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ABSTRACT 

     The perennial need for memory storage is further increasing with the 

advancements in technology. Both terrestrial and space related applications 

thrive on efficient ways and new technology for storing data that is Incorruptible 

and dependable. Research is continuously carried out on making storage 

systems vast and reliable. The development of 3D integration has spawned the 

idea of a new generation of memory based on 3D stackable chips. In an era 

where there is a continuous demand for larger, faster, denser and robust 

memories, 3D stackable memory settles in perfectly.  

     However, technology scaling is having a negative effect on the robustness 

(low yield and higher sensitivity to radiation effects) of the memories and 3D 

stackable memory is no exception. As the eagerness for using 3D stackable 

memory builds up because of its many advantages the major concern that stands 

as an obstacle for such a system is its yield and system reliability. It is an 

important consideration in critical applications related to space, avionics, and 
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defense. Even if a single memory domain fails in a stack of memory modules due 

to any kind of irregularity, it can lead to a total system breakdown. 

     The potential dangers for 3D memory include destructive errors such as 

physical errors in memory arrays, wear out faults, hard errors (e.g. stuck bits) & 

errors due to memory yield problems and non-destructive errors (soft errors) 

such as single event upsets (SEU). There is also an increased risk of the 3D 

technology class memories to be effected by multiple bit upsets (MBU) because 

of their natural vertical structure. Hence, 3D memory needs an efficient memory 

controller that can make the memory more reliable and robust against such 

dangers. The memory controller should not only accomplish the memory 

accessing, but it also should act as a potential healing system (ability to retrieve 

the data and exclude the failed memory) for the stack of memory. The 

concentration of the present work is focused on 3D Nand flash memory. It 

proposes an efficient and robust memory controller for 3D Integrated Nand flash 

memory chips used in space radiation environment that performs continuous self 

test and repair. It revives the system from all single point hard errors and soft 

errors. 

     The controller uses a novel and flexible memory mapping scheme (using PUF 

technology) and appropriate Error correction code (ECC) to protect against the 

above mentioned errors. The controller is implemented on a FPGA with three 

different kinds of ECC differing in the correction capability, space requirement, 

latency (delay) and power requirement. This work serves as a look up table for 
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space missions with varying mission requirements to make the choice of a 

particular type of ECC to go with the 3D Nand flash controller. 
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Preface 

Thesis Organization 

     This thesis is organized in the following manner. Chapter 1 gives an 

introduction to 3D integration technology and the potential dangers of the advent 

of 3D integrated memories into space applications. It also covers the basic 

physical mechanisms of how a particle strike on semiconductor memories 

causes an upset in the logic value stored in it. The special concerns for 3D Nand 

flash memories in space environment are also discussed. Chapter 2 gives a 

detailed description of 3D integration technology and discusses a wafer level 3D 

memory integration example flow for better understanding. It also gives an 

overview of the error correction and detection codes used in traditional nand 

flash memories that can be exported to 3D nand flash chips. It then explains in 

brief the flash memory mechanisms and architecture. It concludes with an 

introduction to PUF technology and explains the mechanism of the ring oscillator 

PUF being used in the design of the memory controller. Chapter 3 discusses 

about a new memory controller technique, the algorithms involved in its proposed 

implementation and the hardware description. This chapter concludes with the 

discussion of the benefits and limitations of the memory controller technique. 

Chapter 4 gives the implementation details and results indicating the working of 

the memory controller technique. It concludes with the indication of the results 

obtained from power and space requirement calculations of the memory 

controller implemented with three different kinds of ECC and provides a trade-off 
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table. Chapter 5 concludes the thesis work with how this thesis work has satisfied 

a designer’s requirement to have a simple yet efficient and robust memory 

controller for 3D nand flash memories used in intense space radiation 

environment.  

Contribution of this Thesis 

[1a] Naveen Purushotham, Srikanth Devarapalli, James Lyke and Payman 

Zarkesh-Ha, 'Self Healing Adjustable Memory System' AIAA-2010-3373, In 

Proceedings of AIAA Infotech@Aerospace 2010, Atlanta, Georgia, Apr. 20-22, 

2010. 
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Chapter 1 

Introduction 

1.1. “More than Moore” Approach – Exploring the Third Dimension 

     For long, the semiconductor industry has been led by Moore’s law to achieve 

higher computing power, larger capacity versus lower cost in Integrated Circuits 

(ICs). The continuous scaling down of device dimensions as per Moore’s law has 

provided significant performance enhancements in transistors. However, as the 

demand for higher functionality increases, device scaling is becoming more 

challenging. The effect of smaller design rules is weakening in many types of 

ICs. To meet the requirements of the semiconductor rules, major chip 

manufacturers are investigating 3D IC technologies to stack chips vertically. 

Packaging based on 3D (Postsingulation of wafers into individual chips) and 

wafer level 3D integration (3D stacking prior to singulation of wafer into individual 

chips) is being considered by many companies. Many believe that 3D IC 

technology will make it possible to maintain the current pace of cost reduction. [1]  

 

Figure 1.1: Schematic of 3D Assembly [2] 
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     3D Integration has a plethora of potential advantages over the conventional 

2D ICs including performance advantages of through-chip micron-sized interchip 

Vias for high speed multicore processors, high memory capacity with reduced 

processor- memory latency, heterogeneous integration of mixed signal ICs with 

high performance interconnects. In Particular, 3D memory devices have vast 

densities, superior speeds and they consume less power. Figure 1.1 shows a 

simplified schematic of 3D Integration Technology. With such groundbreaking 

features, 3D stackable chips are sure to pave their way into the space industry. 

However, there are certain immediate issues that the 3D ICs have to address 

namely (1) the overhead and design constraints of through silicon vias (TSVs) [a 

vertical electrical connection (via) passing completely through a silicon 

wafer or die]; (2) Power delivery and distribution in multiple strata; (3) heat 

dissipation across the 3D stack; and finally (4) reparability of the 3D stack. Some 

believe that the first real application of 3D technology will be in the memory area 

because it has been shown that the four constraints given above can be 

managed in memory applications quite well and significant system performance 

and power benefit can be accrued [2]. Due to the perennial need of memory 

storage in space related applications 3D memory is sure to take its place in this 

area. 

     More details of 3D integration technology are provided in the chapter 2 (for 

reference) and the rest of this document addresses 3D memory with 3D NAND 

flash memory being used as the main focus hardware. 
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1.2. Hurdles for  3D  Memories in Space Environment 

     The harsh radiation environment in outer space makes it difficult for 

electronics to survive their expected mission duration. Space radiation effects 

can be broadly classified into ‘Hard’ and ‘Soft’ effects. A hard effect (or error) 

refers to physical damage caused to the silicon lattice structure due to the 

accumulation of radiation. A soft effect (or error) are not destructive to the device 

but can affect device availability and reliability. Soft errors (more commonly 

known as single event effects) refer to bit flips or change in stored data without 

any permanent damage to the chip. As the eagerness for using 3D stackable 

memory advances due to its many advantages, the major concern that stands as 

an obstacle for such a system is its yield and system reliability. It is an important 

consideration in critical applications related to space, avionics, and defense. If a 

single memory domain fails in a stack of memory modules due to any kind of 

irregularity, it can lead to a total system breakdown. 

     Reparability of the stack is a major reliability issue. Apart from the single event 

radiation effects the 3D memories are also prone to failures due to number of 

errors including physical errors in memory cells, wear out faults and stuck bits. 

Hard permanent destructive (or aging) errors are caused by defects in the silicon 

or metallization of the processor package, interconnect electro migration, time 

dependent dielectric breakdown (TDDB), thermal cracking and negative-bias 

temperature instability (NBTI) [3][4].  
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     Basic influence of natural space radiation environment on flash memories are: 

(1) Macroscopic ionization damage from the interaction of many electrons and 

protons, producing a buildup of charge in the gate and isolation oxides, (2) 

Transient effects from the interaction of a single galactic cosmic ray or high-

energy proton, causing upsets in the state machine, buffer or other digital regions 

of the flash memory, (3) Microscopic ionization damage from the charge 

produced by a single cosmic-ray heavy-ion in the gate region and (4) Microscopic 

catastrophic damage from high energy protons or galactic cosmic ray particles 

which can permanently increase the leakage current of the floating gate [5]. 

These effects are recently being observed in terrestrial environment as a result of 

technology scaling.  

1.3    Single Event Upsets and their mechanism 

    Single-event phenomena occurs when a single charged particle strikes and 

deposits energy into space-borne electronics resulting in a fault. The particle  

 

Figure 1.2: Heavy Ion vs. Proton Charge Deposition [10] 
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strike is broadly classified into by heavy ion strikes (direct ionization) and 

Proton/neutron strike (indirect ionization). Both the effects can be observed in 

Figure 1.2. 

Indirect Ionization: 

     This is a process in which a high energy particle such as a proton or neutron 

strikes the silicon atom resulting in an inelastic (or elastic) collision with the 

nucleus and releases a heavy ion called “nuclear recoil reaction". In the case of 

an elastic collision, spallation reactions can occur in which the target nucleus is 

broken into two fragments (e.g., Si breaks into C and O ions) or alpha/gamma 

particles are emitted with recoil of daughter nucleus. These particles being much- 

 

neration near the impact area. These collisions typically 

ave low energies [7]. 

Figure 1.3: Single event Upset [30] 

heavier than original proton or neutron deposit energy along their path. They 

deposit higher charge densities as they travel and therefore may be capable of 

causing a SEU. Figure 1.3 shows the Single event upset. In the case of an 

inelastic collision the particle does not travel far from the impact site and results 

in electron-hole pair ge

h
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Direct Ionization:   

     When a heavy ion strikes a semiconductor material it releases electron hole 

pairs along its path as it loses energy. Particles other than electrons, protons, 

neutrons and pions which have an atomic number greater than or equal to two 

can be classified as a heavy ion. Proton/Neutron strikes are generally less 

effective compared to direct heavy ion strikes. A direct heavy ion strike causes 

reaction in CMOS technology which is 5 orders of magnitude worse than a 

uclear recoil event from protons and neutrons.[7][8] 

d. This process of 

temporary depletion region extension is referred as funneling. 

n

 

1.3.1 Charge Collection Mechanism for CMOS 

     When a particle strikes a microelectronic device, the most sensitive regions 

are usually reverse-biased p/n junctions. The high field present in a reverse-

biased junction depletion region can collect most of the particle-induced charge 

through drift processes, thereby resulting in a transient current at the junction 

contact. The drift process is a major mechanism that causes SEUs.  However, 

the more important factor is the diffusion process (electrons diffusing from 

substrate to drain/bulk potential barrier), which contributes to the late time 

collection of the current at the struck node ensuring that a bit stays flipped.[7][9]  

Strikes on a depletion region can cause the carriers to diffuse into the vicinity of 

the depletion region field where they can be efficiently collecte
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Figure 1.4: Electron concentration due to funneling in an n+/p silicon junction following an electron 

strike [7] 

This funneling effect can increase charge collection at the struck node by 

extending the junction electric field away from the junction and deep into the 

substrate, such that the charge deposited some distance from the junction can 

be collected through the efficient drift process. Figure 1.4 shows the electrons 

concentration due to funneling [7].  

 

Figure 1.5: Alpen Effect [31] 



8 
 

     The charge collection mechanism in submicron devices results from a 

disturbance in the channel potential of the device, referred as funneling effect. 

The effect is triggered by a particle strike that passes through both the source 

and the drain at near-gazing incidence as shown in Figure 1.5. Such a strike 

causes a significant source drain conduction current that mimics the “on” state of 

the transistor. This phenomenon is called the ALPEN effect [7]. ALPEN effect 

tends to increases as the channel length decreases.  

      Another effect known as the bipolar transistor effect is caused due to injection 

of electrons over the source/well barrier. For example, in an n-channel MOSFET, 

holes left in the well due to a particle strike raise the well potential, effectively 

lowering the source/well potential barrier. This lowered potential barrier causes 

the source to inject electrons into the channel. These electrons can be collected 

at the drain effectively increasing the original particle-induced current. This 

current increases the SEU sensitivity. Because the electrons are injected over 

the source/well barrier, this is referred to as a bi-polar transistor effect, when the 

source acts as the emitter, the channel as the base region, and the drain as the 

collector. Reducing the channel length effectively decreases the base width, and 

the effect becomes more pronounced [7]. 

1.4  Special Concerns for 3D Flash memory in space 

     Flash memories have unique design requirements that cause them to be 

more susceptible to radiation damage than conventional microelectronics. The 

high voltages required for erase and write operations require that some internal 

transistors are designed with thicker gate oxides and more lightly doped channel 
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regions compared to conventional digital logic transistors making them far more 

susceptible to radiation damage. The charge pumps that are required to generate 

the high voltages for erasing and writing are generally the most sensitive circuits. 

Single event upsets are far more difficult to deal with. The very complicated 

device architecture used in advanced flash devices causes their basic 

functionality to be affected by heavy ions and protons, and it is difficult to 

recognize and categorize these types of upsets because of limited visibility of 

internal operating conditions. In some cases the device does not completely 

function, but in some cases the error may be difficult to detect such as errors in 

buffers and page address registers. Fortunately, the overall error rate for those 

type of malfunctions is relatively small, allowing system mitigation with Error 

Correction and Detection EDAC [5]. 

Permanent errors are far more difficult problem for several reasons. First, tests 

for permanent errors are difficult and costly to perform. Second, some types of 

errors may occur even for devices that are not biased during the time that a 

heavy ion strike occurs. EDAC is a viable way to recognize this type of error. 

 

1.4.1 Ionization damage from high-energy electrons and protons 

     In flash memories there is a macroscopic effect of charge build up in the gate 

and isolation oxides due to the influence of space radiation. Some of the excess 

charge is trapped at the interface region, changing the threshold voltage of the 

transistor. For the basic MOS transistor, the shift in threshold voltage scales with 

the square of oxide thickness. This has reduced the effect of total ionizing dose 
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in highly scaled devices. However, in flash memories the points of concern are 

the internal transistors used for the charge pump and erase/write control which 

have much thicker oxides for the requirement of high voltage giving them  more 

cross section and making them more sensitive to total dose effects (and damage) 

compared to other technologies[5]. 

 

1.4.2 Microscopic Ionization damage from heavy ions 

     Microscopic ionization damage from heavy ions has been observed in multi-

level flash devices. Such damage results in the increase of the cell leakage 

current. The net effect is the shift of the internal state of some of the internal 

memory cells. The most straightforward way to study this kind of effect is to 

examine the threshold voltage distribution within the device. 

 

Figure 1.6: Change in higher level storage locations in a multi-flash  memory after irradiation with 

heavy ions. [5] 

In Figure 1.6, 18 cells with highest internal storage level were shifted to the next 

level, 23 from the second highest to the third highest, and 2 from that level to the 
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ground level. This is caused by microdose that changes the storage level of the 

charge “packet” within the floating gate. Although this changes the stored 

information, it does not cause permanent change in the device; rewriting the cell 

can be done to restore the information [5]. 

1.4.3 Permanent errors – Stuck bits caused due to space radiation 

     Permanent changes in thin oxide can occur due to the detailed interaction of 

intense ionization track from a single heavy ion with the gate region which 

produces localized damage in the structure of the gate. This effect can cause the 

leakage current to increase by several orders of magnitude. Although the change 

in leakage current is small, it can affect the ability of the floating gate to store 

charge over long periods. This is a permanent effect, and may limit the ability to 

use flash memories in space. The magnitude of the leakage current depends on 

the thickness of the gate region as well as the quality of the oxide. Although high 

electric fields are required in order to get large current changes (hard 

breakdown), soft breakdown can occur at very low electric fields and required 

only a single ion strike [5]. 
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Chapter 2 

Background 

2.1  3D Integration Technology   

What is a 3D IC? 

     A 3D IC contains at least 2 semiconductor layers and at least one layer of 

horizontal interconnect wiring between the semiconductor layers. Each 

semiconductor layer contains its own functional elements (transistors, diode, etc.) 

with electrical junctions. The semiconductor layers may be built sequentially or 

separately. Elements on the semiconductor layers are connected vertically with 

TSVs (through-silicon vias) or other vias, without employing the I/O drivers and 

associated electrostatic discharge (ESD) structures that are normally used to 

connect off-chip devices. [1] 

     3D integration refers to a variety of technologies that provide electrical 

connectivity between stacked multiple active device planes. There are a number 

of technology options to arrange ICs in a vertical stack. It is possible to stack ICs 

in a vertical fashion at various stages of processing: 1) Postsingulation 3D 

packaging (chip-to-chip), and 2) Presingulation wafer-level 3D integration (chip-

to-wafer, wafer-to-wafer, and monolithic approaches).[1]. The most promising 3D 

technology is the wafer-level BEOL-compatible 3D integration technology. It is 

enabled by wafer alignment, bonding, thinning and inter-wafer interconnections. 

It uses TSVs to realize die-to-die interconnection. A 3D chip has a base stratum 

that interfaces to a laminate with one or more semiconductor strata vertically 
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attached to this base stratum. Power is supplied to the base layer from the 

laminate and all I/Os communicate to the laminate through the base layer. This  

 

Figure 2.1: 3D Integrated Circuit 

thinned base stratum is assumed to be mounted face down (though this is not a 

requirement) and for illustrative purposes, connected to the laminate through 

conventional bump connections (also called C4 connections). The second 

stratum is then mounted face-down on the first stratum. There are a variety of 

technological choices at this stage. One of which is a die-to-die connection using 

known good die, through the use of μbumps and Through Silicon Vias (TSVs). 

The density of these connections is often discussed in terms of TSV pitch. The 

TSV diameter is a very critical parameter. A rule of thumb is that the TSV 

diameter must be of the order of the strata thickness. When the TSV diameters 

are in the 25μm range, it is possible to use solder based joining technology and 

mechanical alignment to perform die-to-die joining. When the TSV diameters 

drive down to below 10μm range, the joining process needs to be integrated with 

the silicon fabrication process using wafer scale processing rather than die based 

processing. This latter phase is needed to realize the full potential of 3D 

integration. The density offered by the 25μm TSVs is adequate for most 
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immediate memory applications that we are interested in and is a good place to 

start. However, the true potential of 3D integration can only be realized when the 

inter-strata interconnect pitch approaches sub 10μm [2]. 

2.2  Wafer level 3D memory integration example flow – IBM 3D integration 

approach [1] 

     An example of IBM 3D Integration Approach fabricated using a face-to-back 

layer transfer process is described in this section, which is a strong potential 

candidate for replacement of traditional planar circuit layout to enable future 

advanced CMOS technologies. 

 

2.2.1  Copper Bonding with TSVs for Memory Stacking 

     As depicted in Figure 2.2, the “face-to-back” approach can be used to connect 

functional blocks of CMOS circuitry. More specifically, this method uses logic and 

memory components that traditionally (in 2D chip layout) reside side by side, and  

 

Figure 2.2 Graphical Representation of stacked memory/logic components integrated in a 3D chip. 

The structure is based on face-to-back stacking technology and TSV interconnection. [1] 
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stacks them on top of each other providing a 3D IC solutions. The resulting 

“sandwich” components enable reduced overall chip/package size and increased 

speed of data flow among the various functional blocks of the chip.  

2.2.2 Temporary Bonding and Release 

     In the “front-to-back” layer transfer approach, the use of carrier wafers is often 

required to protect the circuit layers and to provide mechanical stability during the 

layering process. IBM has historically used a glass handle wafer which has a 

thermal coefficient of expansion (TCE) matched to silicon. In this process, after 

the top wafer is fabricated and metalized a protective coating (usually nitride 

layer) is deposited, followed by the application of polymer-based layers that act 

as a bonding medium. Also, once the layer transfer is completed the detachment 

of the carrier has to be easy provided for reliable, fast, and cost-effective 

methodology. If the top wafer layer is not thinned below ~ 100 µm it is possible to 

omit the handle wafer process all together, but protective thick layers have to be 

deposited to shield the circuitry during the thinning process (when wafers are 

attached to the grinding or polishing wheels and exposed to strong mechanical 

forces) 

2.2.3 Wafer thinning 

    Wafer thinning is a necessary component of 3D integration as it provides 

capability of bringing layers closely together. However, its biggest challenge is 

the necessity of thinning a full Si wafer down to ~5% -10% of its original 

thickness, with a required uniformity of ~1-2 µm. This is because, when bulk Si 

wafers are used in the creation of the integrated CMOS circuitry, there is no 
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natural etch stop like in the SOI- wafer case, and hence some of the original Si 

remains after thinning of the wafer is complete. The final thickness depends on 

thinning process control capabilities and is limited by the thickness-uniformity 

specifications of the silicon removal process (that being mechanical grinding and 

polishing, wet or dry etching), Successful thinning to a uniform Si thickness of 

few microns has been demonstrated, but usually ~30-60 µm of Si remains.  

2.2.4 Vertical Interconnect 

     Perhaps the most important technology element for 3D integration is the 3D 

inter-connect. This is sometimes referred to as the TSV or the through-silicon 

inter-connect though in the case of our SOI 3D scheme, the via does not need to 

go through silicon since the substrate is removed. A vertical interconnect is 

necessary for 3D integration to truly take advantage of 3D for system-level 

performance. Without it interconnects would be limited to the periphery of the 

chip, and in this case, the interconnect density would be no greater than in 

conventional 2D technology. This interconnection method is essentially the same 

as a contact hole (or back-end-of-the-line (BEOL - like) process, with the 

difference that a much deeper hole has to be created vertically through the 

silicon material using a special etch process. IBM, Samsung, Tessera, Intel, 

Elpida, IMEC, and others are developing their TSV methodology optimizing the 

patterning and metallization process for their applications. 

     A variety of vertical through-silicon interconnect technologies have been 

developed by IBM and have been described in the literature [11, 12, 13]. Figure 

2.3 shows a scanning electron micrograph(SEM) of a Via. 
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Figure 2.3: Cross-sectional SEM of Si region with metalized TSV and connecting wiring level 

[1] 

2.2.5 Alignment 

     In the TSV approach to 3D integration, the alignment requirement is not 

stringent. An alignment tolerance of ~3µm is often sufficient, using Cu-Cu 

bonding pads of ~10µm, a tolerance which is within the capabilities of a standard 

alignment tool for bonding applications. However since this is a wafer-to-wafer 

3D integration scheme, alignment and bonding are still key fabrication 

challenges. The key to good process control is the ability to separate the 

alignment and pre-bonding steps from the actual bonding process. Such 

integration design allows for better understanding of the final alignment error 

contributions.  

2.2.6 Bonding 

     Attachment of two of the functional levels of this 3D structure is completed by 

using a metal bonding process. This process is chosen as it not only secures two 

parts together but at the same time it provides for electrical connection between 
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them. More specifically, copper-to-copper (Cu-Cu) thermocompression bonding 

is used. Optimization of the quality of this bonding process is a key issue being 

addressed and includes provision of various surface preparation techniques. 

Postbonding straightening thermal annealing cycles, as well as use of optimized 

pattern geometry [14,15, 16]. These solutions combined with use of various seal 

designs address a key challenge of 3D technology, namely reliability and 

manufacturability of 3D ICs and packages. Figure 2.4 shows a close-up of the 

cross-sectional SEM image of a Cu via successfully bonded to a Cu pad. 

 

Figure 2.4: A close-up of the cross-sectional SEM image of a Cu via successfully bonded to a Cu pad 

[1] 

2.2.7 Final Metallization and Testing 

     In the case of stacking memory and logic, or any other applications in which 

more complicated circuits/systems are involved, one has to consider an 

appropriate design for 3D interconnects (including choice of geometry and 

metallization) and optimized layout for metal levels of the various components. 

The critical challenge is to build 3D elements in parallel to a point where they can 

be pre-tested before layer transfer so that their functionality and fabrication 

process is verified. Then one has to be able to re-test circuit components right 



19 
 

after their vertical stacking so that any problems may be corrected before 3D 

parts are processed through any additional steps. To implement this reliability 

procedure the use of additional verification test circuits are often implemented.  

 

2.3 3D memory advantages  

     Three-dimensional IC memories can provide a wide array of benefits that are 

catching the attention of many. They provide independent benefits like higher 

density, lower weight, lower susceptibility to soft errors, and addition of 

significantly new functionalities. Apart from these, there are also inter- related 

benefits which cause design trade-offs such as lower power, faster clock speed, 

lower latency , and lower cost.[17] Overall, the combined cost savings derived 

from a 3D IC memory can be as high as 50%. Certainly, some cost is added as 

each layer is bonded and thinned, and as TSVs must be added to all but one of 

the layers in the stack. This said , the cost reductions far outweigh the added 

stacking costs. The savings come from four major sources: memory wafer 

processing, array efficiency, testing and yield [1] [17]. 

     3D memory provides enhanced reparability. Redundant elements can be 

shared from layer to layer within a 3D stack. As an example, if a repair requires 

more replacement than are available on the local array they can be borrowed 

from other layers. For clustered defects caused by particles, the ability to use 

spares on other layers significantly improves reparability. Other benefits can also 

be realized from 3D memories like lower soft error rates as a result of built in 

ECC as well as from thinner substrates, which provide less interaction volume for 
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incident particles or energies. Density improvements are obvious as each 

additional layer of memory in the 3D stack adds a mere 12um in height. 

2.4 Error Detection and Correction (EDAC) techniques used for memory in 

space applications. 

     In Space computer systems, the contents of memory are protected by an 

error detection and correction (EDAC) code. Bit-flips caused by single event 

upsets (SEUs) are a well-known problem in memory chips and EDAC codes 

have been an effective solution to this problem. 

     An Error Detection and Correction (EDAC)  or error-correcting code (ECC) is 

a system of adding redundant data, or parity data, to a message, such that it can 

be  recovered by a receiver even when a number of errors (up to the capability of 

the code being used) were introduced, either during the process of transmission, 

or on storage. Error-correcting codes are frequently used in lower-layer 

communication, as well as for reliable storage in different memories such as 

RAM, Flash memory, Hard disks, etc. 

     There are two basic types of Error Correction Codes: Block Codes and 

Convolution codes. Block codes are referred to as (n, k) codes. A block of k data 

bits is encoded to become a block of n bits called a code word. In convolution 

codes, the code words produced depend on both the data message and a given 

number of previously encoded messages, and the encoder changes state with 

every message processed. The length of the code word is usually constant. 

NAND Flash memories typically use Block Codes. NAND Flash includes extra 

storage on each page to store ECC code as well as other information for wear-
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leveling, logical to physical block mapping, and other software overhead 

functions. The size of extra storage (spare area) is normally 16 byte per 512 byte 

sector but other sizes are also used. ECC algorithm correction strength (number 

of bit errors that can be corrected) depends on the ECC algorithm used to correct 

the errors (these algorithms may be implemented in either hardware or software). 

Simple Hamming codes can only correct single bit errors. Reed-Solomon code 

can correct multiple bit errors and is used on many of the current controllers. [18] 

2.4.1 ECC Hamming code algorithm 

     The Hamming algorithm is relatively straightforward and easy to be 

implemented in software or hardware. The limitation of the Hamming algorithm is 

its limited error correction abilities. Hamming code is able to correct single bit 

errors and detect two bits errors.  

 

Figure 2.5:  Bit parity for p1 and p1’ [19] 
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     The ECC algorithm used by the NAND Flash ECC module is based on block 

parity. The Hamming code for a 512-byte block uses 24 bits of coding 

information. Figure 2.5 show that p1 is the parity of every 7, 5, 3, and 1 bit of 

each byte of the 512 bytes in the sector. It shows that p1’ is the parity of every 

6,4,2 and 0 bit of every byte in this 512 bytes data sector while p1 is the parity of 

every 7,5,3,and 1 bit of each byte. The same principle holds for the value of bit 

p2, p2’, p4, and p4’ with the only difference being in use of different bits for parity 

generation.  Their expression can be simply written as: 

P1’ = bit6 XOR bit4 XOR bit2 XOR bit0 

P1 = bit7 XOR bit5 XOR bit3 XOR bit1 

P2 = bit7 XOR bit6 XOR bit3 XOR bit2 

P2’ = bit5 XOR bit4 XOR bit1 XOR bit0 

P4 = bit7 XOR bit6 XOR bit5 XOR bit4 

P4’ = bit3 XOR bit2 XOR bit1 XOR bit0 

     On the other hand, the remaining bits of those 24 bits of coding info are 

somehow derived in a different way in terms of the byte usage. In order to 

calculate such bits, an intermediate variable is necessary and defined as 

Rowparity = bit7 XOR bit6 XOR bit5 XOR bit4 XOR bit3 XOR bit2 XOR bit0 

Thus, bit p8’ can be easily defined as the XOR of the row parities of every ever-

numbered (0,2,4,6,8…)row in the 512-byte matrix as shown in figure 7. Similarly, 

bit p8 will be defined as the XOR of the row parities of every odd-number row (1, 

3, 5, 7, …) in the matrix. 
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     Hence, if each parity bit is updated and serially calculated as every byte is 

transferred into the ECC module, a typical bit can be described as follows: 

P8’ = P8’ XOR (Rowparity AND not (rownumber (0))) 

Where the row number is the number of the rows (i.e., the leftmost column in 

figure 2.5 ). In this way, the other bits of hamming code can also be calculated by 

changing the corresponding row number when each byte of raw data is steamed 

in. To detect and correct errors, two sets of 24-bit Hamming codes are XORed to 

get the result. One of them is obtained by reading previously stored ECC result in 

the NAND flash device, and the other set comes from the result calculated with 

the data being transferred into the Hamming code block. The error detection 

responses are listed in Table 2.1. 

Response Description 
No error If the results is 0x00000000. Then 

There’s no error as two sets of hamming 
code is same 

1 bit error If the result shows sets of 0s and1s 
like0x11111111, an error exists. 

2 or more bit 
errors 

More than one error exists if a random 
pattern of 0s and 1s are generated like 
0x01101110 

 

Table 2.1: Error Detection Responses 

This approach of error detection is effective for two reasons. First, the bits used 

to calculate the parity for pn and pn’ are disjointed sets which means that if one 

bit is used to calculate the parity for pn, it will not be used to calculate the parity 

for pn’. Suppose that one certain bit is flipped, it can be in the set of bits that 

calculate the parity for pn or those that calculate parity for pn’. Hence, only one of 

pn or pn’ can be in error; the other one will be correct. Secondly, in each pair of 
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pn and pn’ there must be a ‘1’ and a ‘0’ because of the bit used for calculating the 

parity. If a bit is flipped, it was used to calculate the parity of either pn or pn’. 

Thus, one of the two bits has to be erroneous [19].  

2.4.2 Reed – Solomon codes 

     This section introduces byte-wide single error-correcting and double error 

detecting (255,252) cyclic Reed-Solomon block code in a very digital logic jargon 

as opposed to coding theory. A common procedure is used for both encoding 

and decoding, which is analogous to an arithmetic check-sum [20]. This 

formulation defines a (255,252) block code. The encoder accepts a block of 

bytes, to a maximum of 252 bytes. The encoder calculates three parity bytes 

from this data, and appends these bytes to the data, forming a complete block of 

up to 255 bytes. On reading the entire block from memory the decoder processes 

all the bytes to determine three syndrome bytes, from which error detection and 

correction may then follow.  The transform is explained in two steps, it is best to 

first assume that a valid cyclic block exists whose construction will be explained 

in the second step. So we first look at the factored decoder and look in detail 

about the encoding scheme. 

Factored Decoder:  

     Within a given, possibly erroneous code block, the notation V’
1 describes an 

individual I Th byte. The indices I from 0 to 2 indentify the parity bytes, previously 

created by an encoder, while indices in the range from 3 up to N-1 indentify the 

data bytes.  A maximum value to N is 255. 



25 
 

     Factored decoding in software is straightforward. Three syndrome bytes are 

derived: S0, S1, and S2. Derivation of each Sj involves a sequential ‘look-up-table’, 

either implemented in software, or by discrete logic. Starting with the highest-

order byte and working downwards, the EX-OR sum of each byte and the latched 

output of a look-up table forms the address of the next look-up to that same 

table. Exactly the same procedure is used for each syndrome. Only the tables 

are different in each case.    

                     S0← 0: S1← 0: S2← 0               (1a)                                                 

FOR   I = N – 1 DOWNTO 0 

S0← V’I (EX-OR) F0 (S0) 

S1← V’I (EX-OR) F1 (S1) 

S2← V’I (EX-OR) F2 (S2) 

     In the above ‘←’ is an assignment operator, while ‘(EX-OR)’ represents a 

byte-wide EXOR.  The functions FJ() represents the action of the look-up tables. 

A mathematical linkage exists over the entire code block, comprising data and 

check bytes. This linkage is being tested in three different ways. Calculation of 

syndrome bytes S0, S1, and S2 can be in any order.  

      The total storage required for each table is just 256 bytes, while a complete 

calculation requires just 3 times N EXORs and 3 times N look-ups. In the theory 

of RS codes deriving this set of syndromes is a standard first step towards 

decoding. In the absence of error, which is hopefully the usual situation, all 

syndromes will calculate to zero. That would complete the decoding action. If one 
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or more syndromes are non-zero then an error has been detected. If all the SJ 

are non-zero then it may be possible to locate and identify a single error byte. 

   Confirmation and location of a single correctable byte is as follows. The 

process requires two further tables, and is likely always to be implemented in 

software. Each syndrome pattern is used as an 8-bit address to one inverse 

Galois field IGF() table. Stored in this table, against every address, there is a 

corresponding natural number, technically an exponent, in the range 0 to 254. 

 

Figure 2.6:  Decode schematic outline [21] 

This IGF() look-up table, as addressed by byte-wide non-zero syndrome patterns 

(S0, S1 and S2), outputs natural numbers which are processed to give two 

independent estimates of the error locations, with values i and j. 
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The calculations are in conventional arithmetic, and read 

i ←(IGF(S2)—IGF(S1)+ 255) MOD 255         (1b) 

     j ←(IGF(S1)—IGF(S0)+ 255) MOD 255 

They indentify and confirm the locations of the erroneous byte, provided that i=j. 

The error pattern itself may be computed from an equation 

                          E←GF((IGF(S0) – i + 255)MOD 255)      (1c) 

Where GF() is the second table, this time denoting a Galois field. This second 

table accepts a natural number is the range 0 to 254 as an address and yields a 

specific non-zero 8-bit error pattern. The process completes with the correction of 

the offending byte in the ith location with 

                    Vi ←V’
I  (EX-OR) E                 (1d) 

If only some of the syndromes are non-zero, or the calculated values i  and j are 

unequal, then the decoder has detected some uncorrectable error pattern, which 

must by duly flagged as such. Figure 2.6 shows the outline of the decoding 

process. Summarizing: 

Non-zero syndromes?                                                 Action/decision                                           

SO      S1       S2 

N        N        N         -----------------------------------     no error detected 

 Y       N        N       -------------------------------------   uncorrectable error 

 N        Y        N -------------------------------------   uncorrectable error 

 N        N        Y -------------------------------------   uncorrectable error 

 N        Y        Y -------------------------------------   uncorrectable error 

 Y        N        Y -------------------------------------   uncorrectable error 
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 Y        Y        Y         -----------------------     single error may be correctable (if i=j) 

 

Factored Encoder:  

     Having reviewed a (standard) method of factored decoding, the equivalent 

procedure for encoding may now be described. Using the same standard 

algorithm, or discrete logic, as used in the decoder, remainders  RH are derived 

from the data bytes. We adopt a vector notation in which the symbol MI  

represents a data byte, with index I in the range from 0 to K-1. The maximum 

value of K is 252. 

In pseudo-code the algorithm is 

  R0 ←0:   R1 ←0:   R2 ←0: 

                                             For I= K – 1 DOWNTO 0 

                                   R0 ← MI  (EX-OR) F0(R0)           (2a) 

        R1 ← MI  (EX-OR) F1(R1) 

    R2 ← MI  (EX-OR) F2(R2) 

NEXT I 

Up to this point the process is seen to be almost exactly the same procedure as 

that used for finding the syndromes SH in the decoder (Figure 2.7). The only 

difference is that the derivation is (obviously) over three less bytes, since only the 

data bytes exist at this stage. These derivations of the RH, if done in 

conventional, sequential software, can be in any order. The calculations require 3 

times K  EXORs and 3 times  K  look-ups for R0 to R2.  None of these remainder 
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bytes are of the correct parity, and must not be adjoined to the data bytes, as 

they stand.  

 

Figure 2.7: Encoder schematic outline [21] 

     The remainder bytes need to be transformed to the correct check bytes as 

required by the cyclic code formulation.  It is easiest to envisage a 24-bit vector 

R, whose 8 least significant bits are taken from R0, the 8 middle significant bits 

are from R1 and the 8 most significant bits are from R2. Notationally then          

R= (R0, R1, R2) 

     The remainder transform them runs as follows: read a bit at a time from R; if 

and only if the kth bit r[k] in R is a ‘1’ then the algorithm selects the kth vector 

C[k] in a given Table 2.2 and EXOR adds this selected row to a 24 bit register of 

an accumulating vector C. In pseudo code this reads 

C ← 0   (2b) 
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     FOR k←0 to 23 

    IF r[k] = 1 THEN C← C (EX-OR)C[k] 

    NEXT k 

     The operation is completed by partitioning the calculated vector C into three 

bytes. The 8 least significant bits go to C0, the middle most significant bits go to 

C1 and the 8 most significant to C2. That completes the encoding. Formally the 

unchanged data bytes are ‘promoted’ up three steps when assigned to the code 

block i.e, 

  VI+3 = MI over 0 ≤  I ≤ K  (2c) 

The check bytes CI then are formally assigned to the ‘bottom’ locations of the 

code block (as in Figure 2.7) as 

     VI = CI over 0 ≤  I ≤ 3 (2d) 

     In practice there is no need to waste time in physically shifting the data bytes 

as implied by (c). They may be loaded to memory in one ‘go’ and without further 

manipulation. The transform is far simpler to implement than to describe. The 

sequence requires on average only 12 look-ups and 12 3-byte wide EXOR 

additions, to finish encoding the complete code block. Its use is therefore trivial in 

computational load. 

     Essentially because the sub-set of all possible data bytes, which yield a 

common  set of remainders, uniquely maps to a common set of three correct 

check bytes. It is required only to ‘look-up’ the latter via the former. Suppose for 

example that the following remainders are derived from some given data 

R0 =  1 0 0 0 0 0 0 0     R0 =  0 0 0 0 0 0 0 0   R0 =  0 0 0 0 0 0 0 0         (3a) 
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We would then form a 24 bit vector  

R = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0                       (3b) 

Table 2.2 then predicts that the correct check sequence would just be C = C[0]; 

in other words a vector 

C = 0 1 1 1 0 1 1 0          1 0 0 0 1 0 1 0            1 0 0 0 1 1 0 0 

which partitions as  

C0 = 0 1 1 1 0 1 1    C1 =  1 0 0 0 1 0 1 0       C2= 1 0 0 0 1 1 0 0             (4a) 

and this would be true of every member of that sub-set of data which happens to 

generate that particular remainder vector R. 

There are 23 other possible vectors R with just one ‘1’ located in some kth 

position of that vector and the rest of the bits are zero. Any data subset which 

happens to give rise to such a vector automatically has a correct check byte 

selected from the kth row in Table 2.2. More usually an arbitrary data collection 

which creates an arbitrary vector R (with more than one ‘1’ usually) requires just 

the linear combination of selected rows from Table 2.2. So Table 2.2 is 

universally applicable for all possible data. [21]. 

Select remainder bit r[k] 

3-byte vectors 

C[k] 

Bit no.  a0………..a7  a8…………..a15  a16………a23 

   k    

 

   0  01110110  10001010   10001100 

   1  00111011  01000101    01000110 

   2  10100101  10011010       01000110  
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   3  11101010  01001101   10101001 

   4  01110101  10011110     11101100 

   5  10000010          01001111     01110110 

   6  01000001  10011111   00111011 

   7  10011000  11110111            10100101 

   8  10011110       00001000     10001010 

   9   01001111            00000100             01000101 

 10  10011111  00000010                 10011010 

 11  11110111  00000001     01001101 

 12  11000011  10111000      10011110 

 13  11011001    01011100    01001111 

 14  01101010  00101110    10011111 

 15  01101010  00010111   11110111 

 16  11101010  10011110                     01110110 

 17  01110101  01001111     00111011 

 18  10000010  10011111       10100101 

 19  01000001  11110111      11101010 

 20  10011000  11000011       01110101 

 21  01001100  11011001      10000010 

 22  00100110  11010100   01000001 

 23  00010011  01101010     10011000 

  

Table 2.2: Listing of transformation vectors [21] 

 

2.5 Flash Memory Mechanism 

     This section presents a basic overview of flash memory and its mechanism. 

Flash memory programming and erasing mechanisms using techniques such as 

Hot-carrier injection and Fowler-Nordheim tunneling are covered.  
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2.5.1   Floating Gate Devices 

     Non-volatile memory market share has been continuously growing in the past 

few years and further growth is foreseen, especially for Flash memories (in which 

a single cell can be electrically programmable and a large number of cells – 

called a block, sector, or page – are electrically erasable at the same time) due to 

their enhanced flexibility against EPROM’s. Nonvolatile memory does not lose its 

data when the system or device is turned off. A nonvolatile memory (NVM) 

device is a MOS transistor that has a source, a drain, an access or a control 

gate, and a floating gate. It is structurally different from a standard MOSFET in its 

floating gate, which is electrically isolated, or "floating".  

     In flash memories, electrons were transferred from the floating gate to the 

substrate by tunneling through a 3 nm thin silicon dioxide (SiO2) layer. Tunneling 

is the process by which an NVM can be either erased or programmed and is 

usually dominant in thin oxides of thicknesses less than 12 nm. Storage of the 

charge on the floating gate allows the threshold voltage (VT) to be electrically 

altered between a low and a high value to represent logic 0 and 1, respectively. 

In floating gate memory devices, charge or data is stored in the floating gate and 

is retained when the power is removed. All floating gate memories have the 

same generic cell structure. They consist of a stacked gate MOS transistor as 

shown in Figure 2.8.  
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Figure 2.8: Schematic cross-section of FG transistor [23] 

     The first gate is the floating gate that is buried within the gate oxide and the 

inter-polysilicon dielectric (IPD) beneath the control gate. The IPD isolates the 

floating gate and can be oxide or oxide-nitride-oxide, ONO. The SiO2 dielectric 

surrounding the transistor serves as a protective layer from scratches and 

defects. The second gate is the control gate which is the external gate of the 

memory transistor. Floating gate devices are typically used in EPROM 

(Electrically Programmable Read Only Memory) and EEPROM's (Electrically 

Erasable and Programmable Read Only Memory) [22] [23]. 

2.5.2 Charge Injection Mechanism 

     There are many solutions used to transfer electric charge from and into the 

FG. For both erase and program, the problem is making the charge pass through 

a layer of insulating material. The hot-electron injection (HEI) mechanism 

generally is used in Flash memories, where a lateral electric field (between 

source and drain) “heats” the electrons and a transversal electric field (between 

channel and control gate) injects the carriers through the oxide. The Fowler–

Nordheim (FN) tunneling mechanism starts when there is a high electric field 
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through a thin oxide. In these conditions, the energy band diagram of the oxide 

region is very steep; therefore, there is a high probability of electrons’ passing 

through the energy barrier itself. It is interesting to notice how these two 

mechanisms have been deeply investigated for MOS transistors in order to avoid 

their unwanted degradation effects. In Flash cells, they are exploited to become 

efficient program/erase mechanisms.  

 

2.5.2 a) Hot Electron Injection (HEI) 

     The physical mechanism of HEI is relatively simple to understand 

qualitatively. An electron traveling from the source to the drain gains energy from 

the lateral electric field and loses energy to the lattice vibrations (acoustic and 

optical phonons). At low fields, this is a dynamic equilibrium condition, which 

holds until the field strength reaches approximately 100 kV/cm. For fields 

exceeding this value, electrons are no longer in equilibrium with the lattice, and 

their energy relative to the conduction band edge begins to increase. Electrons 

are “heated” by the high lateral electric field, and a small fraction of them have 

enough energy to surmount the barrier between oxide and silicon conduction 

band edges. Figure 2.9 and 2.10 show the Energy band diagram of a floating 

gate memory during programming by hot-electron injection and the HEI 

mechanism. For an electron to overcome this potential barrier, three conditions 

must hold [32]. 

1) Its kinetic energy has to be higher than the potential barrier. 

2) It must be directed toward the barrier. 
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3) The field in the oxide should be collecting it. 

 

Figure 2.9: Energy band diagram of a floating gate memory during programming by hot-electron 

injection [22] 

 

 

Figure 2.10: Hot-electron injection mechanism for programming in Flash memory [22] 

2.5.2 b) Fowler-Nordheim Tunneling 

     One of the most important injection mechanisms used in NVM's such as flash 

is FN tunneling. When a large voltage Vcg is applied at the control gate during 
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programming, its energy band structure will be influenced as shown in Figure 

2.11. 

 

Figure 2.11: Energy band diagram of a floating gate memory during programming by FN tunneling 

[22] 

     In the figure, ec and ev are the conduction and valence bands respectively, 

Eg is the energy band gap (1.1 eV for silicon), fb is the Si-SiO2 energy barrier (fb is 

3.2 eV for electrons and 4.7 eV for holes). The applied Vcg creates the electric 

field resulting in a potential barrier. This barrier provides a path for the electrons 

in the substrate to tunnel through the thin gate oxide (typically less than 12 nm) 

and eventually be collected in the n+ poly-Si floating gate. The bending of the 

energy bands of the IPD and the gate oxide are different due to the thickness 

differences between them. The IPD ranges from 25 nm to 45 nm while the gate 

oxide ranges from 5 nm to 12 nm. The electrons collected at the floating gate 

leads to a tunneling current density and is given by [33]. 

J = αEinj
2exp(-β/Einj)  -----------     (1) 
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With  α = ( q3 / 8ϕbπh) (m / m*)   and  β = 4√2m*  (ϕb
3/2 / 3ʱq) 

Where h = Plank’s constant 

 ϕb  = Energy barrier at the injecting surface (3.2 eV for si-sio2) 

 q= charge of single electron (1.6 x 10^-19 C) 

 m= mass of a free electron (9.1 x10 ^-31 kg) 

m*= effective mass of an electron in the band gap of sio2 (0.42m) 

 ʱ = h/2π 

 Einj = Electric field at the injecting surface =  Vapp - Vfb / tox ( v/cm) 

 Vapp= voltage applied across the tunnel oxide (V) 

 Vfb = Flat band voltage (V) 

 tox = Tunnel oxide thickness (cm) 

Equation 1 shows that tunneling current density is exponentially dependent on 

the applied voltage, Vapp, which influences the electric field, Einj, across the gate 

oxide. Figure 2.12 shows a cross-section of a Flash memory with electrons 

tunneling uniformly with Vcg at positive potential while the source (Vs), the drain  

 

Figure 2.12:  Uniform tunneling to program Flash memory [22] 



39 
 

(Vd), and the substrate (Vsub) are at ground potential. FN tunneling can also be 

used to erase an NVM. One of the methods is by applying a large negative 

voltage at the control gate. The energy band structure will be influenced as 

shown in Figure 2.13. The applied Vcg creates the electric field resulting in a 

potential barrier. This barrier provides a path for the electrons to tunnel from the 

floating gate to the substrate through the thin gate oxide 

 

Figure 2.13: Energy band diagram of a floating gate memory during erasing by FN tunneling [22] 

For uniform tunneling, a large negative Vcg is applied while for drain-side 

tunneling method, both a negative Vcg and a positive Vd are applied [22][23].  

 

Figure 2.14: Uniform tunneling to erase Flash memory [22] 
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     This is shown in Figure 2. 14. 

2.6 Nand Flash Technology and Architecture 

     This section discusses the basics of nand flash from a designer’s point of 

view.  The nand flash array is grouped into series of blocks, which are the 

smallest erasable entities in nand flash device. A nand flash block is generally of 

arbitrary size like 128KB, 64KB etc. Erasing a block sets all bits to 1 (and all 

bytes to FFh). Programming is necessary to change erased bits from 1 to 0. The 

smallest entity that can be programmed is a byte. Although NAND Flash cannot 

perform Reads and Writes simultaneously, it is possible to accomplish 

Read/Write operations at the system level using a method called shadowing. 

Shadowing has been used on personal computers for many years to load the 

BIOS from the slower ROM into the higher-speed RAM. However, there is a limit 

to the number of times NAND Flash blocks can reliably be programmed and 

erased. Nominally, each NAND block will survive 100,000 Program/Erase cycles 

[24]. Figure 2.15 shows the layout and stick diagram of the Nand flash cell. 

     A technique known as wear leveling ensures that all physical blocks are 

exercised uniformly. To maximize the life span of a design, it is critical to 

implement both wear leveling and bad-block management. NAND Flash is very 

similar to a hard-disk drive. It is sector-based (page-based) and well suited for 

storage of sequential data such as pictures, video, audio, or PC data. Although 

random access can be accomplished at the system level by shadowing the data 

to RAM, doing so requires additional RAM storage. Also, like a hard-disk drive, a 
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NAND Flash device may have bad blocks and requires error-correction code 

(ECC) to maintain data integrity [24]. 

 

Figure 2.15: Nand Flash cell [24] 

     For instance, a 2Gb NAND Flash device is organized as 2048 blocks, with 64 

pages per block (Figure 2.16). Each page is 2112 bytes, consisting of a 2048-

byte data area and a 64-byte spare area. The spare area is typically used for 

ECC, wear-leveling, and other software overhead functions, although it is 

physically the same as the rest of the page. Many NAND Flash devices are 

offered with either an 8- or a 16-bit interface. Host data is connected to the 

NAND Flash memory via an 8-bit- or 16-bit-wide bidirectional data bus. For 16-bit 
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devices, commands and addresses use the lower 8 bits (7:0). The upper 8 bits of 

the 16-bit data bus are used only during data-transfer cycles 

 

Figure 2.16: Nand Flash device organized as 2048 Blocks [24] 

Storage method: 

     The two common methods for storing data and spare information in the same 

page are shown in Figure 2.17. The first method shows a data area of 512 bytes 

plus the 16-byte spare area directly adjacent to it; 528 bytes for the combined 

areas. A 2112-byte page can contain four of these 528-byte elements. The 

second implementation involves storing the data and spare information 

separately. The four 512-byte data areas are stored first, and their corresponding 

16-byte spare areas follow, in order, at the end of the page. 
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Figure 2.17: Typical storage method [24] 

2.7 PUF technology. 

     In this section, we introduce the concept of Physical Unclonable Functions 

(PUFs). A PUF is a function that is embodied in a physical structure, so that it is 

easy to evaluate, but hard to characterize. The physical structure that contains 

the PUF consists of many random components. These random components are 

introduced during the manufacturing process and cannot be controlled. When a 

physical stimulus is applied to the structure, it reacts in an unpredictable way due 

to the presence of these random components [25].The applied stimulus is called 

the challenge, and the reaction of the PUF is called the response.  

     PUFs inherit their unclonable property from the fact that every PUF has a 

unique and unpredictable way of mapping challenges to responses. Each die 

manufactured has unique physical characteristics as a result of slight variations 

in the ambient environment (temperature, physical location in the wafer, etc). 

While PUFs can be implemented with various physical systems our present 
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interest in this paper is on silicon PUFs (SPUFs) that are based on the hidden 

timing and delay information of integrated circuits. Even with identical layout 

masks, the variations in the manufacturing process create performance/delay 

differences among different ICs [26].  

 

Figure 2.18: Simple ring oscillator PUF [27] 

     A simple ring oscillator PUF is explained to get an understanding of the 

concept of PUFs. The ring oscillator PUF is a design based on delay loops (ring 

oscillators) and counters. Each ring oscillator is a simple circuit that oscillates 

with a particular frequency. Due to manufacturing variation, each ring oscillator 

oscillates with a slightly different frequency. In order to generate a unique count 

value output from the ring oscillator is given as clock input counter .The output 

from the counter is the response of the PUF. 
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Chapter 3 

Memory Controller 

3.1 Introduction 

     In this chapter, Memory controller that implements a new technique to make 

the 3D Integrated Nand Flash memory chip more robust and fault tolerant against 

intense space radiation environment is proposed. The controller performs 

continuous self test and repairs itself in the case of any discrepancies such as 

physical errors in memory arrays; wear out faults, stuck bits and soft errors such 

as SEUs. Also, the controller provides protection against the possible effects of 

MBUs. The natural structure of the 3D integrated Nand flash memory provides 

the opportunity for charged particles in space to dig deeper in silicon going into 

the inner stacked layers hence causing a Multiple Bit Upset (MBU). It is an 

important consideration in critical applications related to space, avionics, and 

defense. Even if a single memory domain fails in a stack of memory modules due 

to any kind of irregularity, it can lead to a total system breakdown. A smart 

memory controller for such a system is therefore necessary. The memory 

controller should not only accomplish the memory accessing, but it also should 

act as a potential healing system (ability to retrieve the data and exclude the 

failed memory) for the stack of memory. The system will not recover from single 

or multiple module failures in the absence of such a healing application.  

     This section proposes an efficient way to control a stacked memory system 

along with a unique healing technique. It can also be used as a tester for finding 

manufacturing defects in the stackable memory. The global controller controls 
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and manages the memory modules and maintains a memory map of the various 

modules. It can either be a single-client or a multi-client system. The controller 

runs algorithms such that all the clients always see a contiguous memory. If, due 

to any reason, one or more of the memory modules fail, it automatically 

rearranges the mapping, so that the client attached to the spoiled memory space 

is assigned a new memory space. The controller uses a flexible remapping 

scheme (using PUF technology) and appropriate ECC to protect against these 

errors.  

 

Proposed Memory Controller Properties: 

 Flexible remapping scheme can be done at page, block and die level 

using PUF technology and logical to physical mapping concept. 

 ECC is checked after each read and is readback to confirm the presence 

of a hard or a soft error(SEU & MBU) 

 Uses one of Reed-Solomon code (255, 251), Reed-Solomon (5,3) Coder-

Decoder in GF256 or Hamming code  for ECC  

 Uses special optional algorithm that detects the presence of MBUs in the 

flash block and is corrected immediately. 

Cost Benefits 

 Eliminates external test equipment – all tests are done on-board 

 Reduces test time – no manual probe, and tests use internal bandwidth. 

 Improves yield – conventional chips can handle fewer than 100 bad cells; 

chips with this controller can tolerate thousands of bad cells 
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Reliability Benefits   

 Optional error and condition reporting 

 Continuous “soft” error checking and correction 

 Optional MBU detection and correction 

 Continuous “hard” error detection and repair 

 Longer projected lifetime per chip 

 

3.2   Memory controller Technique 

     The controller can be best described in phases. There are basically four 

phases. 

1. Scan and Mark phase 

2. Discovery Phase 

3. Coalesce Phase (Run Mode) 

4. Heal phase 

    In the initial scan and mark phase, information regarding the state and 

condition of each memory module (page, block or single layer of Nand flash) in 

the stack is extracted and analyzed for stack organization and the known good 

die information is obtained. It works as a testing mechanism for the stack, the 

memory modules from the manufacturing phase can be tested for any 

irregularities in this phase. In the discovery phase, this information is used to 

mark the faulty memory modules by scanning through them individually. After 

getting the known good die information, the memory modules are collapsed to 

achieve a continuous map. The heal phase initiates only if there are any 
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irregularities in the memory modules. The heal phase has three functions, (1) 

Check for any bad memory and exclude it from the memory map, (2) Provide the 

client with a new memory module, (3) Restore the destroyed data. 

 

Scan and Mark Phase:  

     This is the first phase of the global algorithm. At this point the state and 

condition i.e. the Known good die information of the 3D Nand flash memory is 

unknown. This is the phase in which the initial check on the yield of the chip is 

made. The controller is in this phase for only once in its total usage time. In this 

phase the controller first performs a sector by sector write-read back operation 

on the complete stack and collects information (known good die) regarding the 

state of each die, array and cell, hence called the scan phase.  The controller 

sees the 3D nand flash memory as a collection of blocks sub divided into pages 

irrespective of the number of levels (stacks) that are present in the IC. It starts off 

by writing 0s to each page sequentially and after each and every memory cell is 

written into, it reads the data back. By doing this it can detect the presence of 

stuck-at 1s and it performs a similar operation by writing and reading back 1s to 

detect the presence of stuck-at 0 faults in the Nand flash memory.  

     Apart from these this operation detects the faults caused due to other physical 

errors in memory such as yielding errors and hard errors. Faulty cells during the 

scan are marked and the extent of damage is noted, this information is used by 

the controller to give an optional error and condition report but more importantly 

to decide if it should include the particular locations in the memory mapping or 
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not. This also helps the controller to decide if the remapping should be done at a 

cell, array or die level. Since the 3D chip can have possibly hundreds of levels 

there is very good chance of yield problems which will render the whole stack 

level useless in which case die- level remapping is done.  

     Once the initial scan is done and good knowledge is accrued regarding the 

state of the memory the mark phase is initiated. The controller sees the memory 

stack of the 3D Nand flash memory as a collection of pages.  E.g. A 2Gb nand 

flash 2D chip is generally organized as 2048 blocks, with each block containing 

64 pages and each page containing 2176 bytes or 17408 bits. So there is a total 

of 131,072 pages in a single layer, if we consider an 8 layer stack we have 

1,048,576 pages in 3D nand flash chip.  

     The mark phase starts with the initiation of the PUF values. The PUFs used 

here are simple ring oscillator PUFs that generate ‘n’ bit unique values, where n 

is decided by the number of pages in the stack and can be modified to any 

custom length in order to achieve unique values. The information collected in the 

scan phase is used to mark the pages with specific IDs generated by the ring 

oscillator PUF. According to the condition report each good page is assigned a 

random PUF value and pages containing excess faulty cells are assigned null 

values.  

     At this point there is complete information with the controller regarding not 

only the state of each die and each memory cell but also IDs of all the possible 

pages which are write ready. This is the process that is followed by the memory 

controller for stack organization before it assigns memory to any function for 
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access. When a function needs memory in a system the memory controller sets 

the proper hand shaking signals for the access to occur. Figure 3.1 shows the 

algorithm for scan and mark phase. 

 

Figure 3.1: Flow chart for Scan and Mark phase Algorithm 

 

Discovery phase: 

     This phase is the mapping phase of the controller. The controller in this phase 

creates memory maps using the logical to physical mapping concept. The client 

sees the whole stack as one single block of memory with a continuous set of 
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addresses (logically) but physically the locations of the addresses may not be 

continuous. The memory map is created in such a way that the clients always 

see a contiguous memory map and writes to the same addresses irrespective of 

the faulty memory modules in the stack that are spoiled either from 

manufacturing defects or hard and soft errors that pop up intermittently which 

have caused the physical locations to change to a different area. The nand flash 

pages are mapped in a unique way using the PUF IDs so that they can be 

assigned to the clients that need access to memory. This phase is basically run 

by the UIDC (unique ID for specific client) counter. It is a simple n bit counter 

where n is chosen depending on the number of pages in the stack and can be 

modified to any custom length. The algorithm for the discovery phase is shown in 

figure 3.2. 

     When creating the new mapping the controller increments the UIDC counter 

and compares it against all the PUF values. If match is found the memory is said 

to be discovered and the controller assigns this module (nand flash page) to the 

client for access and the UIDC counter is incremented to find the next module. 

When all the n dies are discovered a continuous map is made from the set and 

stored in a register. The spoilt memories from the scan phase are never 

discovered because their IDs are set to null value in the mark phase. The 

controller is in the discovery phase whenever a faulty memory is discovered to 

remap the memories. 
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Figure 3.2: Flow chart for Discovery phase Algorithm 

      

Coalesce phase:  

     The Coalesce phase is basically the run mode for the system. After achieving 

a continuous map in the discovery phase, the controller asserts a system ready 

signal to the client so that it can access memory. In this phase the controller 

performs data write and data read requests. During a data write request the 
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controller writes to the page discovered in the discovery phase. The coalesce 

phase runs along with the discovery in tandem, after each write to a page the 

controller goes into the discovery phase to find the address of a  new page to 

write. Although the client writes to the next immediate address (logical address) it 

is actually written to the page chosen by the UIDC counter (physical address).  

     The controller stores this memory mapping data in a data register that is used 

during data read requests. The data written to the page is first treated with an 

ECC engine and the encoded data is written to the page. For e.g. In a single 

page in the Flash memory there is 2112 bytes for data and 64 bytes for ECC 

redundant bits, each page has 4 sets of 512 bytes. This is shown in Figure 3.3. 

Different types of ECC can be used such as hamming codes, Reed-Solomon 

code, BCH codes etc. depending on the number of bytes needed to be corrected 

at the expense of more power, computation and latency trade off. 

 

Figure 3.3: Bit format for NAND flash page 
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Figure 3.4: Flow chart for Data write request Algorithm 

     During a data read request the controller reads the physical addresses from 

the memory mapping register and completes the requests. Before completing a 

read request it performs an ECC verification, if verification is clean then it 

completes the request. If a fault is encountered in the ECC then an interrupt is 

asserted indicating the halt of memory access for data correction.  The controller 

now proceeds into the heal phase where the distinction between a hard or a soft 

error is made and appropriate measures are taken to rectify the error and restore 
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health to the memory. Figure 3.4 and 3.5 show algorithm for the controller in the 

coalesce phase. 

 

Figure 3.5: Flow chart for Data Read request Algorithm 
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Heal Phase:  

     The heal phase is the correction phase of the controller, the first action taken 

by the controller in this phase is to analyze the error that is detected in the 

coalesce phase. Depending on this analysis the controller decides the type of 

correction mechanism that must be applied. In case of a soft error, the controller 

restores the affected data through ECC decoding techniques provided the 

affected number of bits is in the permissible range of errors of the particular type 

of ECC being used, for e.g. A Reed-Solomon (255,247) decoder can correct up 

to 32 bits or 4 bytes while a simple hamming code can correct 1 byte. In the case 

of a hard error, the controller in addition to the retrieval of the affected bits has to 

remap the memory location of the affected site to a new location.  

     The remapping can be done at page, block or die level depending on the 

extent of the affect of radiation on the 3D stack. When a fault in the memory is 

detected in the coalesce phase, the controller first analyzes the fault by executing 

a simple algorithm which will decide the type of error. There are two types of 

algorithms, the first is to stop the data access and backup data to a data sink 

(like a memory buffer) and perform readback on the affected memory module. 

The controller first programs the particular module with a stream of 1s and reads 

back the data and then it programs a stream of 0s and reads it back. If the data 

programmed is equal to the data readback in both cases then the error is most 

likely a soft error and if the data readback is not equal then the error is qualified 

as a hard error and remap of the memory module is performed. The second 

method is to assume a soft error in each case and keep track of the areas being 
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affected. If a particular area pops up too frequently than the memory module is 

either affected by a hard error or is a very SEU sensitive node. In both cases the 

controller can proceed to remap.  

     The controller also performs an optional multiple bit upset (MBU) detection 

algorithm that will test the vicinity of the affected bit for an error. Since the 

memory chip is 3D there is a good chance of the radiation to dig deeper into the 

chip. During MBU detection, when a soft error is detected the controller not only 

corrects using ECC but also performs an ECC check on the area of the 3D die 

above and beneath the affected area and repeats the process recursively. If the 

ECC check fails it can be considered as a multiple bit upset and is corrected 

immediately. The memory mapping register is updated with the new mapping.  

     The remapping is done at page, block and die level by returning to the 

discovery phase, when a faulty memory module is encountered it is excluded 

from the memory map and the controller proceeds to discovery phase to find a 

new module to replace it. As said above, in the discovery phase the UIDC 

counter selects a memory module according to the random PUF value and 

replaces it with the faulty die. Once a new module is selected, it is included in the 

new mapping. At this point, the client still writes to the same logical address but 

the address now points to a different physical memory module. Figure shows the 

algorithm for Heal phase. Figure 3.6 shows the algorithm for the heal phase. 
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Figure 3.6: Flow chart for Heal phase Algorithm 

3.3 Proposed block diagram of Hardware description 

     This section provides the details of the proposed implementation of the 

controller. Figure 3.7 shows a way of implementing the 3D Nand flash controller, 

each block is further explained in brief and chapter 4 gives a detailed explanation 

of the implementation of each block. 
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NAND CTRL 
 

 

Figure 3.7: Block diagram of Hardware Specification for 3D NAND Flash Controller 

     The figure shows the top level description of the internal structure of the nand 

flash controller design. The module within the solid line is the nand control core, 

the modules outside are optional and are present on the chosen controller 

configuration. 

Main components of the controller are: 

     FIFO – This unit provides FIFO queue interface to the other controller 

modules. Depending on the software configuration the one queue side will be 

data input modules the Slave interface unit (SIU) or direct memory access (DMA) 

module, the second side will always be Nand control unit (NCU) 
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     Device Control Unit (DCU) - This is the main engine of the controller it 

controls the other modules basing on the current special function register values 

and the current controller state. The main control tasks of this module are: 

 Provide the enable/disable signal to the DMA and SIU units when they try 

to get access to the FIFO module. Only one of those is active at a time. 

 Enable/Disable the ECC module 

 Provide the control signals to the NAND control unit 

 Execute the boot sequence from boot unit 

 Execute PUF sequence from PUF unit 

 Control the interrupts 

     NAND control unit (NCU) - This unit is responsible for generation of 3D Nand 

flash device access sequences. Unit uses control signals provided by the DCU. 

     ECC - It is an error correction code calculator and a correction unit. A 

correction word is calculated for each 256 or 512B (or optionally over 512B) sub 

page of the NAND Flash memory page. During the read operation the unit can 

automatically correct bad bits without any interaction with the external system. It 

has a status register, the bits of which signal errors occurring during a read, and 

then inform if errors were corrected. It is possible to choose between a simpler 

unit that can correct only one error per 256B or 512B (or optionally over 512B) 

sub page and a more advanced unit that can correct multiple errors. The choice 

depends on the NAND Flash memory type that is in use. Depending on the end-

user application, it is possible to choose between two solutions. The first one is 
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based on the Hamming algorithm that allows correction of one error for each 

256B sub page. The other solution uses the Reed-Solomon algorithms. The ECC 

module has integrated FIFO that is used to transfer the calculated words to the 

NCU modules during encode process and to store the calculated partial 

syndromes during decode process. 

     DMA- This unit is responsible for fast transfer of the data between the external 

memory location and the controller 

     SIU - Unit provide the slave interface to the controller SFR registers and the 

FIFO module. 

     Boot unit - Unit initiates boot sequence on command from DCU. This unit 

heads the scan and mark phase of the controller. 

     PUF unit - This unit responsible for generation of random PUF values. It holds 

all the actual PUFs that generate the PUF values. It performs functions on 

command from the device control unit (DCU).  

 

3.4 Benefits of the Controller 

     Most memory chips are tested for repair and remap only once, on the 

production line. If a bit becomes “stuck” at a later time (due to magnetism, 

radiation, heat, impact, or other damage) it cannot be repaired; the entire chip 

must be replaced [17]. With our controller, these “hard” bit errors are detected 

and remapped instantly. Many Memory devices ignore the random, recoverable 
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bit-flips caused by radiation; if a bit is flipped; the error remains until a new value 

is written to that location [17]. Our controller uses ECC (error checking and 

correction) or EDAC (error detection and correction) to detect and correct these 

“soft” errors in their memory banks,  the complexity added by the ECC circuit can 

be reduced by using different levels of ECC based on various trade-off factors 

such as correction capability and latency. Also, because the controller continually 

monitors chip performance, it can detect and report unreliable behavior long 

before the chip actually fails using its error and condition reporting feature. This 

feature would allow failing parts to be detected and replaced before the pool of 

redundant bits are exhausted. 

     The controller also performs optional MBU detection and correction. Since 3D 

memory due to its natural structure has increased probability of being affected by 

an MBU this feature will help the performance of the memory by many fold. By 

using our controller testing the 3D nand flash chip is much easier since all the 

tests can be done on board without the need for external probing. In general the 

controller provides longer projected lifetime to the 3D nand flash chip in harsh 

radiation intense environment. 

3.5 Limitations 

     The main limitation of the controller is the time delay incurred in the system as 

a trade-off for achieving more robustness. The delay incurred over a normal 

controller without any fault tolerance can be calculated using the following 

analysis: 
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Case 1: System has no error 

 Τ our self-healing system = τ normal-system + τ initial readback + τ PUF Calculation 

   + τ ECC calculation in write cycle + τ ECC calculation in read cycle 

Where  

Τ our self-healing system = Time taken by Memory controller system 

Τ normal-system = Time taken by a system with no fault tolerance 

T initial readback = Time taken to check each memory page for errors by writing a 

‘1’reading it back and then writing a ‘0’ and reading it back  

Τ PUF Calculation = Time taken for initiating the PUFs and generating a unique 

identification for each die 

Τ ECC calculation in write cycle = Sum of the Time taken to encode data with ECC during 

each write cycle 

Τ ECC calculation in Read cycle = Sum of the Time taken to decode data using ECC during 

each read cycle  

Case 2: System with error  

Τ our self-healing system = τ normal-system +  τ initial readback + τ PUF Calculation    

  + τ ECC calculation in write cycle + τ ECC calculation in Read cycle + τdata restore & remap 

 Where  

Τ data restore & remap = τreadback + τ remap and ECC calculation 
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Τ readback = Time taken by the controller to spot the faulty memory by readback 

Τ remap and ECC calculation = Sum of the Time taken to restore data bits using ECC and 

finding new memory location using the PUF value. 

     Also, in the case where the mapping is done at page level the erase operation 

needs a good amount of data sink to backup memory because nand flash can be 

erased only at block level and not at page level, hence there is significant amount 

of space wastage and time delay incurred due to this operation. This will not be a 

big problem at block level and die level remapping where the erase operation will 

not erase valid data or erasure of data is tolerable.  
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Chapter 4 

Implementation 

4.1 Introduction 

     This section presents the proof of concept of the memory controller 

Implementation and simulation results. The overall idea of the implementation is 

to create a working memory controller equipped with three kinds of ECC and give 

a tradeoff table that can referred to decide what kind is best suited for a particular 

space program’s mission requirements. Three different kinds of ECC with 

different correction capability, space requirement, latency (delay) and power 

requirement were chosen namely, Hamming code, Reed-Solomon (255, 251) 

and  Reed-Solomon (5,3). 

     We implemented our memory controller design in an FPGA (Virtex- 4) using 

VHDL. The block diagram of the implementation is given in Figure 4.1. The circuit 

differs from the concept block diagram given in chapter 3 in the fact that a stack 

of Block memory of the FPGA was used to mimic the 3D nand flash chip and the 

bus model is replaced by a client test circuit which is used to test the memory 

controller. This section first explains each block in the design and gives a brief 

introduction to the handshaking signals and I/O that will facilitate a good 

understanding of the results obtained. Then functional timing simulation results 

are shown to confirm the working of each block and the controller as a whole and 

finally the ECC modules are replaced to make a trade off table showing the 

correction capability of the controller, space requirement (no. of gates used) and 
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power requirement in all the three cases. The tools used are Xilinx ISE, 

ModelSim SE simulator. The power analysis was made using Xilinx Xpower 

analyzer.  

 

Figure 4.1: Block diagram of Hardware Specification for 3D NAND Flash Controller implemented on a 

Virtex 4 FPGA 

4.2 Hardware description 

     Block Memory: The main controller is designed to access BRAMs in way to 

mimic the 3D nand flash structure (Figure 4.2). The design used 8 BRAM stack, 

each BRAM consisted of 1024 bits and represented a single page, two such 

BRAM constituted a block, and four such BRAM constituted a single layer of 

NAND memory. The 8 BRAM stack represented 2 layer 3D integrated NAND 

flash memory. The address of the BRAM represented the actual page address of 

NAND flash given as: 

BRAM address = Actual page address 
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Where Actual page address = Block address concatenated with page address 

 

Figure 4.2: Block Memory in FPGA used to mimic 3D NAND Flash Memory 

     PUF unit: The PUF unit consists of counters; each counter is 10 bit and runs 

on a slightly different clock rate. For our purpose we have used different clock 

inputs to the counters to generate the random PUF values that are used to 

identify the pages. The number of pages in the memory decides the number of 

counters required in the PUF unit. In our design we have used 8 counters for the 

stack of 8 BRAMs. 

     Boot unit:  The boot unit consists of a state machine and control registers that 

are controlled by the Nand control unit (NCU) during the scan and mark phase. 

The algorithm for the Boot sequence is provided in chapter 3 under scan and 

mark phase. 

     Memory Buffer: The memory buffer in the FPGA is implemented as a BRAM. 

This unit is used is used as a data sink during coalesce phase to store temporary 
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data while the data restoration and remapping is being accomplished by the 

controller. 

     Nand Control unit (NCU): This is the main engine of the controller it works as 

a device controller and also generates access sequences for accessing the 

BRAMs. It stores the memory map and performs logical to physical mapping 

while completing data read and data write requests. It generates proper status 

signals so that the client can accomplish communication with the controller. 

     FIFO: This unit provides queue interface to the Controller. The controller has 

to perform boot, PUF generation and mapping functions before it can generate 

access sequences hence, FIFO interface is essential to avoid loss of data and 

proper handshaking. Apart from this there is additional FIFO in the controller 

which is used by the ECC module, one for the encoder and one for the decoder. 

     ECC unit: The ECC In our implementation we use three different kinds of ECC 

namely: 

 Hamming Code - Single Error Correction and Double Error Detection 

(SECDED) 

 Reed Solomon (5, 3) Encoder-Decoder in GF(256) 

 Reed-Solomon (255,251) Decoder/Encoder  

Hamming code: 

     The hamming code algorithm is a basic ECC with a correction capability of a 

single bit and a double bit detection capability. In our design we used the 

hamming algorithm core from Xilinx. The design is a piece of combinational logic 
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for data communication between the client and memory. The data bus is 16-bit 

wide, while the data written to memory is a 22-bit data word. When data is read 

back from the memory device, the stored parity bits are compared with a newly 

created set of parity bits from the read data. The result of this comparison, called 

the syndrome, will indicate the incorrect bit position in a single data error.  

     The figure shows the block level design of the hamming algorithm. This 

interface consists of the 16-bit processor data bus, u_data [15:0], the read/write 

control signal, rw_n, and the error flag signal, error_out [1:0]. The right hand side 

describes the memory component interface, consisting of the memory data bus, 

mem_data [21:0]. 

 

Figure 4.3: Hamming code Algorithm Block diagram [28] 

     The rw_n control signal from the client switches controller between read and 

write cycles. The rw_n signal will be equal to "1" for a processor read cycle and 

equal to "0" for a processor write cycle. The "Generate Parity Bits" block creates 

the parity bits to store with the processor data (u_data [15:0]) during a write 
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cycle. In a read cycle, this block is also responsible for creating one of the inputs 

in generating the syndrome; this block creates the parity bits with the data word 

stored in memory. The "Error Detection" block generates the error_out [1:0] flag 

based on the syndrome and the overall parity created from the data in memory.  

Reed-Solomon (255,251) Decoder/Encoder  

     This core implements Reed-Solomon decoder for the 8-bit wide symbols. The 

core is designed to occupy fewer amounts of logic blocks, be fast and 

parametrizable. The main features are: 

 8-bit input and output data busses 

 Fully synchronous and pipelined design using a single clock 

 Symbol width of 8 bits 

 Corrected byte number signaling 

 Can correct 2 symbols (16 bits). 

The block diagram of the decoder is as follows: 

 

Figure 4.4: Block diagram of Reed-Solomon Decoder showing the I/Os [29] 
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Here signal D_IN is the input to the decoder and is only active after STR signal is 

pulsed. The SNB signal indicates the finish of decoding and the RD strobe is 

pulsed to accept the data of the D_out pin. Signals S_ok and S_er are status 

signals, S_er signal indicates the occurrence of an error and S_ok indicates that 

the error is fixed.  

 

Reed Solomon (5, 3) Encoder-Decoder in GF(256) 

     This core implements Reed-Solomon decoder for the 8-bit wide symbols. The 

main features are: 

 Symbol length: 8-bits. 

 Coder: Takes 3-symbol message and encodes them into 5-symbol 

codeword. 

 Decoder: Corrects 1-symbol ( 8bits) error in a codeword. 

 No latency in decoding. 

 

CLOCK

RESET

DATA_IN[7:0]

DATA_VALID_IN

DATA_OUT[7:0]

DATA_VALID_OUT

RS(5,3)
CODEC in GF256

E/~D

 

 

 

Figure 4.5: I/O specification for Reed-Solomon (5,3) Codec 

     The DATA_VALID_IN signal is an Active low that enables DATA_IN and E_D 

signals. The DATA_IN [7:0] signal takes the data from the client. Both message 

and codeword are fed to the CODEC from this port. When the E_D is high the 
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engine performs encoding and when low it performs decoding. E_D is monitored 

during DATA_VALID_IN is low, therefore should be constant unless mode of 

operation is not to be changed. DATA_OUT [7:0] is valid output data when 

DATA_VALID_OUT is low. 

4.3 Results 

4.3.1 Functional timing simulation 

     Boot unit functional timing simulation  

 

Figure 4.6: Functional Timing Simulation of Boot Unit of 3D NAND Flash Controller 

     Figure 4.6 shows the functional simulation of the boot section which runs the 

boot sequence described in the scan phase in chapter 3. Each block ram 

representing a page in the 3D nand flash memory is written and readback with 

00h and FFh values to all bytes to check for hard errors and yield errors such as 

stuck-at faults. 
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Figure 4.7: Functional Timing Simulation of Boot Unit of 3D NAND Flash Controller 

     Figure 4.7 shows the registers holding the address of the faulty memory cells 

that will be removed the memory map in the mark phase as described in chapter 

3. 

     PUF unit functional timing simulation 

 

Figure 4.8: Functional Timing Simulation of PUF Unit of 3D NAND Flash Controller 
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     Figure 4.8 shows PUF array holding the 10-bit PUF values generated by the 

counters. Each counter was supplied with clock varying by 0.1 μs which 

represent clocks coming from ring oscillators. These values are used as IDs for 

the memory modules in the mark phase. 

 

ECC unit functional simulation 

     ECC module 1 – Hamming code algorithm 

 

Figure 4.9: Functional Timing Simulation of ECC Unit (Hamming code) of 3D NAND Flash Controller 

     Figure 4.9 shows hamming algorithm with 1 bit correction and 2 bit detection 

capability. 16-bit u_data is the data line that takes data from the FIFO unit and 

mem_data is 22 bit that goes into the memory. This particular algorithm adds 5 

parity bits for every 2 bytes of data. 
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     ECC module 2 - Reed Solomon (5, 3) Encoder-Decoder in GF(256) 

 

Figure 4.10: Functional Timing Simulation of ECC Unit (Reed Solomon (5, 3)) of 3D NAND Flash 

Controller 

Figure 4.10 shows the functional timing simulation of Reed Solomon (5, 3) 

Encoder-Decoder ECC engine which corrects up to 8 bits. 

 

     ECC module 3 - Reed-Solomon (255,251) Decoder/Encoder  

 

Figure 4.12: Functional Timing Simulation of ECC Unit (Reed Solomon (255,251)) of 3D NAND Flash 

Controller 
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Figure 4.12 shows the functional simulation of the Reed-Solomon (255,251) 

Decoder/Encoder which can correct up to 16 bits or 2 symbols 

 

     Controller functional simulation of writes and reads and remap due to errors. 

 

Figure 4.13: Functional Timing Simulation of 3D NAND Flash Controller Data write 

Figure 4.13 shows controller completing data write requests according to the 

mapping generated by the discovery phase. 
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Figure 4.14: Functional Timing Simulation of 3D NAND Flash Controller showing UIDC counter and 

Mapping register 

Figure 4.14 shows the simulation for the UIDC counter and the mapping register 

described in chapter 3. 

 

 

Figure 4.15: Functional Timing Simulation of 3D NAND Flash Controller Data Read 

Figure 4.15 shows the simulation for completion of data read request 
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4.3.2 Controller space and power calculation of FPGA chip with 3 ECC modules 

     The power calculation is performed using the Xilinx Xpower analyzer. The 

total power consumed by the 3D Nand controller can be calculated with the 

following calculation: 

Total Power = Total static power + Total dynamic power, Where  

Total dynamic power represents the fluctuating power as your design runs. It 

represents the amount of power generated by the switching user logic and 

routing. 

Total static power is the power drawn by the device when it is powered up, 

configured with user logic and there is no switching activity. 

Table 4.1 summarizes the numerical results for the Nand flash controller 

implementation with 3 ECC modules. 

ECC Correction  
Capability 
(bits) 

Slices 
Occupied 

Operation  
Frequency 
(MHz) 

Power (W) 

Hamming 
code 

1  632 207.419 0.7148 

(5,3) 
RS code 

8 863 186.935 0.7458 

(255,251) 
RS code 

16 13,736 137.071 1.0747 

 

Table 4.1: Results for 3D NAND Flash Controller 

     The proposed 3D Nand flash controller is targeted on Virtex 4 FPGA that 

contains 26,624 slices. The simulation results show that the Nand controller 

using Hamming code uses a mere 632 slices on the Virtex 4 FPGA while 

consuming 0.7148 W of power but has a correction capability of just 1 bit and 
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runs at maximum frequency of 207.419 MHz while the controller with RS code 

(255,251) uses 13,736 slices and consumes 1.07 W of power but is capable of 

correcting up to 16 bits and runs at a maximum frequency of 135. 017 MHz. The 

RS (5,3) code with a correction capability of 8 bits uses 863 slices and consumes 

0.7458 W of power and runs at a maximum frequency of 186.935 MHz.  

     Thus the controller employing hamming code is more power efficient and 

requires less space on the chip. However, it can correct only one bit which is very 

unhelpful in harsh radiation environments. The controller employing Reed 

Solomon (255,251) code is requires more space and power but can correct up to 

16 bits of faulty data. 
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Chapter 5 

Conclusion 

     The cost versus capacity of memories for personal devices (such as cameras) 

has fallen significantly in recent years through conventional cost-reduction 

approaches such as incorporating smaller design rules. However, the effect of 

technology scaling is saturating in many types of ICs. Technology advancements 

in the form of 3D integration have made it possible to believe that the current 

pace of cost reduction can be maintained. It is believed that the first commercial 

application of 3D integration will be most likely in the commodity of memory 

space. Companies like Samsung, Tezzaron and Toshiba have come up with 

proof of concept 3D memory devices with vast densities and superior speeds. 

     With such groundbreaking features the advent of 3D memory in space related 

applications seems inevitable. However, a critical design challenge faced is the 

robustness of designs incorporating these 3D memories. Single event upsets 

have plagued electronic systems for a long time and are the major concern for 

space applications. Also, because of the relatively new fabrication techniques of 

3D integration technology, yield problems are going to be inevitable till the 

processes are more standardized. So the effective use of 3D memories in space 

depends on the way these memories are controlled and protected against the 

potential dangers by incorporating fault-tolerance in them. Only the systems 

incorporating self test and repair can take full advantage of the 3D memory’s 

special features.  
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     The present work is focused on 3D Nand flash memory, a new memory 

controller system is proposed to address fault tolerance in 3D Nand flash 

memory. We show that the proposed design approach has very little 

detection/correction overhead and can revive the system against all single point 

hard errors and soft errors. The need for larger, cheaper, and more robust 

memories makes self-repairing property as a necessary condition for future 

memory designs. 
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