Synthesis 

and optimization of 2D filter designs for heterogeneous FPGAs”, ACM Trans. 

Reconfigurable Technol. Syst. Vol. 1, no. 4, p. 24, Jan. 2009.  



 141 

[80] H. Yang, F. Zhang, J. Lai, and Y. Wang, “Image Filtering using Partially and 

Dynamically Reconfiguration” in Proc. 2010 10th IEEE International Conference 

on Solid-State and Integrated Circuit Technology, Shanghai, China, 2010, pp.2067.  

[81] S.U. Bhandari, S. Subbaraman, S.S. Pujari, R. Mahajan, “Real Time Video 

Processing on FPGA using on the fly Partial Reconfiguration”, in Proceedings of 

the 2009 International Conference on Signal Processing Systems, pp. 244, 

Singapore,, May 2009.  

[82] T. Raikovich, Feher, B. “Application of partial reconfiguration of FPGAs in image 

processing”, in Proceedings of 2010 Conference on Ph.D. Research in 

Microelectronics and Electronics, Berlin, Germany, July 2010.  

[83] S. Hong, J. Lee, A. Athalye, P. Djuric, W. Cho, “Design Methodology for Domain 

Specific Parameterizable Particle Filter Realizations”, IEEE Trans. On Circuits and 

Systems – Part I: Regular Papers, vol. 54, No. 9, pp. 1987-2000, Sep. 2007. 

[84] Y. Hori, A. Satoh, H. Sakane, K. Toda, “Bitstream encryption and authentication 

with AES-GCM in dynamically reconfigurable systems”, in Proceedings of the 

International Conference on Field Programmable Logic and Applications 

(FPL’08), pp.23-28, Heidelberg, Germany, Sept. 2008.  

[85] J. Resano et al., “Runtime minimization of Reconfiguration Overhead in 

Dynamically Reconfigurable Systems”, in Proceedings of the International 

Conference on Field Programmable Logic and Applications (FPL’03). Ser. LNCS, 

vol. 2778. Springer Verlag, Sept. 2003, pp. 585-594. 

[86] Partial Reconfiguration User Guide for ISE 12.3 (UG702), Xilinx, San Jose, CA, 

v12.3 edition, Oct. 2010. 

[87] Virtex-6 Family Overview (DS150), Xilinx, San Jose, CA, v2.2 edition, Jan. 2010.  

[88] C. Bodda, “Introduction to Reconfigurable Computing”, Springer, ISBN 978-1-

4020-6088-5, 2007. 

[89] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-

programmable gate arrays”, Proceedings of the IEEE, vol. 81, pp. 1013-1029, July 

1993. 

 


