
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

6-25-2010

A framework for the development of virtual robotic
games
Paul Ng

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Ng, Paul. "A framework for the development of virtual robotic games." (2010). https://digitalrepository.unm.edu/ece_etds/192

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/192?utm_source=digitalrepository.unm.edu%2Fece_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

A Framework for the Development of
Virtual Robotic Games

by

Paul Ng

B.S., Electrical Engineering, University of New Mexico, 2007

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science
Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

May 2010

©2010, Paul Ng

iii

Dedication

To my parents, Tang-Tat and Percillia Ng, my brothers, Peter and John, and

finally my love, Cassie Ward.

iv

Acknowledgments

I would like to acknowledge my advisor, Dr. Rafael Fierro, who supported me in my
journey of accomplishing this thesis. He has always been positive and his spirit has kept
me focused and strong willed during the making of this book. I would like to thank him
for giving me the opportunity to work with him.

I would also like to thank Dr. Thomas Caudell and Dr. Pradeep Sen, who served on
my thesis committee. Their support was invaluable and I hope my research can further
their research in collaboration.

I would like to thank all of the MARHES team members. The MARHES team has
always supported me, helped me in providing insights, and our fellowship has brought
productive cooperation. I would like to specifically thank Damjan Miklic from the Uni-
versity of Zagreb in Croatia, for giving me the initial foundation to begin this work.

Finally, I would like to thank and dedicate this book to my parents, Tang-Tat and
Percillia Ng, who taught me from the beginning to enjoy life and work diligently on your
works and dreams. I also would like to thank and dedicate this book to my fiancée, Cassie
Ward, who also fully supported me and is the most relieved to see this finished.

Paul Ng
P

v

A Framework for the Development of
Virtual Robotic Games

by

Paul Ng

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science
Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

May 2010

A Framework for the Development of
Virtual Robotic Games

by

Paul Ng

B.S., Electrical Engineering, University of New Mexico, 2007

M.S., Electrical Engineering, University of New Mexico, 2010

Abstract

Multiple robotic experiments are inherently high in operating costs. As the number

of agents increase, resources in time, cost, and physical space becomes a limiting factor

in experimentation. This thesis presents a framework that addresses these problems by

virtual reality. The computer gaming industry has made unparalleled advances in computer

graphics and dynamic and kinematic modeling. This progress provides a realism that is

utilized in virtual robot experiments with close comparability of results with its real-world

counterpart. Developing the Virtual Robotic Games framework with the integration of a

video game engine produces a testbed for multi-agent experiments while reducing the cost

of real-world experimentation.

The Virtual Robotic Games framework is a platform for the development and exper-

imentation of Robotic Games. Robotic Games refers to a variety of robotic scenarios

where autonomous or remotely controlled robots are governed accordingly by the Robotic

Game’s rules and regulations. These games are a testbed to study robotic algorithms that

vii

are not solutions to only specific scenarios but are applicable to robotic problems of several

research topics through a role-based architecture.

The framework distributes Robotic Game algorithms into three leading roles: Game

Coordinator, Robot Device, and User Interface. The Game Coordinator is specific to the

rules and regulations that must be kept during gameplay. The Robot Device is the player’s

control algorithms and strategy implementation. The User Interface maintains the human

machine interaction, focusing on providing optimal interfaces to ensure a human player

can receive the desired results while providing intuitive and simple inputs. This architec-

ture combined with a virtual robotic testbed defines a framework that is rich, extensible,

and inexpensive to develop robot algorithms that can subsequently be incorporated into

real-world robots.

viii

Contents

List of Figures xii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Outline . 2

2 Background 4

2.1 Framework . 4

2.2 Robotics . 6

2.3 Robotic Games . 11

2.4 Finite State Machines . 13

2.5 Simulator . 14

2.6 Related Work . 17

3 The Framework 20

3.1 The Virtual Robotic Games Framework 20

ix

Contents

3.1.1 Game Coordinator . 20

3.1.2 Robot Device . 22

3.1.3 User Interface . 23

3.2 Software Implementation . 24

3.2.1 Mathworks MATLAB . 24

3.2.2 USARSim . 31

4 Case Studies 35

4.1 Player Head-Up Display (HUD) . 35

4.2 Robot Pursuit-evasion Game. 38

4.2.1 Game Description . 38

4.2.2 Game Coordinator . 40

4.2.3 Intruder . 41

4.2.4 Pursuer . 42

4.2.5 Experiment Results . 43

4.3 Sharks and Minnows . 46

4.3.1 Game Description . 46

4.3.2 Game Coordinator . 47

4.3.3 Player . 48

4.3.4 User Interface . 50

4.3.5 Experiment Results . 50

x

Contents

4.4 Roboflag . 53

4.4.1 Game Description . 53

4.4.2 Game Coordinator . 55

4.4.3 Player . 55

4.4.4 User Interface . 58

4.4.5 Experiment Results . 59

5 Conclusions and Future Work 61

5.1 Conclusions . 61

5.2 Future Work . 62

Appendices 64

A Software Installation 65

A.1 MATLAB Installation . 65

A.2 USARSim Installation . 66

B Virtual Robotic Games Protocols 67

B.1 MATLAB USARSim Toolbox . 67

References 72

xi

List of Figures

2.1 The Reference Frame F and Robot’s Frame Fr. 7

2.2 Pitch (about the y axis by angle β), Roll (about the x axis by angle γ),

Yaw (about the z axis by angle α). 8

2.3 Plot of a skid-steered robot. 9

2.4 Feedback Linearization. 11

2.5 A comparison between CHARON state diagram (left) and a flowchart

(right). 13

2.6 Gazebo: Player/Stage’s 3D simulator with dynamics. 15

2.7 Cyberbotics Webots: commercial 3D robot prototyping and simulator. . 15

2.8 Pioneer 3-DX. 16

2.9 Microsoft Robotic Studio: robot models and simulator. 16

2.10 UNM’s Centennial Engineering Center. 17

2.11 USARSim: accurate elaborate environments. 17

3.1 The Virtual Robotic Games framework. 21

xii

List of Figures

3.2 The MATLAB Environment in Windows Vista x64. 25

3.3 The GUIDE environment. 29

3.4 The Joystick Input block from MATLAB’s Simulink 3D Animation. . . 30

3.5 The USARSim architecture. 32

3.6 The Left Hand Coordinate System. 34

3.7 The SAE J670 Vehicle Coordinate System. 34

4.1 The Virtual Robotic Games framework welcome splash. 36

4.2 The Virtual Robotic Games Framework Client Configurator. 37

4.3 The Player HUD game in the virtualized ECE L217 MARHES lab. . . . 37

4.4 The Lion and Man problem. 38

4.5 A Surveillance Area in the Centennial Engineering Center map. 39

4.6 The Finite State Machine of the Intruder Behavior. 41

4.7 Intruder Interception Point. 43

4.8 The Pursuit Evasion initial experiment setup. 44

4.9 The Pursuit Evasion Simulation Data. 45

4.10 The Pursuit Evasion Conclusion. 45

4.11 The Shark and Minnows game. 46

4.12 The Player Finite State Machine. 49

4.13 The Minnows Potential Function. 50

4.14 The Sharks and Minnows initialization. 51

xiii

List of Figures

4.15 The Sharks and Minnows tagging situation. 52

4.16 The Sharks and Minnows first Minnow Pass’s results. 52

4.17 The RoboFlag playing field. 54

4.18 The RoboFlag Player Finite State Machine. 57

4.19 The RoboFlag Virtual Field. 59

4.20 Roboflag when User commands Defense. 60

4.21 Roboflag when User commands Hail Mary. 60

xiv

List of Algorithms

3.1 Game Coordinator Algorithm . 26

3.2 Robot Player Object . 28

3.3 Joystick Object . 31

4.1 The Pursuit-evasion Game Coordinator Algorithm 40

4.2 The Sharks and Minnows Game Coordinator Algorithm 48

4.3 The RoboFlag Game Coordinator Algorithm 56

xv

Chapter 1

Introduction

1.1 Motivation

In the current world, robotic research is an increasingly expansive field of science and tech-

nology. Robots are becoming increasingly capable of diverse and complex tasks. These

tasks allow robots to have a spectrum of roles. On one end of the spectrum, manufac-

turing arms, which provide a large degree of freedom and accuracy to precisely execute

path-following and the other, service robots, which interact with humans and coopera-

tively communicates and maintain relationships with the client. These complex roles are

increasingly difficult to study, test, and develop. A solution to reduce the time and cost to

prototype current day robots is the use of a virtual simulator [1].

In multiple robot situations, simulators are quickly replacing the cumbersome task of

physical experiments. Multiple robot experiments are time consuming and are sometimes

expensive in operation. Simulators have evolved to be realistic, rich environments capable

of providing accurate simulations that correspond to their real-world counterparts [2]. This

capability combined with the flexibility to configure the experiment has made simulators

a more feasible option for prototyping. As virtual reality improves, simulators are an

1

Chapter 1. Introduction

advantageous tool for studying robotic behavior.

Virtual reality is a new field of research in robotics. Physics engines are becoming

more efficient and realistic. Modern computers are more advanced and capable of running

larger computations faster to model more accurate dynamics and the interactions between

rigid bodies. These more efficient simulators provide a reliable testbed that is dependable

for prototyping and allows robotic code to be fully immersed in an environment without

the expense of setting up physical experiments.

The emerging tasks being developed for robots require high-level algorithms. Sce-

narios and game schemes are ways to interpret these tasks into a role-based, rule-driven

algorithm. Through different scenarios, a cognitive model can be built to develop situa-

tional robotic code. Robotic Games provide scenarios with a few objectives to focus the

goal and purpose for the robots playing. The Virtual Robotic Games framework will pro-

vide a high performance simulator for prototyping and validating the robotic codes used

in Robotic Games.

1.2 Thesis Outline

In Chapter 2, the background of the work is discussed. Software framework is defined

and broken down to its fundamental purpose. Robotics and several control laws will be

explored. The term Robotic Game is defined and the requirements to build a description

of a certain game scheme is laid out. The importance of simulators are discussed and

its benefits and caveats are weighed. Previous work for these topics are compiled and

integrated into the methodology used to build the framework.

In Chapter 3, the framework is discussed. The framework consist of three main mod-

ules. These three modules are labeled the Game Coordinator module, the Robot Device

module, and the User Interface module. In this chapter, the Game Coordinator’s role is

2

Chapter 1. Introduction

defined and several of its functions are discussed. The Robot Device’s role is defined

along with robot algorithms and several fundamental middleware processes, which are ex-

emplified. The User Interface’s role is defined and its implementation is discussed. This

framework can comprehensively construct any robotic game with these main modules.

In Chapter 4, several case studies are shown to demonstrate the framework’s capabil-

ities. The first case study is the pilot program, which demonstrates the use of the game

manager and the robot device interface and the user interface, which relays robot infor-

mation through a graphical display. The second case study is a pursuit evasion game,

which demonstrates the use of nonlinear control and target-tracking. The third case study

is a sharks and minnows game, which involves role playing and game strategizing. The

last case study is the sharks and minnows game to demonstrate a comprehensive game

containing pursuit-evasion, role playing, and game strategizing.

This thesis concludes in Chapter 5. A discussion is made to address how to develop

a game that is appropriate for certain age/skill groups. The framework’s performance and

limitations will be discussed and future work will be suggested to expand the framework.

3

Chapter 2

Background

The work presented is done in support of a goal to provide a virtual reality simulator. The

field of robotic virtualization is quickly emerging. Though there are many virtual simu-

lators for robotic prototyping, such as RobotiCad [3] and Webots [4], none are focused

on the development of Robotic Games. The framework described in this thesis is built to

provide an environment flexible to develop robotic games. The basic blocks are already

prebuilt in objects and ready to test game schemes. Section 2.1 describes what a frame-

work is and its major traits and purpose. Section 2.2 continues with the definition of robot

pose and the kinematics of skid-steered robots. Section 2.3 describes robotic games and

what makes them interesting to study. In Section 2.5, the benefits of using a simulator

are discussed and the importance of verification. Finally in Section 2.6 previous work in

robotic games are discussed.

2.1 Framework

Since the introduction to object-based programming, frameworks have been designed to

provide a system for reusing objects on a large scale. It collaborates the increasing number

4

Chapter 2. Background

of objects, managing and cataloging them into classes. Each class describes the different

groups of objects. A framework simplifies and creates a consistent procedure to code for

complex programming.

There is not an explicit definition for the term software framework, however, every

solid framework follows the same purpose [5]. They are used to code for complex tech-

nologies. The complexity is broken down into different objects. An object is code that

represents an entity. This entity could be concrete or abstract but it’s role is defined by the

class. The object can be opened and closed at any time by the framework. Objects with

similar tasks are grouped into classes.

A class is a set of objects, where all objects have similar traits. These traits are con-

gruent to the behavior of the class type. The class type defines objects to a specific role

model and each specific role are equally reusable for a large range of framework contexts.

Several common features that define a framework are:

• Architecture

• Methodology

• Object Wrapping

A framework is an architecture. Its design specifically defines and manages the col-

lection of discrete objects. Its non-modifyable structure provides a foundation that can

be implemented repeatedly. Object extensions are attached to the framework to expand

or create a more specific application. Since these extensions must follow the framework,

objects have consistent style and creates a standard methodology.

The methodology is somewhat reverse to what normally happens in user applications.

Usually the program calls libraries or other objects, but in a framework, the flow of con-

trol is governed by the framework. This methodology is called the Hollywood principle in

5

Chapter 2. Background

computer programming based on the saying, “don’t call us, we’ll call you.” This decou-

ples objects and reduces dependancies making it easier to test, debug, and maintain. The

framework’s methodology defines the way objects communicate between each other and

how the framework responds to events and data management.

There are distinct differences between architecture and methodology. Architecture

is how objects are defined in the framework and methodology is the definition of how

objects interact with one another. Defining both of these features in a framework allows

us to enforce strict consistency in object communication and function. These objects can

be reliably reused for different applications with the same need.

A framework is inherently a wrapper. Since the methodology is already determined,

objects must have wrappers to provide a consistent form of communication. A wrapper

repackages the object’s discrete functions and provides a common interface that is trans-

parent to the other objects. This interface is defined by the methodology of the framework.

Frameworks are designed to provide an environment that simplifies problems through

the management of classes, their purpose, and the way they are designed. Classes reduce

repetitive coding and decouples object dependancies. Consistency is guaranteed because

the framework predefines the classes involved and their methodology among each other.

These features help ensure code is productive, reusable and efficient.

2.2 Robotics

Robotics is the engineering science pertaining to robots, their manipulation, and their au-

tomation techniques [6]. Its broad field includes the design and manufacture of robots,

such as the development of new robots with new articulation, BigDog [7], Robotic Hands

[8] or reducing the manufacturing cost through industry [9]. Robotics also includes the

software and algorithms that control its decisions and movements. This is equally as large,

6

Chapter 2. Background

encompassing trajectory generation, human interaction, signal processing, image process-

ing, and robot networks; such as formation control, swarming, cooperative agents, and

robotic games.

The robot’s mechanics depend on the manipulator used. Most actuators use force to

drive motion into the robot. Motors and joints require torque inputs but returns its angle

and angular velocity. This requires the use of dynamics to calculate a desired trajectory.

Wheels have odometers to calculate displacement. Modern robots are now equipped with

laser range finders, sonar, global positioning systems, and camera vision to increase aware-

ness of the robot’s environment.

The notation to describe the spatial frame can be found in [10]. An object or robot can

be described as a point in space. This position can be written as a tuple where each value is

the coordinates to the Cartesian orthogonal frame. In Figure 2.1, there is a fixed reference

frame where the origin for that frame is located. The tuple is insufficient to describe the

robot completely. The term pose describes not only the position of the robot but also its

orientation. In order to describe its orientation, a frame to the robot is attached.

Figure 2.1: The Reference Frame F and Robot’s Frame Fr.

7

Chapter 2. Background

The frame is attached such that the X̂r is pointing forward, the Ŷr axis is pointing port

side, and the Ẑr axis is pointing up. Since the robot’s frame is defined and fixed, the

object’s orientation can be described by the Z-Y-X Euler angles. In Figure 2.2, the pitch,

roll, and yaw are graphically shown. The name Z-Y-X describes the order in which the

rotations are done. Starting from the reference frame’s orientation: the frame is rotated

about the Ẑr by an angle α, then the frame is rotated about the Ŷr by an angle β, and finally

the frame is rotated about the X̂r by an angle γ. The final frame represents the orientation

of the robot frame. The angles α, β, and γ are equivalent to the robot’s yaw, pitch, and roll

respectively.

Figure 2.2: Pitch (about the y axis by angle β), Roll (about the x axis by angle γ), Yaw
(about the z axis by angle α).

For skid-steered robots, the kinematic model assumes four major assumptions: the

mass of the robot is at the geometric center, each side’s wheels rotate at the same speed,

each wheel has a point contact to the ground, and the robot’s four wheels are always on the

ground. For the motion dynamics, the control scheme is sufficient in two dimensions. In

Figure 2.3, the skid-steered robot’s model is graphically shown. The position of the robot

is defined by the reference frame F , where the Ẑ component (elevation) is neglected. The

angle θ is the rotation about the Ẑ axis and is equivalent to its α component or yaw. The

8

Chapter 2. Background

kinematic model is approximated by the unicycle model [11]:

ẋ = vcosθ,

ẏ = vsinθ, (2.1)

θ̇ = ω,

where the robot’s input is its linear and rotational velocities, u = [v ω]T . The distance d

is an arbitrary point off the robot’s center of mass to avoid singularities.

Figure 2.3: Plot of a skid-steered robot.

The robot frame is used to localize the dynamics controller to each robot and the point

d is used for the following outputs:

y1 = xc +d cosθ, (2.2)

y2 = yc +d sinθ,

where d != 0.

9

Chapter 2. Background

Taking the time derivative of Equation(2.3) computes the Matrix T(θ) (Equation (2.3)).

ẏ1

ẏ2

 =

cos(θ) −d sin(θ)

sin(θ) d cos(θ)

ẋc

ẏc

 = T(θ)

ẋc

ẏc

 , (2.3)

Therefore the Matrix T(θ) is invertible to provide the robot’s inputs as:

ẋc

ẏc

 = T(θ)

u1

u2

 , (2.4)

which can be applied to Equation (2.2) in the form of

ẏ1 = u1,

ẏ2 = u2, (2.5)

θ̇ =
u2 cosθ−u1 sinθ

b
.

A simple linear controller can be derived (Equation (2.6)).

u1 = ẋg + k1(xg− y1),

u2 = ẏg + k2(yg− y2), (2.6)

where k1 > 0,k2 > 0 guarantees convergence to zero of the cartesian tracking error.

This trajectory tracking is based on output error and is an input/output feedback lineariza-

tion algorithm [12], depicted in Figure 2.4, where G−1 is the transform from the input u to

the robot’s motor inputs: vc and ωc.

10

Chapter 2. Background

Figure 2.4: Feedback Linearization.

2.3 Robotic Games

A robotic game is an environment where the robot’s decisions and movements are gov-

erned by a predefined set of rules. Any robot who is governed by these rules is called a

player. The rules include a scoring scheme and the goal of the player is to get the best

score. Usually there is an opposing team and strategies are required to keep the advantage.

There is also a constraint in time so promptness must be considered in the strategy. The

game can be autonomously controlled if two things are addressed.

A robotic game can be described in two main parts:

1. Rules

2. Strategies

11

Chapter 2. Background

The rules are upheld through many ways but are most commonly managed by a game

re f eree. A re f eree oversees the gameplay and maintains fair playing conditions. It holds

the official game clock and tracks penalty times. The score is kept by the referee and score

penalties are appended when necessary. It calls players if misconduct has been detected,

however, some penalties may be overlooked if it disrupts the flow of the game and the

penalty was not significant.

The referee does not impose the rules onto the players rather watches the players during

the game. The referee’s calls are not disputed by the players but could be disputed by the

team’s captain. A third character titled as the official would give the final call to veto

the referee. The game’s rules are required to keep the game interesting, fair, and well

balanced, providing an environment for the derivation of strategies.

A strategy is an option a player may take to achieve a certain goal. In a cooperative

game, all the players decide and may perform multiple strategies to optimize their score

in the game. In a non-cooperative game, opposing teams have opposing goals and may

exhibit Game Theory optimization. In Game Theory, two kinds of strategies exists: mixed

strategies and pure strategies. Mixed strategies are strategies that can be randomly picked

during a certain situation in the game. Pure strategies are causal, requiring a certain move

from the opposing team. These strategies lead into a branch of Game Theory called Com-

binatorial Game Theory.

Robotic games are environments where robots are players with a set of rules. These

rules are predefined and a certain goal is required from the players. A referee oversees the

game, ensuring fair gameplay and is also the timekeeper and scorekeeper. An autonomous

robotic game requires the strategies of the players it controls. The player’s strategies can

be mixed or pure strategies. Forms of difficulties may be a set limit to the number of robots

on the field or a set time limit. Robotic games provide the challenges and excitement for

all ages to encourage interests in science, engineering, and robotics.

12

Chapter 2. Background

2.4 Finite State Machines

Finite state machines are models of robot behavior in a finite set of states and a finite

set of transitions between each state. This model allows study in hybrid and switched

systems, where the control scheme has both logic-based and continuous dynamic systems

[13]. Finite state machines follow the same rule set as robotic games and are natural in

modeling the dynamics of a Robotic Game.

The remainder of the thesis will follow the CHARON notation [14]. The CHARON

specification defines application structure, architecture, and behavior. CHARON state di-

agrams differ from a flowchart in that flowcharts describe the transition from one state to

another while CHARON state diagrams describe the states, Figure 2.5. CHARON requires

explicit trigger events while flowcharts may not have any events. This is important as the

CHARON state diagram will require the work in this thesis to rigorously determine all

possible events.

Figure 2.5: A comparison between CHARON state diagram (left) and a flowchart (right).

The CHARON state diagram is similar to a Harel statechart [15] with a specific no-

tation. CHARON is a description of the architectural and behavioral hierarchy of the

13

Chapter 2. Background

software. From Figure 2.5, the communication and shared variables are inputs and outputs

to the rounded rectangle labeled Agent. Agents can represent a robot, object or a referee.

An experiment or game can have any number of Agents. An Agent consists of several

embedded Modes. Modes represent a certain strategy or complex operation. Modes are

comprised of a single or multiple set of behaviors each referred to as a submode. Submodes

contain the dynamic control scheme.

Inputs between hierarchical layers are denoted by ports. A hollow circle represents an

input either from another block or a higher level block. Outputs are represented by a solid

circle which may recursively return as an input such as the Mode block or passed as an

output of a higher level block such as the submode block. These ports are governed by a

transition and a trigger event. The event is denoted by the text near the transition arrow.

The arrow labeled as Event when triggered runs the Loop code.

The CHARON specification is an accurate representation of hybrid systems based on

behavioral and architectural design. CHARON conforms to the nature of multiple robot

experiments and provides a notation that allows an accurate graphical description of robot

behavior based on conditional transitions. CHARON has been applied to multiple robot

coordination in mapping, localization, target tracking, and formation control [16].

2.5 Simulator

The use of simulators to develop prototype robotic code is becoming paramount. As

robotic hardware can be large in capital cost, the use of simulators can drastically reduce

the cost and time to develop prototype code. Providing the requirements necessary for a

simulator to have accurate results. Simulators can also be used for educational purposes

since they are more portable and more forgiving than physical experiments.

The authors in [17] describe a number of requirements for simulator validation. A

14

Chapter 2. Background

Figure 2.6: Gazebo: Player/Stage’s 3D simulator with dynamics.

simulator’s physics engine is the heart of the simulator. The robot’s movements are deter-

mined through the simulator’s rigid body dynamics. Physical dimensions and dynamics

of the environment, robots, and their interactions must be modeled to the highest accuracy

to reduce simulation errors. Though the simulator’s spatial computations are preeminent,

the second feature that is required is their visual realism.

Figure 2.7: Cyberbotics Webots: commercial 3D robot prototyping and simulator.

The visualization of the environment and the containing robots can be displayed in a

two dimensional graph. Laser finders, sonar, and odometry sensors are planar and can

be accurately modeled as long as the environment is also in the same two dimensions.

The implementation of three-dimensional visualization increases the capability for cam-

eras and image processing. Three dimensions also allows for experimentation of different

15

Chapter 2. Background

poses, adding both pitch and roll to the robot.

A simulator must be flexible. Models of different robots, actuators, and sensors supply

an arsenal of robots with a vast combination of attachments. Models of new robots and

actuators can be added to continually expand the simulator’s set. The environment can

be carefully modeled to have a direct replica from reality to virtual reality. The robot

controller code can be designed to provide code transferable for both the virtual robot and

the physical equivalent robot. The reduction of time to port the code will increase the

productivity of the simulator.

Figure 2.8: Pioneer 3-DX.
Figure 2.9: Microsoft Robotic Studio: robot
models and simulator.

The simulator must be efficient. The simulator must run as close as possible to full

frame rate as lag in simulation leads to many different errors. Its physics engine renders

collisions at full frame rate and a large number of collision boundaries will render jitters.

The dynamics controller for the simulated robots requires instantaneous sensor readings to

calculate its input u and delayed values generate an overshoot to the desired capture point.

Simulations of sensors must be instantaneous to simulate the behavior of the physical

sensors’ values.

Simulators are becoming popular due to their cost, comprehensiveness, and accuracy.

However, without the highest of accuracy in modeling, the simulator over-simplifies the

16

Chapter 2. Background

Figure 2.10: UNM’s Centennial Engineering
Center.

Figure 2.11: USARSim: accurate elaborate
environments.

physics of the models and provides an ideal solution to a non-ideal world. As computers

advance, simulations are becoming increasingly capable and this problem is quickly di-

minishing. The use of simulators goes hand-in-hand with robotic games due to their video

game like environment. Its portability and large forgiveness for errors makes it optimal for

prototyping robotic code.

2.6 Related Work

Robotic Games began as early as four decades ago. One competition during this period

was the Micromouse [18]. A robot is positioned somewhere in a 10’ x 10’ field and is

required to find the center of the maze. Since then, the competition has advanced to a

larger field of 16’ x16’ square, however, the strategy solution is still considered the same.

Other more complex games have been developed to broaden the excitement of Robotic

Games [19].

Problem scenarios began to appear including the Lion and Man problem [20], Marco

Polo [21], Apollonius Pursuit [22], target-tracking[23], motion planning [24] and the

RoboFlag Competition [25]. These scenarios have been involved in robotic games and

17

Chapter 2. Background

have encouraged research to develop solutions for robots. The Lion and Man problem is

a pursuit-evasion scenario where a robot may be in the pursuit or evasion from a person

or robot. The pursuer must catch the evader and the evader must keep its distance. Marco

Polo is a follower-leader scenario where a patrolling robot may need to observe an in-

truder. The authors in [26] studied several problems regarding guaranteed strategies for

patrol agents. These scenarios evolved to incorporate more complex situations and soon

robotic competitions of grander scale began to appear.

The RoboFlag competition is a complete robotic game. Based on “Capture the Flag,”

it consist of two teams, each required to take the opponent’s flag and returning it to home

base while protecting their own flag. These encompasses multiple problem scenarios to

add complexity and required solutions that were more unpredictable and similar to real-

world situations. One of the largest current competitions is the RoboCup [27]. RoboCup

is an annual competition where autonomous robots compete in a game of soccer. The

competition is broken down to different classes sorting robots by their relative size, ca-

pability, and form of mobility. The dynamics of soccer is generally researchable due to

soccer’s popularity and enthusiasts. Strategies used by soccer players can be extended to

robot players. The authors in [28] demonstrate a RoboCup strategy and have validated it

through match data. RoboCup player algorithms have also improved in the areas of ball

passing [29] and other algorithms for specialized platforms such as Segways [30].

These topics of research have also encouraged research in simulations [31]. Gazebo[32],

an open-source robotic simulator backend for Player/Stage[33], capitalizes on the open

dynamic engine (ODE) for computing dynamics. Though the open-source is appealing,

Gazebo runs on older libraries, which limits its capabilities in multiple robot simulation.

The commercial Webots [4], is a high-quality simulator focused on accurate modeling of

actual popular robots. It is a fast, easy to use simulator but is not free or modifiable. US-

ARSim is similar in scope to Gazebo, Webots and Microsoft Robotics Studio. USARSim’s

largest feature is its use of a video game engine [34]. It uses the Unreal game engine to

18

Chapter 2. Background

produce accurate dynamic models and support large worlds.

USARSim has been used as a testbed for multiple robotic research. This research spans

across many topics of robot research[35] including Robotic Games. Several major projects

using USARSim are MAST[36], NIST’s MOAST[37] and DARPA’s SyNAPSE[38]. US-

ARSim additionally participates in several competitions such as RoboCup[39] and IEEE

Virtual Manufacturing Automation Competition[40]. Robot prototyping has been done

with USARSim for simulations of the AIBO Class players in RoboCup [17]. The CHARON

notation has been applied to multi-agent hybrid systems [41] and in multi-agent coordi-

nation [16] and provides a specification for building complex agents through a hierarchi-

cal behavior composition. These research topics have provided the design characteristics

needed to develop the Virtual Robotics Games framework.

19

Chapter 3

The Framework

3.1 The Virtual Robotic Games Framework

As depicted in Figure 3.1, the framework consists of three modules to comprehensively

simulate a game. The Game Coordinator coordinates all game strategies and manages high

level decision making. The Robot Device module bridges the high level decisions made

by the Game Coordinator to the robot manipulation. The User Interface module provides

user inputs from a graphical interface or joystick to the framework. Configurations are

discussed demonstrating the flexibility and modularity of the framework’s three modules.

These same characteristics were also used when implementing the framework into soft-

ware. This chapter is a description of a developed, high depth virtual simulator that allows

simple implementation of a robotic game.

3.1.1 Game Coordinator

The Game Coordinator module is the heart of the framework. It initiates instances for

each Robot Device and User Interface. Its role is comprised of virtually setting up the

20

Chapter 3. The Framework

Figure 3.1: The Virtual Robotic Games framework.

game scenario. As defined in Section 2.3, a Robotic Game requires rules and the Game

Coordinator maintains these rules. The Game Coordinator does not take control of any of

the other modules but rather establishes their relationships and sets up policies for their

interaction in the Robotic Game.

The Game Coordinator module has two roles. The first role is to define the game

and ensure all players of the game are present. The second role is to determine the game

scenario and execute the game scenario functions. The Game Coordinator was given these

roles because much like a referee in a sports game, it ensures that both teams meet initial

conditions on the field and oversees fair gameplay.

21

Chapter 3. The Framework

The Game Coordinator initiates automatically after a few user inputs determining the

environment and the game to be played. It initiates the players through the Robot Device

module and introduces the user to the game through the User Interface module. During the

game, it cycles through a set of rules defined by the chosen game and performs its duties

when necessary.

During the event of a gameplay change, the Game Coordinator alerts the Robot Device

modules and any graphical user displays. A graphical display can be constructed at the

appropriate time relaying information regarding the game and its players. This helps debug

certain situations effectively and systematically.

3.1.2 Robot Device

The Game Coordinator initiates one Robot Device module per player. Each Robot Device

is configured to a certain robot and their task in the game. Its role provides the player’s

robot automata and a platform abstraction that allows the use of a broad application of

robot devices. The Robot Device module is the essence of the robot players in the Robotic

Game.

The Robot Device module, at the least, contains an initialization and shutdown pro-

cesses. These processes are specific to a virtual or physical robot configuration. The

initialization process connects to the robot and opens the communication socket to control

and receive data. A virtual robot setup also includes placing the player into the game. The

shutdown process does the inverse. The shutdown process sends the robot a halt signal,

stopping the motors and terminating the sensors before disconnecting and, if applicable,

removing the player from the virtual world.

Robotic code is stored in the Robot Device module. The Robot Device module con-

tains a hardware abstraction layer for flexibility and maintains compatibility with other

robotic platforms. This layer sends wheel velocities and arm angles while receiving sen-

22

Chapter 3. The Framework

sor data and hardware status from the robot. High-level algorithms connect to the interface

provided by the hardware abstraction layer to implement path planning, high-level com-

putations, and other game strategies.

3.1.3 User Interface

The User Interface module handles human interaction with both the Virtual Game and the

Virtual Robotic Games framework itself. The module can be broken into two parts. Much

like the Robot Device module, the User Interface module contains a hardware abstraction

layer that provides a unified interface for high-level processes. This interface consists of

interpretations such as move, strategy calls, and communication. The high-level processes

receive these interpretations and apply them to their function. One function might be to

control and command a player robot. The user can control the player’s movement, tell the

other players its status, and suggest a strategy.

The User Interface module returns information to the user through a graphics display.

Providing the user’s player game data through a display, the user can analyze the situation

in a live game without decrypting lines of text. Graphics displays are also used in the

development of Robotic Games. The status of all the players and the status of the Game

Coordinator can be displayed. Omniscience data provides the necessary detail for proper

evaluation of a situation and can help explain glitches and loopholes in game development

and player strategy.

The Virtual Robotic Games framework requires the use of an User Interface module

to provide an interactive, efficient environment for developing Robotic Games. The User

Interface module allows users to watch from the control center to ensure robustness in

games. Game situations and robot strategies are tested and validated to ensure proper

behavior development. A graphic display can also play a role as the head-up display

(HUD). An intuitive display can effectively allow the user to realistically feel like he is

23

Chapter 3. The Framework

operating the robot player and become engrossed in the virtual robotic game.

3.2 Software Implementation

The framework uses Mathworks MATLAB with the combination of USARSim to bring an

extensible high-level algorithmic computing environment with realistic three-dimensional

physical simulations. The integration of these two products provides an interactive cross-

platform application effective for the development of Robotic Games.

3.2.1 Mathworks MATLAB

MATLAB is a numerical computing environment that is one of the de facto among indus-

try and academic worlds. The MATLAB programming language is a powerful language

rich with extensible toolboxes, object-oriented programming, and graphical user-interface

development (Figure 3.2). It is available for Microsoft Windows, Apple Mac OS X, and

Linux platforms and only very slight alterations are needed to port code between operating

systems.

MATLAB accommodates Model-Based Design and simulation in an environment called

Simulink. Simulink is a graphical control block diagram simulator. Block models are

placed in the simulation and signal parameters are linked between the blocks. Simulink

is a graphical interactive simulator that provides a flow chart environment fully integrated

with MATLAB’s processes, however, Simulink is not currently implemented in the frame-

work.

The MATLAB programming language allows programmers to program in a high-level

language. This language looks much like C++ however is functioned to be a mathematical

scripting language. MATLAB stores scripts as m-files and m-files may contain a function,

24

Chapter 3. The Framework

Figure 3.2: The MATLAB Environment in Windows Vista x64.

class definition for object-oriented programming, or graphic display. The framework uses

all three types of m-files. All algorithms in the framework are programmed as functions in

m-files. Functions consist of input and output arguments and arguments in MATLAB are

pass by value.

Due to the control flow of the Game Coordinator module, conditional functions are

heavily used to proctor the game scenario. Game rules must be explicitly described in

conditional expressions. Also information of the game must be provided and this is deter-

mined through conditional expressions to narrow down the game status. A generic Game

Coordinator algorithm is provided in Algorithm 3.1.

In MATLAB version 7.6, object-oriented programming is introduced. This is ex-

tremely resourceful for developing code that could have multiple instances such as the

Robot Device module in the framework. This allows programmers to build a class that

could represent certain virtual entities such as the role of each player. Objects improve

data management, software complexity, and code reusability.

25

Chapter 3. The Framework

Algorithm 3.1 Game Coordinator Algorithm
Perform initial robot placement

while Game Status = True do

Send Game State← Initialize to Player Objects

while Initial gameplay conditions are not present do

Update Game Object’s Positions

end while

Send Game State← Play Round to Player Objects

while Game State = Play Round do

if Foul conditions are present then

Game State← Foul

Execute Foul Algorithm and Adjust Score

while Game State = Foul do

Send Player Objects to game resumable state

if Gameplay conditions are present then

Game State← Play Round

end if

end while

end if

if Scoring conditions are present then

Adjust Score

end if

if Time or Gameplay conditions suggest Round completion then

Game State← Round Over

end if

end while

if Time or Gameplay conditions suggest Game Over then

Game Status← False

end if

end while

26

Chapter 3. The Framework

MATLAB’s terminology for object class definitions are described as below:

Classdef Code description of the object class.

Properties Variables that are common to each object instance.

Methods Every object instance’s member functions.

Attributes Values that defined properties and methods.

The different roles in a Robotic Game follows the concept of object-oriented program-

ming very effectively. The initialization code required to attach a player to the game is

constructed in the object’s constructor and similarly, when the player is to be removed

from the game, its termination code is placed in the de-constructor. This ensures good

housekeeping and helps build a tight program.

MATLAB defines an object’s class with a class definition file similar to Algorithm 3.2.

The class properties hold data items regarding a certain class instance and the class meth-

ods are the object’s specific member functions. Both class properties and class members

are only used within the specific object. None of the properties or the methods contain

any information that is required by the Game Coordinator or by another object. The object

serves its purpose as a stand-alone entity and is removed from any dependencies.

The class properties contain their object’s details such as its position, sensor readings,

and game status. From a simple goal seek to strategic computations, the functions used in

each player can only use their own information from their sensors and the information pro-

vided by the Game Coordinator. The Game Coordinator then becomes the communication

link and allows programmers to work in a decentralized manner.

MATLAB is an interactive environment where programming, computation, and data

analysis combine together to create a complete development platform perfect for design-

ing new robotic games, robotic algorithms, and validation. MATLAB also includes visu-

alization, which fits perfectly to the description of the User Interface module. MATLAB

provides GUIDE as a way to simplify the User Interface development.

27

Chapter 3. The Framework

Algorithm 3.2 Robot Player Object

classdef Agent < handles

% The object class Agent is an inherit function of handles

properties

% Object's data members

agent_obj % Object file

state % Agent's Status

laser % Laser Readings

sonar % Sonar Readings

odom % Agent's Pose

end

methods

% Object's member functions

function obj=Agent(name, type, start_pos, start_ori)

% Constructor

agent_obj = initializeRobot(name,type,start_pos,start_ori)

end

function state = getAgentState(obj)

function laser = getLaserReadings(obj)

function sonar = getSonarReadings(obj)

function odom = getPose(obj)

function goto(obj, goal_x, goal_y)

function delete(obj)

% Deconstructor

shutdownRobot(obj.agent_obj)

end

end

end

28

Chapter 3. The Framework

MATLAB’s Graphical User Interfaces Design Environment (GUIDE) is a development

tool to create and interactively edit graphical displays. Graphical User Interfaces (GUIs)

are saved as a FIG-file and a M-file and serve as the User Interface module in the frame-

work. GUIs simplify tasks and allow users to accomplish the same tasks without fully

understanding the commands and syntax to perform those tasks. To the framework, the

GUI corresponds to MATLAB functions and provides event triggers or input values. This

integrates the User Interface module nicely with the other modules.

GUIDE is an interactive visual GUI developer (Figure 3.3). Built-in components can

be dragged and dropped to populate a FIG-file to the programmer’s desire. User interac-

tions with each component executes a callback. Programming the appropriate task to each

callback allow the GUI to be rich, simple, and intuitive. Several of the important compo-

nents are push buttons, radio buttons, text boxes, menus, and most importantly axes.

Figure 3.3: The GUIDE environment.

The biggest strength for Matlab is its extensible platform. Combined with a large

community, MATLAB has an expansive dynamic library of addons called toolboxes. Tool-

boxes are packages of m-files created either in-house or by an outside programmer. The

framework uses two toolboxes not provided in the student version: Simulink 3D Anima-

29

Chapter 3. The Framework

tion Toolbox and Drexel University’s MATLAB USARSim Toolbox.

The Simulink 3D Animation Toolbox provided by MATLAB is a complete package for

developing 3D visualization and building connections to hardware input devices. These

devices include sound cards, data acquisition hardware, and most importantly for this

framework, usb joysticks and gamepads. In the framework, the toolbox is utilized to

provide user input from a gamepad shown in Algorithm 3.3. Gamepads are ergonomic,

intuitive, and equipped with a large amount of axes and buttons. The toolbox is fully

integrated with MATLAB and contains Simulink blocks to plug data entry directly into

Simulink models.

Figure 3.4: The Joystick Input block from MATLAB’s Simulink 3D Animation.

Drexel University’s MATLAB USARSim Toolbox[42] is the bridge that connects MAT-

LAB to USARSim and Unreal Tournament 2004. Following the gamebot protocol[43], the

toolbox provides methods to send drive commands and receive status and sensor readings

from the robots in USARSim. The toolbox connects to USARSim as a client and initializes

robots through the protocol detailed in Appendix B.

MATLAB combined with the USARSim toolbox is the controller that governs the

robots in USARSim. This constructs the majority of the Virtual Robotic Games frame-

work. The Game Coordinator module is built in a conditional function. The User Inter-

face module is provided through a GUI developed in GUIDE and users provide gamepad

inputs through the daq toolbox. The Robot Device module is the collaboration between

the robot’s computational algorithms and its virtual robot entity. USARSim provides the

virtual environment and the player’s virtual robot bodies.

30

Chapter 3. The Framework

Algorithm 3.3 Joystick Object

classdef Joystick < handles

% The object class Joystick is an inherit function of handles

properties

% Object's data members

joystick_obj % Joystick Obj

end

methods

function obj=Joystick(id)

% Constructor

joystick_obj = vrjoystick(id)

end

function state = getJoystickState(obj)

[state.axes, state.buttons, state.povs] = read(obj.joystick_obj);

end

function delete(obj)

% Deconstructor

close(obj.joystick_obj)

end

end

end

3.2.2 USARSim

The National Institute of Standards’ (NIST) Reference Test facility maintains USARSim.

The Unified System for Automation and Robot Simulation (USARSim) was designed for

31

Chapter 3. The Framework

urban search and rescue simulations and have now grown to include many ground vehicles,

the DARPA urban challenge, robotic soccer, submarines, unmanned aerial vehicles, and

humanoids. The USARSim’s mission is to provide a high quality simulations that supports

accurate user interface behaviors such as camera video, sensor readings and accurately

portray robot automation and behavior.

USARSim’s architecture is depicted in Figure 3.5. USARSim consist of a modifica-

tion to the Unreal Tournament 2004 (UT2004) engine. Robot, sensor, and map models

are inputted and compiled into UT2004. The UT2004 networking is proprietary, however,

with the University of Southern California’s GameBots [43] a protocol allows client con-

trollers access to characters in UT2004 via network sockets. The MATLAB USARSim

toolbox connects to UT2004 through this protocol. The Unreal Client is used to generate

video from the game. Using the multiview feature, multiple robot cameras can be captured

and displayed on the screen. An image server can grab the video from the Unreal Client

through a DirectX hook.

Figure 3.5: The USARSim architecture.

32

Chapter 3. The Framework

UT2004 is a commercial video game that provides a stable modern physics engine and

is open to gamer modifications (game mod). UT2004 is a deathmatch-type first person

shooter video game developed by Epic Games. The Unreal series began in 1998 and in

2004, UT2004 became the sequel to Unreal Tournament 2003. UT2004 and its engine,

Unreal Engine 2.5, is cross-platform, available for Microsoft Windows, Apple Mac OS X,

and Linux x86-32 and x86-64 bit versions.

The Unreal Engine 2.5 is a modern physics engine integrated with the Karma physics

SDK. This powerful physics engine delivers realistic rendering performance, collision de-

tection, vehicle physics, particle systems, networking, and file system management in one

package. The engine is built primarily for graphical realism and smooth gameplay. Epic

Games does not release its engine source but has developed an Unreal scripting language,

which allows the inclusion of modifications. With this capability, robot researchers can tap

into Unreal Engine’s power and develop a research tool for simulation and prototyping.

USARSim’s Robot models account for the specific robot’s configuration. If the robot

is a two wheeled differential drive vehicle, the robot’s chassis dimensions, trackbase and

wheel radius are computed with the individual torques to each wheel to determine the

robot’s movement. The sensors and effectors are also mounted in a defined position and

it outputs specific properties such as maximum range, resolution, and readings. Three

dimension models and maps can be built using Epic Games’ Unreal Editor 3.

The Unreal Engine uses a Left Handed Coordinate system represented in Figure 3.6.

To apply a standard, USARSim uses the SAE J670 Vehicle Coordinate System depicted

in Figure 3.7. The Unreal Engine also uses their own unit system called an Unreal Unit

(UU). USARSim also standardized that 250 UU is equivalent to 1 meter and 65535 UU is

equivalent to 360 degrees. The framework also uses USARSim’s standardization in both

coordinate system and unit conversion.

USARSim is a flexible UT2004 modification rich with prebuilt robot platforms and

33

Chapter 3. The Framework

Figure 3.6: The Left Hand Coordinate System.

sensor models. With fully customizable robot configurations and maps, USARSim is ex-

tensible to a variety of robotic scenarios. Powered by the Karma physics SDK, the Unreal

Engine brings an authentic reality to robot research. USARSim combined with MATLAB

as a controller completes the Virtual Robotic Games Framework as a full, realistic, com-

putational environment suited for the development of Virtual Robotic Games.

Figure 3.7: The SAE J670 Vehicle Coordinate System.

34

Chapter 4

Case Studies

The following Robotic Games were developed using the framework discussed in Chapter

3. The Framework was developed on a Windows Vista platform using an Apple Macbook

Pro 3.1, however, both MATLAB and USARSim are cross-platform and the framework

could be implemented onto Mac OS X and Linux easily. It is suggested to have at least a

dual-core system as USARSim’s server application tends to devote the cpu to itself.

4.1 Player Head-Up Display (HUD)

The Player Head-Up Display is a pilot experiment game. The goal of this game is to

display a robot dashboard providing information regarding its location, sensor readings,

and a simple goto function that utilizes the algorithms from Figure 2.4. There are no

rules in this game. The Game Coordinator has one task and it is to construct a GUI for

every robot. Each GUI will have an open robot button and several axes, each containing

information regarding location, laser readings, sonar readings, and a goto panel.

The GUI has been built to help users start USARSim and pick an environment. The

35

Chapter 4. Case Studies

GUI is shown in Figure 4.1. A list of predefined maps are shown and when the user selects

a map and clicks the Start button, the GUI initializes the USARSim environment with the

chosen map. A separate USARSim spectator window appears on the screen. This window

is a spectator camera and can view the game from an outside point of view. The user must

switch windows back to the Virtual Robotic Games framework to select the players.

Figure 4.1: The Virtual Robotic Games framework welcome splash.

The new window, shown in Figure 4.2, provided by the framework prompts the user

to select a game, determine the number of player robots, their positions, poses, and roles.

The user selects “Agent Test” and provides the information for the agents.

The head-up display in Figure 4.3, demonstrates the GUI system. The Reset button

places the player into the environment. In the USARSim spectator window, you can see

the player’s camera view in the upper left corner as well as the user’s spectator camera

overviewing the robot in its environment. The dashboard has four quadrants each dis-

playing live information regarding the player’s sensor readings. Two push buttons are

provided to move the player. The goto button allows the Robot Device module to use the

linear feedback algorithm to send the player to the goal coordinates. The manual button

switches the player’s controls to the first connected joystick. Using the first axis and the

first two buttons, a user can control the yaw and forward velocity of the player.

36

Chapter 4. Case Studies

Figure 4.2: The Virtual Robotic Games Framework Client Configurator.

Figure 4.3: The Player HUD game in the virtualized ECE L217 MARHES lab.

37

Chapter 4. Case Studies

Figure 4.4: The Lion and Man problem.

4.2 Robot Pursuit-evasion Game.

A pursuit-evasion game has several distinct features. Similar to the Lion and Man problem

derived by Rado[44], a set of P pursuers and a set of I evaders are placed in the same en-

vironment O⊂ R2 . Both pursuers and evaders have the same maximum forward velocity

and the goal for the team of pursuers is to choose values of up = [vp ωp] for all pursuers

to pursue and capture every evader. The team of evaders must choose their values of

ui = [vi ωi] for each evader to evade the pursuers. The pursuit-evasion game demonstrates

detection and capture algorithms, path estimation, and interception prediction.

4.2.1 Game Description

This game is a simple intruder detection and capture. In this game, the scenario will

consist of three pursuers and two evaders. The evaders are called Intruders and will intrude

a certain convex boundary, called the Surveillance Area in Figure 4.5, guarded by the

Pursuers. The Intruders will start outside of the Surveillance Area and at random time

intervals, begin by entering into the Surveillance Area.

The game constrains the Intruder’s movements to a linear path to allow the Pursuers

some Intruder predisposition. This predisposition allows the Pursuer to project a guaran-

38

Chapter 4. Case Studies

Figure 4.5: A Surveillance Area in the Centennial Engineering Center map.

teed interception point for each Intruder’s linear trajectory. After two Intruder sightings,

the Pursuers must determine a capture point and dispatch a Pursuer to capture the Intruder.

This application is realisitic when considering piece-wise linear trajectories. When the

dispatched Pursuer and targeted Intruder are within a certain range, the Game Coordinator

counts this as a point for the Pursuers and sends a captured signal to the Intruder. If the

Intruder is outside of the Game Coordinator’s Surveillance Area boundaries, the Intrud-

ers receive a point and the Intruder is halted and the Pursuers are notified. The game is

finished when all of the Intruders have been captured or have escaped through the Surveil-

lance Area.

39

Chapter 4. Case Studies

4.2.2 Game Coordinator

Algorithm 4.1 The Pursuit-evasion Game Coordinator Algorithm
Assign random launch time for each Intruder

Perform initial robot placement

while Game Status = True do

if Timer > IntruderTime then

Send Intruder.Go

end if

while NumberDetections < 2 do

Poll Pursuers for Detections

end while

Receive Pursuer Interception Distances

Send Dispatch OK →Pursuer

while Pursuer Dispatched = True do

if Distance between Intruder and Pursuer <1 Meter then

Pursuer Score = Pursuer Score + 1

Send Reset to All Players and Dispatch OK

elseIntruder Outside of Surveillance Area

Intruder Score = Intruder Score + 1

Send Reset to All Players and Dispatch OK

end if

end while

if Last Intruder or Timer Ends then

Game Status← False

end if

end while

40

Chapter 4. Case Studies

The Game Coordinator has several key roles. It initiates the players and for each Intruder

assigns a start time, with one exception who is always assigned to zero seconds. As the first

Intruder begins, it ensures that two detections are received before Pursuers may dispatch.

Then it makes the decision whether an Intruder has been captured or was able to escape.

The Game Coordinator ends the game when the game timer runs out or when all the

Intruders are accounted for. Its algorithm is shown in Algorithm 4.1.

4.2.3 Intruder

The Intruder object is simple. Due to the Intruder’s kinematic constraints its kinematic

model simplifies to Equation 4.1, where vi = vmax is its constrained velocity and θi = c is

it’s constrained bearing, where c ∈ [−π,π]. Its behavior is depicted in Figure 4.6.

ẋi = vi cosθi,

ẏi = vi sinθi, (4.1)

Figure 4.6: The Finite State Machine of the Intruder Behavior.

41

Chapter 4. Case Studies

4.2.4 Pursuer

The Pursuer is the player. It’s goal is to collaborate with multiple laser readings to track and

capture the Intruder. Using the SICK Laser on each Pursuer, an environment snapshot is

taken to determine static wall artifacts. Intruder sightings are recorded as unusual readings

and Intruder sightings are accumulated such as in Equation 4.2, where Y = [y1 . . .yi . . .]T .

Intruder trajectory tracking is computed using a Least Squares Linear Fit, Equation 4.3, to

determine a linear model. This is accomplished using MATLAB’s polyfit to return a first

degree polynomial fit. Velocity is known to be constant and is computed from two point

readings.

Y = X

a

b

 =

x1 1
...

...

xi 1
...

...

, (4.2)

a

b

 =
(
XT X

)−1 XT Y. (4.3)

When an Intruder trajectory has been estimated, the pursuers compute Intruder inter-

ception points, Figure 4.7. Intruder interception points are estimated by the Equation 4.4,

where k is the Pursuer gain coefficient. This means the Pursuer dispatched will reach the

interception point 1/k times faster than the target Intruder.

dp

v̄p
= k

di

v̄i
, 0 < k ≤ 1 (4.4)

After the interception points have been determined, the Pursuers send their di’s to de-

termine who will be dispatched. The marketplace is maintained by the Game Coordinator

42

Chapter 4. Case Studies

Figure 4.7: Intruder Interception Point.

and the closest interception point to the Intruder is selected and the Pursuer is dispatched.

Modeled by the skid-steered kinematic model from Equation 2.2 and using the control law

described in Figure 2.4, the dispatched Pursuer goes to their Intruder interception point to

intercept and capture the Intruder.

4.2.5 Experiment Results

The simulation is set up with the initial conditions given in Table 4.1. The Pursuers are

represented by the three Pioneer2-AT robots in Figure 4.8, and the Intruders are the two

iRobot ATRV-Jr robots. The simulation is placed in the courtyard of the Centennial Engi-

neering Center at the University of New Mexico.

The simulation begins with the same introduction screens as the Player HUD exper-

iment. The Game Coordinator prompts the user to choose the environment, number of

robots, their roles, and their initial position and orientation. Soon after the user prompts

the Game Coordinator to begin, the players are placed in their defined starting positions

on the map and the Intruders are set to advance into the Surveillance Area. The Pursuers

43

Chapter 4. Case Studies

Table 4.1: The Pursuit Evasion Initial Conditions.

Name X Y Yaw
Pursuer 1 -7.00 -20.00 0.00◦
Pursuer 2 3.00 -22.00 180.00◦
Pursuer 3 -3.00 -26.00 0.00◦
Intruder 1 -7.50 -16.00 −60.00◦
Intruder 2 -1.30 -28.40 105.00◦

Figure 4.8: The Pursuit Evasion initial experiment setup.

are equipped with SICK Laser Scanner LMS200 to detect the Intruders.

After two Intruder sightings are acquired, the Pursuers determine their Interception

Points and place their costs to reach the point. The Game Coordinator returns the lowest

cost to each Pursuer. Comparing their original cost to the returned cost, the Pursuer with

the lowest cost can confirm it is the closest to the Intruder and begin its pursuit. The

data for this simulation was plotted in Figure 4.9 and Figure 4.10 shows the two Intruders

successfully captured.

44

Chapter 4. Case Studies

Figure 4.9: The Pursuit Evasion Simulation Data.

Figure 4.10: The Pursuit Evasion Conclusion.

45

Chapter 4. Case Studies

4.3 Sharks and Minnows

Sharks and Minnows was originally based on the swimming game. The game is set up

to have two teams: Sharks and Minnows. In a rectangular field O ⊂ R2 with dimension

L x W , a set of P players are initialized as Sharks and Minnows. Sharks are initialized on

one side of the field and Minnows on the opposite side. During the game, players who

are Sharks are required to tag Minnows while players who are Minnows are required to

traverse across the playing boundary and avoid the Sharks. If a Minnow is tagged by a

Shark, that Minnow becomes a Shark after the round is over. Depending on the initial

number of Minnows and Sharks, a limited number of Minnow passes are allowed and

after the last Minnow pass, any remaining Minnows win the game, otherwise the original

Sharks win.

Figure 4.11: The Shark and Minnows game.

4.3.1 Game Description

The game is played on a medium sized rectangular field . Generally the field must be large

enough to accommodate the players to move freely. The number of Minnow passes are

determined by Equation 4.5. A game of six Minnows and one seed Shark, would have two

Minnow Passes. Each Minnow Pass begins with the Sharks lined up on one side and the

46

Chapter 4. Case Studies

Minnows on the other. They will make a pass across the field lengthwise. Any Minnows

who are caught within Dtag distance from a Shark are considered tagged. Both Minnows

and Sharks are free to move any direction as long as they are within the boundary O.

Minnow Passes =

⌊
Minnows−Sharks

2

⌋
(4.5)

Tagged Minnows switch roles and begin to help Sharks. This changes the dynamics

of the game, because the Minnows quickly lose the advantage as their numbers decrease

in a geometric progression. Therefore, it is crucial for Minnows to minimize their losses

early in the game while vise versa the Sharks need to increase their numbers early. The

players have full awareness of the environment and where the sharks are. Differences in

each player is introduced by giving the players a random maximum forward velocity. This

creates an interesting effect as some minnows become stragglers and can be singled out

from the crowd.

4.3.2 Game Coordinator

Due to the nature of Sharks and Minnows, the Game Coordinator has a more defined role

as a referee. It does not intervene with the player’s decision tree and only prompts the

players when they are either tagged, step out of bounds, or beginning a new Minnows

pass. Its algorithm is described in Algorithm 4.2. When initialzing each player, the Game

Coordinator will determine that specific robot’s maximum velocity.

47

Chapter 4. Case Studies

Algorithm 4.2 The Sharks and Minnows Game Coordinator Algorithm
Initialize Playing Field and Players

while Game Status = True do

Send Round Start to players

if Shark and Minnow within 30 cm then

if Minnow is in End Zone then

Do Nothing

else

Set Minnow to Inactive

end if

end if

if Player is out of bounds then

Set Player to Inactive

end if

if All Remaining Minnows are in End Zone then

Set all Inactive Players to Shark

end if

if No more Minnows then

Sharks Win

else if No more Minnow Passes then

Minnows Win

end if

end while

4.3.3 Player

The Players are have three distinct states described in Figure 4.12. Minnows begin in the

Minnows state, Sharks are in the Sharks state, and any player who was tagged or ran out

48

Chapter 4. Case Studies

of bounds are set to Inactive. The Minnows state is the evader, it must get to the other

side without being tagged by any of the Sharks. The Minnow strategy consists of a scalar

vector field F over the O space. This field is called a potential field and it produces a force

−∇F on the Player. The field is linearly toward the safe end zone and linearly away from

the barycenter of the Sharks, Figure 4.13. A more immediate algorithm is exhibited if a

Shark is known to be closer than two meters, then the Minnow will directly evade that

specific Shark without going out of bounds.

Figure 4.12: The Player Finite State Machine.

When a Minnow is tagged by a Shark, the Game Coordinator will set that Player to

Inactive. This will also occur when a Minnow is out of bounds. When a Player is Inactive,

it is forced to stop and remain in its current position. The Inactive Player will not resume

movement until the Game Coordinator assigns it as a Shark. Sharks are the pursuers, they

are decentralized and contains the same algorithms as the Pursuers in the Pursuit-Evasion

experiment. Minnow tracking will not be required as there is no shroud in this experiment.

The Sharks will approach the nearest Minnow and attempt to intercept as many as possible

during a Minnow pass.

49

Chapter 4. Case Studies

Figure 4.13: The Minnows Potential Function.

4.3.4 User Interface

The Game Coordinator will allow the user to resume the role of one of the players in the

game. The control schemes are from the Player HUD experiment. The user can select

which player to control but will not know the maximum forward velocity.

4.3.5 Experiment Results

The Sharks and Minnows experiment was held on the opposite side of the Centennial

Engineering Center courtyard. The initial conditions are given in Table 4.2 and can be

seen in Figure 4.14

The experiment had two Minnow Passes. The Shark targeted the quickest Minnow first

and was able to tag it, shown in Figure 4.15. It recalculated a new Minnow and was able

50

Chapter 4. Case Studies

Table 4.2: The Sharks and Minnows Initial Conditions.

Name X Y Yaw Role
Player 1 21.00 -30.00 90.00◦ Shark
Player 2 17.00 -16.00 −90.00◦ Minnow
Player 3 19.00 -16.00 −90.00◦ Minnow
Player 4 21.00 -15.40 −90.00◦ Minnow
Player 5 21.50 -16.00 −90.00◦ Minnow
Player 6 22.00 -15.00 −90.00◦ Minnow
Player 7 24.00 -15.00 −90.00◦ Minnow

to tag it as well due to its superiority in velocity. In Figure 4.16, the Minnow pass ended

and the first Minnow to be tagged remained in place since it was rendered Inactive. The

Minnow pass ended with four remaining Minnows and three Sharks.

The experiment ended with the Sharks winning. After multiple experiments, the

Sharks appear to have the advantage in this game and a new strategy may need to be

developed to exploit weakness to guarantee that the Minnows win.

Figure 4.14: The Sharks and Minnows initialization.

51

Chapter 4. Case Studies

Figure 4.15: The Sharks and Minnows tagging situation.

Figure 4.16: The Sharks and Minnows first Minnow Pass’s results.

52

Chapter 4. Case Studies

4.4 Roboflag

RoboFlag is a testbed developed at Cornell University in 2001 [25]. Modeled after “Cap-

ture the Flag”, the rules and strategies have remarkable resemblance. Two teams compete

against each other and the goal of the game is to receive the most amount of points. This

game is implemented into the framework through three key roles. The Rules and Interac-

tions are governed by the Game Coordinator module, the Player’s pathplanning, decision

making, and cost bids are described in the Robot Device module, and the user input and

scoreboard are managed by the User Interface module. These three roles provide a com-

prehensive demonstration for the Virtual Robotic Games framework.

4.4.1 Game Description

The game is set on a playing field that is six meters long and four meters wide as depicted

in Figure 4.17. The field is split in two equal sides: a red side and a blue side. On each

side, the team’s home zone and flag are fixed and their locations are priori information in

each player. The objective for each team is to invade the other side, enter the other team’s

flag zone and take their flag. Simultaneously, the other team is defending their flag and

can tag the invader, forcing the invader to directly return to its home zone. This mix of

offense and defense provides a rich game scenario for developing strategies.

Each team’s playing half denotes the boundary where the players can tag opponents.

The home zone is a quarter circle in a corner of the playing side. Its purpose is to provide

a destination for tagged players to return and is the flag return point for players with the

opponent’s flag. The flag zone is a full circle where players defend their flag which is in

the middle of the circle. Players within the flag zone cannot be tagged and defenders are

posted outside of this region.

The interaction rules correlate to the different zones. A player becomes Tagged if he’s

53

Chapter 4. Case Studies

Figure 4.17: The RoboFlag playing field.

in Normal operation, on the opponent’s side of the playing field, and comes within 30

centimeters of an opponent player. He then must return to his home zone to untag himself.

A player becomes Flagged if he’s within 30 centimeters of the opponent’s flag position.

He then must return to his home zone to score for his team. If a Flagged player comes

within 30 centimeters of any opponent anywhere in the field, he becomes Tagged and the

flag returns to its place in the opponent’s flag zone. The player then follows the rules as

a Tagged player and must return to his home zone to untag himself. When any player is

within 60 centimeters to its home zone corner, he becomes Normal.

Points are tallied as flag captures. The first team with three flag captures wins. A

RoboFlag game is twenty minutes with two rounds at ten minute intervals. Tied games

continue to a final sudden death where the first flag captured wins the game. This tiebreaker

round is allotted five minutes and the game is considered a draw if no flags are captured

during this round.

The purpose of the RoboFlag competition is to provide a benchmark for human ma-

chine interaction. Each team has a human operator who does not send drive commands

54

Chapter 4. Case Studies

but rather communicates strategies to his team players. Like a coach, the role is not to be

cumbered by low-level robotic logic but rather simple and efficient by sending high level

strategies. This human machine interaction sets this experiment apart as it is a playable

game rather than an experiment to sit back and observe.

4.4.2 Game Coordinator

The Game Coordinator’s role is to maintain gameplay, scorekeeping, timekeeping, and to

ensure rules are kept for each player’s interactions. Its algorithm is described in Algorithm

4.3. The Game Coordinator is responsible for initializing the playing field and players.

After the initial placement is set, it sets each player to Normal and the game begins. It

checks interactions and the game timer and acts accordingly. The Game Coordinator is the

referee and communication protocol.

Other than proctoring the game, the Game Coordinator is also called when a player is

Tagged. A Tagged player forfeits control and is then managed by the Game Coordinator.

It guides the player back to his home zone and control is returned to the player.

4.4.3 Player

The player has three states:Normal, Flagged, and Tagged. A finite state machine depicts

these three states in Figure 4.18.

The Normal state is the default player behavior when it is not tagged nor returning the

flag. It consists of a simple logic loop that allows developers to input their robotic code

and apply their strategies to the game. Due to the necessity for offenses and defenses,

optimization may be necessary to determine a good blend of strategies.

55

Chapter 4. Case Studies

Algorithm 4.3 The RoboFlag Game Coordinator Algorithm
Initialize RoboFlag Playing Field and Players

while Game Status = True do

Setup Marketplace

Send previous lowest bid to Normal Players

Record and Update lowest bid

if Players within 30 cm then

if Between Player and its Home Zone then

if Player is Flagged then

Add one to Player’s Team Score

end if

Set Player to Normal

else if Between Player and Opponent’s Flag then

if Player is Normal then

Set Player to Flagged

end if

else if Between Player and Opponent then

if Blue Player in Red Side then

Blue Player is Tagged

else if Red Player in Blue Side then

Red Player is Tagged

end if

end if

end if

if Time is Up then

Determine Gameplay

end if

end while

56

Chapter 4. Case Studies

Figure 4.18: The RoboFlag Player Finite State Machine.

A conservative strategy is to dispatch one player to collect the opponent’s flag. The

players place bids among each other to determine who is closest to the opponent’s flag.

This can be construed as energy costs and the lowest bid would be the most efficient.

The remaining players become defensive and guard their flag. This strategy benefits from

the greater defensive stance, however, may prevent the team from gaining opportunity to

score.

An offensive strategy is to dispatch all players to collect the opponent’s flag. The play-

ers then create a formation to shield the opponents from the flag carrier. Two formations

can be produced, players can separate into two groups to divide the opposing players or

as one group ensuring players remain as obstacles after they are tagged to protect the flag

carrier.

The Flagged state is executed when a player obtains their opponent’s flag. The al-

gorithm is a fast evasion code with its priority is evading opponents and an ultimate goal

of reaching its home zone to score. Some alterations are allowed to create a smarter flag

return. These include avoiding opponents, cooperating with teammates to intercept in-

57

Chapter 4. Case Studies

coming opponents and calculating safer routes.

The Tagged state is active when a player interacts with an opponent within the op-

ponent’s playing side or interacts with an opponent while holding the opponent’s flag.

A Tagged player is controlled by the Game Coordinator and the Robot Device becomes

transparent, directly submitting its position and orientation and receiving wheel speed di-

rectly from the Game Coordinator.

4.4.4 User Interface

The User Interface used for RoboFlag is specialized to a higher-level command center.

Information regarding the game is displayed in a GUI while commands are sent through

the gamepad. The user is capable of both low-level and high-level control. When clicking

on one of the four player control buttons, the control layout on the gamepad is the same

as the previous experiments. Each of the player control buttons designate a specific robot

player.

When none of the player control buttons are pressed, the GUI is set up as a commander

style interface. Each of the four face buttons represent a certain priority. These four

priorities are: Team Flag, Tag De f ense, Flagged Sa f ety, and Hail Mary. Team Flag

means the priority is safeguarding the team’s flag. Generally all players will swarm around

the team’s flag or attempt to directly tag the Opponent’s Flagged. The Tag De f ense

priority represents the priority to quickly tag any opponents in the team’s playing side to

quickly purge the field. Flagged Sa f ety is the strategy to sacrifice oneself to shield its

Flagged from being tagged. Hail Mary is similar to most games with Hail Mary’s. All

players attempt to capture the opponents flag as an aggressive stance to make a score.

The RoboFlag User Interface is an interesting problem that introduces a human machine

interaction that could possibly improve the way human and machines communicate with

each other.

58

Chapter 4. Case Studies

4.4.5 Experiment Results

This experiment required a larger field due to the size of the Pioneer2-AT. The playing

field was doubled in size from the Cornell University specifications. The players were

lined up to begin play as in Figure 4.19. When the Game Coordinator began the round,

the players placed their bids on who will attempt to capture the opponents flag. Using the

consensus theory described previously, the players computed and compared who’s bid is

lowest and that player began their trajectory toward the opponent’s flag.

Figure 4.19: The RoboFlag Virtual Field.

Set to instigate results, the blue team was limited on using the conservative strategy

and the red team was limited to only the aggresive strategy. This ensured both strategies

were the Achilles’ heel to each other. The Blue team would be out numbered when all

four red players entered the field and the Red team would not have any defenders to tag

the single blue flag taker. In conclusion, the blue team ensured victory because the entire

Red team was incapacitated due to all its players were Tagged.

When the User Interface is implemented, the user plays the game as the commander

of his team’s players. The user’s opponent’s strategy has been set on a balanced approach,

sending only one player for the flag and leaving the rest for defense. The user’s two

59

Chapter 4. Case Studies

Figure 4.20: Roboflag when User commands Defense.

major priorities are De f ense in Figure 4.20 and Hail Mary Figure 4.21. A successful

user strategy is to do full defense until at least two of the opposing players are tagged and

returning to their home base. Then while two of the opponent’s players are Tagged, the

user commands Hail Mary and sends his entire team to grab the flag. The players who are

tagged first, become Tagged and shields the rest of the players from the opposing players.

When one player captures the flag, the user commands De f ense to convoy the flag carrier

back to home base.

Figure 4.21: Roboflag when User commands Hail Mary.

60

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, a framework for the development of Virtual Robotic Games has been pre-

sented. The framework has been implemented on a cross-platform software environment

to present a flexible research tool for developing robotic scenarios and their robot’s tasks.

It brings accurate dynamics, realistic three-dimensional rendering, vast robot and sensor

models in efficient real-time simulations. There are many robot simulators, however, The

Virtual Robotic Games framework integrates a role-based robotic environment that allows

developers to focus directly on one role module without the need to update the entire

framework.

The framework compartmentalize Robotic Games’ agents by their different roles. The

Game Coordinator module maintains the game itself, checking conditional rules and en-

suring the gameplay remains bound to their conditions. The Robot Device module is a

robot abstraction layer, maintaining robotic algorithms and hardware middleware. The

User Interface module is a dedicated module to develop a graphical display and gamepad

input experience that captures playing the Robotic Game. Separating the modules and

61

Chapter 5. Conclusions and Future Work

building their relationships have defined the framework’s architecture, methodology, and

modularity.

Several Robotic Games have been evaluated to demonstrate the framework. Robot

Pursuit Evasion, Sharks and Minnows, and Robotic Capture the Flag have all demon-

strated their own unique characteristics. Pursuit Evasion has tested and proven theoretical

guarantees to track and capture Intruders in a multiple point of view system. Sharks and

Minnows has demonstrated an extension of pursuit-evasion by adding the dynamics of the

swimming pool classic. Using repeated match data, Sharks and Minnows strategy can be

further improved to extend development in robotic algorithms. The RoboFlag experiment

provided the framework for developing human machine interfaces, introducing high-level

communication, where robots will study the semantics of command before acting.

The Virtual Robotic Games framework provides a cost-effective, role-based behavior

control environment that promotes collaboration, education, and research in robotics. It

brings a development platform that is focused on the development of Robotic Games and

Robotic Games strategies. The Virtual Robotic Games framework has provided a com-

prehensive test bench that successfully simulates these games and provided a research

platform for robotic behavior.

5.2 Future Work

Further development to expand the framework can incorporate physical robot limitations.

Battery resources can be considered by a total energy function [45]. Noisy or limited

sensor readings can be solved by a fusion center [46] and limited or noisy communication

channels should be modeled in USARSim. USARSim provides aerial vehicles which can

be added to the Robotic Games for more intriguing gameplay.

Epic Games has released the next physics engine with Unreal Tournament 3 (UT3).

62

Chapter 5. Conclusions and Future Work

UT3 is backed by the third generation Unreal Engine 3 (UE3), which supports more real-

istic render techniques such as dynamic shadows, high dynamic range rendering, per-pixel

lighting, global illumination, volumetric environmental effects, and an extensive parti-

cle system. UE3 also advanced their physics system, powering it by the next generation

NVIDIA’s PhysX. Rigid body physics improves realism between objects, ragdoll charac-

ters, and other complex dismemberable objects.

USARSim has already begun developing their modification to UT3. The framework

can be adapted to run on the UT3 USARSim system by rebuilding the MATLAB USAR-

Sim toolbox to work with UT3’s network protocol. Additionally screen capture would

have to be implemented to receive camera video and a new image server will have to be

developed. A new image server and MATLAB toolbox would allow the framework to uti-

lize UT3’s physics system, thus, advancing our simulations with video realism and more

accurate physic dynamics.

Currently the framework does not have an outlet to advance its simulations to hard-

ware. Several hardware abstractions are available with potential to be integrated into

the Virtual Robotics Games framework. The Player device server [47] is an open-source

framework that is validated [33] in the academic community for support of a large variety

of robotic hardware and robot platforms. Another software framework is the Microsoft

Robotics Developer Studio [48]. This platform supports several standard robot platforms,

however, integration with the Virtual Robotic Games framework may not be cost effective.

A hardware abstraction platform integrated with the framework will expand development

to hardware realization, allowing users to further validate their code on physical platforms.

In Chapter 4, many robotic games and scenarios have been defined and preliminary

player algorithms have been developed to complete the tasks required. Theoretical guaran-

tees of performance should be investigated. Research by the robotics and pursuit-evasion

communities may address the complexity and stability of applicable coordination algo-

rithms. Incorporating all work will develop a more complete definition and solution for

63

Chapter 5. Conclusions and Future Work

the study of Robotic Games.

64

Appendix A

Software Installation

The Virtual Robotic Games Framework is comprised of two software packages:

• MATLAB

• USARSim

A.1 MATLAB Installation

1. Install MATLAB as recommended by Mathworks. Ensure two packages are down-

loaded and installed.

2. MATLAB packages

• Simulink 3D Animation 5.1.1

• MATLAB USARSim Toolbox Beta Version 1.1 [42]

The java code provided in MATLAB USARSim Toolbox is specifically

compiled for Windows. For Mac OS X and Linux java must be com-

piled with a JAVA Compiler to ensure binary compatibility

65

Appendix A. Software Installation

3. Place MATLAB USARSim Toolbox inside VirtualRoboticGames folder. Enter Folder.

For quick start, Virtual Games Framework runs as a gui from the prompt line. Run

as

EDU>> VirtualRoboticGames

This should open Figure 4.1.

A.2 USARSim Installation

USARSim’s installation requires modifying a commercial product and is more involved.

1. To install USARSim, you must have a working copy of Unreal Tournament 2004

(UT2004). Install UT2004 as recommended by Epic Games and patch to v3369.

2. Download the USARSim 2004 files from sourceforge [49]. Either install the win-

dows executable or unpack the compressed archive file into the UT2004 directory.

3. For Mac OS X and Linux, Install Wine

4. Compile USARSim by running make.bat or running wine in the Systems folder

$ wine ucc.exe make -ini=USARSim.ini

5. Run USARSim Server from the Systems folder

$./ut2004/System/ucc-bin-linux-amd64 server

[map-name]?game=USARBot.USARDeathMatch?TimeLimit=0?GameStats=False

-ini=USARSim.ini -log=usar_server.log

66

Appendix B

Virtual Robotic Games Protocols

B.1 MATLAB USARSim Toolbox

The VRG framework follows the MATLAB USARSim Toolbox. Using the toolbox’s

protocols with Gamebots/Unreal, VRG sits nicely on top benefiting from the abstraction

from Unreal’s technical protocol.

Several Commands are:

• Initialize a robot:

robot = initializeRobot{robot_name, robot_class,

robot_position, robot_orientation}

Where:

67

Appendix B. Virtual Robotic Games Protocols

robot name robot name is the name of the robot.

robot class USARSim’s robot model class. VRG uses P2AT.

robot position robot position is a tuple of the starting position in meters.

robot orientation robot orientation is a tuple of the starting orientation in

radians.

robot robot is the robot object created.

• Send Drive Commands

sendDriveCommand{robot, robot_command}

Where:

robot robot is the robot object.

robot command robot command = [left motor speed, right motor speed]

• Get Vehicle State:

{State} = getVehicleState{robot}

Where:

robot robot is the robot object.

State.TimeStamp TimeStamp is the number of seconds USARSim.

State.FrontSteer FrontSteer is the steering angle of the front wheels of an

ackermann steered robot.

State.RearSteer RearSteer is the steering angle of the rear wheels.

State.LightToggle LightToggle is a boolean value for the robot’s headlights.

State.LightIntensity LightIntensity is currently not implemented.

State.BatteryLi f e BatteryLi f e is a value from 0 to 100, 100 represents full

charge.

• Get Vehicle Geometry:

{Geo} = getVehicleGeometry{robot}

68

Appendix B. Virtual Robotic Games Protocols

Where:

robot robot is the robot object.

Geo.Name Name is the name of the robot.

Geo.Dimensions Dimension is currently not implemented.

Geo.CenterO f Gravity CenterO f Gravity is currently not implemented.

Geo.WheelRadius WheelRadius is the robot’s driving wheel radius in mm.

Geo.WheelSeparation WheelSeparation is the robot’s track width.

• Get INS Readings:

{Ins} = getINSReadings{robot}

Where:

robot robot is the robot object.

Ins.Name Name is the name of the robot.

Ins.Position Position is a tuple containing the robot’s Cartesian position.

Ins.Orientation Orientation is a tuple containing the robot’s pose.

• Get Encoder Readings:

{Encoders} = getEncoderReadings{robot}

Where:

robot robot is the robot object.

Encoders.Name Name is the name of the robot.

Encoders.Ticks Position is a 1x n vector of the ticks recorded

from n encoders.

• Get Touch Sensor Readings:

{Touch} = getTouchSensorReadings{robot}

69

Appendix B. Virtual Robotic Games Protocols

Where:

robot robot is the robot object.

Touch.Name Name is the name of the robot.

Touch.ContactState ContactStat is a 1x n vector of the boolean state recorded

from n touch bumpers.

• Get Laser Sensor Readings:

{Laser} = getLaserSensorReadings{robot}

Where:

robot robot is the robot object.

Laser.Name Name is the name of the robot.

Laser.Resolution Resolution the resolution of the laser range finder.

Laser.FOV FOV the Field of View (zoom) value of the laser range finder.

Laser.Scans Scans is a 1x n vector of the range detected.

• Get Sonar Sensor Readings:

{Sonar} = getSonarReadings{robot}

Where:

robot robot is the robot object.

Sonar.Name Name is the name of the robot.

Sonar.Range Range is a vector 1x n of the ranges from n sonar readings.

• Get Odometry Readings:

{Odometry} = getOdometryReadings{robot}

Where:

robot robot is the robot object.

Odometry.Name Name is the name of the robot.

Odometry.Pose Pose is the orientation of the robot.

70

Appendix B. Virtual Robotic Games Protocols

• get GPS Readings:

{GPS} = getGPSReadings{robot}

Where:

robot robot is the robot object.

GPS.Name Name is the name of the robot.

GPS.Latitude Latitude is the latitude reading from the GPS.

GPS.Longitude Longitude is the longitude reading from the GPS.

GPS.GotFix GotFix is a boolean determined by if one satellite is

locked.

GPS.NumO f Satellites NumO f Satellites is the number of satellites locked.

• Shutdown Robot:

shudownRobot{robot}

Where:

robot robot is the robot object.

71

References

[1] J. Kramer and M. Scheutz, “Development environments for autonomous mobile
robots: A survey,” Autonomous Robots, vol. 22, no. 2, pp. 101–132, Feb. 2007.

[2] R. Vaughan, “Massively multi-robot simulation in stage,” Swarm Intelligence, no. 2,
pp. 189–208, Aug. 2008.

[3] R. Falconi and C. Melchiorri, “Roboticad: an educational tool for robotics,” in The
International Federation of Automatic Control, Seoul, Korea, July 2008, pp. 9111–
9116.

[4] O. Michel, F. Rohrer, and Y. Bourquin, “Rat’s life: A cognitive robotics benchmark,”
in European Robotics Symposium, vol. 44. Springer, 2008, pp. 223–232.

[5] D. Riehle and T. Gross, “Role model based framework design and integration,” in
Object-Oriented Programming Systems, Languages, and Applications, 1998, pp.
117–133.

[6] Wikipedia, “Robotics,” Online, 2010, http://en.wikipedia.org/wiki/Robotics.

[7] R. P. M. Buehler and M. Raibert, “Robots step outside,” in International Symposium
Adaptive Motion of Animals and Machines, Limenau, Germany, Sept. 2005.

[8] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dimensionality reduction for hand-
independent dexterous robotic grasping,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems. IROS 2007, San Diego, CA, Oct. 2007, pp. 3270–
3275.

[9] T. Brogardh, “Present and future robot control development - an industrial perspec-
tive,” Annual Reviews in Control, vol. 31, no. 1, pp. 69–79, 2007.

[10] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed. Upper Saddle
River, NJ 07458: Pearson Prentice Hall, 2005.

72

References

[11] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning
and Control, 1st ed. Springer-Verlag London Limited, 2009.

[12] H. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2001.

[13] A. van der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems.
Lecture Notes in Control and Information Sciences 251: Springer-Verlag, 2000.

[14] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar, I. Lee,
P. Mishra, G. Pappas, , and O. Sokolsky, “Hierarchical hybrid modeling of embedded
systems,” in EMSOFT’01, Oct. 2001.

[15] D. Harel and E. Gery, “Executable Object Modeling with Statecharts,” IEEE Com-
puter, vol. 30, pp. 31–42, 1997.

[16] R. Fierro, A. Das, J. Spletzer, R. Alur, J. Esposito, Y. Hur, G. Grudic, V. Kumar,
I. Lee, J. P. Ostrowski, G. Pappas, J. Southall, and C. J. Taylor, “A framework and
architecture for multi-robot coordination,” The International Journal of Robotics Re-
search, vol. 21, no. 10-11, pp. 977–995, Oct. - Nov. 2002.

[17] M. Zaratti, M. Fratarcangeli, and L. Iocchi, “A 3D Simulator of Multiple Legged
Robots based on USARSim,” Robocup 2006: Robot Soccer World Cup X, vol. LNAI
Vol. 4434, no. 1, pp. 13–24, 2007.

[18] P. Harrison, “The micromouse competition - a brief history,” Online, February 2010,
http://www.micromouseonline.com/book/micromouse-book/history.

[19] R. S. Rainwater, “Robot competitions,” Online, March 2010,
http://robots.net/rcfaq.html.

[20] N. Karnad and V. Isler, “Lion and man game in the presence of a circular obsta-
cle,” in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on, 2009.

[21] B. Perteet, J. McClintock, and R. Fierro, “A multi-vehicle framework for the devel-
opment of robotic games: The marco polo case,” in Robotics and Automation, 2007
IEEE International Conference on, April 2007, pp. 3717–3722.

[22] M. A. Vieira, R. Govindan, and G. S. Sukhatme, “Scalable and practical pursuit-
evasion with networked robots,” Intelligent Service Robotics, vol. 2, no. 4, pp. 247–
263, 2009.

[23] A. Efrat, H. H. G.-B. nos, S. G. Kobourov, and L. Palaniappan, “Optimal strategies
to track and capture a predictable target,” in Proc. IEEE Int. Conf. Robot. Automat.,
Taipei, Taiwan, Sept. 14-19 2003, pp. 3789–3796.

73

References

[24] H. Gonzalez-Banos, D. Hsu, and J. Latombe, “Motion planning: Recent develop-
ments,” in Autonomous Mobile Robots: Sensing, Control, Decision Making and Ap-
plications, S. Ge and F. Lewis, Eds. Boca Raton, FL: CRC Press, 2006, ch. 10.

[25] R. D’Andrea and R. Murray, “The RoboFlag Competition,” in Proc. of the American
Controls Conference, June 2003, pp. 650–655.

[26] T. G. McGee and J. K. Hedrick, “Guaranteed strategies to search for mobile evaders
in the plane,” in Proc. American Control Conf., Minneapolis, MN, June 14-16 2006,
pp. 2819–2824.

[27] G. Lakemeyer, E. Sklar, D. G. Sorrenti, and T. Takahashi, RoboCup 2006: Robot
Soccer World Cup X. Springer-Verlag New York Inc, 2007.

[28] T. Nakashima, M. Takatani, N. Namikawa, H. Ishibuchi, and M. Nii, “Robust eval-
uation of robocup soccer strategies by using match history,” in IEEE Congress on
Evolutionary Computation, Vancouver, BC, Canada, July 2006, pp. 3270–3275.

[29] J. Bruce, S. Zickler, M. Licitra, and M. Veloso, “Cmdragons: Dynamic passing and
strategy on a champion robot soccer team,” in Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on, May 2008, pp. 4074–4079.

[30] B. Browning, J. Searock, P. E. Rybski, and M. Veloso, “Turning segways into soccer
robots,” Industrial Robot, vol. 32, no. 2, pp. 149–156, 2005.

[31] J. Craighead, R. Murphy, J. Burke, and B. Goldiez, “A survey of commercial & open
source unmanned vehicle simulators,” in IEEE International Conference on Robotics
and Automation, Roma, Italy, April 2007, pp. 852–857.

[32] A. H. Nathan Koenig, “Design and Use Paradigms for Gazebo, An Open-Source
Multi-Robot Simulator,” in Proceedings of 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2004.

[33] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project: Tools for
multi-robot and distributed sensor systems,” in Proceedings of the 11th international
conference on advanced robotics, 2003, pp. 317–323.

[34] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “USARSim: A
Robot Simulator for Research and Education,” in IEEE International Conference
on Robotics and Automation. Los Alamitos: IEEE Computer Society Press, 2007,
pp. 1400–1405.

[35] S. Balakirsky, S. Carpin, and M. Lewis, “Robots, games, and research: Success
stories in usarsim,” in Workshop Proceedings of the International Conference on
Intelligent Robots and Systems, St. Louis, Missouri, October 2009.

74

References

[36] Z. Kira, R. C. Arkin, and T. Collins, “A design process for robot capabilities and
missions applied to microautonomous platforms,” in SPIE Conference on Micro- and
Nanotechnology Sensors, Systems, and Applications II, vol. 7692, Orlando, Florida,
April 2010.

[37] C. Scrapper, S. Balakirsky, and E. Messina, “MOAST and USARSim - A Combined
Framework for the Development and Testing of Autonomous Systems,” in SPIE De-
fense and Security Symposium, Orlando, Florida, April 2006, pp. 1400–1405.

[38] D. S. Office, “Darpa synapse,” Online, 2010,
http://www.darpa.mil/dso/thrusts/bio/biologically/synapse/index.htm.

[39] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “Bridging the gap
between simulation and reality in urban search and rescue,” in Robocup 2006: Robot
Soccer World Cup X, vol. 4434, LNAI. Springer, 2007, pp. 1–12.

[40] S. Balakirsky, R. Madhavan, and C. Scrapper, “Development of a virtual manufactur-
ing framework: From end-user performance requirements to robot competitions,” in
SPIE Conference on Unmanned Systems Technology X, vol. 6962. Orlando, Florida:
The International Society for Optical Engineering, April 2008, pp. 9111–9116.

[41] Y. Hur and I. Lee, “Distributed Simulation of Multi-Agent Hybrid Systems,”
IEEE International Symposium on Object-Oriented Real-time distributed Comput-
ing, April 2002.

[42] M. Hsieh, “Matlab usarsim toolbox,” Online, Feb. 2010,
http://robotics.mem.drexel.edu/USAR/.

[43] A. Marshal, “Gamebots,” Online, Feb. 2010, http://gamebots.sourceforge.net/.

[44] J. E. Littlewood, Littlewood’s Miscellany. Cambridge University Press, 1986.

[45] C. C. Ooi and C. Schindelhauer, “Minimal energy path planning for wireless robots,”
Mobile Networks and Applications, vol. 14, no. 3, pp. 309–321, June 2009.

[46] T. C. Aysal and K. E. Barner, “Constrained decentralized estimation over noisy chan-
nels for sensor networks,” in IEEE Transaction on Signal Processing, vol. 56, no. 4,
April 2008, pp. 1398–1410.

[47] T. Collett, B. MacDonald, and B. Gerkey, “Player 2.0: Toward a practical robot pro-
gramming framework,” in Proceedings of the Australasian Conference on Robotics
and Automation (ACRA 2005), 2005.

[48] “Microsoft robotics studio,” Online, http://msdn.microsoft.com/en-
us/robotics/default.aspx.

75

References

[49] S. Balakirsky, “Usarsim sourceforge,” Online, Feb. 2010,
http://sourceforge.net/projects/usarsim.

76

