
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

7-5-2012

Dynamically reconfigurable management of
energy, performance, and accuracy applied to
digital signal, image, and video Processing
Applications
Daniel Rolando Llamocca Obregon

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Llamocca Obregon, Daniel Rolando. "Dynamically reconfigurable management of energy, performance, and accuracy applied to
digital signal, image, and video Processing Applications." (2012). https://digitalrepository.unm.edu/ece_etds/162

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/162?utm_source=digitalrepository.unm.edu%2Fece_etds%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 i

 Daniel Rolando Llamocca Obregon
 Candidate

 Electrical and Computer Engineering

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 MARIOS PATTICHIS , Chairperson

 CHRISTOS CHRISTODOULOU

 JAMES C. LYKE

 RON LUMIA

 ii

Dynamically Reconfigurable Management

of Energy, Performance, and Accuracy

applied to Digital Signal, Image, and Video

Processing Applications

by

DANIEL LLAMOCCA

B.Sc., Electrical Engineering, Pontificia Universidad Católica del

Perú, 2002
M.Sc., Computer Engineering, University of New Mexico, 2008
PhD., Computer Engineering, University of New Mexico, 2012

DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2012

 iii

@2012, Daniel Llamocca

 iv

DDDDEDICATIONEDICATIONEDICATIONEDICATION

This dissertation is dedicated to my parents, Daniel and Arcelia. Besides their

guidance and affection, they provided me with all the tools and opportunities that

made from me who I am …

 v

Acknowledgments

I would like to express my deepest and sincerest gratitude to my advisor, Dr. Marios

Pattichis, for introducing me to the fascinating world of research and for his stimulating

and invaluable help during all these years. I am deeply grateful for his patience,

encouragement, invaluable advice, and countless hours of work.

Special thanks to all of my friends and ECE, whose friendship and support made the

days of work more bearable.

 vi

Dynamically Reconfigurable Management of Energy,

Performance, and Accuracy applied to Digital Signal,

Image, and Video Processing Applications

by

Daniel Llamocca

B.Sc., Electrical Engineering, Pontificia Universidad Católica del Perú, 2002

M.Sc., Computer Engineering, University of New Mexico, 2008

PhD., Engineering, University of New Mexico, 2012

Abstract

There is strong interest in the development of dynamically reconfigurable systems that

can meet real-time constraints in energy/power-performance-accuracy (EPA/PPA). In

this dissertation, I introduce a framework for implementing dynamically reconfigurable

digital signal, image, and video processing systems.

The basic idea is to first generate a collection of Pareto-optimal realizations in the

EPA/PPA space. Dynamic EPA/PPA management is then achieved by selecting the

 vii

Pareto-optimal implementations that can meet the real-time constraints. The systems are

then demonstrated using Dynamic Partial Reconfiguration (DPR) and dynamic frequency

control on FPGAs.

The framework is demonstrated on: i) a dynamic pixel processor, i) a dynamically

reconfigurable 1-D digital filtering architecture, and iii) a dynamically reconfigurable 2-

D separable digital filtering system.

Efficient implementations of the pixel processor are based on the use of look-up tables

and local-multiplexes to minimize FPGA resources. For the pixel-processor, different

realizations are generated based on the number of input bits, the number of cores, the

number of output bits, and the frequency of operation. For each parameters combination,

there is a different pixel-processor realization. Pareto-optimal realizations are selected

based on measurements of energy per frame, PSNR accuracy, and performance in terms

of frames per second. Dynamic EPA/PPA management is demonstrated for a sequential

list of real-time constraints by selecting optimal realizations and implementing using

DPR and dynamic frequency control.

 Efficient FPGA implementations for the 1-D and 2-D FIR filters are based on the use

a distributed arithmetic technique. Different realizations are generated by varying the

number of coefficients, coefficient bitwidth, and output bitwidth. Pareto-optimal

realizations are selected in the EPA space. Dynamic EPA management is demonstrated

on the application of real-time EPA constraints on a digital video.

The results suggest that the general framework can be applied to a variety of digital

signal, image, and video processing systems. It is based on the use of offline-processing

that is used to determine the Pareto-optimal realizations. Real-time constraints are met by

 viii

selecting Pareto-optimal realizations pre-loaded in memory that are then implemented

efficiently using DPR and/or dynamic frequency control.

 ix

Table of Contents

List of Figures

List of Tables

xii

xv

1 Introduction

1.1 Motivation …………………………………………………………………...

1.2 Thesis Statement ………………………………………………...…………..

1.3 Innovations and Contributions …..…………………………………………..

1.4 Organization ………………………………………………………………....

1

1

3

4

4

2 A Dynamically Reconfigurable Pixel Processor System based on

Power/Energy-Performance-Accuracy Optimization

2.1 Introduction ……………………………………………………………….…

2.2 Background and Related Work ……………………………………………...

2.3 Pixel Processor architecture …………………………………………………

2.4 Dynamic Frequency Control and Reconfiguration of the Pixel Processor

2.5 Optimization Framework for the Pixel Processor …………………………...

2.6 Experimental Setup ………………………………………………….………

2.7 Results and Analysis ………………………………………………………...

2.8 Conclusions ………………………………………………………….………

7

7

11

14

15

18

25

29

39

3 Partial Reconfigurable FIR Filtering system using Distributed Arithmetic

3.1 Introduction ………………………………………………………………….

3.2 Background and related work ……………………………………………….

3.3 Stand-alone FIR Filter core implementation ………………………………..

3.4 Dynamically Reconfigurable FIR filtering system ………………………….

41

41

43

47

53

 x

3.5 Results………………………………………………………………………..

3.6 Conclusions ………………………………………………………………….

59

70

4 Separable FIR Filtering in FPGA and GPU Implementations: Energy,

Performance, and Accuracy Considerations

4.1 Introduction ………………………………………………………………….

4.2 2D FIR Filter system on the FPGA ………………………….………………

4.3 Filter implementation on the GPU …………………………………..………

4.4 Experimental Setup ………………………………………………………….

4.5 Results ……………………………………………………………………….

4.6 Conclusions ……………………………………………………………….…

72

73

74

76

79

82

87

5 Dynamic Energy, Performance, and Accuracy Optimization and

Management for Separable 2-D FIR Filtering for Digital Video

5.1 Introduction …………………………………………………………….……

5.2 Background and related work ……………………………………………….

5.3 Video filtering using Dynamic Partial Reconfiguration……………..............

5.4 Optimization framework for video filters …………………………………...

5.5 Experimental Setup ………………………………………………………….

5.6 Results and Analysis ………………………………………………………...

5.7 Conclusions ………………………………………………………………….

88

88

92

95

101

108

110

119

6 Concluding Remarks, future work and recommendations

6.1 Concluding Remarks ………………………………………………………...

6.2 Future work and recommendations ………………………………………….

121

121

122

A VHDL code description 126

 xi

A.1 Pixel processor and 1D FIR filter architectures …………………………….

A.2 Dynamic Frequency Control core …………………………………………..

B Reconfigurability on FPGAs

B.1 Dynamic Partial Reconfiguration …………………………………………...

B.2 Technology that enables reconfiguration (full/partial) of FPGAs …………..

C Related publications

126

127

128

128

129

131

References 133

 xii

List of Figures

2.1 Pixel processor architecture …………………………….…………………...

2.2 Embedded system over which we can perform DPPA management ………..

2.3 Frequency control via the DCR Bus interface ………………………..……..

2.4 Multi-objective optimization of the PPA space ……………………………..

2.5 Pixel Processor Slave PLB interface ………………………………………...

2.6 Output ‘oilp’ image results for various input/output cases ……………….....

2.7 Histograms for both 8-bit ‘lena’ and 12-bit ‘oilp’ images …………………..

2.8 Pixel Processor IP resource (slices) utilization as NI, NO, NC vary ….…….

2.9 32-bit I/O constrained implementations for 12-bit images …………….……

2.10 8-bit input constrained implementations …………………………………...

2.11 Fixed-frequency (100 MHz) constrained implementations ………..……….

2.12 Fixed-frequency (100 MHz) constrained implementations (12-bit image) ...

14

16

18

23

26

29

30

32

33

34

35

37

3.1 Generalized FIR DA Module ………………………………………….…….

3.2 High-performance DA implementation based on the underlying LUT input

size (L) ………………………………………………………………………..

3.3 Filter Block architecture. SYMMETRY = YES ……………………...……..

3.4 Realization of an L-to-LO LUT using LO L-to-1 LUTs .……………………

3.5 Adder tree structure for Filter blocks’ outputs. M/L = 4 ………………….…

3.6 Latency measured from the moment ‘d0’ is input until its correspondent

output ‘p0’ is available ……………………………………………………….

3.7 System Block Diagram ………………………………………………………

3.8 Dynamic FIR Filter processor interfacing with FSL ………………………..

47

49

50

51

52

52

52

55

 xiii

3.9 FIR filter core where the PRR and Bus Macros can be appreciated ………...

3.10 FIR filter processor where the PRR is the FIR Filter core …………..……..

3.11 Resources vs. number of coefficients and input bitwidth ………………….

3.12 Relative error, N = 32. Three bitwidth cases ……………………………….

3.13 Dynamic reconfiguration region for (i) coefficient-only reconfiguration

system, and (ii) full filter reconfiguration system ……………………………

3.14 DPR system performance for coefficient -only reconfiguration …..……….

3.15 DPR system performance for full filter reconfiguration …………….……..

3.16 Filterbank used for R-wave detection ……………………………………...

3.17 Filterbank data processing ………………….………………………………

3.18 Perfect detection of R-waves for the first 5 ECG cycles ……………...……

57

58

60

60

62

66

66

67

68

69

4.1 System Block Diagram ………………………..……………………………..

4.2 2D separable FIR filter implementation …………..…………………………

4.3 Thread block configuration for row filtering …………………………..……

4.4 Frequency response – ideal filter with N = 48 ………………………………

4.5 Performance, energy, and accuracy results for both FPGA and GPU. N:

number of coefficients ………………..………………………………………

74

75

78

79

86

5.1 Multi-objective optimization of the EPA space …………………….……….

5.2 FIR Filter Intellectual Property (IP) core ……………………………………

5.3 High Performance FIR filter implementation ……………………………….

5.4 Embedded system over which we can apply Dynamic EPA management ….

5.5 PRR that includes the filter core for full-filter reconfiguration and the FSL

interface, needed for image filtering. B = 8 …..

90

95

96

97

99

 xiv

5.6 Frequency-magnitude responses for the three Gaussian filters ………...……

5.7 Hardware resource utilization for the column filters …………….…………..

5.8 Cropped regions for the ‘lena’ image …………………….………………….

5.9 Pareto optimal realizations for the three filters and different image sizes …..

5.10 Pareto-optimal realizations for the isotropic low pass Gaussian filter

(σ=1.5) for CIF resolution …………………………………...……………….

5.11 Pareto-optimal realizations for anisotropic low-pass Gaussian filter (σx=4,

σy=2) for CIF resolution ……….…………………………………………….

5.12 Pareto-optimal realizations for DoG filter (σ1=2, σ2=4) for CIF resolution

5.13 2D Pareto-optimal realizations for Energy-Accuracy space for all filter

types at CIF resolution ………………………………………………………..

5.14 Dynamic EPA management example for DoG filtering of the foreman

video sequence (CIF resolution) ……………………………………………...

108

110

113

114

115

116

116

118

118

A.1 VHDL code for Pixel Processor and 1D FIR filter …………………………

A.2 VHDL code (‘entity’ declaration) for the Pixel Processor architecture …….

123

123

B.1 Basic premise of Partial Reconfiguration …………………………………...

B.2 Basic Xilinx SRAM cell …………………………………………………….

126

126

 xv

List of Tables

2.1 Different types of power consumed at each rail for an FPGA ………………

2.2 32-bit I/O pixel processor constrained implementations …………………….

2.3 Pixel Processor Implementations for 8/12 bit input images unrestricted by

I/O bitwidth …………………………………………………………………...

2.4 Pixel Processor implementations restricted at 100 MHz with unrestricted

I/O bitwidths ………………………………………………………………….

2.5 Embedded Pixel Processor. Resource utilization (XCV4FX60) …………….

2.6 Fixed-frequency (100 MHz) constrained implementations ………………….

2.7 Comparison against other single-pixel architectures (1 core) ……………….

20

28

28

28

31

36

39

3.1 FIR Filter implementation savings due to the use of filter blocks …………..

3.2 Hardware Utilization on Virtex-4 XC4VFX20-11FF672 for coefficient-only

reconfiguration ………………………………………………………………..

3.3 Hardware Utilization on Virtex-4 XC4VFX20-11FF672 for full filter

reconfiguration ………………………………………………………………..

3.4 PRR measures for both dynamic partial reconfiguration system realizations .

3.5 Reconfiguration time for both DPR system Realizations …………………...

3.6 DPR system throughput (MSPS) as function of delay between

reconfigurations for 1-D FIR filtering with Full filter reconfiguration ………

49

61

61

62

63

65

4.1 Embedded FIR Filtering system resource utilization (Virtex-4 XCVFX20-

11FF672) ……………………………………………………………………..

4.2 GPU running times (ms) ……………………………………………………..

4.3 Embedded system Power consumption (Watts) on the XCVFX20-11FF672

83

84

 xvi

Virtex-4 FPGA ………………………………………………………………. 85

5.1 Parameters combinations (108) for the set of 2D Filters …………………....

5.2 Embedded FIR Filtering system resource utilization (Virtex-4 XCVFX20-

11FF672) ……………………………………………………………………..

5.3 Reconfiguration time for a 178KB bitstream (XCVFX20-11FF672) ………

5.4 Implementation Comparisons for 2D FIR Filters …………………………...

5.5 Pareto Optimal realizations for the isotropic, low-pass Gaussian filtering of

the ‘lena’ image at CIF resolution (σx=σy=1.5) ……………………………..

5.6 Pareto Optimal realizations for DoG filtering of ‘lena’ at CIF resolution

(σ1=2, σ2=4) ………………………………………………………………....

109

111

111

112

117

117

 1

Chapter 1

Introduction

1.1 Motivation

There is a strong interest in developing effective methods that can provide hardware

systems that respond to run-time constraints on energy/power, performance, and

accuracy. For example, it is interesting to consider scalable solutions that can deliver

different performances based on energy constraints. Here, a low-energy solution will be

needed when there is a requirement for long-time operation. On the other hand, a high-

performance solution is often considered when there are no power (or energy)

constraints.

Effective run-time management of hardware resources can be effectively handled

through the use of Dynamic Partial Reconfiguration (DPR). DPR technology, currently

available on Field Programmable Gate Arrays (FPGAs), enables the run-time allocation

and de-allocation of hardware resources by modifying or switching off portions of the

FPGA while the rest remains intact, continuing its operation. In addition to modifying

resources, FPGAs with Digital Clock Managers (DCMs) also allow for real time

modification of the operating frequency. These two technologies enable the development

of dynamically reconfigurable systems that can meet constraints in power/energy,

performance, and accuracy.

We consider digital Signal, Image, and Video Processing systems that are

characterized in terms of their requirements on energy/power, performance, and

precision. The goal of the dynamically reconfigurable system is to select an optimal

 2

architecture that satisfies time-varying energy/power, performance, and accuracy

(EPA/PPA) constraints. Thus, the process of determining an optimal solution is defined

in terms of multi-objective optimization, with the goal of reducing energy/power

consumption, while maximizing performance and accuracy, subject to time-varying

EPA/PPA constraints.

The process of controlling Energy/Power, Performance, and Accuracy at run-time is

referred as Dynamic Energy/Power-Performance-Accuracy (DEPA/DPPA) management.

As an example of DPPA management, consider a simple example. Suppose that a video

processing system is assigned the task of delivering performance at 30 frames per second

(fps) on limited battery life that will also need to operate for at least 10 hours. If we can

meet the performance and power requirements, we can then select the system realization

with the highest accuracy. Then, after one hour, suppose that a fast moving target is

observed. This will likely change the requirements to an increased frame rate. Now,

suppose that we are asked to deliver performance at 100 fps at some minimum level of

accuracy. This will certainly increase the minimum power requirements. In this case, we

will select the hardware realization that has the lowest power requirements while meeting

the performance (≥100 fps) and accuracy constraints. Thus, we see that DPPA

management is especially important for video systems for which PPA requirements can

vary over time.

Dynamic EPA/PPA management is more effective when applied to hardware

architectures that are efficient in terms of resource consumption. We demonstrate

dynamic EPA/PPA management on two resource-effective architectures associated with

real-time video processing (that demands significant processing requirements).

 3

The first application is the development of the dynamic pixel processor. Single-pixel

operations include the implementation of functions that perform gamma correction,

contrast enhancement, histogram equalization, histogram shaping, thresholding, Huffman

table encoding, and quantization. Here, after computing an appropriate function, each

output pixel only depends on the corresponding input pixel.

The second application is the development of the dynamic 2-D FIR filtering system.

Here, the focus on 2-D FIR filtering comes from the large number of possible

applications. The list of applications includes image and video denoising, linear image

and video enhancement, image restoration, edge detection, face recognition, etc.

1.2 Thesis statement

The main objective of this PhD dissertation is the development of a dynamic

energy/power-performance-accuracy management approach for digital signal, image, and

video processing architectures. This is possible by the use of Dynamic Partial

Reconfiguration (DPR) and Dynamic Frequency Control on FPGAs. The dynamically

reconfigurable architectures are evaluated in terms of energy/power-performance-

accuracy trade-offs. In addition, the architectures presented in this work use techniques

that minimize the amount of computational resources and make intensive use of DPR.

In particular, the research is focused on the development of a dynamic pixel processor,

and a dynamic 2-D FIR filtering system. The energy/power-performance-accuracy

(EPA/PPA) spaces for both the pixel processor and the 2-D FIR filter are explored.

Moreover, the optimal realizations (in the multi-objective sense) are extracted from the

 4

EPA/PPA space. The optimal realizations are then used in a dynamic management

system to meet real-time varying constraints in the EPA/PPA spaces.

1.3 Innovations and Contributions

A list of the primary innovations and contributions includes:

� Development of fully-parameterized hardware cores for signal, image, and video

processing applications. The architectures are implemented with techniques that

minimize the amount of computing resources and take advantage of Dynamic Partial

Reconfiguration.

� Characterization of the optimal (in the multi-objective sense) hardware realizations

from the EPA/PPA space for the architectures presented.

� A new framework for dynamic energy/power, performance, and accuracy (EPA/PPA)

management based on a multi-objective optimization approach that guarantees low

energy, high accuracy, and high performance. The framework is applicable to a wide

array of signal, image, and video processing architectures.

� Development of hardware systems that support dynamic energy/power, performance,

and accuracy management that meet real-time EPA/PPA constraints. On hardware,

dynamic EPA/PPA management is based on the run-time control of hardware

resources and frequency of operation.

1.4 Organization

This dissertation is organized into six chapters. In what follows, a summary of each

chapter is provided.

 5

Chapter 2 presents the dynamic pixel processor architecture and its corresponding

dynamic energy/power-performance-accuracy management. The material presented in

this chapter has been submitted for publication:

D. Llamocca and Marios Pattichis, “A dynamically Reconfigurable Pixel Processor

system based on Power/Energy-Performance-Accuracy Optimization”, in review,

IEEE Transactions on Circuits and Systems for Video Technology.

The next two chapters deal with the details of the hardware implementation of a 2D

FIR separable filtering system, with the ultimate goal of presenting the dynamic

EPA/PPA management of the system in chapter 5.

In Chapter 3, a detailed description of a 1D FIR filter architecture is presented along

with an efficient approach for dynamically modifying the filter parameters. The material

presented in this chapter has been published in:

D. Llamocca, M. Pattichis, and G. Alonzo Vera, “Partial Reconfigurable FIR Filtering

system using Distributed Arithmetic”, International Journal of Reconfigurable

Computing, vol. 2010, Article ID 357978, 14 pages, 2010.

Chapter 4 presents the 2D separable FIR filter implementation based on dynamic

partial reconfiguration. By varying the number of coefficients and frame size, a limited

version of the energy-accuracy space for 2D filter realizations is shown, and a

comparison of the embedded system results with a GPU implementation is provided. The

material presented in this chapter has been published in:

D. Llamocca, C. Carranza, and Marios Pattichis, “Separable FIR filtering in FPGA

and GPU implementations: energy, performance, and accuracy considerations”, in

 6

Proceedings of the IEEE International Conference on Field Programmable Logic and

Applications FPL’2011, Chania, Greece, Sept. 2011.

Chapter 5 develops the dynamic energy-performance-accuracy management for the

2D separable FIR filter. The material presented in this chapter is to be submitted to:

D. Llamocca and Marios Pattichis, “Dynamic Energy, Performance, and Accuracy

Optimization and Management for Separable 2-D FIR Filtering for Digital Video” to

be submitted to IEEE Transactions on Image Processing.

Chapter 6 presents conclusions, future work, and scope of the dissertation.

Additionally the document has three appendices that include: i) a brief description of the

VHDL code, ii) a discussion of the reliability of reconfiguring (whether fully or partial)

the FPGA, and iii) a list of publications related with this dissertation.

 7

Chapter 2

A Dynamically Reconfigurable Pixel Processor System based

on Power/Energy-Performance-Accuracy Optimization

Abstract

We introduce a dynamically reconfiguration framework for implementing single-pixel

operations. The system relies on a multi-objective optimization scheme that generates

Pareto-optimal implementations in the Power/Energy-Performance-Accuracy (PPA/EPA)

spaces. The Pareto-optimal implementations and their PPA/EPA values are stored in

DDR-SDRAM and can be chosen dynamically to meet time-varying constraints.

Results are shown in terms of power, accuracy (PSNR) of the resulting image, and

performance in frames per second (fps). Dynamic PPA/EPA management is implemented

using Dynamic Partial Reconfiguration (DPR) and dynamic frequency control.

Index Terms—Dynamic Partial Reconfiguration, Field-programmable gate-array

(FPGA), LUT-based architectures.

2.1 Introduction

There is a strong interest in developing effective methods that can provide hardware

systems that respond to run-time constraints on power and performance. For example, it

is interesting to consider scalable solutions that can deliver different performances based

on energy constraints. Here, a low-energy solution will be needed when there is a

 8

requirement for long-time operation. On the other hand, a high-performance solution is

often considered when there are no power (or energy) constraints.

Effective run-time management of hardware resources can be effectively handled

through the use of Dynamic Partial Reconfiguration (DPR). DPR technology, currently

available on FPGAs, enables the run-time allocation and de-allocation of hardware

resources without requiring system restart. In addition to modifying resources, FPGAs

with Digital Clock Managers (DCMs) also allow for real time modification of the

operating frequency.

Given the significant processing requirements associated with real-time video

processing, it is interesting to consider applications associated with digital video. Here,

we are primarily concerned with common single-pixel operations [1]. Single-pixel

operations include the implementation of functions that perform gamma correction,

contrast enhancement, histogram equalization, histogram shaping, thresholding, Huffman

table encoding, and quantization. Here, after computing an appropriate function, each

output pixel only depends on the corresponding input pixel. For example, in gamma

correction, the output pixels are given by γ×α= IO , where I denotes the image

intensity of the input pixel for suitable values of α , and γ . Similarly, in histogram

equalization, a mapping is first computed between the input and output pixel.

()⋅= HistEqeq_I . Here, ()⋅HistEq is a single-pixel operation.

To compare among different single-pixel realizations, we consider power

requirements, performance in terms of frame rates, and accuracy (PPA). Then, the goal of

the dynamically reconfigurable pixel processor is to select an optimal architecture that

satisfies time-varying PPA constraints. Thus, the process of determining an optimal

 9

solution is defined in terms of multi-objective optimization, with the goal of reducing

power consumption, while maximizing performance and accuracy, subject to time-

varying PPA constraints.

We refer to the process of controlling Power, Performance and Accuracy at run-time

as Dynamic Power-Performance-Accuracy (DPPA) management. As an example of

DPPA management, we consider a simple example. Suppose that a video processing

system is assigned the task of delivering performance at 30 frames per second (fps) on

limited battery life that will also need to operate for at least 100 hours. If we can meet the

performance and energy requirements, we can then select the system realization with the

highest accuracy. Then, after one hour, suppose that a fast moving target is observed.

This will likely change the requirements to an increased frame rate. Now, suppose that

we are asked to deliver performance at 100 fps at some minimum level of accuracy. This

will certainly increase the minimum power requirements. In this case, we will select the

hardware realization that has the lowest power requirements while meeting the

performance (≥100 fps) and accuracy constraints. Thus, we see that DPPA management

is especially important for video systems for which PPA requirements can vary over time

(also see motivation in [2]).

DPPA management for audio and video processing had been suggested in earlier

works (e.g. [3], [4]). In [3], [4], the authors suggested that DPR could be used for

management of power and accuracy. More recently, we have the implementation of

DPPA management using DPR in networking [5], dynamic arithmetic [6], DCT

implementation [7]. In these papers, DPR was used to trade-off between power and

 10

performance requirements. In [6], the authors considered trade-offs between power,

performance, and precision.

To achieve DPPA management, a space of different realizations is generated. We use

the term PPA space for the different realizations that we can generate. Then, we

determine optimal realizations in the multi-objective sense. In other words, we determine

the Pareto optimal front of all realizations [8]. To generate the PPA space, we produce a

parameterized architecture based on the input bit-width, output bit-width, the number of

cores, and the frequency of operation. An early version of a single-pixel architecture that

allowed switching between function was presented in [9].

In terms of application, we are primarily interested in cases where the dynamic

reconfiguration rate is relatively low. We do not expect run-time constraints to change

faster than once a second. In this case, the DPR overhead is not significant. On the other

hand, we note that the reduction of DPR overhead is an area of active research (e.g. [10],

[11], [7], [12]).

The proposed DPPA management system is based on a bottom-up approach. First, we

develop an efficient architecture for implementing single-pixel operations. Then, we

parameterize the hardware description and vary the parameters to generate the PPA

space. Third, we use multi-objective optimization to determine the Pareto-optimal

realizations. The Pareto-optimal realizations are then stored in memory. DPPA

management selects among Pareto-optimal realizations to meet time-varying constraints.

The main contributions of this work include: i) an optimization framework for

dynamic PPA management of the pixel processor, ii) the development of a fully-

 11

customizable intellectual property (IP) core in VHDL, and iii) a method to dynamically

reconfigure via DPR and run-time reconfiguration of the operating frequency.

The rest of the work is organized as follows. Section 2.2 presents background and

related work. Section 2.3 details the internal architecture and parameterization of the

pixel processor. Section 2.4 explains how the pixel processor can switch among single-

pixel realizations, and modify its frequency of operations at run-time. Section 2.5 details

the multi-objective optimization framework. Section 2.6 presents the experimental setup.

Then, the results are presented in Section 2.7. Finally, Section 2.8 lists the conclusions.

2.2 Background and Related work

We begin with a summary of related work on the implementation of image processing

systems based on Dynamic Partial Reconfiguration (DPR). In [7], the authors presented a

design that dynamically reconfigures among Discrete Cosine Transform (DCT) modules

of different sizes. The different DCT configurations were studied in terms of power,

throughput, and (standard) image quality metrics. A dynamic systolic array accelerator

for Kalman and Wavelet filters was presented in [13]. In [14], the authors presented a

fingerprint image processing hardware whose stages (segmentation, normalization,

smoothing, etc) are multiplexed in time via DPR. The 3D Haar Wavelet Transform

(HWT) was implemented by dynamically reconfiguring a 1D HWT core thrice in [15]. A

JPEG2000 decoder where the blocks are dynamically swapped is shown in [16]. In [17],

an efficient 1D FIR Filtering system that combined the Distributed Arithmetic (DA)

technique with DPR was presented.

 12

There has also been some related work on the implementation of single-pixel

processing functions, which usually entails two methods: LUT-based and custom

hardware. In earlier work [9], we presented a basic architecture for single-pixel functions

(8-bit input, 8-bit output) that stores the output pixel values in look-up tables (LUTs). The

system could be dynamically reconfigured to perform arbitrary single-pixel functions. In

[18], the authors presented custom architectures for 3 single-pixel functions (8-bit input,

8-bit output). A Xilinx® core for implementing gamma correction is described in [19]. In

this implementation, the architecture is based on BlockRAMs whose contents can be

modified on-demand. An ALTERA® LUT-based core allows for the run-time

modification of LUT contents via a special interface [20]. These approaches do not

address issues associated with run-time modifications of the input/output bit-widths or

the frequency of operation.

A custom architecture for precise gamma correction is presented in [21]. In [22], the

authors presented a contrast enhancement hardware that self-adjusts based on the

histogram of the current frame. [23] presents a histogram equalization architecture. [24]

performs image enhancement using a Successive Mean Quantization Transform. These

architectures lack the versatility of the LUT-based approaches, but they can require far

fewer resources for large input pixel bit-widths.

The trade-offs between power, performance, and accuracy for different architectures

have also been investigated in the literature. Early work dealt with one or two of these

properties at a time. In [25], the authors analyzed the precision requirements of a subset

of recursive algorithms. In [3], the authors proposed the use of reconfiguration based on

perceptual limits and the non-uniformity of video content in order to dynamically manage

 13

power consumption, over which accuracy and performance depend on. Another example

of power and precision trade-off is in [4], where the impact of numerical precision on

power consumption is studied for audio processing applications. In [6], an application in

dynamic arithmetic is presented where arithmetic cores are measured in terms of their

power, performance, and precision requirements. Here, the use of DPR was shown to

provide a low-energy example where the use of dynamic dual-fixed arithmetic cores was

shown to perform as well as double floating point in an example from Linear Algebra. In

[7], the authors presented a configuration manager that can dynamically adapt DCTs of

different sizes based on PPA considerations.

To the best of our knowledge, no previous work has explored the Power-Performance-

Accuracy space using a multi-objective optimization approach as proposed here. As it

will be demonstrated by example, this approach offers some unique advantages, in that it

allows for both joint and separable optimization based on a range of criteria and

constraints.

This work seeks to extend prior research in the area of single-pixel operations for

image enhancement by utilizing the LUT-based hardware presented in [9] and developing

a fully-parameterized architecture that make use of DPR and dynamic frequency control

to control the PPA space. In addition, we propose a multi-objective optimization

framework to derive a set of optimal pixel processor realizations over which we can

dynamically reconfigure to meet PPA constraints.

 14

2.3 Pixel Processor Architecture

The pixel processor architecture is detailed here. An earlier version of this architecture

appears in [9]. Here, a fully-parameterized hardware architecture based on efficient

mapping of LUTs is presented.

2.3.1 Implementation of an NI-to-NO Look-Up Table (LUT)

1) LUT NI-to-1: This module uses NI input bits and one output bit. Xilinx® FPGAs

contain hardwired L-to-1 LUT primitives with L = 4 (Virtex-II Pro, Virtex-4), and L = 6

(Virtex-5, Virtex-6). LUTs with higher number of input bits are built by combining the

basic LUT primitives with multiplexers. Xilinx® devices let us instantiate primitives of

optimized NI-to-1 LUTs for NI up to 8 [9]. Figure 2.1(a) shows the implementation of a

LUT8-to-1. LUTs with NI > 8 are implemented by recursively combining two ‘NI-1-to-

Figure 2.1. Pixel processor architecture. (a) Virtex-4 LUT8-to-1 implementation. Note the recursive
implementation with specific CLB primitives (LUT4., MUXF5/6/7/8), LUT4 ≡ LUT4-to-1. (b) Recursive

implementation of a NI-to-1 LUT. (c) Implementation of a NI-to-NO LUT. (d) Pixel processor core.

4

M UXF5

8

4 4

M UXF5

4 4

M UXF5

4 4 4 4 4 4 4 4 4 4 4

4
 M

S
B

s

4 LSBs

LUT5-to-1

LUT6-to-1

LUT7-to-1

LUT8-to-1

LUT

NI-1 to 1

LUT

NI-1 to 1

NI-1NI

LUT NI-to-1

LUT

NI to 1

LUT

NI to 1

LUT

NI to 1

NI

NI

NI

NO

bNO-1

b1

b
0

bNO-1
b1 b0

≡

NI

LUT NI-to-NO

NO bits
2

N
I w

o
rd

s
 o

f
N

O
 b

its

LUT NI-to-NO

LUT

NI-to-NO

NI NO

LUT

NI-to-NO

NI NO

LUT

NI-to-NO

NI NO

N
I ×× ××

N
C

N
O

×× ××
N

C

'NC' LUTs NI-to-NO

M UXF5 M UXF5 M UXF5 M UXF5 M UXF5

M UXF6 M UXF6 M UXF6 M UXF6

M UXF7 M UXF7

M UXF8

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

L
U

T
4

(a)

(b) (c) (d)

 15

1’ LUTs with a multiplexer, as in Fig. 1(b). The hardware complexity grows

exponentially as NI increases, and thus there is a point at which a NI-to-1 LUT becomes

unfeasible.

2) LUT NI-to-NO: Figure 2.1(c) depicts how a LUT NI-to-NO is built based on ‘NO’

LUTs NI-to-1. Each LUT NI-to-1 implements a column of the LUT NI-to-NO.

2.3.2 Pixel Processor Architecture

The pixel processor architecture core is depicted in Fig. 2.1(d). It consists of a collection

of ‘NC’ NI-to-NO LUTs. It provides the following parameters:

� NC: Number of single-pixel processor cores.

� NI: Number of input bits of each single-pixel processor (or the number of bits of the

input pixel).

� NO: Number of output bits of each single-pixel processor (or the number of bits of

the output pixel).

� LUT contents: provided in a text file. These values specify a unique single-pixel

function (e.g. gamma correction, contrast stretching, etc).

Depending on the application, the LUT contents of each core can be identical or

different. In addition, there might be applications in which NI and NO need to be

different for each single-pixel processor core. However, for the vast majority of

applications, NI and NO remain constant for all the cores.

2.4 Dynamic Frequency Control and Reconfiguration of the Pixel

Processor

 16

The pixel processor core parameters can be modified at run-time via Dynamic Partial

Reconfiguration (DPR). This technology allows us to dynamically allocate resources as

needed by particular applications. For the pixel processor, DPR allows the modification

of the single-pixel function by re-using the same resources. To reduce resources, DPR

allows us to reduce the number of input and/or output bits at the expense of degraded

accuracy. To increase performance, we can use DPR to increase the number of cores. In

addition, the frequency of operation can be dynamically modified by controlling the

Digital Clock Manager (DCM). The DCM feature provides us with the ability to directly

control power and performance. The combination of DPR and dynamic frequency control

allows us to switch between different realizations.

2.4.1 Dynamic Reconfiguration of the Pixel Processor:

DPR allows us to control NC (number of cores), NI (number of input bits), NO (number

of output bits), and the LUT contents. A design where only the LUT contents can be

dynamically altered was presented in [9]. Fig. 2.2(a) depicts the block diagram of an

embedded system that allows for DPR.

Figure 2.2. Embedded system over which we can perform DPPA management. (a) Embedded system that
supports DPR and frequency control. The memory holds ‘n’ unique bitstreams that are needed for the

Pareto front. The pixel processor can be connected to any interface (b) An example of a Pareto front with
‘m’ Pareto points (note that m ≤ n). A Pareto point is a unique combination of a bitstream and frequency.

processor

PLB

System

ACE
memory

Ethernet

MAC

ICAP

core

ext. interface

in
te

rf
a
c
e

FSL

PLB

pixel processor

ICAP

port

CF

card

freq. ctrl
DCR Bus

N
I ×

N
C

N
O

×
N

C

clkfx

P
P

A

c
o

n
s
tr

a
in

ts

P
e
rf

o
rm

a
n
c
e

Pow er Accuracy

PO 1

Pareto front

'n' bitstreams

in memory

PO 3

PO m

bitstream freq.

Module n

Module 1

Module 3

f1

f2

f1

Module 1 f3

PO 4

PO 2 Module 2 f2

M
o
d
u
le

 n

M
o
d
u
le

 2

M
o
d
u
le

 1

'm ' Pareto points

n ≤ ≤ ≤ ≤ m

(a) (b)

DMA

core

M S

LUT

NI-to-NO

LUT

NI-to-NO

PRR

 17

The processor can be hard-core (PowerPC) or soft-core (e.g., MicroBlaze, ARM). A

Compact Flash (CF) stores partial bitstreams and input frames. The memory stores data

needed at run-time (e.g. input video frames, processed video frames, and partial

bitstreams). For fast data processing, a Direct Memory Access (DMA) controller can be

used. The Ethernet core lets us get new partial bitstreams or video frames from a PC and

to send processed video frames to the PC. It is also an interface for throughput

measurements and system status. The Ethernet connection lets us perform DPR from the

PC (and possibly a remote location).

To perform DPR, the Partial Reconfiguration Region (PRR) must be defined. In this

case, the PRR is composed of ‘NC’ NI-to-NO LUTs and it is dynamically reconfigured

via the internal configuration access port (ICAP), which is driven by the ICAP controller.

The pixel processor I/O interface depends on the application (e.g., PLB interface, FSL

interface as in [9], external, etc). The frequency control core, connected to the processor

via the Device Control Register (DCR) bus, provides a clock to the pixel processor.

2.4.2 Dynamic Reconfiguration of Frequency:

Digital Clock Managers (DCMs) inside FPGAs provide a wide range of clock

management features [26]. Virtex-4 and Virtex-5 FPGAs use DCM, whereas Virtex-6

devices use a Mixed-Mode Clock Manager (MMCM).

The Dynamic Reconfiguration Port (DRP) of the DCM is used to dynamically adjust

the frequency without reloading a new bitstream to the FPGA. The DRP uses register

based control of the DCM frequency and phase.

Fig. 2.3 depicts the architecture for dynamic frequency control. The Xilinx® DCM

primitive is named ‘DCM_ADV’ (MMCM_ADV for Virtex-6 FPGAs). We connect the

 18

DCM to the Device Control Register (DCR) bus by means of a DCR Slave interface. The

processor becomes the DCR Master. The specific architecture of the DCR Slave interface

varies as different FPGA families provide a slightly different approach to load the M and

D values. The frequency is dynamically controlled by modifying the ratio of M to D (see

in Fig. 2.3).

2.5 Optimization Framework for the Pixel Processor

The goal is to create a system that can select optimal realizations based on PPA

constraints. The optimization is carried out for a specific single-pixel function. In this

section, we detail: i) how a complete set of pixel processors is generated; ii) the manner

in which Power, Performance, and Accuracy are measured; iii) how the optimal pixel

processors are generated from the complete set; and iv) how we adjust pixel processor

parameters and/or frequency based on PPA constraints.

2.5.1 Generation of the set of single-pixel processors

The space of pixel processor realizations is generated by modifying the pixel processor

parameters (NI, NO, and NC), and the frequency of operation. The LUT contents depend

on NI and NO. The selection of the parameters and/or frequency combinations depends

on the application.

clkfx

clkin

rst

clkfb clk0

daddr[6:0]

di[15:0]
dw e

dclk

den

do[15..0]
drdy

DRP

DCM _ADV

D
C

R
 s

la
v
e

in
te

rf
a
c
e

p
r
o
c
e
s
s
o
r

DCR MASTER

BUFG

BUFG

reference clock

D
C

R
 B

U
S

DCR SLAVE

dcr_a_bus

dcr_sl_dbus

dcr_read

dcr_write

sl_dcrack

sl_dcr_dbus

clkin
D

M
clkfx ×

=

c
lk

fx

Figure 2.3. Frequency control via the DCR Bus interface. The Dynamic Reconfiguration Port of the DCM
is shown in blue.

 19

The Power-Performance-Accuracy (PPA) space consists of the measurements for

every single pixel processor realization. The generation of the PPA space is a lengthy

process, and it is done offline.

2.5.2 Performance measurements

Performance can be measured as the number of pixels (or bytes) processed per second, or

by frames per second. The bytes per second processed is determined by the pixel size.

Input pixels are usually 8-bit wide.

We are interested in measuring the performance of the IP shown in Fig. 2.2. The aim

is to provide results from the IP angle, i.e. assuming that at every clock cycle NI×NC bits

can be processed and NO×NC bits can be released. The performance of the entire

embedded system depends on many factors (cache size, processor instruction execution,

bus type and usage, etc.) that are subject to change. Here, the embedded system is just a

generic test-bed.

The IP can process NI×NC bits and output NO×NC bits per clock cycle. Then, the

number of bits it can process per unit of time is given by:

 () ()MHzfNCNIMbpsePerformanc ××= (2.1)

For digital video processing, performance is measured in terms of frames per second

(fps) given by:

()

()
() NC

sizeframe

MHzf
usTframe,

usTframe
fps ×==

1106
 (2.2)

Note that ‘fps’ does not take into account the number of bits of the input pixels (NI)

 20

2.5.3 Power measurements

In this subsection, we detail the IP power consumption measurement. The IP (shown in

Fig. 2.1) is the sole component included in the Partial Reconfiguration Region (PRR).

Table 2.1 provides a concise description of different power types that need to be

considered. The device static power depends on the environment, the size of the device,

and the device family. For all practical purposes, it is assumed to be constant. Since it

does not depend on the IP implementation, we report it separately in Table 2.1 for the

XC4VFX60 device.

Table 2.1: Different types of power consumed at each rail for an FPGA. For the XC4VFX60 Virtex-4, the

device static power is 0.44W (at 25ºC).

Drawn by the device when it is powered up, configured with
user logic, and there is no switching activity.

Device
static

Consumed by the device when it is powered up
and without programming the user logic.

Static

Design
static

Consumed by the user logic when the device is
programmed and without any switching activity.

Dynamic
It is the fluctuating power as the design runs; it is generated by
the switching user logic and routing.

In terms of comparing among different cases, we will only consider the sum of the

dynamic and design static power (see Table 2.1). In order to estimate this power

consumption, we use the FPGA power supply rails: (i) internal supply rail voltage

VCCINT with current ICCINT, and (ii) auxiliary supply rail voltage VCCAUX with

current ICCAUX. Here, we will not consider the output supply power since it is only

associated with the power consumed by the external pins. Thus, the IP power is given by:

 ICCAUXpVCCAUXICCINTpVCCINTIPPower ×+×= (2.3)

where the currents are given by:

 21

ICCAUXQICCAUXICCAUXp

ICCINTQICCINTICCINTp

−=

−=
 (2.4)

and ICCINTQ, ICCAUXQ are defined as the device static supply currents (of their

respective voltage rails).

Measuring power directly (e.g. [6]) requires custom-built boards that provide access to

the voltage rails themselves. Instead, we can accurately estimate power consumption

using software tools that would be widely applicable to all devices. For the purposes of

this work, the Xilinx Power Analyzer (XPA) is employed for these measurements (at

25ºC). XPA provides an accurate estimate based on simulated switching activity of the

place-and-routed circuit and exact utilization statistics. [27].

We also consider power consumption during dynamic partial reconfiguration.

Unfortunately, there is no software tool available that can provide an estimate of this

power consumption. In [6], through hardware measurements, it was determined that

during DPR, the only supply current that increases is ICCAUX (Virtex-II Pro and Virtex-

4). Thus, the DPR power can be estimated using:

 ()increaseICCAUXVCCAUXPower.cRe ×= (2.5)

From [6], we have that ICCAUX increases by 170 mA and 25 mA for the Virtex-II Pro

(XC2VP30) and Virtex-4 (XC4VFX12) respectively. Assuming that these dynamic

current measurements remain the same within the same device family, we can use these

values in (2.5) and (2.6).

Furthermore, for our application in digital image and video, we will report energy

consumption in terms of energy spent for processing a single frame:

 () ()usTframePoweruJframeperEnergy ×= (2.6)

 22

For completeness, the frame size will also be reported along with the energy spent per

frame (see (2.2)).

2.5.4 Accuracy measurements

The accuracy is measured using the peak signal-to-noise ratio (PSNR). This is given by:

 ()

×=

MSE

MAXValue
logdBPSNR

2

1010 (2.7)

where the MSE is the mean squared error between the pixel processor output and the

result using double floating-point arithmetic.

2.5.5 Generation of optimal Pixel Processor realizations

Based on the power, performance, and accuracy (PPA) measurements, we can select

optimal pixel processor realizations. Here, we define a pixel processor realization to be

optimal in the Pareto (multi-objective) sense [8]. A pixel realization is considered to be

Pareto optimal if we cannot improve on its Power-Performance-Accuracy measurements

without decreasing on at least one of them. We will next provide an example.

The goal is to minimize power, maximize performance, and maximize accuracy. For a

given set of pixel processors, we want to find a subset of realizations whose results

cannot be improved by any other realization for all three (PPA). The collection of all

Pareto-optimal points forms a Pareto front (see Fig. 2.4). In Fig. 2.4, we are plotting

realizations as points against power, and the negatives of performance and accuracy.

Thus, optimal realizations appear lower-left in 2-D (see Fig. 2.4(a)). The idea is then

extended to 3-D in Fig. 2.4(b).

We can also extend the example for satisfying multi-objective constraints. The idea is

demonstrated in Fig. 2.4(c) and 2.4(d). Independent constraints appear as lines in 2-D and

 23

planes in 3-D. Optimal realizations are then selected among the Pareto-optimal points

that also satisfy the constraints. Dynamic constraint satisfaction only requires that we

select Pareto optimal points when the constraints change. In the next section, we provide

more details on the hardware implementation of this idea.

2.5.6 Dynamic PPA Management based on DPR and dynamic frequency control

In hardware, Pareto-optimal realizations are represented by their associated partial

bitstreams, frequency of operation, and PPA measurements. The realizations and

associated parameters are stored in memory. We demonstrate the basic DPPA

management framework in Fig. 2.2.

Dynamic PPA management is based on selecting a single realization that satisfies the

dynamic constraints. An example of a single set of constraints is shown in Fig. 2.4(c) for

two constraints (PA). Here, the Pareto-optimal points are plotted in yellow. Note that we

P
o
w

e
r

-psnr

-f
p
s

Pow er -psnr

P
o
w

e
r

-psnr

Pareto front
Pow er

-psnr

-f
p
s

constraints

c
o
n
s
tr

a
in

ts

Pareto front

(a) (b)

(c) (d)

Figure 2.4. Multi-objective optimization of the PPA space. (a) 2-D Pareto Front. (b) 3-D Pareto Front.
(c) Two constraints applied to the 2-D Pareto front. (d) Two constraints applied to the 3-D Pareto front.

The circled point is the realization with the min. power consumption.

 24

are interested in coming up with a single realization. When only PPA constraints are

given, we can have more than one solution. Thus, it makes sense to consider the case

where we are minimizing one objective while imposing constraints on the other two. We

next consider an example to demonstrate the idea.

Without loss of generality, suppose that we want the minimum power realization (Ri)

subject to minimum accuracy and performance requirements. In this case, we want to

solve:

()

()

() fpsRiePerformanc

dBRiAccuracy
:tosubject

,RiPowermin
Ri

30

50

≥

≥ (2.8)

In this case, the Pareto-optimal points that satisfy the constraints are shown in yellow

in Fig. 2.4(d). The realization that also minimizes power is circled. This is the optimal

realization that is selected for DPR and/or dynamic frequency control. Note that if we

also want the optimal solution to satisfy a power constraint, we can simply check whether

the minimum power solution meets this constraint.

The implementation of Ri comes with specific values for the pixel processor

parameters and frequency of operation.

Fig. 2.2(a) shows an embedded system that can modify the pixel processor parameters

and the frequency of operation. Thus, each realization is represented in terms of its

unique combination of partial bitstream and frequency of operation. Also, the Pareto-

optimal front can contain bitstreams that are associated with more than one frequency.

Fig. 2.2(b) illustrates how the user moves dynamically along the Pareto front via DPR

and/or dynamic frequency control of the DCM.

 25

2.6 Experimental Setup

In this section, we provide specific details of the platform and the scenarios under which

we test the pixel processor. We also provide details on the PLB interface and frequency

control in Section 2.6.2.

2.6.1 Platform testing scheme

Fig. 2.2(a) showed a generic embedded system. Here, the pixel processor system was

implemented on the ML410 Xilinx® Development Board that houses a XC4VFX60-

11FF1152 Virtex-4 FPGA. The PowerPC processor is selected and it is clocked at 300

MHz, with peripherals running at 100 MHz. Here, we note that the PowerPC has internal

data and instruction caches that are used for data and instruction fetches from memory

(64 MB DDR-SDRAM). The pixel processor IP is connected to the PLB Bus. The ICAP

core used is provided by Xilinx®. The embedded system serves as a validating platform

from which we extract the processed images.

2.6.2 PLB Interface and frequency control

The pixel processor is connected to the PLB bus (32-bit PLB Slave Burst interface). For

the DMA core, we are using the Xilinx® Central Direct Memory Access (DMA) core

with a PLB interface that supports burst transfers. The 32-bit PLB transaction requires

NI×NC ≤ 32 and NO×NC ≤ 32 for optimal bus usage.

The frequency control core is shown in Fig. 2.3. The core acts as a slave to the DCR

bus. The reference clock ‘clkin’ is the PLB clock (100 MHz). Thus,

() MHzDMclkfx 100×= .

Special care must be taken when varying ‘clkfx’. For Virtex-4 devices, ‘clkfx’ is

limited to 32-210 MHz in the ‘low frequency mode’, and to 210-350 MHz in the ‘high

 26

frequency mode’ [28]. Switching frequency modes requires a sequence of reads/writes on

the DCM dynamic reconfiguration port (DRP). To minimize overhead required for

implementing clock speeds above ‘PLB_clock’, we have constrained ‘clkfx’ to be lower

or equal than ‘PLB_clock’. Thus, any M/D combination has to yield a ‘clkfx’ in the range

of 32-100 MHz.

In Fig. 2.5, we show the Pixel processor implemented as a peripheral to the PLB. We

handle the difference between the PLB and the Pixel Processor clocks by using input and

output FIFOs and separate clock regions (‘PLB_clock’ and ‘clkfx’). FSMs are used to

control the signals for each clock region. We clock the pixel processor coress (the PRR)

at ‘clkfx’, while the rest is clocked at ‘PLB_clk’. Modifying the ‘PLB_clk’ directly (i.e.

‘PLB_clk = clkfx’) is undesirable since other peripherals (e.g. SystemACE, Ethernet

core) use the ‘PLB_clk’ value as a parameter, requiring the dynamic reconfiguration of

these IPs each time we modify ‘clkfx’.

Figure 2.5. (a) Pixel Processor Slave PLB interface. In the figure, NI=NO=8, NC=4. The PRR can change
as long as NI×NC ≤ 32 and NO×NC ≤ 32. (b) State Machines for each clock region

o
rd

e
n

ir
d
e
n

LUT

8-to-8

LUT

8-to-8

LUT

8-to-8

3
2 3
2

upix_ip

LUT

8-to-8

B
u
s
2
IP

_
D

a
ta

Slave

Reg 0

oFIFO
FWFT mode

DO

rden

IP
2
B

u
s
_
D

a
ta

3
2 IP

2
B

u
s
_
W

ra
c
k

IP
2
B

u
s
_
R

d
a
c
k

B
u
s
2
IP

_
W

rC
E

(0
)

B
u

s
2
IP

_
R

d
C

E
(1

)

FSM

B
u
s

2
IP

_
C

lk

DI

w ren

PLB Bus

PLB Interface

512x32

B
u
s

2
IP

_
B

E

rd
w r

(a)

IP
2
B

u
s
_
A

d
d
rA

c
k

PLB46 Slave Burst IP

B
u
s
2
IP

_
R

d
R

e
q

B
u
s
2
IP

_
W

rR
e

q

fu
ll

e
m

p
ty

o
w

re
n

ofull oempty

iFIFO
FWFT mode

DO

rden

DI

w ren

fu
ll

e
m

p
ty

iw
re

n

ifull iempty

FSM

clkfx

iw ren

Slave

Reg 1

iw
re

n

512x32

iwren←1

S1

oempty

ifull

wr=1 &

BE=1111

orden←1

S2

resetn=0

yes

no 1

0
1

0

1

0

1

0

oempty

rd

irden ← 1

owren ← 1

S1

iempty

iempty=0

& ofull=0

S2

resetn=0

yes

1

0

no

(b)

FSM at Bus2IP_Clk

FSM at clkfx

PRR

 27

2.6.3 Selection of pixel processor parameters and frequency of operation for the

generation of the set of pixel processors

Typical image and video formats are limited to a maximum of 12 bits per sample (for

each color channel). Thus, we work with 12-bit and 8-bit images. For reducing the input

bitwidth, we simply select the most significant bits. To maintain high accuracy in the

results, we require the number of outputs bits to be equal or above the number of input

bits (NO≥NI). For the adjustable frequency of operation ‘clkfx’, we select five different

frequencies (MHz): 100.00 (M=2,D=2), 66.66 (M=2,D=3), 50.00 (M=2,D=4), 40.00

(M=2,D=5), and 33.33 (M=2,D=6).

Three different testing scenarios are considered for the Pixel Processor: (i) 32-bit I/O

constrained implementations, (ii) 8/12 input constrained implementations, and (iii) fixed-

frequency constrained implementations. The parameters for each scenario are

summarized in Tables 2.2, 2.3, and 2.4.

1) 32-bit I/O constrained implementations: Here, the pixel processor is implemented

in the 32-bit embedded system of Subsection 2.6.1. The selection of the parameters NI,

NO, NC (number of cores) depends upon the resource availability and the constraints

NI×NC≤32 and NO×NC≤32. Table 2.2 shows the combination of parameters chosen for

both 12-bit (NI: 12�5) and 8-bit images (NI: 8�5). In this case, we consider the power

and resource measurements for implementing both the LUT-cores and the PLB interface.

2) 8/12 bit input constrained implementations: In this case, NI is either 8 or 12. We do

not restrict NO and NC (except for NO≥NI). NC can be as high as the FPGA device can

allow. Table 2.3 lists the parameters and frequency combinations. Power and resources

measurements only consider the implementation of the LUT cores (NC NI-to-NO LUTs).

 28

3) Fixed-frequency constrained implementations: This case is similar to the previous

(8/12 bit input) case. However, the frequency is fixed and we allow the input bitwidth

(NI) to vary. Table 2.4 lists the possible combinations. Power and resources

measurements only consider the implementation of the LUT cores (NC NI-to-NO LUTs).

Table 2.2: 32-bit I/O pixel processor constrained implementations. 8-bit images: upper side of table. 12-bit

images: entire table. Each case is tested for 5 different frequencies: 100, 66.66, 50, 40, and 33.33 MHz

NI NO (NC)

5 5(4) 6 4) 7(4) 8(4) 9(2) 10(2) 11(2) 12(2)
6 6(4) 7(4) 8(4) 9(2) 10(2) 11(2) 12(2)
7 7(4) 8(4) 9(2) 10(2) 11(2) 12(2)
8 8(4) 9(2) 10(2) 11(2) 12(2)
9 9(2) 10(2) 11(2) 12(2) 13(2) 14(2) 15(2) 16(2)

10 10(2) 11(2) 12(2) 13(2) 14(2) 15(2) 16(2)
11 11(2) 12(2) 13(2) 14(2) 15(2) 16(2)
12 12(2) 13(2) 14(2) 15(2) 16(2)

Table 2.3: Pixel Processor Implementations for 8/12 bit input images unrestricted by I/O bitwidth. Each

implementation is tested for 5 different frequencies: 100.00, 66.66, 50.00, 40.00, and 33.33 MHz.

Image NI NC NO

2
4
6
8

8-bit 8

10

8 9 10 11 12

2
4
6 12-bit 12
8

12 13 14 15 16

Table 2.4: Pixel Processor implementations restricted at 100 MHz with unrestricted I/O bitwidths.

Image
N

I
NO NC

5 5 6 7 8 9 10 11 12
6 6 7 8 9 10 11 12
7 7 8 9 10 11 12
8 8 9 10 11 12

8-bit

2
4
6
8

10

9 9 10 11 12 13 14 15 16
10 10 11 12 13 14 15 16
11 11 12 13 14 15 16

12-bit

12 12 13 14 15 16

2
4
6
8

 29

2.7 Results and Analysis

This section details hardware resource utilization, optimization of the PPA space for the 3

scenarios of Section 2.6.3, and a discussion of the results. For demonstrating the results

for 8-bit images, we use the ‘lena’ image of size 640x480. For 12-bit images, we use the

‘oilp’ image of size 512x512. Here, we note that the problem of assessing the accuracy of

the results is closely related to the problem of video quality assessment [1]. In the

proposed setup, we expect the users to dynamically adjust the accuracy constraints to

meet their expectations. An example is provided in Section 2.7.4.

Fig. 2.6 shows some output results for image ‘oilp’, shown along with the selected I/O

bit-widths and their accuracy. Note that the result images for NI=8,12 are nearly identical

to those of the double floating point case. For NI=5, there are some clear artifacts in the

lower right portion of the image; they appear for PSNR levels around 50dB.

Double output NI=12, NO=16, psnr=128.59dB

NI=8, NO=8, psnr=66.56dB NI=5, NO=8, psnr=47.87dB

(a) (b)

(c) (d)

Figure 2.6. Output ‘oilp’ image results for various input/output cases.
Accuracy results are shown as well (simulated gamma correction for γ=0.5)

 30

0 50 100 150 200 250
0

2000

4000

6000
8-bit lena image, 640x480

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600
12-bit oilp image, 512x512

(a)

(b)

While the accuracy values do depend on specific images, we did not see the Pareto

front to vary significantly from image to image. Clearly, the PSNR accuracy of the single

pixel functions depends on the histogram of the image (see histograms for ‘lena’ and

‘oilp’ in Fig. 2.7).

2.7.1 Embedded System results for 32-bit I/O constrained implementations

In this case, we report on the pixel processor implementations described in Table 2.2. In

terms of the embedded system implementation, we consider the 8-bit and 12-bit systems

separately. In each case, we define the PRR region to be sufficiently large for

implementing the largest possible realization. Note that this constraint does not imply that

the power consumption will be the same for all 8-bit or 12-bit implementations. Here,

note that power consumption is a function of the utilized resources (not allocated

resources).

For the 8-bit system, the PRR occupies a tightly packed area of 16×22=352 Slices with

Figure 2.7. Histograms for both 8-bit ‘lena’ and 12-bit ‘oilp’ images

 31

a bitstream size of 47194 bytes. In the case of the 12-bit system, the PRR occupies

36×128=4608 Slices with a bitstream size of 449015 bytes.

A summary of resource utilization results are given in Table 2.5. Note that the largest

pixel processor in the 8-bit case (4 LUT8tot8) occupies 320 Slices (91% of the allocated

space for the PRR), and in the 12-bit case (2 LUT12to16) it occupies 4318 Slices (93% of

the allocated PRR Slices).

Table 2.5: Embedded Pixel Processor. Resource utilization (XCV4FX60). Case I: 8-bit inputs: NI=NO=8,

NC=4. Case II: 12-bitinputs: NI=12,NO=16,NC=2

Module Slice (%) FF (%) LUT %
Static Region 5308 21% 5519 11% 6517 13%
PRR (Case I) 320 1% 0 0% 576 1%
PRR (Case II) 4318 17% 0 0% 8576 17%
Overall (Case I) 5628 22% 5519 11% 7093 14%
Overall (Case II) 9626 38% 5519 11% 15093 30%

The average processing speed resulted in 352.85 Mbps, i.e. a video of size 640x480

can be processed at 143 fps.

Recall that in our applications, we expect that the dynamic reconfiguration rate will be

small (in the order of seconds). A reconfiguration speed of 16.28 MB/s is obtained by

using the Xilinx® ICAP core, resulting in 2.89 ms and 27.58 ms of reconfiguration time

for the 8-bit and 12-bit cases respectively. On the other hand, a dynamic rate of 295.4

MB/s reported in [10] has been achieved using a custom-built DPR controller. However,

note that additional hardware overhead is required for achieving faster rates. During

reconfiguration, power increase was estimated to be 62.5 mW [6].

2.7.2 Pixel Processor IP resource utilization

We demonstrate the resource scalability of the approach in Fig. 2.8. Here, the results are

independent of the clock frequency. Instead, the resource consumption is a function of

 32

NI, NO, and NC. The hardware resource utilization, based on the number of NI-to-NO

LUT cores (NC) is shown in Fig. 2.8 for the cases listed in Table 2.4.

Resource requirements (slices) are clearly clustered for each NI and they grow

exponentially as NI increases (e.g. 15,30,63,136 for NI=NO=5,6,7,8 in Fig. 2.8(a)). The

amount of resources increases linearly with the number of cores (NC). When we increase

the number of output bits (NO), the amount of resources also increases linearly with a

less steep slope (e.g. 306 to 547 for NO=9 to 16, NI=9, in Fig. 2.8(b)). The case with

NI=12, NO=16, NC=8 requires the largest amount of resources that we have tested in the

XC4VFX60 FPGA. Furthermore, for the given device, based on the diversity of the

testing, it did not make sense to consider cases for NI>12.

It is also worth noting that resource consumption does not vary significantly with the

optimized architecture shown in Fig. 2.1. Thus, we have directed the Xilinx® ISE

synthesizer to implement the LUTs without optimizing for the LUT contents, allowing us

to effectively swap functions as needed.

9
10

11
12

9
10

11
12

13
14

15
16

2000

4000

8000

12000

16000

20000

5

6
7

8

5
6

7
8

9
10

11
12

200

400

600

800

1000

N
u
m

b
e
r

o
f
S

lic
e
s

Number of

output bits (NO)
Number of

output bits (NO)
Number of

input bits (NI)

Number of

input bits (NI)

15

75

185

37

30

54

270

150 63

103

515

315

136

200

1000

680

306

547

1224

2188

690

1096

4384

2760
1514

2215

6056

8860

3323

4449

13290

17800

(a) (b)

20004000
8000

12000
16000
20000

N
u
m

b
e
r

o
f
S

lic
e
s NC=2

NC=4

NC=6

NC=8

678
9101112

200
400
600
800

1000

Number of output bits (NO)

N
u
m

b
e
r

o
f
S

lic
e
s

NC=2

NC=4

NC=6

NC=8

NC=10

Figure 2.8. Pixel Processor IP resource (slices) utilization as NI, NO, NC vary. Device: XC4VFX60 (25280
Slices). Note the exponential resource growth as NI increases. (a) 8-bit system. (b) 12-bit system

 33

2.7.3 Multi-objective Optimization of the PPA space

We present the results from multi-objective (PPA) optimization of the pixel processor for

the 3 scenarios of Section 2.6.3. For comparison, we use gamma correction (γ=0.5) which

represents a non-linear function that is used for image and video display (see example in

Fig. 2.6).

In Fig. 2.9(a), we show the PPA space and the Pareto front for the 32-bit I/O

constrained implementations (12-bit image, NI: 12→5). The Pareto front appears to lie on

a piecewise planar surface that includes 43% of all possible realizations. They also cover

a wide range of the PPA space, suggesting that the approach is effective in generating a

wide range of options. Maximum accuracy of 128.6 dB is achieved at 245 fps and power

of 156.7 mW. Maximum performance is achieved at 1526 fps with an accuracy of 48.14

dB and power of 48.15 mW. As shown in Fig. 2.9(b), performance increases with

frequency and the number of cores. In addition, it is important to note that the accuracy

depends on NI and NO in Fig. 2.9(a).

0

500

1000

1500

200040 60 80 100 120 140

0

50

100

150

200

fps

psnr(dB)

P
o
w

e
r(

m
W

)

NI = 5

NI = 6

NI = 7

NI = 8

NI = 9

NI = 10

NI = 11

NI = 12

2004006008001000120014001600
40

60

80

100

120

140

160
PPA Results -Function 1

fps

P
o
w

e
r(

m
W

)

100

66.66

50

40

33.33
(509 fps , 48.14 dB, 42.37mW)

NI=NO=5, NC=4, 33 MHz

(1526 fps , 48.14 dB, 48.15mW)

NI=NO=5, NC=4, 100 M Hz

(245 fps , 128.6 dB , 156.7mW)

NI=12, NO=16, NC=2, 33 MHz

lowest

power

max. accuracy

highest perfo rmance Ca s es with NC=4

(a) (b)

Figure 2.9. 32-bit I/O constrained implementations for 12-bit images. (a) PPA Results and Pareto Front
(circled points). (b) Power and performance dependence on frequency. Note that the cases with NC=4 are

circled, the rest are the cases with NC=2.

 34

Fig. 2.10(a) shows the PPA space, the Pareto front for the 8-bit input constrained

implementations (upper half of Table 2.3), and the extreme implementations (max.

accuracy, min. power, max. performance). The Pareto optimal points are easily clustered

as a function of NO. Fig. 2.10(b) shows how power and performance depend on

frequency within an NO cluster. A similar trend occurs with an increase in NC. Unlike

the I/O constrained case of Fig. 2.9, the effect of frequency on power is more noticeable

in Fig. 2.10(b) because it only depends on the LUT cores. It is also interesting to note that

the Pareto front includes 40% of the PPA space. As before, this suggests that parameters

variation worked well in that it generated a relatively large number of optimal points. We

also note that the 12-bit input constrained implementations gave similar trends as the 8-

bit case. Thus, this case is not repeated here.

Instead of PPA optimization, we also considered optimization with respect to Energy,

Performance, and Accuracy (EPA). Here, we computed the energy required to process a

single video frame. In this case, for both the 32-bit I/O and the 8-bit input constrained

0

2000

4000
75 80 85 90 95 100 105

0

20

40

60

80

100

fps

psnr(dB)

P
o
w

e
r(

m
W

)

NO = 8

NO = 9

NO = 10

NO = 11

NO = 12

0500100015002000250030003500
10

20

30

40

50

60

70

80

90

100

fps

P
o
w

e
r(

m
W

)

100

66.66

50

40

33.33

(217 fps , 83.34 dB , 12.88mW)

NO=9, NC=2, 33 MHz

(3255 fps , 83.34 dB, 70.94mW)

NO=9, NC =10, 100 MHz

highest

performance

lowest

power

max.

accuracy
(217 fps , 101.71 dB, 17mW)

NO=12, NC=2, 33 MHz

(a) (b)

Figure 2.10. 8-bit input constrained implementations. (a) PPA Results and Pareto Front (circled points).
(b) Frequency effect on power and performance

 35

implementations, the 3-D Pareto front lied completely at the maximum frequency of 100

MHz. This implies that frequency variation did not work for EPA optimization. In other

words, better implementations were obtained by varying the NI, NO, and NC parameters.

This motivates the last scenario that considers the case for fixed-frequency.

Fig. 2.11 shows the EPA space for fixed-frequency (100 MHz) constrained

implementations for 12-bit input images (NI:12→9). In Fig. 2.11(b), we can see that

performance clusters are defined in terms of the number of cores (NC). Most of the

Pareto optimal points occur for 8 cores. For fewer cores, we have three optimal cases: (i)

NI=10, NO=11, NC=6, (ii) NI=NO=11, NC=6, (iii) NI=11, NO=12, NC=4. In Fig.

2.11(a), we can see that as NO decreases (for fixed NI and NC), the energy per frame and

the accuracy decrease. As expected, the performance (fps) is only affected by NC. So,

for NC=8, the Pareto front is defined in terms of NI and NO. Table 2.6 shows the 17

points (out of 104) that make up the 3D Pareto front.

500100015002000250030003500

50

100

150

0

50

100

150

200

250

300

fps

psnr(dB)

E
n
e
rg

y
 p

e
r

fr
a
m

e
(u

J
)

NI = 9

NI = 10

NI = 11

NI = 12

500100015002000250030003500

50

100

150

0

50

100

150

200

250

300

fps

psnr(dB)

NC = 2

NC = 4

NC = 6

NC = 8

NO
16

15

14
13

12

NO

1
6
..1

1

NO

1
6
..1

0

NO

1
6
..9 NI=10, NO=11

NI=11, NO=12

NI=11, NO=11

(a) (b)

Figure 2.11. Fixed-frequency (100 MHz) constrained implementations (12-bit image). EPA Results and
Pareto Front (circled points)

 36

Table 2.6: Fixed-frequency (100 MHz) constrained implementations: Pareto Optimal points (12-bit image)

NI NO NC psnr(dB) fps Energy per frame (uJ)
9 9 8 73.1611 3051.7578 29.4850
9 11 8 73.1667 3051.7578 36.0877

10 10 8 77.9215 3051.7578 46.6695
10 11 6 78.0665 2288.8184 57.8377
10 11 8 78.0665 3051.7578 59.8193
11 11 6 83.8819 2288.8184 81.0746
11 11 8 83.8819 3051.7578 81.6185
11 12 4 83.9695 1525.8789 92.4202
11 12 8 83.9695 3051.7578 93.7453
11 13 8 83.9751 3051.7578 102.4708
11 14 8 83.9875 3051.7578 110.5668
11 15 8 83.9922 3051.7578 125.3556
12 12 8 104.7546 3051.7578 146.9356
12 13 8 110.8823 3051.7578 163.8397
12 14 8 116.6600 3051.7578 179.2773
12 15 8 122.6959 3051.7578 201.4623
12 16 8 128.5966 3051.7578 217.2102

2.7.4 Dynamic PPA and EPA management optimization

Given the Pareto-optimal implementations, we are now ready to provide results on

dynamic PPA management (DPPA). DPPA management allows us to provide optimized

solutions based on time-varying constraints. The basic idea is to select Pareto-optimal

implementations that satisfy the constraints and then implement them using DPR and

dynamic frequency control (see Section 2.5.6).

First, note that performance constraints are relatively easy to meet since frame rates

are always above 300 fps. This motivates the simplification of PPA management to the

case of Power-Accuracy management. In this case, for 32-bit I/O and 8-bit input

constrained implementations, the Pareto front is obtained for the lowest frequency of 33

MHz. For the fixed-frequency constrained implementation, the Pareto front is obtained

for implementations with NC=2.

For finite energy applications (e.g. battery-operated), we are very interested in

dynamic EPA management. As mentioned in Section 2.7.3, the Pareto front for EPA

 37

optimization occurs for the maximum frequency of 100 MHz. Also, in this case,

performance constraints are still easy to meet. Thus, we switch to optimization in the

Energy-Accuracy space as shown in Fig. 2.12(a) for fixed-frequency constrained

implementations.

To demonstrate dynamic Energy-Accuracy management, we consider an example with

time-varying constraints. Sequentially, we list the dynamic constrained and unconstrained

optimization requirements as follows:

1. Require Accuracy≥80dB and Energy≤0.16mJ per frame.

2. Minimize Energy subject to Accuracy≥100dB.

3. Maximize Accuracy.

4. Minimize Energy consumption.

The resulting Dynamic Energy-Accuracy management is demonstrated in Fig. 2.12(b).

First, we choose the implementation with NI=NO=11, NC=6 that meets the constraints

while also minimizing energy consumption (see point ‘1’). The rest of the constraints are

708090100110120130
20

40

60

80

100

120

140

160

180

200

220

psnr(dB)

E
n
e
rg

y
 p

e
r

fr
a
m

e
(u

J
)

EPP Results -Function 1

708090100110120130
0

50

100

150

200

250

300

psnr(dB)

E
n
e
rg

y
 p

e
r

fr
a
m

e
(u

J
)

NC = 2

NC = 4

NC = 6

NC = 8
Energy per frame

Accuracy (ps nr)

0.16 mJ

80dB

min

100 dB

--

max

min

--

� � � �

�

�

�

�

NI=11, NO=11, NC=6

NI=12, NO=12, NC=8

NI=NO=9

NC=8

NI=12, NO=16,

NC=8

(a) (b)

Figure 2.12. Fixed-frequency (100 MHz) constrained implementations (12-bit image): (a) Energy-Precision
results and Pareto front (dotted line). (b). Pareto Front and Dynamic control example with 4 points.

 38

met by the realizations marked as ‘2’, ‘3’, and ‘4’ in Fig. 12(b). The full DPR

implementation details are given in Section 2.5.6.

In the proposed solution, we do recognize that we cannot have ‘hard’ accuracy

constraints. Clearly, accuracy varies from frame to frame. The recommendation is simple.

The user can dynamically increase or decrease the accuracy constraint based on whether

his or her expectations are met. In the example, the user specifies an increase in accuracy

from 80 dB (constraint # 1) to 100 dB (constraint # 2).

2.7.5 Comparison with other pixel processor implementations

Table 2.7 provides a comparison between the 8-bit input/8-bit output core and similar

implementations found in the literature. Clearly, this comparison does not capture the rich

number of implementations described here. However, it provides a reference point that

can be used to measure the effectiveness of the basic LUT implementation.

The closest implementation to ours is the Xilinx® core [19]. In [19], the use of 3

BRAM18 resources can be considered as an expensive option. The implementations of

[18] and [24] are custom static architectures whose resource consumption exceeds ours.

The implementation in [21] is a 12-bit input/8-bit output function that only uses 146

Slices and 1 DSP Slice. This is a custom-built implementation of the gamma-correction

function alone and cannot be generalized to other single-pixel processors. While our 8-bit

input/8-bit output implementation requires fewer resources, our 12-bit input/12-bit output

case requires significantly more resources at 1662 Slices. In Fig. 2.6(c), we show that the

reduction of the 12-bit input to an 8-bit input for use with the proposed approach of Table

2.7 can give satisfactory results. In other words, there are no visible artifacts between the

proposed approach of Fig. 2.6(c) and the double floating point implementation of Fig. 2.6

 39

(a). However, in general, we do not recommend the use of the LUT-approach for input

bitwidth above 12 bits.

Table 2.7: Comparison against other single-pixel architectures (1 core). For comparing to [21], we note that

the proposed 12-bit input/12-bit output core requires 1662 slices.

 Proposed [19] [21] [18] [24]

Function type Programmable Programmable
Precise
gamma

correction

Histogram
equalization

Successive Mean
Quantization

Transformation

Implementation LUT-approach
LUT-

approach
Custom

hardware
Custom

hardware
Custom hardware

Test case
8-bit input
8-bit output

8-bit input
8-bit output

12-bit input
8-bit output

8-bit input
8-bit output

8-bit input
8-bit output

Device Virtex-4 Virtex-5 Virtex-4 Virtex-II Pro Actel APA600

Resources
128 LUT4, 16

FFs
68 Slices

57 LUT5, 57
FFs

3 BRAM18

146 Slices
1 DSP Slice

269 LUT4,
 172 FFs,
16 BRAM

1 MULT18x18

2123 Cells
48 BRAM

Max.
Frequency (IP)

229.358 MHz 324 MHz 378 MHz 200 MHz -

2.8 Conclusions

We have presented a framework for generating Pareto-optimal PPA/EPA

implementations based on PPA/EPA constraints. The framework allows for dynamic

PPA and EPA management for single-pixel processing architectures. A dynamic

reconfiguration system selects the Pareto-optimal realization that meets time-varying

constraints.

The Pareto optimal points are computed offline by considering different clock

frequencies, the number of pixel processor cores, and the number of inputs and output

bits. The validity of the approach is verified by the fact that over 40% of the considered

implementations are found to be Pareto-optimal. Furthermore, the scenarios provide

practical implementations for 32-bit I/O, 8/12-bit inputs, and fixed clock frequency.

We also demonstrated dynamic EPA management for 12-bit bitwidths. The proposed

 40

framework was used to show how we can meet dynamic constraints in energy and

accuracy. Here, performance constraints were met by the fact that all implementations

operated over 300 fps. In general though, when the pixel processor is implemented in a

larger system, we expect that performance requirements may have to be added.

 41

Chapter 3

Partial Reconfigurable FIR Filtering system using Distributed

Arithmetic

Abstract

Dynamic partial reconfiguration (DPR) allows us to adapt hardware resources to meet

time-varying requirements in power, resources or performance. In this chapter, we

present two new DPR systems that allow for efficient implementations of 1-D FIR filters

on modern FPGA devices. To minimize the required partial reconfiguration region

(PRR), both implementations are based on distributed arithmetic. For a smaller required

PRR, the first system only allows changes to the filter coefficient values while keeping

the rest of the architecture fixed. The second DPR system allows full FIR-filter

reconfiguration while requiring a larger PR region. We investigate the proposed system

performance in terms of the dynamic reconfiguration rates. At low reconfiguration rates

the DPR systems can maintain much higher throughputs. We also present an example that

demonstrates that the system can maintain a throughput of 10 Mega-samples per second

while fully reconfiguring about seventy times per second.

3.1 Introduction

Dynamically reconfigurable systems offer unique advantages over non-dynamic systems.

Dynamic adaptation provides us with the ability to adapt hardware resources to match

 42

real-time varying requirements. The majority of the 1-D FIR filtering literature is

dominated by static implementations. Here, we use the term static to refer to both CMOS

implementations (e.g. [29-33]) and reconfigurable hardware (non-dynamic) (e.g. [34,35]).

Some implementations use the label reconfigurable in the sense of having the capability

to load different filter coefficients on demand (e.g. [30-33]). In the context of this work,

such implementations are considered static since the underlying hardware is not changed

or reconfigured.

For reconfigurable hardware, the most efficient implementations are based on

Distributed Arithmetic (DA) [36]. These filters have coefficients fixed or hardwired

within the filter's logic. This approach allows fast and efficient implementations while

sacrificing some flexibility since coefficients can not be changed at run time. Dynamic

partial reconfiguration (DPR) can be used in this scenario to provide the flexibility of

coefficients’ values changes without having to turn off the device and only re-writing a

section of the configuration memory. The efficiency of DPR over the full reconfiguration

alternative and the savings in terms of power and resources is a function of the relative

size of the portion being reconfigured [37].

We consider a DPR approach that allows us to change the filter’s structural

configuration and/or the number of taps. The proposed approach provides a level of

flexibility that can not be efficiently accomplished with traditional static

implementations. In particular, we develop a dynamically reconfigurable DA-based FIR

system that uses DPR to adapt the number and value of the coefficients, the filter's

symmetry and output truncation scheme. Two systems are presented that allow the

flexibility to change all these filter's characteristics: (i) a system that only allows changes

 43

to the coefficients values, and (ii) a system that allows changes to the number and value

of the coefficients, the symmetry, and the output truncation scheme.

Previous research on dynamically reconfigurable FIR filters has focused on Multiply-

Accumulate based implementations and coarse reconfiguration. The first system

described in this work is based on dynamically reconfiguring at a coarse level, i.e. the

entire FIR filter. The second system is based on dynamically reconfiguring at the finest

possible level, the LUTs that store the coefficients, with a small dynamic reconfiguration

area. We have demonstrated a related, LUT-based approach in a dynamically

reconfigurable pixel processor [9]. The paper also explores different ways to execute

dynamic partial reconfiguration and elaborates on the impact over reconfiguration time

overhead of the different approaches.

This work provides an extended version of the conference paper presented in [38]. The

work has been extended to provide: (i) extended background information, (ii) more

implementation details, (iii) extended methodology, (iv) architectural extensions to allow

changes on the filter's internal structure, and (v) new results.

The rest of this chapter is organized as follows: Section 3.2 presents background and

related work. Section 3.3 describes the FIR filter core implementation. Section 3.4

introduces the dynamically reconfigurable system. Results and conclusions are presented

in section 3.5 and 3.6 respectively.

3.2 Background and related work

Reconfigurable logic has established itself as a popular alternative to implement digital

signal processing algorithms [39]. Furthermore, a number of articles have been published

 44

on using DPR to implement different signal processing algorithms [40, 41, 38, 37]. In

particular, [42-44] report different approaches for taking advantage of DPR in FIR filter

implementations. The capability of reconfiguring a filter at run time is of special interest

for applications such as wireless communications and software radio.

Hardware realizations of FIR filters can be divided into constant-coefficients and

multiplier-based implementations [42]. In the latter case, DPR is mainly used to change a

filter's overall structure [43, 44], or other filter-wide characteristic. At a higher level,

DPR is also used to simply change the level of parallelism of an implementation by

changing the number of filter cores in an application’s critical path. In all these cases,

changes are usually initiated from a desire to implement a new filter, based on power or

resources considerations, or simply to obtain new functionality. A change in coefficients

does not require reconfiguration for this type of filter implementation. Thus, for these

cases, DPR has milder constraints in terms of reconfiguration speed and reconfigurable

logic partition.

The case of constant-coefficients implementation is considerably more complex since

DPR is used to change inner characteristics of the filters (coefficients are not easily

isolated within the filter structure). This requires more complex schemas to segment logic

into reconfigurable tiles and more efficient reconfiguration mechanism in order to reduce

the amount of time it takes to reconfigurable a filter.

DA filters in Xilinx® FPGAs are introduced in [45, 46], where the authors exploit

common characteristics between the Xilinx's FPGA architecture and the filter

architecture. In [35], the authors present other approaches for flexible FPGA

 45

implementations of FIR filters by combining pipelined multipliers and parallel,

distributed arithmetic.

In [42], the authors consider different DPR architectures for extending constant-

coefficients approaches to implement adaptive filters. This relatively early study already

provides insights on the advantages of using run-time partial reconfiguration to modify a

filter's behavior at run-time. The study used an earlier device (currently unavailable) and

explored architectures different than DA, which were a natural fit for such device. Their

results in terms of performance can not be compared to the results of this work due to the

inherent difference between the reconfigurable devices used.

In [44] the authors describe a self-reconfigurable adaptive FIR filter system composed

of up to three multiplier-based filter modules. These modules can be reconfigured at run-

time by a control manager that uses SystemACE to store and fetch the corresponding

partial bitstream. This system only allows a full filter reconfiguration instead of finer

reconfiguration schemas such as coefficient-only reconfiguration. In this paper, speed

results are not clearly presented. The authors report different reconfiguration overhead

times for different filters that apparently occupy the same reconfigurable region in the

device. These results are surprising since reconfiguration time overhead depends mainly

on the bitstream size, which depends on the size of the partial reconfigurable area, not on

the number of resources used within that area. It is also worth mentioning that

reconfiguration speeds reported are slower than speeds reported on other DPR papers [10,

6].

 46

In [43] a similar system is described although in this case it is not self-reconfigurable

and uses an external PC to perform reconfiguration. Reconfiguration times reported are

also considerably slower than other reported methods.

In [47], the authors describe a tool-flow to map applications to a self-reconfiguring

application. The authors use a 32-tap MAC based FIR filter as an example. The paper

compares the performance of simply reloading coefficients by writing over specific

registers and using DPR to reconfigure the whole filter. In this paper, the reconfiguration

time overhead is large but dismissed as an acceptable handicap for the paper’s goals.

In general, the reconfiguration time overhead is an important factor in the evaluation

of systems using DPR. Several approaches exist to deal with the overhead. One approach

is to hide it by using efficient hardware scheduling strategies (e.g [48]). A more

simplified approach is to select carefully the elements of an architecture that requires

reconfiguration for a desired change in functionality (e.g [6,38]). By doing so, one can

reduce drastically the size of the partial bitstream used to execute the DPR, thus reducing

the reconfiguration time overhead. Finally, there is also the approach of maximizing the

access speed to the configuration memory (e.g [10]). Unfortunately this approach has a

limit determined by the device. In the case of Virtex-4 FPGAs the maximum speed is

3.2Gbps (32 bit wide bus @100MHz). A combination of the last two approaches is used

in this work to deal with reconfiguration time overhead.

This work seeks to extend prior research in this area by primarily focusing on

developing, analyzing, and improving DPR systems in terms of the dynamic

reconfiguration rate on modern devices. This leads us to consider a DA implementation

that allows efficient implementations with small hardware footprints on modern FPGA

 47

devices. Then, we consider a scalable approach where we have two systems: (i) a DPR

system that allows for faster dynamic reconfigurations of coefficient values while fixing

the number of taps, and (ii) a second DPR system that allows flexibility in the number of

taps, the filtering structure, and truncation characteristics while allowing for a slower

dynamic reconfiguration rate.

3.3 Stand-alone FIR Filter core implementation

A high performance FIR implementation based on Distributed Arithmetic is described in

this section (also see [38]). The approach was coded in VHDL, so as to achieve a level of

portability. Specific LUT primitives are employed when the system is compiled in

Xilinx® devices. We will consider two dynamic realizations based on this core in Section

3.4.

3.1. Description

The FIR filter module is shown in Fig. 3.1. It shows the FIR filter module with its inputs,

outputs, and parameters. Signal ‘E’ controls the input validity. Clearing the register chain

FIR_DA
X_in NH

E

NO

N N
H

[N
O

 N
Q

]

O
P

S
Y

M
M

E
T

R
Y

C
O

E
F

F
IC

IE
N

T
S

Y

L

sclr

Figure 3.1. Generalized FIR DA Module

 48

(‘sclr’ signal) at will is an important requirement when performing filtering on finite size

signals.

Two filter implementations are presented in Fig. 3.2. A simplified approach is possible

for symmetric filters (see Fig. 3.2) [49]. The more general, non-symmetric case is also

presented in Fig. 3.2.

Here, N denotes the number of taps, NH represents the input/coefficients bitwidth, L is

the LUT input size (explained in next subsection). We also use OP for controlling the

output truncation scheme: (i) LSB Truncation then Saturation, (ii) LSB and MSB

Truncation, and (iii) no Truncation. We use the parameter format [NO NQ] to denote the

fixed-point output format for NO bits with NQ fractional bits. The filter coefficients are

specified in an input text file.

We define 2NM = , 1+= NHsizeI for symmetric filters, and NM = ,

NHsizeI = for non-symmetric filters. The inputs/coefficients format is set at [NH NH-

1], which restricts values to)[11,− . As a result, the maximum number of output integer

and fractional bits results:

() () ()[]121112 2 −+++− NHNlogNH (3.1)

3.3.2 FIR DA Implementation

The Distributed Arithmetic technique rearranges the input sequence samples (be it x[n] or

s[n]) into vectors of length M, which require an array of sizeI M-input LUTs. This

becomes prohibitively expensive when M is large. For efficient implementation, we

divide the filter into
L

M filter blocks [49], as illustrated in Fig. 3.2. Each filter block

works on L coefficients requiring sizeI L-input LUTs (each vector of size L goes to one

L-input LUT, see Fig. 3.3). Table 3.1 summarizes the resources savings associated with

 49

the filter blocks approach. An advantage of using FIR filter blocks is that it allows for

efficient routing while mapping the implementation to the specific LUT primitives found

in an FPGA. As shown in [9], the approach is scalable in that can be easily ported to

different LUT sizes.

Table 3.1: FIR Filter implementation savings due to the use of filter blocks

Implementation Resource requirements
1 Filter block of size M. LUTs have M inputs MsizeI 2× words

LM filter blocks of size L. LUTs have L inputs LM2sizeI L ×× words

To demonstrate the savings, we consider a particular example. Using the formulae of

Table 3.1, for M=16, L=4, we have significant savings since 216 >> 24x16/4. It does

EX_in NH

x[0] x[1] x[N-1]

NH

x[N-2]

NH NH NH

x[0] :

x[L-1] :

x
1

x
NH-1

Y

xNH-1
L

x
0

Filter

Block

0

+

x
1
[0] x

0
[0]

x
1
[L-1] x

0
[L-1]

E E E

x
0

L

x[L] :

x[2L-1] :

x1xNH-1

L

x0

x
1
[L] x

0
[L]

x
NH-1

[2L-1] x
1
[2L-1] x

0
[2L-1]... x0

L

x[N-L] :

x[N-1] :

x1xNH-1

L

x0

x
1
[N-L] x

0
[N-L]

x
1
[N-1] x

0
[N-1] x0

L

Filter

Block

1

Filter

Block

N/L

-1

X_in

x[N-1]

x[0] x[M-2]

x
[M

-1
]

x[M]x[N-2]

x[1]NH

s[0] s[1] s[M-1]

only when

N is even

NH+1 NH+1 NH+1

E E E E

EEE E

s[0] :

s[L-1] :

s1sNH

sNH
L

s0

Filter

Block

0

+

s
NH

[0] ... s
1
[0] s

0
[0]

s
NH

[L-1] s
1
[L-1] s

0
[L-1]... s0

L

s[L] :

s[2L-1] :

s1sNH

s
NH

L

s0

Filter

Block

1

s
NH

[L] ... s
1
[L] s

0
[L]

s
NH[2L-1] s

1
[2L-1] s

0
[2L-1]... s0

L

s[M-L] :

s[M-1] :

s1sNH

s
NH

L

s0

Filter

Block

M/L

-1

s
NH

[M-

L]
... s

1
[M-L] s

0
[M-L]

s
NH

[M-

1]
s

1
[M-1] s

0
[M-1]... s0

L

x
NH-1

[N-L] ...

x
NH-1

[N-1] ...

x
NH-1

[L] ...

x
NH-1

[L-1] ...

x
NH-1

[0] ...

xNH-1

xNH-1

Y

Figure 3.2. High-performance DA implementation based on the underlying LUT input size (L). Non-
symmetric Filter (left) Symmetric Filter (right)

 50

require an additional adder tree structure (see Fig. 3.2). However, compared to the savings,

the overhead is not significant.

A pipelined implementation of a symmetric filter block example is shown in Figure

3.3. Here, we have the parameters SYMMETRY = YES and NH = 8. It consists of an

array of L-input LUTs, an adder tree, shifters, and registers. The number of register levels

is given by the following formula:

() sizeIlogBlockFilterinlevelsregisterof# 2= (3.2)

sNH

L

Filter

Block

s0
L

sNH

2L-w ord

LUT

s0

2L-w ord

LUT
L

-2NH

20
+

ACTUAL IMPLEMENTATION, NH = 8

LUT LUT LUT LUT LUT LUT LUT LUT LUT

s8 s7 s6 s5 s4 s3 s2 s1 s0

++++

022
022

022
022

+

122
122

+

+

222

+

322

LL L L L L L L L

L LO

LO

LO LO LO LO LO LO LO LO LO

Figure 3.3. Filter Block architecture. SYMMETRY = YES

 51

The L-input LUT sub-blocks are shown in Fig. 3.4. Here the output word size of each

L-input LUT is given by () LlogNHLO 2+= . It also shows its decomposition into LO

L-to-1 LUTs, useful for efficient FPGA implementation. Xilinx® FPGA devices contain

L-to-1 LUT primitives with L = 4 (Spartan-3, Virtex-II Pro, Virtex-4) and L = 6 (Virtex-

5). Thus, L = 4 or L = 6 are optimum values of choice. Moreover, as explained in [9] for

Virtex-4, optimal LUT implementations can also be obtained for L = 5, 6, 7, 8.

Fig. 3.5 depicts the internal pipelined architecture of the adder tree that is used for

adding the Filter blocks outputs. The result is stored in an output register. The number of

register levels of the adder structure is given by:

() LMlogStructureAdderFilterinlevelsregisterof# 2= (3.3)

Since we can quantize the LUT table values (i.e. the summations), rather than the

coefficients, this FIR DA Implementation is slightly less sensitive to quantization noise

than a normal implementation, with quantized coefficients. The latency of the pipelined

system is shown in Fig. 3.6. The latency (input-output delay) is given by

() () 222 ++= LMlogsizeIlogLEVELS_REG cycles, where REG_LEVELS is the

number of register levels between the input and the output.

Figure 3.4. Realization of an L-to-LO LUT using LO L-to-1 LUTs

L

L
U

T
_
in

L
U

T
_
o

u
t

2L-1

0

1

LO

bLO-1 b1 b0

LUT

L-to-LO

LUT

L-to-1

LUT

L-to-1

LUT

L-to-1

L
LUT_out

LO

bLO-1

b1

b0

L

L

L LlogNHLO 2+=

L
U

T
_
in

 52

Filter

Block 0

Filter

Block 1

Filter

Block 2

Filter

Block 3

+

+

+
Y

output register

ADDER TREE STRUCTURE

Figure 3.5. Adder tree structure for Filter blocks’ outputs. M/L = 4

d0 d1

p0 p1

E

X_in

Y

REG_LEVELS

Figure 3.6. Latency measured from the moment ‘d0’ is input until its correspondent output ‘p0’ is
available

Figure 3.7. System Block Diagram

PPC

PLB

System

ACE

Ethernet

MAC

DDRRAM

128MB

ICAP

core

F
S

L

in
te

rf
a
c
e

FIR Filter processor

FSL

ICAP

port

CF

card

PRR

FIR filter core

 53

3.4 Dynamically Reconfigurable FIR Filtering System

The basic FIR filter core is now extended to be dynamically reconfigurable. We allow for

the dynamic reconfiguration of both the number and the filter coefficients themselves in

an embedded system. The basic system is shown in Fig. 3.7. By means of Dynamic

Partial Reconfiguration, a constant coefficient FIR filter is turned into an adaptive FIR

filter.

The basic approach requires that we pre-specify the Partial Reconfiguration Region

(PRR). Two dynamically reconfigurable realizations are considered:

(1) Coefficient-only reconfiguration: The PRR allows modifications to the filter

coefficient values, while keeping the rest of the architecture intact.

(2) Full filter reconfiguration: The PRR allows modification to the number of

coefficients, the coefficient values, and the filter symmetry.

We start by describing the system architecture and FIR filter dataflow, which are not

affected by the PRR definition. Then, we explain each of the dynamic realizations by

providing a detailing representation of the PRR in the context of the FIR filter

architecture.

3.4.1 System Architecture

From Fig. 3.7, we can see that the dynamic FIR core and the PowerPC (PPC)

communicate using the high speed FSL Bus. The Partial Reconfiguration Region (PRR)

is dynamically reconfigured via the internal configuration access port (ICAP), driven by

the ICAP controller core.

 54

The DDRRAM stores volatile data needed at run-time, e.g.: input streams, processed

streams and partial bitstreams. At power-up, SystemACE reads a Compact Flash (CF)

Card that stores the partial bitstreams and input streams. The processed streams are

written back to the DDRRAM. The Ethernet core provides reliable communication with a

PC, and allows us to get new partial bitstreams or new input streams, and to send

processed streams to the PC for its verification or storage. Also, it serves as an interface

for throughput measurements and system status.

Fig. 3.8 depicts the interfacing of the FIR filter processor and the PPC for both

dynamic realizations. The FIR Filter processor, as shown in Fig. 3.7, consists of the FIR

filter core and a control unit that provides interfacing with the 32-bitwide FSL bus. Fig.

3.8 shows a special case when the filter input size is NH = 8 bits. Here, the input is

processed sample by sample (one byte at a time). After 32 output samples are computed,

they are transmitted through the FSL bus. Other input/output bit-width configurations

require different logic and control.

We next provide a description of the different possible modes of operation. First, we

note that an FIR Filter with N coefficients and NX input values can output a maximum of

NX+N-1 values. The three modes of operation are implemented through a finite state

machine as follows:

� Basic output mode: The system computes the first NX output values. This mode is

useful for finite 1D signals.

� Symmetric output mode: The system computes the central NX output samples (i.e., in

the range 2NNX:12N ++). This mode is useful when performing 2D separable

convolution on images.

 55

� Streaming mode: with infinite number of input samples, i.e. NX = ∞

3.4.2 FIR Filter processor data flow

The FIR Filter processor receives and sends 32 bits at a time via the FSL bus. Due to the

FIFO-like nature of the FSL bus [50], the PPC processor sends a data stream to FIFOw to

be grabbed by the FIR Filter processor that in turn writes an output data stream on FIFOr

to be retrieved by the PPC processor (see Fig. 3.8).

We optimize FSL bus usage by letting the PPC write a large block of data on FIFOw.

The FIR Filter processor then processes the data and writes the results on FIFOr in a

pipelined fashion. After reading all data in FIFOr, the PPC writes another large block of

data on FIFOw, i.e. the PowerPC is busy only when reading/writing each large block of

data. In addition, the FIR filter processor starts reading the next available block of data on

Figure 3.8. Dynamic FIR Filter processor interfacing with FSL. PRR for dynamic reconfiguration of the
coefficients (left) and PRR for dynamic reconfiguration of the number of coefficients, their values and

symmetry (right)

F
S

L
_
S

_
R

e
a
d

FSM

F
S

L
_
S

_
E

x
is

ts

FSL Slave

F
S

L
_

S
_
D

a
ta

FIFOw

FSL Master

FIFOr

F
S

L
_
S

_
C

o
n

tr
o

l

F
S

L
_
S

_
C

lk

32

F
S

L
_

M
_
W

ri
te

F
S

L
_

M
_
F

u
ll

F
S

L
_
M

_
D

a
ta

F
S

L
_

M
_
C

o
n
tr

o
l

F
S

L
_

M
_
C

lk

32

... ...

X_in

8

E

8 Y

FIR Filter core

PRR

LUT

L-to-1

LUT

L-to-1

F
S

L
_
S

_
R

e
a
d

F
S

L
_
S

_
E

x
is

ts

FSL Slave

F
S

L
_

S
_
D

a
ta

FIFOw

FSL Master

FIFOr

F
S

L
_
S

_
C

o
n

tr
o

l

F
S

L
_
S

_
C

lk

32

F
S

L
_

M
_
W

ri
te

F
S

L
_

M
_
F

u
ll

F
S

L
_
M

_
D

a
ta

F
S

L
_

M
_
C

o
n
tr

o
l

F
S

L
_

M
_
C

lk

32

... ...

FSL interfacing

dynamic

module

FSM

X_in

8

E

8 Y

FSL interfacing

PRR = FIR Filter core

sclr sclr

 56

FIFOw right after writing a processed chunk of data on FIFOr. Each FIFO depth has been

set to 64 words (32-bit words).

3.4.3 Dynamic Partial Reconfiguration Setup

Fig. 3.8 presents two dynamically reconfigurable systems and the associated PRRs. In the

full-filter reconfiguration case, we do not allow any changes to the I/O bit-width. Here,

we note that a change to the I/O bit-width would also require a generalized FSL interface

to be included in the PRR, further complicating the design. Despite the complexity of

doing so, this will be of interest for allowing us to build a dynamic precision system.

The static region is defined by everything else outside the PRR, including FSL

interface, FSL circuitry, peripheral controllers, and the FIR filter core static portion

(coefficient-only reconfiguration).

All signals between the dynamic region (PRR) and the static part are connected by

pre-routed Bus Macros in order to lock the wiring. Also, the PRR I/Os are registered as

the reconfiguration guidelines advise [51]. To perform DPR, the partial bitstreams are

read from a CF card and stored in DDRRAM. When needed, they are written to the ICAP

port. This fairly simple technique is explained in [6].

For throughput measurement purposes, the partial bitstreams and the input set of

streams reside on DDRRAM. The streams are sent to the FIR Filter processor, and the

output streams are written back to the DDRRAM. This process is repeated with different

partial reconfiguration bitstreams loaded at specific rates, so as to get different filter

responses and measure performance as the reconfiguration rate varies.

 57

3.4.3.1 Coefficient-only reconfiguration

In this dynamic realization, the dynamic region is made of () sizeILM × L-to-1 LUTs,

resulting in a PRR with () LsizeILM ×× inputs and () LOsizeILM ×× outputs. Fig. 3.9 depicts

LUT

x7 x6 x5 x4 x3 x2 x1 x0

++++

022
022

022
022

+

122
122

+

+

222

4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10

EX_in

x[0] x[1] x[7]

8

x[6]

x[3] :

E E E

x[2]

E

x[3]

E

x[4]

E

x[5]

E

x
7
[0] x

6
[0] x

5
[0] x

4
[0] x

3
[0] x

2
[0] x

1
[0] x

0
[0]

x
7
[1] x

6
[1] x

5
[1] x

4
[1] x

3
[1] x

2
[1] x

1
[1] x

0
[1]

x
7
[2] x

6
[2] x

5
[2] x

4
[2] x

3
[2] x

2
[2] x

1
[2] x

0
[2]

x
7
[3] x

6
[3] x

5
[3] x

4
[3] x

3
[3] x

2
[3] x

1
[3] x

0
[3]

x[2] :

x[1] :

x[0] :

LUT LUT LUT LUT LUT LUT LUT LUT

x7 x6 x5 x4 x3 x2 x1 x0

++++

022
022

022
022

+

122
122

+

+

4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10

x[7] :

x
7
[4] x

6
[4] x

5
[4] x

4
[4] x

3
[4] x

2
[4] x

1
[4] x

0
[4]

x
7
[5] x

6
[5] x

5
[5] x

4
[5] x

3
[5] x

2
[5] x

1
[5] x

0
[5]

x
7
[6] x

6
[6] x

5
[6] x

4
[6] x

3
[6] x

2
[6] x

1
[6] x

0
[6]

x
7
[7] x

6
[7] x

5
[7] x

4
[7] x

3
[7] x

2
[7] x

1
[7] x

0
[7]

x[6] :

x[5] :

x[4] :

LUT LUT LUT LUT LUT LUT LUT

Filter Block 0 Filter Block 1

+

Y

Adder tree

P
R

R
8 8 8 8 8 8 8

8

222

BUS MACRO

BUS MACRO

Figure 3.9. FIR filter core where the PRR and Bus Macros can be appreciated. Here, we can modify only the
coefficients via the LUTs.

 58

the PRR along with the Bus Macros when SYMMETRY = NO, NH = 8, N = 8, L = 4.

The PRR is depicted in the context of the FIR filter core.

This realization is very useful for applications that only require filter coefficients

modification, and it exhibits a smaller reconfiguration time overhead than the full

reconfiguration case. Also, since only the LUT values are modified, the routing inside the

PRR does not change. This has potential advantages in the area of run-time bitstream

generation, as there is no need for run-time place-and-route operation. Fast routing is a

very demanding task, and in most cases cannot be performed at run-time [52].

 Figure 3.10. FIR filter processor where the PRR is the FIR Filter core. Note the parameters we can modify.

E

X_in

NH

x[0] x[1] x[N-1]

NH

x[N-2]

NH NH NH

x[0] :

x[L-1] :

x1xNH-1

Y

xNH-1
L

x0

Filter

Block

0

+

x
1
[0] x

0
[0]

x
1
[L-1] x

0
[L-1]

E E E

x0
L

x[L] :

x[2L-1] :

x1xNH-1

L

x0

x
1
[L] x

0
[L]

x
NH-1

[2L-1] x
1
[2L-1] x

0
[2L-1]... x0

L

x[N-L] :

x[N-1] :

x1xNH-1

L

x0

x
1
[N-L] x

0
[N-L]

x
1
[N-1] x

0
[N-1] x0

L

Filter

Block

1

Filter

Block

N/L

-1

x
NH-1

[N-L] ...

x
NH-1

[N-1] ...

x
NH-1

[L] ...

x
NH-1

[L-1] ...

x
NH-1

[0] ...

xNH-1

xNH-1

B
U

S
 M

A
C

R
O

F
IR

 F
ilte

r c
o

re

PRR

8

8

N

SYM M ETRY

COEFFICIENTS

L

M
o
d
ifi

a
b
le

p
a
ra

m
e
te

rs

FSM

NH = 8

E

F
S

L
_
M

_
D

a
ta

32

F
S

L
_
S

_
D

a
ta

32 sclr

B
U

S
 M

A
C

R
O

 59

3.4.3.2 Full filter reconfiguration

In this case, the PRR involves the entire FIR filter core. It enables us dynamically modify

the coefficients, number of coefficients, symmetry, and LUT input size. Fig. 3.10 depicts

the PRR along with the Bus Macros in the context of the FIR Filter processor (with the

FSL interface). We can see that the PRR has 2NH + inputs and NH outputs

3.5. Results

3.5.1 Stand-Alone FIR Filter core

Fig. 3.11 shows hardware resource utilization as a function of the number of coefficients

(N), input bitwidth (NH), and symmetry (dotted lines: non-symmetric filters, solid lines:

symmetric ones). Also, we set OP = 0, L = 4. Here, we use the XC4VFX20-11FF672

Virtex-4 device, with 8544 slices.

In addition, for each input bitwidth, we are considering the largest output format

attainable (in the range)[1,1−). The output format ([NO NQ]) plays a negligible role in

resource consumption (a difference of at most 12 slices).

Regarding frequency of operation, the goal of 200 MHz minimum frequency of

operation was attained in all cases.

In addition, an error analysis is performed for the same parameters. Fig. 3.12 shows

the relative error curves for three cases (input stream = 1024 sinusoid samples). The error

metric is:

valueideal

outputFPGAvalueideal
errorlativeRe

−
=

 (3.4)

 60

Fig. 3.12 shows that in most cases the relative error is below 5%. The peaks

correspond to FPGA values of zero and ideal values close to zero, resulting in a deceptive

100% error.

3.5.2 Embedded System

Results are shown using the following FIR Filter core parameters: N = 32, NH = 8, [NO

NQ] = [8 7], L = 4, OP = 0, SYMMETRY = YES.

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

number of coefficients

N
u
m

b
e
r

o
f

s
lic

e
s
 (

o
u
t

o
f

8
5
4
4
)

NH = 8, [NO NQ] = [15 14]

NH = 12, [NO NQ] = [23 22]

NH = 16, [NO NQ] = [31 30]

Figure 3.11. Resources vs number of coefficients and input bitwidth. Solid lines represent the
symmetric case. Dotted lines represent the non-symmetric case

0 200 400 600 800 1000 1200
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

NH = 8, [NO NQ] = [8 7]

NH = 12, [NO NQ] = [12 11]

NH = 16, [NO NQ] = [16 15]

Figure 3.12. Relative error, N = 32. Three bitwidth cases.

 61

The system is implemented on the ML405 Xilinx® Development Board that houses a

XC4VFX20-11FF672 Virtex-4 FPGA. The PPC is clocked at 300 MHZ and the

peripherals run at 100 MHz. In order to improve performance, the DDRRAM memory

space is cached. Also, the dynamic systems are tested in the basic output mode, i.e. only

the first NX outputs are considered.

3.5.2.1 Hardware resource utilization

Results for this section depend on the specific dynamic realization. Tables 3.2 and 3.3

show hardware resource utilization for two DPR systems: (i) Coefficient-only

reconfiguration, and (ii) Full filter reconfiguration. It shows the static region, dynamic

region and the entire system resource usage. The module ‘PRR interface’ is the gluing

static logic needed to join the static and dynamic regions.

As expected, the overall resource utilization is about the same. What varies is the

static region size, which is larger in the coefficient-only reconfiguration case.

Table 3.2. Hardware Utilization on Virtex-4 XC4VFX20-11FF672 for coefficient-only reconfiguration

Module FF (%) Slice (%) LUT %
PRR 0 0% 180 2% 360 2%
Static Region 5303 31% 6130 72% 8698 51%
PRR interface 1313 8% 786 9% 885 5%
Overall 5203 31% 6310 74% 9058 53%

Table 3.3. Hardware Utilization on Virtex-4 XC4VFX20-11FF672 for full filter reconfiguration

Module FF (%) Slice (%) LUT %
PRR 1324 8% 818 10% 1306 8%
Static Region 4017 24% 5515 65% 8072 47%
PRR interface 6 0% 5 0% 107 1%
Overall 5341 31% 6333 74% 9378 55%

Table 3.4 shows the reconfiguration size and its partial bitstream size. Note that the PRR

in the first case is somewhat larger than expected (about 62% of the second case). This

can also be appreciated in Fig. 3.13 that shows the dynamic region (PRR) for both

realizations, which are functionally the same.

 62

Table 3.4. PRR measures for both dynamic partial reconfiguration system realizations

Dynamic Realization
PRR size
(Slices)

Bitstream
size (bytes)

1.Coefficient-only reconfiguration 90x6 = 540 43000
2. Full-filter reconfiguration 44x20 = 880 83000

The reason for the large PRR in the first case is the large number of required Bus

Macros I/Os. In the coefficient-only reconfiguration case, the system needs access to the

LUTs (see Section 3.4.3.1). As a result, for the special case shown, we require

() 144494LsizeILM =××=×× inputs and () 3601094LOsizeILM =××=×× outputs.

As explained in Section 3.4.3.2, in the second case (full filter reconfiguration), we

only need 102NH =+ inputs and 8NH = outputs. So, the PRR in the first case is larger than

Figure 3.13. Dynamic reconfiguration region for (i) coefficient-only reconfiguration system (left), and
(ii) full filter reconfiguration system (right)

 63

what it is actually needed for the L-to-1 LUT array, thereby wasting hardware resources

in order to accommodate the large number of Bus Macros I/Os.

3.5.2.2 FIR Filter processor performance bounds

The maximum throughput of this particular FIR filter processor (NH = 8) is given by:

Gbps.
ns

bits

cycle

byte
Throughput.Max 80

10

8

1

1
===

 (3.5)

Note that since the system is pipelined, there is an initial setup delay that becomes

negligible over time. Actual throughput depends on many factors, such as cache size,

PPC instruction execution, and FSL usage. Note that the maximum throughput of (3.5)

can not be attained since the PPC can not read and write into the FIFOs at the same time.

3.5.2.3 Reconfiguration Time

Table 3.5 shows the reconfiguration time for 3 scenarios. Both dynamic realizations are

included. In our setup, called Scenario 1, we used the Xilinx® ICAP core and obtained a

reconfiguration average speed of 3.28 MB/s. The reconfiguration time of Scenario 2 is

computed based on the speed results reported in [47]. The dramatic improvement in

reconfiguration lies on the use of a custom ICAP controller, DMA access, and burst

transfers. Scenario 3 is the maximum theoretical throughput, which for the Virtex-4 is 400

MB/s [6].

Table 3.5. Reconfiguration time for both DPR system Realizations. The 43 KB Bitstream corresponds to

coefficient-only reconfiguration case. The 83 kb bitstream corresponds to full-filter reconfiguration

Reconfiguration Time
Scenario

Reconfiguration
Speed 43 KB

bitstream
83 KB

bitstream
1. Current 3.28 MB/s 13.10 ms 25.30 ms
2. Custom [10] 295.4 MB/s 0.145 ms 0.280 ms
3. Ideal 400 MB/s 0.107 ms 0.207 ms

 64

3.5.2.4 Dynamic performance

We use software timers to measure the elapsed time from the moment we start reading

the input stream from DDRRAM until the processed stream is written back on

DDRRAM. We are considering sinusoids as the input stimuli. Please refer to Section

3.4.3 for some of the details that will be discussed in this section.

In order to evaluate the dynamic performance of the system, we use a stream of

102400 samples (1 sample = 8 bits). The stream is processed a number of times (100

runs). Within the 100 runs, partial bitstreams are loaded at a specific rate. Each partial

bitstream amounts to a different filter response. Note that for the coefficient-only

reconfiguration case, we only load a different set of coefficient values.

For the full-reconfiguration case, we switch between a filter with N = 32 coefficients

and one with N = 16 coefficients. The PRR size is defined to be sufficiently large so as to

allow implementation of the larger filter, i.e. the N = 32 filter case. The filter with N = 16

requires only one fewer latency cycle (Equation 3.3). As a result, the static performance

improvement of the smaller filter is not significant.

We report the average throughput over the 100 runs. Here, we define the dynamic

reconfiguration rate in terms of the inverse of the number o samples that are being

processed prior to a hardware reconfiguration. For better visualization, we report

throughput in terms of the number of processed Mega samples per second (MSPS). This

corresponds to the inverse of the reconfiguration rate.

Figures 3.14 and 3.15 show the dynamic performance over 100 runs for both dynamic

realizations. There are 3 curves that correspond to the 3 scenarios shown in Table 3.5. In

the limit, at zero reconfiguration rate, we have static performance. The performance

 65

results converge for the static case. From Fig. 3.14 (coefficient-only reconfiguration), we

see that for Scenario 1 (actual measurements), the static performance resulted in 29.25

MSPS. At the maximum reconfiguration rate (one per stream), the dynamic performance

was 6.16 MSPS. The other curves (Scenarios 2 and 3) provide performance bounds based

on the static performance and reconfiguration speeds of Table3.5.

We can see that the dynamic performance of the full filter reconfiguration case is

slightly lower than the coefficient-only reconfiguration. This is due to differences in the

PRR size. But as we increase the number of samples before a reconfiguration, or use a

Scenario other than the first one, this effect is less noticeable.

As expected, the dynamic performance heavily depends on reconfiguration speed and

input stream size. Better reconfiguration speeds offset the reconfiguration time overhead

(Scenarios 2 and 3). We have the same effect for smaller dynamic regions. The slower

reconfiguration rates due to longer data streams help to offset the reconfiguration

overhead as well.

In Table 3.6, we present the full filter reconfiguration system throughput as a function

of the time between reconfigurations. It is quite clear from the results that even for the

slowest scenario, we can maintain throughputs over ten MSPS while dynamically

reconfiguring seventy times per second.

Table 3.6. DPR system throughput (MSPS) as function of delay between reconfigurations for 1-D FIR

filtering with Full filter reconfiguration

Number of samples between reconfigurations
2048K 1024K 409.6K 204.8K 102.4K

Amount of time between reconfigurations
Scenario

68ms 34ms 13.6ms 6.8ms 3.4ms

1. Current 21.9 17.2 10.5 6.3 3.5
2. Custom [10] 29.9 29.8 29.5 28.9 27.8
3. Ideal 30.0 29.9 29.6 29.2 28.3

 66

0 500 1000 1500 2000 2500 3000 3500 4000 4500
28

28.2

28.4

28.6

28.8

29

29.2

29.4

Inv. Reconf. Rate (# of processed Ksamples before a reconfiguration)

M
S

P
S

Scenario 2

Scenario 3 (Ideal Case)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
5

10

15

20

25

30

Scenario 1

Figure 3.14. DPR system performance for coefficient -only reconfiguration

0 500 1000 1500 2000 2500 3000 3500 4000 4500
27.5

28

28.5

29

29.5

30

30.5

Inv. Reconf. Rate (# of processed Ksamples before a reconfiguration)

M
S

P
S

Scenario 2

Scenario 3 (Ideal Case)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25

30

35

Scenario 1

Figure 3.15. DPR system performance for full filter reconfiguration

 67

3.5.3 Experimental results with ECG processing

We present an example application for electrocardiogram (ECG) characterization (R-

wave detection). Here, we consider coefficient-only reconfiguration for implementing a

3-channel, 1-D filterbank. We make use of the embedded system detailed in Section

3.5.2. Each channel filter is symmetric, with 32 8-bit coefficients for 8-bit I/O, using

truncation (saturation) arithmetic for the outputs. The approach here is to implement a

variation of the ECG processing algorithms presented in [53]. ECG signal processing is

of great interest for emergency applications, including the detection of cardiac

arrhythmias [54] and stenosis assessment for atherosclerotic plaque video analysis [55].

A popular approach based on [53] is to use the outputs of a Wavelet filterbank for ECG

analysis. As in Wavelet analysis, we design a dyadic filterbank to cover the entire,

discrete frequency space. We have a high-pass filter with a positive frequency pass-band

from 2π to π , a band-pass filter from 4π to 2π , and a low-pass filter for frequencies up

to 4π . For each channel filter, we consider efficient implementations using 32 8-bit

coefficients. The magnitude response of the designed filterbank is shown in Fig. 3.16.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-25

-20

-15

-10

-5

0

Normalized Frequency (×π rad/sample)

Filterbank Magnitude Response (dB)

Low -Pass filter

Band-pass filter

High-pass f ilter

Figure 3.16. Filterbank used for R-wave detection

 68

For testing the implementation, we use the first recording (record 100) from the MIT

arrhythmia database [56]. In this record, we have 2 channels with 650K samples sampled

at 360 Hz and quantized at 11-bits over a 10mV range. We further quantized the input

down to 8 bits, downloaded them to the DDRRAM using the Ethernet core and tested

using the procedure outlined in Fig. 3.17.

Based on [53], we implemented a simple R-wave detection algorithm. For detection,

we look for thresholds in the outputs. In the example of Figure 3.18, we threshold as

follows: Low pass filter ([]321321 ,−), band-pass ([]321321 ,−), high-pass (641>). This

results in perfect R-wave detection for the first 5 cycles of the second channel (1500

samples). We refer to [53] for more details on how to adjust thresholds in such algorithms

for near-perfect results verified over the entire database. The goal is to simply

demonstrate the DPR FIR system on real signals.

1 2K samples

processed by LPF

DPR2

3

t1 t2 t3

LPF BPF HPF

FPGA

Replace

LPF by BPF

Processing

2K samples

LPF BPF

5

4
Replace

BPF by HPF
BPF HPF

6 Replace

HPF by LPF
HPF LPF

Perform Detection algorithm and send results back to PC

Go back to step 1 for the next batch of 650K samples (if any)

LPF

2K samples

processed by BPF
BPF

2K samples

processed by HPF HPF

DPR

DPR

Figure 3.17. Filterbank data processing. LPF: Low-pass filter,
BPF: Band-pass filter, HPF: High-pass filter

 69

The detection algorithm is included in the embedded PowerPC software routines, and

the resulting signal is stored into the DDRRAM. We note that performance improves

with larger input signals (see Fig. 3.14). The detection algorithm is performed at the end

of the operations, and takes about 80 ms. Dynamic reconfiguration of a channel filter

requires 13.1 ms. At a sampling rate of 360 Hz, the system allows significant time for

implementing real-time detection algorithms and DPR. As a result, the number of

samples that are processed prior to reconfiguration can be significantly reduced. By

processing every 2000 samples, the processing rate stands at 4.62 MSPS (2000 samples

takes 140 ms to process). Thus, after 5.5 seconds spent in acquiring 2000 samples, we get

a detection response in 140 ms.

3.5.4 Comparison with other PR systems for FIR filtering

The majority of previously reported work on FIR filtering is based on multiply-and-

add approaches [41, 43, 44, 47]. In [41], the authors reported a reconfiguration time of

0 500 1000 1500
-0.1

-0.05

0

0.05

0.1

0.15

ECG CH2 samples

s
a
m

p
le

 v
a

lu
e

s
 [
-1

,1
)

FPGA: 8-bit input/coefficients, 8-bit output

Figure 3.18. Perfect detection of R-waves for the first 5 ECG cycles

 70

1.5 ms for changing the coefficients and their number on a Virtex-II (74.7 KB bitstream).

In [43, 44], the authors presented a DPR FIR system that only allowed for changes in the

number of coefficients. Reconfiguration time for 8794 slices for a 20-tap filter required

700 ms. The filter presented in [47] most closely resembles our FIR filter: 32-taps, 8-bit

coefficients, 8-bit input, but with multiply-and-add approach. It required 1985 LUTs for a

13.1 ms reconfiguration time. We can change the entire filter using a 83KB bitstream for

a reconfiguration time of 25.3 ms.

As mentioned earlier, for FPGA implementations, the distributed arithmetic presented

here is far better suited than these multiply-and-add approaches. DA approaches allow for

efficient use of hardware resources. Beyond this, multiply-and-add approaches tend to

have fixed input/output characteristics as opposed to the flexible, dynamically

reconfigurable arithmetic representations presented here.

The constant-coefficient filter with DPR is mentioned in [42], but the work is more

theoretical and the results are non-comparable with ours, as stated in Section 3.2.

3.6 Conclusions

We presented two efficient dynamic partial reconfiguration systems that allow us to

implement a wide range of 1-D FIR filters. Requiring a significant smaller partial

reconfiguration region, the first system allows changes to the FIR filter coefficients while

keeping the rest of the architecture intact. Using a larger partial reconfiguration region,

the second system allows full filter reconfiguration. This system can be used to switch

between FIR filters based on power, performance, and resources considerations.

 71

For both systems, the required partial reconfiguration region is kept small by using

Distributed Arithmetic implementations. System performance is evaluated in terms of the

dynamic reconfiguration rate. For a representative example, it is shown that we can

process over ten Mega samples per second while dynamically reconfiguring about

seventy times per second. The introduction of faster dynamic reconfiguration controllers

can lead to much higher throughputs for the same number of reconfigurations per second.

Alternatively, we can maintain much higher throughputs at much lower reconfiguration

rates.

The results have encouraged us to explore the use of dynamically reconfigurable

filtering for digital image and video processing applications. As seen from the results of

this work, it is possible to dynamically reconfigure at real-time frame rates. For such

applications, the DPR systems can be extended to separate implementations of 2-D

dynamically reconfigurable filterbanks.

 72

Chapter 4

Separable FIR Filtering in FPGA and GPU Implementations:

Energy, Performance, and Accuracy Considerations

Abstract

Digital video processing requires significant hardware resources to achieve acceptable

performance. Digital video processing based on dynamic partial reconfiguration (DPR)

allows the designers to control resources based on energy, performance, and accuracy

considerations.

In this chapter, we present a dynamically reconfigurable implementation of a 2D FIR

filter where the number of coefficients and coefficients values can be varied to control

energy, performance, and precision requirements. We also present a high-performance

GPU implementation to help understand the trade-offs between these two technologies.

Results using a standard example of 2D Difference of Gaussians (DOG) filter indicate

that the DPR implementation can deliver real-time performance with energy per frame

consumption that is an order of magnitude less than the GPU. On the other hand, at

significantly higher energy consumption levels, the GPU implementation can deliver very

high performance.

 73

4.1. Introduction

Hardware implementations of digital video processing methods are of great interest

because of the ubiquitous applications. In terms of performance acceleration, many image

and video processing algorithms require efficient implementation of 2D FIR filters [57].

Dynamic partial reconfiguration (DPR) allows FPGA designers to explore different

implementations based on energy, performance, and accuracy requirements. In addition

to DPR, efficient filter implementations are based on the direct use of LUTs [9], the

distributed arithmetic technique [17], and separable designs [58,59].

On the other hand, Graphic Processing Units (GPUs) offer high-performance floating

point capabilities at significant energy consumption levels [60]. With the introduction of

OpenCL and CUDA (Compute Unified Device Architecture), there has been a significant

growth of GPU implementations; with [61] and [62] as examples of 2D FIR

implementations.

In this work, we are interested in exploring the energy, performance, and accuracy

trade-offs between DPR FPGA and the corresponding GPU implementations. Some

trade-offs have been explored in [62] and [63]. The goal is to provide recommendations

for different implementations based on specific energy and performance requirements.

This work is organized as follows: Section 4.2 describes the embedded filter

implementation on the FPGA. Section 4.3 details the GPU filter implementation. Section

4.4 explains the measurement setup for both implementations. Section 4.5 presents the

results in terms of Energy, performance, and accuracy. Finally, Section 4.6 summarizes

the work.

 74

4.2 2D FIR Filter System on the FPGA

We consider a 2D separable filtering implementation that is an extension of prior work

presented in [17] and [58]. Here, we extend prior research to allow DPR of the entire FIR

core, its FSL (Fast Simplex Link) bus interface, and the Partial Reconfiguration Region

(PRR) control interface.

4.2.1 System Architecture

Figure 4.1 depicts the block diagram of the embedded system. The 1D FIR Filter

processor core and the PowerPC (PPC) interact via the Fast Simplex Link (FSL) bus. The

PRR is reconfigured via the internal configuration access port (ICAP). The Compact

Flash (CF) card holds the partial bitstreams and input data. Bus macros are no longer

needed in the Xilinx ISE 12.2 Partial Reconfiguration Tools.

In the context of the embedded system of Fig. 4.1 a 2D separable filter is realized by i)

filtering the rows, ii) turning a row filter into a column filter via DPR, and iii) filtering

the columns. Figure 4.2 depicts this scheme, where the 2D filter can be modified at run-

time by using a different pair of row and column filters.

PPC

PLB

System

ACE
DDRRAM

Ethernet

MAC

ICAP

core

FIR Filter processor

FSL

ICAP

port

CF

card

in
te

rf
a
c
e

FIR IP

core

D
P

R
 c

tr
l PRR

F
S

L

Figure 4.1. System Block Diagram

 75

The filtered images (row and column-wise) are stored in the DDRRAM. The row-wise

filtered image is transposed in the memory before it is streamed to the column filter. The

system is implemented in the ML405 Xilinx Dev. Board that houses a XC4VFX20

Virtex-4 FPGA. The PPC is clocked at 300 MHz and the peripherals at 100 MHz.

4.2.2 1D FIR filter core

This fixed-point core is based on the one presented in [17]. We allow for full-

reconfiguration, i.e. the entire filter is included in the PRR. Several modifications are

introduced:

� A new parameter ‘B’ allows the specification of the input data bit-width. This is

different from the coefficients’ bit-width.

DPR

tr1 tc1
FPGA

ROW COL

COL

tr2 tc2

ROW COL

1 Frame is streamed

Processed row -by-row frame is streamed

2

3

4

Replacing row filter by column filter via DPR

Replacing column filter by row filter via DPR

ROW

DPR
ROWCOL

Processing

frame 1

Processing

frame 2

5 Go to Step 1 to process a new frame

ROW PRR

row filter

col f ilter

COL

Figure 4.2. 2D separable FIR filter implementation.

 76

� The frame size determines the input length of both the row and column filter. The

input length is a parameter to the Finite State Machine (FSM) that controls the FSL

interface. As a result, the FSL interface has to be included in the PRR (see Fig. 4.1).

� An interface that disables the PRR outputs during reconfiguration is required since

the PRR outputs now include FSL interface signals (shown in Fig. 4.1).

Here, the 2D filter requires 2 bitstreams: one for the row filter and one for the column

filter. The PRR must accommodate the largest filter.

4.3 Filter implementation on the GPU

We consider a parallel FIR algorithm implementation in the CUDA environment [64].

Here, parallelism is achieved by a grid that consists of blocks, with each block having a

number of threads. All threads within a block are run in parallel from the software

perspective. The actual number of blocks that can run in parallel is bounded by the

number of streaming multiprocessors (SMs). Here, we can run a single block on each

SM. Also, the number of threads that can be run in parallel at each SM is given by the

number of CUDA cores inside each SM.

For the purposes of this work, we will report energy and performance measurements

on the GPU (termed the device) as opposed to the CPU (termed the host). Here, GPU

memory is divided into global memory, shared memory, constant memory, and texture

memory.

The algorithm exposes and exploits parallelism of the 2D FIR filter in order to obtain

significant speed up gains. It is based on ideas exposed in [61]. Double precision (64 bits)

 77

is utilized. The filter symmetry and its separability are taken advantage of. The algorithm

steps are summarized below:

1. The image and the filter kernel are transferred form the host to the device (global

memory).

2. The image is then divided into blocks. Each image block is filtered by a thread block

by rows.

3. The row-filtered image is also divided into blocks. Each image block is column-

filtered by a thread block.

4. The final filtered image is transferred to the host.

To further describe the algorithm, we let the input image to be of size HxW (H rows

by W columns) and a filter kernel of size KxK (row and column filter of same length).

We refer to [61] for more details on the separable implementation. Performance is

achieved based on: i) loop unrolling, ii) storing image blocks in shared memory, and iii)

storing the filtering coefficients in constant memory.

Each image block is processed as follows: It is first loaded to the shared memory (with

extra 2K pixels on both sides for correct filtering). Then, for row filtering, each thread

inside a block performs a point-wise multiplication between the row kernel and a row

portion of the image; and then adds up each product producing an output pixel. This

process continues until the filtered image block is obtained.

Figure 4.3 shows the setup of a thread block for row filtering. Since all thread blocks

work concurrently (from the software perspective), we are left with the row-filtering

image in the global memory at the end of the previous process. This image (in blocks) is

loaded again in shared memory, this time to perform column filtering. A thread block

 78

does not transpose the column-ordered data since the image block is small and it is not

worth the effort. Thus, this division of the image in blocks effectively avoids transposing

the entire image prior to column filtering.

For row processing, the dimension of the thread block in the x direction must be

higher or equal than 2K (effective size of the kernel). For the dimension in y

direction, any power of 2 is suitable as long as H is its multiple. For column processing,

the dimension of the thread block in the y direction must be higher or equal than 2K .

For the dimension in x direction, any power of 2 is suitable as long as W is its multiple.

The device utilized is a NVIDIA GeForce GTX465, with 11x32 CUDA cores running

at 607 MHz. There are 11 Streaming Multiprocessors that run at 1.215 GHz, each with 32

CUDA cores. 1 GB of GDDR5 memory is available and runs at 1603 MHz with a

bandwidth of 102.6 GB/s. There are 48K bytes of shared memory per block. The

maximum power dissipation of the board is 200 W.

The GPUs are tested in a desktop environment with an Intel® Xeon W3520 running at

2.67 GHz, with 6GB of DRAM. The software configuration uses Windows 7 Ultimate

(64-bits) with CUDA 3.2.

W

H y
 d

im

x dim

Thread Block

shared

memory

constant

memory

K/2 coeffs

image block

extra pixels

Figure 4.3. Thread block configuration for row filtering

 79

4.4 Experimental Setup

This section details how the results were obtained. The set of filters for the test are first

described. Then we detail how performance, energy, and accuracy were measured.

4.4.1 Set of filters for testing

To demonstrate the system, we consider a popular bandpass filter implementation based

on the Difference of Gaussians (DOG) filter with 42 21 =σ=σ , [57]. For comparison,

we implement the DOG filter using 48 coefficients and double precision arithmetic

precision.

The input image selected is the standard grayscale level (8 bits) image ‘Lena’. Fig. 4.4

shows the ideal frequency response of the filter with the input and output images.

We consider 6 filter implementations, each with a different number of coefficients (N

= 8, 12, 16, 20, 24, 32). In addition, we consider 3 different frame sizes: 640x480 (VGA),

352x288 (CIF), 176x144 (QCIF), derived from cropped versions of ‘Lena’ (to preserve

the frequencies). This results in 18 filtered images.

In the case of the FPGA implementation, the bit-width of the coefficients is set at 16

bits. The row filter receives 8-bit pixels at the input and outputs 16-bit pixels. The

column filter receives and outputs 16-bits pixels, taking advantage of the symmetry of the

filter [17]. The system switches to a different 2D filter via DPR. This is realized by

reconfiguring a different row filter at step 4 in Figure 4.2. Then, having streamed the

Input image

42 21 =σ=σ ,:DoG

N = 48

Figure 4.4. Frequency response – ideal filter with N = 48

 80

image through the new row filter, we load the respective column filter at step 2. After

that, we keep switching between these new row and column filters. As a result, the PRR

size is that of largest column filter.

In the case of the GPU implementation, the system is implemented with double

floating point numerical precision, although it can be programmed with fixed-point.

4.4.2 Energy, performance, and accuracy measurements

We measure performance in terms of frames per second (fps). In the case of the FPGA

implementation, the processing time per frame includes: i) row filtering process, ii)

column filtering process, iii) transposing row-filtered image, and iv) PRR reconfiguration

(twice). The transposing of the row-filtered image occurs right after the filtering of the

rows is completed. Two reconfigurations are needed per frame. Then, the performance

(fps) is given by:

 ()reconfigtransposecolsrowsFPGA ttttfps ×+++= 21 (4.1)

In the case of the GPU implementation, the processing time per frame includes: i)

Allocation of memory and data transfer from host to device, ii) Frame processing, and iii)

data transfer from device to host. We run the filters 1000 times and get an average

quantity of each of these times.

 ())hd(transfprocess)dh(transfallocGPU tttfps >−>−+ ++= 1 (4.2)

With regard to energy measurements, we consider the energy consumption per frame.

In the FPGA case, the power spent by the three Virtex-4 FPGA power sources (VCCINT,

VCCAUX, VCCO) is obtained, which amounts to the embedded system power

consumption. We use the Xilinx Power Analyzer (XPA) tool that provides a more

accurate estimate than the Xilinx Power Estimator (XPE) because it is based on simulated

 81

switching activity of the place-and-routed circuit [27]. Our results are obtained with XPA

at 25ºC. We get the power drawn by both the row (rowP) and column filter (colP).

Each filter variation amounts to a difference in resource usage, and in turn in different

power consumption. However, the filter core is small compared to the rest of the

embedded system, so the power difference is not noticeable. As a result, it is more useful

to consider the power drawn (both rowP and colP) just by the FIR Filter IP core.

The power consumption during reconfiguration is an important quantity since the 2D

FIR filter makes intensive use of DPR. Unfortunately, there is no tool available that can

provide an estimate of this power consumption. In [6], hardware measurements

determined that only the VCCAUX supply current increased during reconfiguration, and

it increased by 25 mA for the XC4VFX12 device. This dynamic current does not depend

on the device size, so we use this current for the XC4VFX20 device. The reconfiguration

power then results:

()

() VCCAUXmAPP

VCCAUXmAPP

colcolreconfig

rowrowreconfig

×+=

×+=

−

−

25

25
 (4.3)

Note that rowreconfigP − is the power during reconfiguration of the row filter into a

column filter. colreconfigP − is defined in a analogous fashion.

With the processing times of the row and column filter, and the reconfiguration time,

the energy per frame results:

 () reconfigcolreconfigrowreconfig

colscolrowsrowFPGA

tPP

tPtPepf

×+

+×+×=

−−
 (4.4)

In the case of the GPU implementation, similarly to [60], the current is measured with

the clamp sensor ESI 687 on the power connectors. Both the external power of the GPU

 82

and the power provided to the PCIe bus (20 W max.) are considered. Note that we

measure the power consumption of the whole board that includes the GPU, memory, and

other components. The average power during the tasks is measured, thus the energy per

frame results:

())hd(transfprocess)dh(transfalloc

clampaverageGPU

ttt

Pepf

>−>−+

−

++

×=
 (4.5)

Since the transferring and allocation times can be considered as an offset any GPU

implementation has to deal with, we might also be interested in measuring the energy per

frame spent only during the processing stage:

 processclampaverageGPU tPepf ×= − (4.6)

For accuracy measurements, we define accuracy as the relative error between the

FPGA or GPU processed frame and the results using double precision with 48

coefficients. Consequently, we measure accuracy using the PSNR between the FPGA or

GPU outputs and the double precision implementation (48 coefficients). Here, note that

GPU implementation is also using double precision but with variable number of

coefficients. On the other hand, for the FPGA, the error is due to truncation in the number

of coefficients and the use of fixed-point arithmetic (16 bits).

4.5 Results

4.5.1 FPGA resource usage and reconfiguration time

The PRR must accommodate the largest filter (column filter with N = 32). Thus, the PRR

occupies a tightly packed area of 24×90=2160 Virtex-4 slices with a bitstream size of

183754 bytes. It takes about 25% of the FPGA fabric.

 83

Table 4.1. Embedded FIR Filtering system resource utilization (Virtex-4 XCVFX20-11FF672)

Module Slice (%) FF (%) LUT %
PRR (col filter) 2125 25% 3680 21% 3812 22%
Static Region 4973 58% 5226 31% 5998 35%
Overall 7098 83% 8906 52% 9810 57%

Table 4.1 shows the hardware resource usage of the embedded FIR filtering system of

Figure 4.1. It reveals the actual resource usage of the PRR and the static region. Note that

the largest column filter (N = 32) occupies 2125 Slices (98% of the PRR Slices).

A reconfiguration speed of 3.28 MB/s is obtained with the Xilinx® ICAP core,

resulting in 56.02 ms of reconfiguration time for the given bitstream size.

4.5.2 Running times

In the FPGA case, rowst and colst are in line with the FSL transfer speed of 226 Mbps

reported in [9]. For example, for N = 32, rowst = 10971, 3620, and 905 us for the VGA,

CIF, and QCIF frame sizes respectively. The number of coefficients plays a negligible

role in the processing time because the FIR filter is a fully pipelined system in which the

number of coefficients only increments the register levels, which in turn increases the

initial latency of the pipeline (that fades out for an input length larger than the number of

coefficients). This effect is usually masked by the bus speed with bus cycles larger than

the register levels of the pipeline. System performance is limited by the time spent in

transposing the image (about 4152 us, 1453 us, and 379 us for the VGA, CIF, and QCIF

frame sizes respectively) and the reconfiguration time (about 56.02 ms).

The reconfiguration time of 56.02 ms achieved with the Xilinx® ICAP controller

significantly limits real-time system performance. With the use of the custom-made ICAP

controller presented in [10], the reconfiguration time would be 0.622 ms. For a good

comparison with the GPU, this reconfiguration time is used instead. Note that the custom

 84

ICAP core has different power requirements than the Xilinx® ICAP core. In practice, we

expect the power difference to be negligible since the custom ICAP core is a small (and

low-power) circuit.

In the case of the GPU, we found that most of the time is consumed by the allocation

of memory and data transfers from/to host to/from device. Table 4.2 shows these times.

Note that)dh(transfalloct >−+ and)hd(transft >− are about the same for a given frame

size. Also, the processing times do vary according to the number of coefficients, unlike in

the case of the FPGAs.

Table 4.2. GPU running times (ms). N: number of coefficients

 N processt)dh(transfalloct >−+)hd(transft >−

8 0.4099 2.0 1.9
12 0.4661 1.9 1.8
16 0.5096 2.0 1.6
20 0.5801 1.9 1.8
24 0.6481 1.9 1.9 64

0x
48

0

32 0.7777 1.9 1.8
8 0.2536 1.14 0.86

12 0.3031 1.12 0.94
16 0.3486 1.10 0.90
20 0.3527 1.40 0.75
24 0.3975 1.73 0.70 35

2x
28

8

32 0.4610 1.40 0.60
8 0.1998 0.60 0.30

12 0.2105 0.75 0.35
16 0.2371 0.60 0.30
20 0.2417 0.70 0.30
24 0.2729 0.80 0.30 17

6x
14

4

32 0.2853 0.80 0.30

4.5.3 Power measurements

In the case of the FPGA, the power consumption is not dependent upon the frame size.

Thus, it makes sense to report the result in terms of energy consumption per frame. Table

4.3 shows that the embedded system’s power fluctuations due to the number of

coefficients are negligible since only the filter IP core is modified. It is then more

 85

meaningful to consider the power of the FIR Filter core which does vary according to N

(number of coefficients).

Device static power does depend exclusively on the device size and operating

temperature, called ‘device static power’ [27]. It is consumed by the device when it is

powered up and without programming the user logic. For the XCVFX20 device, it

amounts to 166 mW (all 3 voltage rails), at 25 ºC. If the power results are to be

meaningful across different devices, this quantity must be considered as an offset that

will vary across devices.

In the case of the GPU, we found that on average, it consumes 96.8, 92.5, and 88

Watts for VGA, CIF, and QCIF frame sizes respectively. Variations for different number

of coefficients are negligible (around 0.1 W) since the algorithm uses the maximum

number of cores regardless of the number of coefficients of the filter. The power

fluctuations for different frame sizes are due to the fact that for smaller frame sizes, the

GPU is moving data over a longer period of time than when it is processing.

Table 4.3. Embedded system Power consumption (Watts) on the XCVFX20-11FF672 Virtex-4 FPGA

rowsP colsP rowreconfigP − colreconfigP −

Mean 1.2410 1.2472 1.3035 1.3097
Std 0.0059 0.0140 0.0059 0.0140

4.5.4 Energy, Performance, and accuracy results

For comparing energy consumption, we only consider the energy spent by the filtering

process. Thus, for the FPGA, we consider the energy consumed by the FIR filter and the

ICAP cores. For the GPUs, we will also consider the energy spent during actual video

processing (Equation. 4.6).

 86

Figure 4.5 shows the energy per frame, performance (achieved frames per seconds)

and accuracy results. Note that in the case of performance, we report the mean fps with

its standard deviation for a given frame size. We observe an energy dependence on the

number of coefficients in the FPGA case, although it is more pronounced in the GPU

case. In addition, the performance dependence on the number of coefficients is negligible

in the FPGA case, but noticeable in the GPU case.

In terms of PSNR (dB), the GPU gives better results due to its use of double precision.

However, there is no significant difference at the output except for N = 32. In this case,

we have very high PSNR values that exceed 80dB.

In terms of performance, the GPU always prevails due to the massive amount of

parallelization achieved in the algorithm coupled with the high operating frequencies.

The speed up (GPU over FPGA) is about 9X, 5X, and 3.3X for VGA, CIF, and QCIF

frame sizes respectively. For smaller frame sizes, the time consumed in allocations and

transfers is closer to the processing times.

102030405060708090
10

20

30

40

50

60

70

80
GPU Results

psnr(dB)

E
n
e
rg

y
 p

e
r

fr
a
m

e
 -

 P
ro

c
e
s
s
in

g
 s

ta
g
e
 (

m
J
)

640x480

352x288

176x144

1020304050607080
0

2

4

6

8

10

12
FPGA results

psnr(dB)

E
n
e
rg

y
 p

e
r

fr
a
m

e
 -

 F
IR

 c
o
re

(m
J
)

640x480

352x288

176x144

N
 =

 3
2

N
 =

 2
4

N
 =

 2
0

N
 =

 1
6

N
 =

 1
2

N
 =

 8

N
 =

 3
2

N
 =

 2
4

N
 =

 2
0

N
 =

 1
6

N
 =

 1
2

N
 =

 8

fps (avg) = 26.2898, std = 0.0272

fps (avg) = 73.8375, std = 0.0616

fps (avg) = 231.2454, std = 0.6171

fps (avg) = 233, std = 7.1579

fps (avg) = 408, std = 11.9688

fps (avg) = 793.3516, std = 21.0552

Figure 4.5. Performance, energy, and accuracy results for both FPGA and GPU. N: number of coefficients

 87

In terms of energy per frame, the FPGA implementation is much better than the GPU.

The GPU implementation consumes 6, 9, and 19 times more energy than the FPGA’s for

VGA, CIF, and QCIF frame sizes respectively.

The results suggest that the FPGA implementation provides a low-energy solution at

near real-time performance. Here, we refer to frame rates that are over 30 fps as

achieving real-time performance. On the other hand, when energy consumption is not an

issue, the GPU implementation is superior, delivering much higher performance at

slightly better accuracy.

4.6 Conclusions

This work successfully compares energy, performance (in frames per second), and

accuracy for both FPGA and GPU implementations. Moreover, these 2 implementations

allow the user to modify the 2D FIR Filter at run-time. The results indicate that separable

2D FIR filtering implementations can deliver excellent accuracy for both the FPGAs and

the GPUs. However, based on energy consumption, FPGAs are preferred for low-energy

applications. On the other hand, GPUs should be considered for high-performance, high-

power (high-energy) applications.

 88

Chapter 5

Dynamic Energy, Performance, and Accuracy Optimization

and Management for Separable 2-D FIR Filtering for Digital

Video

Abstract

In this work, we develop a dynamically reconfigurable 2D FIR filtering system that can

meet real-time constraints in Energy, Performance, and Accuracy (EPA). To meet the

EPA constraints, we generate a set of Pareto-optimal realizations, described by their EPA

values and associated 2D FIR hardware description bitstreams. Dynamic management is

achieved by selecting Pareto-optimal realizations that meet the time-varying constraints.

For efficient implementation, the Pareto-optimal realizations are stored in DDR-SDRAM.

We validate the approach using three different 2D Gaussian filters. Filter realizations

are evaluated in terms of the required energy per frame, accuracy of the resulting image,

and performance in frames per second. We demonstrate dynamic EPA management using

a Difference of Gaussians (DoG) applied to a standar video sequence.

Index Terms—Dynamic Partial Reconfiguration, Field-programmable gate-array

(FPGA), Distributed Arithmetic, 2D separable FIR filtering.

5.1 Introduction

 89

The recent introduction of Dynamic Partial Reconfiguration (DPR) provides a framework

for managing hardware resources in real-time. In particular, the use of DPR enables the

development of dynamically reconfigurable systems that can meet constraints in energy,

performance, and accuracy (EPA).

In this work, we are interested in the development of a dynamically reconfigurable 2-

D FIR filtering system for digital video processing applications. Here, the focus on 2-D

FIR filtering comes from the large number of possible applications. The list of

applications includes image and video denoising, linear image and video enhancement,

image restoration, edge detection, face recognition, etc [65], [1]. Depending on the

application, we can have very different EPA requirements. Furthermore, we can have

real-time constraints that are imposed during the execution of a particular application. In

what follows, we present an example.

Suppose that we have the use of a 2-D FIR filtering system in a real-time video

analysis application. First, suppose that during real-time video acquisition, we determine

that there is nothing interesting in the scene. In such a case, we may want to save energy

until something interesting occurs. In this case, we may be willing to sacrifice accuracy

and performance to allow us to operate longer. In this case, we will want to dynamically

reconfigure the 2-D FIR filter to minimize energy consumption. Now, suppose that the

real-time video scene changes to something much more interesting. In this case, we want

to improve accuracy and performance while willing to sacrifice energy.

The example motivates the development of a management system that can be used to

dynamically reconfigure hardware resources to meet real-time constraints in energy,

performance, and accuracy. Here, we measure performance in terms of frames per second

 90

(fps) and estimate accuracy in terms of achieved PSNR on a test image. Dynamic

management is based on using dynamic partial reconfiguration to implement pre-

computed realizations. We are only interested in implementing realizations that are

Pareto-optimal in the EPA space (see Fig. 1, [8]). As shown in Fig. 1(b), dynamic EPA

management is achieved by swapping among Pareto-optimal realizations that meet or

exceed real-time constraints. More specifically, Pareto-optimal realizations will

simultaneously minimize energy and maximize accuracy and performance. When

multiple realizations meet the constraints, we will pick the one that also minimizes

energy consumption.

Energy (or power) and accuracy are intrinsically linked to performance. Dynamic

Energy-Performance-Accuracy (EPA) management has been hinted in some earlier work

(e.g. [3], [4]). Here, it was suggested that one of these three system properties could be

potentially modified via DPR. As the design flow for DPR matured, more work on this

regard has appeared (e.g. [5], [66], [7]). Power, performance and accuracy were variables

commonly changed using DPR by trading off one by the other. A dynamic arithmetic

example for controlling precision in real-time was presented in [66].

Pareto front

(a)

-fps-psnr

c
o
n
s
tr

a
in

ts

E
n
e
rg

y
 p

e
r

fr
a
m

e

-psnr

E
n
e
rg

y
 p

e
r

fr
a
m

e

-fps

(b)

Figure 5.1. Multi-objective optimization of the EPA space.
(a) 3-D Pareto Front. (b) 3 constraints applied to the 3-D Pareto Front. Minimum energy point is circled

 91

For efficient hardware realizations, we will focus on 2D FIR separable filtering. Here,

we note that separable filters allow for efficient implementations by means of two 1D

FIR filters. Furthermore, note that non-separable 2D filters can be expressed as a sum of

separable kernels through the use of Singular Value Decomposition [67]. This technique

can be either exact (no error introduced) or inexact (certain approximation error is

allowed). Thus, without loss of generality, we focus on separable 2D filters. This

separability property allows us to consider a DPR approach that keeps only one filter

(row or column) at a time and changes to the other 1D filter when needed.

We presented some related earlier work in [17], [68]. In [17], we presented an efficient

1D FIR Filtering system that combined the Distributed Arithmetic (DA) technique with

DPR. In the conference paper in [68], we presented the 2-D FIR Filter. The main

contributions of the current work include: i) an optimization framework for dynamic EPA

management of 2D FIR filters; ii) a platform to generate the EPA space of 2D FIR filters,

iii) an analysis of the behavior of the EPA space of 2D FIR filters when the parameters

and the filter types vary, and iv) a demonstration of dynamic EPA management on a

standard video sequence.

The proposed system relies on an efficient DPR controller. This is required since the

2D FIR filter is implemented through the use of DPR of 1D FIR filters. For research

related to the development of efficient DPR controller, we refer to [10] [7] [11] [12].

The rest of this chapter is organized as follows: Section 5.2 presents background and

related work. Section 5.3 provides details on the dynamic video filter implementation.

Section 5.4 presents the optimization framework for 2D filters. Section 5.5 presents the

experimental setup. Section 5.6 presents the results; and Section 5.7 lists the conclusions.

 92

5.2. Background and related work

Static FPGA image processing examples include MPEG buffer analyzer [69], JPEG

decoders [70], JPEG2000 encoders [71], face detection systems [72],[73], reconfigurable

embedded systems for real-time vision [74] and ultrasonic imaging [75], 2D Discrete

wavelet transform using the residue number system [76], and binary morphology

architectures [77].

More recently, we also have DPR implementations of image processing systems. In

[7], the authors presented a design that dynamically reconfigures among Discrete Cosine

Transform (DCT) modules of different sizes (e.g. 8x8, 5x5, 4x4). The different DCT

configurations are studied in terms of power, throughput, and image quality. A dynamic

systolic array accelerator for Kalman and Wavelet filters was presented in [13]. In [14],

the authors present a fingerprint image processing algorithm whose stages (e.g.,

segmentation, normalization, smoothing, etc) are time-multiplexed via DPR. A system

that can reconfigure among single-pixel operations is presented in [9]. The 3D Haar

Wavelet Transform (HWT) was implemented by dynamically reconfiguring a 1D HWT

core thrice in [15]. A JPEG2000 decoder where the blocks are dynamically swapped is

shown in [16].

For 2D FIR Filtering, the authors in [78] presented a multiply-and-add implementation

of separable Gaussian filters. Similarly, 2D separable filter implementations using

multiply-and-add approaches are presented in [59]. In [79], the authors present a novel

design methodology that decomposes a 2D filter into 2D separable and non-separable

 93

filters, and efficiently allocates the heterogeneous resources (embedded multipliers,

LUTs, FFs) on an FPGA.

There is also some related work on the implementation of 2D Filters based on DPR. In

related work in [58], a 2D filterbank implementation based on the run-time coefficient-

only reconfiguration of a single 1D FIR Filter was presented. In [80], the authors

presented a system that switches between a median filter (nonlinear) and an averaging

filter via DPR on a custom-built FPGA device (180nm CMOS technology). Similarly, the

authors in [81] used DPR management to switch between mean and median filter

implementations on a Xilinx® FPGA. In [82], the system dynamically reconfigures a 3x3

2D FIR filter by changing the coefficients. In earlier work in [68], a 2D FIR filter is

implemented by dynamically reconfiguring between the row and column filter.

There has also been some earlier research related to Dynamic EPA management. Early

work dealt with one or two objectives at a time. For instance, in [25], the authors analyze

the precision requirements of a subset of recursive algorithms. In [3], the authors propose

the use of reconfiguration to take advantage of perceptual tolerance and the non-

uniformity of video content in order to dynamically manage power consumption, over

which accuracy and performance depend on. Another example of power and accuracy

trade-off is [4], where the impact of numerical precision on power consumption is studied

for audio processing applications. In [83], the authors presented a static iterative

hardware implementation for particle filters that allowed run-time modification of the

number of particles (for trading off accuracy and performance), and the degree of

parallelism of some components (for trading off power and performance). This was

accomplished by tuning buffer controller parameters and interconnection switches. In

 94

[66], an application in dynamic arithmetic is presented where arithmetic cores are

measured in terms of their power, performance, and precision requirements. In [7], the

authors presented a configuration manager that can dynamically adapt DCTs of different

sizes based on power, performance and accuracy considerations. In earlier work in [68],

we presented a comparison of the energy-accuracy space of a 2D FIR Filter for both

FPGA with DPR and GPU implementations.

In the current work, we evaluate different realizations based on their Energy-

Performance-Accuracy characteristics. Here, each realization comes with its own EPA

values. However, we are only interested in realizations that are Pareto-optimal [8]. In

other words, we select EPA realizations that cannot be improved upon without sacrificing

in at least one of the EPA characteristics (see Fig. 5.1(a)). As discussed earlier, the

framework allows us to meet real-time constraints by simply selecting the realization

with minimum energy (see Fig. 5.1(b)).

As mentioned earlier, reconfiguration time overhead is a limiting factor in the use of

DPR. Techniques to reduce the DPR overhead include improving the access speed to the

configuration memory [10], reducing the size of the reconfigurable area [84], and

reducing the reconfiguration rate [85]. In [7], the authors improved the configuration

memory access speed by compressing the partial bitstreams while they are moved

through the slow parts of the system. In [12], the reconfiguration overhead is less of a

concern since the approach allows the processor to multi-task will full access to the

peripheral bus.

This work seeks to extend prior research in the area of 2D filtering by using the 2D

separable FIR filter implementation with DPR presented in [68], and study its EPA space.

 95

Furthermore, we propose a multi-objective framework to derive a set of optimal filter

realizations over which we can dynamically reconfigure to meet EPA constraints.

5.3 Video filtering using Dynamic Partial Reconfiguration

This section presents the architectural framework that allows the generation of different

2D FIR filter realizations. The approach is to consider realizations based on the number

of coefficients, the coefficient bit-width, and the output bit-width.

5.3.1 Distributed Arithmetic Stand-Alone 1D FIR Filter

We present the 1-D FIR filter core in Fig. 5.2. The core can be used to implement the row

or the column filter.

We next consider the largest possible format based on the input and coefficient

formats. First, we let NO represent the number of output bits with NQ fractional bits. The

output format is then expressed as [NO NQ]. Both symmetric and non-symmetric filters

are supported (see Fig. 5.3). Second, we let the fixed-point input format be [B B-1] and

the coefficients’ format be [NH NH-1], so that we normalize the inputs/coefficients to

[-1,1). The required largest output format is then given by:

 () []211log2 2 −++++−+ BNHNBNH (5.1)

FIR_DA
X_in B

E

NO

N N
H [NO NQ]O
P SYMMETRY

COEFFICIENTS

(from text f ile)

Y

L

sclr

B

Figure 5.2. FIR Filter Intellectual Property (IP) core. Here, N denotes the number of coefficients, NH the
coefficients’ bitwidth, B the input bitwidth, L the LUT input size (FPGA device dependent), [NO NQ] the

output fixed-point format, and OP the output truncation scheme.

 96

Clearly, we do not need to have an output format that exceeds the largest possible. On

the other hand, we are interested in investigating the EPA space for formats that do not

exceed (5.1). When considering smaller output formats, overflow is avoided by using

LSB truncation and saturation (controller by parameter OP, see Fig. 5.2).

We refer to [17] for details on how to implement each 1-D FIR filter core using

distributed arithmetic. In the extended core considered here, we have expanded the core

of [17] to also allow the number of input bits (B) to be independent of the coefficients

bitwidth (NH). Our new 1-D FIR core was summarized in [68]. Here, we want to provide

more implementation details for the new core of [68].

The FIR filter latency (register levels between input and output, or I/O delay, in

cycles) results in () 2loglog_ 22 ++= LMsizeILEVELSREG cycles, where (i)

Figure 5.3. High Performance FIR filter implementation. Nonsymmetric filter (left), symmetric filter
(right). B and NH are independent parameters here. Refer to [17] for details on the Filter Block

implementation. The L-input, LO-outputs LUT (LUT L-to-LO) is a 2L-word LUT

..
.

..
.

..
.

..
.

..
.

..
.

s[0]s[M-2]

s[0]:

s[L-1]:

X_in B

x[N-1] x[N-2] x[0]x[1]

X_in

x[0]

x[N-1] x[M +1]

x[M]x[M -1]x[1]

x[N-2]B

only when

N is even

B+1 B+1 B+1

E E E E

E

E E E

E E E

E

B B B B

s
B

s
0

Y

+

Adder

tree

s[M-1]

...s
B

s
1

s
0

..
.

..
.

-2B

20 +..
.

LUT L-to-LO

LUT L-to-LO

Filter B lock 0

s[L]:

s[2L-1]:

s
B

s
0s

B
s

1
s

0

..
.

..
.

-2B

20 +..
.

LUT L-to-LO

LUT L-to-LO

Filter B lock 1

s[M -L]:

s[M -1]:

s
B

s
0s

B
s

1
s

0

..
.

..
.

-2B

20 +..
.

LUT L-to-LO

LUT L-to-LO

Filter Block M /L-1

x[0]:

x[L-1]:

x
B-1

x
0

Y

+

Adder

tree

x
B-1

x
1

x
0

..
.

..
.

-2B-1

20 +..
.

LUT L-to-LO

LUT L-to-LO

Filter Block 0

x[L]:

x[2L-1]:

x
B-1

x
0x

B-1
x

1
x

0

..
.

..
.

-2B-1

20 +..
.

LUT L-to-LO

LUT L-to-LO

Filter Block 1

x[N-L]:

x[N-1]:

x
B-1

x
0x

B-1
x

1
x

0

..
.

..
.

-2B-1

20 +..
.

LUT L-to-LO

LUT L-to-LO

Filter Block N/L-1

...

...

...

...

...

LO=NH+log
2
LLO=NH+log

2
L

 97

 2NM = and 1+= BsizeI for symmetric filters, and (ii) NM = and BsizeI = for

non-symmetric filters. Here, note that sizeI is different from [17].

5.3.2 Dynamic 1D FIR Filter Core Architecture

The constant-coefficient filter is turned into an efficient and flexible FIR filter via DPR,

as described in [17]. Two dynamic realizations were presented: coefficient-only

reconfiguration and Full-filter reconfiguration. We focus on the full-filter reconfiguration

case, where the entire filter is included in the Partial Reconfiguration Region (PRR). This

allows us to generate many realizations for exploring the EPA space by allowing us to

modify all the parameters independently. The PRR has B+2 inputs and B outputs.

Fig. 5.4(a) shows an embedded system that allows for Full-filter reconfiguration. The

FIR Filter processor IP and the processor communicate via the 32-bit Fast Simplex Link

(FSL) bus. At power-up, the partial bitstreams and input data are stored in Compact Flash

(CF). During run-time, we store the input data, the DPR bitstreams of the filter

realizations, and the output in the DDR-SDRAM. The Ethernet core allows us to get new

partial bitstreams or new input streams from a PC and to send processed streams to the

PC. It also provides an interface for throughput measurements and system status.

Figure 5.4. Embedded system over which we can apply Dynamic EPA management. (a) Embedded system
that supports DPR. The memory holds the ‘n’ unique bitstreams that are needed for the Pareto front. (b) An

example of a Pareto front with ‘n’ points.

PPC/

µµµµBlaze

PLB

System

ACE
memory

Ethernet

MAC

ICAP

core

FIR Filter processor

FSL

CF

card

FIR IP

core

D
P

R
 c

tr
l

PRR

F
S

L

in
te

rf
a
c
e

ICAP

port

E
P

A

c
o

n
s
tr

a
in

ts

Performance

E
n
e
rg

y
 p

e
r

fr
a
m

e

Accuracy

PO 1

Pareto front

PO 3

PO n

bitstream

Module n

Module 1

Module 3

Module 4

PO 4

PO 2
Module 2

'n' Pareto points

'n' bitstreams

in memory

M
o
d
u
le

 n

M
o
d
u
le

 2

M
o
d
u
le

 1

(a) (b)

 98

The static region is defined by the logic outside the PRR. The PRR I/Os are registered

as the reconfiguration guidelines advise [86]. The partial bitstreams are read from a CF

card and stored in memory. To perform DPR, the bitstreams in memory are streamed to

the ICAP port [66].

During DPR, we want to allow changes to the I/O bit-width. This is accomplished by

including the FSL interface in the PRR. This also allows us to dynamically control the

input stream length (NX).

Each FIR convolution generates NX+N-1 values where N is the number of coefficients

and NX denotes the number of input values. The FSL interface offers four output choices

for storing the convolution results: (i) basic: first NX output samples, (ii) centered: NX

samples in the range 2:12 NNXN ++ , (iii) full: All the NX+N-1 samples, and (iv)

streaming: ∞=NX , infinite output samples.

For proper DPR operation, we include a DPR control block that addresses two issues

that arise due to the fact that the FSL interface is inside the PRR. First, during DPR, the

PRR outputs are disabled so as to avoid erratic FSL control behavior. Second, to avoid

erroneous results, the DPR control block resets the PRR flip-flops after each partial

reconfiguration. This is needed since the flip-flops are not reset automatically as it is the

case for full reconfiguration [86].

Fig. 5.5 shows the dynamic FIR Filter core along with the DPR control block. The

FSL bus uses two FIFOs (FIFOw and FIFOr) to communicate with the FIR filter core.

 99

5.3.3 2D separable FIR filtering

In the context of the embedded system of Fig. 5.4(a), a 2D separable FIR filter is

represented by 2 bistreams (one for the row and one for the column filter). A 2D filter is

implemented by cyclically swapping the row filter with the column filter via DPR [68].

The implementation of the 2D separable FIR filter includes the following

considerations:

1) The 2D filtering process usually requires the output image to be of equal size as the

input image. As a result, the dynamic FIR Filter IP of Section 5.3.2 needs to be in the

centered output mode.

2) The column filter is not necessarily the same as the row filter with coefficients

modified. It usually requires other parameters to be modified (e.g. number of coefficients,

I/O format). This requires a full filter reconfiguration.

F
S

L
_
S

_
R

e
a
d

F
S

L
_
S

_
E

x
is

ts

FSL Slave

F
S

L
_
S

_
D

a
ta

FIFOw

FSL Master

FIFOr

F
S

L
_
S

_
C

o
n
tro

l

F
S

L
_
S

_
C

lk

32

F
S

L
_
M

_
W

rite

F
S

L
_
M

_
F

u
ll

F
S

L
_
M

_
D

a
ta

F
S

L
_
M

_
C

o
n
tro

l

F
S

L
_
M

_
C

lk

32

... ...

FSM

X_in

8

E

8 Y

Filter core

sclr

FSM

DPR control - in DPR control - out

F
S

L
_
S

_
R

s
t

re
s
e
t PRR

FSL interface

Figure 5.5. PRR that includes the filter core for full-filter reconfiguration and the FSL interface, needed
for image filtering . B = 8.

 100

3) The length of the input signal in the row filtering case is different than in the

column case (unless the image is square). This means that we have to change NX to

match the input size.

4) Two reconfigurations are performed per frame. The row filter processes and stores

the result in a sequential row-by-row fashion, but the column filter does so in a sequential

column-by-column fashion. For the purposes of this work, the row-filtered output images

are transposed prior to column filtering.

5.3.4 General Filterbank implementations

The extension of the current framework for implementing general filterbanks is

straightforward. To do this, we only need to implement each filter using a 2-D separable

approximation (e.g. [67]). Here, a non-separable filter is approximated by a sum of

separable filters.

For implementing the full filterbank, we will have to sequentially apply DPR for each

filter’s row and column bitstream(s). This way we switch among 2D FIR filters. Note that

this does not incur in any performance penalty since we are always performing DPR

twice per frame. In other words, execution time grows linearly with the number of 2-D

separable filters. We refer to [58] for an example based on changing filter coefficients

(not full-filter reconfiguration).

5.3.5 Resource considerations

The proposed dynamic DPR approach only requires resources for a single 1-D FIR filter

at a time. Thus, this approach can yield significant savings over static implementations of

the full 2-D filters. Naturally, this assumes that the DPR controller does not require

 101

significant resources. It is expected that the DPR controller resource consumption will be

negligible when compared to the resources needed for larger 2-D filters.

5.4 Optimization framework for Video Filters

This section describes a framework for extracting an optimal set of 2D filter realizations

from the EPA space. Then, we provide a framework for selecting optimal realizations

that meet dynamic EPA constraints. We detail: i) how we generate a collection of FIR

filter possibilities, ii) how we measure energy, performance, and accuracy, iii) how we

select the Pareto-optimal filters, and iv) how we perform dynamic EPA management that

meets the EPA constraints.

5.4.1 Generation of the set of 2D filters

We want to devise a procedure that allows us to meet energy, performance, and accuracy

constraints by considering different filter implementations. We first create a large set of

filters from which the optimal set would be extracted. Note that this space is generated

offline.

This space of possible 2D FIR filter realizations is generated by varying the

parameters discussed in Section 5.3. Here, for each 2D filter, we assume N, L, NH to stay

the same for both row and column filters, while B and [NO NQ] can be different. By

varying the input stream length NX, which is usually different for both the row and

column filters, we can explore different frame sizes. The collection of EPA

measurements for each filter realization forms the “EPA space” of possibilities.

5.4.2 Performance measurements

 102

The performance of the embedded system depends on many factors (cache size,

processor instruction execution, bus usage, etc) that can easily change. For the purposed

of this work, the embedded system is just a generic test-bed. To avoid dependence on the

embedded system characteristics, we are interested in direct measurements of the

dynamic FIR core shown in Fig. 5.5. This is often referred to as the intellectual property

(IP) angle. Here, we also assume a continuous streaming of the input signal. In what

follows, we explain how we measure filter performance based on filter processing time

and reconfiguration time.

1) Filter processing time: The 2-D filter operates on a row-by-row or column-by-

column basis. We use the term stream to refer to a single row or column. After each

stream is processed, the register chain in the FIR filter is cleared, ready for a new stream.

Let the lengths of the input streams be defined as NXr and NXc for the row filter and

column filter respectively. Here, NXc is the number of rows, and NXr the number of

columns of the input video frame. For the time taken, we have:

() ()

() () cyclecols

cyclerows

TNXrLEVELScREGNcNXct

TNXcLEVELSrREGNrNXrt

××++=

××++=

_2sec

_2sec
 (5.2)

where Nr, Nc represent the number of row and column filter coefficients respectively.

REG_LEVELSr, REG_LEVELSc denote an initial latency (see Section 5.3.1) and cycleT is

the clock period. Here, note that 2Nr , 2Nc cycles are needed to provide centered

row/columns convolution outputs.

2) Reconfiguration Time: Based on the PRR bitstream size and the reconfiguration

speed, the reconfiguration time is given by:

 ()
()

()sec.Re
sec

perbytesspeedc

bytesinsizePRR
treconfig = (5.3)

 103

The maximum reconfiguration speed is achieved if there is a direct link between the

ICAP port and the memory that holds the partial bitstreams (400 MB/s for Virtex-4). If

the DPR bitstreams are loaded in the BRAM (local memory inside the FPGA), it is

possible to get the maximum reconfiguration speed [84]. However, the size and quantity

of partial bitstreams is limited by the available BRAMs. While BRAMs are rather limited

in Virtex-4 devices, there are significantly more BRAM resources in the (newer) Virtex-6

devices [87]. This provides the opportunity to build an ICAP controller that is directly

attached to BRAM. In what follows, we will assume the maximum reconfiguration speed

as reported in [84], [11].

3) Filter Performance: Based on the processing and reconfiguration times, we can

define the filter performance. A frame of pixels goes to both the row and column filter

and thru two partial reconfigurations. Thus, the performance (in frames per second) is

given by:

reconfigcolsrows ttt

fps
×++

=
2

1
 (5.4)

Please note that Eq. (5.4) only measures the performance of the FIR filter architecture

of Fig. 5.3. It does not account for the time needed to transpose the row-filtered image.

Here, we note that the transposition time is a function of the image size and the

embedded platform over which the system is tested. Thus, it does not depend on the DPR

filter architecture. For an embedded system example that includes transposition time, we

refer to [68]. Also, for completeness, in the results section, we will report the

transposition time.

5.4.3 Energy measurements

 104

In this sub-section, we detail the IP core energy consumption measurement. The IP core

consists of the PRR (FIR filter and the FSL interface) and the DPR control block. In the

context of our system, energy per frame provides more information than power since the

system goes through several stages that draw different amounts of power.

We will report the energy consumption in terms of energy spent for processing a

single frame. This is estimated as the sum of the products of the power and processing

times of the row filter, the column filter, and the reconfiguration process.

1) Power measurements: Power inside the FPGA is drawn by the following power

supply rails: (i) internal supply voltage VCCINT with current ICCINT, and (ii) auxiliary

supply voltage VCCAUX with current ICCAUX. Here, we will not consider the output

supply power since it is only associated with the power drawn by the external pins.

Power at each supply rail is divided into static and dynamic power. The static power is

drawn by the device when it is powered up, configured with user logic, and with no

switching activity. It is divided into: i) device static power: drawn by the device when it

is powered up and not programmed, and ii) design static power: drawn by the user logic

when the device is programmed and with no switching activity. The dynamic power is the

fluctuating power as the design runs; it is generated by the switching user logic and

routing [27].

For comparing among different cases, we will only consider the sum of the dynamic

and design static power while ignoring the device static power. The device static power

depends on the environment, the device size, and the device family. FPGA datasheets

provide the device static current as constant values (at 25º C) for each supply rail. For the

purposed of this work, for the XC4VFX20 Virtex-4 FPGA, the voltage supply values can

 105

be fixed while the device static current are constant and given by ICCINTQ=71mA and

ICCAUXQ=35mA. The FIR filter core power for row or column filtering is then given

by:

 ICCAUXpVCCAUXICCINTpVCCINTP colrow ×+×=/ (5.5)

where the currents are given by:

ICCAUXQICCAUXICCAUXp

ICCINTQICCINTICCINTp

−=

−=

Power measurement amounts to current measurement, assuming minimum fluctuation

of the voltage values. Direct power measurement, (e.g., [66]) requires custom-built

boards that allows for current measurement on the supply rails. Instead, power

consumption can be accurately estimated using software tools that are widely applicable

to all devices. To estimate the current measurements (at 25 ºC), we are using the Xilinx

Power Analyzer (XPA) that provides an accurate estimate based on simulated switching

activity of the place-and-routed circuit and exact utilization statistics [27].

We next consider the power consumption during dynamic partial reconfiguration.

Unfortunately, no software tool exists that can provide an estimate of this power

consumption. In [66], by direct current measurements, it was determined that the only

supply current that increased during DPR was ICCAUX (Virtex-II Pro and Virtex-4). The

DPR power (power drawn by the user logic and the increase due to DPR) is then

estimated by:

()

()increaseICCAUXVCCAUXPP

increaseICCAUXVCCAUXPP

colcolreconfig

rowrowreconfig

×+=

×+=

−

−
 (5.6)

In [66], the authors found that ICCAUX increased by 200mA and 25mA for the

Virtex-II Pro (XC2VP30) and Virtex-4 (XC4VFX12) respectively. Assuming the

 106

dynamic behavior of ICCAUX only depends on the user logic, we expect that these

current values will remain the same within the same device family.

2) Energy per frame: The total energy per frame is the sum of the energy consumed by

the following processes: i) row filtering, ii) turning a row filter into a column filter via

DPR, iii) column filtering, and iv) turning a column filter into a row filter via DPR. Using

the power and the processing times of each process, the energy per frame (in Joules) is

given by:

 () reconfigcolreconfigrowreconfig

colscolsrowsrows

tPP

tPtPframeperEnergy

×++

×+×=

−−

 (5.7)

5.4.4 Accuracy measurements

We measure the accuracy of the 2-D impulse response and the filtered images using the

peak signal-to-noise ratio (PSNR). This is given by:

∗=

MSE

ValueMAX
PSNR

2

10log10 (5.8)

where the MSE is the mean squared error between the fixed-point filter output and the

output of the filter implemented with double floating point precision.

5.4.5 Generation of optimal Filter realizations

Based on energy per frame, performance, and accuracy (EPA) measurements, we create

the EPA space, from which we extract the optimal realizations. A 2D filter realization is

defined to be optimal in the multi-objective (Pareto) sense if we cannot improve on its

EPA measurements without decreasing on at least one of them.

The goal is to minimize the energy per frame consumption and to maximize

performance and accuracy. For a given EPA space, the collection of all Pareto optimal

 107

realizations forms a Pareto front (see Fig. 5.1(a)). The points are plotted against energy,

and the negatives of performance and accuracy.

Fig. 5.1(a) shows the EPA space along with the Pareto front. Independent constraints

appear as planes in 3-D. Optimal realizations are then selected among the Pareto optimal

points that also satisfy the constraints (see golden points in Fig. 5.1(b)). Dynamic EPA

constraints satisfaction only requires that we select Pareto-optimal points when the

constraints change. The computation of the Pareto points is straightforward. Here, we are

interested in understanding how the FIR core parameters generate Pareto-optimal

realizations.

5.4.6 Dynamic EPA management based on DPR

In hardware, a 2D filter Pareto-optimal realization is represented by its two associated

bitstreams (row and column filters), and the EPA measurements. The realizations and

associated parameters are stored in memory. The dynamic EPA management framework

is shown in Fig. 5.4. Fig. 5.4(a) shows an embedded system that can dynamically modify

the 2D FIR filter realization. Fig. 5.4(b) illustrates how the system moves dynamically

along the Pareto front via DPR.

EPA constraints can be met by selecting solutions along the Pareto front. For certain

EPA constraints, we are left with the feasible set (see golden-colored points in Fig.

5.1(b)). Fig. 5.1(b) depicts a case in which a system sets a maximum value for the energy

per frame, but requires minimum levels of performance and accuracy. The 2D FIR filter

realizations represented by the golden points meet these specifications. The selected 2D

FIR filter realization is chosen to be the one that also minimizes the energy consumption.

 108

5.5 Experimental Setup

5.5.1 Generation of the set of 2D separable filters

The FIR core platform is tested using Gaussian filters of different spreads (sigmas) and

frequency characteristics. Gaussian filters are selected since they have several

applications in image processing (e.g., image restoration, image analysis, and computer

vision [65]).

To cover a variety of possibilities, we investigate the performance for: (i) isotropic,

low-pass, Gaussian filter with σ=1.5, (ii) anisotropic, low-pass, Gaussian filter with σx=4,

σy=2, and (iii) isotropic, band-pass filter based on a Difference of Gaussians (DoG), with

σ1=2, σ2=4. Please note that all of these filters are 2-D separable and symmetric. Fig. 5.6

shows the magnitude-frequency response of the three filters using double-precision

arithmetic.

5.5.2 FIR Filter core parameters

For the filters, we use symmetric implementations, with an arithmetic mode that uses

truncation of the LSB, followed by saturation. In all cases, we consider 8-bit input images

-pi

0

pi

-pi

0

pi
0

0.5

ω
x

DoG - σ
1
=2,σ

2
=4

ω
y

-pi

0

pi

-pi

0

pi
0

0.5

1

1.5

ω
x

Gaussian filter - σ
x
=σ

y
=1.5

ω
y

M
a
g
n
itu

d
e

(a) (b) (c)

-pi

0

pi

-pi

0

pi
0

0.5

1

ω
x

Gaussian f ilter - σ
x
=4,σ

y
=2

ω
y

Figure 5.6. Frequency-magnitude responses for (a) Isotropic low-pass Gaussian filter (σx=σy=1.5) using 24
double-floating point coefficients in the row and column filters. (b) Anisotropic low-pass Gaussian filter
(σx=4, σy=2) with 32 coefficients in each direction. (c) Band-pass, Difference of Gaussians (DoG) filter

(σ1=2, σ2=4) with 48 coefficients in each direction.

 109

(for row filter input bit-width). We also constrain the output to be in the same range as

the input [)1,1 +− (NQ=NO-1), and keep the same number of output bits for the row and

column filters. We define OB as the 2D filter output bitwidth.

For simplicity, we keep N, L, NH the same for both the row and column filters (see

Fig. 5.2 for definitions). Here, for the anisotropic cases, note that accuracy could be

improved if we considered separate numbers of coefficients for each dimension (as a

function of sigma). For the isotropic cases, the optimal case is to keep the number of

coefficients the same as we do here. We summarize the parameter values for N, NH, OB,

NXr, and NXc as shown in Table 5.1.

Table 5.1. Parameters combinations (108) for the set of 2D Filters. The choice of OB=8,16 is based on the

fact that the FSL bus width is 32 bits. We fix the LUT input size (L) for a given N.

Frame Size (NXc× NXr) 640x480 (VGA) 352x288 (CIF) 176x144 (QCIF)
Number of coefficients (N)
(LUT input size (L))

8 (4) 12 (6) 16 (4) 20 (5) 24 (6) 32 (4)

Coefficients bit-width (NH) 10 12 16
Output bit-width (OB) 8 16

5.5.3 Platform testing scheme

The 2D FIR filtering system of Fig. 5.4(a) was implemented on the ML405 Xilinx

Development Board that houses a XC4VFX20-11FF672 Virtex-4 FPGA. The selected

processor (PowerPC) is clocked at 300 MHz, peripherals run at 100 MHz, and the

128MB DDR-SDRAM memory space is cached. The system was tested with the Xilinx®

ICAP core.

 110

5.6 Results and analysis

5.6.1 Hardware resource utilization

1) FIR IP Utilization: Fig. 5.7 presents the numbers of slices required by the column

filter core (PRR and the DPR control block) as a function of the number of coefficients,

coefficient bit-width, and output bits. Refer to Table 5.1 for parameter combinations.

Here for OB=8, the row filter core resources are only slightly different (by 2-5 slices)

than what is shown for the column filter case. Also note that the ISE synthesizer was

directed to avoid optimizing the LUT values themselves, thus giving essentially the same

resource consumption for the three filter types. Furthermore, since the input size is fixed

at 8 bits, for the row filters (only), changing the output bits from 8 to 16 requires minimal

additional resources (1-8 slices).

The range of required resources in Fig. 7 varies significantly. For example, the use of

8 10-bit coefficients with 8-bit output bits requires the minimum of 273 slices. The use of

32 16-bit coefficients with 16-bit output bits requires the maximum of 2076 slices. As we

8
12

16
20

24
32

10

12

16
0

500

1000

1500

2000

2500

N
u
m

b
e
r

o
f
S

lic
e
s

OB = 8

OB = 16

273

1641

1791

293

333

2076

555

480

443

1164

913

996

Number ofcoefficients (N)Coefficient bit-width (NH)
Figure 5.7. Hardware resource utilization for the column filters. For all filter types, the resources depend on
the number of symmetric coefficients (N), the coefficient bitwidth(NH), and the output bits(OB). Hardware
resources for the row filters are very close to the required resources for the column filters for OB=8 (see text

for details).

 111

shall see, this strong variation in resource consumption will enable an effective

optimization of the EPA space.

2) Size of Reconfigurable Area: The PRR size is set to the largest possible filter

realization (be it row or column). This largest realization is given by the column filter

with N=32, NH=16, OB=16. The PRR occupies a tightly packed area of 24×94=2256

slices for a bitstream size of 183,754 bytes.

3) Embedded system resource utilization: Table 5.2 shows the hardware resource

utilization of the embedded FIR Filtering system of Fig. 5.4(a), detailed in Section 5.4

under the parameter setup of Table 5.1. The PRR includes a 1D filter and the FSL

interface. The largest realization occupies 2125 Slices (94% of the allocated space for the

PRR). This is slightly higher than what Fig. 5.7 reports since the results are obtained by

compiling the embedded system. For transposition of the row-filtered image, we have

4152µs, 1453µs, and 379µs for the VGA, CIF, and QCIF frame sizes respectively.

Table 5.3 shows the reconfiguration time for 3 scenarios. In our setup, we used the

Xilinx® ICAP core. We obtained an average reconfiguration speed of 16.28 MB/s.

Significant improvements can be obtained through the use of custom-built controllers as

reported in Table 5.3.

Table 5.2. Embedded FIR Filtering system resource utilization (Virtex-4 XCVFX20-11FF672). Largest

column filter: N = 32, NH=16, OB=16

Module Slice (%) FF (%) LUT %
PRR (column filter) 2125 25% 3680 21% 3812 22%
Static Region 4973 58% 5226 31% 5998 35%
Overall 7098 83% 8906 52% 9810 57%

Table 5.3. Reconfiguration time for a 178KB bitstream (XCVFX20-11FF672).

Scenario Reconfiguration speed Reconfiguration Time
Current 16.28MB/s 11.28ms

Custom [10] 295.4MB/s 0.622ms
Ideal ([84],[11]) 400MB/s 0.459ms

 112

Table 5.4. Implementation Comparisons for 2D FIR Filters

 DPR-DA
(proposed)

[78] [80] [81] [82] [59]

Filter type NCxNR 7x7 Gaussian 5x5 mean 5x5 mean 3x3 NCxNR
Separable Yes Yes Yes Yes No Yes

Coefficients
Variable at
run-time via DPR

Fixed Fixed Fixed
Variable at run-
time

Can be modified
at compilation
time

Size
NC, NR variable
at run-time

Fixed Fixed Fixed Fixed
NC, NR variable
at compilation
time

Implementation DA-based
Multiply-and-
add

Multiply-and-
add

Multiply-
and-add

Multiply-and-
add

Multiply-and-add

Test case

16x16 symmetric
8-bit input,
16-bit coeffs,
16-bit output

Symmetric
filter
8-bit input

Symmetric
filter
8-bit input

Symmetric
filter
8-bit input

8-bit input

15x15 symmetric
8-bit input,
12-bit coeffs,
12-bit output

Device Virtex-4 StratixII
Custom-made
FPGA

Virtex-4 Virtex-5 Virtex-II Pro

Bitstream size
(DPR designs)

120KB N/A 28 KB 242 KB N/A N/A

Resources
1098 Slices
0 BRAMs
0 DSP48

320 ALUT
7 M4K
16 DSP

246K logic
gates

3410 Slices
5590 LUTs
5 BRAM

406 LUTs, 402
FFs,
1 BRAM
9 DSP48E

727 slices
15 BRAMs
16 DSP48

Max. Clock
frequency (IP)

202 MHz 264 MHz - - 125 MHz 201 MHz

Notes
Column and row
filter are swapped
via DPR

Implemented
with
ALTERA
DSP Builder

Reported:
36.78 dB
(Lena)

Xilinx reference
design

4) Comparison with other systems: Table 5.4 compares the proposed approach with

related 2D FIR implementations found in the literature. For comparison purposes, we

chose the symmetric filter with N=16, NH=16, OB=16, requiring a 120KB partial

bitstream (if this filter were the largest realization).

A fundamental difference between the proposed 2-D implementation and the ones

reported in Table 5.4 is the use of a distributed arithmetic approach as opposed to

multiply-and-add based methods. Also, note that another advantage of the proposed

approach comes from the fact that we only implement one 1-D filter at a time. The use of

separable filtering by other approaches requires the allocation of resources for both the

row and column filters at all times.

 113

The closest related implementation is given by the Xilinx reference design [59] shown

in the last column of Table 5.4. Here, we note that the proposed approach requires more

slices but saves on the use of expensive DSP48 blocks and BRAM resources.

The filter reported by [78] uses an ALTERA device that makes use of Adaptive LUTs

(ALUT) which can pack more logic than a Xilinx slice. However, as for the Xilinx case,

this implementation makes use of 16 DSPs. Similarly, the proposed implementation does

compare favorably against [80], [81], and [82].

5.6.2 Multi-objective optimization of the EPA space

This section summarizes the results for EPA optimization for all filter types. For testing

different image sizes (VGA, CIF, QCIF), we use the cropped regions of the ‘lena’ image

as presented in Fig. 5.8. For the DoG filter, refer to Table 5.1 for the different parameter

combinations that are considered. For the considered spreads of the low-pass filter cases,

the quantized coefficients gave zero (or near-zero) values for N>24 (note that 12=3σmax,

σmax=4).

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

121

408

101 452

201

344

201 376

VGA

CIF

QCIF

Figure 5.8. Cropped regions for the ‘lena’ image. We have the following cropped image sizes: VGA,
CIF, and QCIF

 114

In what follows, we designate Pareto-optimal 2D filter realizations using ‘E’, ‘P’, ‘A’

for energy, performance, and accuracy values. Similarly, we use ‘L’ for the lowest-

possible value and ‘H’ for the highest. Thus, ‘HA’ refers to a realization with the highest

accuracy. The filter realization with the highest performance is denoted by ‘HP’. The

filter realization with lowest energy realization is given by ‘LE’.

Fig. 5.9 presents the results from EPA space optimization for all filter types and image

sizes. Clearly, when using only 8 output bits (OB=8), the lowest energy realizations and

lowest accuracy results (LE, LA) are obtained. The highest accuracy is achieved by

0

500

1000
40 60 80 100 120

0

0.2

0.4

0.6

0.8

fps

psnr(dB)

E
n
e
rg

y
 p

e
r

fr
a
m

e
(m

J
)

0

500

1000
20 40

60 80

0

0.2

0.4

0.6

0.8

fps

psnr(dB)

0

500

1000
20 40 60 80 100

0

0.5

1

fps

psnr(dB)

0

500

1000
60 80 100 120

0

0.2

0.4

0.6

0.8

fps

psnr(dB)

E
n
e
rg

y
 p

e
r

fr
a
m

e
(m

J
)

(a) (b) (c)

0

500

1000

60
80

100
120

0

0.2

0.4

0.6

0.8

fps

psnr(dB)

0

500

1000
40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

fps

psnr(dB)

(d) (e) (f)

640x480 640x480

640x480

352x288
352x288

352x288176x144 176x144

176x144

640x480 640x480 640x480

352x288 352x288 352x288

176x144

176x144
176x144

200400

OB = 16

OB = 8
200400

OB = 16

OB = 8 200400

OB = 16

OB = 8

200400

OB = 16

OB = 8
200400

OB = 16

OB = 8
200400

OB = 16

OB = 8

686fps, 51dB,

0.105mJ, N=8,NH=12

326fps

67.13dB

0.323mJ

N=24,NH=12

136.4fps

85.5dB

0.865mJ

N=32,NH=16

Low pass Gaussian f ilter, σ=1.5 Low pass Gaussian f ilter, σx
=4,σy

=2 Band pass (DoG) f ilter, σ1
=2,σ2

=4

HA

LE LE

HA HA

LE

LE

HA

HA

LE

HA

LE

67dB

137fps,

0.6874mJ,

N=24,NH=12

Figure 5.9. Pareto optimal realizations for the three filters and different image sizes. (a) Results for
isotropic low-pass filtering. (b) Results for anisotropic low-pass filtering. (c) Results for DoG filtering. (d)
Results for impulse response for isotropic low-pass filter. (e) Results for impulse response for anisotropic
low-pass filter. (f) Results for impulse response for DoG filter. For (a), (b), (c), refer to Fig. 8 for the input

images. Here, ‘LE’ refers to the lowest energy realization and ‘HA’ refers to the highest accuracy
realization. The Pareto optimal points are circled.

 115

increasing the number of coefficients, the coefficient bitwidth, and with 16 output bits.

As the frame size increases, we also see a significant increase in the required energy per

frame. Thus, we are presenting the Pareto-optimal results independently of each frame

size.

Figs. 5.10-5.12 show the EPA space and Pareto front for processing the ‘lena’ image

at CIF resolution. For each figure, we show the Pareto-optimal realizations as a function

of N, NH, and OB (OB=8 is grouped in a polygon). Corresponding to Fig. 5.10, Table 5.5

lists the Pareto-optimal realizations and their EPA values for the case of the isotropic

low-pass Gaussian filter. In Table 5.5, it is interesting to note that there is not much

variation in performance. Performance variations only occur for different frame sizes as

demonstrated in Fig. 5.9. Furthermore, with the exception of HP5, it is also interesting to

note that accuracy increases with energy consumption.

325

330

335
50 60 70 80 90 100 110

0.2

0.25

0.3

0.35

fps

psnr(dB)

325

330

335

50 60 70 80 90 100 110

0.2

0.25

0.3

0.35

fps

psnr(dB)

E
n
e
rg

y
 p

e
r

fr
a
m

e
(m

J
)

N = 24

N = 20

N = 16

N = 12

N = 8 325
330

NH = 16

NH = 12

NH = 10

LE, HP1, LA

HA, HE, LP

OB=8

(a) (b)

U1
HP2 HP3HP4HP5U2,U3 U4 U5 U6 HA, HE, LP

LE, HP1, LA

Figure 5.10. Pareto-optimal realizations for the isotropic low pass Gaussian filter (σ=1.5) for CIF resolution:
(a) Graph showing dependence on the number of coefficients N. (b) Graph showing dependence on the
coefficient bitwidth NH. Pareto-optimal points are circled. Refer to Table V for EPA measurements and

corresponding filter parameters. OB refers to the output bitwidth. Refer to text for definitions of ‘HP’, ‘LE’,
‘HA’, ‘LP’, ‘HE’, and ‘LA’.

 116

Even at the largest frame size (VGA), performance results are always over 100 fps.

For CIF resolution, performance exceeds 300 fps. Overall, for a fixed frame size,

performance does not change significantly. Thus, in what follows, we will restrict the

attention to the energy-accuracy space.

324

326

328

330

332

334

20
30

40
50

60
70

0.2

0.25

0.3

0.35

fps
psnr(dB)

E
n
e
rg

y
 p

e
r

fr
a
m

e
(m

J
)

324

326

328

330

332

334

20
30

40
50

60
70

0.2

0.25

0.3

0.35

fps
psnr(dB)

N = 24

N = 20

N = 16

N = 12

N = 8

OB=8332fps, 29.6dB, 0.156mJ
LE, HP, LA

326fps, 67dB, 0.323mJ
HA, HE, LP

(a) (b)

325
330

NH = 16

NH = 12

NH = 10

HP

HP

LP

LP

HA, HE, LP

LE, HP, LA

320

325

330

335

20

40

60

80

100

0.2

0.25

0.3

0.35

0.4

fpspsnr(dB)

320

325

330

335

20
40

60
80

100

0.2

0.25

0.3

0.35

0.4

fpspsnr(dB)

E
n
e
rg

y
 p

e
r

fr
a
m

e
(m

J
)

N = 32

N = 24

N = 20

N = 16

N = 12

N = 8

OB=8

LE, HP, LA

HA, HE

(a) (b)

325
330

NH = 16

NH = 12

NH = 10

HP

HP

LP

LP

332fps, 23.6dB, 0.155mJ

332fps, 23.6dB, 0.155mJ HA, HE

LE, HP, LA

Figure 5.11. Pareto-optimal realizations for anisotropic low-pass Gaussian filter (σx=4, σy=2) for CIF
resolution: (a) Graph showing dependence on the number of coefficients N. (b) Graph showing dependence
on the coefficient bitwidth NH. OB refers to the output bitwidth. Refer to text for definitions of ‘HP’, ‘LE’,

‘HA’, ‘LP’, ‘HE’, and ‘LA’.

Figure 5.12. Pareto-optimal realizations for DoG filter (σ1=2, σ2=4) for CIF resolution: (a) Graph showing
dependence on the number of coefficients N. (b) Graph showing dependence on coefficient bitwidth NH. OB
refers to the number of output bits. Refer to text for definitions of ‘HP’, ‘LE’, ‘HA’, ‘LP’, ‘HE’, and ‘LA’.

 117

Table 5.5. Pareto Optimal realizations for the isotropic, low-pass Gaussian filtering of the lena image at

CIF resolution (σx=σy=1.5). Realizations are sorted by energy consumption. Refer to text for acroynms.

U1-6 represent intermediate points.

 N/σ N NH OB psnr(dB) Energy per frame (mJ) fps

LE 5.33 8 12 8 51.2898 0.1548 332.19
HP2 5.33 8 16 8 51.2974 0.1661 332.19
U1 8.00 12 10 8 52.0870 0.1736 330.78
U2 8.00 12 12 8 52.1495 0.2003 330.78
U3 8.00 12 16 8 52.1500 0.2010 330.78

HP3 5.33 8 10 16 58.0208 0.2021 332.19
HP4 5.33 8 12 16 58.6846 0.2124 332.19
U4 8.00 12 10 16 70.2218 0.2287 330.78

HP5 5.33 8 16 16 58.7053 0.2414 332.19
U5 8.00 12 12 16 82.2992 0.2667 330.78
U6 8.00 12 16 16 95.5084 0.2724 330.78
HA 10.6 16 16 16 100.0664 0.2914 328.69

Table 5.6. Pareto Optimal realizations for DoG filtering of lena at CIF resolution (σ1=2,σ2=4). realizations

are sorted by energy consumption. Refer to text for acronyms. U1-11 represent intermediate points.

 N NH OB psnr(dB) Energy per frame (mJ)
LE 8 12 8 23.6345 0.1551
U1 12 10 8 31.7124 0.1780
U2 16 10 8 40.2984 0.2062
U3 20 10 8 49.5758 0.2139
U4 24 12 8 49.6447 0.2416
U5 24 10 8 49.8104 0.2508
U6 24 16 8 49.9967 0.2704
U7 32 10 8 51.6392 0.2781
U8 24 10 16 62.3297 0.2807
U9 24 12 16 63.1992 0.3276
U10 24 16 16 65.8199 0.3464
U11 32 12 16 78.7569 0.3586
HA 32 16 16 84.4371 0.3991

Fig. 5.13 shows the results from energy-accuracy space optimization for all filters.

Results refer to filtering the ‘lena’ image at CIF resolution. Table 5.6 lists the 2D Pareto-

optimal realizations for the DoG filter. Here, it is interesting to note that accuracy

increases with energy consumption and the number of output bits.

 118

5.6.3 Dynamic EPA management optimization

We next demonstrate dynamic EPA management on a video example. In this case, we

consider a time-varying sequence of energy-accuracy constraints for the DoG filter as

listed on the top of Fig. 5.14(a). The goal of the proposed dynamic management approach

is to meet the constraints by using Pareto-optimal realizations listed in Table 5.6.

20406080100

0.2

0.25

0.3

0.35

0.4

psnr(dB)

203040506070

0.2

0.25

0.3

0.35

psnr(dB)

406080100120

0.2

0.25

0.3

0.35

psnr(dB)

E
n
e
rg

y
 p

e
r

fr
a
m

e
(m

J
)

(a) (b) (c)

Low pass Gaussian f ilter, σ=1.5 Low pass Gaussian f ilter, σx=4,σy=2 Band pass (DoG) f ilter, σ1=2,σ2=4

fps(min) = 325.9

fps(max) 332.2

N = 24

N = 20

N = 16

N = 12

N = 8

Frame size:352x288
N = 32

N = 24

N = 20

N = 16

N = 12

N = 8

HA

LE LE

HA

HA

LE

U11
U10

U9

U8
U7 U6

U5
U4
U3

U2

U1

fps(min) = 325.9

fps(max) 332.2

fps(min) = 322.6

fps(max) 332.2

Figure 5.13. 2D Pareto-optimal realizations for Energy-Accuracy space for all filter types at CIF resolution:
(a) Isotropic, low-pass filter. (b) Anisotropic, low-pass filter. (c) DoG filter. In all cases, we also summarize
performance in terms of the minimum and maximum fps. Here, ‘LE’ refers to the lowest energy realization,

and ‘HA’ refers to the highest accuracy realization.

0 50 100 150 200 250 300
20

30

40

50

60

70

80

90

Frame #

P
S

N
R

 (
d
B

)

2030405060708090

0.2

0.25

0.3

0.35

0.4

psnr(dB)

E
n
e

rg
y
 p

e
r

fr
a
m

e
(m

J
)

�

�N=20, NH=10, OB=8

N=32, NH=16, OB=16

� N=24, NH=16, OB=16

N=8, NH=12, OB=8

�
N=24, NH=10

OB=16

�

�
Energy per frame

Accuracy (ps nr)

0.3 mJ

45dB

0.3mJ

max

min

--

min

65dB

� � � �
--

ma x

(a) (b)

avg=49.65

std=0.0977

avg=61.14

std=0.1425

avg=23.56

std=0.18

avg=66.18

std=0.5568

avg=88.45

std=0.0475

�

�

�

�

�

frame # 30

frame # 90

frame # 150

frame # 215

frame # 270

Figure 14. Dynamic EPA management example for DoG filtering of the foreman video sequence (CIF
resolution): (a) Sequence of 2D FIR realizations that meet dynamic constraints. The dynamic constraints are

displayed above the graph. (b) Video filtering accuracy achieved by dynamic EPA management.

 119

In the proposed approach, it is assumed that the accuracy results from the ‘lena’ image

will also work for the ‘foreman’ video sequence. More generally, we will need to know

that the video images used in estimating accuracy will correspond to the testing cases. As

we shall see, this assumption seems to apply here. Nevertheless, even if the assumption

does not hold, a user can dynamically adjust the constraints to match expectations. The

time-varying constraints are:

1. Require Accuracy≥45 dB and Energy≤0.3mJ per frame.

2. Maximize Accuracy subject to Energy≤0.3mJ per frame.

3. Minimize Energy consumption per frame.

4. Minimize Energy per frame subject to Accuracy≥65dB.

5. Maximize Accuracy.

Here, recall that when different realizations are possible, we select the one with

minimum energy (e.g. see point �). The management of the EPA constraints leads to the

2D FIR filter realizations shown in Fig. 5.14(a). Furthermore, as shown in Fig. 5.14(b),

the accuracy constraints are well met.

5.7 Conclusions

We have presented a 2D FIR filtering framework for determining Pareto-optimal

realizations in the Energy-Performance-Accuracy (EPA) space. We also demonstrate how

the use the Pareto-optimal realizations can be used to meet time-varying EPA constraints.

This provided for an effective method for dynamic EPA management.

 120

We presented results over three 2D Gaussian filters. In each case, we provide a

collection of Pareto-optimal solutions based on maximizing accuracy and performance,

while minimized consumption of energy per frame.

Dynamic EPA management is demonstrated on a standard video sequence. Here, it

was clearly demonstrated how energy-accuracy constraints and optimization

requirements can be easily met using a pre-computed set of Pareto-optimal realizations.

Future work can focus on the automatic generation of time-varying constraints. For

example, the detection of a scene change may trigger a requirement for an increase in

accuracy. Similarly, when a scene remains the same over a long period of time, we may

want to trigger a requirement for a decrease in energy consumption.

 121

Chapter 6

Concluding Remarks, Future Work, and Recommendations

6.1 Concluding remarks

A framework has been presented for the generation of optimal implementations in the

Power/Energy, Performance, and Accuracy (PPA/EPA) spaces. The framework allows

for dynamic PPA/EPA management for digital signal, image, and video processing

applications that can meet real-time PPA/EPA constraints.

The framework was tested on the development of single-pixel processors, 1-D FIR,

and 2-D FIR filtering architectures. In addition, dynamic management was performed

using Pareto-optimal realizations that can be used to meet time-varying PPA/EPA

constraints. This provided for an effective method for dynamic PPA/EPA management.

In the case of the pixel processor core, the Pareto optimal points were generated by

considering different number of pixel processor cores, number of inputs bits, number of

output bits, and clock frequencies. The validity of the approach was verified by the fact

that over 40% of the considered implementations were found to be Pareto-optimal.

As for the 2D FIR filtering system, the Pareto optimal points were generated by

considering different numbers of coefficients, coefficient bit-width, and output bitwidth.

Results were presented for three different 2D Gaussian filters. The approach worked in

the sense that the Pareto-optimal realizations were generated based on combinations of

different parameters, i.e. no parameter predominated.

 122

For both the pixel processor and the 2D FIR filter, a collection of Pareto-optimal

solutions (computed offline) was provided. These solutions were based on maximizing

accuracy and performance, while minimizing consumption of power/energy per frame.

Dynamic PPA/EPA management was demonstrated on a standard video sequence and

a standard image. Here, it was clearly demonstrated how power/energy-performance-

accuracy constraints and optimization requirements can be easily met using a pre-

computed set of Pareto-optimal realizations.

The results suggest that the general framework can be applied to a variety of digital

signal, image, and video processing systems. This framework can be greatly improved by

the automatic generation of time-varying constraints. For example, the detection of a

scene change may trigger a requirement for an increase in accuracy. Similarly, when a

scene remains the same over a long period of time, we may want to trigger a requirement

for a decrease in power/energy consumption. Ultimately, this framework will lead to

exciting new methods that allow for systems to only switch between architectures that are

optimal in the multi-objective sense.

6.2 Future Work and Recommendations

In what follows, I provide a set of recommendations for future work:

� The framework for dynamic management presented here has been tested on a

medium-sized Virtex-4 FPGA, where the static power consumption was not too much

of a problem. Newer high-end FPGA families (e.g., Virtex-5, Virtex-6, Virtex-7, and

Kirtex-7) exhibit very high static power consumption even for the smallest device in

the family. A way to deal with this issue is to use low-power FPGA families that

 123

support dynamic partial reconfiguration/dynamic frequency control (e.g., Spartan-6,

Artix-7). Another option is to consider dynamic reconfiguration with architectures that

exhibit large variations in resource consumption. In this case, dynamic power

consumption variation will be comparable to the static power consumption. This

second approach will still not reduce device static power. Thus, the basic

recommendation here is to consider re-implementation on the latest, low-power device

(e.g., Artix-7).

� Direct current measurement requires custom-built boards that provide access to the

power rails. Newer FPGAs can measure voltage in real-time via the System Monitor,

so the power measurement capability depends on the board. Most commercial boards

allow for power measurement on only one rail (if any). As a result, throughout this

Dissertation, the Xilinx Power Analyzer was used, whose accuracy has been

corroborated with direct power measurements available in the ML605 Development

Board (the power regulators provide information through I2C). Thus, we consider the

use of power estimation software tools to be the most convenient option that provides

decent estimates and allows us to apply the framework to any device.

� It would be interesting to test the approach using different objective functions. Instead

of PSNR, we can use SSIM (structural similarity). Instead of frames per second,

bandwidth could be more informative. Note that the conversion from frames per

second to bandwidth is straightforward. We just need to use the number of frames per

second, the frame size, and the I/O bitwidth to determine the I/O bandwidth. Instead of

energy/power, we might also want to use hardware resource consumption.

 124

� There are limits to the use of dynamic partial reconfiguration. The basic idea is that

DPR makes sense when the dynamic reconfiguration rate overhead is low. Thus, it

does not make sense to have high reconfiguration rates. For the architectures shown,

we studied the effect of the reconfiguration rate ([9], [17]) and found that

reconfiguring made sense for our applications. Therefore, before attempting to apply

this proposed framework, one should assess whether the reconfiguration rate makes

sense. On the other hand, the reconfiguration overhead is not a problem for dynamic

frequency control since it can be accomplished in tens of cycles. Alternatively,

dynamic reconfiguration time can be reduced by context switching. Here, dynamic

reconfiguration would require two different regions. This allows the system to work

with one region while dynamically reconfiguring the other. Clearly, this requires that

we have prior specification of the requirements for the dynamic region, additional

resources overhead, and a DPR controller that can operate in parallel with the rest of

the system.

� FPGA vendors should develop methods to speed up the process of dynamic partial

reconfiguration, including: i) increasing the bit-width of the ICAP from 32 to 64 bits,

ii) allowing for a dedicated bus that supports data streaming at high frequencies (e.g.

200 MHz), iii) allowing the streaming of compressed partial bitstreams to the ICAP.

The reconfiguration overhead can be made negligible by the application of these three

techniques, and it would enable a new frontier where DPR becomes a common

technique. Naturally the usefulness of this approach assumes that the DPR controller

overhead should remain relatively low as compared to the whole design.

 125

� Another recommendation for FPGA vendors is to develop a built-in capability to

measure current for all the FPGA power rails. Currently, some Xilinx® FPGAs offer

voltage measurement, and current measurement capability depends on the board. This

would certainly take dynamic power management a step further.

� The reconfiguration controller presented only accepts external constraints, but does

not generate them. Future work will deal with the devising of a reconfiguration

controller that is content-based and power-aware (System Monitor). It will reconfigure

based on both dynamic hardware sensing and dynamic software constraint generation.

Dynamic hardware sensing can be based on real-time measurement of power.

Dynamic software constraints can be generated from video scene changes, or a

detection of an object of interest, etc.

 126

Appendix A

VHDL code description

A.1 Pixel Processor and 1D FIR filter architectures

The parameterized VHDL code for these architectures is depicted in Fig. A.1. Both cores

are fully parameterized architectures that allow for the creation of a large set of hardware

realizations. The pixel processor architecture was presented in Fig. 2.1; the file

‘LUT_NItoNO.vhd’ implements a NI-to-NO LUT, and the file ‘LUT_NIto1.vhd’

implements a NI-to1 LUT. The 1D FIR architecture was presented in Fig. 5.3; the file

‘fir_block.vhd’ describes the FIR filter block, and the file ‘LUTn.vhd’ describes a LUT

with L inputs and LO outputs.

As an example of parameterization, Fig. A.2 shows the entity VHDL declaration of the

pixel processor core with all the generic parameters.

Figure A.1 VHDL code for Pixel Processor and 1D FIR filter

Figure A.2 VHDL code (‘entity’ declaration) for the Pixel Processor architecture

pix_processor.vhd

LUT_NItoNO.vhd

LUT_NIto1.vhd (recursive)

fir_da.vhd

fir_block.vhd

LUTn.vhd

Pixel Processor 1D FIR architecture

(a) (b)

 127

Recall that the utilization of these cores within an embedded system requires the

development of hardware interfaces, which were developed in VHDL. In the case of the

pixel processor, the interface was connected to the PLB bus with burst support (see Fig.

2.5). For the 1D FIR filter processor, an interface that connects to the Fast Simplex Link

bus, was designed around the 1D FIR filter core (see Fig. 3.8). Finally, for the 2D FIR

filter processor, the interface was attached to the Fast Simplex Link Bus. Here, the 2D

filter is implemented by cyclic swapping of the row and column filters (see Fig. 4.2)

A.2 Dynamic Frequency Control core

A core that allows the dynamic modification of the frequency of operation was described

in Fig. 2.3. The core is made of two VHDL files. The first file (‘dcm_ctrl.vhd’) is a stand-

alone DCM control core (not connected to any bus) that allows the for the run-time

modification of frequency. The second file (‘dcmctrl_DCRslv.vhd’) is a Device Control

Register (DCR) slave interface around the stand-alone DCM control core that receives

orders from the embedded processor so as to be able to manage the DCM control core.

 128

Appendix B

Reconfigurability on FPGAs

An FPGA is a programmable device consisting of an array of programmable logic blocks,

surrounded by programmable I/O blocks, and a programmable interconnection network.

A function to be implemented in FPGA is partitioned in modules, each of which can

be implemented in a logic block. The logic blocks are then connected together using the

programmable interconnection. All three basic components of an FPGA (logic blocks,

I/O blocks, and interconnection network) can be re-programmed by the user [88].

B.1 Dynamic Partial Reconfiguration

Dynamic Partial Reconfiguration enables the run-time allocation and de-allocation of

hardware resources by modifying or switching off portions of the FPGA while the rest

remains intact, continuing its operation.

The operating FPGA design is modified by loading a partial configuration file, usually

a partial bit file. After a full bit file configures the FPGA (full reconfiguration), partial bit

files can be downloaded to modify reconfigurable regions in the FPGA without

compromising the integrity of the applications running on those parts of the device that

are not being reconfiguration. Fig. B.1 illustrates the idea where the Block A (user-

defined reconfigurable region) can be modified by any of the partial bit files (A1.bit,

A2.bit, A3.bit, or A4.bit). The static region remains functioning and it is completely

unaffected by the loading of a partial bit file [86].

This technology can dramatically extend the capabilities of FPGAs. In addition to

potentially reducing size, weight, power, and cost, dynamic partial reconfiguration

 129

enables new types of FPGA designs that provide efficiencies not attainable with

conventional design techniques. The main FPGA vendors, ALTERA and Xilinx provide

commercial support for this technology.

B.2 Technology that enables reconfiguration (full/partial) of FPGAs

Current ALTERA and Xilinx FPGAs use a memory-based paradigm for computations as

well as for the realization of interconnections. Among the programmable technologies

available, we can list SRAM, EEPROM, and Flash-based [88]. SRAM devices, the

dominate technology for FPGAs, are based on static CMOS memory technology, and are

re- and in-system programmable.

A4.bit

A3.bit

Reconfig

Block "A"

FPGA

Static Region
A2.bit

A1.bit

Figure B.1. Basic premise of Partial Reconfiguration ([86])

Figure B.2. Basic Xilinx SRAM cell [88].

 130

In an SRAM-based FPGA, the states of the logic blocks, I/O blocks, and

interconnections, are controlled by the output of SRAM cells (figure B.2). The basic

SRAM configuration cell (Fig. B.2) is constructed from two cross-coupled inverters and

uses a standard CMOS-process. The major advantage of this technology is that FPGAs

can be configured indefinitely. A new connection or function is implemented by a change

on the SRAM cells values. Moreover, the device can be reconfigured in-circuit (while it

is mounted on the circuit board with the other components) very quickly and on-the-fly

(while the device is operating).

A major disadvantage of SRAM programming technology is its large area. It takes at

least five transistors to implement an SRAM cell, plus at least one transistor to serve as

programmable switch [89]. Furthermore, the device is volatile, i.e. the configuration of

the device stored in the SRAM-cells is lost if the power is cut off. Thus, external storage

or non-volatile devices such as CPLDs, EPROM or Flash devices, are required to store

the configuration and load it into the FPGA-device at power-on.

 131

Appendix C

Related publications

This section lists published work related with the dissertation: A system that reconfigures

among single-pixel operations is presented in [C.1]. A FIR filter implemented with

distributed arithmetic, whose coefficients can be modified, is presented in [C.2]. A

platform that allows for rapid swapping of image processing algorithms is presented in

[C.3]. A revamped version of the FIR filter, where it is also possible to modify the entire

filter structure is presented in [C.4]. Preliminary results of a 2D separable filterbank are

presented in [C.5]. Some ancillary work has also been presented. A dynamically

reconfigurable computing model for video processing applications is presented in [C.6].

In addition, [C.7] describes a system that can automatically obtain partial bitstreams at

running-time via the Ethernet link. In [C.8], a comparison of the energy-accuracy space

of a 2D FIR Filter for both FPGA with DPR and GPU implementations is presented.

[C.1] D. Llamocca, M. Pattichis, and A. Vera, “A Dynamically Reconfigurable Parallel

Pixel Processing System”, in Proceedings of 2009 International Conference on

Field Programmable Logic and Applications, Prague, Czech Republic, Sep. 2009.

[C.2] D. Llamocca, M. Pattichis, and A. Vera, “A dynamically reconfigurable platform

for fixed-point FIR filters,” in Proceedings of the International Conference on

ReConFigurable Computing and FPGAs (ReConFig ’09), pp. 332–337, Cancun,

Mexico, Dec. 2009.

[C.3] D. Llamocca, M.S. Pattichis, and G. A. Vera, “A dynamic computing platform for

image and video processing applications,” in Proceedings of the 43rd Asilomar

Conference on Signals, Systems and Computers, pp. 327–331, Pacific Grove, CA,

USA, Nov. 2009.

 132

[C.4] D. Llamocca, M. Pattichis, and G. Alonzo Vera, “Partial Reconfigurable FIR

Filtering system using Distributed Arithmetic”, International Journal of

Reconfigurable Computing, vol. 2010, Article ID 357978, 14 pages, 2010.

[C.5] D. Llamocca, M. Pattichis, “Real-time dynamically reconfigurable 2-D

filterbanks”, in Proceedings of 2010 IEEE Southwest Symposium on Image

Analysis & Interpretation, Austin, TX, May. 2010.

[C.6] G. A. Vera, D. Llamocca, M. S. Pattichis, and J. Lyke, “A dynamically

reconfigurable computing model for video processing applications,” in

Proceedings of the 43rd Asilomar Conference on Signals, Systems and

Computers, pp. 327–331, Pacific Grove, Calif, USA, November 2009.

[C.7] D. Llamocca, M.S. Pattichis, G. A. Vera, and J. Lyke, “Dynamic Partial

Reconfiguration through Ethernet Link”, in Proceedings of the 2010 AIAA

Infotech Conference at Aerospace, Atlanta, GA, USA, April 2010.

[C.8] D. Llamocca, C. Carranza, and M. Pattichis, “Separable FIR Filtering in FPGA

and GPU implementations: Energy, Performance, and Accuracy considerations”,

in Proceedings of 2011 International Conference on Field Programmable Logic

and Applications FPL’2011, Chania, Greece, Sep. 2011.

Other publications:

[C.9] A. Vera, D. Llamocca, M. Pattichis, W. Kemp, D. Alexander, and J. Lyke, “Dose

Rate Upset Investigations on the Xilinx IV Field Programmable Gate Arrays”, in

Proceedings of the 2007 IEEE Radiation Effects Data Workshop, Honolulu, HI,

Oct. 2007.

[C.10] A. Vera, D. Llamocca, J. Fabula, W. Kemp, R. Marquez, W. Shedd, D.

Alexander, “Xilinx Virtex V Field Programmable Gate Array Dose Rate Upset

Investigations”, in Proceedings of the 2008 IEEE Radiation Effects Data

Workshop, Tucson, AZ, Oct. 2008.

[C.11] I. Steinwart, J. Theiler, and D. Llamocca, “Using support vector machines for

anomalous change detection”, in Proceedings of the 2010 IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, July 2010.

 133

References

[1] Alan Bovik ed., The Essential Guide to Video Processing, Academic Press,

Elsevier, 2nd Edition, 2009.

[2] A. Laffely, J. Liang, P. Jain, N. Weng, W. Burleson, R. Tessier, “Adaptive System

on a Chip (aSoC) for Low Power Signal Processing”, in Proc. of the Asilomar

Conference of Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2001.

[3] W. P. Burleson, P. Jain, and S. Venkatraman, “Dynamically parameterized

architecture for power-aware video coding: Motion estimation and DCT”, in Proc.

2nd USF Int. Workshop Digital and Computational Video, 2001, pp. 8-12.

[4] R. Chamberlain, E. Hemmeter, R. Morley, and J. White, “Modeling the power

consumption of audio signal processing computations using customized numerical

representations”, in Proc. of the 36th Annual Simulation Symposium, pp..249-255,

April 2003.

[5] J. Noguera, I.O. Kennedy, “Power Reduction in Network Equipment through

Adaptive Partial Reconfiguration”, in Proceedings of the 2007 International

Conference on Field Programmable Logic and Applications (FPL’07), pp. 240-245,

Amsterdam, The Netherlands, Nov. 2007.

[6] G.A. Vera, “A dynamic arithmetic architecture: precision, power, and performance

considerations”, Ph.D. Dissertation, University of New Mexico, Albuquerque, NM,

USA, May 2008.

[7] J. Huang, J. Lee, “A Self-Reconfigurable Platform for Scalable DCT Computation

using compressed partial bitstreams and BlockRAM Prefetching”, IEEE Trans. On

Circuits and Systems for Video Technology, vol. 19, pp. 1623-1632, Nov. 2009.

[8] S. Boyd and L. Vanderberghe, Convex Optimization. Cambridge, U.K: Cambridge

Univ. Press, 2004.

[9] D. Llamocca, M. Pattichis, and A. Vera, “A Dynamically Reconfigurable Parallel

Pixel Processing System”, in Proceedings of 2009 International Conference on

Field Programmable Logic and Applications FPL’2009, Prague, Czech Republic,

Sep. 2009.

 134

[10] C. Claus et al., “A multi-platform controller allowing for maximum dynamic partial

reconfiguration throughput”, in Proceedings of the International Conference on

Field Programmable Logic and Applications (FPL’08), pp.535-538, Heidelberg,

Germany, Sept. 2008.

[11] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-Time Partial Reconfiguration

Speed Investigation and architectural design space exploration”, in Proceedings of

the International Conference on Field Programmable Logic and Applications

FPL’2009, Prague, Czech Republic, Sept. 2009.

[12] J.C. Hoffman and M.S. Pattichis, “A High-Speed Dynamic Partial Reconfiguration

Controller using Direct Memory Access through a Multiport Memory Controller

and Overclocking with Active Feedback”, International Journal of Reconfigurable

Computing, vol. 2011, Article ID 439072, 10 pages, 2011.

[13] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically

reconfigurable systolic array accelerators: A case study with extended Kalman filter

and discrete wavelet transform algorithms”, Computers & Digital Techniques, IET,

vol. 2, issue 2, March 2010.

[14] M. Fons, F. Fons, and E. Cantó, “Fingerprint Image processing acceleration through

run-time reconfigurable hardware”, IEEE Trans. On Circuits and Systems II:

Express Briefs, vol. 47, No. 12, Dec. 2010.

[15] A. Afandi, A. Abbes, “Efficient reconfigurable architectures for 3D medical image

compression”, in Proceedings of International Conference on Field-Programmable

Technology, Sydney, Australia, Dec. 2009.

[16] S. Bouchoux, E.-B. Bourennane, and M. Paindavoine, “Implementation of

JPEG2000 arithmetic decoder using dynamic reconfiguration of FPGA”, in

Proceedings of the 2004 International Conference on Image Processing ICIP’04,

Singapore, Oct. 2004.

[17] D. Llamocca, M. Pattichis, and G. Alonzo Vera, “Partial Reconfigurable FIR

Filtering system using Distributed Arithmetic”, International Journal of

Reconfigurable Computing, vol. 2010, Article ID 357978, 14 pages, 2010.

 135

[18] S. Sowmya, R. Paily, “FPGA Implementation of Image Enhancement Algorihtms”,

in Proceedings of the International Conference on Communications and Signal

Processing ICCSP’2011, Kozhikode, India, Feb. 2011.

[19] LogiCORE IP Gamma Correction (DS719), v3.0 ed., Xilinx Inc., 2100 Logic Drive,

San Jose, CA, September 2010.

[20] Video and Image Processing Suite User Guide, v11.0 ed., Altera Corp, 101

Innovation Drive, San Jose, CA, May 2011

[21] Dong-U Lee, R.C.C. Cheung, J.D. Villasenor, “A flexible architecture for precise

gamma correction”, IEEE Trans. On Very Large Scale Integration (VLSI) Systems,

vol. 15, issue 4, pp.474-478, April 2007.

[22] Wang Bing-jian, Liu Shang-qian, Li Qing, and Zhou Hui-xin, “A real-time contrast

enhancement algorithm for infrared images based on plateau histogram”, Infrared

Physics and Technology, Elsevier, pp. 77-82, July 2005.

[23] A. M. Alsuwailem and S.A. Alshebeili, “A new approach for real-time histogram

equalization using FPGA”, in Proceedings of International Symposium on

Intelligent Signal Processing and Communication Systems, Dec. 2005.

[24] M. Chandrashekar, U. N. Kumar, K. S. Readdy, and K.N. Raju, “FPGA

implementation of high speed infrared image enhancement”, International Journal

of Electronic Engineering Research, vol. 1, no. 3, pp. 1480-1485, 2002.

[25] K. Bondalapati, V.K. Prasanna, “Dynamic precision management for loop

computations on reconfigurable architectures”, in Proceedings of the Seventh

Annual IEEE Symposium on Field-Programmable Custom Computing Machines,

Napa Valley, CA, April 1999.

[26] Virtex-4 FPGA User Guide (UG070), v2.6 ed., Xilinx Inc., 2100 Logic Drive, San

Jose, CA, December 2008.

[27] Power Methodology Guide (UG786), v13.1 ed., Xilinx Inc., 2100 Logic Drive, San

Jose, CA, March 2011.

[28] Virtex-4 FPGA Data Sheet: DC and Switching Characteristics (DS302), v3.3 ed.,

Xilinx Inc., 2100 Logic Drive, San Jose, CA, June 2008.

 136

[29] M. Hatamian, and G.L. Cash, “A 70 MHz 8 bit x 8 bit parallel pipelined multiplier

in 2.5 µm CMOS”, IEEE J. Solid-State Circuits, vol. SC-21, pp. 505-513, Aug.

1986.

[30] K.G. Smitha, and A. P. Vinod, “A reconfigurable high-speed RNS-FIR channel

filter for multi-standard software radio receivers”, in Proceedings of 11
th

 IEEE

Singapore International Conference on Communication Systems, Jan. 2009, pp

1354-1358.

[31] Gallazzi, F., Torelli, G., Malcovati, P., and Ferragina, V., “A digital multistandard

reconfigurable FIR filter for wireless applications”, Proceedings of 14
th

 IEEE

International Conference on Electronics, Circuits and Systems, 2007, pp 808-811.

[32] H. Bruce, R. Veljanovski, V. Owall, and J. Singh, “Power optimization of a

reconfigurable FIR-filter”, IEEE workshop on Signal Processing Systems, 2004.

[33] R. Mahesh, and A.P. Vinod, “New reconfigurable architectures for implementing

FIR filters with low complexity”, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, January 2010, pp 275-288.

[34] C. Chou, S. Mohanakrishman, and J. B. Evans, “FPGA implementation of digital

filters”, in Proceedings of Signal Processing Applications Technol., Santa Clara,

CA, 1993.

[35] T. Do, H. Kropp, C. Reuter, and P. Pirsch. “A Flexible Implementation of High-

Performance FIR Filter on Xilinx FPGAs”; Field-Programmable Logic and

Applications. From FPGAs to Computing Paradigm: 8th International Workshop,

FPL '98, 1998, pp. 441-445.

[36] S. White, “Applications of Distributed Arithmetic to Digital Signal Processing: A

Tutorial Review”, IEEE Transactions on Acoustics, Speech and Signal Processing

Magazine, 4-19, 1989.

[37] A. Vera, D. Llamocca, M. Pattichis, and J. Lyke, “A Dynamically Reconfigurable

Computing Model for Video Processing Applications”, in Proceedings of the 2009

Asilomar Conference on Signal, Systems and Computers, Pacific Grove, CA, Nov.

2009.

 137

[38] D. Llamocca, M. Pattichis, A. Vera, “A Dynamically Reconfigurable Platform for

Fixed-Point FIR Filters”, in Proceedings of ReConFig’09, Cancun, Mexico, Nov.

2009, pp. 332-337.

[39] E. Tan, A. Wahab, and K. Wong, “Programmable DSP systems using FPGA,” in

Proceedings of the IEEE conference on Digital Signal Processing Applications, vol.

2, 1996, pp. 654–658.

[40] R. Sidhu, and V. K. Prasanna, “Efficient Metacomputation Using Self-

Reconfiguration”, Field-Programmable Logic and Applications. Reconfigurable

Computing Is Going Mainstream 12th International Conference, FPL 2002,

Montpellier, France, 2002, pp. 85-92.

[41] Delahaye, J., Palicot, J., Moy, C., and Leray, P., “Partial Reconfiguration of FPGAs

for Dynamical Reconfiguration of a Software Radio Platform”, in Proceedings of

2007 Mobile and Wireless Communications Summit, Budapest, Hungary, July 2007,

pp. 1-5.

[42] T. Rissa, R. Uusikartano, and J. Niittylahti, “Adaptive FIR filter architectures for

run-time reconfigurable FPGAs”, in Proceedings of 2002 IEEE International

Conference on Field-Programmable Technology, 2002, pp 52-59.

[43] C. Choi, and H. Lee, “A Reconfigurable FIR Filter Design on a Partial

Reconfigurable Platform”, in Proceedings of ICCE’06, Hanoi, Vietnam, Oct. 2006,

pp. 352-355.

[44] C. Choi, and H. Lee, “A self-reconfigurable adaptive FIR filter system on Partial

Reconfigurable Platform”, in IEICE Transactions in Information and Systems, Vol.

E90-D, No. 12, Dec. 2007, pp. 1932-1938.

[45] Ken Chapman, Xilinx's Application Note 054, “Constant Coefficient Multipliers for

the XC4000E”, Xilinx Inc., 2100 Logic Drive, San Jose, CA, 95124, Dec. 1996.

[46] “Distributed Arithmetic FIR Filter (DS240)”, v9.0 ed., Xilinx Inc., 2100 Logic

Drive, San Jose, Ca, 05124, April 2005.

[47] K. Bruneel, F. Abouelella, and D. Stroobandt, “Automatically mapping applications

to a self-reconfiguring platform”, in Proceedings of Design, Automation, and Test

in Europe, 2009.

 138

[48] S. Chevobbe, and S. Guyetant, “Reducing Reconfiguration Overheads in

Heterogeneous Multicore RSoCs with Predictive Configuration Management”,

International Journal of Reconfigurable Computing, Volume 2009 (2009), Article

ID 390167.

[49] “Implementing FIR Filters in FLEX Devices (AN73)”, v1.01 ed., Altera Corp., 101

Innovation Drive, San Jose, CA, 95134, Feb. 1998.

[50] “Fast Simplex Link (FSL) Bus Product Specification (DS449)”, v2.11a ed., Xilinx

Inc., 2100 Logic Drive, San Jose, CA, 95124, Jun. 2007.

[51] “Early Access Partial Reconfiguration User Guide for ISE 9.204i (UG208)”, v1.2

ed., Xilinx Inc., 2100 Logic Drive, San Jose, CA, 95124, Sep. 2008.

[52] A. DeHon, R. Huang, and J. Wawrzynek, “Hardware-assisted fast routing”, in Proc.

IEEE FCCM’92, Apr. 2002.

[53] Sahambi, J.S., Tandon, S.N., and Bhatt, R.K.P., “Using wavelet transforms for ECG

characterization. An online digital signal processing system”, IEEE Engineering in

Medicine and Biology Magazine, vol. 16, Issue 1, pp. 77-83, 1997.

[54] E. Kyriacou, C. Pattichis, M. Pattichis, A. Jossif, L. Paraskeva, A. Konstantinides,

and D. Vogiatzis, "An m-Health Monitoring System for Children with Suspected

Arrythmias," in Procedings of the 29th Annual International Conference of the

IEEE EMBS, 2007, pp. 1794-1797.

[55] A. Panayides, M.S. Pattichis, C.S. Pattichis, C.P. Loizou, M. Pantziaris, A.

Pitsillides, "Robust and Efficient Ultrasound Video Coding in Noisy Channels

Using H.264," in Proceedings of the 31st Annual International Conference of the

IEEE EMBS, 2009, pp. 5143-5146.

[56] G.B. Moody, R.G. Mark, "The MIT-BIH Arrhythmia Database on CD-ROM and

Software for use with it," Computers in Cardiology, 1990, pp. 185-188.

[57] Alan Bovik ed., Handbook of Image and Video Processing. Academic Press, 1st

Edition, May 2000.

[58] D. Llamocca, M. Pattichis, “Real-time dynamically reconfigurable 2-D filterbanks”,

in Proceedings of the 2010 IEEE Southwest Symposium on Image Analysis &

Interpretation, Austin, TX, May. 2010.

 139

[59] “Two-dimensional Linear Filtering (XAPP933) by Robert Turney”, v1.1 ed., Xilinx

Inc., 2100 Logic Drive, San Jose, CA, 95124, Oct. 2007.

[60] S. Collange, D. Defour, A. Tisserand, “Power Consumption of GPUs from a

Software Perspective”, in Proceedings of the 9th International Conference on

Computational Science (ICCS’09), pp.914-923, Springer, 2009.

[61] V. Podlozhnyuk, “Image Convolution with CUDA”, NVIDIA, June 2007.

[62] Cope, B., Cheung, P.Y.K., Luk, W., Witt, S., “Have GPUs made FPGAs redundant

in the field of video processing?”, in Proceedings of the 2005 IEEE International

Conference on Field Programmable Technology, pp. 111-118, Singapore, Dec.

2005.

[63] Jones, D.H., Powell, A., Bouganis, C.-S., Cheung, P.Y.K., “GPU versus FPGA for

High Productivity Computing”, in Proceedings of the International Conference on

Field Programmable Logic and Applications FPL’2010, Milan, Italy, Sep.2010.

[64] CUDA C Programming Guide, NVIDIA, v 3.2, Sept. 2010.

[65] Alan Bovik ed., The Essential Guide to Image Processing, Academic Press,

Elsevier, 2nd Edition, 2009.

[66] G. Alonzo Vera, Marios Pattichis, and James Lyke, “A dynamic dual fixed-point

arithmetic architecture for FPGAs”, International Journal of Reconfigurable

Computing, vol. 2011, Article ID 518602, 19 pages, 2011.

[67] M.S. Andrews, “Architectures for generalized 2d FIR filtering using separable filter

structures”, in Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP 1999), Phoenix, AZ, March 1999.

[68] D. Llamocca, C. Carranza, M. Pattichis, “Separable FIR filtering in FPGA and GPU

implementations: Energy, Performance, and Accuracy considerations”, in

Proceedings of 2011 International Conference on Field Programmable Logic and

Applications FPL’2011, Chania, Greece, Sep. 2011.

[69] C. Tanougast, M. Janiaut, Y. Berviller, H. Rabah, S. Weber, and A Bouridane, “An

embedded and Programmable System based FPGA for Real Time MPEG Stream

Buffer Analysis”, IEEE Trans. On Circuits and Systems for Video Technology, vol.

19, No. 2, Feb. 2009.

 140

[70] K. Mei, N. Zheng, C. Huang, Y. Liu, and Q. Zeng, “VLSI design of a high-speed

and area-efficient JPEG2000 decoder”, IEEE Trans. On Circuits and Systems for

Video Technology, vol. 17, No. 8, Aug. 2007.

[71] K. Varma, H. Damecharla, A. Bell, J. Carletta, and G. Back, “A fast JPEG2000

encoder that preserves coding efficiency: The split arithmetic encoder”, IEEE

Trans. On Circuits and Systems – Part I: Regular Papers, vol. 55, No. 11, pp.

3711-3722, Dec. 2008.

[72] N. Farrugia, F. Mamalet, S. Roux, F. Yang, and M. Paindavoine, “Fast and Robust

Face Detection on a Parallel Optimized Architecture implemented on FPGA”, IEEE

Trans. On Circuits and Systems for Video Technology, vol. 19, No. 4, April 2009.

[73] D. Nguyen, D. Halupka, P. Aarabi, and A. Sheikholeslami, “Real-Time Face

Detection al lip feature extraction using field programmable gate arrays”, IEEE

Trans. On Systems, man, and Cybernetics, vol. 36, No. 4, Aug. 2006.

[74] T. Komuro, T. Tabata, and M. Ishikawa, “A Reconfigurable embedded system for

1000 f/s Real-Time Vision”, IEEE Trans. On Circuits and Systems for Video

Technology, vol. 20, No. 4, April 2010.

[75] E. Oruklu, and J. Saniie, “Dynamically Reconfigurable Architecture design for

Ultrasonic Imaging”, IEEE Trans. On Instrumentation and Measurement, vol. 58,

No. 8, Aug. 2009.

[76] Y. Liu, and E. M-K Lai, “Design and Implementation of an RNS-Based 2-D DWT

Processor”, IEEE Trans. On Consumer Electronics, Vol. 50, No. 1, Feb. 2004.

[77] H. Hedberg, F. Kristensen, and V. Öwall, “Low-complexity binary morphology

architectures with flat rectangular structural elements”, IEEE Trans. On Circuits

and Systems – Part I: Regular Papers, vol. 55, No. 8, pp. 2216-2225, Aug. 2008.

[78] H. S. Neoh, A. Hazanchuk, “Adaptive edge detection for real-time video processing

using FPGAs”, in Proc.GSPx2004 Conference, 2004.

[79] C.-S. Bouganis, S.-B. Park, G.A. Constantinides, and P.Y.K. Cheung, “Synthesis

and optimization of 2D filter designs for heterogeneous FPGAs”, ACM Trans.

Reconfigurable Technol. Syst. Vol. 1, no. 4, p. 24, Jan. 2009.

 141

[80] H. Yang, F. Zhang, J. Lai, and Y. Wang, “Image Filtering using Partially and

Dynamically Reconfiguration” in Proc. 2010 10th IEEE International Conference

on Solid-State and Integrated Circuit Technology, Shanghai, China, 2010, pp.2067.

[81] S.U. Bhandari, S. Subbaraman, S.S. Pujari, R. Mahajan, “Real Time Video

Processing on FPGA using on the fly Partial Reconfiguration”, in Proceedings of

the 2009 International Conference on Signal Processing Systems, pp. 244,

Singapore,, May 2009.

[82] T. Raikovich, Feher, B. “Application of partial reconfiguration of FPGAs in image

processing”, in Proceedings of 2010 Conference on Ph.D. Research in

Microelectronics and Electronics, Berlin, Germany, July 2010.

[83] S. Hong, J. Lee, A. Athalye, P. Djuric, W. Cho, “Design Methodology for Domain

Specific Parameterizable Particle Filter Realizations”, IEEE Trans. On Circuits and

Systems – Part I: Regular Papers, vol. 54, No. 9, pp. 1987-2000, Sep. 2007.

[84] Y. Hori, A. Satoh, H. Sakane, K. Toda, “Bitstream encryption and authentication

with AES-GCM in dynamically reconfigurable systems”, in Proceedings of the

International Conference on Field Programmable Logic and Applications

(FPL’08), pp.23-28, Heidelberg, Germany, Sept. 2008.

[85] J. Resano et al., “Runtime minimization of Reconfiguration Overhead in

Dynamically Reconfigurable Systems”, in Proceedings of the International

Conference on Field Programmable Logic and Applications (FPL’03). Ser. LNCS,

vol. 2778. Springer Verlag, Sept. 2003, pp. 585-594.

[86] Partial Reconfiguration User Guide for ISE 12.3 (UG702), Xilinx, San Jose, CA,

v12.3 edition, Oct. 2010.

[87] Virtex-6 Family Overview (DS150), Xilinx, San Jose, CA, v2.2 edition, Jan. 2010.

[88] C. Bodda, “Introduction to Reconfigurable Computing”, Springer, ISBN 978-1-

4020-6088-5, 2007.

[89] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-

programmable gate arrays”, Proceedings of the IEEE, vol. 81, pp. 1013-1029, July

1993.

