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B.S., Amirkabir University of Technology, 2001

M.S., Electrical Engineering, University of New Mexico, 2012

Abstract

We propose to use binary consensus algorithms for distributed cooperative spectrum

sensing in cognitive radio networks. We propose to use two binary approaches,

namely diversity and fusion binary consensus spectrum sensing. The performance

of these algorithms is analyzed over fading channels. The probability of networked

detection and false alarm are characterized for the diversity case. We then compare

the performance of our binary-based cooperative spectrum sensing framework to

that of the already-existing averaged-based one. We show that binary consensus

cooperative spectrum sensing is superior to quantized average consensus in terms of

agility, given the same number of transmitted bits. We furthermore derive a lower

bound for the performance of the average consensus-based spectrum sensing.

We then extend our diversity-based framework to propose a weighted approach

in which each secondary user utilizes a set of weights to account for different local

sensing qualities of its neighbors as well as different communication link qualities

from them. We mathematically characterize the optimum weights.
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Finally, the impact of network configuration (in terms of average distance between

the secondary users) and the resulting correlated measurements (due to shadow fad-

ing) are considered on the overall networked detection performance. More specifi-

cally, we consider the impact of the average distance on both the correlation of the

sensing measurements of the secondary users and the connectivity of the underlying

graph among them. We discuss interesting underlying tradeoffs when increasing or

decreasing the average distance.

v



Contents

List of Figures viii

1 Introduction 1

1.1 Cognitive Radios and Cooperative Spectrum Sensing . . . . . . . . . 1

1.2 Local Sensing techniques for Cognitive Radios . . . . . . . . . . . . . 5

1.2.1 Energy Detection . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Cyclostationary Feature Detection . . . . . . . . . . . . . . . . 6

1.2.3 Matched Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Other Detection Techniques . . . . . . . . . . . . . . . . . . . 7

2 Distributed Consensus-based Cooperative Spectrum Sensing 8

2.1 Distributed Consensus Algorithms for Cooperative Spectrum Sensing 11

2.1.1 Diversity-Based Binary Consensus for Spectrum Sensing . . . 13

2.1.2 Fusion-Based Binary Consensus for Spectrum Sensing . . . . . 18

2.1.3 Average Consensus for Spectrum Sensing . . . . . . . . . . . . 19

vi



Contents

2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Weighted Diversity-based Cooperative Spectrum Sensing 30

3.1 Generalized Diversity-based Approach . . . . . . . . . . . . . . . . . 31

4 Impact of Network configuration on Correlated Measurements and

Connectivity 38

5 Conclusion 51

References 53

vii



List of Figures

1.1 Block diagram of a typical energy detector for local spectrum sensing. 5

2.1 Theoretical and simulated probability of networked detection for

diversity-based binary consensus cooperative spectrum sensing, with

M = 51 and γ = 2 dB. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Comparison of the probability of networked detection for binary con-

sensus and quantized average consensus schemes, with M = 51,

p = 0.2, γ = 2 dB and R = 5 bits. . . . . . . . . . . . . . . . . . . . 27

2.3 Comparison of the probability of networked detection for binary con-

sensus and quantized average consensus schemes, with M = 51,

p = 0.8, γ = 2 dB and R = 5 bits. . . . . . . . . . . . . . . . . . . . 28

2.4 Comparison of the probability of networked detection for binary con-

sensus and quantized average consensus schemes, with M = 51,

p = 0.2, γ = 6 dB and R = 5 bits. . . . . . . . . . . . . . . . . . . . 29

3.1 probability of networked detection for both weighted and non-weighted

diversity strategies. In this case, M = 3, and the local probabilities

of detection are {0.9, 0.5, 0.5}. . . . . . . . . . . . . . . . . . . . . . 37

viii



List of Figures

4.1 probability of networked detection for diversity strategy, π = 0.85,

M = 11, K = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 probability of networked detection for diversity strategy, π = 0.6,

M = 11, K = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



Chapter 1

Introduction

1.1 Cognitive Radios and Cooperative Spectrum

Sensing

In spite of the fact that RF spectrum is becoming a more and more scarce resource for

new wireless services, it is still under-utilized in time and space [1]. The spectrum is

basically assigned to licensed users or Primary Users (PU) who have higher priorities

or legacy rights on having access to a specific part of the spectrum. However, this

does not mean that a PU is constantly using the bandwidth assigned to it. Indeed,

studies by Federal Communications Commission (FCC) show that the utilization of

the current allocated spectrum is inefficient. Cognitive Radios (CR), introduced by

Mitola [2], emerged as a possible solution to this deficiency. This approach tries to

use white spots or spectrum holes where a PU is inactive in order to increase the

spectral efficiency. The need for such a technology comes from the fact that the de-

mand for higher data-rate wireless services has increased rapidly in recent years. In

other words the current static spectrum allocation is not an efficient solution and CR

technology is a dynamic spectrum allocation solution to accommodate more wire-
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Chapter 1. Introduction

less users in the spectrum. The definition of cognitive radio adopted by FCC is as

follows [3]: “A radio or system that senses its operational electromagnetic environ-

ment and can dynamically and autonomously adjust its radio operating parameters

to modify system operation, such as maximize throughput, mitigate interference,

facilitate interoperability, access secondary markets.”

Cognitive radio is a Software-Defined-Radio (SDR) technology, i.e., the corre-

sponding wireless users are smart objects. For instance, a wireless user in a Cognitive

Radio Network (CRN) should be able to measure, sense and learn channel param-

eters as well as its own status. This, for instance, includes the radio characteristics

of the channel, operating frequencies, and availability of the spectrum. CR users in

a CRN are called Secondary Users (SUs). They try to exploit the white spots for

their own communications while avoiding interference to the PUs. These unlicensed

users constantly sense parts of the spectrum to detect the presence/absence of pri-

mary users, in order to use the available spectrum for their own communications. To

achieve this goal, the secondary users (nodes) should sense the signal power in the

corresponding channels and make decisions on the existence of primary users. This

is called spectrum sensing in the cognitive radio terminology.

Spectrum sensing is the very first step and probably the most important step in

establishing a cognitive radio network. This is due to the fact that the quality of

spectrum sensing directly affects the performance of both primary (PU users) and

secondary (SU users) networks. Spectrum sensing can be performed locally or coop-

eratively [4]. In local spectrum sensing, each secondary user makes a decision only

based on its own one-time sensing. In cooperative spectrum sensing, on the other

hand, a group of secondary users decide collaboratively on the existence of a PU, in

order to improve the detection performance in the presence of local sensing errors

and channel uncertainties. For instance, poor link quality, due to multipath fading,

deteriorates local sensing and detection of an SU. Furthermore, individual/local sens-
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Chapter 1. Introduction

ing can not deal with the hidden terminal problem. Therefore, cooperative spectrum

sensing has been proposed as an alternative approach [5–7].

Cooperative spectrum sensing can be classified into three main categories: cen-

tralized [7, 8], distributed [9], or relay-based [10, 11]. This classification is based on

how a network of secondary users share their local information, i.e., their local sens-

ing data. In centralized spectrum sensing, a fusion center (FC) (could be one of the

SUs) collects all the sensing data of the SUs, makes a final decision on the presence

of the PUs, based on all the available information, and broadcasts the decision to

the cognitive radio network via a reporting channel [12]. In distributed spectrum

sensing, on the other hand, a group of SUs reach an agreement on the existence of a

PU, only based on local interactions and without a central fusion node. Finally, in

the relay-based scheme, the SUs cooperate and relay the local sensing information

in order to improve the overall performance. For instance, if some nodes have good

sensing qualities but poor reporting channels to the FC, they can relay their mea-

surements to the FC through other SUs with good reporting channels. It should be

noted that the relay-assisted scheme is a centralized scheme.

Cooperative spectrum sensing can result in a considerable performance improve-

ment over localized approaches as it exploits the spatial diversity of the SUs. For

instance, it can get around the hidden-terminal problem as mentioned earlier. Dis-

tributed spectrum sensing is furthermore less vulnerable to FC failures. Moreover,

distributed schemes are scalable and nodes can be easily added to or removed from

the cooperative network. It should be noted, however, that although cooperation in

spectrum sensing results in a better performance, it comes at the cost of a higher

energy and bandwidth usage. Reducing cooperation overhead is therefore the main

motivation of the work of this thesis.

Distributed average consensus algorithms [13] have been a subject of several stud-

ies in recent years. Applications include distributed and parallel computing [14],

3



Chapter 1. Introduction

wireless sensor networks [15], and cooperative control of multi-agent systems [16].

In such problems, the goal is to achieve average consensus, on local information,

over a network of agents. In [9,17], average consensus and Kriged Kalman Filtering

approaches have been proposed for distributed cooperative spectrum sensing. For

instance, in [9], it is shown that the average consensus scheme results in a higher

detection and a lower false alarm probability of the CR network. In [18], a general

framework for binary consensus, i.e., agreement over the occurrence of an event, is

proposed. In this approach, binary data is communicated over the network, with the

goal of the whole network reaching the majority of the initial votes based on local

interactions.

In this thesis, we show how such binary consensus approaches can be utilized

for fast and distributed cooperative spectrum sensing. We consider two binary con-

sensus approaches in this thesis: fusion and diversity [18]. In our binary consensus

spectrum sensing, each SU makes a binary decision on the existence of the PU based

on its one-time local sensing. It then communicates its vote with its neighbors over

rapidly-changing fading channels. Thus, as opposed to sending raw measurements,

the nodes exchange their binary votes in each transmission, which can save the com-

munication overhead of the SUs. In Chapter 2, we characterize the performance of

binary-based cooperative spectrum sensing and show how it results in a considerably

higher agility, as compared to the average consensus spectrum sensing. The rapid

convergence of spectrum sensing approaches is considerably important since the sec-

ondary users need to use the available spectrum as fast as possible. We also discuss

the underlying tradeoffs between the binary and average consensus-based spectrum

sensing approaches in terms of the asymptotic behavior. In Chapter 3, we extend our

binary-based framework to a weighted approach to account for different sensing and

link qualities. We show how each node can optimize its weights based on its knowl-

edge of the sensing qualities of its neighbors and the probabilities of connectivity

of the corresponding local links. Finally, Chapter 4 shows the impact of correlated
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Chapter 1. Introduction

measurements on the binary cooperative spectrum sensing and the optimum average

distance between the nodes in the network. We conclude in Chapter 5.

1.2 Local Sensing techniques for Cognitive Radios

In this part, we briefly summarize some of the most common local spectrum sensing

techniques.

1.2.1 Energy Detection

Energy detection is the most common method of spectrum sensing due to its low

implementation complexity and the fact that it does not require a priori knowledge

on the form of the signal of PU [6, 19]. An energy detector measures the power of

the received signal and compares it with a pre-defined threshold. Its performance,

however, degrades in low signal-to-noise ratio scenarios [20]. In such cases, noise

and undesired signals may be detected as a false PU. Fig. 1.1 illustrates the block

diagram of a typical energy detector. The received signal r(t) is passed through a

bandpass filter, with a center frequency that is adjusted to the part of the spectrum

whose availability is being checked. The received signal then goes through a square-

law filtering followed by an integrator. Finally, a binary decision on the presence of

a PU, either 0 or 1, is made using a hard-limiter.

Figure 1.1: Block diagram of a typical energy detector for local spectrum sensing.
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Chapter 1. Introduction

1.2.2 Cyclostationary Feature Detection

Cyclostationary feature detection technique exploits the cyclstationary features of

the received signal to detect the presence of a primary user [6, 21]. A signal may

have cyclostationary features due to inherent periodicity in the signal or in its statis-

tics, e.g., mean and autocorrelation [22]. A cyclostationarity-based detector can

differentiate noise from a primary user since noise has no specific redundancy in it.

Furthermore, cyclostationarity can be used for distinguishing among different types

of transmissions and primary users. The cyclic autocorrelation function of a signal

r(t) can be computed as

Rα
r (τ) = E [r(t+ τ)r∗(t− τ)ej2παt],

resulting in the following cyclic spectral density:

S(f, α) =

∞∑

τ=−∞
Rα

r (τ)e
−j2πfτ ,

where α is the cyclic frequency. When the fundamental frequency of a PU signal

matches the cyclic frequency, a peak occurs in cyclic spectral density function. In

this method, it is assumed that cyclic features (frequencies) of the PU signal are

known a priori [23].

1.2.3 Matched Filtering

Matched filtering is the optimum technique for detecting primary users when the

signal of the PU is fully known to the SUs. Detection time in this scheme is shorter

than the previous technique, which is a great advantage. However, it is required

that the SUs demodulate and decode the signal of the primary user. This increases

the complexity of the receiver of SUs considerably. In addition, each receiver needs

to have perfect knowledge of the signal of the PU and other specifications such as

operating frequency, type of modulation, scrambling, and coding.
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Chapter 1. Introduction

1.2.4 Other Detection Techniques

Wavelet detection [24], compressed sensing [25], and waveform-based [26] techniques

are other proposed methods for local spectrum sensing. Waveform-based sensing, for

instance, exploits known patterns that are transmitted for different purposes. For

instance, synchronization packets, preambles, pilot symbols or spreading sequences

can be utilized. A preamble is a known sequence that is sent at the beginning of each

burst of data. Therefore, by computing the correlation of the received signal with the

known preamble, a decision on the existence of the primary users can be made. More

specifically, the receiver of an SU will calculate R
{∑N

n=1 r(t)s
∗(t)
}
, where s(t) is a

known signal, r(t) is as defined earlier, and R{·} denotes the real part of a complex

value. In general, waveform-based sensing is more robust than energy detector and

cyclostationarity-based methods because of taking advantage of specific patterns in

the signal. However, this requires partial knowledge of the signal of the PU. Matched

filtering is the most accurate but the most complex technique, while energy detection

is the least accurate but the simplest one in terms of implementation. Compressed

sensing is another approach recently proposed for spectrum sensing. This approach

is specially useful for wideband spectrum sensing [27, 28].

In summary, there exist interesting tradeoffs between accuracy and complexity

of implementation and/or processing of the aforementioned approaches. Choosing

the right technique depends on factors such as the signal characteristics of the PU,

knowledge available at CR network on PU, the required accuracy in local sensing,

and the given sensing time. In this thesis we assume that SUs are equipped with

simple energy detectors to focus on the cooperation and consensus among the nodes.

Our framework, however, can be extended to consider other forms of local sensing.

7



Chapter 2

Distributed Consensus-based

Cooperative Spectrum Sensing

Consider a cooperative network ofM secondary users trying to reach consensus on the

existence of a primary user. We assume an oddM in this thesis. Each secondary user

has its own initial opinion, based on its local spectrum sensing. It will then exchange

its information with other secondary users in order to improve its assessment of the

existence of a primary user. The transmissions among the secondary users occur

over fading channels and are furthermore corrupted by the receiver noise. As such, a

communication link may not necessarily be established between a pair of secondary

users due to poor link quality. Furthermore, the underlying topology of a group

of secondary users that are cooperating for spectrum sensing can be time-varying.

Therefore, we model the underlying network of the secondary users as an undirected

random graph G(V, E(k)), where V = {1, · · · ,M} represents the vertex set (the set

of secondary users) and E(k) is the link set (the set of available communication links

among the secondary users) at time k, in order to focus on the impact of network

connectivity and fading channels on cooperative spectrum sensing. In a random

graph (also called rapidly changing in this thesis), the underlying topology changes

8



Chapter 2. Distributed Consensus-based Cooperative Spectrum Sensing

from one time instant to the next. Furthermore, the probability of the existence

of a link, at any given time, is independent of its existence in previous times or the

existence of other links. In each time step, the graph is not necessarily fully-connected

and each link exists with the probability p. If a link exists, its quality is assumed

perfect. Let CNR represent the ratio of the channel power to the receiver noise power.

Then, there exists a link from node i to node j, at time k, if CNRi,j(k) > CNRTH,

i.e., the link quality is above a minimum acceptable threshold. We take CNRi,js

to be i.i.d. random variables with the same mean value as CNR = CNRi,j. Thus,

we assume that the secondary users operate over a small enough area such that

the channels between each pair can be considered stationary and with the same

average. Let p represent the probability that a link exists, from node j to node

i, at a given time. Assuming exponentially-distributed multipath fading, we have

p = prob(CNRi,j(k) > CNRTH) = e−CNRTH/CNR. In Chapter 3, we generalize this to

the case of different average CNR for each pair of SUs and consequently different p s.

We next study the spectrum-sensing model.

As mentioned in Section 1.2.4, in this thesis we assume that all the secondary

users utilize energy detectors for local sensing. An energy detector [29] consists of

a square-law function, followed by an integrator. Let B and T denote the band-

width of the bandpass filter and the integration duration of a local energy detector

respectively. We assume that all the secondary users utilize energy detectors with

the same parameters. Let ri(t) represent the received signal of the ith secondary

user, in sensing of the primary user. We have the following two hypotheses:

ri(t) =







ni(t) H0

his(t) + ni(t) H1,
(2.1)

where s(t) is the unknown signal of the primary user, ni(t) is the zero-mean additive

white Gaussian receiver noise of the ith SU, and hi is the channel gain from the

primary user to the ith user, which has a Rayleigh distribution. Let γi denote

the Signal-to-Noise Ratio (SNR) from the primary user to the ith secondary user.

9



Chapter 2. Distributed Consensus-based Cooperative Spectrum Sensing

Furthermore, let xi(0) represent the output of the energy detector of the ith node

at time t = 0, as shown in Fig. 1.1. We have the following expression for xi(0):
1

xi(0) =
T∫

0

r2i (t)dt, which results in the following distribution [29]:

xi(0)|γi ∼







χ2
2TB H0

χ2
2TB(2γi) H1,

(2.2)

where χ2
2TB and χ2

2TB(2γi) are the central and non-central chi-square densities re-

spectively, with 2TB degrees of freedom and non-centrality parameter 2γi. More

specifically, we have the following distribution for xi(0):

fxi(0)|H1,γi(z) =
1

2
e−

z+2γi
2

( z

2γi

)TB−1
2 ITB−1(

√

2γiz), (2.3)

fxi(0)|H0,γi(z) =
1

2TBΓ(TB)
zTB−1e−

z
2 , z ≥ 0, (2.4)

where ITB−1(·) is the modified Bessel function of the first kind. Furthermore, γis

are taken as i.i.d exponentially-distributed variables.2 We relax the identically-

distributed assumption in Chapter 3 and the independent assumption in Chapter

4. The SUs then communicate among themselves in order to improve their local as-

sessments. We define the performance metric of our cooperative network as follows:

Definition 1. For a cooperative spectrum sensing algorithm, we define the probability

of networked detection and false alarm, in the kth time step, as follows:

Pd,net(k) = prob(all the nodes vote for 1|H1) (2.5)

Pf,net(k) = prob(at least one node votes for 1|H0). (2.6)

1It should be noted that there is only a one-time local sensing and the time progression
of the next section is due to communication and consensus iterations among the secondary
users.

2In [30], the author shows that the probability density function of xi(0) (after averaging
over γi) can be represented as the convolution of a χ2 PDF, with 2TB − 2 degrees of
freedom, and an exponential PDF, with parameter 2(γ + 1).
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Chapter 2. Distributed Consensus-based Cooperative Spectrum Sensing

By vote we refer to the binary decision of a secondary user, i.e., voting 1 means

that a secondary user decides that a primary user exists while voting 0 denotes

otherwise. In the following section, we propose a framework for binary consensus-

based cooperative spectrum sensing over fading channels. Moreover, we characterize

the probabilities of networked detection and false alarm.

2.1 Distributed Consensus Algorithms for Coop-

erative Spectrum Sensing

Consider a cognitive radio network with M secondary users. In our proposed binary

consensus cooperative spectrum sensing framework, each secondary user makes a

binary decision (vote) on the existence of a primary user, based on its local sensing.

The secondary users then exchange binary votes over fading channels and update

their votes based on the communicated information. This process will go on for a

while. The goal of binary consensus is to achieve the majority of the initial votes. In

our case, however, we are interested in cooperative spectrum sensing which may not

correspond to the majority of the initial votes. For instance, due to low reception

qualities from the primary user, the majority of the initial votes may not correctly

reflect the existence of the primary user. Let bi(0) ∈ {0, 1} represent the binary

decision or vote of the ith secondary user at time step k = 0. Then, bi(k) = 1

indicates that the ith secondary user decides that a primary user exists at time k

while bi(k) = 0 indicates otherwise:

bi(0) =







1 if xi(0) > η

0 else,
(2.7)

where η is the local decision threshold of the secondary users, which can be numeri-

cally optimized based on the knowledge of γ̄, B and T , and through the minimization

11



Chapter 2. Distributed Consensus-based Cooperative Spectrum Sensing

of the average probability of detection error [9]. Define π11 , prob(bi(0) = 1|H1)

as the average probability (averaged over the distribution of the channel) that the

ith secondary user votes for 1 initially, given H1 hypothesis. Under the Rayleigh

fading assumption, γis are exponentially distributed. Furthermore, in this chapter,

we assume that all the secondary users experience the same average SNR, in the

reception from the primary user, denoted by γ. Thus, we have

Pdi = prob(bi(0) = 1|H1, γi), (2.8)

where Pdi is the local initial probability of detection of the ith SU, and the following

average initial probability of detection (π11) and probability of false alarm (π10)

respectively.

π11 = Eγi [Pdi ] =

∫ ∞

0

Pdi

1

γ
e−

γi
γ dγi

= e−
η
2

TB−2∑

m=0

1

m!

(η

2

)m

+
(γ + 1

γ

)TB−1
(

e−
η

2(γ+1) − e−
η
2

TB−2∑

m=0

η

m!

γ

2(γ + 1)

)

,

(2.9)

π10 = prob(bi(0) = 1|H0)

= prob(xi(0) > η|H0) = 1− Γl(TB, η
2
)

Γ(TB)
, (2.10)

where Eγi [·] denotes the expectation operator. Γ(·) and Γl(·, ·) are Gamma and lower

incomplete Gamma functions respectively.

In [18, 31], authors propose two binary consensus approaches, fusion and diver-

sity, for a network that is trying to reach consensus over a binary value. Reaching

consensus, in this context, means reaching the majority of the initial votes. In the

fusion-based approach, each user fuses the received votes of other users that it can

communicate with, namely neighbors, and updates its state based on the majority of

the received votes. It will then send its updated vote to all its neighbors in the next

12



Chapter 2. Distributed Consensus-based Cooperative Spectrum Sensing

time step. This process will go on until a given time for operation is reached. This

strategy is suitable, in particular, when the graph connectivity is low as it creates

virtual links between nodes. It is shown in [18] that fusion-based binary consensus

asymptotically reaches consensus (not necessarily accurate consensus though) if the

underlying graph representing the network has non-zero link existence probability.

In the case of diversity, on the other hand, each node uses its transmissions to repeat

its initial vote, without fusing its received information. It then fuses its received

votes only at the end of the given time. This strategy, is more robust to link errors.

It is also shown that diversity-based approach converges to the majority of the initial

votes asymptotically if p 6= 0 on all the links.

In a cooperative network of SUs, each node measures the energy of the PU and

makes a binary decision on the existence of a PU transmission. Therefore, a group

of SUs with different binary initial votes aim to reach agreement on an event (exis-

tence of a PU). This inspires applying binary consensus-based approaches of [18] to

cooperative spectrum sensing, as we explore next.

2.1.1 Diversity-Based Binary Consensus for Spectrum Sens-

ing

In this part, we apply diversity-based binary consensus approach of [18] to coopera-

tive spectrum sensing. In this strategy, each secondary user utilizes its communica-

tions to other SUs to repeat its initial vote. Consider the case where the SU network

is given K + 1 time steps, for K ≥ 0, to reach an agreement (K transmissions with

the last time step to finalize the decision). Each node then uses all its transmissions

to repeat its initial vote and only fuses the received information at the end.3 This

3As soon as the ith SU receives the vote of the jth SU, the jth SU can stop retransmis-
sions if the ith SU sends back an ACK message. This results in a more efficient performance.
While we do not consider this case, our framework can be easily extended to address it.

13



Chapter 2. Distributed Consensus-based Cooperative Spectrum Sensing

strategy can, in particular, be useful in reducing the impact of link failures on the

exchange of information between the SUs. Let b(k) = [b1(k), · · · , bM (k)]T represent

the vector of the votes of all the secondary users at time step k, where T denotes ma-

trix/vector transpose. Then, the dynamics of the network evolves as follows, given

K transmissions,

bi(k) = bi(k − 1), k ∈ {1, · · · , K − 1}

bi(K) = Dec

(

1

M

(

bi(0) +
1

Kp

K−1∑

t=0

M∑

j=1

aij(t)bj(t)
)
)

, K ≥ 0, (2.11)

and in matrix form,

b(k) = b(k − 1), k ∈ {1, · · · , K − 1}

b(K) = Dec

(

1

M

(

b(0) +
1

Kp

K−1∑

t=0

A(t)b(t)
)
)

, K ≥ 0, (2.12)

where A(k) = [aij(k)]1≤i,j≤M is an M × M adjacency matrix of the SU network,

at time step k, with aii(k) = 0. The off-diagonal elements of the adjacency matrix

are Bernoulli random variables with prob(aij(k) = 1) = p for i 6= j. We have

Dec(z) =







1 z ≥ 0.5

0 z < 0.5
. Note that if Dec(·) is applied to a vector, it operates

entry-wise. In [18], it was shown that diversity-based binary consensus algorithm

over random graphs achieve asymptotic majority consensus. This is due to the fact

that repeated transmissions over a link with p 6= 0 results in asymptotic connectivity

with the probability of 1. Note that this, however, does not mean that the asymptotic

probability of networked detection is 1 for spectrum sensing.

Let S(0) = 1Tb(0), the sum of the initial votes of M secondary users, represent

the state of the network, where 1 is an M × 1 all-one vector. In the following lemma

and the corollary that follows, we characterize the probability of networked detection

and false alarm of diversity-based cooperative spectrum sensing.
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Lemma 1. Assume a cognitive radio network, with M secondary users communi-

cating over a rapidly-changing network topology, where p denotes the probability of

the existence of a link between any two SUs at any time step. For a sufficiently-large

odd M , the probability of networked detection, at time step K is approximated by

Pd,net(K) ≈
M∑

i=0

(
M

i

)[

(1− π11)Q

((
M
2
− i
)√

K
√

1−p
p
i

)]M−i

×
[

π11Q

((
M
2
− i
)√

K
√

1−p
p
|i− 1|

)]i

, (2.13)

where Q(z) = 1√
2π

∫ +∞
z

e−t2/2dt and π11 is defined in Eq. (2.9).

Proof. Let Y(K) = b(0) + 1
Kp

∑K−1
t=0 A(t)b(t) and yi(K) represent the ith entry of

Y(K). In [18], it was shown that, for a sufficiently-large M , we can evoke the Cen-

tral Limit Theorem (CLT) to approximate the distribution of yi(K) with a Gaussian

density, with mean µyi(K) = S(0) and variance σ2
yi(K) = |S(0)− bi(0)|1−p

pK
. Condition-

ing on b1(0), · · · , bM(0) and considering the fact that aij(t)s, for i 6= j, are mutually

independent for different pairs of SUs, Gaussian random variables y1(K), · · · , yM(K)

will also become independent. Therefore, we have

prob
(
y1(K) >

M

2
, · · · , yM(K) >

M

2
|b1(0), · · · , bM(0)

)

≈
M∏

i=1

Q

(
M
2
− S(0)

√

|S(0)− bi(0)|1−p
p

√
K

)

= QM−S(0)

((
M
2
− S(0)

)√
K

√

S(0)1−p
p

)

QS(0)

((
M
2
− S(0)

)√
K

√

|S(0)− 1|1−p
p

)

. (2.14)

The last equality is written by noting that bi(0)s are either 0 or 1. We can then
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derive the probability of networked detection of the secondary users as follows,

Pd,net(K) =
M∑

i=0

prob
(
b1(K) = 1, · · · , bM(K) = 1|S(0) = i

)
prob(S(0) = i|H1)

=

M∑

i=0

prob
(
y1(K) >

M

2
, · · · , yM(K) >

M

2
|S(0) = i

)
prob(S(0) = i|H1),

(2.15)

where prob(S(0) = i|H1) =
(
M
i

)
πi
11(1−π11)

M−i. Substituting Eq. (2.14) in Eq. (2.15)

results in the Lemma.

We then have the following for the asymptotic value of Pd,net(K)

lim
K→∞

Pd,net(K) =

M∑

i=⌈M
2
⌉

(
M

i

)

(1− π11)
M−iπi

11. (2.16)

Therefore, the asymptotic behavior of diversity-based binary consensus spectrum

sensing, over random graphs, is independent of the network connectivity and only

depends on the number of secondary users and γ (through π11).

Corollary 1. For the cognitive radio network of Lemma 1, the probability of false

alarm is

Pf,net(K) = 1−
M∑

i=0

(
M

i

)[

(1− π10)

(

1−Q

(
(M

2
− i)

√
K

√
1−p
p
i

))]M−i

×
[

π10

(

1−Q

(
(M

2
− i)

√
K

√
1−p
p
|i− 1|

))]i

,

where π10 is defined in Eq. (2.10).

Proof. The proof is similar to that of Lemma 1.

As expected, we can see from Corollary 1 and Eq. (2.10) that the probability of

false alarm is independent of γ (it is only a function of noise parameters). Similarly,
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Figure 2.1: Theoretical and simulated probability of networked detection for
diversity-based binary consensus cooperative spectrum sensing, with M = 51 and
γ = 2 dB.

as we discussed for Pd,net(K), the asymptotic value of Pf,net(K) is independent of

the network connectivity (p). Fig. 2.1 shows the probability of networked detection,

for a network of M = 51 secondary users. The theoretical approximation, for the

probability of networked detection, is compared to the true value obtained from sim-

ulation for CNR = 0 dB. It can be seen that Eq. (2.13) matches considerably well

with the true probabilities. Furthermore, the probability of networked detection for

both p = 0.2 and p = 0.8 converges to the same value asymptotically. This is due to

the fact that the asymptotic value of diversity-based approach is independent of net-

work connectivity as shown in Eq. (2.16). Furthermore, the asymptotic probability

of networked detection is not 1 because there is always a non-zero probability that

the majority of initial votes is zero under H1.
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2.1.2 Fusion-Based Binary Consensus for Spectrum Sensing

In [18], the properties of fusion-based binary consensus were discussed in a general

context. It was shown that the fusion-based approach does not necessarily reach the

majority of the initial votes asymptotically, if less than M − 1 nodes vote the same

initially. On the other hand, diversity-based binary consensus achieves the majority

of the initial votes almost surely for p 6= 0.4 The advantage of the fusion-based

strategy is that local information propagates faster through the network than the

diversity-based approach. Consequently, the agility of fusion-based binary consensus

is higher. Therefore, the fusion strategy is suitable, in particular, when the graph

connectivity is low as it creates virtual links between the nodes. Thus, there are some

tradeoffs between diversity and fusion approaches, in terms of agility and asymptotic

behavior, as was shown in [18] and briefly summarized in Section 2.2.

In this part, we apply the fusion-based binary consensus approach [18] to co-

operative spectrum sensing. In this case, each secondary user updates its binary

decision, at every step, based on the received votes from its neighbors. In the next

time step, it then transmits its updated vote to its neighbors. The dynamics of the

fusion strategy can be expressed as

b(k) = Dec

(

1

M

(

I+A(k)
)

b(k − 1)

)

, k ∈ Z
+,

or

bi(k + 1) = Dec

(

1

M

(

bi(k) +

M∑

j=1

aij(k)bj(k)
)
)

∀ i ∈ {1, · · · ,M}, k ∈ Z
+.

In the context of cooperative spectrum sensing, however, characterization of the

probability of networked detection for the fusion-based binary spectrum sensing is

4Note that the majority of the initial votes may not still correspond to an accurate
networked detection if γ is too small.

18



Chapter 2. Distributed Consensus-based Cooperative Spectrum Sensing

challenging and an open problem. Thus, we compare its performance with diversity-

based approach of section 2.1.1 through simulations later in this chapter.

2.1.3 Average Consensus for Spectrum Sensing

In this part, it is our goal to compare the performance of our binary-based coop-

erative spectrum sensing approaches with that of already proposed average-based

approach. In [9], authors have shown through simulation that an average-based

consensus scheme can result in a considerably better performance in a cognitive

radio network. However, mathematical characterization of the performance is not

presented in their work. Thus, similar to the analysis we did for diversity-based spec-

trum sensing, in this part, we first mathematically characterize a lower bound for

the probability of networked detection for average-based consensus spectrum sens-

ing. We then compare its performance and agility with our binary consensus-based

algorithms.

The standard average consensus dynamics (in a general context), over random

graphs, evolve as follows [13]

X(k + 1) = P(k + 1)X(k), (2.17)

where X(k) = [x1(k), · · · , xM(k)]T is an M × 1 general state vector at time step k,

and P(k) is a doubly-stochastic matrix that corresponds to the underlying graph of

the SUs at time k:
∑M

j=1 Pij(k) =
∑M

i=1 Pij(k) = 1 for i, j ∈ {1, · · · ,M}. We then

have P(k) = I − ǫ(D(k) − A(k)), where A(k) is the adjacency matrix of the SU

network and D(k) is a diagonal matrix whose diagonal entries are the degrees of the

nodes of the graph, i.e., D(k) = diag(d1(k), · · · , dM(k)), with di(k) =
∑M

j=1 aij(k).

Let ̺ denote the maximum degree of the network, then ǫ ∈ (0, 1/̺) [13]. Since

we assume that each node can potentially be connected to any other node, then
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̺ = M − 1. If the graph is connected at time k, then the second largest eigenvalue

of matrix P(k) is less than 1, i.e., the largest eigenvalue (which is 1) is isolated [32].

In the context of spectrum sensing, the SUs try to reach average consensus on

their original sensing. The vector X(0) = [x1(0), · · · , xM(0)]T contains the local

measurements and X(k), for k ∈ Z
+, is the vector of updated sensing of the nodes

after k steps of fusion. The goal is for each node to reach x̄(0) = 1
M

∑M
j=1 xj(0).

After the given time for consensus is reached, each node compares its current state

to a predefined threshold and makes a binary decision on the existence of a primary

user. Average consensus spectrum sensing is useful because it averages the noise

in local measurements. However, very high noise in even only a minority of the

nodes can ruin the performance considerably. On the other hand, binary consensus-

based spectrum sensing performs well when the majority of SUs have good sensing

quality. Let ρ denote the predefined threshold. This parameter can be optimally

designed, using an ML detection rule for the desired value of the asymptotic average

consensus. In other words, it is not feasible to adjust the threshold in each iteration

of consensus. The is due to the fact that xi(0)s get multiplied by the entries of the

stochastic matrix P(k) and computing the distribution of the sum of these quantities

is quite challenging. As such, we design the threshold for the asymptotic case where

all the SUs have reached the average of the initial measurements, for which we can

compute the distribution. This threshold, which is clearly sub-optimal, is then used

in each iteration of average consensus spectrum sensing. Assuming that all the SUs

have the same noise distribution, we can calculate the threshold ρ from 2.2.

In [9], average consensus has been utilized for spectrum sensing. However, no

mathematical characterization of the networked detection performance is provided.

Thus, we next find a lower bound on the probability of networked detection.

Lemma 2. Assume a cognitive radio network, with M secondary users communi-

cating over rapidly-changing fading channels with p as the probability of existence of
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any link at any given time. Furthermore, assume that the M secondary users use

the average consensus spectrum sensing scheme of Eq. 2.17. Then the probability of

networked detection can be lower bounded as follows:

P avg,cons

d,net (k) ≥ prob(F|H1)− λk
2

(
E [P2]

)
∫

Z∈F

‖Z− 1
M
1TZ1‖2

(
1
M
1TZ− ρ

)2 fX(0)|H1(Z|H1)dZ,

where F ,

{

X(0)
∣
∣x̄(0) ≥ ρ

}

, fζ(·) is the probability density function (PDF) of a

general random variable ζ. P avg,cons

d,net (k) denotes the probability of networked detection

for average consensus spectrum sensing at time k and λ2

(
E [P2]

)
is the second largest

eigenvalue of matrix E [P2].

Proof. We have

P avg,cons
d,net (k) =

∫

Z∈F
prob(X(k) ≥ ρ1|X(0) = Z)fZ|H1

(Z|H1)dZ

+

∫

Z∈FC

prob(X(k) ≥ ρ1|X(0) = Z)fZ|H1
(Z|H1)dZ

=

∫

Z∈F
prob(X(k) ≥ ρ1|X(0) = Z)fZ|H1(Z|H1)dZ. (2.18)

The second term on the right hand side of the first line of Eq. (2.18) is equal to

zero. This is due to the fact that the initial average is preserved in an average

consensus algorithm, i.e., x̄(k) = 1
M

M∑

i=1

xi(k) = x̄(0). Since the second integra-

tion is over F c, where x̄(0) < ρ, then the second integral becomes zero. Under

the assumption of independent initial assessments, i.e., independent xi(0)s, we have

fZ|H1
(Z|H1) = ΠM

i=1fzi|H1
(zi|H1). Finding a closed-from expression for P avg,cons

d,net (k) is

still challenging. Thus, we derive a lower bound in order to analyze the performance

of average consensus spectrum sensing. Let ∆(k) = X(k)− x̄(0)1 represent the error
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vector. We then have

prob(X(k) ≥ ρ1|X(0) ∈ F)

= prob(X(k)− x̄(0)1 ≥ (ρ− x̄(0))1|X(0) ∈ F)

≥ prob(|X(k)− x̄(0)1| ≤ (x̄(0)− ρ)1|X(0) ∈ F)

≥ prob
(
‖∆(k)‖2 ≤

(
x̄(0)− ρ)2|X(0) ∈ F

)

≥ 1− E [‖∆(k)‖2|X(0) ∈ F ]
(
x̄(0)− ρ

)2 , (2.19)

where the expectation is taken over the graph randomness. The last line in Eq. (2.19)

is derived using Chebyshev’s inequality for Hilbert-space-valued random elements

( [33] Theorem 2.1). Next we derive an upper bound for E [‖∆(k)‖2|X(0)].

We have ∆(k) = P(k)∆(k − 1) [34]. From Rayleigh-Ritz inequality, we know

that zTBz
‖z‖2 ≤ λ2(B) for all vectors z such that 1T z = 0, where B is an arbitrary

matrix with the eigenvector of 1 corresponding to its first (largest) eigenvalue. Since

1T∆ = 0, by conditioning on the previous step and using Rayleigh-Ritz inequality,

we have

E
[
‖∆(k)‖2|∆(k − 1)

]
= ∆T (k − 1)E

[
PT (k)P(k)

]
∆(k − 1)

≤ λ2

(
E [PT (k)P(k)]

)
‖∆(k − 1)‖2.

Then, through induction and by noting the stationarity of matrix P(k), we can write

E
[
‖∆(k)‖2|X(0)

]
≤ λk

2

(
E [P2(k)]

)
‖∆(0)‖2. (2.20)

Next we characterize λ2(E [P2(k)]) which is the second largest eigenvalue of matrix

E [P2(k)]. For simplicity we drop the time index k. We have P = I − ǫ(D −
A). Furthermore, the off-diagonal entries of the adjacency matrix are Bernoulli

distributed random variables, with the probability prob(aij = 1) = p for i 6= j.

Diagonal entries of matrix D are binomial random variables di ∼ B(M − 1, p) for

i ∈ {1, · · · ,M}. By noting that P = PT , we next characterize the second largest
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eigenvalue of E [P2]. We have E [A2] = ((M − 1)p − (M − 2)p2)I + (M − 2)p211T ,

and E [D2] =
(
(M − 1)(M − 2)p2 + (M − 1)p

)
I.

Moreover, [DA]ij =
∑M

m=1 aimaij =
∑M

m=1
m6=i,j

aimaij + a2ij . Therefore,

E
[
DA

]
= ((M − 2)p2 + p)(11T − I). (2.21)

We then have

E [P2] = I− 2ǫ(E [D]− E [A]) + ǫ2(E [A2] + E [D2]− 2E [DA])

=
(
M(M − 2)ǫ2p2 + 2Mǫ2p− 2Mǫp + 1

)
I

+
(
2ǫp− (M − 2)ǫ2p2 − 2ǫ2p

)
11T .

E [P2] = αI + β11T , for any α, β ∈ R, is a special form of a circulant matrix. It is

straightforward to see that the eigenvalues of a circulant matrix are λ1 = α + Mβ

and λj = α for j ∈ {2, · · · ,M}. Therefore,

λ2

(
E [P2(k)]

)
= M(M − 2)ǫ2p2 + 2Mǫ2p− 2Mǫp + 1. (2.22)

Combining Eq. (2.18), (2.19) and (2.20) yields

P avg,cons
d,net (k) =

∫

Z∈F
prob(X(k) ≥ ρ1|X(0) = Z)fX(0)|H1

(Z|H1)dZ

≥
∫

Z∈F

(

1− E [‖∆(k)‖2|X(0) = Z]
(
x̄(0)− ρ

)2

)

fX(0)|H1(Z|H1)Z

= prob(F|H1)− λk
2

(
E [P2(k)]

)

×
∫

Z∈F

‖Z− 1
M
1TZ1‖2

(
1
M
1TZ− ρ

)2 fX(0)|H1
(Z|H1)dZ. (2.23)

Corollary 2. The lower bound obtained in Lemma 2 for the probability of networked

detection in average consensus-based cooperative spectrum sensing is asymptotically

exact and independent of the network connectivity.

23



Chapter 2. Distributed Consensus-based Cooperative Spectrum Sensing

Proof. For ̺ = M − 1, we have ǫ = 1
M−1

. Therefore, from Eq. (2.22) we write

λ2

(
E [P2(k)]

)
=

M(M − 2)

(M − 1)2
p(p− 2) + 1. (2.24)

Since −1 ≤ p(p−2) < 0 and 0 < M(M−2)
(M−1)2

< 1, therefore λ2

(
E [P2(k)]

)
< 1. Thus, our

lower bound in Lemma 2 tends to prob(F|H1) for large enough k. Moreover, from Eq.

(2.18), it can be easily confirmed that since lim
k→∞

prob(X(k) ≥ ρ1|X(0) ∈ F) = 1, then

lim
k→∞

P avg,cons
d,net (k) = prob(F|H1), which is the exact asymptotic value and independent

of network connectivity.

2.2 Simulation Results

In this section, we compare the performance of our binary consensus-based cooper-

ative spectrum sensing approaches with that of average consensus. All the simula-

tions in this thesis are implemented in MATLAB. As mentioned earlier, in average

consensus spectrum sensing, local measurements (xi(0)s) are exchanged among the

secondary users. In a realistic scenario, measurements need to be quantized before

transmission [35, 36]. Therefore, in this section, we simulate quantized average con-

sensus and compare its detection performance with the binary consensus schemes for

cooperative spectrum sensing. Let q(·) denote an R-bit quantizer. This quantizer

is a mapping q : R → Z, converting z ∈ R to its nearest integer value n ∈ Z. Let

Amax and Amin indicate the expected maximum and minimum of the input to the

quantizer. We take Amin = 0 because the output of the energy detectors is positive.

Thus, the quantization step-size becomes δ = Amax

2R
. We can write

q(z) =







2R − 1, z ≥ (2R − 1.5)δ

n, (n− 0.5)δ ≤ z < (n+ 0.5)δ

0, z ≤ 0.5δ.
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It is straightforward to rewrite Eq. (2.17) for the quantized case asX(k+1) = X(k)+

(P(k+1)− I)q(X(k)), where q(·) is applied entry-wise to its vector argument. Next,

we compare the performance of binary consensus schemes with quantized average

consensus. In order to have a fair comparison, we quantize the transmitted data of

the average consensus case to R bits per transmission and evaluate the performance

of these algorithms in terms of the number of transmitted bits per SU. We further

assume that all the secondary users have the same γ and investigate two cases of

low and high network connectivity (p = 0.2 and p = 0.8). Moreover, we set R = 5

bits to achieve the best agility for the average consensus algorithm. Optimal R was

found through simulations. Basically, small values of R are not acceptable because

it degrades the performance of the average consensus algorithm, while large values

of R reduces the agility. So R is set according to this tradeoff. We take ǫ = 1
M−1

and

TB = 5.

Fig. 2.2 and 2.3 compare the performance of the three consensus-based spectrum

sensing approaches, for the two cases of low and high network connectivity respec-

tively. It can be seen that, although the SNR to the primary user is low (γ = 2

dB), fusion-based binary consensus outperforms both diversity-based binary consen-

sus and quantized average consensus spectrum sensing in terms of agility. Moreover,

it can be seen that the agility of diversity-based binary consensus spectrum sensing

improves tremendously by increasing network connectivity. Network connectivity,

however, does not impact the performance of the fusion-based strategy significantly.

The reason is that when the graph connectivity is low, fusion-based strategy creates

virtual links between the secondary users. In Eq. (2.16) and (2.23), we show that

the asymptotic behavior of diversity-based binary consensus and average consensus

spectrum sensing is independent of network connectivity and depends only on M

and γ. Fig. 2.2 and 2.3 also confirm this.

Fig. 2.4 shows the performance of these approaches for a higher level of SNR
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(γ = 6 dB) and the case of low connectivity. Comparing Fig. 2.2 and 2.4, it can be

seen that increasing average SNR to the primary user, which corresponds to more

correct initial votes, improves the performance of all the three approaches, with a

more considerable impact on the agility of the binary-based consensus approaches.

Overall, the agility of average-based spectrum sensing is not as good as binary-

based approaches due to the fact that the average-based approach transmits R bits

in each iteration whereas binary-based approaches use only 1 bit per transmission.

This results in a slower rate of convergence of the average consensus approach as

compared to binary-based schemes, as confirmed by the figures.

It is also interesting to compare the asymptotic behavior of binary-based schemes

with that of the average-based approach. From the simulation results, it is seen

that the average consensus spectrum sensing performs better than binary consensus

asymptotically. This is more likely as M becomes larger and not true for all cases.

The reason is that average consensus approach averages the noise embedded in the

measurements of the SUs. Thus, as M increases, it is more likely to have negligible

asymptotic noise. In the binary consensus approaches, on the other hand, if poor

link quality to the PU results in a wrong majority of the initial votes, then lower

probability of correct detection can be expected asymptotically. In summary, de-

pending on the size of the network and initial measurement noise of the SUs, average

consensus may or may not have a better asymptotic performance than binary-based

approaches. As an example, assume an SU network with 3 nodes. Further assume

that the initial measurement of one of these nodes is very noisy, compared to the

other two SUs. In such a case, average consensus spectrum sensing may converge to

a value which yields a wrong decision as the high noise of this particular node can

result in a high level of average noise. In binary-based spectrum sensing, however, 2

out of the 3 SUs vote for 1. In this case, the majority becomes 1 which yields the

correct decision. This example shows that there are scenarios where binary-based
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approaches outperform average-based spectrum sensing asymptotically. In general

if a large number of SUs, but not the majority of them, have poor assessments on

the existence of the PU, then binary consensus-based spectrum sensing can become

superior to average consensus asymptotically. Overall, the binary-based approaches

improve the agility considerably, which is crucial in cooperative spectrum sensing.
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Figure 2.2: Comparison of the probability of networked detection for binary consen-
sus and quantized average consensus schemes, with M = 51, p = 0.2, γ = 2 dB and
R = 5 bits.
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Figure 2.3: Comparison of the probability of networked detection for binary consen-
sus and quantized average consensus schemes, with M = 51, p = 0.8, γ = 2 dB and
R = 5 bits.
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Figure 2.4: Comparison of the probability of networked detection for binary consen-
sus and quantized average consensus schemes, with M = 51, p = 0.2, γ = 6 dB and
R = 5 bits.
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Chapter 3

Weighted Diversity-based

Cooperative Spectrum Sensing

In previous chapters, we assumed that different SUs have the same sensing quality

(same γ̄). Furthermore, we assumed the same probability of connectivity for each

link of the network among the SUs. In a realistic scenario, the sensing quality of SUs

is not identical due to many factors such as their locations. In such cases, if some

information is available on the sensing qualities of the SUs, it is possible to devise

better strategies that rely more on the information of SUs with good sensing qualities.

On the communication side, different links among the SUs may also have different

qualities. Therefore, both sensing and link qualities must be taken into account to

facilitate the flow of more accurate information. In the current literature on coop-

erative spectrum sensing, simple weight assignment approaches are devised for the

centralized case. More specifically, in [37], high sensing quality receptions are given

more weights in the fusion center. In this chapter, it is our goal to find the optimum

weighted strategy for our diversity-based binary distributed cooperative spectrum

sensing approach, by taking into account both sensing and communication qualities.

Such an optimization is, in particular, suitable for the binary approach since the SU
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nodes only exchange their binary votes. A binary vote does not carry all the informa-

tion of the measured signal. Thus, in this chapter, we extend our framework to the

case where different nodes have different sensing qualities. Furthermore, we assume

that different links between the SUs also have different probability of connectivity.

We then find optimum set of weights that each node should utilize to account for

the differences in sensing and communication qualities.

3.1 Generalized Diversity-based Approach

We generalize our diversity-based strategy to a scheme where binary votes are given

different weights. More specifically, each node designs a set of weights to apply

to its incoming votes when fusing them. Our goal is to find the optimum weights

and compare the performance with the non-weighted approach. We first modify the

formulation of diversity-based spectrum sensing as follows, to account for different

weights:

bi(k) = bi(k − 1), k ∈ {1, · · · , K − 1}

bi(K) = Dec

(
(

wii(K)bi(0) +
1

K

K−1∑

t=0

M∑

j=1
j 6=i

aij(t)

pij
wij(K)bj(t)

)
)

, (3.1)

where we assume1 bj(0) ∈ {−1, 1} in Eq. (3.1), for all 1 ≤ j ≤ M , and Dec(z) =






+1 z ≥ 0

−1 z < 0
. Furthermore, wij(K) is the weight that the ith SU assigns to the

reception from the jth SU, given that the total given operation steps is K. Note

that wij(K) is not time-varying and does not change during the entire operation

(K is an a priori given operation time). Furthermore, we have wij(K) ≥ 0 and

1Note that we assume that the initial votes are {−1, 1} rather than {0, 1}. This avoids
multiplication of the designed weights by 0 votes and is a better choice when optimizing
the weights.
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∑M
j=1wij(K) = 1. Note that we have changed p to pij to reflect the fact that

different links among the SUs have different probability of connectivity. We then

have

yi(K) = wii(K)bi(0) +
1

K

K−1∑

t=0

M∑

j=1
j 6=i

aij(t)

pij
wij(K)bj(t). (3.2)

Remark 1. It is easy to confirm that yi(K) approaches the majority of the weighted

initial votes asymptotically.

lim
K→∞

yi(K) =
M∑

j=1

wij(∞)bj(0). (3.3)

Lemma 3. The probability of networked detection for weighted diversity-based coop-

erative spectrum sensing can be characterized as follows:

P
(w)
d,net(K) =

M∏

i=1

Q

(

−∑M
j=1wij(K)E [bj(0)|H1]

√
K

√
∑M

j=1(1− E 2[bj(0)|H1])w2
ij(K) +

∑M
j=1(

1
pij

− 1)w2
ij(K)

)

.

(3.4)

Proof. By applying the central limit theorem, we approximate the distribution of

yi(K) with a Gaussian distribution. We next characterize the mean and variance of

this distribution.

E [yi(K)|H1] =

M∑

j=1

wijE [bj(0)|H1]. (3.5)

We calculate E [bj(0)|H1] as follows,

E [bj(0)|H1] = 2P dj − 1, (3.6)

where P dj is the initial probability of local detection of the jth SU. Note that bj(0) ∈
{−1, 1} in this chapter.
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Next we derive an expression for the variance of yi(K). We have,

E [y2i (K)|H1] = Eb(0)|H1 [E [y2i (K)|b(0)]]

= Eb(0)|H1

[

w2
ii(K)b2i (0) +

2

K
wii(K)bi(0)

K−1∑

t=0

M∑

j 6=i

wij(K)bj(0)

+
1

K2

(K−1∑

t1=0

M∑

m6=i

aim(t1)

pim
wim(K)bm(0)

)

×
(K−1∑

t2=0

M∑

n 6=i

ain(t2)

pin
win(K)bn(0)

)]

= Eb(0)|H1

[

w2
ii(K) +

2

K
wii(K)bi(0)

K−1∑

t=0

M∑

j 6=i

wij(K)bj(0)

+
1

K2

(
K−1∑

t=0

M∑

m6=i
n 6=i

E [aim(t)ain(t)]

pimpin
wim(K)win(K)bm(0)bn(0)

+K(K − 1)
M∑

m6=i
n 6=i

wim(K)win(K)bm(0)bn(0)

)]

= Eb(0)|H1

[

w2
ii(K) +

2

K
wii(K)bi(0)

K−1∑

t=0

M∑

j 6=i

wij(K)bj(0)

+
1

K

(
M∑

m,n 6=i
m6=n

wim(K)win(K)bm(0)bn(0) +
M∑

n 6=i

1

pin
w2

in(K)

+ (K − 1)

M∑

m,n 6=i
m6=n

wim(K)win(K)bm(0)bn(0) + (K − 1)

M∑

n 6=i

w2
in(K)

)]

= w2
ii(K) + 2wii(K)E [bi(0)|H1]

M∑

j 6=i

wij(K)E [bj(0)|H1]

+

M∑

m6=i
n 6=i

wim(K)win(K)E [bm(0)bn(0)|H1] +
1

K

M∑

n 6=i

(
1

pin
− 1)w2

in(K).
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We also know that E [yi(K)|H1] =
M∑

j=1

wijE [bj(0)|H1]. Therefore, we have the follow-

ing expression for the variance:

ei(K) = w2
ii(K) + 2wii(K)E [bi(0)|H1]

M∑

j 6=i

wij(K)E [bj(0)|H1]

+
M∑

m6=i
n 6=i

wim(K)win(K)E [bm(0)bn(0)|H1] +
1

K

M∑

n 6=i

(
1

pin
− 1)w2

in(K)

−
M∑

m,n 6=i

wim(K)win(K)E [bm(0)|H1]E [bn(0)|H1]

− 2wii(K)E [bi(0)|H1]

M∑

j 6=i

wij(K)E [bj(0)|H1]− w2
ii(K)E 2[bi(0)|H1].

It is straightforward to see that

ei(K) =
M∑

j=1

(1− E 2[bj(0)|H1])w
2
ij(K) +

1

K

M∑

j=1

(
1

pij
− 1)w2

ij(K). (3.7)

which completes the proof.

Lemma 3 shows how each SU can optimize its weights in a distributed manner

that only requires its local knowledge. More specifically, the ith SU should solve the

following optimization problem by noting that P dj > 0.5:

max
wi1(K),··· ,wiM (K)

∑M
j=1wij(K)(2P dj − 1)

√
∑M

j=1(1− E 2[bj(0)|H1])w
2
ij(K) +

∑M
j=1(

1
pij

− 1)w2
ij(K)

, (3.8)

s.t.
M∑

j=1

wij(K) = 1, ∀ 1 ≤ i ≤ M,

wij(K) ≥ 0, ∀ 1 ≤ i, j ≤ M.

While the optimization problem of (3.8) can be solved numerically, we can not find a

closed-form expression for the weights. We next show how to find a closed-form ex-

pression through a sub-optimum strategy. The derived expression would bring more
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insight on the impact of sensing and communication qualities, as well as other sys-

tem parameters, on the optimum weights. Based on Eq. (3.4), we have the following

lower bound,

P
(w)
d,net(K) =

M∏

i=1

Q

(

−∑M
j=1wij(K)E [bj(0)|H1]

√
K

√
∑M

j=1(1− E 2[bj(0)|H1])w
2
ij(K) +

∑M
j=1(

1
pij

− 1)w2
ij(K)

)

≥
M∏

i=1

Q

(

−(2min (P dj )− 1)
√
K

√
∑M

j=1(1− E 2[bj(0)|H1])w2
ij(K) +

∑M
j=1(

1
pij

− 1)w2
ij(K)

)

.

(3.9)

Thus, the minimization of ei(K) variable will maximize the lower bound (it will

minimize the denominator of the Q function). We then have the following optimiza-

tion problem for the ith SU:

min
wi1(K),··· ,wiM (K)

ei(K), (3.10)

s.t.
M∑

j=1

wij(K) = 1, ∀ 1 ≤ i ≤ M,

wij(K) ≥ 0, ∀ 1 ≤ i, j ≤ M.

It can be easily confirmed that this optimization problem is convex. We can then

confirm the following optimum weights by writing the KKT conditions:

wij(K) =
l(K)/2

(1− E 2[bj(0)|H1]) +
1
K
( 1
pij

− 1)
, ∀ 1 ≤ i, j ≤ M, (3.11)

where l(K) = 2
∑M

j=1
1

(1−E2[bj (0)|H1])+
1
K

( 1
pij

−1)

. From Eq. (3.11) it can be seen that the op-

timum weights are a function ofK (given operation time), link existence probabilities

and the qualities of sensing, i.e., local detection probability, as expected. It should

be noted that the ith SU needs to assess the local sensing qualities of its neighbors

(P dj for j 6= i) as well as the probability of connectivity of the corresponding links

(pij) in order to find the weights. It can estimate pijs based on its reception qualities
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from the neighboring nodes. As for the local sensing qualities, the neighbors can

send an assessment of their local sensing qualities (P dj for j 6= i) to the ith node at

the beginning of the operation. Since this is a one-time communication, it should not

increase the number of transmitted bits considerably if the operation time is large

enough.

It is interesting to see the asymptotic behavior of the weights as K → ∞. We

have the following set of weights for the ith SU asymptotically:

wij(∞) =
1/
∑M

j=1(1− E 2[bj(0)|H1])
−1

1− E 2[bj(0)|H1]
, ∀ 1 ≤ i ≤ M. (3.12)

As expected, the weights are only a function of the quality of sensing asymptoti-

cally.

Fig. 3.1 illustrates the performance of the weighted diversity-based cooperative

spectrum sensing as compared with the non-weighted approach of Chapter 2. It

can be seen that the probability of networked detection increases by optimizing

the weights. In general, the weighted approach can improve the performance more

considerably if the difference of local sensing qualities is more drastic. On the other

hand, the link existence probability among the SUs only affects the convergence rate

to the asymptotic value.
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Figure 3.1: probability of networked detection for both weighted and non-weighted
diversity strategies. In this case, M = 3, and the local probabilities of detection are
{0.9, 0.5, 0.5}.
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Chapter 4

Impact of Network configuration

on Correlated Measurements and

Connectivity

In the previous chapters, we assumed that the local sensing of the SUs are uncorre-

lated. Depending on the distance among the SU nodes, this may or may not be the

case. More specifically, the measurements of SUs can become correlated due to the

spatial correlation of the shadow fading components of the channels from the PU to

the SUs, which can not be ignored at smaller distances.

In [38], basic limits on the performance of spectrum sensing with energy de-

tectors is studied. In [39–42], node selection and node clustering approaches are

proposed to get around the degraded performance due to shadowing and correlated

measurements. In this chapter, we explore the impact of shadowing correlation on

our distributed diversity-based cooperative spectrum sensing. It has been estab-

lished in the wireless communication literature that an exponential distribution can

best characterize the spatial correlation of shadow fading in the dB domain [43]. In
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this chapter, we explore the impact of this spatial correlation on our cooperative

spectrum sensing.

Consider a group of SUs cooperating, based on the diversity-based cooperative

spectrum sensing algorithm of Chapter 2. In this part, we assume the unweighted

approach, which is as follows:

b(k) = b(k − 1), k ∈ {1, · · · , K − 1}

b(K) = Dec

(

1

M

(

b(0) +
1

Kp

K−1∑

t=0

A(t)b(t)

︸ ︷︷ ︸

Y(K)

)
)

, K ≥ 0. (4.1)

We also assume that bi(0) ∈ {0, 1}. Furthermore, the channels among the SUs

are taken to be independent and identically distributed, with the probability of

connectivity of p for each link. This assumption assists us to focus on the impact

of correlated sensing. We further assume that the channels from the PU to the

cooperative network experience path loss and shadowing as we further explain later

in this chapter. We use Eq. (2.2) to generate the output of the energy detectors in

the cooperative network.

In this chapter, we are interested in the impact of correlated sensing on the over-

all cooperative network performance. The local measurements of the SUs (of the

PU channel) become correlated as they get spatially closer to each other. Thus, we

are interested in exploring the impact of the distance among the SU nodes on the

overall performance. If the network was fully connected, then it would have been

best for the SUs to spread out in their given area and get as far as possible (as long

as they can maintain the same individual sensing quality to the PU), in order to ben-

efit from the spatial diversity resulted by independent uncorrelated measurements of

the PU channel. In the context of a centralized cooperative spectrum sensing, [44]

also confirms that the probability of networked detection, under correlated measure-

ment assumption, decreases as compared to the case where the measurements are
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uncorrelated.

As the SU nodes get farther from each other, however, the probability that a

link between two SUs gets disconnected becomes higher. Thus, there are interesting

underlying tradeoffs regarding how far the SU nodes should get from each other. If

the SU nodes are too close, they can not benefit from the cooperation as their sensor

measurements would become correlated. On the other hand, as they get farther from

each other, the chance of experiencing disconnected links between SU nodes increases,

which degrades the overall cooperation performance. Therefore, there should exist

an optimum average distance between the SUs in order to benefit from the spatial

diversity for local sensing while maintaining proper connectivity.

Remark 2. As mentioned earlier, we assume that as the SU nodes get farther from

each other, the local individual sensing of each node is not impacted. This, however,

can only be the case if we consider the expansion of the nodes over a small enough

area. Thus, such an underlying implicit assumption should be kept in mind in our

discussions in this chapter. For instance, in the hypothetical case that the distance

between the nodes goes to infinity, while the local measurements will become uncor-

related, the individual sensing will most likely degrade drastically for most geometric

configurations. Thus, our discussions assume that the expansion of the SU network

occurs over a small enough area such that the local individual sensing qualities are

not impacted.

Remark 3. As mentioned earlier, we assume that a link between any pair of SUs

has a probability of connectivity of p. While we do not carry the explicit variable

dependency in the rest of this chapter, we take this probability to be a function of

the distance between the corresponding nodes. Thus, as the network expands, this

probability is impacted. Furthermore, we assume uncorrelated probability of connec-

tivity for different links between the SUs. In practice, this will not be the case. As

the SU network shrinks and the distance between the SU nodes become smaller, the
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probability that the corresponding pair-wise links become correlated increases. While

this impacts our mathematical derivations, it should not impact the conclusions of

this chapter. Alternatively, the i.i.d assumption can be justified by assuming that the

SUs communicate over different frequency bands while trying to reach consensus.

As we discuss the impact of the expansion of the network, we need a proper

metric to characterize the impact on the distance between the nodes. We define this

metric as the average distance between pairs of SUs, i.e., d̄ = 1
M(M−1)

M∑

i,j=1

dij. As

the distance between two SUs changes, this impacts the path loss component of that

corresponding channel, which is the average of the distribution of the variable that

characterizes that link. We can take all the three dynamics of path loss, shadowing

and multipath to characterize the links between the SUs. Alternatively, we can only

consider shadowing and path loss or multipath and path loss to follow the discussions

of this chapter.

In general, it is challenging to mathematically investigate the problem of optimum

positioning and the corresponding tradeoffs for a general placement of the SUs. In

this chapter, we start with simple mathematical analysis and proceed to discuss the

underlying tradeoffs through simulations. Our discussions of this chapter can then

serve as a good starting point for future work in this area. The correlation of the

shadowing component of the channels from the PU to the ith and jth SUs is ξ2e
− dij

d0

where dij is the distance between the ith and jth SUs and d0, ξ
2 are the correlation

distance and power of shadowing process respectively.

Next, we characterize the links from the PU to each SU to better highlight the im-

pact of correlated measurements. Let Υm,n = [γdB,m, γdB,n]
T , where γdB,i = 10 log (γi)

represents the received SNR of the ith SU in sensing of the PU signal, when located

at position qi. Furthermore, qb is the position of the primary user. We can char-

acterize γdB,i by a 2D non-stationary random field with the following form [45]:

γdB,i = OdB − 10τ10 log10(‖qi − qb‖) + γdB,SH,i + γdB,MP,i. The distance-dependent
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path loss has a linear decay in the dB domain. Then, OdB and −10τ represent

its offset and slope respectively. Furthermore, γdB,SH,i and γdB,MP,i are independent

random variables, representing the effects of shadowing and multipath in the dB

domain respectively. Since multipath fading decorrelates very fast, we take γdB,MP,i

to be spatially uncorrelated. We furthermore take each γdB,MP,i to be a zero-mean

Gaussian random variable with the variance of σ2
γdB,MP

.1 Thus, we assume a Gaussian

distribution for γdB,MP,i to facilitate mathematical derivations. As for the shadow-

ing variables, a Gaussian distribution with an exponential spatial correlation has

been shown to best characterize the distribution of γdB,SH,i [46]. Thus, that is the

distribution we will utilize in this chapter. Define the following variables:

Hm,n ,




1 −10 log10(‖qm − qb‖)
1 −10 log10(‖qn − qb‖)



 , θ , [OdB, τ ]
T , and (4.2)

Rm,n ,




ξ2 ξ2e

− ‖qm−qn‖
d0

ξ2e
− ‖qm−qn‖

d0 ξ2



 (4.3)

The distribution of the SNR (in the dB domain) of a pair of SU measurements

is then best characterized by a bivariate Gaussian distribution. Let fΥm,n
(Υm,n)

represent the joint PDF of γdB,m and γdB,n for the mth and nth SUs. We then have

fΥm,n
(Υm,n) =

1

2π
(

det
[
Rm,n + σ2

γdB,MP
I2
])1/2

(4.4)

× e
− 1

2

(
Υm,n−Hm,nθ

)T(
Rm,n+σ2

γdB,MP
I2

)−1(
Υm,n−Hm,nθ

)

.

As mentioned in Chapter 2, the distribution of the output of an energy detector is

best characterized by a non-central chi square. From Eq. (2.8), we have

Pdi = prob(xi(0) > η|H1, γi) = QTB(
√

2γi,
√
η), (4.5)

1Note that while Nakagami or exponential are shown to better match the distribution
of γMP,i in the non-dB domain, log-normal has been shown to provide a reasonable fit [46].
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where QTB(·, ·) is the generalized Marcum Q-function. We then have

π11 = prob(xi(0) > η|H1) =

∞∫

−∞

QTB(
√

2× 100.1γdB,i,
√
η)fγdB,i

(γdB,i)dγdB,i,

(4.6)

where fγdB,i
(γdB,i) is the marginal distribution of γdB,i (SNR at the ith SU in the dB

domain). Let rmn = E [bm(0)bn(0)|H1] denote the correlation between the mth and

nth SUs, we can write

rmn = E [bm(0)bn(0)|H1] = prob(xm(0) > η, xm(0) > η|H1)

=

∞∫

−∞

QTB(
√

2× 100.1γdB,m ,
√
η)QTB(

√

2× 100.1γdB,n ,
√
η)fΥm,n

(Υm,n)dγdB,mdγdB,n.

As can be seen, as the SU nodesm and n get closer to each other, their measurements

become more correlated, characterized by the exponential correlation term ξ2e
− dij

d0 ,

which impacts the correlation of their corresponding binary votes and the resulting

networked detection process.

Lemma 4. Assume a cooperative network of M (odd) secondary users communicat-

ing using diversity-based consensus cooperative spectrum sensing. Then, we can char-

acterize the mean and variance of Y(K) as follows, under H1 : E [Y(K)|H1] = Mπ1

and C(K) = E
[(
Y(K) − E [Y(K)]

)(
Y(K) − E [Y(K)]

)T |H1

]

=
( (M−1)π

K
1−p
p

)
I +

(
Mπ −M2π2 +

M∑

m,n=1
m6=n

rmn

)
11T , where π11 = π of Eq. (4.6) and Y(K) is as marked

in Eq. (4.1).

Proof. Consider Y(K) = b(0) + 1
Kp

∑K−1
t=0 A(t)b(t) of Eq. (4.1). It can be easily

confirmed that

E [Y(K)|H1] = ME [bi(0)|H1]1 = Mprob(xi(0) > η|H1)1 = Mπ1, (4.7)
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where S(0) is the sum of the initial votes. Note that averaging is done over the

distribution of the aij(t)s. We next show that E [y2i (K)|b(0)] = S2(0)+ S(0)−bi(0)
K

1−p
p
:

E [y2i (K)|b(0)] = bi(0) + 2bi(0)(S(0)− bi(0))

+
1

K2p2

[K−1∑

t=0

M∑

n,m6=i

E [ain(t)aim(t)]bn(0)bm(0)

+
K−1∑

t1,t2=0
t1 6=t2

M∑

n,m6=i

E [ain(t1)aim(t2)]bn(0)bm(0)
]

= bi(0) + 2bi(0)(S(0)− bi(0))

+
1

Kp2

[ M∑

n,m6=i

p2bn(0)bm(0) +

M∑

n 6=i

p(1− p)bn(0)

+ (K − 1)p2
M∑

n,m6=i

bn(0)bm(0)
]

= bi(0) + 2bi(0)(S(0)− bi(0)) +
1

Kp2
[p(1− p)(S(0)− bi(0))

+Kp2(S(0)− bi(0))
2]

= S2(0) +
S(0)− bi(0)

K

1− p

p
. (4.8)

We also calculate E [yi(K)yj(K)|b(0)] for i 6= j. Note that conditioning on b(0),

yi(K) and yj(K) are independent, for i 6= j, due to the i.i.d link assumption among

the SUs. We then have

E [yi(K)yj(K)|b(0)] = E [yi(K)|b(0)]E [yj(K)|b(0)] = S2(0). (4.9)

Let C(K) = E
[(
Y(K)−E [Y(K)]

)(
Y(K)−E [Y(K)]

)T |H1

]

denote the covariance
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matrix of vector Y(K) under H1. Therefore, we have

E [y2i (K)|H1] = Eb(0)|H1

[
E [y2i (K)|b(0)]

]

= E [S2(0)|H1] +
E [S(0)|H1]− E [bi(0)|H1]

K

1− p

p

=
M∑

m=1

E [bm(0)|H1] +
M∑

m,n=1
m6=n

E [bm(0)bn(0)|H1] +
(M − 1)π

K

1− p

p
,

(4.10)

and the following for i 6= j,

E [yi(K)yj(K)|H1] = Eb(0)|H1

[
E [yi(K)yj(K)|b(0)]

]
= E [S2(0)|H1]

=

M∑

m=1

E [bm(0)|H1] +

M∑

m,n=1
m6=n

E [bm(0)bn(0)|H1]. (4.11)

Therefore,

[C(K)]ii = Mπ −M2π2 +
M∑

m,n=1
m6=n

rmn +
(M − 1)π

K

1− p

p
,

[C(K)]ij = Mπ −M2π2 +

M∑

m,n=1
m6=n

rmn for i 6= j. (4.12)

Remark 4. Consider Y(K) = b(0) + 1
Kp

∑K−1
t=0 A(t)b(t). If we evoke the central

limit theorem, then the distribution of Y(K) can be approximated by the following

Gaussian distribution: Y(K)|H1 ∼ N (Mπ1, C(K)) based on the mean and covari-

ance that are found in Lemma 4. Note that the accuracy of this CLT approximation

would depend on the level of the correlation between the local measurements of the

SUs.

We next show how a more simplified expression for the probability of networked

detection can be derived for this case, by separating the correlated and uncorrelated

parts of Y(K) and utilizing the distribution of Remark 4.
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Lemma 5. Consider Y(K) = b(0) + 1
Kp

∑K−1
t=0 A(t)b(t). Y(K) can be decomposed

as Y(K) = U(K)+ v1, where v = S(0) and [U(K)]i =
∑M

j=1
j 6=i

(
1
Kp

∑K−1
t=0 aij(t)bj(t)−

bj(t)
)

, for 1 ≤ i ≤ M . For sufficiently large M and by evoking the CLT (see

Remark 4), we have U(K)|H1 ∼ N (0M , σ2
U(K)IM) and v|H1 ∼ N (Mπ, σ2

v), where

σ2
U(K) =

(M−1)π
K

1−p
p
, σ2

v = Mπ −M2π2 +
M∑

m,n=1
m6=n

rmn and 0M is a zero vector of length

M .

Proof. We can write

yi(K) = S(0) +
M∑

j=1
j 6=i

( 1

Kp

K−1∑

t=0

aij(t)bj(t)− bj(t)
)

. (4.13)

It can be easily confirmed that σ2
v = Mπ−M2π2+

M∑

m,n=1
m6=n

rmn. Furthermore, E
[
[U(K)]i|H1

]
=

0 and [U(K)]i and [U(K)]j are uncorrelated for i 6= j. We also have

E
[(
[U(K)]i

)2|H1

]

= E
[( M∑

j=1
j 6=i

( 1

Kp

K−1∑

t=0

aij(t)bj(t)− bj(t)
))2

|H1

]

=

M∑

j=1
j 6=i

E
[( 1

Kp

K−1∑

t=0

aij(t)bj(t)− bj(t)
)2

|H1

]

=
M∑

j=1
j 6=i

E
[( 1

Kp

K−1∑

t=0

aij(t)− 1
)2

bj(0)|H1

]

=
(M − 1)π

K

1− p

p
. (4.14)

This completes the proof.

The probability of networked detection for the diversity strategy with correlated
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measurements can be then written as

Pd,net(K) = prob(y1(K) >
M

2
, · · · , yM(K) >

M

2
|H1)

=

∞∫

−∞

prob(y1(K) >
M

2
, · · · , yM(K) >

M

2
|v)fv|H1

(v|H1)dv

=

∞∫

−∞

QM

(M
2
−Mπ − v

σU(K)

)

fv|H1
(v|H1)dv, (4.15)

where fv|H1(v|H1) is the PDF of v given H1. Note that the probability of networked

detection for correlated measurements is a function of d̄ and the correlation comes

into the picture from this dependency. The expression of Eq. (4.15) is more simplified

as the impact of correlation is represented by one scalar variable v.

As the SU nodes get farther from each other (d̄ increases), the local measurements

become more uncorrelated, resulting in a better cooperative performance if the con-

nectivity of the graph of SUs would remain the same (given that the movement of

SUs is limited to a small enough area such that individual sensing is not affected as

explained in Remark 2). However, as d̄ increases, the connectivity of SUs is affected

as p becomes smaller with a high probability. Thus, one would expect an optimum

d̄ that would result in the best tradeoff between sensing and communication.

Fig. 4.1 and 4.2 show the impact of the average network distance (d̄) on the

probability of networked detection for two different local sensing qualities (different

π11). For both figures, we take the distance between any two SU nodes to be the

same as d̄. The sensing channel from the PU to an SU is taken to be log-normally

distributed with an exponential spatial correlation and a mean that is dictated by the

path loss component (only shadowing and path loss are considered for these figures).

We assume that the movements of SUs are limited to a small enough area such that

the path loss component of the channels to the PU does not change (see Remark 2).

The channel between any two SUs experiences exponential multipath fading, with
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an average that is characterized by the path loss term, which becomes the function

of the distance between the two nodes. Furthermore, the channel from the PU

to each SU experiences only path loss and log-normal shadowing with exponential

spatial correlation. A hypothetical curve for the case of uncorrelated measurements

is also plotted. In this case, as d̄ changes, the local sensing of the nodes are kept

uncorrelated. Clearly, in such a case, it is the best for the SU nodes to be as close

as possible, which results in the optimum d̄ = 0. However, this is not realistic since

the local measurements become more and more correlated as d̄ decreases. The figure

shows that the performance is degraded initially due to the correlation of the shadow

fading components of the individual local sensings. As the SUs get farther from each

other, the measurements become more uncorrelated and the probability of networked

detection increases up to a certain point. At high d̄, the connectivity among the SU

nodes is impacted to the point that it is not beneficial to increase d̄ any further. This

suggests an optimum average network distance as can be seen from the figures.
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Figure 4.1: probability of networked detection for diversity strategy, π = 0.85, M =
11, K = 100.
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Figure 4.2: probability of networked detection for diversity strategy, π = 0.6, M =
11, K = 100.
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Chapter 5

Conclusion

We proposed to use binary consensus algorithms for distributed cooperative spectrum

sensing in cognitive radio networks. We proposed to use two binary approaches,

namely diversity and fusion binary consensus spectrum sensing. The performance of

these algorithms was analyzed over fading channels. The probability of networked

detection and false alarm were characterized for the diversity case. We then compared

the performance of our binary-based cooperative spectrum sensing framework to

that of the already-existing averaged-based one. We showed that binary consensus

cooperative spectrum sensing is superior to quantized average consensus in terms of

agility, given the same number of transmitted bits. We furthermore derived a lower

bound for the performance of the average consensus-based spectrum sensing.

We then extended our diversity-based framework to propose a weighted approach

in which each secondary user utilizes a set of weights to account for different local

sensing qualities of its neighbors as well as different communication link qualities

from them. We mathematically characterized the optimum weights.

Finally, the impact of network configuration (in terms of average distance between

the secondary users) and the resulting correlated measurements (due to shadow fad-
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ing) were considered on the overall networked detection performance. More specifi-

cally, we considered the impact of the average distance on both the correlation of the

sensing measurements of the secondary users and the connectivity of the underlying

graph among them. We discussed interesting underlying tradeoffs when increasing

or decreasing the average distance.
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