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ABSTRACT

Electromagnetic wave propagation in the Earth-ionosphere cavity presents an interesting 

challenge for simulations. Three-dimensional latitude-longitude finite-difference time-domain 

(FDTD) models accounting for the bathymetry, topography and ionosphere have been developed 

and applied towards a number of applications previously. However, to date most of these models 

treat the ionosphere as a simple, isotropic exponential conductivity profile.  Only recently  has a 

latitude-longitude FDTD model been developed that treats the ionosphere as a magnetized cold 

plasma. This opens the door to modeling electromagnetic phenomena at higher frequencies and 

higher altitudes by accommodating more physics. Further, a geodesic (hexagonal-pentagonal) 

FDTD model that is more efficient, is easier to implement, and executes faster than latitude-

longitude models has been recently developed. In this thesis, the magnetized cold plasma global 

latitude-longitude algorithm is adapted and implemented for the first time in a geodesic FDTD 

model of the Earth-ionosphere cavity.
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Chapter 1

Introduction

1.1 Modeling the Earth-Ionosphere System Using FDTD

Modeling of the Earth-Ionosphere system using finite-difference time-domain, FDTD [1] is a 

challenging problem to solve. [2] contains a detailed history of the method. In 1999, Thevenot et al 

published a paper combining the current density equations of the Ionosphere with Maxwell's equations, 

creating a 2D FDTD simulation that took into account the Earth's magnetic field [3]. The results from 

their paper matched existing waveguide models of the Earth-Ionosphere, but the model had strict 

requirements on the choice of time step to maintain stability [3]. 

This was followed by Cummer's work in 2000 comparing existing mode theory solutions to the 

Earth-Ionosphere with a new model using 2D FDTD [4] to model ELF wave propagation generated by 

lightning strikes. Cummer treated the Ionosphere as an inhomogeneous and anisotropic cold plasma 

using equations from [5]. He found that mode theory and FDTD produced similar results over the 

extremely low frequency (ELF) and very low frequency (VLF) ranges, 3 Hz to 300 Hz and 3 kHz to 30 

kHz respectively, with the exception of distance less then 2 km from the source [5]. At these distances, 

mode theory becomes less accurate as it does not account for evanescent waves near the source or 

waves created by post-discharge currents in the Ionosphere. However, these types of effects are handled 

inherently by FDTD models without the need for special cases. 

These papers demonstrated the possibility for FDTD models to simulate Earth-Ionosphere cavity 

effects on ELF waves. However, the previous models have been 2D and the uses for such models are 

limited. Continuing work in the field has moved into 3D Earth-Ionosphere FDTD models. 

1.2 Latitude-Longitude Grid FDTD Model

In 2003, Simpson and Taflove used a global Latitude-Longitude grid spherical coordinate FDTD 
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simulation to model impulsive ELF propagation [6]. In this model, the grid is divided into two modes, 

transverse electric (TE) and transverse magnetic (TM) propagating modes. Each mode has a separate 

set of cells, each offset by half a cell. This system allows for ELF propagation in the Earth-Ionosphere 

cavity and accounts for geometrical and electrical inhomogeneities from the Ionosphere, Lithosphere, 

and oceans [6]. However, this was largely a validation study and did not include details of the 

derivation of the grid. 

In 2004, Simpson and Taflove expanded on their 2003 validation study and provided greater details 

on the 3D Latitude-Longitude mesh. In [7], it is shown that isosceles trapezoidal cells as well as 

isosceles triangular cells are used to grid the Earth-Ionosphere system as seen in Figure 1. 
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Figure 1: General 3D FDTD Grid as Seen in a TM Plane at a Constant Radial Coordinate [7]

As stated above, the system is separated into two planes, TM and TE. In the TM plane, each cell 

consists of either a trapezoid or a triangle with the latter being used at cells near the poles. At the center 

of each cell is a radial Ez component of the propagating field. On each side of this cell is a non-radial 

component of the magnetic field. This can be seen in Figure 2. 

Figure 2: TM Plane Cell Geometry [7]

A half cell above (k + ½), northward (j + ½), and eastward (i + ½) lies the TE plane. The cell 

geometry is similar, with a radial Hz component in the center of each cell and the non-radial electric 

fields on the edges. Applying Maxwell's equations to these cells provides an updating equation for each 

field component. This process is shown in detail in section 2.1 for a rectangular system. 
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Cells at the equator will be the largest and get progressively smaller as they approach the polar 

regions. This reduces the numerical stability and efficiency of the model. As the cell size decreases, the 

time step decreases. This lowers the overall execution of the model. However, to combat this problem, 

Simpson and Taflove used a cell merging technique to eliminate small cells near the poles, increasing 

the maximum allowable time step [7]. 

This new 3D model also accounts for topographic and bathymetric data released by the National 

Oceanic and Atmospheric Administration (NOAA). This data was used to model the Earth-Ionosphere 

cavity at a depth of ± 100 km of sea level with a mesh size of  40 x 40 x 5 km at the cells at the equator 

using the conductivity profile shown in Figure 3 for the Earth's crust [7]. The model also used an 

exponential conductivity profile presented in [8] by Bannister for the profile of the Ionosphere. The 

model was then excited using a Gaussian pulse at the surface to a height of 5 km at the equator and 47° 

W.  The result was compared to experimental data of ELF propagation in [9]. Simpson and Taflove 

found that their results matched the data in [9] to ± 0.5 dB/Mm along a path from the source to a point 

halfway to the antipode eastward, and ± 1.0 dB/Mm along a similar path but westward [7]. 

Figure 3: Conductivity Values Used for the Lithosphere According to Whether the Space Lattice Point 
is Located Directly Below an Ocean or Within a Continent [7]

The level of detail provided by this model was quite extensive. Simpson and Taflove were 
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successful in accounting for topographic, bathymetric, and Ionospheric details in their model while 

limiting numerical instability. However, this model was further improved upon in [10].

1.3 Latitude-Longitude grid FDTD Model Using a Magnetized Cold Plasma

The Latitude-Longitude grid model accounted for the Ionosphere by using an exponential 

conductivity profile, but Cummer showed in [4] that the Ionosphere can be treated as a magnetized cold 

plasma. Yu and Simpson combined Cummer's 2D magnetized cold plasma model with the 3D Latitude-

Longitude grid model to further improve the accuracy for ELF waves. Yu and Simpson began with the 

same equations as Cummer and applied them to the 3D Latitude-Longitude grid producing a system 

that accounts for the presence of electron, positive ion, and negative ion plasma species. The derivation 

for this system is covered in detail in sections 2.2 and 2.3, or in the source material [10]. 

The resulting model was validated by testing the Faraday rotation effect. The Faraday rotation 

effect occurs in plasma when a magnetic field is applied parallel to a linearly polarized plane wave. 

This plane wave can be deconstructed into two circularly polarized waves, one right-hand circularly 

polarized, and the other left-hand circularly polarized. However, in the presence of the parallel 

magnetic field, the two circular waves will have different phase velocities [11]. This causes the plane of 

polarization to rotate around the axis of propagation as the wave propagates in the medium [11]. This 

effect is well documented in plasma theory books such as [11] and [5]. 

The model used a loss-less electron plasma without ions [4] to test the Faraday rotation effect. The 

model compared the analytical Faraday rotation angle with the simulated value. The results were in 

very close agreement with an error of 0.0031% [4]. 

1.4 Geodesic FDTD

In 2006, Simpson and Taflove developed another 3D FDTD model. Rather then use the Latitude-

Longitude grid, they chose a geodesic grid that was being used for climate modeling. The grid used a 
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mesh consisting of hexagonal and pentagonal cells [12]. Hexagonal cells are used to cover the Earth-

Ionosphere cavity, however, hexagonal cells alone cannot completely cover a sphere. A minimum of 12 

pentagonal cells are need to complete the grid. Figure 4 is a good representation of the grid, although it 

contains only a fraction of the cells used in [12]. As in the Latitude-Longitude grid, the TE and TM 

cases are separated into different cases. 

Figure 4: Geodesic Model of a Sphere Using Geodesic Cells [12]

The hexagonal cells are used in the TM mode. In this mode, each cell has a radial Er component 

located at the center of the cell and six magnetic components located on the edges of the cell. This can 

be seen in Figure 6. Half a step above the hexagonal cells, k + ½, is another grid consisting of triangles. 

This is the TE mode and can be seen in Figure 7. At the center of each triangle is a radial Hr component 

and electric fields along the edges of the cells. Using this mesh, Maxwell's equations were applied to 

the grid and a system of updating equations was created. As with their Latitude-Longitude grid, 

Simpson and Taflove used the topographic and bathymetric data from [13] and the Ionosphere 

conductivity profile from [8] in their model to increase accuracy. 

Using this system, Simpson and Taflove performed a test similar to the Latitude-Longitude grid. 
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They created a mesh of the Earth to a depth of ± 100 km of sea level. This required the use of 163, 842 

cells at each radial point [12]. They gave the mesh a resolution of 63 km between grid centers. They 

also used 40 grid cells in the radial direction giving a resolution of 5 km. In all, the mesh contained 

over 6.5 million cells [12].  They introduced a Gaussian pulse at the same location, sea level to a 5 km 

height on the equator and 47° W. Again, they compared the result to experimental data from [9]. The 

results yielded propagation attenuation values within ± 0.5 dB/Mm from the source along a path 

halfway to the antipode both eastward and westward [12]. These results are very similar to the results 

previously obtained in the Latitude-Longitude grid [7]. However, the geodesic model obtained these 

results 14 times faster with a 40% increase in required memory [12]. It also avoids the time step 

limitations of the Latitude-Longitude model since cells are of a fixed size and does not require cell 

merging near the poles. This model shows clear benefits making it an ideal choice for future work. 

1.5 Geodesic FDTD Using a Magnetized Cold Plasma

The Latitude-Longitude grid with plasma updates provided a very accurate model for ELF wave 

propagation in the Earth-Ionosphere cavity. The geodesic model provides the same accuracy as 

Simpson's Latitude-Longitude grid at a fraction of the run time. Using the geodesic grid in lieu of the 

Latitude-Longitude grid and applying plasma updates presents clear benefits in computation time with 

a small increase in memory requirements. 

Currently, there are few FDTD implementations on geodesic grids, though a few other researchers 

have also created their own geodesic grids. In [14] and [15], Wang et al have developed a geodesic grid 

to analyze the propagation of ELF waves in the Earth-Ionosphere cavity. The model they have 

developed in [9] shows a field distribution very similar to that used in [12], with radial Er components 

in the center of hexagonal cells and radial Hr components in the center of triangular cells half a cell 

above. To validate their model, they excited their model with a Gaussian pulse. A grid size of 10,240 
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cells at each radial coordinate was used yielding a resolution of 250 km between grid centers [15]. 28 

grid cells were used in the radial direction with a resolution of 5 km to grid an area of 40 km below sea 

level up to 100 km above sea level [15]. This created a grid much coarser then the grid Taflove and 

Simpson used in [12]. Wang et al compared their FDTD results to [8] as well and found them to be 

“very close” [15]. 
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Chapter 2

Background

2.1 Finite-Difference Time-Domain (FDTD)

Amongst numerical methods used for modeling electromagnetic waves, FDTD is relatively simple 

to implement. Since it is a time-domain method, it has a very good response in the frequency domain. 

Due to the way the FDTD method discretizes problems, it is possible to parallelize an FDTD grid 

relatively simply. This can make it a good choice if computer clusters or supercomputers are available. 

FDTD is also very flexible; complex phenomena such as evanescent waves are handled intrinsically in 

FDTD models and do not require special cases [4]. 

There have been a multitude of uses for electromagnetic models of the Earth. One use has been a 

possible earthquake predictor. There are several possible EM precursors that could be used to improve 

seismic predictions. These include piezomagnetic effects and electrokinetic effects [16]. While these 

effects could be seismic predictors, data remains inconclusive and require further analysis [11].

In [17], Simpson used FDTD to simulate an Earth-Ionosphere cavity to model electrokinetic 

currents. Using such a model accounts for lithospheric effects and reverberation [17] [18]. Simpson 

modeled electrokinetic currents at a depth of 2.5 km and 17 km from the hypocenter of the Loma Prieta 

earthquake. The model was a qualitative match to data recorded in [19], but had some uncertainties due 

to insufficient knowledge of the exact lithosphere conductivity instrumentation artifacts in measured 

data [17].  

Global EM modeling has also been used as a means of developing new methods of detecting 

underground resource formations. In [10] and [12], Simpson developed an FDTD model to detect 

possible oil fields using a 20 Hz pulse and measuring the radial magnetic field. The magnetic field 

varied strongly with the conductivity anomalies of the Lithosphere. Simpson used this to propose a 
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quick and inexpensive method for detecting oil fields using SQUID magnetometers synchronized with 

20 Hz pulses [12]. 

The FDTD method is implemented using the Yee algorithm [20]. Each electric field has four 

adjacent magnetic fields as can be seen in Figure 5. These magnetic fields are used to calculate the 

electric field at each point in space using central differencing. In turn, each magnetic field is 

surrounded by four electric fields which can be used to calculate the magnetic fields by, again, using 

central differencing [1]. 

Figure 5: A Yee Cell [1]

Starting with Ampere's law: 

∂ E
∂ t

=−1
ε

∆×H

For this example, a loss-less medium with no sources is assumed. The next step is to separate the 
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vector into components and apply central differencing to these derivatives. The way central 

differencing works for second order accurate systems is to take the average of position vectors over a 

length [1]. So, the central differencing of a vector r(x):

∂ r (x)
∂ x

≈ r ( x+1/2)−r ( x−1/2)
∆ x

So, the derivative in the x direction of a vector can be approximated as the value of the r vector a 

half step before minus a half step after divided by the spacing ∆x between the points. Remember, it is a 

time-domain method so it would be evaluated at one time step n. Since the spacing ∆x can be an 

arbitrary spacing, the model detail can be chosen if small structures need to be simulated. 

The same kind of differencing can be applied to time derivatives as well:

∂ r (x , t)
∂ t

≈
r x

n+1/2−r x
n−1/2

∆ t

Where n is the time step and can only take integer values. As in the previous equation, ∆t is the size 

of the difference in times averaged over. Or, in simpler language, it is how long each time step n is. 

This value can be chosen to evaluate events that are very short duration or events that are long duration. 

This method of discretizing derivatives gives great flexibility over how structures are modeled. 

Choosing a large ∆t and  ∆x can make a model much easier to execute on slower machines. However, the same 

code can be easily ported to more powerful computers. Changing the values of ∆t and  ∆x will increase the detail 

of the model and computation time making it easy to scale code to the available hardware. 

Now, applying these averaging schemes to Ampere's law, a discretized form can be obtained. For 

this example, only the x direction will be observed, but it is simple to apply the same method to the 

other components of E. Writing E in the x direction:

∂ E x

∂ t
=−1

ε
[

∂ H z

∂ y
−

∂ H y

∂ z
]

Now, applying the central differencing method:
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Ex
n+1/2−E x

n−1 /2

∆ t
=−1

ε
[

H z( j+1/2)−H z( j−1/2)
∆ y

−
H y (k+1/ 2)−H y (k−1/ 2)

∆ z
]

Where each of these points is assumed to be at a point (i,j,k,n) unless otherwise noted. So the E 

field is being evaluated at a point E(i,j,k) and the H field at points offset ½ around it. 

Rearranging this equation to get the Ex(i,j,k,n+1/2) term alone on one side defines the update 

scheme. The n+1/2 term is the next value of E in the simulation. This value can be calculated by 

looking at the current values of H around the E point and the previous value of E at the same point 

where the previous value of E here would be the Ex(n-1/2) term. 

A similar process can be followed to find the other components of E and to find an updating scheme 

for the H field as well. These steps will not be covered here but can be seen in [1] if the reader desires. 

Typically, all of the denominators are eliminated by multiplying all terms by ε∆t∆y∆z. These values 

are all constants and known at the start of the simulation. These terms are all combined into one 

constant term that is solved for at the beginning of the simulation for efficiency purposes. This gives us 

a final update equation of:

E x
n+1 /2=C a E x

n−1/2+Cb[H z( j+1/ 2)+H z ( j−1/2)+H y (k+1/2)+H y (k−1/2)]

2.2 Cold Plasma

There are several ways to obtain equations for the current density in the presence of a magnetic 

field. Cummer used [15] as a starting point for his derivation in [4]. This paper will use [11] to derive 

the equations. While the two sources are equivalent, Booker's derivation is simpler to follow. 

The equation for the drift velocity of each species (electrons, positive ions, and negative ions) with 

collisions as given in [11] is

N l ml

∂ v⃗ l

∂ t
=N l ql ( E⃗+ v⃗ l× B⃗0)−N l ml υl v⃗ l

Where Nl is the number of particles for a particular species l, ml is the mass of the particles, ql is the 
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charge of the particles, E is the electric field in the plasma, B0 is the Earth's magnetic field, vl is the drift 

velocity, and υl is the collision frequency for the species. Next, the current density, J, is added into the 

equation rather than using the number of particles. This will relate the current density of each species to 

the electric field and the imposed magnetic field.

J⃗ l=N l q l v⃗l

ml

ql

∂ J⃗ l

∂ t
+

ml υl

ql
J⃗ l=N l q l E⃗+N l ql (v⃗ l×B⃗0)

Here the equation has been rearranged, current density for the species has been substituted, and the 

parentheses expanded to separate the E from the cross product. Next, the algebraic properties of the 

cross product can be used to combine more terms while simultaneously multiplying by the charge over 

the mass. 

∂ J⃗ l

∂ t
+υl J⃗ l=

N l ql
2

ml
E⃗+( N l q l v⃗ l)×(

ql

ml
B⃗0)

For ωpl and ωpl the above equation can be reduced to the following: 

ω pl

2 =
N l ql

2

ε0 ml
ω⃗cl

=
ql B⃗0

ml

∂ J⃗ l

∂ t
+υl J⃗ l=ε0 ω pl

2 E⃗+( J⃗ l)×(ω⃗c l
)

In this equation, ωc is the cyclotron frequency and ωpl is the plasma frequency of the species.  Using 

another property of the cross product, the terms can be rearranged. A negative sign can then be factored 

out from the charge of the cyclotron frequency for the electron and negative ion cases. Since the 

positive ions have a positive charge, there is a sign difference between the drift velocity for the positive 

ion and negative ions. Thus, the final equations are the following: 

∂ ⃗( J )e

∂ t
+ve

⃗( J )e=ε0ω pe

2 ⃗(E )+ ⃗(ω)c e
× ⃗( J )e
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∂ ⃗( J )p

∂ t
+v p

⃗(J ) p=ε0 ω p p

2 ⃗(E)− ⃗(ω)c p
× ⃗(J ) p

∂ ⃗( J )n

∂ t
+vn

⃗( J )n=ε0 ω pn

2 ⃗(E )+ ⃗(ω)cn
× ⃗( J )n

This result also matches the equations that Cummer used in [4]. 

2.3 History of Cold Plasma in Rectangular Coordinates

The steps used previously to derive the FDTD algorithms can be used to derive a similar result with 

the new current density equations. This has been done in [10]. Yu's method will be briefly summarized. 

His motivation for modeling the Ionosphere is broadband analysis of signal propagation through the 

medium. 

First, Yu starts by modeling the Ionosphere as a magnetized cold plasma or anisotropic cold plasma. 

The governing equations are derived from Maxwell's equations and the Lorentz equation derived 

previously. The process begins with the following equations [10][11]: 

∆× ⃗(E)=−μ0
∂ ⃗( H )

∂ t
(1)

∆× ⃗(H )=−ε0
∂ ⃗(E )

∂ t
+ ⃗(J )i+ ⃗( J )s (2)

∂ ⃗( J )e

∂ t
+ve

⃗( J )e=ε0ω pe

2 ⃗(E )+ ⃗(ω)c e
× ⃗( J )e (3)

∂ ⃗( J )p

∂ t
+v p

⃗(J ) p=ε0 ω p p

2 ⃗(E)− ⃗(ω)c p
× ⃗(J ) p (4)

∂ ⃗( J )n

∂ t
+vn

⃗( J )n=ε0 ω pn

2 ⃗(E )+ ⃗(ω)cn
× ⃗( J )n (5)

⃗(J )I=∑
l

⃗( J )l= ⃗(J )e+ ⃗(J ) p+ ⃗( J )n (6)

These equations describe a plasma with collision frequencies v, cyclotron frequencies ωc, and current 
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densities J. The subscripts denote different particles within the plasma: e for electrons, p for positive ions, and n 

for negative ions. Js is the source current density. 

Applying the FDTD derivation to these equations is fairly straightforward. Equations 1 and 2 are very 

similar to the previous derivation so they will not be covered here. However, equation 3, 4, and 5 are quite 

different. In particular, the cross product complicates matters somewhat. All three equations are very similar and 

only equation 3 will be analyzed but the same process can be applied to equations 4 and 5 as well. 

First, the vectors are separated into their x, y, and z components. This makes evaluating the cross product 

much easier. It is important to remember that by separating out each equation, equations 3, 4, and 5 become  nine 

equations. The x component of equation 3 will be analyzed further:

 
∂ J ex

∂ t
+ve J ex=ε0 ω pe

2 Ex+ωc ey
J ez−ωc ez

J ey

Now, central differencing is applied to the time derivative and the J and E values are averaged over a point at 

time step n+1/2:

J ex
n+1−J ex

n

∆ t
+ve

J ex
n+1+J ex

n

2
=

ε 0ω pe

2 E x
n+1+E x

n

2
+ωc ey

J ez
n+1+ J ez

n

2
−ωc ez

J ey
n+1+ J ey

n

2

This equation uses the semi-implicit approximation to average Js and E over a time step. These are 

the terms that are divided by 2. This equation now looks similar to the previous FDTD equations. The 

next step is to separate the n+1 terms from the n terms and apply scaling. This will produce a system of 

equations that can be used to define the updating coefficients. Applying this to each of the x, y, z 

components of Ampere’s law, the following equations are obtained:

Ex∣i+1 /2, j , k
n+1 +1

2
J ex∣i+1/2, j , k

n+1 +1
2

J px∣i+1 /2, j , k
n+1 +1

2
J nx∣i+1 /2, j , k

n+1 =E x∣i+1 /2, j , k
n −1

2
J ex∣i+1 /2, j ,k

n −

1
2

J px∣i+1/2, j , k
n

−1
2

J nx∣i+1 /2, j , k
n

+
(∆ t)2

ε0 μ0 ∆ y
(

∆ H z

∆ y
)

i+1 /2, j ,k

n+1/2

−
( ∆t )2

ε0 μ0 ∆ z
(

∆ H y

∆ z
)

i+1 /2, j , k

n+1 /2

− J Sx∣i+1 /2, j , k
n+1 /2

15



E y∣i+1/2, j , k
n+1 +1

2
J ey∣i+1 /2, j , k

n+1 +1
2

J py∣i+1/ 2, j ,k
n+1 +1

2
J ny∣i+1/2, j , k

n+1 =E y∣i+1 /2, j , k
n − 1

2
J ey∣i+1/2, j ,k

n −

1
2

J py∣i+1/2, j , k
n

−1
2

J ny∣i+1 /2, j , k
n

+
(∆ t)2

ε0 μ0 ∆ z
(

∆ H x

∆ z
)

i+1 /2, j , k

n+1/2

−
(∆ t)2

ε0 μ0 ∆ x
(

∆ H z

∆ x
)

i+1 /2, j , k

n+1 /2

− J Sy∣i+1/2, j , k
n+1 /2

E z∣i+1/2, j , k
n+1 +1

2
J ez∣i+1/2, j , k

n+1 +1
2

J pz∣i+1/2, j , k
n+1 +1

2
J nz∣i+1/2, j ,k

n+1 =E z∣i+1/2, j , k
n −1

2
J ez∣i+1 /2, j , k

n −

1
2

J pz∣i+1/2, j ,k
n

−1
2

J nz∣i+1 /2, j , k
n

+
(∆ t)2

ε0 μ0 ∆ x
(

∆ H y

∆ x
)

i+1/2, j , k

n+1 /2

−
(∆t )2

ε 0 μ0 ∆ y
(

∆ H x

∆ y
)

i+1/2, j ,k

n+1/2

− J Sz∣i+1 /2, j , k
n+1 /2

This completes the derivation for equation 3. The same steps can be taken to derive similar results 

for equations 4 and 5. To obtain better stability and accuracy, Yu scaled the H and J components [10]. 

For the x component of equation 3, this gives a final result of:

−(ω pe
∆ t)2

2
E x∣i+1/2, j , k

n+1 +(1+
ve ∆ t

2
) J ex∣i+1 /2, j , k

n+1 ωc ez
∆ t

2
J ey∣i+1/2, j ,k

n+1 ωcey
∆ t

2
J ez∣i+1 /2, j , k

n+1 =

(ω pe
∆t)2

2
E x∣i+1 /2, j , k

n +(1+
ve ∆t

2
) J ex∣i+1 /2, j , k

n ωc ez
∆t

2
J ey∣i+1 /2, j , k

n+1 ωc ey
∆t

2
J ez∣i+1 /2, j , k

n

This produces 12 equations: 3 for equations 2, 3, 4, and 5 each. By combining these discritized 

equations with the standard equations for a discritized Faraday's Law gives us a system of 12 

unknowns and 12 equations. Solving this system is most easily accomplished by using matrices. A, B, 

and C matrices are defined for the n+1, n, and n+1/2 term respectively:
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[A]⋅[
E x∣i+1/2, j ,k

n+1

E y∣i+1/2, j , k
n+1

E z∣i+1 /2, j , k
n+1

J ex∣i+1/2, j , k
n+1

J px∣i+1/2, j , k
n+1

J nx∣i+1 /2, j , k
n+1

J ey∣i+1/2, j , k
n+1

J py∣i+1/2, j , k
n+1

J ny∣i+1 /2, j , k
n+1

J ez∣i+1/2, j ,k
n+1

J pz∣i+1/2, j ,k
n+1

J nz∣i+1/2, j , k
n+1

]=[B]⋅[
E x∣i+1/2, j , k

n

E y∣i+1 /2, j , k
n

E z∣i+1/2, j ,k
n

J ex∣i+1 /2, j , k
n

J px∣i+1 /2, j , k
n

J nx∣i+1 /2, j , k
n

J ey∣i+1 /2, j , k
n

J py∣i+1 /2, j , k
n

J ny∣i+1 /2, j , k
n

J ez∣i+1/2, j , k
n

J pz∣i+1/2, j , k
n

J nz∣i+1 /2, j , k
n

]+[C ][
(

∆ H z

∆ y )
i+1/2, j , k

n+1 /2

(
∆ H y

∆ z )
i+1 /2, j , k

n+1/2

(
∆ H x

∆ z )
i+1 /2, j , k

n+1 /2

(
∆ H z

∆ x )
i+1/2, j , k

n+1 /2

(
∆ H y

∆ x )
i+1 /2, j , k

n+1/2

(
∆ H x

∆ y )
i+1 /2, j , k

n+1 /2

J Sx∣i+1/2, j , k
n+1 /2

J Sy∣i+1/2, j , k
n+1 /2

J Sz∣i+1/2, j ,k
n+1/2

]
By moving the A matrix over,  an equation relating the n +1 terms to the known n and n +1/2 terms 

is produced. All values in the A, B, and C matrices are known as well. This produces an updating 

equation for each of the n+1 terms to be solved at every time step. This largely completes the model, 

with the exception of some cell averaging. The cell averaging is required to find  components that do 

not exist directly at a grid location. This is done by averaging the diagonal corners of the non-existent 

cell, or the cells half a step in each direction. This gives us a final result of: 
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[
E x∣i+1 /2, j , k

n+1

E y∣i , j+1 /2,k
n+1

E z∣i , j ,k +1/2
n+1

J ex∣i+1 /2, j , k
n+1

J px∣i+1 /2, j , k
n+1

J nx∣i+1/2, j ,k
n+1

J ey∣i , j+1 /2,k
n+1

J py∣i , j+1 /2,k
n+1

J ny∣i , j+1/2,k
n+1

J ez∣i , j , k+1/2
n+1

J pz∣i , j , k+1/2
n+1

J nz∣i , j , k+1 /2
n+1

]=[A−1 B ]⋅[
E x

n

E y
n

E z
n

J ex
n

J px
n

J nx
n

J ey
n

J py
n

J ny
n

J ez
n

J pz
n

J nz
n

]+[ A−1C ][
(

∆ H z

∆ y )
n+1/2

(
∆ H y

∆ z
)

n+1 /2

(
∆ H x

∆ z
)

n+1/2

(
∆ H z

∆ x
)

n+1/2

(
∆ H y

∆ x
)

n+1 /2

(
∆ H x

∆ y )
n+1/2

J Sx
n+1/2

J Sy
n+1/2

J Sz
n+1/2

]
[C ]=[

dt 2

ε 0 μ0 dz
− dt 2

ε0 μ0 dy
0 0 0 0 −1 0 0

0 0 dt2

ε0 μ0 dx
dt 2

ε 0 μ0 dz
0 0 0 −1 0

0 0 0 0 dt 2

ε0 μ0 dy
dt 2

ε 0 μ0 dx
0 0 −1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

]
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[ A]=[
1 0 0 .5 .5 .5 0 0 0 0 0 0
0 1 0 0 0 0 .5 .5 .5 0 0 0
0 0 1 0 0 0 0 0 0 .5 .5 .5

−
(ωP e

dt )2

2
0 0 1+

ve dt
2

0 0
ωCez dt

2
0 0 −

ωCey dt
2

0 0

−
(ωP p

dt)2

2
0 0 0 1+

v p dt
2

0 0
ωCpz dt

2
0 0 −

ωCpydt
2

0

−
(ωP n

dt)2

2
0 0 0 0 1+

vn dt
2

0 0
ωCnz dt

2
0 0 −

ωCny dt
2

0 −
(ωP e

dt)2

2 0 −
ωCez dt

2 0 0 1+
ve dt

2 0 0
ωCex dt

2 0 0

0 −
(ωP p

dt)2

2
0 0 −

ωCpz dt
2

0 0 1+
v p dt

2
0 0

ωCpx dt
2

0

0 −
(ωP n

dt)2

2
0 0 0 −

ωCnz dt
2

0 0 1+
vn dt

2
0 0

ωCnx dt
2

0 0 −
(ωPe

dt)2

2
−

ωCey dt
2

0 0
ωCex dt

2
0 0 1+

ve dt
2

0 0

0 0 −
(ωP p

dt )2

2
0 −

ωCpy dt
2

0 0
ωCpx dt

2
0 0 1+

v p dt
2

0

0 0 −
(ωP n

dt)2

2
0 0 −

ωCny dt
2

0 0
ωCnx dt

2
0 0 1+

vn dt
2

]
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[B ]=[
1 0 0 −.5 −.5 −.5 0 0 0 0 0 0
0 1 0 0 0 0 −.5 −.5 −.5 0 0 0
0 0 1 0 0 0 0 0 0 −.5 −.5 −.5

(ωPe
dt)2

2 0 0 1−
ve dt

2 0 0 −
ωCez dt

2 0 0
ωCey dt

2 0 0

(ωP p
dt)2

2
0 0 0 1−

v p dt
2

0 0
ωCpz dt

2
0 0 −

ωCpy dt
2

0

(ωPn
dt )2

2
0 0 0 0 1−

vn dt
2

0 0 −
ωCnz dt

2
0 0

ωCny dt
2

0
(ωPe

dt)2

2
0

ωCez dt
2

0 0 1−
ve dt

2
0 0 −

ωCex dt
2

0 0

0
(ωP p

dt)2

2 0 0 −
ωCpz dt

2 0 0 1−
v p dt

2 0 0
ωCpx dt

2 0

0
(ωPn

dt )2

2
0 0 0

ωCnz dt
2

0 0 1−
vn dt

2
0 0 −

ωCnx dt
2

0 0
(ωPe

dt)2

2
−

ωCey dt
2

0 0
ωCex dt

2
0 0 1−

ve dt
2

0 0

0 0
(ωP p

dt)2

2
0

ωCpy dt
2

0 0 −
ωCpx dt

2
0 0 1−

v p dt
2

0

0 0
(ωPn

dt)2

2 0 0 −
ωCny dt

2 0 0
ωCnx dt

2 0 0 1−
vn dt

2

]
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Chapter 3

Derivation of the Geodesic Grid Cold Plasma Updates

3.1 Geodesic Grid Formulation

The geodesic grid was chosen because of its use in other papers [12]. First, it has been used in the 

past to apply FDTD to an ELF/ULF propagation problem. In that implementation, it was accurate to 

within ± 0.5 dB/Mm [12] and was able to run on a standard desktop computer rather than a 

supercomputer. While the geodesic grid requires more memory then the Latitude-Longitude grid, the 

reduction in processing time is desirable [12]. 

The first step is to visualize what the grid will look like. It is most comparable to a soccer ball, a 

series of hexagons covering a sphere. However, hexagons alone cannot be used to cover a sphere and a 

minimum of 12 pentagons must be used as well. 

These hexagons and pentagons will be the individual cells of the FDTD grid as seen in Figure 4. 

The pentagons are the points where the larger triangles meet. Previously, the Yee cell was used for each 

cell. However, the Yee cell is only applicable in a rectangular coordinate system and a new set of 

updating equations will need to be derived. In the interest of brevity, half of the governing equations 

will be derived. A more complete solution can be found in [12].

The geometry of the geodesic FDTD model requires that the TE and TM modes be solved 

separately. The TM case will be analyzed first, followed by the TE. After equations have been derived 

for the separate cases, the equations will be combined to form one large matrix, similar to the Yu's 

rectangular system. The matrix will then be rearranged to solve for n + 1 terms, producing the updating 

equations for each time step. 

3.2 TM  Equations

The derivation begins with Faraday's equation. Rather then using the differential form of the 
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equation, the integral form is chosen. This is the natural choice for the geometry of the grid:

∂
∂ t∬A

B⋅dA=−∮
L

E⋅dL

Starting with the left hand side of the equation, the time averaging used previously is applied to the 

derivative. The area integral can also be averaged as the field over the area of one cell. A will be used to 

represent the area of one cell. This results in the following equation:

∂
∂ t∬A

B⋅dA= μA
H 1

n+1/2−H 1
n−1 /2

∆t

It is important to realize that this area is the area of a square created by the radial E fields adjacent 

to H1 and the E fields a half cell above and below it. This information is key to solving the right hand 

side of the equation:

−∮
L

E⋅dL=−(−∆ r E r i−1
n +∆ r E r

n−δ (1) E1, k+1/2
n +δ (1) E1, k−1/ 2

n )

The ∆r term in the previous equation is the space between the geodesic TM grid and the triangular 

TE grid half a cell above. Combining the two equation together and rearranging, produces an update 

equation for the H1 term. It is important to notice that H1 is divided by the area of the square that it 

passes through. This can be used to cancel a pair of ∆r and δ(1) terms:

H 1
n+3 /2=H 1

n+1/2+ ∆t
μδ(1)

(E r ,i−1
n+1 −E r

n+1)+ ∆ t
μ ∆ r

(E1,k +1 /2
n+1 +E1,k −1 /2

n+1 )

Applying this concept to the other H vectors, produces the following equations: 

H 2
n+3 /2=H 2

n+1/2+ ∆ t
μδ(2)

(E r ,i−1, j−1
n+1 −E r

n+1)+ ∆t
μ ∆ r

( E2,k +1/2
n+1 +E2, k−1/2

n+1 )

H 3
n+3 /2=H1

n+1/2+ ∆t
μδ (3)

(E r , j−1
n+1 −E r

n+1)+ ∆ t
μ ∆ r

(E3, k+1/2
n+1 −E3, k−1/2

n+1 )

Next, the same process is applied to Ampere's law. Again, the integral form is more convenient for 

this geometry rather than the differential form used in rectangular coordinates:
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∂
∂ t∬A

D⋅dA=∮
L

H⋅dL−∬
A

J s⋅dA−∬
A

J I⋅dA

Now, the magnetic fields are defined as circling the electric field along the edge of a hexagon. 

Electric field is also defined as coming out of the center of the hexagon as seen in Figure 6. The line 

integral of H can now be evaluated.

Figure 6: A Single Geodesic Cell for TM Modes [12]

∮
L

H⋅dL=H 1 ∆(1)+H 2 ∆(2)+H 3 ∆(3)−H 1 ∆i+1(1)−H 2 ∆i+1, j+1(2)−H 3 ∆ j+1(3)

The left hand side of Ampere's law also needs to be analyzed. The central differencing used 

previously can be applied here as well. S will be used to denote the area of a hexagon. 

∂
∂ t∬A

D⋅dA=ε S ( En+1−En

∆t
)

By symmetry, it is apparent thay the current density J will produce a similar result:
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∂
∂ t∬A

J Ir⋅dA=S (
J Ir

n+1−J Ir
n

∆t
)

Combining all of these equations, a single equation to calculate the next value of the electric field is 

obtained. 

E r
n+1+

J Ir
n+1

2
=E r

n+ ∆t
ε S

(H 1 ∆(1)+H 2 ∆(2)+H 3 ∆(3)−H 1 ∆i+1(1)−H 2 ∆i+1, j+1(2)−H 3 ∆ j+1(3))

− ∆ t
2ε

J Ir
n + ∆t

ε
J Sr

n+1 /2

It is very important to remember that JIr is not just one current density, but the sum of all the radial 

current densities for the plasma. 

Next, equations 3, 4, and 5, the equations relating the current density of the plasma and the electric 

field will be analyzed. However, these equations cannot be discretizied in the same manner as in the 

rectangular derivation. The issue is the cross product. Previously, Yu separated the cross product by 

converting the vectors into their x, y, and z components. However, these components are not defined in 

the geodesic grid. Instead, some substitutions will need to be made. First, the cyclotron frequency will 

be replaced:

ωcl=
ql

⃗( B)
ml

This relates the cyclotron frequency to the charge and mass of the medium as well as the Earth's 

global magnetic field. Using this and a different form of the cross product, the following is obtained:

∂ ⃗( J )e

∂ t
+ve

⃗( J )e=ε0ω pe

2 ⃗(E )+∣
qe B
me

∣∣J e∣sin (θ )

This θ is the angle between the Earth's magnetic field and the direction of the current density. While 

the Earth's magnetic field varies with time, it varies slowly compared to the scale used. As such, it can 

be treated as a fixed vector. Since the current density is also fixed for each cell, this angle does not vary 
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with time, only location. This makes discritizing the equation much easier: 

J e r

n+1−J er

n

∆t +ve
J e r

n+1+ J e r

n

2 =ε0 ω pe

2 E r
n+1+E r

n

2 −∣
qe B
me

∣∣
J e r

n+1+J e r

n

2 ∣sin(θ )

Previously, equations were rearranged to get all of the n + 1 terms on one side with the n terms on 

the other side. However, this equation has an n + 1 and n term locked into an absolute value. There is 

no mathematical way to separate these terms. To approach this problem, it is beneficial to consider the 

following cases: 

∣J e r

n+1+J e r

n∣=∣J e r

n+1∣+∣J er

n∣iff J e r
>0 ∣(−J e r

n+1)+0∣=∣(−J e r

n+1)∣+∣0∣

∣(−J e r

n+1)+(−J e r

n )∣=∣(−J er

n+1)∣+∣(−J e r

n )∣ ∣J e r

n+1+(−J e r

n )∣≠∣J er

n+1∣+∣−J e r

n∣

By observation, if the current value of J is of the same sign as the previous value, regardless if they 

are positive or negative, then the absolute value can be separated. Also, as long as one of the J terms is 

zero, the absolute value can still be separated. The only concern is when the current value is of a 

different sign then the previous. However, in the FDTD updating scheme, the current value will not 

change suddenly from the previous, it will always slowly approach zero before switching. While the 

current value will not necessarily equal zero, when it shifts from positive to negative, the previous 

value should be quite small. The error introduced by this estimation is negligible. Using this 

information, our current density equation can be rearranged to separate the n + 1 terms from the n 

terms: 

J er

n+1+
∆t ve

2 J er

n+1−
∆tε0 ω pe

2

2 E r
n+1+∣

qe B
me

∣
∆t sin (θ)

2 ∣J er

n+1∣=J e r

n −
∆t ve

2 J er

n +

∆tε0 ωp e

2

2 E r
n−∣

qe B
me

∣
∆t sin (θ)

2 ∣J er

n∣

The same process can be applied to the other current density equations to obtain similar results. 

This gives us the final equations for the TM case:
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J pr

n+1+
∆t v p

2 J pr

n+1−
∆tε0 ωp p

2

2 E r
n+1+∣

q p B
mp

∣
∆ t sin(θ)

2 ∣J pr

n+1∣=J pr

n −
∆t v p

2 J pr

n +

∆tε0 ωp p

2

2 E r
n+∣

q p B
m p

∣
∆ t sin (θ)

2 ∣J pr

n ∣

J nr

n+1+
∆t vn

2 J nr

n+1−
∆ tε0ω pn

2

2 E r
n+1+∣

qn B
mn

∣
∆t sin(θ )

2 ∣J nr

n+1∣= J nr

n −
∆ t v n

2 J nr

n +

∆tε0 ωnl

2

2 E r
n−∣

qn B
mn

∣
∆ t sin(θ )

2 ∣J nr

n ∣

This completes the derivation for the TM case. However, this is only half of the equations needed. 

3.3 TE Equations 

The TE case has a slightly different topology. It can be represented with triangles overlaid onto the 

hexagon as can be seen in Figure 7. Each triangle's corners align with the grid center of the hexagonal 

cells above and below it. Note that there are two E1 and E3 values, while there remains only one E2 

value in between the two triangles. 

Here, the E fields are bisecting the H fields in the geodesic grid half a cell below. The H fields are 

now on the vertices of the hexagonal cells. These new E fields create triangles around the new H fields. 

Each pair of triangles becomes a new cell in this grid. The process for deriving the update equations for 

this grid is very similar to the TM case. Beginning with Faraday's law in integral form:
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Figure 7: TE Mode Cells Overlaid on Hexagonal Cells [12]

∂
∂ t∬A

B⋅dA=−∮
L

E⋅dL

Rather then derive the equation from scratch, a symmetry can be noticed between this equation and 

Ampere's law but with the B and E fields interchanged and a different field configuration. Noticing this 

symmetry, the resulting equations should be similar to the TM case. Again, for simplicity, each term of 

the equation will analyzed separately.

∂
∂ t∬A

B⋅dA= S μ
∆t

(H r
n+3/2(1)−H r

n+1/ 2(1))

−∮
L

E⋅dL=(−E1
n δ(1)+E2

n δ (2)−E3
n δ(3)i−1)

As expected, the equations look similar to the TM case with the exception of the different 

geometry. In this equation, the δ terms are the lengths of each triangle's sides and the S is the area of 
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one triangle. Re arranging produces an updating equation for Hr (1). 

H r
n+3 /2(1)=H r

n+1 /2(1)+ ∆t
μ S

(−E1
n δ(1)+E 2

n δ(2)−E3
n δ(3)i−1)

Following the same process, a similar equation for Hr (2) is formed.

H r
n+3 /2(2)=H r

n+1/2(2)+ ∆ t
μS

( E1
n δ (1) j−1−E2

n δ(2)+E3
n δ (3))

Next, the same methodology as in the TM case can be applied to the remaining equations. Again, 

the terms are discritized separately, then combined and rearranged. 

∂
∂ t∬A

D⋅dA=
ε0

∆ t
∆k+1 /2(1) ∆r (E1,k +1 /2

n+1 −E1,k +1/2
n )

It is important to recognize some of the new values in this equation. While this is an area integral, 

rather than use a variable to represent the area of one cell, the area has been separated into its 

components. The area that is being integrated over is the square created by the vertical distance ∆r 

between one set of hexagons and the next, and the horizontal length ∆(1) between two Hr locations 

along the side of a hexagonal cell. This will allow more simplification when the equation is rearranged. 

∮
L

H⋅dL=−∆ r H r ,k +1/2
n+1/2 (1)+∆ r H j+1,k +1 /2

(n+1 /2) (2)+∆k+1/2(1) H 1,k +1
n+1 /2−∆k+1 /2(1) H 1

n+1/2

−∬
A

J s⋅dA=−∆k+1 /2(1) ∆r J s1

n+1 /2

−∬
A

J I⋅dA=
−∆k+1 /2(1) ∆ r

2
(J I 1,k +1 /2

n+1 +J I 1,k +1 /2
n )

Examining the equations, it can be seen that there are some terms that will cancel when the 

equation is rearranged. A pair of ∆k+1/2 (1) and ∆r terms will cancel from the H terms, simplifying the 

equation slightly. After combining and simplifying our equation, the remaining terms are: 

E1,k +1 /2
n+1 +

∆ t
2ε0

J I 1,k+1 /2
n+1 =E1,k +1 /2

n +
∆t
ε0

(
−J I 1,k +1 /2

n

2 +
H r , j+1,k+1 /2

n+1 /2 (2)−H r , k+1/2
n+1 /2 (1)

∆k+1 /2(1)
+

H 1,k +1
n+1 /2−H 1

n+1/ 2

∆ r )
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− ∆ t
ε0

J s1,k +1 /2
n+1 /2

Performing the same operation for E2 and E3, produces similar equations:

E2, k+1/2
n+1 +

∆ t
2 ε0

J I 2, k+1/2
n+1 =E2, k+1/2

n −
∆ t
ε 0

(
J I 2,k +1 /2

n

2 +
H r , k+1 /2

n+1 /2 (2)−H r ,k +1/2
n+1/2 (1)

∆k+1 /2(2)
−

H 2,k +1
n+1/2+H 2

n+1 /2

∆ r )

− ∆ t
ε0

J s2,k +1/2
n+1 /2

E3,k +1/2
n+1 +

∆ t
2 ε 0

J I 3,k +1 /2
n+1 =E3,k +1/2

n −
∆t
ε0

(
J I3, k+1/2

n

2 +
H r ,i+1, j−1, k+1 /2

n+1/2 (1)−H r , k+1/ 2
n+1 /2 (2)

∆k+1 /2(3) +
H 3

n+1/2−H3, k+1
n+1 /2

∆ r )

− ∆ t
ε0

J s3,k +1 /2
n+1 /2

The remaining equations for the TE case are the equations governing the plasma current density. 

The derivation is similar to the electric field equations since they are collocated. However, there are 

some differences. As with the TM case, the same substitution for the cyclotron frequency will be used 

as well as using the alternative form of the cross product. After these substitutions and discretizing the 

equations produces: 

J e1, k+1/2
n+1 −J e1,k +1 /2

n

∆ t +ve(
J e1,k +1 /2

n+1 −J e1, k+1 /2
n

2 )=ε0 ω pe

2 (
E1,k+1 /2

n+1 +E1,k +1 /2
n

2 )+∣
qe B
me

∣∣
J e1,k +1/2

n+1 −J e1, k+1 /2
n

2 ∣sin(θ )

Rearranging this equation and moving all of the n+1 terms to the left and the n terms to the right, 

leaves: 

J e1, k+1 /2
n+1 +

∆ t v e

2 J e1,k +1/2
n+1 −

∆t ε0 ω pe

2

2 E1, k+1/2
n+1 −

∆ t sin(θ )
2 ∣

qe Bk+1/2

me
∣∣J e1,k +1/2

n+1 ∣=

J e1, k+1 /2
n −

∆ t v e

2 J e1,k +1/2
n +

∆t ε0 ω pe

2

2 E1, k+1/2
n +

∆ t sin(θ )
2 ∣

qe Bk+1/2

me
∣∣J e1,k +1/2

n ∣

The same method is then used to find the updating equations for the positive and negative ion 

plasma. They yield very similar equations: 
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J p1, k+1/2
n+1 +

∆ t v p

2 J p1, k+1/2
n+1 −

∆ t ε0ω p p

2

2 E1, k+1 /2
n+1 +

∆ t sin(θ)
2 ∣

q p Bk+1/2

m p
∣∣J p1,k +1/2

n+1 ∣=

J p1, k+1/2
n −

∆ t v p

2
J p1, k+1/2

n +
∆t ε0 ω p p

2

2
E1, k+1/2

n − ∆ t sin(θ )
2

∣
q p Bk +1/2

m p
∣∣J p1, k+1 /2

n ∣

J n1,k +1/2
n+1 +

∆t vn

2 J n1, k+1 /2
n+1 −

∆ t ε0 ωp n

2

2 E1,k +1 /2
n+1 −

∆t sin (θ )
2 ∣

qn Bk+1/2

mn
∣∣J n1,k+1 /2

n+1 ∣=

J n1,k +1/2
n −

∆t vn

2 J n1, k+1 /2
n +

∆ t ε0 ωp n

2

2 E1,k +1 /2
n +

∆t sin (θ )
2 ∣

qn Bk+1/2

mn
∣∣J n1,k+1 /2

n ∣

The other current densities 2 and 3 must also be solved for all three of the plasma species. This 

follows the same method used above. It produces the following equations: 

J e2, k+1 /2
n+1 +

∆ t ve

2 J e2, k+1/2
n+1 −

∆ t ε0ω pe

2

2 E 2,k+1 /2
n+1 −

∆t sin (θ)
2 ∣

qe Bk+1 /2

me
∣∣J e2,k+1 /2

n+1 ∣=

J e2, k+1 /2
n −

∆ t ve

2 J e2, k+1/2
n +

∆ t ε0ω pe

2

2 E 2,k+1 /2
n +

∆t sin (θ)
2 ∣

qe Bk+1 /2

me
∣∣J e2,k+1 /2

n ∣

J e3, k+1 /2
n+1 +

∆ t ve

2 J e3, k+1/2
n+1 −

∆t ε0 ω pe

2

2 E3, k+1/2
n+1 −

∆ t sin(θ )
2 ∣

qe B k+1/2

me
∣∣J e3, k+1/2

n+1 ∣=

J e3, k+1 /2
n −

∆ t ve

2 J e3, k+1/2
n +

∆t ε0 ω pe

2

2 E3, k+1/2
n +

∆ t sin(θ )
2 ∣

qe Bk+1/2

me
∣∣J e3, k+1/2

n ∣

J p2, k+1 /2
n+1 +

∆ t v p

2 J p2, k+1 /2
n+1 −

∆ t ε0 ω p p

2

2 E2,k +1/2
n+1 +

∆t sin(θ )
2 ∣

q p Bk +1 /2

m p
∣∣J p2, k+1 /2

n+1 ∣=

J p2, k+1 /2
n −

∆ t v p

2 J p2, k+1 /2
n +

∆ t ε0 ω p p

2

2 E2,k +1/2
n −

∆t sin(θ )
2 ∣

q p Bk +1 /2

mp
∣∣J p2, k+1 /2

n ∣

J p3, k+1/2
n+1 +

∆ t v p

2 J p3, k+1 /2
n+1 −

∆ t ε0 ωp p

2

2 E3,k+1 /2
n+1 +

∆ t sin (θ)
2 ∣

q p Bk+1 /2

m p
∣∣J p3, k+1/2

n+1 ∣=

J p3, k+1/2
n −

∆ t v p

2 J p3, k+1 /2
n +

∆ t ε0 ωp p

2

2 E3,k+1 /2
n −

∆ t sin (θ)
2 ∣

q p Bk+1 /2

m p
∣∣J p3, k+1/2

n ∣
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J n2, k+1/2
n+1 +

∆ t vn

2 J n2,k +1 /2
n+1 −

∆t ε0 ω pn

2

2 E2, k+1/2
n+1 −

∆ t sin(θ)
2 ∣

qn Bk +1 /2

mn
∣∣J n2, k+1 /2

n+1 ∣=

J n2, k+1/2
n −

∆ t vn

2 J n2,k +1 /2
n +

∆t ε0 ω pn

2

2 E2, k+1/2
n +

∆ t sin(θ)
2 ∣

qn Bk +1 /2

mn
∣∣J n2, k+1 /2

n ∣

J n3,k +1/2
n+1 +

∆t vn

2 J n3, k+1 /2
n+1 −

∆ t ε0 ω pn

2

2 E3,k +1/2
n+1 −

∆t sin(θ )
2 ∣

qn Bk+1 /2

mn
∣∣J n3,k +1/2

n+1 ∣=

J n3,k +1/2
n −

∆t vn

2 J n3, k+1 /2
n +

∆ t ε0 ω pn

2

2 E3,k +1/2
n +

∆t sin(θ )
2 ∣

qn Bk+1 /2

mn
∣∣J n3,k +1/2

n ∣

3.4 Creating Matrices

Using these equations, a matrix can be created to solve the system of equations. The process is 

similar to the rectangular case, but now there are 16 equations and 16 unknowns. Again,  A, B and C 

matrices are defined for the n+1, n, and n+ ½ cases respectively. 
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[A]⋅[
E r∣

n+1

E1∣
n+1

E2∣
n+1

E3∣
n+1

J e r∣
n+1

J e1∣
n+1

J e2∣
n+1

J e3∣
n+1

J pr∣
n+1

J p1∣
n+1

J p2∣
n+1

J p3∣
n+1

J nr∣
n+1

J n1∣
n+1

J n 2∣
n+1

J n3∣
n+1

]=[B]⋅[
E r∣

n

E1∣
n

E2∣
n

E3∣
n

J e r∣
n

J e1∣
n

J e2∣
n

J e3∣
n

J pr∣
n

J p1∣
n

J p 2∣
n

J p 3∣
n

J nr∣
n

J n1∣
n

J n2∣
n

J n3∣
n

]+[C ]⋅[
H r1∣

n+1 /2

H r2∣
n+1 /2

H 1∣
n+1 /2

H 2∣
n+1 /2

H 3∣
n+1 /2

J sr∣
n+1 /2

J s1∣
n+1 /2

J s2∣
n+1 /2

J s3∣
n+1 /2

]
As with the rectangular case, this equation can be rearranged by moving the A matrix over, creating 

an equation to calculate the n+1 terms from the known n and n+ ½ terms. This produces the updating 

equations for each position and time. The coefficients A, B, and C cold be calculated prior to time 

stepping to improve run time. However, this would be more memory intensive and was not done. 

Therefore, each coefficient must be calculated at each grid cell and each time step. 
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[
E r∣

n+1

E1∣
n+1

E2∣
n+1

E3∣
n+1

J e r∣
n+1

J e1∣
n+1

J e2∣
n+1

J e3∣
n+1

J pr∣
n+1

J p1∣
n+1

J p2∣
n+1

J p3∣
n+1

J nr∣
n+1

J n1∣
n+1

J n2∣
n+1

J n3∣
n+1

]=[ A−1]⋅[ B]⋅[
E r∣

n

E1∣
n

E2∣
n

E3∣
n

J e r∣
n

J e1∣
n

J e2∣
n

J e3∣
n

J pr∣
n

J p1∣
n

J p 2∣
n

J p3∣
n

J nr∣
n

J n1∣
n

J n2∣
n

J n3∣
n

]+[ A−1]⋅[C ]⋅[
H r 1∣

n+1/2

H r 2∣
n+1 /2

H 1∣
n+1/2

H 2∣
n+1/2

H 3∣
n+1/2

J sr∣
n+1/2

J s1∣
n+1/2

J s 2∣
n+1/2

J s3∣
n+1/2

]
As stated previously, these A, B, and C matrices have constant values for each grid cell. Pulling all 

of the constant terms out of these equations leaves the matrix values:
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[B ]=[
1 0 0 0 ∆ t

2 ε0
0 0 0 ∆ t

2 ε0
0 0 0 ∆ t

2 ε0
0 0 0

0 1 0 0 0 ∆ t
2 ε0

0 0 0 ∆ t
2 ε0

0 0 0 ∆ t
2 ε0

0 0

0 0 1 0 0 0 ∆ t
2 ε0

0 0 0 ∆ t
2 ε0

0 0 0 ∆t
2 ε0

0

0 0 0 1 0 0 0 ∆ t
2 ε0

0 0 0 ∆ t
2 ε0

0 0 0 ∆t
2 ε0

∆t ε0 ω pe

2

2
0 0 0 1−

∆t ve

2
+∣

qe B
me

∣ ∆ tsin (θ )
2

0 0 0 0 0 0 0 0 0 0 0

0
∆ t ε0ω pe

2

2 0 0 0 1−
∆ t ve

2 +∣
qe B
me

∣ ∆ t sin(θ )
2 0 0 0 0 0 0 0 0 0 0

0 0
∆ t ε0ω pe

2

2
0 0 0 1−

∆ t ve

2
+∣

qe B
me

∣
∆ t sin(θ )

2
0 0 0 0 0 0 0 0 0

0 0 0
∆ t ε0 ωp e

2

2
0 0 0 1−

∆ t ve

2
+∣

qe B
me

∣ ∆ t sin(θ)
2

0 0 0 0 0 0 0 0

∆ t ε0 ωp p

2

2 0 0 0 1−
∆t v p

2 −∣
q p B
mp

∣
∆ t sin(θ )

2 0 0 0 0 0 0 0 0 0 0 0

0
∆t ε0 ωp p

2

2
0 0 0 1− ∆t v p

2
−∣

qp B
m p

∣ ∆ t sin(θ )
2

0 0 0 0 0 0 0 0 0 0

0 0
∆ t ε0ω p p

2

2
0 0 0 1−

∆t v p

2
−∣

qp B
m p

∣∆ t sin(θ)
2

0 0 0 0 0 0 0 0 0

0 0 0
∆ t ε0ω p p

2

2 0 0 0 1−
∆ t v p

2 −∣
qp B
m p

∣
∆t sin (θ)

2 0 0 0 0 0 0 0 0

∆t ε0 ωp n

2

2
0 0 0 1−

∆ t v n

2
+∣

qn B
mn

∣ ∆ t sin(θ )
2

0 0 0 0 0 0 0 0 0 0 0

0
∆ t ε0ω pn

2

2
0 0 0 1−

∆t v n

2
+∣

qn B
mn

∣
∆ t sin(θ)

2
0 0 0 0 0 0 0 0 0 0

0 0
∆ t ε0ω pn

2

2
0 0 0 1−

∆t v n

2
+∣

qn B
mn

∣ ∆t sin (θ)
2

0 0 0 0 0 0 0 0 0

0 0 0
∆ t ε0 ωp n

2

2 0 0 0 1−
∆t vn

2 +∣
qn B
mn

∣ ∆t sin (θ)
2 0 0 0 0 0 0 0 0

]
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[C ]=[
0 0

∆t ∆1

ε0 S
∆ t ∆2

ε 0 S
∆ t ∆3

ε0 S
∆ t
ε0

0 0 0

∆t
ε0 ∆1

∆t
ε 0 ∆1

∆t
ε0 ∆r

0 0 0 ∆ t
ε0

0 0

∆t
ε0 ∆2

∆t
ε0 ∆2

0 ∆ t
ε0 ∆r

0 0 0 ∆ t
ε0

0

∆t
ε0 ∆3

∆t
ε0 ∆3

0 0 ∆t
ε 0 ∆r

0 0 0 ∆ t
ε 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

]
Inverting the A matrix would be very difficult and tedious. Instead, the inverse is calculated 

numerically at each time step for each grid cell. The C matrix is quite sparse; this is because the matrix 

is associated with the n + ½ terms or the magnetic fields; the current densities for each plasma does not 

vary directly with the magnetic field. 

3.5 Serial Geodesic Model

This system was implemented using the same geodesic grid used by Simpson in [12]. This geodesic 

grid has several benefits, namely that it includes both topographic and bathymetric data from the 

NOAA-NGDC “Global Relief CD-ROM”. 

The grid itself is comprised of 163, 842 grid cells at each radial position. This yields a distance of 

62.55 km between grid centers [12]. There are 40 cells radially, making a resolution of 5 km and a total 

of over 6.5 million cells, the same as [12]. To store the grid in memory, the grid is divided into 5 panels 
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and unwrapped into a flat space. This can be seen in Figure 8. This process also simplifies cell indexing 

as each panel are the same dimensions and are a Cartesian grid. Reference [12] contains a more 

detailed analysis of the grid layout. 

Figure 8: Unwrapped Geodesic Grid [12]

Using the equations derived previously for a magnetized cold plasma, a geodesic grid was obtained 

that contains the Ionosphere cold plasma model, the topographic data for the surface of the Earth, and 

the bathymetric data for below the surface. The largest problem with this system is that it is a serial 

implementation of the grid and does not utilize supercomputing resources or multiple core processors. 
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Chapter 4

Conclusion

4.1 Summary

FDTD simulations of the Earth-Ionosphere cavity have produced many different results by 

accounting for different physics in the system. Currently, the 3D Latitude-Longitude grid with a cold 

plasma Ionosphere contains the most detail. It accounts for varying topography, bathymetry and 

Ionospheric perturbations [10]. However, the geodesic model offers clear benefits in stability and 

reduced run times, while retaining the accuracy of the Latitude-Longitude grid. 

The equations for a magnetized cold plasma were derived in terms of the geodesic grid. Using these 

equations, a geodesic model containing topographic, bathymetric, and magnetized cold plasma was 

created to model the Earth-Ionosphere cavity. The model uses 6.5 million cells for a resolution of 5 km 

radially and 63 km between adjacent cells. The required simulation time for the serial model makes it 

infeasible to complete validation. 

4.2 Future Work

There are several possibilities for expansion on the existing code. The run time of the current code 

is a very large issue in any possible future work. The first task would be converting the existing system 

from a serial code to parallel. A parallel version of the code could reduce run time drastically depending 

on the hardware.  A simple and effective method would be to use MPI which has been used in many 

other FDTD systems. 

After the model has been parallelized, the next step would be to replicate the results of the 

rectangular coordinate system. Once validated, the model could be used for modeling lightning related 

Ionospheric phenomena. The model could also be used for modeling long range communications that 

are effected by the Ionosphere. 
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