
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

2-8-2011

Built-in controller for self-test and repair of 3D
integrated Nand flash memory chip, used in
radiation intense space environment
Naveen Nischal Purushotham

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Purushotham, Naveen Nischal. "Built-in controller for self-test and repair of 3D integrated Nand flash memory chip, used in radiation
intense space environment." (2011). https://digitalrepository.unm.edu/ece_etds/210

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/210?utm_source=digitalrepository.unm.edu%2Fece_etds%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Naveen Nischal Purusbotham
Candldme

Eleclical and Computer Engineering

This thesis is approved, and it is acceptable in qualiry
and fonn for publication :

Approved by Ihe Thesis Commillee:

.Chairperson

7
. Dr. James Lyke

,Dr. James F. Plusquellic

/

ii

BUILT-IN CONTROLLER FOR SELF-TEST AND REPAIR

OF 3D INTEGRATED NAND FLASH MEMORY CHIP,
USED IN RADIATION INTENSE SPACE ENVIRONMENT

By

Naveen Nischal Purushotham

B.TECH., Electronics and Communication,
Jawaharlal Nehru technological University, 2008

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico
Albuquerque, New Mexico

December, 2010

iii

© 2010, Naveen Nischal Purushotham

iv

Dedication

To my father, P. James Ajit, my motivation personified, for his never ending

support, encouragement and sacrifice. He has bestowed all his wisdom upon me

and taught me to face failures and yet move forward with perseverance till I

achieve my purpose.

To my mother, P. Shyamala Ajit for her unconditional love and sacrifice. Without

whom I am incomplete.

To my grandmothers, P. Hemalatha Sukumar and P. Helen George for all their

prayers and love.

To my sisters, K. Anne Praveen and P. Sowmya Amith for their unconditional

support and love

Now thanks be to God who always leads us in triumph in Christ.

- 2 Corinthians 2:14

v

ACKNOWLEDGEMENT

 I would like to thank Prof. Payman Zarkesh-Ha, my advisor and thesis chair,

for his guidance, support and encouragement during my Master’s program and

also for being an outstanding teacher in the classrooms.

 I would like to thank Dr. James Lyke, for introducing me to the problem and

providing me with many insightful observations and valuable comments.

 I am also grateful to Prof. James F. Plusquellic, for accepting to be as a

committee member with very short notice. I would like to thank him for his time

 I gratefully acknowledge Craig Kief and Dr. Steve Suddarth, my financial

supporters, for making my life at graduate school most comfortable by always

making sure I had everything I need. I would like to thank Craig for being there to

patiently review my work. I am very fortunate to have him during my Master’s,

without whom it would have not been as successful.

 Finally, I convey many thanks to my beloved, Bhavya and my friends Karthik,

Shashank, Srinivasan, Bharath and Mallik and everyone else for filling my life

with love, happiness and encouragement.

vi

BUILT-IN CONTROLLER FOR SELF-TEST AND REPAIR

OF 3D INTEGRATED NAND FLASH MEMORY CHIP,
USED IN RADIATION INTENSE SPACE ENVIRONMENT

By

Naveen Nischal Purushotham

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico
Albuquerque, New Mexico

December, 2010

vii

BUILT-IN CONTROLLER FOR SELF-TEST AND REPAIR OF 3D INTEGRATED
NAND FLASH MEMORY CHIP, USED IN RADIATION INTENSE SPACE

ENVIRONMENT

By

Naveen Nischal Purushotham

B.TECH. in Electrical and Communication Engineering, Jawaharlal Nehru
technological University, 2008

M.S. in Electrical Engineering, University of New Mexico, 2010

ABSTRACT

 The perennial need for memory storage is further increasing with the

advancements in technology. Both terrestrial and space related applications

thrive on efficient ways and new technology for storing data that is Incorruptible

and dependable. Research is continuously carried out on making storage

systems vast and reliable. The development of 3D integration has spawned the

idea of a new generation of memory based on 3D stackable chips. In an era

where there is a continuous demand for larger, faster, denser and robust

memories, 3D stackable memory settles in perfectly.

 However, technology scaling is having a negative effect on the robustness

(low yield and higher sensitivity to radiation effects) of the memories and 3D

stackable memory is no exception. As the eagerness for using 3D stackable

memory builds up because of its many advantages the major concern that stands

as an obstacle for such a system is its yield and system reliability. It is an

important consideration in critical applications related to space, avionics, and

viii

defense. Even if a single memory domain fails in a stack of memory modules due

to any kind of irregularity, it can lead to a total system breakdown.

 The potential dangers for 3D memory include destructive errors such as

physical errors in memory arrays, wear out faults, hard errors (e.g. stuck bits) &

errors due to memory yield problems and non-destructive errors (soft errors)

such as single event upsets (SEU). There is also an increased risk of the 3D

technology class memories to be effected by multiple bit upsets (MBU) because

of their natural vertical structure. Hence, 3D memory needs an efficient memory

controller that can make the memory more reliable and robust against such

dangers. The memory controller should not only accomplish the memory

accessing, but it also should act as a potential healing system (ability to retrieve

the data and exclude the failed memory) for the stack of memory. The

concentration of the present work is focused on 3D Nand flash memory. It

proposes an efficient and robust memory controller for 3D Integrated Nand flash

memory chips used in space radiation environment that performs continuous self

test and repair. It revives the system from all single point hard errors and soft

errors.

 The controller uses a novel and flexible memory mapping scheme (using PUF

technology) and appropriate Error correction code (ECC) to protect against the

above mentioned errors. The controller is implemented on a FPGA with three

different kinds of ECC differing in the correction capability, space requirement,

latency (delay) and power requirement. This work serves as a look up table for

ix

space missions with varying mission requirements to make the choice of a

particular type of ECC to go with the 3D Nand flash controller.

x

Table of Contents

Page

List of Figures ………………………………………………………………………... xiii

List of Tables ………………………………………………………………………… xvii

Preface ………………………………………………………………………………. xviii

 Thesis Organization ………………………………………………... xviii

 Contributions of this Thesis ………………………………………… xix

Chapter 1 Introduction ………………………………………………………………... 1

1.1. “More than Moore” Approach – Exploring the Third Dimension 1

1.2. Hurdles for 3D Memories in Space Environment ………………... 3

1.3. Single Event Upsets and their Mechanism ………………………... 4

1.3.1. Charge Collection Mechanism for CMOS ……………………6

1.4. Special Concerns for 3D Flash Memory in Space ….......................8

1.4.1. Ionization Damage from High-Energy

Electrons and Protons ..…....................... 9

1.4.2. Microscopic Ionization Damage from Heavy Ions ……....….......... 10

1.4.3. Permanent errors –

Stuck bits caused due to space radiation 11

Chapter 2 Background ………………………….…………………………………… 12

 2.1. 3D Integration Technology.. 12

 2.2. Wafer level 3D memory integration example flow………………….... 14

xi

 2.2.1. Copper Bonding with TSVs for Memory Stacking………….14

 2.2.2. Temporary Bonding and Release……………………………15

 2.2.3. Wafer thinning………………………………………………....15

 2.2.4. Vertical Interconnect…………………………………………..16

 2.2.5. Alignment ………………………………………………………17

 2.2.6. Bonding …………………………………………………..….…17

 2.2.7. Final Metallization and Testing ………………………………18

 2.3. 3D Memory Advantages ……………………………………………..... 19

2.4. Error Detection and Correction (EDAC) Techniques

Used for Memories in Space Applications…………….……………….20

 2.4.1. Hamming Code Algorithm………………………………….....21

 2.4.2. Reed-Solomon Codes………………………………………...24

 2.5. Flash Memory Mechanism ……………………………………………..32

 2.5.1. Floating Gate Devices………………………………………...33

 2.5.2. Charge Injection Mechanism………………………………...34

 2.5.2. a) Hot Electron Injection……………………….……..35

 2.5.2. b) Fowler-Nordheim Tunneling……………………...36

 2.6. NAND Flash Technology and Architecture………………………..…40

xii

 2.7. Physical Unclonable Function(PUF) Technology…………………... 43

Chapter 3 Memory Controller………………………………………………………. 45

 3.1. Introduction……………………………………………………………… 45

 3.2. Memory Controller Technique……………………………………….... 47

 3.3 Proposed Block diagram of hardware Specification………………... 58

 3.4. Benefits of the Controller ……………………………………………... 61

 3.5. Limitations ……………………………………………………………… 62

Chapter 4 Implementation …………………………………………………………. 65

 4.1. Introduction …………………………………………………………….. 65

 4.2. Hardware Description …………………………………………………. 66

 4.3. Results ………………………………………………………………….. 72

 4.3.1. Functional Timing Simulation Results…………………….. 72

 4.3.2. Space and Power Calculation of FPGA

 Chip with 3 ECC Modules………………………………….. 78

Chapter 5 Conclusion…………………………………………………………….... 80

References………………………………………………………………………….. 82

xiii

List of Figures

Figure 1.1: Schematic of 3D Assembly [2] …………………………………………..1

Figure 1.2: Heavy Ion vs. Proton Charge Deposition [10] ………………………….4

Figure 1.3: Single event Upset [30] …………………………………………………..5

Figure 1.4: Electron concentration due to funneling in an n+/p silicon junction

following an electron strike [7] ………………………………………………………...7

Figure 1.5: Alpen Effect [31] ………………………………………………………….7

Figure 1.6: Change in higher level storage locations in a multi-flash memory after

irradiation with heavy ions. [5] ……………………………………………………….10

Figure 2.1: 3D Integrated Circuit ……………………………………………………13

Figure 2.2 Graphical Representation of stacked memory/logic components

integrated in a 3D chip. The structure is based on face-to-back stacking

technology and TSV interconnection. [1] …………………………………………...14

Figure 2.3: Cross-sectional SEM of Si region with metalized TSV and connecting

wiring level [1] …………………………………………………………………………17

Figure 2.4: A close-up of the cross-sectional SEM image of a Cu via successfully

bonded to a Cu pad [1] ……………………………………………………………….18

Figure 2.5: Bit parity for p1 and p1’ [19] ……………………………………………21

Figure 2.6: Decode schematic outline [21] ………………………………………...26

xiv

Figure 2.7: Encoder schematic outline [21] ……………………………………...…29

Figure 2.8: Schematic cross-section of FG transistor [23] ……………………….34

Figure 2.9: Energy band diagram of a floating gate memory during programming

by hot-electron injection [22] …………………………………………………………36

Figure 2.10: Hot-electron injection mechanism for programming-

in Flash memory [22] ………………………………………………………………... 36

Figure 2.11: Energy band diagram of a floating gate memory during programming

by FN tunneling [22] …………………………………………………………………..37

Figure 2.12: Uniform tunneling to program Flash memory [22] ……………...… 38

Figure 2.13: Energy band diagram of a floating gate memory during erasing by

FN tunneling [22] ……………………………………………………………………...39

Figure 2.14: Uniform tunneling to erase Flash memory [22] ……………………..39

Figure 2.15: Nand Flash cell [24] ……………………………………………………41

Figure 2.16: Nand Flash device organized as 2048 Blocks [24] …………….…..42

Figure 2.17: Typical storage method [24] ……………………………………….….43

Figure 2.18: Simple ring oscillator PUF [27] ……………………………………….44

Figure 3.1: Flow chart for Scan and Mark phase Algorithm …………………..….50

Figure 3.2: Flow chart for Discovery phase Algorithm …………………………….52

xv

Figure 3.3: Bit format for NAND flash page ………………………………………..53

Figure 3.4: Flow chart for Data write request Algorithm ………………………….54

Figure 3.5: Flow chart for Data Read request Algorithm …………………...........55

Figure 3.6: Flow chart for Heal phase Algorithm ………………………………….58

Figure 3.7: Block diagram of Hardware Specification for 3D NAND Flash

Controller……………………………………………………………………………….59

Figure 4.1: Block diagram of Hardware Specification for 3D NAND Flash

Controller implemented on a Virtex 4 FPGA …………………………………….…66

Figure 4.2: Block Memory in FPGA used to mimic 3D NAND Flash Memory ….67

Figure 4.3: Hamming code Algorithm Block diagram [28] ………………………..69

Figure 4.4: Block diagram of Reed-Solomon Decoder showing the I/Os [29] ….70

Figure 4.5: I/O specification for Reed-Solomon (5,3) Codec ………………….…71

Figure 4.6: Functional Timing Simulation of Boot Unit of 3D NAND Flash

Controller …...72

Figure 4.7: Functional Timing Simulation of Boot Unit of 3D NAND Flash

Controller ...…73

Figure 4.8: Functional Timing Simulation of PUF Unit of

3D NAND Flash Controller ………………………………………………………......73

xvi

Figure 4.9: Functional Timing Simulation of ECC Unit (Hamming code) of 3D

NAND Flash Controller ……………………………………………………………….74

Figure 4.10: Functional Timing Simulation of ECC Unit (Reed Solomon (5, 3)) of

3D NAND Flash Controller ……………………………………………………….…75

Figure 4.12: Functional Timing Simulation of ECC Unit (Reed Solomon

(255,251)) of 3D NAND Flash Controller ….....…………………………………….75

Figure 4.13: Functional Timing Simulation of 3D NAND Flash Controller Data

write …...76

Figure 4.14: Functional Timing Simulation of 3D NAND Flash Controller showing

UIDC counter and Mapping register …………..…………………………………….77

Figure 4.15: Functional Timing Simulation of 3D NAND Flash Controller Data

Read ...77

xvii

List of Tables

Table 2.1: Error Detection Responses …………………………………………... 23

Table 2.2: Listing of transformation vectors [21] ………………………………... 32

Table 4.1: Results for 3D NAND Flash Controller ……………………………… 78

xviii

Preface

Thesis Organization

 This thesis is organized in the following manner. Chapter 1 gives an

introduction to 3D integration technology and the potential dangers of the advent

of 3D integrated memories into space applications. It also covers the basic

physical mechanisms of how a particle strike on semiconductor memories

causes an upset in the logic value stored in it. The special concerns for 3D Nand

flash memories in space environment are also discussed. Chapter 2 gives a

detailed description of 3D integration technology and discusses a wafer level 3D

memory integration example flow for better understanding. It also gives an

overview of the error correction and detection codes used in traditional nand

flash memories that can be exported to 3D nand flash chips. It then explains in

brief the flash memory mechanisms and architecture. It concludes with an

introduction to PUF technology and explains the mechanism of the ring oscillator

PUF being used in the design of the memory controller. Chapter 3 discusses

about a new memory controller technique, the algorithms involved in its proposed

implementation and the hardware description. This chapter concludes with the

discussion of the benefits and limitations of the memory controller technique.

Chapter 4 gives the implementation details and results indicating the working of

the memory controller technique. It concludes with the indication of the results

obtained from power and space requirement calculations of the memory

controller implemented with three different kinds of ECC and provides a trade-off

xix

table. Chapter 5 concludes the thesis work with how this thesis work has satisfied

a designer’s requirement to have a simple yet efficient and robust memory

controller for 3D nand flash memories used in intense space radiation

environment.

Contribution of this Thesis

[1a] Naveen Purushotham, Srikanth Devarapalli, James Lyke and Payman

Zarkesh-Ha, 'Self Healing Adjustable Memory System' AIAA-2010-3373, In

Proceedings of AIAA Infotech@Aerospace 2010, Atlanta, Georgia, Apr. 20-22,

2010.

1

Chapter 1

Introduction

1.1. “More than Moore” Approach – Exploring the Third Dimension

 For long, the semiconductor industry has been led by Moore’s law to achieve

higher computing power, larger capacity versus lower cost in Integrated Circuits

(ICs). The continuous scaling down of device dimensions as per Moore’s law has

provided significant performance enhancements in transistors. However, as the

demand for higher functionality increases, device scaling is becoming more

challenging. The effect of smaller design rules is weakening in many types of

ICs. To meet the requirements of the semiconductor rules, major chip

manufacturers are investigating 3D IC technologies to stack chips vertically.

Packaging based on 3D (Postsingulation of wafers into individual chips) and

wafer level 3D integration (3D stacking prior to singulation of wafer into individual

chips) is being considered by many companies. Many believe that 3D IC

technology will make it possible to maintain the current pace of cost reduction. [1]

Figure 1.1: Schematic of 3D Assembly [2]

2

 3D Integration has a plethora of potential advantages over the conventional

2D ICs including performance advantages of through-chip micron-sized interchip

Vias for high speed multicore processors, high memory capacity with reduced

processor- memory latency, heterogeneous integration of mixed signal ICs with

high performance interconnects. In Particular, 3D memory devices have vast

densities, superior speeds and they consume less power. Figure 1.1 shows a

simplified schematic of 3D Integration Technology. With such groundbreaking

features, 3D stackable chips are sure to pave their way into the space industry.

However, there are certain immediate issues that the 3D ICs have to address

namely (1) the overhead and design constraints of through silicon vias (TSVs) [a

vertical electrical connection (via) passing completely through a silicon

wafer or die]; (2) Power delivery and distribution in multiple strata; (3) heat

dissipation across the 3D stack; and finally (4) reparability of the 3D stack. Some

believe that the first real application of 3D technology will be in the memory area

because it has been shown that the four constraints given above can be

managed in memory applications quite well and significant system performance

and power benefit can be accrued [2]. Due to the perennial need of memory

storage in space related applications 3D memory is sure to take its place in this

area.

 More details of 3D integration technology are provided in the chapter 2 (for

reference) and the rest of this document addresses 3D memory with 3D NAND

flash memory being used as the main focus hardware.

3

1.2. Hurdles for 3D Memories in Space Environment

 The harsh radiation environment in outer space makes it difficult for

electronics to survive their expected mission duration. Space radiation effects

can be broadly classified into ‘Hard’ and ‘Soft’ effects. A hard effect (or error)

refers to physical damage caused to the silicon lattice structure due to the

accumulation of radiation. A soft effect (or error) are not destructive to the device

but can affect device availability and reliability. Soft errors (more commonly

known as single event effects) refer to bit flips or change in stored data without

any permanent damage to the chip. As the eagerness for using 3D stackable

memory advances due to its many advantages, the major concern that stands as

an obstacle for such a system is its yield and system reliability. It is an important

consideration in critical applications related to space, avionics, and defense. If a

single memory domain fails in a stack of memory modules due to any kind of

irregularity, it can lead to a total system breakdown.

 Reparability of the stack is a major reliability issue. Apart from the single event

radiation effects the 3D memories are also prone to failures due to number of

errors including physical errors in memory cells, wear out faults and stuck bits.

Hard permanent destructive (or aging) errors are caused by defects in the silicon

or metallization of the processor package, interconnect electro migration, time

dependent dielectric breakdown (TDDB), thermal cracking and negative-bias

temperature instability (NBTI) [3][4].

4

 Basic influence of natural space radiation environment on flash memories are:

(1) Macroscopic ionization damage from the interaction of many electrons and

protons, producing a buildup of charge in the gate and isolation oxides, (2)

Transient effects from the interaction of a single galactic cosmic ray or high-

energy proton, causing upsets in the state machine, buffer or other digital regions

of the flash memory, (3) Microscopic ionization damage from the charge

produced by a single cosmic-ray heavy-ion in the gate region and (4) Microscopic

catastrophic damage from high energy protons or galactic cosmic ray particles

which can permanently increase the leakage current of the floating gate [5].

These effects are recently being observed in terrestrial environment as a result of

technology scaling.

1.3 Single Event Upsets and their mechanism

 Single-event phenomena occurs when a single charged particle strikes and

deposits energy into space-borne electronics resulting in a fault. The particle

Figure 1.2: Heavy Ion vs. Proton Charge Deposition [10]

5

strike is broadly classified into by heavy ion strikes (direct ionization) and

Proton/neutron strike (indirect ionization). Both the effects can be observed in

Figure 1.2.

Indirect Ionization:

 This is a process in which a high energy particle such as a proton or neutron

strikes the silicon atom resulting in an inelastic (or elastic) collision with the

nucleus and releases a heavy ion called “nuclear recoil reaction". In the case of

an elastic collision, spallation reactions can occur in which the target nucleus is

broken into two fragments (e.g., Si breaks into C and O ions) or alpha/gamma

particles are emitted with recoil of daughter nucleus. These particles being much-

neration near the impact area. These collisions typically

ave low energies [7].

Figure 1.3: Single event Upset [30]

heavier than original proton or neutron deposit energy along their path. They

deposit higher charge densities as they travel and therefore may be capable of

causing a SEU. Figure 1.3 shows the Single event upset. In the case of an

inelastic collision the particle does not travel far from the impact site and results

in electron-hole pair ge

h

6

Direct Ionization:

 When a heavy ion strikes a semiconductor material it releases electron hole

pairs along its path as it loses energy. Particles other than electrons, protons,

neutrons and pions which have an atomic number greater than or equal to two

can be classified as a heavy ion. Proton/Neutron strikes are generally less

effective compared to direct heavy ion strikes. A direct heavy ion strike causes

reaction in CMOS technology which is 5 orders of magnitude worse than a

uclear recoil event from protons and neutrons.[7][8]

d. This process of

temporary depletion region extension is referred as funneling.

n

1.3.1 Charge Collection Mechanism for CMOS

 When a particle strikes a microelectronic device, the most sensitive regions

are usually reverse-biased p/n junctions. The high field present in a reverse-

biased junction depletion region can collect most of the particle-induced charge

through drift processes, thereby resulting in a transient current at the junction

contact. The drift process is a major mechanism that causes SEUs. However,

the more important factor is the diffusion process (electrons diffusing from

substrate to drain/bulk potential barrier), which contributes to the late time

collection of the current at the struck node ensuring that a bit stays flipped.[7][9]

Strikes on a depletion region can cause the carriers to diffuse into the vicinity of

the depletion region field where they can be efficiently collecte

7

Figure 1.4: Electron concentration due to funneling in an n+/p silicon junction following an electron

strike [7]

This funneling effect can increase charge collection at the struck node by

extending the junction electric field away from the junction and deep into the

substrate, such that the charge deposited some distance from the junction can

be collected through the efficient drift process. Figure 1.4 shows the electrons

concentration due to funneling [7].

Figure 1.5: Alpen Effect [31]

8

 The charge collection mechanism in submicron devices results from a

disturbance in the channel potential of the device, referred as funneling effect.

The effect is triggered by a particle strike that passes through both the source

and the drain at near-gazing incidence as shown in Figure 1.5. Such a strike

causes a significant source drain conduction current that mimics the “on” state of

the transistor. This phenomenon is called the ALPEN effect [7]. ALPEN effect

tends to increases as the channel length decreases.

 Another effect known as the bipolar transistor effect is caused due to injection

of electrons over the source/well barrier. For example, in an n-channel MOSFET,

holes left in the well due to a particle strike raise the well potential, effectively

lowering the source/well potential barrier. This lowered potential barrier causes

the source to inject electrons into the channel. These electrons can be collected

at the drain effectively increasing the original particle-induced current. This

current increases the SEU sensitivity. Because the electrons are injected over

the source/well barrier, this is referred to as a bi-polar transistor effect, when the

source acts as the emitter, the channel as the base region, and the drain as the

collector. Reducing the channel length effectively decreases the base width, and

the effect becomes more pronounced [7].

1.4 Special Concerns for 3D Flash memory in space

 Flash memories have unique design requirements that cause them to be

more susceptible to radiation damage than conventional microelectronics. The

high voltages required for erase and write operations require that some internal

transistors are designed with thicker gate oxides and more lightly doped channel

9

regions compared to conventional digital logic transistors making them far more

susceptible to radiation damage. The charge pumps that are required to generate

the high voltages for erasing and writing are generally the most sensitive circuits.

Single event upsets are far more difficult to deal with. The very complicated

device architecture used in advanced flash devices causes their basic

functionality to be affected by heavy ions and protons, and it is difficult to

recognize and categorize these types of upsets because of limited visibility of

internal operating conditions. In some cases the device does not completely

function, but in some cases the error may be difficult to detect such as errors in

buffers and page address registers. Fortunately, the overall error rate for those

type of malfunctions is relatively small, allowing system mitigation with Error

Correction and Detection EDAC [5].

Permanent errors are far more difficult problem for several reasons. First, tests

for permanent errors are difficult and costly to perform. Second, some types of

errors may occur even for devices that are not biased during the time that a

heavy ion strike occurs. EDAC is a viable way to recognize this type of error.

1.4.1 Ionization damage from high-energy electrons and protons

 In flash memories there is a macroscopic effect of charge build up in the gate

and isolation oxides due to the influence of space radiation. Some of the excess

charge is trapped at the interface region, changing the threshold voltage of the

transistor. For the basic MOS transistor, the shift in threshold voltage scales with

the square of oxide thickness. This has reduced the effect of total ionizing dose

10

in highly scaled devices. However, in flash memories the points of concern are

the internal transistors used for the charge pump and erase/write control which

have much thicker oxides for the requirement of high voltage giving them more

cross section and making them more sensitive to total dose effects (and damage)

compared to other technologies[5].

1.4.2 Microscopic Ionization damage from heavy ions

 Microscopic ionization damage from heavy ions has been observed in multi-

level flash devices. Such damage results in the increase of the cell leakage

current. The net effect is the shift of the internal state of some of the internal

memory cells. The most straightforward way to study this kind of effect is to

examine the threshold voltage distribution within the device.

Figure 1.6: Change in higher level storage locations in a multi-flash memory after irradiation with

heavy ions. [5]

In Figure 1.6, 18 cells with highest internal storage level were shifted to the next

level, 23 from the second highest to the third highest, and 2 from that level to the

11

ground level. This is caused by microdose that changes the storage level of the

charge “packet” within the floating gate. Although this changes the stored

information, it does not cause permanent change in the device; rewriting the cell

can be done to restore the information [5].

1.4.3 Permanent errors – Stuck bits caused due to space radiation

 Permanent changes in thin oxide can occur due to the detailed interaction of

intense ionization track from a single heavy ion with the gate region which

produces localized damage in the structure of the gate. This effect can cause the

leakage current to increase by several orders of magnitude. Although the change

in leakage current is small, it can affect the ability of the floating gate to store

charge over long periods. This is a permanent effect, and may limit the ability to

use flash memories in space. The magnitude of the leakage current depends on

the thickness of the gate region as well as the quality of the oxide. Although high

electric fields are required in order to get large current changes (hard

breakdown), soft breakdown can occur at very low electric fields and required

only a single ion strike [5].

12

Chapter 2

Background

2.1 3D Integration Technology

What is a 3D IC?

 A 3D IC contains at least 2 semiconductor layers and at least one layer of

horizontal interconnect wiring between the semiconductor layers. Each

semiconductor layer contains its own functional elements (transistors, diode, etc.)

with electrical junctions. The semiconductor layers may be built sequentially or

separately. Elements on the semiconductor layers are connected vertically with

TSVs (through-silicon vias) or other vias, without employing the I/O drivers and

associated electrostatic discharge (ESD) structures that are normally used to

connect off-chip devices. [1]

 3D integration refers to a variety of technologies that provide electrical

connectivity between stacked multiple active device planes. There are a number

of technology options to arrange ICs in a vertical stack. It is possible to stack ICs

in a vertical fashion at various stages of processing: 1) Postsingulation 3D

packaging (chip-to-chip), and 2) Presingulation wafer-level 3D integration (chip-

to-wafer, wafer-to-wafer, and monolithic approaches).[1]. The most promising 3D

technology is the wafer-level BEOL-compatible 3D integration technology. It is

enabled by wafer alignment, bonding, thinning and inter-wafer interconnections.

It uses TSVs to realize die-to-die interconnection. A 3D chip has a base stratum

that interfaces to a laminate with one or more semiconductor strata vertically

13

attached to this base stratum. Power is supplied to the base layer from the

laminate and all I/Os communicate to the laminate through the base layer. This

Figure 2.1: 3D Integrated Circuit

thinned base stratum is assumed to be mounted face down (though this is not a

requirement) and for illustrative purposes, connected to the laminate through

conventional bump connections (also called C4 connections). The second

stratum is then mounted face-down on the first stratum. There are a variety of

technological choices at this stage. One of which is a die-to-die connection using

known good die, through the use of μbumps and Through Silicon Vias (TSVs).

The density of these connections is often discussed in terms of TSV pitch. The

TSV diameter is a very critical parameter. A rule of thumb is that the TSV

diameter must be of the order of the strata thickness. When the TSV diameters

are in the 25μm range, it is possible to use solder based joining technology and

mechanical alignment to perform die-to-die joining. When the TSV diameters

drive down to below 10μm range, the joining process needs to be integrated with

the silicon fabrication process using wafer scale processing rather than die based

processing. This latter phase is needed to realize the full potential of 3D

integration. The density offered by the 25μm TSVs is adequate for most

14

immediate memory applications that we are interested in and is a good place to

start. However, the true potential of 3D integration can only be realized when the

inter-strata interconnect pitch approaches sub 10μm [2].

2.2 Wafer level 3D memory integration example flow – IBM 3D integration

approach [1]

 An example of IBM 3D Integration Approach fabricated using a face-to-back

layer transfer process is described in this section, which is a strong potential

candidate for replacement of traditional planar circuit layout to enable future

advanced CMOS technologies.

2.2.1 Copper Bonding with TSVs for Memory Stacking

 As depicted in Figure 2.2, the “face-to-back” approach can be used to connect

functional blocks of CMOS circuitry. More specifically, this method uses logic and

memory components that traditionally (in 2D chip layout) reside side by side, and

Figure 2.2 Graphical Representation of stacked memory/logic components integrated in a 3D chip.

The structure is based on face-to-back stacking technology and TSV interconnection. [1]

15

stacks them on top of each other providing a 3D IC solutions. The resulting

“sandwich” components enable reduced overall chip/package size and increased

speed of data flow among the various functional blocks of the chip.

2.2.2 Temporary Bonding and Release

 In the “front-to-back” layer transfer approach, the use of carrier wafers is often

required to protect the circuit layers and to provide mechanical stability during the

layering process. IBM has historically used a glass handle wafer which has a

thermal coefficient of expansion (TCE) matched to silicon. In this process, after

the top wafer is fabricated and metalized a protective coating (usually nitride

layer) is deposited, followed by the application of polymer-based layers that act

as a bonding medium. Also, once the layer transfer is completed the detachment

of the carrier has to be easy provided for reliable, fast, and cost-effective

methodology. If the top wafer layer is not thinned below ~ 100 µm it is possible to

omit the handle wafer process all together, but protective thick layers have to be

deposited to shield the circuitry during the thinning process (when wafers are

attached to the grinding or polishing wheels and exposed to strong mechanical

forces)

2.2.3 Wafer thinning

 Wafer thinning is a necessary component of 3D integration as it provides

capability of bringing layers closely together. However, its biggest challenge is

the necessity of thinning a full Si wafer down to ~5% -10% of its original

thickness, with a required uniformity of ~1-2 µm. This is because, when bulk Si

wafers are used in the creation of the integrated CMOS circuitry, there is no

16

natural etch stop like in the SOI- wafer case, and hence some of the original Si

remains after thinning of the wafer is complete. The final thickness depends on

thinning process control capabilities and is limited by the thickness-uniformity

specifications of the silicon removal process (that being mechanical grinding and

polishing, wet or dry etching), Successful thinning to a uniform Si thickness of

few microns has been demonstrated, but usually ~30-60 µm of Si remains.

2.2.4 Vertical Interconnect

 Perhaps the most important technology element for 3D integration is the 3D

inter-connect. This is sometimes referred to as the TSV or the through-silicon

inter-connect though in the case of our SOI 3D scheme, the via does not need to

go through silicon since the substrate is removed. A vertical interconnect is

necessary for 3D integration to truly take advantage of 3D for system-level

performance. Without it interconnects would be limited to the periphery of the

chip, and in this case, the interconnect density would be no greater than in

conventional 2D technology. This interconnection method is essentially the same

as a contact hole (or back-end-of-the-line (BEOL - like) process, with the

difference that a much deeper hole has to be created vertically through the

silicon material using a special etch process. IBM, Samsung, Tessera, Intel,

Elpida, IMEC, and others are developing their TSV methodology optimizing the

patterning and metallization process for their applications.

 A variety of vertical through-silicon interconnect technologies have been

developed by IBM and have been described in the literature [11, 12, 13]. Figure

2.3 shows a scanning electron micrograph(SEM) of a Via.

17

Figure 2.3: Cross-sectional SEM of Si region with metalized TSV and connecting wiring level

[1]

2.2.5 Alignment

 In the TSV approach to 3D integration, the alignment requirement is not

stringent. An alignment tolerance of ~3µm is often sufficient, using Cu-Cu

bonding pads of ~10µm, a tolerance which is within the capabilities of a standard

alignment tool for bonding applications. However since this is a wafer-to-wafer

3D integration scheme, alignment and bonding are still key fabrication

challenges. The key to good process control is the ability to separate the

alignment and pre-bonding steps from the actual bonding process. Such

integration design allows for better understanding of the final alignment error

contributions.

2.2.6 Bonding

 Attachment of two of the functional levels of this 3D structure is completed by

using a metal bonding process. This process is chosen as it not only secures two

parts together but at the same time it provides for electrical connection between

18

them. More specifically, copper-to-copper (Cu-Cu) thermocompression bonding

is used. Optimization of the quality of this bonding process is a key issue being

addressed and includes provision of various surface preparation techniques.

Postbonding straightening thermal annealing cycles, as well as use of optimized

pattern geometry [14,15, 16]. These solutions combined with use of various seal

designs address a key challenge of 3D technology, namely reliability and

manufacturability of 3D ICs and packages. Figure 2.4 shows a close-up of the

cross-sectional SEM image of a Cu via successfully bonded to a Cu pad.

Figure 2.4: A close-up of the cross-sectional SEM image of a Cu via successfully bonded to a Cu pad

[1]

2.2.7 Final Metallization and Testing

 In the case of stacking memory and logic, or any other applications in which

more complicated circuits/systems are involved, one has to consider an

appropriate design for 3D interconnects (including choice of geometry and

metallization) and optimized layout for metal levels of the various components.

The critical challenge is to build 3D elements in parallel to a point where they can

be pre-tested before layer transfer so that their functionality and fabrication

process is verified. Then one has to be able to re-test circuit components right

19

after their vertical stacking so that any problems may be corrected before 3D

parts are processed through any additional steps. To implement this reliability

procedure the use of additional verification test circuits are often implemented.

2.3 3D memory advantages

 Three-dimensional IC memories can provide a wide array of benefits that are

catching the attention of many. They provide independent benefits like higher

density, lower weight, lower susceptibility to soft errors, and addition of

significantly new functionalities. Apart from these, there are also inter- related

benefits which cause design trade-offs such as lower power, faster clock speed,

lower latency , and lower cost.[17] Overall, the combined cost savings derived

from a 3D IC memory can be as high as 50%. Certainly, some cost is added as

each layer is bonded and thinned, and as TSVs must be added to all but one of

the layers in the stack. This said , the cost reductions far outweigh the added

stacking costs. The savings come from four major sources: memory wafer

processing, array efficiency, testing and yield [1] [17].

 3D memory provides enhanced reparability. Redundant elements can be

shared from layer to layer within a 3D stack. As an example, if a repair requires

more replacement than are available on the local array they can be borrowed

from other layers. For clustered defects caused by particles, the ability to use

spares on other layers significantly improves reparability. Other benefits can also

be realized from 3D memories like lower soft error rates as a result of built in

ECC as well as from thinner substrates, which provide less interaction volume for

20

incident particles or energies. Density improvements are obvious as each

additional layer of memory in the 3D stack adds a mere 12um in height.

2.4 Error Detection and Correction (EDAC) techniques used for memory in

space applications.

 In Space computer systems, the contents of memory are protected by an

error detection and correction (EDAC) code. Bit-flips caused by single event

upsets (SEUs) are a well-known problem in memory chips and EDAC codes

have been an effective solution to this problem.

 An Error Detection and Correction (EDAC) or error-correcting code (ECC) is

a system of adding redundant data, or parity data, to a message, such that it can

be recovered by a receiver even when a number of errors (up to the capability of

the code being used) were introduced, either during the process of transmission,

or on storage. Error-correcting codes are frequently used in lower-layer

communication, as well as for reliable storage in different memories such as

RAM, Flash memory, Hard disks, etc.

 There are two basic types of Error Correction Codes: Block Codes and

Convolution codes. Block codes are referred to as (n, k) codes. A block of k data

bits is encoded to become a block of n bits called a code word. In convolution

codes, the code words produced depend on both the data message and a given

number of previously encoded messages, and the encoder changes state with

every message processed. The length of the code word is usually constant.

NAND Flash memories typically use Block Codes. NAND Flash includes extra

storage on each page to store ECC code as well as other information for wear-

21

leveling, logical to physical block mapping, and other software overhead

functions. The size of extra storage (spare area) is normally 16 byte per 512 byte

sector but other sizes are also used. ECC algorithm correction strength (number

of bit errors that can be corrected) depends on the ECC algorithm used to correct

the errors (these algorithms may be implemented in either hardware or software).

Simple Hamming codes can only correct single bit errors. Reed-Solomon code

can correct multiple bit errors and is used on many of the current controllers. [18]

2.4.1 ECC Hamming code algorithm

 The Hamming algorithm is relatively straightforward and easy to be

implemented in software or hardware. The limitation of the Hamming algorithm is

its limited error correction abilities. Hamming code is able to correct single bit

errors and detect two bits errors.

Figure 2.5: Bit parity for p1 and p1’ [19]

22

 The ECC algorithm used by the NAND Flash ECC module is based on block

parity. The Hamming code for a 512-byte block uses 24 bits of coding

information. Figure 2.5 show that p1 is the parity of every 7, 5, 3, and 1 bit of

each byte of the 512 bytes in the sector. It shows that p1’ is the parity of every

6,4,2 and 0 bit of every byte in this 512 bytes data sector while p1 is the parity of

every 7,5,3,and 1 bit of each byte. The same principle holds for the value of bit

p2, p2’, p4, and p4’ with the only difference being in use of different bits for parity

generation. Their expression can be simply written as:

P1’ = bit6 XOR bit4 XOR bit2 XOR bit0

P1 = bit7 XOR bit5 XOR bit3 XOR bit1

P2 = bit7 XOR bit6 XOR bit3 XOR bit2

P2’ = bit5 XOR bit4 XOR bit1 XOR bit0

P4 = bit7 XOR bit6 XOR bit5 XOR bit4

P4’ = bit3 XOR bit2 XOR bit1 XOR bit0

 On the other hand, the remaining bits of those 24 bits of coding info are

somehow derived in a different way in terms of the byte usage. In order to

calculate such bits, an intermediate variable is necessary and defined as

Rowparity = bit7 XOR bit6 XOR bit5 XOR bit4 XOR bit3 XOR bit2 XOR bit0

Thus, bit p8’ can be easily defined as the XOR of the row parities of every ever-

numbered (0,2,4,6,8…)row in the 512-byte matrix as shown in figure 7. Similarly,

bit p8 will be defined as the XOR of the row parities of every odd-number row (1,

3, 5, 7, …) in the matrix.

23

 Hence, if each parity bit is updated and serially calculated as every byte is

transferred into the ECC module, a typical bit can be described as follows:

P8’ = P8’ XOR (Rowparity AND not (rownumber (0)))

Where the row number is the number of the rows (i.e., the leftmost column in

figure 2.5). In this way, the other bits of hamming code can also be calculated by

changing the corresponding row number when each byte of raw data is steamed

in. To detect and correct errors, two sets of 24-bit Hamming codes are XORed to

get the result. One of them is obtained by reading previously stored ECC result in

the NAND flash device, and the other set comes from the result calculated with

the data being transferred into the Hamming code block. The error detection

responses are listed in Table 2.1.

Response Description
No error If the results is 0x00000000. Then

There’s no error as two sets of hamming
code is same

1 bit error If the result shows sets of 0s and1s
like0x11111111, an error exists.

2 or more bit
errors

More than one error exists if a random
pattern of 0s and 1s are generated like
0x01101110

Table 2.1: Error Detection Responses

This approach of error detection is effective for two reasons. First, the bits used

to calculate the parity for pn and pn’ are disjointed sets which means that if one

bit is used to calculate the parity for pn, it will not be used to calculate the parity

for pn’. Suppose that one certain bit is flipped, it can be in the set of bits that

calculate the parity for pn or those that calculate parity for pn’. Hence, only one of

pn or pn’ can be in error; the other one will be correct. Secondly, in each pair of

24

pn and pn’ there must be a ‘1’ and a ‘0’ because of the bit used for calculating the

parity. If a bit is flipped, it was used to calculate the parity of either pn or pn’.

Thus, one of the two bits has to be erroneous [19].

2.4.2 Reed – Solomon codes

 This section introduces byte-wide single error-correcting and double error

detecting (255,252) cyclic Reed-Solomon block code in a very digital logic jargon

as opposed to coding theory. A common procedure is used for both encoding

and decoding, which is analogous to an arithmetic check-sum [20]. This

formulation defines a (255,252) block code. The encoder accepts a block of

bytes, to a maximum of 252 bytes. The encoder calculates three parity bytes

from this data, and appends these bytes to the data, forming a complete block of

up to 255 bytes. On reading the entire block from memory the decoder processes

all the bytes to determine three syndrome bytes, from which error detection and

correction may then follow. The transform is explained in two steps, it is best to

first assume that a valid cyclic block exists whose construction will be explained

in the second step. So we first look at the factored decoder and look in detail

about the encoding scheme.

Factored Decoder:

 Within a given, possibly erroneous code block, the notation V’
1 describes an

individual I Th byte. The indices I from 0 to 2 indentify the parity bytes, previously

created by an encoder, while indices in the range from 3 up to N-1 indentify the

data bytes. A maximum value to N is 255.

25

 Factored decoding in software is straightforward. Three syndrome bytes are

derived: S0, S1, and S2. Derivation of each Sj involves a sequential ‘look-up-table’,

either implemented in software, or by discrete logic. Starting with the highest-

order byte and working downwards, the EX-OR sum of each byte and the latched

output of a look-up table forms the address of the next look-up to that same

table. Exactly the same procedure is used for each syndrome. Only the tables

are different in each case.

 S0← 0: S1← 0: S2← 0 (1a)

FOR I = N – 1 DOWNTO 0

S0← V’I (EX-OR) F0 (S0)

S1← V’I (EX-OR) F1 (S1)

S2← V’I (EX-OR) F2 (S2)

 In the above ‘←’ is an assignment operator, while ‘(EX-OR)’ represents a

byte-wide EXOR. The functions FJ() represents the action of the look-up tables.

A mathematical linkage exists over the entire code block, comprising data and

check bytes. This linkage is being tested in three different ways. Calculation of

syndrome bytes S0, S1, and S2 can be in any order.

 The total storage required for each table is just 256 bytes, while a complete

calculation requires just 3 times N EXORs and 3 times N look-ups. In the theory

of RS codes deriving this set of syndromes is a standard first step towards

decoding. In the absence of error, which is hopefully the usual situation, all

syndromes will calculate to zero. That would complete the decoding action. If one

26

or more syndromes are non-zero then an error has been detected. If all the SJ

are non-zero then it may be possible to locate and identify a single error byte.

 Confirmation and location of a single correctable byte is as follows. The

process requires two further tables, and is likely always to be implemented in

software. Each syndrome pattern is used as an 8-bit address to one inverse

Galois field IGF() table. Stored in this table, against every address, there is a

corresponding natural number, technically an exponent, in the range 0 to 254.

Figure 2.6: Decode schematic outline [21]

This IGF() look-up table, as addressed by byte-wide non-zero syndrome patterns

(S0, S1 and S2), outputs natural numbers which are processed to give two

independent estimates of the error locations, with values i and j.

27

The calculations are in conventional arithmetic, and read

i ←(IGF(S2)—IGF(S1)+ 255) MOD 255 (1b)

 j ←(IGF(S1)—IGF(S0)+ 255) MOD 255

They indentify and confirm the locations of the erroneous byte, provided that i=j.

The error pattern itself may be computed from an equation

 E←GF((IGF(S0) – i + 255)MOD 255) (1c)

Where GF() is the second table, this time denoting a Galois field. This second

table accepts a natural number is the range 0 to 254 as an address and yields a

specific non-zero 8-bit error pattern. The process completes with the correction of

the offending byte in the ith location with

 Vi ←V’
I (EX-OR) E (1d)

If only some of the syndromes are non-zero, or the calculated values i and j are

unequal, then the decoder has detected some uncorrectable error pattern, which

must by duly flagged as such. Figure 2.6 shows the outline of the decoding

process. Summarizing:

Non-zero syndromes? Action/decision

SO S1 S2

N N N ----------------------------------- no error detected

 Y N N ------------------------------------- uncorrectable error

 N Y N ------------------------------------- uncorrectable error

 N N Y ------------------------------------- uncorrectable error

 N Y Y ------------------------------------- uncorrectable error

 Y N Y ------------------------------------- uncorrectable error

28

 Y Y Y ----------------------- single error may be correctable (if i=j)

Factored Encoder:

 Having reviewed a (standard) method of factored decoding, the equivalent

procedure for encoding may now be described. Using the same standard

algorithm, or discrete logic, as used in the decoder, remainders RH are derived

from the data bytes. We adopt a vector notation in which the symbol MI

represents a data byte, with index I in the range from 0 to K-1. The maximum

value of K is 252.

In pseudo-code the algorithm is

 R0 ←0: R1 ←0: R2 ←0:

 For I= K – 1 DOWNTO 0

 R0 ← MI (EX-OR) F0(R0) (2a)

 R1 ← MI (EX-OR) F1(R1)

 R2 ← MI (EX-OR) F2(R2)

NEXT I

Up to this point the process is seen to be almost exactly the same procedure as

that used for finding the syndromes SH in the decoder (Figure 2.7). The only

difference is that the derivation is (obviously) over three less bytes, since only the

data bytes exist at this stage. These derivations of the RH, if done in

conventional, sequential software, can be in any order. The calculations require 3

times K EXORs and 3 times K look-ups for R0 to R2. None of these remainder

29

bytes are of the correct parity, and must not be adjoined to the data bytes, as

they stand.

Figure 2.7: Encoder schematic outline [21]

 The remainder bytes need to be transformed to the correct check bytes as

required by the cyclic code formulation. It is easiest to envisage a 24-bit vector

R, whose 8 least significant bits are taken from R0, the 8 middle significant bits

are from R1 and the 8 most significant bits are from R2. Notationally then

R= (R0, R1, R2)

 The remainder transform them runs as follows: read a bit at a time from R; if

and only if the kth bit r[k] in R is a ‘1’ then the algorithm selects the kth vector

C[k] in a given Table 2.2 and EXOR adds this selected row to a 24 bit register of

an accumulating vector C. In pseudo code this reads

C ← 0 (2b)

30

 FOR k←0 to 23

 IF r[k] = 1 THEN C← C (EX-OR)C[k]

 NEXT k

 The operation is completed by partitioning the calculated vector C into three

bytes. The 8 least significant bits go to C0, the middle most significant bits go to

C1 and the 8 most significant to C2. That completes the encoding. Formally the

unchanged data bytes are ‘promoted’ up three steps when assigned to the code

block i.e,

 VI+3 = MI over 0 ≤ I ≤ K (2c)

The check bytes CI then are formally assigned to the ‘bottom’ locations of the

code block (as in Figure 2.7) as

 VI = CI over 0 ≤ I ≤ 3 (2d)

 In practice there is no need to waste time in physically shifting the data bytes

as implied by (c). They may be loaded to memory in one ‘go’ and without further

manipulation. The transform is far simpler to implement than to describe. The

sequence requires on average only 12 look-ups and 12 3-byte wide EXOR

additions, to finish encoding the complete code block. Its use is therefore trivial in

computational load.

 Essentially because the sub-set of all possible data bytes, which yield a

common set of remainders, uniquely maps to a common set of three correct

check bytes. It is required only to ‘look-up’ the latter via the former. Suppose for

example that the following remainders are derived from some given data

R0 = 1 0 0 0 0 0 0 0 R0 = 0 0 0 0 0 0 0 0 R0 = 0 0 0 0 0 0 0 0 (3a)

31

We would then form a 24 bit vector

R = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (3b)

Table 2.2 then predicts that the correct check sequence would just be C = C[0];

in other words a vector

C = 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0

which partitions as

C0 = 0 1 1 1 0 1 1 C1 = 1 0 0 0 1 0 1 0 C2= 1 0 0 0 1 1 0 0 (4a)

and this would be true of every member of that sub-set of data which happens to

generate that particular remainder vector R.

There are 23 other possible vectors R with just one ‘1’ located in some kth

position of that vector and the rest of the bits are zero. Any data subset which

happens to give rise to such a vector automatically has a correct check byte

selected from the kth row in Table 2.2. More usually an arbitrary data collection

which creates an arbitrary vector R (with more than one ‘1’ usually) requires just

the linear combination of selected rows from Table 2.2. So Table 2.2 is

universally applicable for all possible data. [21].

Select remainder bit r[k]

3-byte vectors

C[k]

Bit no. a0………..a7 a8…………..a15 a16………a23

 k

 0 01110110 10001010 10001100

 1 00111011 01000101 01000110

 2 10100101 10011010 01000110

32

 3 11101010 01001101 10101001

 4 01110101 10011110 11101100

 5 10000010 01001111 01110110

 6 01000001 10011111 00111011

 7 10011000 11110111 10100101

 8 10011110 00001000 10001010

 9 01001111 00000100 01000101

 10 10011111 00000010 10011010

 11 11110111 00000001 01001101

 12 11000011 10111000 10011110

 13 11011001 01011100 01001111

 14 01101010 00101110 10011111

 15 01101010 00010111 11110111

 16 11101010 10011110 01110110

 17 01110101 01001111 00111011

 18 10000010 10011111 10100101

 19 01000001 11110111 11101010

 20 10011000 11000011 01110101

 21 01001100 11011001 10000010

 22 00100110 11010100 01000001

 23 00010011 01101010 10011000

Table 2.2: Listing of transformation vectors [21]

2.5 Flash Memory Mechanism

 This section presents a basic overview of flash memory and its mechanism.

Flash memory programming and erasing mechanisms using techniques such as

Hot-carrier injection and Fowler-Nordheim tunneling are covered.

33

2.5.1 Floating Gate Devices

 Non-volatile memory market share has been continuously growing in the past

few years and further growth is foreseen, especially for Flash memories (in which

a single cell can be electrically programmable and a large number of cells –

called a block, sector, or page – are electrically erasable at the same time) due to

their enhanced flexibility against EPROM’s. Nonvolatile memory does not lose its

data when the system or device is turned off. A nonvolatile memory (NVM)

device is a MOS transistor that has a source, a drain, an access or a control

gate, and a floating gate. It is structurally different from a standard MOSFET in its

floating gate, which is electrically isolated, or "floating".

 In flash memories, electrons were transferred from the floating gate to the

substrate by tunneling through a 3 nm thin silicon dioxide (SiO2) layer. Tunneling

is the process by which an NVM can be either erased or programmed and is

usually dominant in thin oxides of thicknesses less than 12 nm. Storage of the

charge on the floating gate allows the threshold voltage (VT) to be electrically

altered between a low and a high value to represent logic 0 and 1, respectively.

In floating gate memory devices, charge or data is stored in the floating gate and

is retained when the power is removed. All floating gate memories have the

same generic cell structure. They consist of a stacked gate MOS transistor as

shown in Figure 2.8.

34

Figure 2.8: Schematic cross-section of FG transistor [23]

 The first gate is the floating gate that is buried within the gate oxide and the

inter-polysilicon dielectric (IPD) beneath the control gate. The IPD isolates the

floating gate and can be oxide or oxide-nitride-oxide, ONO. The SiO2 dielectric

surrounding the transistor serves as a protective layer from scratches and

defects. The second gate is the control gate which is the external gate of the

memory transistor. Floating gate devices are typically used in EPROM

(Electrically Programmable Read Only Memory) and EEPROM's (Electrically

Erasable and Programmable Read Only Memory) [22] [23].

2.5.2 Charge Injection Mechanism

 There are many solutions used to transfer electric charge from and into the

FG. For both erase and program, the problem is making the charge pass through

a layer of insulating material. The hot-electron injection (HEI) mechanism

generally is used in Flash memories, where a lateral electric field (between

source and drain) “heats” the electrons and a transversal electric field (between

channel and control gate) injects the carriers through the oxide. The Fowler–

Nordheim (FN) tunneling mechanism starts when there is a high electric field

35

through a thin oxide. In these conditions, the energy band diagram of the oxide

region is very steep; therefore, there is a high probability of electrons’ passing

through the energy barrier itself. It is interesting to notice how these two

mechanisms have been deeply investigated for MOS transistors in order to avoid

their unwanted degradation effects. In Flash cells, they are exploited to become

efficient program/erase mechanisms.

2.5.2 a) Hot Electron Injection (HEI)

 The physical mechanism of HEI is relatively simple to understand

qualitatively. An electron traveling from the source to the drain gains energy from

the lateral electric field and loses energy to the lattice vibrations (acoustic and

optical phonons). At low fields, this is a dynamic equilibrium condition, which

holds until the field strength reaches approximately 100 kV/cm. For fields

exceeding this value, electrons are no longer in equilibrium with the lattice, and

their energy relative to the conduction band edge begins to increase. Electrons

are “heated” by the high lateral electric field, and a small fraction of them have

enough energy to surmount the barrier between oxide and silicon conduction

band edges. Figure 2.9 and 2.10 show the Energy band diagram of a floating

gate memory during programming by hot-electron injection and the HEI

mechanism. For an electron to overcome this potential barrier, three conditions

must hold [32].

1) Its kinetic energy has to be higher than the potential barrier.

2) It must be directed toward the barrier.

36

3) The field in the oxide should be collecting it.

Figure 2.9: Energy band diagram of a floating gate memory during programming by hot-electron

injection [22]

Figure 2.10: Hot-electron injection mechanism for programming in Flash memory [22]

2.5.2 b) Fowler-Nordheim Tunneling

 One of the most important injection mechanisms used in NVM's such as flash

is FN tunneling. When a large voltage Vcg is applied at the control gate during

37

programming, its energy band structure will be influenced as shown in Figure

2.11.

Figure 2.11: Energy band diagram of a floating gate memory during programming by FN tunneling

[22]

 In the figure, ec and ev are the conduction and valence bands respectively,

Eg is the energy band gap (1.1 eV for silicon), fb is the Si-SiO2 energy barrier (fb is

3.2 eV for electrons and 4.7 eV for holes). The applied Vcg creates the electric

field resulting in a potential barrier. This barrier provides a path for the electrons

in the substrate to tunnel through the thin gate oxide (typically less than 12 nm)

and eventually be collected in the n+ poly-Si floating gate. The bending of the

energy bands of the IPD and the gate oxide are different due to the thickness

differences between them. The IPD ranges from 25 nm to 45 nm while the gate

oxide ranges from 5 nm to 12 nm. The electrons collected at the floating gate

leads to a tunneling current density and is given by [33].

J = αEinj
2exp(-β/Einj) ----------- (1)

38

With α = (q3 / 8ϕbπh) (m / m*) and β = 4√2m* (ϕb
3/2 / 3ʱq)

Where h = Plank’s constant

 ϕb = Energy barrier at the injecting surface (3.2 eV for si-sio2)

 q= charge of single electron (1.6 x 10^-19 C)

 m= mass of a free electron (9.1 x10 ^-31 kg)

m*= effective mass of an electron in the band gap of sio2 (0.42m)

 ʱ = h/2π

 Einj = Electric field at the injecting surface = Vapp - Vfb / tox (v/cm)

 Vapp= voltage applied across the tunnel oxide (V)

 Vfb = Flat band voltage (V)

 tox = Tunnel oxide thickness (cm)

Equation 1 shows that tunneling current density is exponentially dependent on

the applied voltage, Vapp, which influences the electric field, Einj, across the gate

oxide. Figure 2.12 shows a cross-section of a Flash memory with electrons

tunneling uniformly with Vcg at positive potential while the source (Vs), the drain

Figure 2.12: Uniform tunneling to program Flash memory [22]

39

(Vd), and the substrate (Vsub) are at ground potential. FN tunneling can also be

used to erase an NVM. One of the methods is by applying a large negative

voltage at the control gate. The energy band structure will be influenced as

shown in Figure 2.13. The applied Vcg creates the electric field resulting in a

potential barrier. This barrier provides a path for the electrons to tunnel from the

floating gate to the substrate through the thin gate oxide

Figure 2.13: Energy band diagram of a floating gate memory during erasing by FN tunneling [22]

For uniform tunneling, a large negative Vcg is applied while for drain-side

tunneling method, both a negative Vcg and a positive Vd are applied [22][23].

Figure 2.14: Uniform tunneling to erase Flash memory [22]

40

 This is shown in Figure 2. 14.

2.6 Nand Flash Technology and Architecture

 This section discusses the basics of nand flash from a designer’s point of

view. The nand flash array is grouped into series of blocks, which are the

smallest erasable entities in nand flash device. A nand flash block is generally of

arbitrary size like 128KB, 64KB etc. Erasing a block sets all bits to 1 (and all

bytes to FFh). Programming is necessary to change erased bits from 1 to 0. The

smallest entity that can be programmed is a byte. Although NAND Flash cannot

perform Reads and Writes simultaneously, it is possible to accomplish

Read/Write operations at the system level using a method called shadowing.

Shadowing has been used on personal computers for many years to load the

BIOS from the slower ROM into the higher-speed RAM. However, there is a limit

to the number of times NAND Flash blocks can reliably be programmed and

erased. Nominally, each NAND block will survive 100,000 Program/Erase cycles

[24]. Figure 2.15 shows the layout and stick diagram of the Nand flash cell.

 A technique known as wear leveling ensures that all physical blocks are

exercised uniformly. To maximize the life span of a design, it is critical to

implement both wear leveling and bad-block management. NAND Flash is very

similar to a hard-disk drive. It is sector-based (page-based) and well suited for

storage of sequential data such as pictures, video, audio, or PC data. Although

random access can be accomplished at the system level by shadowing the data

to RAM, doing so requires additional RAM storage. Also, like a hard-disk drive, a

41

NAND Flash device may have bad blocks and requires error-correction code

(ECC) to maintain data integrity [24].

Figure 2.15: Nand Flash cell [24]

 For instance, a 2Gb NAND Flash device is organized as 2048 blocks, with 64

pages per block (Figure 2.16). Each page is 2112 bytes, consisting of a 2048-

byte data area and a 64-byte spare area. The spare area is typically used for

ECC, wear-leveling, and other software overhead functions, although it is

physically the same as the rest of the page. Many NAND Flash devices are

offered with either an 8- or a 16-bit interface. Host data is connected to the

NAND Flash memory via an 8-bit- or 16-bit-wide bidirectional data bus. For 16-bit

42

devices, commands and addresses use the lower 8 bits (7:0). The upper 8 bits of

the 16-bit data bus are used only during data-transfer cycles

Figure 2.16: Nand Flash device organized as 2048 Blocks [24]

Storage method:

 The two common methods for storing data and spare information in the same

page are shown in Figure 2.17. The first method shows a data area of 512 bytes

plus the 16-byte spare area directly adjacent to it; 528 bytes for the combined

areas. A 2112-byte page can contain four of these 528-byte elements. The

second implementation involves storing the data and spare information

separately. The four 512-byte data areas are stored first, and their corresponding

16-byte spare areas follow, in order, at the end of the page.

43

Figure 2.17: Typical storage method [24]

2.7 PUF technology.

 In this section, we introduce the concept of Physical Unclonable Functions

(PUFs). A PUF is a function that is embodied in a physical structure, so that it is

easy to evaluate, but hard to characterize. The physical structure that contains

the PUF consists of many random components. These random components are

introduced during the manufacturing process and cannot be controlled. When a

physical stimulus is applied to the structure, it reacts in an unpredictable way due

to the presence of these random components [25].The applied stimulus is called

the challenge, and the reaction of the PUF is called the response.

 PUFs inherit their unclonable property from the fact that every PUF has a

unique and unpredictable way of mapping challenges to responses. Each die

manufactured has unique physical characteristics as a result of slight variations

in the ambient environment (temperature, physical location in the wafer, etc).

While PUFs can be implemented with various physical systems our present

44

interest in this paper is on silicon PUFs (SPUFs) that are based on the hidden

timing and delay information of integrated circuits. Even with identical layout

masks, the variations in the manufacturing process create performance/delay

differences among different ICs [26].

Figure 2.18: Simple ring oscillator PUF [27]

 A simple ring oscillator PUF is explained to get an understanding of the

concept of PUFs. The ring oscillator PUF is a design based on delay loops (ring

oscillators) and counters. Each ring oscillator is a simple circuit that oscillates

with a particular frequency. Due to manufacturing variation, each ring oscillator

oscillates with a slightly different frequency. In order to generate a unique count

value output from the ring oscillator is given as clock input counter .The output

from the counter is the response of the PUF.

45

Chapter 3

Memory Controller

3.1 Introduction

 In this chapter, Memory controller that implements a new technique to make

the 3D Integrated Nand Flash memory chip more robust and fault tolerant against

intense space radiation environment is proposed. The controller performs

continuous self test and repairs itself in the case of any discrepancies such as

physical errors in memory arrays; wear out faults, stuck bits and soft errors such

as SEUs. Also, the controller provides protection against the possible effects of

MBUs. The natural structure of the 3D integrated Nand flash memory provides

the opportunity for charged particles in space to dig deeper in silicon going into

the inner stacked layers hence causing a Multiple Bit Upset (MBU). It is an

important consideration in critical applications related to space, avionics, and

defense. Even if a single memory domain fails in a stack of memory modules due

to any kind of irregularity, it can lead to a total system breakdown. A smart

memory controller for such a system is therefore necessary. The memory

controller should not only accomplish the memory accessing, but it also should

act as a potential healing system (ability to retrieve the data and exclude the

failed memory) for the stack of memory. The system will not recover from single

or multiple module failures in the absence of such a healing application.

 This section proposes an efficient way to control a stacked memory system

along with a unique healing technique. It can also be used as a tester for finding

manufacturing defects in the stackable memory. The global controller controls

46

and manages the memory modules and maintains a memory map of the various

modules. It can either be a single-client or a multi-client system. The controller

runs algorithms such that all the clients always see a contiguous memory. If, due

to any reason, one or more of the memory modules fail, it automatically

rearranges the mapping, so that the client attached to the spoiled memory space

is assigned a new memory space. The controller uses a flexible remapping

scheme (using PUF technology) and appropriate ECC to protect against these

errors.

Proposed Memory Controller Properties:

 Flexible remapping scheme can be done at page, block and die level

using PUF technology and logical to physical mapping concept.

 ECC is checked after each read and is readback to confirm the presence

of a hard or a soft error(SEU & MBU)

 Uses one of Reed-Solomon code (255, 251), Reed-Solomon (5,3) Coder-

Decoder in GF256 or Hamming code for ECC

 Uses special optional algorithm that detects the presence of MBUs in the

flash block and is corrected immediately.

Cost Benefits

 Eliminates external test equipment – all tests are done on-board

 Reduces test time – no manual probe, and tests use internal bandwidth.

 Improves yield – conventional chips can handle fewer than 100 bad cells;

chips with this controller can tolerate thousands of bad cells

47

Reliability Benefits

 Optional error and condition reporting

 Continuous “soft” error checking and correction

 Optional MBU detection and correction

 Continuous “hard” error detection and repair

 Longer projected lifetime per chip

3.2 Memory controller Technique

 The controller can be best described in phases. There are basically four

phases.

1. Scan and Mark phase

2. Discovery Phase

3. Coalesce Phase (Run Mode)

4. Heal phase

 In the initial scan and mark phase, information regarding the state and

condition of each memory module (page, block or single layer of Nand flash) in

the stack is extracted and analyzed for stack organization and the known good

die information is obtained. It works as a testing mechanism for the stack, the

memory modules from the manufacturing phase can be tested for any

irregularities in this phase. In the discovery phase, this information is used to

mark the faulty memory modules by scanning through them individually. After

getting the known good die information, the memory modules are collapsed to

achieve a continuous map. The heal phase initiates only if there are any

48

irregularities in the memory modules. The heal phase has three functions, (1)

Check for any bad memory and exclude it from the memory map, (2) Provide the

client with a new memory module, (3) Restore the destroyed data.

Scan and Mark Phase:

 This is the first phase of the global algorithm. At this point the state and

condition i.e. the Known good die information of the 3D Nand flash memory is

unknown. This is the phase in which the initial check on the yield of the chip is

made. The controller is in this phase for only once in its total usage time. In this

phase the controller first performs a sector by sector write-read back operation

on the complete stack and collects information (known good die) regarding the

state of each die, array and cell, hence called the scan phase. The controller

sees the 3D nand flash memory as a collection of blocks sub divided into pages

irrespective of the number of levels (stacks) that are present in the IC. It starts off

by writing 0s to each page sequentially and after each and every memory cell is

written into, it reads the data back. By doing this it can detect the presence of

stuck-at 1s and it performs a similar operation by writing and reading back 1s to

detect the presence of stuck-at 0 faults in the Nand flash memory.

 Apart from these this operation detects the faults caused due to other physical

errors in memory such as yielding errors and hard errors. Faulty cells during the

scan are marked and the extent of damage is noted, this information is used by

the controller to give an optional error and condition report but more importantly

to decide if it should include the particular locations in the memory mapping or

49

not. This also helps the controller to decide if the remapping should be done at a

cell, array or die level. Since the 3D chip can have possibly hundreds of levels

there is very good chance of yield problems which will render the whole stack

level useless in which case die- level remapping is done.

 Once the initial scan is done and good knowledge is accrued regarding the

state of the memory the mark phase is initiated. The controller sees the memory

stack of the 3D Nand flash memory as a collection of pages. E.g. A 2Gb nand

flash 2D chip is generally organized as 2048 blocks, with each block containing

64 pages and each page containing 2176 bytes or 17408 bits. So there is a total

of 131,072 pages in a single layer, if we consider an 8 layer stack we have

1,048,576 pages in 3D nand flash chip.

 The mark phase starts with the initiation of the PUF values. The PUFs used

here are simple ring oscillator PUFs that generate ‘n’ bit unique values, where n

is decided by the number of pages in the stack and can be modified to any

custom length in order to achieve unique values. The information collected in the

scan phase is used to mark the pages with specific IDs generated by the ring

oscillator PUF. According to the condition report each good page is assigned a

random PUF value and pages containing excess faulty cells are assigned null

values.

 At this point there is complete information with the controller regarding not

only the state of each die and each memory cell but also IDs of all the possible

pages which are write ready. This is the process that is followed by the memory

controller for stack organization before it assigns memory to any function for

50

access. When a function needs memory in a system the memory controller sets

the proper hand shaking signals for the access to occur. Figure 3.1 shows the

algorithm for scan and mark phase.

Figure 3.1: Flow chart for Scan and Mark phase Algorithm

Discovery phase:

 This phase is the mapping phase of the controller. The controller in this phase

creates memory maps using the logical to physical mapping concept. The client

sees the whole stack as one single block of memory with a continuous set of

51

addresses (logically) but physically the locations of the addresses may not be

continuous. The memory map is created in such a way that the clients always

see a contiguous memory map and writes to the same addresses irrespective of

the faulty memory modules in the stack that are spoiled either from

manufacturing defects or hard and soft errors that pop up intermittently which

have caused the physical locations to change to a different area. The nand flash

pages are mapped in a unique way using the PUF IDs so that they can be

assigned to the clients that need access to memory. This phase is basically run

by the UIDC (unique ID for specific client) counter. It is a simple n bit counter

where n is chosen depending on the number of pages in the stack and can be

modified to any custom length. The algorithm for the discovery phase is shown in

figure 3.2.

 When creating the new mapping the controller increments the UIDC counter

and compares it against all the PUF values. If match is found the memory is said

to be discovered and the controller assigns this module (nand flash page) to the

client for access and the UIDC counter is incremented to find the next module.

When all the n dies are discovered a continuous map is made from the set and

stored in a register. The spoilt memories from the scan phase are never

discovered because their IDs are set to null value in the mark phase. The

controller is in the discovery phase whenever a faulty memory is discovered to

remap the memories.

52

Figure 3.2: Flow chart for Discovery phase Algorithm

Coalesce phase:

 The Coalesce phase is basically the run mode for the system. After achieving

a continuous map in the discovery phase, the controller asserts a system ready

signal to the client so that it can access memory. In this phase the controller

performs data write and data read requests. During a data write request the

53

controller writes to the page discovered in the discovery phase. The coalesce

phase runs along with the discovery in tandem, after each write to a page the

controller goes into the discovery phase to find the address of a new page to

write. Although the client writes to the next immediate address (logical address) it

is actually written to the page chosen by the UIDC counter (physical address).

 The controller stores this memory mapping data in a data register that is used

during data read requests. The data written to the page is first treated with an

ECC engine and the encoded data is written to the page. For e.g. In a single

page in the Flash memory there is 2112 bytes for data and 64 bytes for ECC

redundant bits, each page has 4 sets of 512 bytes. This is shown in Figure 3.3.

Different types of ECC can be used such as hamming codes, Reed-Solomon

code, BCH codes etc. depending on the number of bytes needed to be corrected

at the expense of more power, computation and latency trade off.

Figure 3.3: Bit format for NAND flash page

54

Figure 3.4: Flow chart for Data write request Algorithm

 During a data read request the controller reads the physical addresses from

the memory mapping register and completes the requests. Before completing a

read request it performs an ECC verification, if verification is clean then it

completes the request. If a fault is encountered in the ECC then an interrupt is

asserted indicating the halt of memory access for data correction. The controller

now proceeds into the heal phase where the distinction between a hard or a soft

error is made and appropriate measures are taken to rectify the error and restore

55

health to the memory. Figure 3.4 and 3.5 show algorithm for the controller in the

coalesce phase.

Figure 3.5: Flow chart for Data Read request Algorithm

56

Heal Phase:

 The heal phase is the correction phase of the controller, the first action taken

by the controller in this phase is to analyze the error that is detected in the

coalesce phase. Depending on this analysis the controller decides the type of

correction mechanism that must be applied. In case of a soft error, the controller

restores the affected data through ECC decoding techniques provided the

affected number of bits is in the permissible range of errors of the particular type

of ECC being used, for e.g. A Reed-Solomon (255,247) decoder can correct up

to 32 bits or 4 bytes while a simple hamming code can correct 1 byte. In the case

of a hard error, the controller in addition to the retrieval of the affected bits has to

remap the memory location of the affected site to a new location.

 The remapping can be done at page, block or die level depending on the

extent of the affect of radiation on the 3D stack. When a fault in the memory is

detected in the coalesce phase, the controller first analyzes the fault by executing

a simple algorithm which will decide the type of error. There are two types of

algorithms, the first is to stop the data access and backup data to a data sink

(like a memory buffer) and perform readback on the affected memory module.

The controller first programs the particular module with a stream of 1s and reads

back the data and then it programs a stream of 0s and reads it back. If the data

programmed is equal to the data readback in both cases then the error is most

likely a soft error and if the data readback is not equal then the error is qualified

as a hard error and remap of the memory module is performed. The second

method is to assume a soft error in each case and keep track of the areas being

57

affected. If a particular area pops up too frequently than the memory module is

either affected by a hard error or is a very SEU sensitive node. In both cases the

controller can proceed to remap.

 The controller also performs an optional multiple bit upset (MBU) detection

algorithm that will test the vicinity of the affected bit for an error. Since the

memory chip is 3D there is a good chance of the radiation to dig deeper into the

chip. During MBU detection, when a soft error is detected the controller not only

corrects using ECC but also performs an ECC check on the area of the 3D die

above and beneath the affected area and repeats the process recursively. If the

ECC check fails it can be considered as a multiple bit upset and is corrected

immediately. The memory mapping register is updated with the new mapping.

 The remapping is done at page, block and die level by returning to the

discovery phase, when a faulty memory module is encountered it is excluded

from the memory map and the controller proceeds to discovery phase to find a

new module to replace it. As said above, in the discovery phase the UIDC

counter selects a memory module according to the random PUF value and

replaces it with the faulty die. Once a new module is selected, it is included in the

new mapping. At this point, the client still writes to the same logical address but

the address now points to a different physical memory module. Figure shows the

algorithm for Heal phase. Figure 3.6 shows the algorithm for the heal phase.

58

Figure 3.6: Flow chart for Heal phase Algorithm

3.3 Proposed block diagram of Hardware description

 This section provides the details of the proposed implementation of the

controller. Figure 3.7 shows a way of implementing the 3D Nand flash controller,

each block is further explained in brief and chapter 4 gives a detailed explanation

of the implementation of each block.

59

NAND CTRL

Figure 3.7: Block diagram of Hardware Specification for 3D NAND Flash Controller

 The figure shows the top level description of the internal structure of the nand

flash controller design. The module within the solid line is the nand control core,

the modules outside are optional and are present on the chosen controller

configuration.

Main components of the controller are:

 FIFO – This unit provides FIFO queue interface to the other controller

modules. Depending on the software configuration the one queue side will be

data input modules the Slave interface unit (SIU) or direct memory access (DMA)

module, the second side will always be Nand control unit (NCU)

60

 Device Control Unit (DCU) - This is the main engine of the controller it

controls the other modules basing on the current special function register values

and the current controller state. The main control tasks of this module are:

 Provide the enable/disable signal to the DMA and SIU units when they try

to get access to the FIFO module. Only one of those is active at a time.

 Enable/Disable the ECC module

 Provide the control signals to the NAND control unit

 Execute the boot sequence from boot unit

 Execute PUF sequence from PUF unit

 Control the interrupts

 NAND control unit (NCU) - This unit is responsible for generation of 3D Nand

flash device access sequences. Unit uses control signals provided by the DCU.

 ECC - It is an error correction code calculator and a correction unit. A

correction word is calculated for each 256 or 512B (or optionally over 512B) sub

page of the NAND Flash memory page. During the read operation the unit can

automatically correct bad bits without any interaction with the external system. It

has a status register, the bits of which signal errors occurring during a read, and

then inform if errors were corrected. It is possible to choose between a simpler

unit that can correct only one error per 256B or 512B (or optionally over 512B)

sub page and a more advanced unit that can correct multiple errors. The choice

depends on the NAND Flash memory type that is in use. Depending on the end-

user application, it is possible to choose between two solutions. The first one is

61

based on the Hamming algorithm that allows correction of one error for each

256B sub page. The other solution uses the Reed-Solomon algorithms. The ECC

module has integrated FIFO that is used to transfer the calculated words to the

NCU modules during encode process and to store the calculated partial

syndromes during decode process.

 DMA- This unit is responsible for fast transfer of the data between the external

memory location and the controller

 SIU - Unit provide the slave interface to the controller SFR registers and the

FIFO module.

 Boot unit - Unit initiates boot sequence on command from DCU. This unit

heads the scan and mark phase of the controller.

 PUF unit - This unit responsible for generation of random PUF values. It holds

all the actual PUFs that generate the PUF values. It performs functions on

command from the device control unit (DCU).

3.4 Benefits of the Controller

 Most memory chips are tested for repair and remap only once, on the

production line. If a bit becomes “stuck” at a later time (due to magnetism,

radiation, heat, impact, or other damage) it cannot be repaired; the entire chip

must be replaced [17]. With our controller, these “hard” bit errors are detected

and remapped instantly. Many Memory devices ignore the random, recoverable

62

bit-flips caused by radiation; if a bit is flipped; the error remains until a new value

is written to that location [17]. Our controller uses ECC (error checking and

correction) or EDAC (error detection and correction) to detect and correct these

“soft” errors in their memory banks, the complexity added by the ECC circuit can

be reduced by using different levels of ECC based on various trade-off factors

such as correction capability and latency. Also, because the controller continually

monitors chip performance, it can detect and report unreliable behavior long

before the chip actually fails using its error and condition reporting feature. This

feature would allow failing parts to be detected and replaced before the pool of

redundant bits are exhausted.

 The controller also performs optional MBU detection and correction. Since 3D

memory due to its natural structure has increased probability of being affected by

an MBU this feature will help the performance of the memory by many fold. By

using our controller testing the 3D nand flash chip is much easier since all the

tests can be done on board without the need for external probing. In general the

controller provides longer projected lifetime to the 3D nand flash chip in harsh

radiation intense environment.

3.5 Limitations

 The main limitation of the controller is the time delay incurred in the system as

a trade-off for achieving more robustness. The delay incurred over a normal

controller without any fault tolerance can be calculated using the following

analysis:

63

Case 1: System has no error

 Τ our self-healing system = τ normal-system + τ initial readback + τ PUF Calculation

 + τ ECC calculation in write cycle + τ ECC calculation in read cycle

Where

Τ our self-healing system = Time taken by Memory controller system

Τ normal-system = Time taken by a system with no fault tolerance

T initial readback = Time taken to check each memory page for errors by writing a

‘1’reading it back and then writing a ‘0’ and reading it back

Τ PUF Calculation = Time taken for initiating the PUFs and generating a unique

identification for each die

Τ ECC calculation in write cycle = Sum of the Time taken to encode data with ECC during

each write cycle

Τ ECC calculation in Read cycle = Sum of the Time taken to decode data using ECC during

each read cycle

Case 2: System with error

Τ our self-healing system = τ normal-system + τ initial readback + τ PUF Calculation

 + τ ECC calculation in write cycle + τ ECC calculation in Read cycle + τdata restore & remap

 Where

Τ data restore & remap = τreadback + τ remap and ECC calculation

64

Τ readback = Time taken by the controller to spot the faulty memory by readback

Τ remap and ECC calculation = Sum of the Time taken to restore data bits using ECC and

finding new memory location using the PUF value.

 Also, in the case where the mapping is done at page level the erase operation

needs a good amount of data sink to backup memory because nand flash can be

erased only at block level and not at page level, hence there is significant amount

of space wastage and time delay incurred due to this operation. This will not be a

big problem at block level and die level remapping where the erase operation will

not erase valid data or erasure of data is tolerable.

65

Chapter 4

Implementation

4.1 Introduction

 This section presents the proof of concept of the memory controller

Implementation and simulation results. The overall idea of the implementation is

to create a working memory controller equipped with three kinds of ECC and give

a tradeoff table that can referred to decide what kind is best suited for a particular

space program’s mission requirements. Three different kinds of ECC with

different correction capability, space requirement, latency (delay) and power

requirement were chosen namely, Hamming code, Reed-Solomon (255, 251)

and Reed-Solomon (5,3).

 We implemented our memory controller design in an FPGA (Virtex- 4) using

VHDL. The block diagram of the implementation is given in Figure 4.1. The circuit

differs from the concept block diagram given in chapter 3 in the fact that a stack

of Block memory of the FPGA was used to mimic the 3D nand flash chip and the

bus model is replaced by a client test circuit which is used to test the memory

controller. This section first explains each block in the design and gives a brief

introduction to the handshaking signals and I/O that will facilitate a good

understanding of the results obtained. Then functional timing simulation results

are shown to confirm the working of each block and the controller as a whole and

finally the ECC modules are replaced to make a trade off table showing the

correction capability of the controller, space requirement (no. of gates used) and

66

power requirement in all the three cases. The tools used are Xilinx ISE,

ModelSim SE simulator. The power analysis was made using Xilinx Xpower

analyzer.

Figure 4.1: Block diagram of Hardware Specification for 3D NAND Flash Controller implemented on a

Virtex 4 FPGA

4.2 Hardware description

 Block Memory: The main controller is designed to access BRAMs in way to

mimic the 3D nand flash structure (Figure 4.2). The design used 8 BRAM stack,

each BRAM consisted of 1024 bits and represented a single page, two such

BRAM constituted a block, and four such BRAM constituted a single layer of

NAND memory. The 8 BRAM stack represented 2 layer 3D integrated NAND

flash memory. The address of the BRAM represented the actual page address of

NAND flash given as:

BRAM address = Actual page address

67

Where Actual page address = Block address concatenated with page address

Figure 4.2: Block Memory in FPGA used to mimic 3D NAND Flash Memory

 PUF unit: The PUF unit consists of counters; each counter is 10 bit and runs

on a slightly different clock rate. For our purpose we have used different clock

inputs to the counters to generate the random PUF values that are used to

identify the pages. The number of pages in the memory decides the number of

counters required in the PUF unit. In our design we have used 8 counters for the

stack of 8 BRAMs.

 Boot unit: The boot unit consists of a state machine and control registers that

are controlled by the Nand control unit (NCU) during the scan and mark phase.

The algorithm for the Boot sequence is provided in chapter 3 under scan and

mark phase.

 Memory Buffer: The memory buffer in the FPGA is implemented as a BRAM.

This unit is used is used as a data sink during coalesce phase to store temporary

68

data while the data restoration and remapping is being accomplished by the

controller.

 Nand Control unit (NCU): This is the main engine of the controller it works as

a device controller and also generates access sequences for accessing the

BRAMs. It stores the memory map and performs logical to physical mapping

while completing data read and data write requests. It generates proper status

signals so that the client can accomplish communication with the controller.

 FIFO: This unit provides queue interface to the Controller. The controller has

to perform boot, PUF generation and mapping functions before it can generate

access sequences hence, FIFO interface is essential to avoid loss of data and

proper handshaking. Apart from this there is additional FIFO in the controller

which is used by the ECC module, one for the encoder and one for the decoder.

 ECC unit: The ECC In our implementation we use three different kinds of ECC

namely:

 Hamming Code - Single Error Correction and Double Error Detection

(SECDED)

 Reed Solomon (5, 3) Encoder-Decoder in GF(256)

 Reed-Solomon (255,251) Decoder/Encoder

Hamming code:

 The hamming code algorithm is a basic ECC with a correction capability of a

single bit and a double bit detection capability. In our design we used the

hamming algorithm core from Xilinx. The design is a piece of combinational logic

69

for data communication between the client and memory. The data bus is 16-bit

wide, while the data written to memory is a 22-bit data word. When data is read

back from the memory device, the stored parity bits are compared with a newly

created set of parity bits from the read data. The result of this comparison, called

the syndrome, will indicate the incorrect bit position in a single data error.

 The figure shows the block level design of the hamming algorithm. This

interface consists of the 16-bit processor data bus, u_data [15:0], the read/write

control signal, rw_n, and the error flag signal, error_out [1:0]. The right hand side

describes the memory component interface, consisting of the memory data bus,

mem_data [21:0].

Figure 4.3: Hamming code Algorithm Block diagram [28]

 The rw_n control signal from the client switches controller between read and

write cycles. The rw_n signal will be equal to "1" for a processor read cycle and

equal to "0" for a processor write cycle. The "Generate Parity Bits" block creates

the parity bits to store with the processor data (u_data [15:0]) during a write

70

cycle. In a read cycle, this block is also responsible for creating one of the inputs

in generating the syndrome; this block creates the parity bits with the data word

stored in memory. The "Error Detection" block generates the error_out [1:0] flag

based on the syndrome and the overall parity created from the data in memory.

Reed-Solomon (255,251) Decoder/Encoder

 This core implements Reed-Solomon decoder for the 8-bit wide symbols. The

core is designed to occupy fewer amounts of logic blocks, be fast and

parametrizable. The main features are:

 8-bit input and output data busses

 Fully synchronous and pipelined design using a single clock

 Symbol width of 8 bits

 Corrected byte number signaling

 Can correct 2 symbols (16 bits).

The block diagram of the decoder is as follows:

Figure 4.4: Block diagram of Reed-Solomon Decoder showing the I/Os [29]

71

Here signal D_IN is the input to the decoder and is only active after STR signal is

pulsed. The SNB signal indicates the finish of decoding and the RD strobe is

pulsed to accept the data of the D_out pin. Signals S_ok and S_er are status

signals, S_er signal indicates the occurrence of an error and S_ok indicates that

the error is fixed.

Reed Solomon (5, 3) Encoder-Decoder in GF(256)

 This core implements Reed-Solomon decoder for the 8-bit wide symbols. The

main features are:

 Symbol length: 8-bits.

 Coder: Takes 3-symbol message and encodes them into 5-symbol

codeword.

 Decoder: Corrects 1-symbol (8bits) error in a codeword.

 No latency in decoding.

CLOCK

RESET

DATA_IN[7:0]

DATA_VALID_IN

DATA_OUT[7:0]

DATA_VALID_OUT

RS(5,3)
CODEC in GF256

E/~D

Figure 4.5: I/O specification for Reed-Solomon (5,3) Codec

 The DATA_VALID_IN signal is an Active low that enables DATA_IN and E_D

signals. The DATA_IN [7:0] signal takes the data from the client. Both message

and codeword are fed to the CODEC from this port. When the E_D is high the

72

engine performs encoding and when low it performs decoding. E_D is monitored

during DATA_VALID_IN is low, therefore should be constant unless mode of

operation is not to be changed. DATA_OUT [7:0] is valid output data when

DATA_VALID_OUT is low.

4.3 Results

4.3.1 Functional timing simulation

 Boot unit functional timing simulation

Figure 4.6: Functional Timing Simulation of Boot Unit of 3D NAND Flash Controller

 Figure 4.6 shows the functional simulation of the boot section which runs the

boot sequence described in the scan phase in chapter 3. Each block ram

representing a page in the 3D nand flash memory is written and readback with

00h and FFh values to all bytes to check for hard errors and yield errors such as

stuck-at faults.

73

Figure 4.7: Functional Timing Simulation of Boot Unit of 3D NAND Flash Controller

 Figure 4.7 shows the registers holding the address of the faulty memory cells

that will be removed the memory map in the mark phase as described in chapter

3.

 PUF unit functional timing simulation

Figure 4.8: Functional Timing Simulation of PUF Unit of 3D NAND Flash Controller

74

 Figure 4.8 shows PUF array holding the 10-bit PUF values generated by the

counters. Each counter was supplied with clock varying by 0.1 μs which

represent clocks coming from ring oscillators. These values are used as IDs for

the memory modules in the mark phase.

ECC unit functional simulation

 ECC module 1 – Hamming code algorithm

Figure 4.9: Functional Timing Simulation of ECC Unit (Hamming code) of 3D NAND Flash Controller

 Figure 4.9 shows hamming algorithm with 1 bit correction and 2 bit detection

capability. 16-bit u_data is the data line that takes data from the FIFO unit and

mem_data is 22 bit that goes into the memory. This particular algorithm adds 5

parity bits for every 2 bytes of data.

75

 ECC module 2 - Reed Solomon (5, 3) Encoder-Decoder in GF(256)

Figure 4.10: Functional Timing Simulation of ECC Unit (Reed Solomon (5, 3)) of 3D NAND Flash

Controller

Figure 4.10 shows the functional timing simulation of Reed Solomon (5, 3)

Encoder-Decoder ECC engine which corrects up to 8 bits.

 ECC module 3 - Reed-Solomon (255,251) Decoder/Encoder

Figure 4.12: Functional Timing Simulation of ECC Unit (Reed Solomon (255,251)) of 3D NAND Flash

Controller

76

Figure 4.12 shows the functional simulation of the Reed-Solomon (255,251)

Decoder/Encoder which can correct up to 16 bits or 2 symbols

 Controller functional simulation of writes and reads and remap due to errors.

Figure 4.13: Functional Timing Simulation of 3D NAND Flash Controller Data write

Figure 4.13 shows controller completing data write requests according to the

mapping generated by the discovery phase.

77

Figure 4.14: Functional Timing Simulation of 3D NAND Flash Controller showing UIDC counter and

Mapping register

Figure 4.14 shows the simulation for the UIDC counter and the mapping register

described in chapter 3.

Figure 4.15: Functional Timing Simulation of 3D NAND Flash Controller Data Read

Figure 4.15 shows the simulation for completion of data read request

78

4.3.2 Controller space and power calculation of FPGA chip with 3 ECC modules

 The power calculation is performed using the Xilinx Xpower analyzer. The

total power consumed by the 3D Nand controller can be calculated with the

following calculation:

Total Power = Total static power + Total dynamic power, Where

Total dynamic power represents the fluctuating power as your design runs. It

represents the amount of power generated by the switching user logic and

routing.

Total static power is the power drawn by the device when it is powered up,

configured with user logic and there is no switching activity.

Table 4.1 summarizes the numerical results for the Nand flash controller

implementation with 3 ECC modules.

ECC Correction
Capability
(bits)

Slices
Occupied

Operation
Frequency
(MHz)

Power (W)

Hamming
code

1 632 207.419 0.7148

(5,3)
RS code

8 863 186.935 0.7458

(255,251)
RS code

16 13,736 137.071 1.0747

Table 4.1: Results for 3D NAND Flash Controller

 The proposed 3D Nand flash controller is targeted on Virtex 4 FPGA that

contains 26,624 slices. The simulation results show that the Nand controller

using Hamming code uses a mere 632 slices on the Virtex 4 FPGA while

consuming 0.7148 W of power but has a correction capability of just 1 bit and

79

runs at maximum frequency of 207.419 MHz while the controller with RS code

(255,251) uses 13,736 slices and consumes 1.07 W of power but is capable of

correcting up to 16 bits and runs at a maximum frequency of 135. 017 MHz. The

RS (5,3) code with a correction capability of 8 bits uses 863 slices and consumes

0.7458 W of power and runs at a maximum frequency of 186.935 MHz.

 Thus the controller employing hamming code is more power efficient and

requires less space on the chip. However, it can correct only one bit which is very

unhelpful in harsh radiation environments. The controller employing Reed

Solomon (255,251) code is requires more space and power but can correct up to

16 bits of faulty data.

80

Chapter 5

Conclusion

 The cost versus capacity of memories for personal devices (such as cameras)

has fallen significantly in recent years through conventional cost-reduction

approaches such as incorporating smaller design rules. However, the effect of

technology scaling is saturating in many types of ICs. Technology advancements

in the form of 3D integration have made it possible to believe that the current

pace of cost reduction can be maintained. It is believed that the first commercial

application of 3D integration will be most likely in the commodity of memory

space. Companies like Samsung, Tezzaron and Toshiba have come up with

proof of concept 3D memory devices with vast densities and superior speeds.

 With such groundbreaking features the advent of 3D memory in space related

applications seems inevitable. However, a critical design challenge faced is the

robustness of designs incorporating these 3D memories. Single event upsets

have plagued electronic systems for a long time and are the major concern for

space applications. Also, because of the relatively new fabrication techniques of

3D integration technology, yield problems are going to be inevitable till the

processes are more standardized. So the effective use of 3D memories in space

depends on the way these memories are controlled and protected against the

potential dangers by incorporating fault-tolerance in them. Only the systems

incorporating self test and repair can take full advantage of the 3D memory’s

special features.

81

 The present work is focused on 3D Nand flash memory, a new memory

controller system is proposed to address fault tolerance in 3D Nand flash

memory. We show that the proposed design approach has very little

detection/correction overhead and can revive the system against all single point

hard errors and soft errors. The need for larger, cheaper, and more robust

memories makes self-repairing property as a necessary condition for future

memory designs.

82

References

[1] Tan, Chuan Seng; Gutmann, Ronald J. and Reif, L. Rafael, Wafer Level
3-D ICs Process Technology, Series: Integrated Circuits and Systems,
(Eds.) 2009, XII, 410 p. 145 illus., ISBN: 978-0-387-76532-7

[2] Iyer S. S., “Three Dimensional Integration – Memory Applications.” SOI

conference 2009, IEEE, Page(s): 1- 5

[3] Jared C. Smolens, Brian T. Gold, James C. Hoe, Babak Falsafi, and Ken

Mai “Detecting Emerging Wearout Faults,” The Third IEEE Workshop On

Silicon Errors in Logic - System Effects (SELSE-3), Apr 2007

[4] Abhishek Pillai, Wei Zhang, Dimitrios Kagaris., “Detecting VLIW Hard

Errors Cost-Effectively Through A Software-Based Approach,” 21st

International Conference on Advanced Information Networking and

Applications Workshops (AINAW'07)

[5] A.H.Johnston., “Space Radiation effects in Advanced Flash memories”

JPL.

[6] Heather Quinn and Paul Graham, Xilinx Virtex FPGA Design Guide for

Space, LA-UR- 08-04992

[7] Paul E. Dodd, Lloyd W. Massengill, “Basic mechanism and modeling of

single event upset in digital microelectronics,” IEEE Transactions on

nuclear Science, vol. 50, no. 3, June 2003

[8] L. D. Edmonds, C. E. Barnes, L. Z. Scheick, An Introduction space

radiation effects on microelectronics. JPL Publication 00-06

83

[9] Aahlad Srinivasa M., “Single Event Upset Hardened CMOS

Combinational Logic and Clock Buffer Design,” Master’s Thesis, University

of New Mexico, December 2008.

[10] Gary Swift., “Radiation effects and FPGAs.” MAPLD06 seminar 2006.

[11] Andry, P.S.; Tsang, C.; Sprogis, E.; Patel, C.; Wright, S.L.; Webb, B.C.;

Buchwalter, L.P.; Manzer, D.; Horton, R.; Polastre, R. and Knickerbocker,

J.; A CMOS-compatible Process for Fabricating Electrical Through-vias in

Silicon. Proceedings of 56th electronic components and technology

conference, San Diego, CA, pp 831-837

[12] Tsang Ck, Topol AW(2006) 3D integrated circuits and silicon carrier

packaging realization. Proceedings of 23rd VLSI VMIC Conference,

Fremont, CA, September 25-28, 2006, VMIC no 06 IMIC-050 pp 61-69

[13] Patel, C.S.; Tsang, C.K.; Schuster, C.; Doany, F.E.; Nyikal, H.;

Baks, C.W.; Budd, R.; Buchwalter, L.P.; Andry, P.S.; Canaperi,

D.F.; Edelstein, D.C.; Horton, R.; Knickerbocker, J.U.; Krywanczyk,

T.; Kwark, Y.H.; Kwietniak, K.T.; Magerlein, J.H.; Rosner, J.; Sprogis,

E.; Silicon Carrier with Deep Through-Vias, Fine Pitch Wiring and Through

Cavity for Parallel Optical Transceiver. IBM T. J. Watson Res. Center,

New York, NY. proceedings of 55th electronic components and technology

conference, lake beuna vista, FL, pp 1318-1324

[14] Chen KN, Tan CS, Fan A, Reif R(2004) “Morphology and bond strength of

copper wafer bonding”, Electrochem Solid-State Lett 7(1):G14-G16

84

 [15] Chen KN , Tsang CK, Topol AW, Lee SH, Furman BK, Rath Dl, LU J-Q,

Young AM, Purushothaman S, Haensch W (2006) “Improved

manufacturability of Cu bond pads and implementation of seal design in

3D integrated circuits and packages”, 23rd international VLSI Multilevel

Interconnection(VMIC) Conference, fremont California. VMIC catalog No

IMIC – 050- pp 195-202

 [16] Chen, Kuan-Neng ; Lee, Sang Hwui ; Andry, Paul S. ; Tsang, Cornelia

K. ; Topol, Anna W. ; Lin, Yu-Ming ; Lu, Jian-Qiang ; Young, Albert

M. ; Ieong, Meikei ; Haensch, Wilfried, Structure, Design and Process

Control for Cu Bonded Interconnects in 3D Integrated Circuits. T. J.

Watson Res. Center, IBM Corp., Yorktown Heights, NY. Electron Devices

Meeting, 2006. IEDM '06. International. Session 13.5, pp 20- 22.

[17] www.Tezzaron.com

[18] Scott Chen, “What Types of ECC Should Be Used on Flash Memory?”

Spansion application note.

[19] TN-29-05, “ECC Module for Xilinx Spartan-3 Overview”, Micron technical

note.

[20] Error control techniques, http://cs.uccs.edu/~cs522/F2001code.pdf

[21] Hodgart M. S. (1992), “Efficient coding and error monitoring of spacecraft

digital memory,” International Journal of Electronics, 73: 1, 1-36.

[22] Jitu J. Makwana, Dr. Dieter K. Schroder, A Nonvolatile Memory Overview,

http://aplawrence.com/Makwana/nonvolmem.html

85

[23] Paolo Pavan, Roberto Bez, Piero Olivo and Enrico Zanoni, “Flash Memory

cells- An Overview,” Proceeding of the IEEE, Vol. 85, No. 8, August 1997.

[24] TN-29-19, “Nand Flash 101 Introduction”, Micron technical note.

[25] Zhang Biyong., “Physically Unclonable Functions,” Kerckhoffs Institute &

Technical University of Eindhoven.

[26] Suh. G.E., Devadas. S., “Physical Unclonable Functions for Device

Authentication and Secret Key Generation,” Design Automation

Conference, 2007, DAC, 44th ACM/IEEE, pages(s): 9-14.

[27] Ryan L. Helinski, “ Physical Unclonable functions,”

www.ece.unm.edu/~jimp/HOST/slides/RyansPUFslides.pdf.

[28] XAPP 383, “Single Error Correction and Double Error Detection

(SECDED) with CoolRunner-II CPLDs”, Xilinx Application note.

[29] Unicore systems, “Reed-Solomon IP core”, Rev 1.0 (2009).

[30] Brendan Bridgford, Carl Carmichael, and Chen Wei Tseng, “Single-Event

Upset Mitigation Selection Guide”, XAPP 987, Xilinx Application note.

[31] E. Takeda, K. Takeuchi, D. Hisamoto, T. Toyabe, K. Ohshima, and K.Itoh,

“A cross section of α-particle-induced soft-error phenomena in VLSIs,”

IEEE transactions, Electron. Devices, Vol. 36, November 1989, pp. 2567-

2575

[32] B. Eitan and D. Froham-Bentchkowsky,”Hot-electron injection into the

oxide in n-channel MOS devices,”IEEE Trans. Electron Devices, Vol. ED-

28, no. 3, pp, 328-340,1981.

86

[33] Lezlinger, M. and Snow, E.H(1969) Fowler-Nordheim tunneling in

thermally grown SiO2. Journal of Applied physics. 40, 278

