
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

6-25-2010

GUARDIAN : automated patient monitoring
system
Johnny C. Silva

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Silva, Johnny C.. "GUARDIAN : automated patient monitoring system." (2010). https://digitalrepository.unm.edu/ece_etds/238

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/238?utm_source=digitalrepository.unm.edu%2Fece_etds%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 GUARDIAN: AUTOMATED PATIENT MONITORING SYSTEM

 BY

 JOHNNY C. SILVA

 B.S., Electronics Engineering Technology, Oregon Institute of Technology,

2002

 THESIS

 Submitted in Partial Fulfillment of the

 Requirements for the Degree of

 Master of Science

 Electrical Engineering

 The University of New Mexico

 Albuquerque, New Mexico

 December, 2009

 GUARDIAN: AUTOMATED PATIENT MONITORING SYSTEM

 BY

 JOHNNY C. SILVA

 ABSTRACT OF THESIS

 Submitted in Partial Fulfillment of the

 Requirements for the Degree of

 Master of Science

 Electrical Engineering

 The University of New Mexico

 Albuquerque, New Mexico

 December, 2009

iv

GUARDIAN: AUTOMATED PATIENT MONITORING SYSTEM

by

Johnny C. Silva

B.S., Electronics Engineering Technology, Oregon Institute of Technology, 2002

M.S., Electrical Engineering, University of New Mexico, 2009

ABSTRACT

Telemedicine allows medical professionals to monitor, examine, and consult with

patients remotely by transferring medical information via wireless communication

technologies. This thesis describes the design and implementation of a new automated

patient monitoring system.

In many cases, vital signs, location data, and other patient information are

currently not tracked in a real-time automated fashion. The remote monitoring system

proposed and developed in this thesis has the ability to provide doctors/healthcare

professionals with 24-hour access to real-time patient information, as well as historical

data of every one of their patients.

A prototype automated patient monitoring system was constructed to demonstrate

general telemedicine system design concepts. The prototype consists of sensor units worn

by each patient that monitor real-time vital signs information and wirelessly transmit it to

a central monitoring computer (CMC) for processing. A graphical user interface displays

this real-time data.

v

This project identified the required components of a wireless automated patient

monitoring system and demonstrated one possible implementation methodology for such

a system. This stand-alone prototype automated patient monitoring system was

successfully designed, built, and tested.

The prototype system described in this thesis is focused on patient monitoring

within a medical facility. This same system can be slightly modified to achieve different

types of monitoring in different situations such as child care facilities and home

healthcare. Possible future monitoring technologies are explored.

vi

TABLE OF CONTENTS

LIST OF FIGURES ...VIII

LIST OF TABLES .. IX

CHAPTER 1 - INTRODUCTION..1
1.1 Purpose.. 2

1.2 Scope... 2

1.3 Acronym Definitions .. 2

CHAPTER 2 – ISSUES FACING CURRENT PATIENT MONITORING

TECHNIQUES...3
2.1 Hospitals ... 3

2.2 Assisted Living Facilities.. 4

2.3 Home Healthcare .. 5

2.4 Combat Support Hospitals .. 6

2.5 Child Care Facilities ... 6

CHAPTER 3 – AVAILABLE TECHNOLOGIES & MARKET RESEARCH...........7
3.1 Available Technologies Used to Aid in Patient Monitoring..................................... 7

3.1.1 Measuring Vital Signs.. 7

3.1.2 Digital Sampling .. 7

3.1.3 RF Transceiver... 8

3.1.4 Sensor Networks .. 8

3.1.5 Off-Patient Data Communication .. 9

3.1.6 Wireless Access Point.. 11

3.1.7 Central Monitoring Computer.. 12

3.1.8 Display Sensor Data... 12

3.2 Market Research ... 14

CHAPTER 4 – PROPOSED REMOTE MONITORING SYSTEM

ARCHITECTURE & PROTOTYPE IMPLEMENTATION26
4.1 Proposed Remote Monitoring System Architecture ... 26

4.1.1 Central Monitoring Computer.. 27

4.1.2 Wireless Access Points .. 28

4.1.3 Wearable Patient Sensor Unit .. 28

4.2 Prototype Hardware .. 29

4.2.1 Central Monitoring Computer.. 30

4.2.2 Switching Network .. 30

4.2.3 Wireless Access Point.. 31

4.2.3.1 WAP Schematic .. 32

4.2.3.2 Transceiver.. 32

vii

4.2.3.3 WAP Picture and Description... 36

4.2.4 Wrist Module ... 37

4.2.4.1 WM Schematic.. 38

4.2.4.2 Transceiver.. 39

4.2.4.3 WM Picture and Description .. 39

4.3 Prototype Software.. 40

4.3.1 Guardian Software Package... 40

4.3.1.1 Guardian GUI.. 40

4.3.1.2 Database Manager... 55

4.3.1.3 Communications Engine... 56

4.3.2 Embedded WAP code .. 62

4.3.2.1 WAP Flowchart description.. 63

4.3.3 Embedded WM code.. 66

4.3.3.1 WM Flowchart description ... 68

4.3.4 System Interface Description... 72

4.3.4.1 CMC ↔ WAP Data Structure... 72

4.3.4.2 WAP ↔ WM Data Structure .. 73

4.3.4.3 Prototype Command Definitions .. 73

CHAPTER 5 – CONCLUSIONS & FUTURE WORK..74
5.1 Conclusions... 74

5.1.1 System Successes... 74

5.1.2 Possible System Improvements ... 75

5.2 Future Work .. 76

APPENDICES..78
Appendix A... 78

WAP Embedded C code ... 78

Appendix B ... 89

WM Embedded C code... 89

Appendix C ... 101

Guardian.h file used in WAP and WM Embedded C code..................................... 101

Appendix D... 102

General Information.. 102

Sample of logged patient vital signs data ... 102

Sample of Guardian database directory structure. .. 102

REFERENCES...103

viii

LIST OF FIGURES

Figure 1: Proposed System Block Diagram.. 27

Figure 2: Switching Network Schematic .. 30

Figure 3: Block Diagram of a Wireless Access Point (WAP).. 31

Figure 4: Schematic of Wireless Access Point (WAP)... 32

Figure 5: Clocking in Data with MCU and Sending with ShockBurst............................. 33

Figure 6: Current Consumption with & without ShockBurst ... 33

Figure 7: ShockBurst Data Package Diagram .. 34

Figure 8: Picture of Fully Assembled Wireless Access Point (WAP).............................. 36

Figure 9: Block Diagram of a Wrist Module (WM)... 37

Figure 10: Schematic of Wrist Module (WM).. 38

Figure 11: Picture of Fully Assembled Wrist Module (WM)... 39

Figure 12: Guardian GUI - Home Screen ... 41

Figure 13: Emergency Event Window.. 43

Figure 14: Add Patient Screen .. 45

Figure 15: Edit Patient Screen .. 47

Figure 16: Patient Data Screen ... 49

Figure 17: Patient Data Screen – More Info. .. 51

Figure 18: Patient History Screen ... 52

Figure 19: All History Screen ... 54

Figure 20: Real-Time Display Table Legend ... 55

Figure 21: Guardian Communications Engine Flowchart .. 57

Figure 22: Polling Method Timing Plot.. 61

Figure 23: Embedded WAP code Flowchart .. 63

Figure 24: Embedded WM code Flowchart.. 67

Figure 25: Prototype System Data Sequence Diagram... 72

Figure 26: Sample Log Data ... 102

Figure 27: Sample Database Directory Structure ... 102

ix

LIST OF TABLES

Table 1: Wireless Standards by Range ... 10

Table 2: ShockBurst Data Package Description ... 34

Table 3: Prototype Channel Allocations ... 35

Table 4: CMC to WAP Data Structure ... 72

Table 5: WAP to WM Data Structure... 73

Table 6: Prototype Command Definitions .. 73

1

CHAPTER 1

Introduction

An important aspect of telemedicine is the ability to transfer real-time medical

information via communication networks. It enables doctors to monitor, examine, and

consult with patients remotely.

Telemedicine technologies can improve doctor-to-patient response time in an

emergency situation and provide periodic historical vital signs data that lead to more

accurate diagnoses. These technologies also allow patients to have uninhibited movement

throughout a monitoring facility or their home.

Standard patient monitoring requires a nurse to periodically record a patient’s

vital signs. These vital signs include body temperature, pulse rate, blood pressure, and

respiratory rate. Patients are interrupted from their current activities or sleep when the

nurse performs these measurements. Missing one scheduled set of measurements could

reduce the effectiveness of the care the patient receives.

These problems can be eliminated by incorporating an automated monitoring

system that records the patient’s vital signs at periodic intervals. Such a system is more

reliable and less inconvenient for the patient and the medical staff.

2

1.1 Purpose

This thesis describes the design and implementation of a new automated patient

monitoring system, named Guardian.

1.2 Scope

• Investigate the current state of patient monitoring technologies and problems

these system face

• Describe current technologies available to help solve these problems

• List commercially available solutions

• Provide design and implementation of new automated patient monitoring system

• Analyze results of newly implemented system

• Propose possible improvements and future work

1.3 Acronym Definitions

CMC – Central Monitoring Computer

GDM – Guardian database manager

GPIO – General Purpose Input Output

GSP – Guardian software package

GUI – Graphical User Interface

ISR –Interrupt Service Routine

PIC – Peripheral Interface Controller

RF – Radio Frequency

UART – Universal Asynchronous Receive Transmit

WAP – Wireless Access Point

WM –Wrist Module

3

CHAPTER 2

Issues Facing Current Patient Monitoring Techniques

Vital signs, location data, and other patient information are currently not tracked

in a real-time automated fashion. Ideally, however, doctors would like to have 24-hour

access to real-time patient information and historical data on every one of their patients.

There are several limiting factors when attempting to monitor patient vital signs in

and out of medical facilities. These factors vary depending on both the specific facility

and the patient. Some common examples include:

2.1 Hospitals

Each time a patient enters a hospital, they fill out a medical questionnaire

regarding the reason for their visit. These questionnaires can be error prone and may be

difficult for patients to complete accurately. Misinformation may make it difficult for

doctors to diagnose the patient’s medical problem correctly. This problem is compounded

each time a patient visits multiple care providers.

Much of a patient’s information such as medical history, allergies, and current

treatments are kept on the patient’s chart. If this chart is misplaced or destroyed before

the information is transferred to a computer for archiving, the information the chart

contains will be permanently lost and the patient’s care may be compromised. Without

knowing which treatments and medications the patient has already received, there is a

chance that improper care will be given or incorrect doses of medication prescribed.

When a patient is being monitored by a wired monitoring device the wires can get

in the way and hinder the patient’s movements. The wires can also present a choking

4

hazard if the patient turns over in the wrong way or could restrict blood flow if they are

wrapped around a patients extremities. Also, tripping over the monitoring wires could

result in serious injury to patients or medical staff.

 Currently, in a hospital’s new born care area, each baby has a radio frequency

identification (RFID) tag attached to its ankle. RFID tags are devices used in many types

of stores to ensure that shoplifters don’t steal items from the store. If an item that wasn’t

purchased passes through the store’s doors, an alarm is activated and the store’s security

personnel can catch the shoplifter and retrieve the stolen item. The RFID tag on each

baby works in this same manner. The problem with this technology is that it can be easily

circumvented by simply cutting the RFID tag off of the baby’s ankle. If the RFID tag

was removed, babies could be taken from the facility without the staff’s knowledge.

2.2 Assisted Living Facilities

 Patients in an assisted living facility must be monitored on a frequent basis. An

attending nurse must find the patient to administer the patient’s next dose of medication

or check the patient’s vital signs. If the patient is not in their room it may be difficult for

the nurse to locate the patient and perform their duties.

 When a nurse administers medication to a patient they log the time, type, and

amount of medication given along with any other notes that are applicable. If the nurse

forgets to log any of this information, or logs inaccurate information, the patient may

miss a scheduled dose or get a double dose of medication. Either of these situations could

compromise the health of the patient.

 Many times elderly patients may fall or be in need of immediate assistance. If

neither nurse nor panic button is accessible, the patient may remain in this situation until

5

discovered. This situation may last for minutes or even days before anyone realizes there

is a problem.

Frequently, the nursing staff at assisted living facilities need to monitor the

activity level of a patient to ensure that the patient doesn’t over stress their body. This

type of monitoring is time intensive and difficult to accomplish accurately. Without

having 24-hour monitoring of the patient’s vital signs, the nurse must rely heavily on the

memory of the patient to provide activity level information throughout the day.

Families fear their loved ones won’t be properly cared for in assisted living

facilities. Even with assurances from the facility staff, this may not be enough to alleviate

the family’s concerns. Also, patients may be unable or unwilling to convey their quality

of care.

 Many potential health issues can be prevented by frequent vital sign readings.

These issues may be overlooked if the medical staff’s workload prevents them from

taking frequent readings.

2.3 Home Healthcare

 Home healthcare presents unique challenges. Costs limit the frequency of in-

home care for many patients. Continuous real-time monitoring of a patient’s conditions is

difficult to achieve with currently available solutions. Patients must travel to a hospital

for simple checkup or consultations that may only take a few minutes. Also, if a patient is

alone in their home and is injured, it may be difficult for the patient to call for help.

Patients recovering from medical procedures may be kept for observation simply

to monitor their vital signs. This increases the cost and inconvenience for the patient and

also utilizes more of the hospital’s space and resources for noncritical tasks.

6

Some Alzheimer or dementia patients may wander out of their home without

anyone noticing. The physical safety of an Alzheimer’s patient becomes a factor as well.

As the patient’s disease progresses, the patient is no longer able to call for assistance

from neighbors or emergency personnel.

2.4 Combat Support Hospitals

 When a soldier is wounded on the battle field, it is critical that the medical

personnel have their accurate medical histories. This information may be hard or even

impossible to access given different battle field situations. Without this information the

medical personnel may be unaware of the soldier’s potential allergies or previous medical

conditions.

 If a soldier is unable to communicate with medical personnel, the soldier’s dog

tag is used to verify their general personal information. More information about the

soldier could aid the soldier’s treatment and successful recovery.

 Combat support hospitals also face the same problems presented to standard

hospitals.

2.5 Child Care Facilities

 Many families utilize child care facilities during working hours to provide a safe

and active environment for their children. It is difficult for parents to ensure their children

are active each day. Also, if the child care facility is not extremely secure, a child could

wander out of the facility or be abducted from the facility without the facility’s staff

knowing. There is no immediate way to detect these situations.

7

CHAPTER 3

Available Technologies and Market Research

There are many technologies available today that can be used to eliminate the

problems seen with current patient monitoring techniques. Several companies and

research groups are developing patient monitoring devices to this end. This chapter

explores several available technologies and describes some of the patient monitoring

solutions already developed.

3.1 Available Technologies Used to Aid in Patient Monitoring

 Using the following technologies, an automated patient monitoring system can be

designed to eliminate many problems seen with current monitoring techniques. An ideal

monitoring system includes some or all of the following technologies.

3.1.1 Measuring Vital Signs

Most basic vital signs can already be measured and converted to digital data using

commercially available sensors. The sensors used for these measurements vary in

complexity from the pulse rate monitors included with treadmills to a dedicated

electrocardiogram machine. Common vital signs charted by healthcare staff include body

temperature, pulse rate, blood pressure, and respiratory rate.

3.1.2 Digital Sampling

Once a patient’s vital signs have been measured, the measurements need to be

converted to digital data for analysis and logging. Some sensors have a built-in ability to

convert an analog measurement into a digital signal. Other sensors require an external

device to convert these signals. Modern microcontrollers are well suited to transform

8

these analog signals to digital signals using on-chip peripherals. [D1] Useful examples

are analog to digital converters, analog comparators, Inter-Integrated Circuit (I2C)

Busses, and Serial Peripheral Interfaces (SPI).

3.1.3 RF Transceiver

Once the microcontroller has converted each analog measurement to its digital

equivalent, the data can be transferred from the microcontroller to an external radio

frequency (RF) transceiver using any of the microcontroller’s on-chip digital peripherals.

The RF transceiver facilitates wireless communications between the microcontroller and

other RF transceivers within range.

Many RF transceivers perform cyclic redundancy checks (CRC) to ensure that

valid data is received. [D2] Also, most RF transceivers have configuration registers that

enable users to change settings such as frequency, output power, and data rate. More

complicated RF transceivers can also incorporate data encryption techniques to ensure

secure transmissions.

3.1.4 Sensor Networks

 Many microcontrollers can be linked together using hardwires or using RF

transceivers to create a sensor network. This network would have one node that was

designated as the network controller. All digitized data from the sensor network is sent to

the network controller node for processing and transmission out of the sensor network.

To reduce out-of-network transmissions, the network controller would filter all

raw data coming from the sensor network and determine which data should be sent to an

external network as an emergency alert or for further processing and logging.

9

 The network controller node is the “brain” of the sensor network. If the network

controller node malfunctions, other nodes in the sensor network would have the ability to

take over and become the network controller node. This type of fault-tolerant network

ensures that the sensor network will continue operating properly even if there is a

catastrophic failure.

3.1.5 Off-Patient Data Communication

 After the network controller determines which data to send, it will forward the

data to an external network or standalone device. There are many ways data can be sent

to an external network. Using a wired connection is the simplest medium for data

transfers. A wired connection has extremely high data rate possibilities, but limits the

mobility of the user.

Alternatives to a wired connection would be using existing wireless technologies.

For short range identification and tracking, the use of radio-frequency identification

(RFID) can be implemented. RFID technology is usually used for transferring static data

such as a serial number or product details. A different short range solution that offers

more flexibility and higher data transfer rates would be to incorporate Bluetooth

technology into the sensor network controller. Bluetooth is a wireless protocol for

exchanging data over short distances. Bluetooth is commonly used to create personal area

networks (PANs) among fixed mobile devices.

Bluetooth technology could also be used to create the sensor network itself. Many

other short range wireless technologies are available including custom network protocols.

10

 A longer range wireless solution would be to utilize the current 802.11 wireless

local area network (WLAN) hardware and protocols. This network protocol, along with

the hardware to interface to such a network, is ubiquitous.

 For even more range a cellular network can be used. When local cellular

infrastructure is not present, radio stations and satellite communications can be utilized.

Short Range Wireless (< 300 feet) Bluetooth, Low Energy Bluetooth, Wi-

Fi/802.11, Infrared , Zigbee

Medium Range Wireless (< 45 miles) WiMax/4G, 3G, PCS, GSM, CDMA,

EDGE

Long Range Wireless (> 45 miles) GSPRS/Paging Systems, Satellite-Low-

Earth Orbit, High-Earth Orbit, Licensed

Radio Stations, Digital UHF/VHF Stations

Table 1: Wireless Standards by Range

 All of these technologies could be incorporated into the same sensor network

controller. Instead of including hardware for all of these different communication

methods, the sensor network controller would incorporate a reconfigurable antenna [1] in

conjunction with cognitive radios [2] to adjust itself to function with whichever network

is available. This would ensure the network controller’s size is minimized and increases

the chance that the sensor network would have coverage at all times.

 Another benefit of using wireless technologies is that as the number of sensor

networks increase, each individual sensor network looks like a larger node in the external

network and the effective number of available nodes in the external network increases.

These larger external network nodes can work together or “cooperate” to transfer data

between outlying nodes and a central monitoring computer when an outlying node

doesn’t have the ability to communicate with the central monitoring computer directly. In

this situation, data transfers between the central monitoring computer and “out-of-range”

11

network nodes are relayed through “in-range” network nodes to complete the network

communication path.

3.1.6 Wireless Access Point

 A wireless access point (WAP) receives data from each sensor network controller

via one of the communication methods described in the last section and transfers this data

to a central monitoring computer (CMC) through a switching network. Wireless access

points can be custom designed devices or standard devices such as WLAN routers or

cellular towers. The use of wireless access points enables the coverage area of an

individual system to grow with the addition of every wireless access point.

 Tethering is a method that can be used by a sensor network controller to transfer

data between itself and a CMC. Creating an ad-hoc Bluetooth network connection

between a sensor network controller and a cell phone would allow the sensor network

controller to use every cellular tower as a wireless access point for data transfers. This

method of connectivity uses existing cellular networks and infrastructure to transfer

bidirectional data between a standalone sensor network and any server on the internet.

Utilizing the cellular networks increases the overall effective coverage area of

each standalone sensor network. There are security concerns when utilizing cellular

networks. Patient data and medical records are mainly stored on local networks in

medical facilities. When a patient’s medical record is transmitted through a public

cellular network there is a possibility that the information can be intercepted by malicious

parties. Also, the reliability of the cellular network comes into question when medical

information is involved. Cell phones routinely experience dropped calls, but a loss of

connection when dealing with a medical situation is unacceptable.

12

3.1.7 Central Monitoring Computer

 A central monitoring computer (CMC) will be used as the core element of the

proposed sensor monitoring system. The CMC is responsible for gathering data sent by

all sensors in the system through the wireless access points. It logs all data gathered into a

central database. Normally, a polling scheme is implemented to gather this data. The

CMC has the ability to communicate with every wireless access point in the system.

Bidirectional data transfers between the CMC and any standalone sensor network is

facilitated through these wireless access points.

 The CMC stores all incoming data to a database for future use. The database is

stored on a central server and is available through various means.

The CMC will also perform calculations on incoming data to determine what

tasks it must perform. These tasks could include requesting additional data from or

sending a command to a specific sensor network. The CMC could also send an alert to an

operator that there is a problem with a specific sensor network.

 As the size of the entire system increases the demands put on the CMC will also

increase. Additional processors and increased processor speeds may be required to

accommodate system size increases. Storage capacities and data access times may also

need to be improved. Also, each improvement in CMC performance will increase the

power requirements of the system.

3.1.8 Display Sensor Data

 While the CMC is gathering and storing all of the sensor data in the system, a

graphical user interface (GUI) can be used to access the sensor data and display it to an

operator in real-time. All decoded sensor data can be displayed along with limit warnings

and alarms for each reading. If sensor data exceeds predefined safety alert or alarm limits,

13

operators are notified. Alert and alarm notifications can be as simple as flashing a light or

sounding a buzzer in the GUI, to placing a phone call or sending a text message to an

operator to notify them of an emergency situation. Data can also be updated in real-time

to websites and displayed to operators anywhere in the world.

 Another method for displaying real-time sensor information would be to use a

hand-held device to request information directly from a specific sensor network

controller. The hand-held device would create an ad-hoc network between itself and the

sensor network controller. The hand-held device would also be able to change the sensor

network’s settings including custom sensor monitoring limits. Other features of the hand-

held device could include logging real-time sensor data, printing sensor summaries with

operator comments, and the ability for the operator to send sensor information to a main

database or internet website directly for review.

14

3.2 Market Research

Several companies are developing patient monitoring devices using some of the

technologies listed earlier in this chapter, though few of these products have seen

mainstream use. This lack of product integration may be due to a combination of several

factors, including cost, risk, reliability, and the fact that some doctors may be

technophobic.

Chapter four proposes a remote monitoring architecture and describes a prototype

implementation called Guardian. Many of the commercial products under development

implement features included in the Guardian system. Guardian excels in combining these

features into a complete, scalable system.

Guardian offers several advantages over commercial systems. The Guardian

system is intended to be fully integrated into a facility, enables real-time monitoring, and

simultaneously displays data from multiple patients. Each wrist module can be

programmed with specific patient vital sign ranges, allowing medical personnel to set

emergency alert levels for each patient. These parameters can be changed remotely at any

time using the Guardian’s graphical user interface (GUI). The Guardian system is fully

bi-directional, allowing data to be transferred not only from the patient, but to the patient

as well. This allows for features such as voice communication between any patient in the

system and medical personnel.

Instead of simply transmitting vital signs data, the intelligent wrist modules

(WMs) included in the Guardian system can preprocess data before sending it to the

CMC. Each WM is assigned to a specific patient and the data that it transmits is tagged

15

with a unique patient identifier, allowing multiple WMs to operate with proper data

association in the same facility.

Below are a few examples of current products under development.

Medic4all – aLsis
http://en.medic4all.it

Medic4all is a Switzerland based company that researches, designs, and develops many

different telemedicine products. Most of their products are geared towards the consumer

market.

Product Features:

• Small wearable device

• One button interface

• Transmits emergency alert wirelessly to wireless access

point

Product Limitations:

• Unidirectional communication

• No patient data transferred with button press

• No severity indicator

• No unique identifier, single patient use

Product Use:

• Home healthcare

16

Medic4all - Watch Me

http://en.medic4all.it

Product Features:

• Single lead ECG sensor

• Heart Rate sensor

• Heart Rhythm Regularity monitor

• Stores vital signs data locally

• Wirelessly transmits data to a wireless access point

Product Limitations:

• Unidirectional communication

• No unique identifier, single patient use

• No emergency alert button

• No patient specific measurement limits

Product Use:

• Home healthcare

Medic4all - MedicGate

http://en.medic4all.it

Product Features:

• Wireless access point

• Enables communication between wireless monitoring

devices and the central monitoring center

17

• Data communication to central monitoring center via

telephone lines, internet or cellular network

Product Limitations:

• Unidirectional communication from patient monitoring

devices to monitoring center

Product Use:

• Home healthcare

• Medical facility

CSIRO Information and Communication Technologies (ICT) Center – ECHONET

http://research.ict.csiro.au

CSIRO is an Australia based company that focuses its ICT research in the commercial

medical field.

Product Features:

• Mobile

• Broadband communication

• Real-time video

• Real-time measurements

• Virtually brings a remote specialist to the

point of care

• Enables image-based diagnostic procedures

such as echocardiography

18

Product Limitations:

• Requires medical personnel to operate

equipment

• Only dedicated measurements available,

not easily expandable

• Not automated

• Large size

Product Use:

• Medical facilities

MAQUET - AV Conference Premium

http://www.maquet.com

MAQUET is a Swedish based group of companies with three specialty divisions for

Critical Care, Cardiovascular, and Surgical Workplaces. This company has developed a

telemedicine solution for its surgical workplace division.

Product Features:

• Records vital signs information

• Records audio and video

• Broadcasts all data live to remote facilities

• Bidirectional audio communication

between facilities

• Touch screen user interfaces

19

Product Limitations:

• Requires medical personnel to operate

equipment

• Not automated

• No mobility

• Large size

Product Use:

• Medical operating rooms

NASA - Telemedicine Instrumentation Pack

http://lsda.jsc.nasa.gov

NASA is an agency of the United States government. They develop and use telemedicine

systems to monitor astronauts during training and throughout space missions.

Product Features:

• Vital signs monitoring

• Record heartbeat, electrocardiographic, and

pulse-oximeter data

• Transmit data to remote locations in real-

time

• Physical examination imaging capabilities

• Screens for signs of airborne mucous

membrane irritation and injuries

20

• Accurately assess skin responses for immune function testing

Product Limitations:

• Requires medical personnel to operate equipment

• Large size

• Set measurement capabilities

• No patient specific limit settings

Product Use:

• NASA internal use

MobiHealth – Mobile

http://www.mobihealth.com

Mobihealth is Dutch company that develops mobile sensors, on-line software, and

software designed specifically for use by healthcare professionals.

Product Features:

• Wireless sensors worn on patient’s body

• Multi-lead ECG sensor

• Multi-channel EMG sensor

• Pulse rate sensor

• Oxygen saturation (SpO2) sensor

• Respiration monitor

• Core/skin temperature sensor

• 9-hours battery life during real-time measurements and transmission

21

• Patient feedback using vibration, audio, and graph display

• Bluetooth

Product Limitations:

• Unidirectional communication

• No patient specific measurement limits

• Requires external device to function

• Requires medical professionals to interpret measurement data

Product Use:

• Medical facility

• Home healthcare

SensWear - Body Monitoring Solution

http://www.sensewear.com

SensWear is a U.S. base company that develops wearable body monitoring systems that

are designed to help people lose weight, improve performance and live healthier

lifestyles.

Product Features:

• Wireless sensor unit worn on patient’s arm

• Real-time data displayed on patient’s wrist display

• Monitors energy expenditure

• Monitors activity level

22

• Monitors sleep efficiency

Product Limitations:

• No data transmission to external networks

• No vital signs measurements

• Used primarily for motion measurements

Product Use:

• Home healthcare

Sensatex – SmartShirt

http://www.sensatex.com

Sensatex, Inc. is a life science technology company focused on the development of Smart

Textile Systems. They have developed the Sensatex SmartShirt which is a wearable

Smart Textile unisex T-shirt designed to acquire physiological information and

movement data from the human body.

Product Features:

• Wearable T-shirt

• Conductive fiber/sensor system

• Real-time sensor measurements and

transmission

• Heart rate sensor

• Respiration sensor

• Body temperature sensor

23

• Activity level monitoring

• Wireless communication via Bluetooth or ZigBee

Product Limitations:

• Unidirectional communication

• No patient specific measurement limits

• Set measurement capabilities

• Comfort concerns

Product Use:

• Medical facility

• Home healthcare

Cardiomems Inc. - EndoSure Wireless AAA Pressure Sensor

http://www.cardiomems.com

Cardiomems Inc. is a U.S. based company that develops small implantable sensors

designed to improve the management of severe chronic cardiovascular diseases such as

heart failure and aneurysms.

Product Features:

• Permanently implanted into the cardiovascular system

• Monitors cardiac information

• Blood pressure measurement

• Heart rate measurement

• Small size

24

• Durable

• No wires or batteries

• Sensors transmit real-time data to an external electronics module using inductively

coupled power and data

Product Limitations:

• Data only viewable and recordable while being actively monitored with an external

device in a medical facility

• Requires surgical implantation

• No emergency notification to medical personnel when patient is outside medical

facility

• Set measurement capabilities

Product Use:

• Medical facilities

Integrated Sensing Systems (ISSYS) -Wireless, Batteryless Cardiac Sensor

http://www.mems-issys.com

ISSYS is a U.S. based company that develops implantable intelligent MEMS-sensor-

based systems to enhance the quality of medical treatment. Their MEMS cardiac sensor is

25

used for patients diagnosed with Congestive Heart Failure (CHF).

Product Features:

• Minimally invasive Implanted sensor (catheter

delivered)

• Long-term operation (>10 years)

• No wires or batteries

• Real-time cardiac pressure measurements

• Monitor measurements at home

• Transfer data to physicians via telephone line or internet

• Collect information from sensor using hand-held

inductively coupled reader

Product Limitations:

• Data only viewable and recordable while being actively

monitored with an external device

• Requires surgical implantation

• No emergency notification to medical personnel when

patient is outside medical facility

• Set measurement capabilities

Product Use:

• Medical facility

• Home healthcare

26

CHAPTER 4

Proposed Remote Monitoring System Architecture and Prototype

Implementation

 This chapter will outline the details of a proposed remote monitoring system

architecture. It will then describe the operation of the overall proposed system and each

system component. A prototype implementation of an automated patient monitoring

system will be described. All aspects of the prototype system will be addressed including

overall system design, hardware implementation, software implementation, data polling

methods, and communication data structures. Operation of the Graphical User Interface

(GUI) will also be explained.

4.1 Proposed Remote Monitoring System Architecture

The proposed remote monitoring system consists of sensor units worn by each

patient that monitor real-time vital signs information and wirelessly transmit it through

wireless access points to a central monitoring computer (CMC) for processing.

The proposed system architecture is scalable in both the number of patient’s and

number of monitoring areas employed. Each monitoring area can support multiple sensor

units.

Medical personnel monitor all patients simultaneously on the CMC and are

notified of any emergency events that occur. Using this type of automated monitoring

allows a minimal number of medical personnel to comprehensively address the needs of

large number of patients.

A block diagram of the proposed system is shown in figure 1 below.

27

Figure 1: Proposed System Block Diagram

4.1.1 Central Monitoring Computer

 The central monitoring computer (CMC) will be in control of the entire system.

The CMC will communicate through a switching network with wireless access points to

poll each patient’s sensor unit requesting the patient’s current vital sign measurements. A

graphical user interface (GUI) will be running on the CMC. The GUI will display each

28

patient’s real-time vital signs, location information, and emergency events to medical

personnel operating the system.

The CMC will also log and maintain all patient information in a database for

future use.

4.1.2 Wireless Access Points

 Range limitations, output power limits, unknown monitoring area layouts,

scalability, and many other factors make it very difficult for the wearable sensor units to

communicate directly with the central monitoring computer. A solution is to incorporate

wireless access points (WAPs) into the system. The WAPs relay commands and data

between the CMC to the wearable sensor units. They allow the central monitoring

computer to monitor many locations without having to communicate with the wearable

sensor units directly. Also, a patient’s location can be determined using each WAP’s

coverage area. Multiple WAPs are connected to the CMC via a switching network. The

complexity of the switching network will vary based on the requirements of the overall

system.

4.1.3 Wearable Patient Sensor Unit

 Each patient will wear a mobile wireless unit that monitors and transmits their

vital signs and other patient data back to the central monitoring computer. This wireless

unit will also receive commands from the central monitoring computer and respond

appropriately. In the proposed system these wearable sensor units are worn on each

patient’s wrist and called Wrist Modules (WMs).

WMs will monitor each patient’s standard vital signs. The WMs will also be

equipped with an array of patient specific sensors that can be easily added or removed

29

from the WM depending on each patient’s medical requirements. The reconfigurable

nature of the WMs allows the proposed system to easily be used in other monitoring

situations.

The proposed system enables bidirectional variable data rate communication

between WMs and the CMC. This enables the CMC to reprogram WMs while they are

being worn by patients. New measurement rates, data rates, or emergency limits can be

reconfigured based on the patient’s needs. Using these capabilities also allows for a

bidirectional audio communications link between WMs and the CMC. This feature can

be used in many monitoring conditions to quickly evaluate the severity of a situation.

Each WM will have the ability to communicate directly with a handheld device.

The handheld device has the same functionality as the CMC. It is used by medical

personnel during exams or consultations to display a patient’s real-time vital signs data.

Also, if necessary, medical personnel can change a patient’s WM configuration to

emphasize specific measurements.

4.2 Prototype Hardware

A prototype automated patient monitoring system was constructed to demonstrate

some general telemedicine system design concepts described in chapter 3. The prototype

system is designed for use in a medical facility environment, but could be applied to

many other monitoring situations. The prototype consists of a central monitoring

computer (CMC) that polls multiple patient’s wrist modules (WMs) requesting current

measurements from each. The CMC communicates with each WM through a simple

30

switching network and two wireless access points (WAPs). Three wrist modules were

created that monitor basic vital signs.

4.2.1 Central Monitoring Computer

 The central monitoring computer (CMC) is a stand-alone computer that runs a

graphical user interface (GUI) named Guardian. The CMC must be running a Windows

operating system and have a LabVIEW 8.6 runtime engine installed in order to run the

Guardian software. The only other requirement for the CMC is that it must have at least

one USB port available for connection with the switching network. The connection from

the CMC to the switching network is made using a USB to RS-232 converter.

4.2.2 Switching Network

 The prototype system was implemented with two wireless access points (WAPs)

so a complicated switching network was not required. The UART-TX signals coming

from each WAP are active low. An analog OR gate was constructed using two diodes and

a resistor as seen in figure 2 below. The OR gate allows each WAP UART to

communicate directly to the CMU without creating bus contention between WAPs.

Figure 2: Switching Network Schematic

31

4.2.3 Wireless Access Point

The wireless access point (WAP) is comprised of a PIC microcontroller [D1] and

a 2.4GHz wireless transceiver [D2]. The PIC’s UART enables bidirectional data transfers

between the CMC and the WAP via the switching network. Five general purpose

input/output (GPIO) pins form the PIC are connected to the wireless transceiver. These

GPIO lines control the transceiver and enable bidirectional data transfers between the

WAP and any wrist module (WM) that is within the WAP’s coverage area. A simple

block diagram of the WAP can be seen in figure 3 below.

Figure 3: Block Diagram of a Wireless Access Point (WAP)

 Each WAP also has two light emitting diode (LED) indicators that show status

information about the WAP’s operation. The first LED is yellow and indicates an RF data

transfer between the WAP and a WM. The second LED is green and toggles between on

and off states; each transition indicates the WAP received a valid response from the WM

with which it was trying to communicate.

 A schematic of the WAP can be seen in figure 4 below.

32

4.2.3.1 WAP Schematic

Figure 4: Schematic of Wireless Access Point (WAP)

The schematic shown in figure 4 depicts the connections between the WAP’s

microcontroller and its peripherals. The microcontroller is connected to a 2.4GHz

transceiver, a programming connector, and two LEDs. The microcontroller’s UART

transmit and receive lines are connected directly to the switching network.

4.2.3.2 Transceiver

 The transceiver [D2] that was chosen for the prototype system has the following

specifications.

Manufacturer – Nordic Semiconductor

Transceiver Type – nRF2401A

Frequency – 2.4 GHz – 2.524 GHz (ISM Band)

Channels – 125

Modulation – GFSK

Output Power – -20dBm to 0dBm (Prototype uses 0dBm)

Data Rate – 1Mbps or 250kbps (Prototype uses 250kbps)

Range – 50ft indoors

Address and CRC computation (Prototype uses 8-bit address and 16-bit CRC)

Incorporates ShockBurst technology

33

4.2.3.2.1 ShockBurst

The ShockBurst technology [D2] in the transceiver uses an on-chip FIFO to clock

in data at a low data rate and transmit the data at a very high rate. This enables the

transceiver to reduce operational power consumption.

When the transceiver is configured in ShockBurst mode, TX or RX operations are

conducted in the following manner.

Figure 5: Clocking in Data with MCU and Sending with ShockBurst

The benefits of using the ShockBurst mode on current consumption can be seen in

figure 6 below.

Figure 6: Current Consumption with & without ShockBurst

34

4.2.3.2.2 Wireless Data Package Description

The transceiver uses the following data package structure for ShockBurst

communication.

Figure 7: ShockBurst Data Package Diagram

This data package is divided into 4 sections. Each of these sections is described in

table 2 below.

1. Preamble • Preamble is 8 bits in length and is automatically added to

the data packet in ShockBurst mode. (Used in prototype

system)

2. Address • 8 to 40 bits (Prototype uses 8-bit mode)

3. Payload • Data to be transmitted

• Payload size is 256 bits minus the following: Address: 8 to

40 bits (Prototype uses 8-bit), CRC 8 or 16 bits (Prototype

uses 16-bit)

• Prototype overall payload size = 256 – 8 – 16 = 232 bits or

29 Bytes

4. CRC • 8 or 16 bits

• Optional (Prototype uses 16-bit mode CRC)

Table 2: ShockBurst Data Package Description

 The prototype system simply loads data to be transmitted into the payload section

of the data package and the transceiver automatically adds the remaining sections before

transmission. The maximum payload size using an 8-bit address and a 16-bit CRC is 232

bits or 29 bytes.

 When the transceiver receives a data package, it verifies all data package

information and sends only the payload data to the microcontroller for processing.

35

4.2.3.2.3 Channel Allocations

The transceiver can be programmed to communicate using one of 125 different

RF channels. Channels above 83 can only be utilized in certain territories (ex: Japan).

The prototype system therefore only utilizes channels through 83.

RF transceiver channels are defined as:

RF_Channel = 2400MHz + (Chan_Num * 1.0MHz)

So, for the transceiver to communicate on channel 30, the RF_Channel is set to

2430MHz.

 Using the above equation, the prototype system defines three channels that it uses

for all data communication.

Prototype Channel Allocations

Channel Name Channel Number Channel Frequency

Beacon 1 2401MHz

Broadcast 30 2430MHz

Response 32 2432MHz

Table 3: Prototype Channel Allocations

36

4.2.3.3 WAP Picture and Description

A picture and description of a fully assembled WAP can be seen in figure 8

below.

Figure 8: Picture of Fully Assembled Wireless Access Point (WAP)

Description

1 – On/Off power switch

Provides power for the entire WAP board.

2 – RF activity LED

On when the RF transceiver is transmitting or receiving data to/from any WM.

3 – Good read LED (Toggle)

Toggles between on/off states each time a valid response is received from any WM.

4 – PIC Microcontroller [D1]

Microcontroller running at 40MIPS that controls all functions of the WAP.

5 – Programming connector

Allows in-circuit serial programming (ICSP) of the PIC microcontroller.

6 – 2.4GHz transceiver [D2]

Enables RF data transfers between the WAP and any WM within the WAP’s

coverage area.

37

4.2.4 Wrist Module

The wrist module (WM) is comprised of a PIC microcontroller [D1], a 2.4GHz

wireless transceiver [D2], an accelerometer [D3], a temperature sensor [D4], and an input

button. Five general purpose input/output (GPIO) pins form the PIC are connected to the

wireless transceiver. These GPIO lines control the transceiver and enable bidirectional

data transfers between the WM and any wrist wireless access point (WAP) that is within

the WM’s RF range.

Each WM is setup to read the value of three 12-bit analog inputs:

• Accelerometer to monitor emergency fall events and WM orientation

• Temperature sensor to monitor patient’s body temperature

• Battery voltage to ensure proper operating conditions

A simple block diagram of the WM can be seen in figure 9 below.

Figure 9: Block Diagram of a Wrist Module (WM)

38

Each WM also has an emergency event reset button and two light emitting diode

indicators that provide the patient with status information. The first LED is yellow and

indicates an emergency fall event has occurred. This LED will flash repeatedly when

activated. The patient can reset the emergency fall event by pressing the emergency event

reset button. The second LED is green and indicates that the WM is within a WAP’s

coverage area. This LED will remain on while within any WAP coverage area otherwise

it will turn off.

 A schematic of the WM can be seen in figure 10 below.

4.2.4.1 WM Schematic

Figure 10: Schematic of Wrist Module (WM)

The schematic shown in figure 10 depicts the connections between the WM’s

microcontroller and its peripherals. The microcontroller is connected to a 2.4GHz

39

transceiver, programming connector, accelerometer, temperature sensor, voltage monitor,

emergency event reset button, and two LEDs.

4.2.4.2 Transceiver

The same transceiver [D2] is used for the WM as the WAP.

4.2.4.3 WM Picture and Description

A picture and description of a fully assembled WM can be seen in figure 11

below.

Figure 11: Picture of Fully Assembled Wrist Module (WM)

Description

1 – On/Off power switch

Provides power for the entire WAP board.

2 – Temperature sensor [D4]

Measures patient’s body temperature in degrees Fahrenheit.

3 – Emergency event reset button

Resets emergency status of the WM. Demonstrates basic user input function.

4 - Emergency event indicator LED

Repeatedly flashes when accelerometer limit of +/- 2g is exceeded

40

5 - Good connection LED

On when WM within WAP coverage area, off when WM out of WAP coverage

area

6 – PIC Microcontroller [D1]

Microcontroller running at 40MIPS that controls all functions of the WM.

7 – Programming connector

Allows in-circuit serial programming (ICSP) of the PIC microcontroller.

8 - +/- 3g 3-axis accelerometer [D3]

Only the z-axis of the accelerometer is used as both a “Fall Sensor” and to

determine the WM orientation. The z-axis is normal to the WM board’s surface and

measures gravity to determine board orientation.

9 – 2.4GHz transceiver [D2]

Enables RF data transfers between the WM and any WAPs within range.

4.3 Prototype Software

There are three different pieces of software that were written for the prototype

system: Guardian software package, Embedded WAP code, and Embedded WM code.

The Guardian Automated Patient Monitoring System is comprised of all three pieces of

software operating together.

4.3.1 Guardian Software Package

 The Guardian software package (GSP) was written in LabVIEW 8.6 and is

comprised of a Graphical User Interface (GUI), Database Manager, and Communications

Engine. The GSP runs on the CMC and allows operators to view real-time patient data,

add, edit, and remove patients from the system, view and edit patient database files, and

send commands directly to a specific patient to reset an emergency event status.

4.3.1.1 Guardian GUI

The Guardian GUI is the front end control and monitoring interface used by

system operators. The GUI includes many different displays that allow operators to add,

edit, and view patient information in the system. When the GUI is first launched, the

Home Screen is displayed. The Home Screen displays real-time vital signs information

41

for every patient in the system and provides control buttons to allow operators to

maneuver easily through the program. The Home Screen can be seen in figure 12 below.

Figure 12: Guardian GUI - Home Screen

The Home Screen includes the following components:

• Current Time

- Displays the current CMC time in a 24-hour HH:MM:SS format.

- Used for log file creation and time tagging of log entries.

• User Help area

42

- Displays help information for any control or display on the Home Screen when an

operator points to the control or display.

• Real-Time Patient Display area

- Displays the following real-time vital signs information for every patient in the

system:

� Wrist Module Number

• Assigned to each patient’s WM when the patient is added to the system.

� Location

• Indicates which WAP coverage area the patient is in currently. (WAP-#)

� First Name

� Last Name

� Body Temperature (ºF)

� Accelerometer Value (g)

• Used for emergency fall event limits and WM orientation.

� Vcc Monitor

• Monitors the battery voltage of the WM in Volts.

� Accelerometer Limit

• Indicates emergency fall event status. (0 – No event, 1 – Event detected)

� Button State

• Indicates patient’s input button status. (0 – Button not pressed, 1 – Button

pressed)

� Last Updated

43

• Indicates when the patient’s vital signs information was last updated. (24-

hour HH:MM:SS)

� Primary Nurse

- Operator can sort all display data at any time by clicking on the column header of

the desired sort column. The first click sorts data in ascending order, second click

sorts data in descending order.

- Automatically sorts patient information based on emergency event status or out-of-

range status. Patient data indicating an emergency event or an out-of-range event

will be moved to the top of the display. Patient data indicating an emergency event

will have priority over an out-of-range event and will therefore be placed above the

out-of-range patient data.

- If there is an emergency event indicated by any patient data, an emergency event

window will appear allowing the operator to clear the emergency event for the

patient. The details of the emergency event will be added to the patient’s real-time

log file. The emergency event window can be seen in figure 13 below.

Figure 13: Emergency Event Window

44

• Operator Control Buttons

- Allows operators to perform program functions.

• Program Status Indicators

- Displays system communication and logging status information.

Each operator control button on the Home Screen performs a specific function. The

outcome of pressing each of these buttons is described below.

45

Home Screen >> Add Patient Button

Figure 14: Add Patient Screen

Pressing the Add Patient button opens the screen shown in figure 14 above. This

screen allows an operator to add patients to the Guardian patient database. The following

information is entered for each new patient:

• Wrist Module number

- Uniquely assigned to each new patient

• First Name

• Last Name

46

• Patient Picture

• Current Medications

• Primary Nurse

• Doctor Notes

The operator has two options after new patient information has been entered.

Add Patient Screen >> Add Patient

- Adds all of the new patient’s information to the patient database

- Creates a directory structure for the new patient

- Create new time and date stamped log file for the new patient

Add Patient Screen >> Cancel

- Doesn’t add patient information to database.

- Closes the Add Patient Screen and returns to the Home Screen.

47

Home Screen >> Edit Patient Button

Figure 15: Edit Patient Screen

Pressing the Edit Patient button opens the screen shown in figure 15 above. This

screen allows an operator to change any of the information for an individual patient that

was entered when the patient was added to the database.

The operator has two options after the patient information has been changed.

Edit Patient Screen >> Save Changes

- Changes patient’s modified information in the patient database.

48

- Creates a new directory structure and time and date stamped log file for the

patient if the patient’s first or last name is changed.

Edit Patient Screen >> Cancel

- Doesn’t change patient information in database information.

- Closes the Edit Patient Screen and returns to the Home Screen.

Home Screen >> Remove Patient

 After selecting a patient from the real-time display on the Home Screen, pressing

the Remove Patient button will remove the selected patient from the system. The

patient’s real-time data will no longer be requested, displayed, or logged in the system.

All of the patient’s previously logged vital signs data will not be removed from the GSP

database.

49

Home Screen >> Patient Data

Figure 16: Patient Data Screen

Pressing the Patient Data button opens the screen shown in figure 16 above. This

screen allows an operator to view real-time trending data for individual patients. The

patient data screen includes the following data:

• Wrist Module Number

• First Name

• Last Name

• Patient Picture

• Body Temperature (ºF)

50

- Plot of real-time trending data

- Numeric display of current body temperature

- Numeric display of average body temperature for trending plot

• Accelerometer Value (g)

- Numeric display of accelerometer value

- Three LED indicators displaying WM surface orientation (Up, Side, Down)

• Vcc Monitor

- Numeric display of battery voltage of the WM

• Accelerometer Limit

- LED indicator displaying emergency fall event status

• Button State

- LED indicator displaying patient’s input button status.

The operator has three options after viewing a patient’s real-time trending data.

Patient Data Screen >> More Info.

- Pressing the More Info. button on the Patient Data Screen opens the following

screen.

51

Figure 17: Patient Data Screen – More Info.

The More Info. Screen displays the following pieces of patient information.

• Current Medications

• Primary Nurse

• Doctor Notes

The operator can return to the Patient Data Screen by pressing the red Close X

button at the top right of the More Info. Screen.

52

Patient Data >> History

- Pressing the History button on the Patient Data Screen opens the following

screen.

Figure 18: Patient History Screen

The Patient History Screen displays the following pieces of patient information.

• Patient’s name (Last, First)

• List of all log files for current patient

• Date of selected log file

53

• Numeric display of average body temperature for all readings is selected log

file

• Plot of all temperature readings in selected log file

• Plot of all accelerometer readings in selected log file

The operator can delete any of the log files in the displayed list by selecting

the desired log file and pressing the Delete Log button.

Pressing the Export Log button will export the selected log file data to

Microsoft Excel.

The operator can return to the Patient Data Screen by pressing the red Close

X button at the top right of the Patient History Screen.

Patient Data Screen >> Close X

- Closes the Patient Data Screen and returns to the Home Screen.

Home Screen >> Export Table

Pressing the Export Table button will export all of the data in the real-time

display on the Home Screen to Microsoft Excel.

54

Home Screen >> All History

Figure 19: All History Screen

The All History Screen is the same as the Patient History Screen but

incorporates the ability for operators to view, export, or delete any patient log file in the

entire patient database.

The operator can return to the Home Screen by pressing the red Close X button

at the top right of the All History Screen.

55

Home Screen >> Help

 Pressing the Help button will open a web page to guide system operators through

the features and operation of the Guardian GUI.

Home Screen >> Table Legend

Figure 20: Real-Time Display Table Legend

 Pointing to the Table Legend label displays a legend in the User Help area of the

Home Screen. The legend describes the coloring of the data rows in the real-time display

on the Home Screen. Each color indicates a different patient limit condition.

Home Screen >> Exit

 Pressing the Exit button closes the Guardian GUI and stops all patient data

queries and data logging.

4.3.1.2 Database Manager

 The Guardian database manager (GDM) handles the creation and maintenance of

the entire Guardian patient vital signs database. The GDM creates a database directory

structure along with time and date stamped log files for every patient that is entered into

the system. Each log file is updated in real-time to ensure minimal loss of data in the

56

event of a system failure. Each day the GDM automatically creates new log files for

every patient in the system.

All data logging done by the Guardian GUI is done through a GDM data

submission. The GUI submits a data packet to the GDM containing all received patient

data from its current patient query. The GDM interprets the data and adds it to the correct

patient log file. Data requests made by the GUI also are done through the GDM. When an

operator requests history information for a specific patient, the GDM retrieves the

information and passes it to the GUI for display and/or export to Microsoft Excel. An

operator can also view the entire patient database by selecting the All History button on

the Home Screen of the Guardian GUI. When the GDM receives this data request, it

loads the entire database into memory and sends all database information to the GUI.

The GDM is also used in the GUI when patient log files and directories are

deleted. A delete command is issued by an operator and the GDM removes the specified

patient’s log file or entire log directory from the patient vital signs database.

4.3.1.3 Communications Engine

The communications engine was written using National Instrument’s LabVIEW

software. It polls through every patient in the system retrieving each patient’s real-time

vital signs information and checking for emergency events. It also interfaces with the

GUI and database manager.

Polled patient information is stored locally on the CMC or on a remote server. A

flowchart defining operation of the communications engine can be seen in figure 21

below.

57

Figure 21: Guardian Communications Engine Flowchart

58

4.3.1.3.1 Communications Engine Flowchart description

The Guardian communications engine performs the following operations to

provide a fully automated patient monitoring system.

1. Initialize wireless access point (WAP) communication port.

2. Read patient database to determine what WM#s are in use.

3. Initialize the polling for the first WAP# in the system and the first WM# to be polled

on that WAP#.

4. Send command to current WAP# to request SOH data from current WM#.

5. Wait for time delay.

6. Response from the WM#?

a. If yes, check to see if that WM# has an emergency to report.

i. If yes, display error message on the central monitoring computer

1. Allow operator to clear the error message (this can happen asynchronously

any time after this point)

ii. Display and log WAP response data and emergency status on the central

monitoring computer.

b. If no, set this WM# location to “???”

i. More WAP#s to poll?

1. If yes, set this WM#’s next polling location to the next WAP#.

7. More WM#s to be polled on this WAP#?

a. If yes, increment to the next WM# to be polled on this WAP#.

i. Return to step 4.

b. If no, check to see if there are more WAP#s to poll.

59

i. If yes, increment to the next WAP#.

ii. If no, set WAP# to the first WAP# in the system.

iii. Set to the first WM# to be polled on this WAP#.

8. Return to step 4.

4.3.1.3.2 Polling Schemes

The Guardian communications engine collects patient vital sign data from all

patients in the system using a continuous round-robin polling routine. Two different

polling methods were investigated to determine what impact changing the number of

wireless access points (WAPs) and the number of patients in the system would have on

the total time required to complete one polling cycle. Both of the methods below describe

a steady-state polling routine without WMs moving between WAP coverage areas.

Polling Method-1:

To complete one polling cycle the system polls the first WAP and requests current

vital signs data from all patient wrist modules (WMs) in the system. The system then

polls the next WAP and again requests data from all patient WMs. The polling

continues until all of the WAPs in the system are polled.

When any WM is in a shared WAP coverage area, this polling method allows

multiple WAPs to access the WM. The WM location is updated in the GUI to indicate

the shared coverage area.

The problem with this method is that the overall time required for a single polling

cycle is directly proportional to the product of the number of WAPs in the system and

60

the number of patients in the system. Therefore this method is not efficient for large

systems.

Polling Method-2:

To complete one polling cycle the system polls the first WAP and requests current

vital signs data only from the patient WMs that are within its coverage area. The

system then polls the next WAP and again requests data only from the patient WMs

that are within its coverage area. The polling continues until every WM is polled. The

communications engine keeps track of which WMs are within each WAP’s coverage

area.

This method doesn’t need to poll every WAP in the system to complete a cycle. If

there aren’t any WMs in a WAP’s coverage area then the WAP is not polled.

This method is much faster than method-1 because the overall time required for a

single polling cycle is only proportional to the number of patients in the system and

has no relation to the number of WAPs.

The prototype system’s communications engine uses this method of polling.

Results for both of these methods are plotted in figure 22 below.

61

Polling Method Timing

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Patients and WAPs

P
o

ll
in

g
 T

im
e

Polling Method 1

Polling Method 2

Figure 22: Polling Method Timing Plot

Future Polling Methods

 Figure 22 illustrates that polling method 2 is much more time efficient than

method 1. However, there are still issues with this polling method. By implementing a

non-interruptible constant polling routine, the time needed to poll every patient in the

system will always be proportional to the number of patients in the system. This may not

be a problem when there are a small number of patients in the system, but for larger

facilities this would be unacceptable.

Eliminating the polling routine all together is one method of alleviating this time

issue. Implementing a WM interrupt driven data transfer protocol would allow the

number of patients in the system to increase exponentially with minimal impact to overall

data collection time. Using this type of protocol, each WM would collect patient vital

signs data and send it to the CMC periodically using a request interrupt. The CMC would

62

wait for interrupt requests and service the interrupts in a FIFO manner. The CMC would

only request data form a specific WM upon operator request. All emergency events

would be transferred to the CMC using a higher level interrupt than the normal vital signs

data requests ensuring that all emergency situations are addressed immediately.

4.3.2 Embedded WAP code

The WAP software was developed in C and was programmed into the WAP

microcontroller using Microchip’s integrated development environment (IDL) called

MPLAB. A flowchart and description of the WAP microcontroller code can be seen

below.

63

Figure 23: Embedded WAP code Flowchart

4.3.2.1 WAP Flowchart description

The WAP is mainly an interrupt driven program. It will send out a beacon signal

in its main loop every 1.2 seconds to notify the wrist modules that they are within range

of a WAP. Commands form the CMC interrupt this loop and are serviced in the order

they are received.

64

4.3.2.1.1 Microcontroller Initialization

When the WAP is first turned on the microcontroller will complete the following

actions.

1. Microcontroller will be powered

2. All necessary internal registers of the microcontroller will be initiated to perform the

following functions

a. Five GPIO lines are initialized for communication via the wireless transceiver

b. The receive channel of the microcontroller’s UART is setup as an external

interrupt

c. Internal Timer

i. Each time the timer overruns it generates an interrupt that resets the timer and

starts it again.

4.3.2.1.2 Main Program Flow

1. Configure the transceiver to transmit information on the “Beacon” channel.

2. Send out the beacon signal to wrist modules on the “Beacon” channel.

3. Wait 1.2 seconds.

4. Go to step 2.

At any point during steps 2 through 4, a command received from the CMC can

initiate the Received CMC command interrupt service routine (ISR).

65

4.3.2.1.3 Received CMC Command Interrupt

1. Check to see if the command was meant for this WAP

a. If the command is meant for this WAP, determine the type of command sent from

the CMC

b. Create valid wireless data packet and transmit to specified wrist module

c. If forwarded command requires a response from the wrist module

i. Configure transceiver to receiver

ii. Wait 1 millisecond for response from wrist module

iii. If there is no response

a) If there was no response after 10 tries

a. Configure transceiver to transmit

b. Send “No Response” message back to CMC

c. Return to main program flow

b) Else

a. Configure transceiver to transmit

b. Forward command to wrist module again

c. Go to 1.c.i.

iv. If there is a response

a) Forward response message to CMC

b) Return to main program flow

2. Else

a. Return to main program flow

66

The associated C code for section is included in Appendix A.

4.3.3 Embedded WM code

The WM software was developed in C and was programmed into the WM

microcontroller using Microchip’s integrated development environment (IDL) called

MPLAB. Each wrist module has a designated “wrist module number” associated with it

that is entered into the main computer control program database when the module is

assigned to a new patient.

67

Figure 24: Embedded WM code Flowchart

68

4.3.3.1 WM Flowchart description

4.3.3.1.1 Microcontroller Initialization

When the wrist module is first turned on the microcontroller will complete the

following actions.

1. Microcontroller is powered on

2. All necessary internal registers of the microcontroller are initialized to perform the

following functions

d. Three analog to digital converter (ADC) channels are initialized to monitor the

following signals in a polling scheme. When the ADC is done polling it generates

an internal interrupt where the readings can be used. At the end of each of these

interrupts the ADC polling is started again. Once this process is started it will

continue until the microcontroller is powered off.

i. Body Temperature

ii. Fall sensor (Accelerometer)

iii. Wrist module battery voltage

e. Five GPIO lines are initialized for communication via the wireless transceiver

i. The GPIO input connected to the Data Ready (DR) line of the wireless

transceiver is associated with an external interrupt. This interrupt is triggered

whenever the transceiver receives new valid data.

f. GPIO input for Button status

g. GPIO output for Good Connection LED

h. GPIO output for Accelerometer Emergency event LED

i. Internal Timer

69

i. Each time the timer overruns it generates an interrupt that resets the timer and

starts it again.

4.3.3.1.2 Main Program Flow

In the main program loop the wrist module waits for either an internal or external

interrupt to occur. There are three possible interrupts that can occur.

1. Timer Overrun (Internal)

2. ADC Polling Complete (Internal)

3. New wireless message received (External – via data ready line from transceiver)

Each one of these interrupts has its own Interrupt Service Routine (ISR) that is

called when a specific interrupt occurs. The new message received ISR processes and

interprets State of Health (SOH) data requests and other general commands that are

issued from the monitoring computer (CMC). These requests and commands are serviced

as requested. The main program loop will have the following form.

1. Configure the transceiver to receive information on the “Beacon” channel.

a. This channel also receives commands from the CMC and interrupts the program

flow to service the commands.

2. Start the internal timer.

3. Start the ADC polling routine.

4. Wait for internal or external interrupt.

5. Go to step 4.

70

4.3.3.1.3 Timer Overrun Interrupt

Once the internal timer is started it will overrun in 13ms and carry out the

following operations.

1. Every 255 times the timer overruns (3.3 seconds) the microcontroller will check to

see if it has received a good beacon signal.

a. If the microcontroller has not received a good beacon signal it will turn off the

Good Connection LED.

2. Reset timer

3. Start timer

4. Return to main program flow

4.3.3.1.4 ADC Polling Complete Interrupt

The ADC polling routine takes 88us (11.4kHz) to complete. Each time the

polling completes, this ISR is started and the following operations are executed.

1. Read the following voltages that were just polled on the ADC and store them in local

variables.

a. Body Temperature

b. Fall sensor (Accelerometer)

c. Wrist module battery voltage

2. Verify that the accelerometer value is within the proper +/- 2g limits.

a. If the accelerometer reading is outside the limits set the Emergency Event flag.

3. Check Button Status

a. If the Button is being pressed clear the Emergency Event flag.

71

4. Start ADC polling routine.

5. Return to main program flow.

4.3.3.1.5 New wireless message received Interrupt

This interrupt is triggered whenever the transceiver asynchronously receives new

valid data. When this occurs this ISR is started and the following operations are executed.

1. Read new data bytes from the wireless transceiver.

2. Check to see if the new data bytes are meant for this Wrist Module (WM) by

checking the included WM number.

a. If the command is meant for this WM, take the appropriate action required by the

command. These commands are discussed further in the communications

protocol section.

3. If the new data bytes aren’t meant for this WM, check to see if they are meant as a

global broadcast message to all WM numbers.

a. If the new data is a global broadcast, check to see if it is a beacon signal.

i. If the new data is a beacon signal, turn on the Good Wireless Connection LED.

4. Set the wrist module transceiver to receive information on the “Beacon” channel.

5. Return to main program flow.

The associated C code for section is included in Appendix B.

72

4.3.4 System Interface Description

Commands from the CMC are sent to each WM through a WAP. The response

from the WM is sent back through the WAP to the CMC. This data transfer sequence is

shown in figure 25 below.

Figure 25: Prototype System Data Sequence Diagram

4.3.4.1 CMC ↔ WAP Data Structure

Data transfers between the CMC and any WAP must be in the following form.

CMC ↔ WAP Data Structure

Data Field Bytes Description

WAP # 1 WAP used for command and/or data transfers

Com. / Response

Channel
1

• CMC � WAP: Channel number WAP is to use

when communicating with WM

• WAP � CMC: Channel number WM

responded on

WM # 1 WM to be commanded

Command /

Response
1

• CMC � WAP: Command to be sent to WM

• WAP � CMC: Response form WM

Response

Channel / Data
Variable

• CMC � WAP: Channel number WM must

respond on

• WAP � CMC: Data response from WM

Table 4: CMC to WAP Data Structure

73

4.3.4.2 WAP ↔ WM Data Structure

Data transfers between the WAP and any WM must be in the following form.

WAP ↔ WM Data Structure

Data Field Bytes Description

WM # 1
• WAP � WM: WM to be commanded

• WM � WAP: WM that responded

Command /

Response
1

• WAP � WM: Command to WM

• WM � WAP: Response form WM

Data Variable

• WAP � WM: Channel number WM is to

responded on

• WM � WAP: Data response from WM

Table 5: WAP to WM Data Structure

4.3.4.3 Prototype Command Definitions

 The following commands are used in the prototype system for data transfers.

Command Definitions

Command From Computer Response From WM

Name Value Name Value

Check for Emergency Event 0x10 Emergency 0x01

Data Request 0x20 Requested Data Response 0x02

Clear Emergency Event 0x40

Command from WAP

Beacon 0x30

Table 6: Prototype Command Definitions

74

CHAPTER 5

Conclusions & Future Work

5.1 Conclusions

 This project identified the required components of a wireless automated patient

monitoring system and demonstrated one possible implementation methodology for such

a system. This stand-alone prototype automated patient monitoring system was

successfully designed, built, and tested.

 The final system prototype hardware includes two wireless access points, three

wrist modules, and a switching network. Using this hardware in conjunction with the

associated embedded microcontroller software and the Guardian graphical user interface

allows a centralized monitoring computer to wirelessly collect and display three patients’

real-time vital signs information from two different monitoring areas and log all of the

received information to a central database.

5.1.1 System Successes

The following sensors were able to be incorporated into the final system.

• Temperature Sensor

- Monitors patient’s body temperature in degrees Fahrenheit.

• Accelerometer

- Provided for patient fall detection and WM orientation.

• Wrist Module battery voltage monitor

- Used to ensure proper WM operating voltage.

75

• Patient input button

- Used as a simple proof of concept user interface and to clear emergency

events.

A wireless link between wrist modules and wireless access points was

successfully implemented.

All data from each wrist module is successfully stored in a main patient database

on the central monitoring computer.

User friendly graphical interface makes patient monitoring and database file

review and export extremely simple.

5.1.2 Possible System Improvements

 The following improvements of the prototype design should be addressed for

more reliable operation.

• Limited wireless range

- Potentially use Bluetooth, WLAN, ZigBee wireless hardware, or Cellular

modem.

• Weak wireless communication protocol

- Potentially use standard protocol such as 802.11

• Battery type and life

- Potentially use 2 AA rechargeable batteries without voltage regulator.

76

• Size

- All system sensors and interfaces could be integrated onto a custom circuit

board and installed in a custom package that is able to be worn on a

patient’s wrist.

• Sensors

- Potentially include more sensors on each wrist module.

• Single Channel Operation

- More effective monitoring could be archived if the WAPs and WMs

communicated on multiple channels. This would allow for an interrupt

driven communications system.

• Channel dedication

- Each WM should have an allocated communications channel.

5.2 Future Work

Many research and development opportunities for future work are available in the

field of telemedicine. Some of these possible topics include:

• Use implanted microelectronic sensors and interface these sensors with

external electronics for wireless transfer and processing.

• Use an inductively coupled battery charging system

• Use inductive coupling for implanted sensor power and data communication

• Reduce power used by the wrist module by implementing techniques such as a

low power sleep mode.

77

• Develop and incorporate power scavenging techniques to improve battery life

such as body heat, solar, and kinetic energy converting electronics.

• Add the capability of bidirectional audio communication between each patient

and the central monitoring computer.

• Incorporate innovative techniques for measuring common vital signs such as

calculating blood pressure from the patient’s pulse velocity.

• Incorporate a reconfigurable antenna and a cognitive radio into each wrist

module so it can communicate using multiple communication networks and

frequencies.

Given more time and funding to continue work on this project I would first layout

a custom board for each wrist module and wireless access point that includes all required

circuitry for complete operation. I would also replace the wireless transceivers that are in

the current prototype with WLAN 802.11 transceivers. Finally, I would incorporate a

bidirectional audio communications feature to each wrist module.

78

APPENDICES

Appendix A

WAP Embedded C code

/**

System: Guardian - Wireless Vital Signs Monitoring System

Program: Wireless Access Point Code

Author: Johnny Silva

Microcontroller: PIC24HJ32GP202

**/

#include "p24HJ32GP202.h"

#include "Guardian.h"

#include "uart.h"

// Internal FRC Oscillator

_FOSCSEL(FNOSC_FRC); // FRC Oscillator

// Clock Switching is enabled and Fail Safe Clock Monitor is disabled

_FOSC(FCKSM_CSECMD & OSCIOFNC_OFF & POSCMD_NONE);

// OSC2 Pin Function: OSC2 is Clock Output

// Primary Oscillator Mode: Disabled

_FWDT(FWDTEN_OFF); // Watchdog Timer Enabled/disabled by user software

/***/

#define WAP_NUM 0x01 // Set Wireless Access Point Number/

/***/

unsigned char Delay_Length = 2;

unsigned char Read_Bytes[PAYLOAD_LEN] = {0};

unsigned char Write_Bytes[PAYLOAD_LEN] = {0};

unsigned char First_Config = -1;

unsigned char Config_Byte = 0x00;

unsigned char Command = 0x00;

unsigned char Response_Channel = 0;

unsigned char WM_Num = 0;

unsigned char Config_Setup[14] = {0};

unsigned char UART_ReceivedChar[16] = {0};

unsigned char UART_Bytes_Received = 0;

unsigned int Timer_Rollover_Cnt = 0;

#if WAP_NUM == 0x01 // WAP #1 ?

 unsigned int Delay = 0;

#else

 unsigned int Delay = 50;

#endif

// Function Prototypes

void Init_Clock();

void Init_Timer1();

void Init_UART();

79

void Init_Ports();

void Configure_Transceiver(unsigned char TX_RX, unsigned char Channel);

void Transmit_Data(unsigned char Command, unsigned char Channel);

void Receive_Data();

void Delay_us(int Delay_Cnt);

int main(void)

{

 unsigned char index = 0;

 Init_Clock();

 Init_Timer1();

 Init_UART();

 Init_Ports();

 //**************************************

// Transceiver Setup Configuration Array

//**************************************

 // Data bits 111-104 Max data width on channel

// 1 (excluding CRC and adrs) is 232 (29 Bytes)

 Config_Setup[0] = PAYLOAD_LEN * 8; // Set payload byte length

 // Data bits 103-64 Channel 2 address - we don't care

// set it to 200

 Config_Setup[1] = 0;

 Config_Setup[2] = 0;

 Config_Setup[3] = 0;

 Config_Setup[4] = 0;

 Config_Setup[5] = 200;

 // Data bits 63-24 Channel 1 address - set it to 17

 Config_Setup[6] = 0;

 Config_Setup[7] = 0;

 Config_Setup[8] = 0;

 Config_Setup[9] = 0;

 Config_Setup[10] = 17;

 // Data bits 23-16 Address width and CRC

 Config_Setup[11] = 0x23; // 8 bit address, 16 bit CRC,

 // CRC Enabled

 // Data bits 15-8

 Config_Setup[12] = 0x4F; // 1 Channel, ShockBurst Enabled,

 // 250kbps, 16MHz Crystal,

 // 0dBm output power

 // Data bits 7-0

 Config_Setup[13] = 0x02; // Channel 1, Transmit

 //**************************************

 // End Setup

//**************************************

80

 // Wait so Beacon signal doesn't start at the same time...

 while(Timer_Rollover_Cnt < Delay);

 Timer_Rollover_Cnt = 0;

 while(1) // MAIN LOOP

 {

 if(Timer_Rollover_Cnt > 100)

 {

 // Send out one Beacon signal every second

 WM_Num = BROADCAST_WM_NUM; // Set to transmit to

 // every wrist module

 for(index = 0; index < 5; index++)

 Transmit_Data(WAP_BEACON, BEACON_CHAN);

 Timer_Rollover_Cnt = 0;

 }

 }

} // End main

void Init_Clock()

{

// Configure Oscillator to operate the device at 40Mhz

// Fosc= Fin*M/(N1*N2), Fcy=Fosc/2

// Fosc= 7.37*43/(2*2)=80Mhz for 7.37 input clock

 PLLFBD=41; // M=43

 CLKDIVbits.PLLPOST=0; // N1=2

 CLKDIVbits.PLLPRE=0; // N2=2

 OSCTUN=0; // Tune FRC oscillator, if FRC is used

// Disable Watch Dog Timer

 RCONbits.SWDTEN=0;

// Clock switch to incorporate PLL

 __builtin_write_OSCCONH(0x01); // Initiate Clock Switch to

 // FRC with PLL (NOSC=0b001)

 __builtin_write_OSCCONL(0x01); // Start clock switching

 while (OSCCONbits.COSC != 0b001); // Wait for Clock switch to

 // occur

// Wait for PLL to lock

 while(OSCCONbits.LOCK!=1) {};

}

void Init_Timer1()

{

 // Setup timer for 40M/8 = 5M clock (200ns per count)

 // Setup timer to roll-over at 65536 (13.1ms)

 T1CONbits.TON = 0; // Disable Timer

 T1CONbits.TCS = 0; // Select internal instruction

// cycle clock

 T1CONbits.TGATE = 0; // Disable Gated Timer mode

 T1CONbits.TCKPS = 1; // Select 1:8 Prescaler

81

 TMR1 = 0x0000; // Clear timer register

 PR1 = 0xFFFF; // Load the period value

 IPC0bits.T1IP = 7; // Set Timer1 Interrupt Priority Level

 IFS0bits.T1IF = 0; // Clear Timer1 Interrupt Flag

 IEC0bits.T1IE = 1; // Enable Timer1 interrupt

 T1CONbits.TON = 1; // Start Timer

}

void Init_UART() {

 //Configure U1MODE

 U1MODEbits.UARTEN = 0; // Bit15 TX, RX DISABLED,

// ENABLE at end of func

 U1MODEbits.USIDL = 0; // Bit13 Continue in Idle

 U1MODEbits.IREN = 0; // Bit12 No IR translation

 U1MODEbits.RTSMD = 0; // Bit11 Simplex Mode

 U1MODEbits.UEN = 0; // Bits8,9 TX,RX enabled, CTS,RTS not

 U1MODEbits.WAKE = 0; // Bit7 No Wake up

 U1MODEbits.LPBACK = 0; // Bit6 No Loop Back

 U1MODEbits.ABAUD = 0; // Bit5 No Autobaud

 U1MODEbits.URXINV = 0; // Bit4 IdleState = 1 (for dsPIC)

 U1MODEbits.BRGH = 1; // Bit3 4 clocks per bit period

 U1MODEbits.PDSEL = 0; // Bits1,2 8bit, No Parity

 U1MODEbits.STSEL = 0; // Bit0 One Stop Bit

 U1BRG = BRGVAL; //115200 (Eq. 17-2)

 // Load all values in for U1STA SFR

 U1STAbits.UTXISEL1 = 0; // Bit15 Int when Char is transferred

 U1STAbits.UTXINV = 0; // Bit14 N/A, IRDA config

 U1STAbits.UTXISEL0 = 0; // Bit13 Other half of Bit15

 U1STAbits.UTXBRK = 0; // Bit11 Disabled

 U1STAbits.UTXEN = 0; // Bit10 TX pins controlled by periph

 U1STAbits.UTXBF = 0; // Bit9 *Read Only Bit*

 U1STAbits.TRMT = 0; // Bit8 *Read Only bit*

 U1STAbits.URXISEL = 0; // Bits6,7 Int. on character recieved

 U1STAbits.ADDEN = 0; // Bit5 Address Detect Disabled

 U1STAbits.RIDLE = 0; // Bit4 *Read Only Bit*

 U1STAbits.PERR = 0; // Bit3 *Read Only Bit*

 U1STAbits.FERR = 0; // Bit2 *Read Only Bit*

 U1STAbits.OERR = 0; // Bit1 *Read Only Bit*

 U1STAbits.URXDA = 0; // Bit0 *Read Only Bit*

 RPINR18bits.U1RXR = 10; // Set RP10 to UART RX

 RPOR5bits.RP11R = 3; // Set RP11 to UART TX

 // Enable RX Interrupt

 IPC2bits.U1RXIP = 6; // Set Interrupt Priority level

 IFS0bits.U1RXIF = 0; // Clear the Recieve Interrupt Flag

 IEC0bits.U1RXIE = 1; // Enable Recieve Interrupts

 U1MODEbits.UARTEN = 1; // And turn the peripheral on

 U1STAbits.UTXEN = 1;

}

82

void Init_Ports()

{

 TRISA = 0xFFFF; // Set all bits on port A to inputs

 _TRISA2 = 0; // Set RA2 to output

 _TRISA4 = 0; // Set RA4 to output

 AD1PCFGL = 0xFFFF; // all PORTA = Digital

 TRISB = 0x0000; // Set all bits on port B to outputs

 _TRISB0 = 1; // Set RB0 to input

 _TRISB1 = 1; // Set RB1 to input

 _TRISB10 = 1; // Set RB10 to input

 _TRISB15 = 1; // Set RB15 to input

 _TRISB13 = 1; // Set RB13 to input

 _TRISB14 = 1; // Set RB14 to input

 _TRISB4 = 1; // Set RB4 to input for RX_DR1

}

// 2.4G Configuration - Transceiver

void Configure_Transceiver(unsigned char TX_RX, unsigned char Channel)

{

 unsigned char index = 0, index_2 = 0, index_3 = 0;

 unsigned char temp = 0;

 // During configuration of the receiver, we need RX_DATA

 // as an output

 _TRISB3 = 0; // Set RB3 to output for RX_DAT config

 if(TX_RX) // Transmit

 {

 Config_Byte = Channel & 0xFE;

 }

 else // Receive

 {

 Config_Byte = Channel | 0x01;

 }

 if(First_Config)

 {

 Delay_us(4000); // 4ms Delay

 // Config Mode

 CE = 0; CS = 1;

 Delay_us(5); // 5us Delay

 // Shift out all 14 Bytes of data to cofig the transceiver

 Config_Setup[13] = Config_Byte;

 // Clock in configuration data

 for(index = 0 ; index < 14 ; index++)

 {

 temp = Config_Setup[index];

 for(index_2 = 0 ; index_2 < 8 ; index_2++)

83

 {

 TX_DAT = temp >> 7;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length;

 index_3++)

 Nop(); // 25ns

 CLK = 1;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length;

 index_3++)

 Nop(); // 25ns

 CLK = 0;

 temp <<= 1;

 }

 }

 }

 else

 {

 // 50ns Delay

 Nop(); // 25ns

 Nop(); // 25ns

 // Config Mode

 CE = 0; CS = 1;

 Delay_us(5); // 5us Delay

 // Only shift out Config_Byte

 for(index = 0 ; index < 8 ; index++)

 {

 TX_DAT = Config_Byte >> 7;

 // Delay

 for(index_2 = 0; index_2 < Delay_Length; index_2++)

 Nop(); // 25ns

 CLK = 1;

 // Delay

 for(index_2 = 0; index_2 < Delay_Length; index_2++)

 Nop(); // 25ns

 CLK = 0;

 Config_Byte <<= 1;

 }

 }

 // Configuration is actived on falling edge of CS

 CE = 0; CS = 0;

 if(TX_RX == 0)

84

 {

 // After configuration of the receiver, we need

// RX_DATA as an input

 _TRISB3 = 1; // Set RB3 to input for RX_DAT

 // Start monitoring the air

 CE = 1;

 Delay_us(205); // 205us Delay

 }

 First_Config = 0;

}

// This sends out the data stored in the Write_Bytes

void Transmit_Data(unsigned char Command, unsigned char Channel)

{

 unsigned char index = 0, index_2 = 0, index_3 = 0;

 unsigned char temp = 0, rf_address = 0;

 Configure_Transceiver(TRANSMIT, Channel);

 // Erase the current data array so that we know we are

// sending real data

 for(index = 0 ; index < PAYLOAD_LEN; index++)

 Write_Bytes[index] = 0x00;

 // 50ns Delay

 Nop(); // 25ns

 Nop(); // 25ns

 RF_ACTIVE = 1;

 // Load Data Array

 Write_Bytes[0] = WM_Num;

 Write_Bytes[1] = Command;

 Write_Bytes[2] = Response_Channel;

CE = 1;

 Delay_us(5); // 5us Delay

 // Clock in address

 rf_address = 17;

 for(index = 0 ; index < 8 ; index++)

 {

 TX_DAT = rf_address >> 7;

 // Delay

 for(index_2 = 0; index_2 < Delay_Length; index_2++)

 Nop(); // 25ns

 CLK = 1;

85

 // Delay

 for(index_2 = 0; index_2 < Delay_Length; index_2++)

 Nop(); // 25ns

 CLK = 0;

 rf_address <<= 1;

 }

 // Clock in the Write_Bytes

 for(index = 0; index < PAYLOAD_LEN; index++) // PAYLOAD_LEN bytes

 {

 temp = Write_Bytes[index];

 for(index_2 = 0; index_2 < 8; index_2++) // One bit at a time

 {

 TX_DAT = temp >> 7;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length; index_3++)

 Nop(); // 25ns

 CLK = 1;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length; index_3++)

 Nop(); // 25ns

 CLK = 0;

 temp <<= 1;

 }

 }

 CE = 0; // Start transmission

 TX_DAT = 0; // Set TX_Data low

 Delay_us(1000);

 RF_ACTIVE = 0;

}

// This will clock out the current payload into the Read_bytes

void Receive_Data()

{

 RF_ACTIVE = 1;

 unsigned char index = 0, index_2 = 0, index_3 = 0;

 unsigned char temp = 0;

 CE = 0; // Power down RF Front end

86

 // Erase the current data array so that we know we are

 // looking at actual received data

 for(index = 0; index < PAYLOAD_LEN; index++)

 Read_Bytes[index] = 0x00;

 // Clock in data

 for(index = 0; index < PAYLOAD_LEN; index++) // PAYLOAD_LEN bytes

 {

 for(index_2 = 0; index_2 < 8; index_2++) // 8 bits each

 {

 temp <<= 1;

 temp += RX_DAT;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length; index_3++)

 Nop(); // 25ns

 CLK = 1;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length; index_3++)

 Nop(); // 25ns

 CLK = 0;

 }

 Read_Bytes[index] = temp; // Store this byte

 }

 CE = 1; // Power up RF Front end

 RF_ACTIVE = 0;

}

void Delay_us(int Delay_Cnt)

{

 int Start_Time = 0;

 int Delta_Time = 0;

 Start_Time = TMR1;

 while((int)(Delta_Time/5) < Delay_Cnt) // Convert Delta_Time to

 // microseconds

 {

 Delta_Time = TMR1 - Start_Time;

 }

}

//******************** ISRs ***********************

void __attribute__((interrupt, no_auto_psv)) _T1Interrupt(void)

{// RTC Timer

 // Reset Timer

 IFS0bits.T1IF = 0; // Clear interrupt flag

 T1CONbits.TON = 0; // Disable timer

87

 TMR1 = 0; // Reset timer count

 Timer_Rollover_Cnt++;

 T1CONbits.TON = 1; // Enable timer

}

void __attribute__((interrupt, no_auto_psv)) _U1RXInterrupt(void)

{// RX Control Computer

 IEC0bits.U1RXIE = 0; // Disable Recieve Interrupts

 IFS0bits.U1RXIF = 0; // Reset interrupt flag

 char Done = 0;

 char Attempts = 0;

 unsigned char Channel = 0;

 unsigned char UART_Index = 0;

// Read character from UART1

 UART_ReceivedChar[UART_Bytes_Received] = U1RXREG;

 UART_Bytes_Received++;

 if(UART_Bytes_Received > 4)

 {

 UART_Bytes_Received = 0;

 if(UART_ReceivedChar[0] == WAP_NUM)

 {

 Channel = UART_ReceivedChar[1];

 WM_Num = UART_ReceivedChar[2];

 Command = UART_ReceivedChar[3];

 Response_Channel = UART_ReceivedChar[4];

 DATA_RECEIVED = 0; // Clear DATA_RECEIVED flag

 while(!Done)

 {

 Transmit_Data(Command, Channel);

 Configure_Transceiver(RECEIVE,

Response_Channel);

 Delay_us(1000); // Wait for response from WM

 if(RX_DR1)

 {

 Receive_Data();

// wait if the buffer is full

 while(U1STAbits.UTXBF);

 U1TXREG = WAP_NUM;

// wait if the buffer is full

 while(U1STAbits.UTXBF);

88

 U1TXREG = Response_Channel;

 for(UART_Index = 0 ; UART_Index <

 PAYLOAD_LEN; UART_Index++)

 {

// wait if the buffer is full

 while(U1STAbits.UTXBF);

 U1TXREG = Read_Bytes[UART_Index];

 }

 Done = -1;

// Set DATA_RECEIVED flag

 DATA_RECEIVED = 1;

 }

 else

 {

 if(Attempts++ > 10)

 {

 // Send Error back to CMC

// wait if the buffer is full

 while(U1STAbits.UTXBF);

 U1TXREG = 0xDE;

// wait if the buffer is full

 while(U1STAbits.UTXBF);

 U1TXREG = 0xAD;

 Done = -1;

 }

 }

 }

 }

 }

 IEC0bits.U1RXIE = 1; // Enable Recieve Interrupts

}

//**

// END ISRs

//**

89

Appendix B

WM Embedded C code

/**

System: Guardian - Wireless Vital Signs Monitoring System

Program: Wrist Module Code

Author: Johnny Silva

Microcontroller: PIC24HJ32GP202

**/

#include "p24HJ32GP202.h"

#include "Guardian.h"

// Internal FRC Oscillator

_FOSCSEL(FNOSC_FRC); // FRC Oscillator

// Clock Switching is enabled and Fail Safe Clock Monitor is disabled

_FOSC(FCKSM_CSECMD & OSCIOFNC_OFF & POSCMD_NONE);

// OSC2 Pin Function: OSC2 is Clock Output

// Primary Oscillator Mode: Disabled

_FWDT(FWDTEN_OFF); // Watchdog Timer Enabled/disabled by user software

/**/

#define WM_NUM 0x01 // Set Wrist Module Number /

/**/

unsigned char Delay_Length = 2;

unsigned char Read_Bytes[PAYLOAD_LEN] = {0};

unsigned char Write_Bytes[PAYLOAD_LEN] = {0};

unsigned char First_Config = -1;

unsigned char Config_Byte = 0x00;

unsigned char Response = 0x00;

unsigned char Config_Setup[14] = {0};

unsigned char Allocated_Channel = 0;

unsigned int Accel_Limit = 0; // Set to ADC voltage limit

unsigned char No_Beacon_Cnt = 0;

int Accel_Value = 0;

int Temp_Value = 0;

int Vcc_Value = 0;

int ADC_Buffer_Sum = 0;

unsigned char ADC_Average_Number = 8;

unsigned char ADC_Average_Count = 0;

unsigned int ADC_Average = 0;

unsigned int Timer_Rollover_Cnt = 0;

unsigned char Emergency_Event = 0;

// Function Prototypes

void Init_Clock();

void Init_Timer1();

void Init_Ports();

90

void Init_ADC();

void Configure_Transceiver(unsigned char TX_RX, unsigned char Channel);

void Transmit_Data(unsigned char Response, unsigned char Channel);

void Receive_Data();

void Delay_us(int Delay_Cnt);

int main(void)

{

 int index = 0;

 Init_Clock();

 Init_Timer1();

 Init_Ports();

 Init_ADC();

 //**************************************

// Transceiver Setup Configuration Array

//**************************************

 // Data bits 111-104 Max data width on channel 1

// (excluding CRC and adrs) is 232 (29 Bytes)

 Config_Setup[0] = PAYLOAD_LEN * 8; // Set to PAYLOAD_LEN

 // byte transfer

 // Data bits 103-64 Channel 2 address - we don't care,

// set it to 200

 Config_Setup[1] = 0;

 Config_Setup[2] = 0;

 Config_Setup[3] = 0;

 Config_Setup[4] = 0;

 Config_Setup[5] = 200;

 // Data bits 63-24 Channel 1 address - set it to 17

 Config_Setup[6] = 0;

 Config_Setup[7] = 0;

 Config_Setup[8] = 0;

 Config_Setup[9] = 0;

 Config_Setup[10] = 17;

 // Data bits 23-16 Address width and CRC

 Config_Setup[11] = 0x23; // 8 bit address, 16 bit CRC,

 // CRC Enabled

 // Data bits 15-8

 Config_Setup[12] = 0x4F; // 1 Channel, ShockBurst Enabled,

 // 250kbps, 16MHz Crystal,

 // 0dBm output power

 // Data bits 7-0

 Config_Setup[13] = 0x02; // Channel 1, Transmit

 //**************************************

// End Setup

//**************************************

91

 for(index = 0; index < WM_NUM; index++)

 {

 GOOD_CONNECTION_LED = 1;

 while(Timer_Rollover_Cnt < 10);

 Timer_Rollover_Cnt = 0;

 GOOD_CONNECTION_LED = 0;

 while(Timer_Rollover_Cnt < 10);

 Timer_Rollover_Cnt = 0;

 }

 // Setup WM to receive on allocated Beacon channel

 Configure_Transceiver(RECEIVE, BEACON_CHAN);

 while(1) // MAIN LOOP

 {

 if(Timer_Rollover_Cnt > 10)

 {

 if(Emergency_Event)

 ACCEL_LIMIT_LED = !ACCEL_LIMIT_LED;

 Timer_Rollover_Cnt = 0;

 }

 }

}// End main

void Init_Clock()

{

// Configure Oscillator to operate the device at 40Mhz

// Fosc= Fin*M/(N1*N2), Fcy=Fosc/2

// Fosc= 7.37*43/(2*2)=80Mhz for 7.37 input clock

 PLLFBD=41; // M=43

 CLKDIVbits.PLLPOST=0; // N1=2

 CLKDIVbits.PLLPRE=0; // N2=2

 OSCTUN=0; // Tune FRC oscillator,

// if FRC is used

// Disable Watch Dog Timer

 RCONbits.SWDTEN=0;

// Clock switch to incorporate PLL

 __builtin_write_OSCCONH(0x01); // Initiate Clock Switch to

 // FRC with PLL (NOSC=0b001)

 __builtin_write_OSCCONL(0x01); // Start clock switching

 while(OSCCONbits.COSC != 0b001); // Wait for Clock switch to

 // occur

// Wait for PLL to lock

 while(OSCCONbits.LOCK!=1);

}

92

void Init_Timer1()

{

 // Setup timer for 40M/8 = 5M clock (200ns per count)

 // Setup timer to roll-over at 65535 (13.1ms)

 T1CONbits.TON = 0; // Disable Timer

 T1CONbits.TCS = 0; // Select internal instruction cycle

// clock

 T1CONbits.TGATE = 0; // Disable Gated Timer mode

 T1CONbits.TCKPS = 1; // Select 1:8 Prescaler

 TMR1 = 0x0000; // Clear timer register

 PR1 = 0xFFFF; // Load the period value

 IPC0bits.T1IP = 7; // Set Timer1 Interrupt Priority Level

 IFS0bits.T1IF = 0; // Clear Timer1 Interrupt Flag

 IEC0bits.T1IE = 1; // Enable Timer1 interrupt

 T1CONbits.TON = 1; // Start Timer

}

void Init_Ports()

{

 TRISA = 0xFFFF; // Set all bits on port A to inputs

 _TRISA2 = 0; // Set RA2 to output - CLK

 _TRISA4 = 0; // Set RA4 to output - CS

 TRISB = 0x0000; // Set all bits on port B to outputs

 _TRISB0 = 1; // Set RB0 to input - PGED1

 _TRISB1 = 1; // Set RB1 to input - PGEC1

 _TRISB10 = 1; // Set RB10 to input - UART_RX

 _TRISB15 = 1; // Set RB15 to input - LED1 Red

 _TRISB8 = 1; // Set RB8 to input - BUTTON_1

 _TRISB13 = 1; // Set RB13 to input - Vcc_Mon

 _TRISB14 = 1; // Set RB14 to input - Temp_Mon

 _TRISB4 = 1; // Set RB4 to input - RX_DR1

 RPINR0bits.INT1R = 4; // Set RX_DR1 as INT1

 // SETUP RX_DR1 INTERRUPT (INT1)

 INTCON2bits.INT1EP = 0; // INT1 INTERRUPT ON POSITIVE EDGE

 IFS1bits.INT1IF = 0; // CLEAR INTERRUPT INT1 FLAG

 IPC5bits.INT1IP = 6; // SET INT1 PRIORITY

 IEC1bits.INT1IE = 1; // ENABLE INT1 INTERRUPT

 // ADC Interrupt priority

 IPC3bits.AD1IP = 1;

}

void Init_ADC()

{

 AD1CON1bits.FORM = 0; // Data Output Format: Integer

 AD1CON1bits.SSRC = 7; // Sample Clock Source: Internal counter

// ends sampling and starts conversion

// (auto convert)

 AD1CON1bits.ASAM = 1; // ADC Sample Control: Sampling begins

 // immediately after conversion

 AD1CON1bits.AD12B = 1; // 12-bit ADC operation

93

 AD1CON2bits.VCFG = 0; // Converter Voltage Reference

 // Configuration bits (VREFH = Avdd,

 // VREFL = Avss)

 AD1CON2bits.CSCNA = 1; // Scan Input Selections for CH0+ during

 // Sample A bit

 AD1CON2bits.CHPS = 0; // Converts CH0

 AD1CON3bits.ADRC = 0; // ADC Clock is derived from Systems Clock

 AD1CON3bits.ADCS = 25; // ADC Conversion Clock Tad=Tcy*(ADCS+1)=

 // (1/40M)*26 = 650ns (1.54Mhz)

 // ADC Conversion Time for 12-bit

 // Tc=14*Tad = 9.1us

 // Time to convert 3 ADC channels 3*Tc =

 // 3*9.1us = 27.3us

 AD1CON3bits.SAMC = 31; // Auto Sample Time bits 31*Tad = 20.15us

 // Time to sample 3 ADC channels 3 *

 // 20.15us = 60.45us

 // So ADC interrupt happens every 88us or

 // 11.4kHz

 AD1CON2bits.SMPI = 2; // 3 ADC Channels are scanned

 // AD1CSSL: A/D Input Scan Selection Register

 AD1CSSL = 0x0C01; // Enable AN0, AN10, and AN11 for channel scan

 // AD1PCFGL: Port Configuration Register

 AD1PCFGL = 0xF3FE; // AN0, AN10, and AN11 as Analog Input

 IFS0bits.AD1IF = 0; // Clear the A/D interrupt flag bit

 IEC0bits.AD1IE = 1; // Do Not Enable A/D interrupt

 AD1CON1bits.ADON = 1; // Turn on the A/D converter

}

// 2.4G Configuration - Transceiver

void Configure_Transceiver(unsigned char TX_RX, unsigned char Channel)

{

 unsigned char index = 0, index_2 = 0, index_3 = 0;

 unsigned char temp = 0;

 // During configuration of the receiver, we need RX_DATA as an

 // output

 _TRISB3 = 0; // Set RB3 to output for RX_DAT config

 if(TX_RX) // Transmit

 {

 Config_Byte = Channel & 0xFE;

 }

 else // Receive

 {

 Config_Byte = Channel | 0x01;

 }

 if(First_Config)

 {

 Delay_us(4000); // 4ms Delay

 // Config Mode

 CE = 0; CS = 1;

94

 Delay_us(5); // 5us Delay

 // Shift out all 14 Bytes of data to cofig the transceiver

 Config_Setup[13] = Config_Byte;

 // Clock in configuration data

 for(index = 0 ; index < 14 ; index++)

 {

 temp = Config_Setup[index];

 for(index_2 = 0 ; index_2 < 8 ; index_2++)

 {

 TX_DAT = temp >> 7;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length;

 index_3++)

 Nop(); // 25ns

 CLK = 1;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length;

 index_3++)

 Nop(); // 25ns

 CLK = 0;

 temp <<= 1;

 }

 }

 }

 else

 {

 // 50ns Delay

 Nop(); // 25ns

 Nop(); // 25ns

 // Config Mode

 CE = 0; CS = 1;

 Delay_us(5); // 5us Delay

 // Only shift out Config_Byte

 for(index = 0 ; index < 8 ; index++)

 {

 TX_DAT = Config_Byte >> 7;

 // Delay

 for(index_2 = 0; index_2 < Delay_Length; index_2++)

 Nop(); // 25ns

 CLK = 1;

95

 // Delay

 for(index_2 = 0; index_2 < Delay_Length; index_2++)

 Nop(); // 25ns

 CLK = 0;

 Config_Byte <<= 1;

 }

 }

 // Configuration is actived on falling edge of CS (page 10)

 CE = 0; CS = 0;

 if(TX_RX == 0)

 {

 // After configuration of the receiver, we need RX_DATA

// as an input

 _TRISB3 = 1; // Set RB3 to input for RX_DAT

 // Start monitoring the air

 CE = 1;

 Delay_us(205); // 205us Delay

 }

 First_Config = 0;

}

// This sends out the data stored in the Write_Bytes

void Transmit_Data(unsigned char Response, unsigned char Channel)

{

 unsigned char index = 0, index_2 = 0, index_3 = 0;

 unsigned char temp = 0, rf_address = 0;

 Configure_Transceiver(TRANSMIT, Channel);

 // Erase the current data array so that we know we are

// sending real data

 for(index = 0 ; index < PAYLOAD_LEN; index++)

 Write_Bytes[index] = 0x00;

 // 50ns Delay

 Nop(); // 25ns

 Nop(); // 25ns

 //Load Data Array

Write_Bytes[0] = WM_NUM;

 Write_Bytes[1] = Response;

 switch(Response)

 {

 case(WM_EMERGENCY): //0x01

 Write_Bytes[2] = 0xAA;

 Write_Bytes[3] = 0x55;

 break;

96

 case(WM_SOH_RESPONSE): //0x02

//High Byte

 Write_Bytes[2] = (char)((Temp_Value & 0xFF00) >> 8);

//Low Byte

 Write_Bytes[3] = (char)(Temp_Value & 0x00FF);

 //High Byte

 Write_Bytes[4] = (char)((Accel_Value & 0xFF00) >> 8);

//Low Byte

 Write_Bytes[5] = (char)(Accel_Value & 0x00FF);

 //High Byte

 Write_Bytes[6] = (char)((Vcc_Value & 0xFF00) >> 8);

 //Low Byte

 Write_Bytes[7] = (char)(Vcc_Value & 0x00FF);

 //Send Emergency_Event state

 Write_Bytes[8] = Emergency_Event;

//Send BUTTON_1 state

 Write_Bytes[9] = BUTTON_1;

 break;

 }

 CE = 1;

 Delay_us(5); // 5us Delay

 // Clock in address

 rf_address = 17;

 for(index = 0 ; index < 8 ; index++)

 {

 TX_DAT = rf_address >> 7;

 // Delay

 for(index_2 = 0; index_2 < Delay_Length; index_2++)

 Nop(); // 25ns

 CLK = 1;

 // Delay

 for(index_2 = 0; index_2 < Delay_Length; index_2++)

 Nop(); // 25ns

 CLK = 0;

 rf_address <<= 1;

 }

 // Clock in the Write_Bytes

 for(index = 0; index < PAYLOAD_LEN; index++) // PAYLOAD_LEN bytes

 {

 temp = Write_Bytes[index];

 for(index_2 = 0 ; index_2 < 8 ; index_2++) // One bit at a time

 {

 TX_DAT = temp >> 7;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length; index_3++)

 Nop(); // 25ns

97

 CLK = 1;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length; index_3++)

 Nop(); // 25ns

 CLK = 0;

 temp <<= 1;

 }

 }

 CE = 0; // Start transmission

 TX_DAT = 0; // Set TX_Data low

 Delay_us(1000);

}

// This will clock out the current payload into the Read_Bytes

void Receive_Data()

{

 unsigned char index = 0, index_2 = 0, index_3 = 0;

 unsigned char temp = 0;

 CE = 0; // Power down RF Front end

 // Erase the current data array so that we know we are looking at

 // actual received data

 for(index = 0 ; index < PAYLOAD_LEN; index++)

 Read_Bytes[index] = 0x00;

 // Clock in data

 for(index = 0 ; index < PAYLOAD_LEN; index++) // PAYLOAD_LEN bytes

 {

 for(index_2 = 0 ; index_2 < 8 ; index_2++) // 8 bits each

 {

 temp <<= 1;

 temp += RX_DAT;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length; index_3++)

 Nop(); // 25ns

 CLK = 1;

 // Delay

 for(index_3 = 0; index_3 < Delay_Length; index_3++)

 Nop(); // 25ns

 CLK = 0;

 }

 Read_Bytes[index] = temp; // Store this byte

 }

98

 CE = 1; // Power up RF Front end

}

void Delay_us(int Delay_Cnt)

{

 int Start_Time = 0;

 int Delta_Time = 0;

 Start_Time = TMR1;

 while((int)(Delta_Time/5) < Delay_Cnt) // Convert Delta_Time to

 // microseconds

 {

 Delta_Time = TMR1 - Start_Time;

 }

}

//******************** ISRs ***********************

void __attribute__((interrupt, no_auto_psv)) _T1Interrupt(void)

{// RTC Timer

 // Reset Timer

 IFS0bits.T1IF = 0; // Clear interrupt flag

 T1CONbits.TON = 0; // Disable timer

 TMR1 = 0; // Reset timer count

 // Check Good Connection status

 if(No_Beacon_Cnt++ > 254)

 {

 No_Beacon_Cnt = 0;

 GOOD_CONNECTION_LED = 0; // Disable Good Connection LED

 }

 Timer_Rollover_Cnt++;

 T1CONbits.TON = 1; // Enable timer

}

void __attribute__((interrupt, no_auto_psv)) _INT1Interrupt(void)

{// RX_DR1 INTERRUPT (INT1)

 unsigned char index = 0;

 Receive_Data();

 if(Read_Bytes[0] == WM_NUM) // Is this transmission meant for

 // this wrist module?

 {

 switch(Read_Bytes[1]) // WAP_Command

 {

 case(WAP_DATA_REQUEST):

 Allocated_Channel = Read_Bytes[2];

99

 for(index = 0; index < 5; index++)

 Transmit_Data(WM_SOH_RESPONSE,

 Allocated_Channel);

 // Setup WM to receive on allocated Beacon

 // channel

 Configure_Transceiver(RECEIVE, BEACON_CHAN);

 break;

 case(WAP_CLEAR_ACCEL_EVENT):

// Clear Emergency Event flag

 Emergency_Event = 0;

// Turn off ACCEL_LIMIT_LED

 ACCEL_LIMIT_LED = 0;

 break;

 }

 }

 else if(Read_Bytes[0] == BROADCAST_WM_NUM) // 0xAA

 {// Message sent to all wrist modules

 switch(Read_Bytes[1]) // WAP_Command

 {

 case(WAP_CHECK_EMERGENCY):

 if(Emergency_Event)

 {

 Allocated_Channel = Read_Bytes[2];

 Transmit_Data(WM_EMERGENCY,

 Allocated_Channel);

 }

 break;

 case(WAP_BEACON):

 No_Beacon_Cnt = 0;

// Enable Good Connection LED

 GOOD_CONNECTION_LED = 1;

 break;

 }

 }

 // Setup WM to receive on allocated Beacon channel

 Configure_Transceiver(RECEIVE, BEACON_CHAN);

 IFS1bits.INT1IF = 0; // CLEAR INTERRUPT INT1 FLAG

}

void __attribute__((interrupt, no_auto_psv)) _ADC1Interrupt(void)

{// ADC1 Interrupt

 long Result_32 = 0;

 int Result_16 = 0;

 long Accel_Scaled_SF = 20122;

 int Accel_Scaled_Bias = 4935;

 long Temp_Scaled_SF = 12000;

 int Temp_Scaled_Bias = 1000;

 long Vcc_Scaled_SF = 6631;

 int Vcc_Scaled_Bias = 0;

 // Convert Accel. - 0.001

 Result_32 = ADC1BUF0 * Accel_Scaled_SF;

 Result_16 = Result_32 >> 13;

100

 Result_16 -= Accel_Scaled_Bias;

 Accel_Value = Result_16;

 if(BUTTON_1) // Check BUTTON_1 state

 {

 Emergency_Event = 0; // Clear Emergency Event flag

 ACCEL_LIMIT_LED = 0; // Turn off ACCEL_LIMIT_LED

 }

 else if(Accel_Value > 2000) // Check Accel Limit 2g

 Emergency_Event = 1; // Set Emergency Event flag

 else if(Accel_Value < -2000) // Check Accel Limit 2g

 Emergency_Event = 1; // Set Emergency Event flag

 // Calculate Average Temperature - 0.05

 ADC_Average_Count++;

 ADC_Buffer_Sum += ADC1BUF1;

 if(ADC_Average_Count >= ADC_Average_Number)

 {

 ADC_Average = ADC_Buffer_Sum/ADC_Average_Number;

 ADC_Buffer_Sum = 0;

 // Convert Temperature

 Result_32 = ADC_Average * Temp_Scaled_SF;

 Result_16 = Result_32 >> 13;

 Result_16 -= Temp_Scaled_Bias;

 Temp_Value = Result_16;

 }

 if(ADC_Average_Count >= ADC_Average_Number)

 {

 ADC_Average_Count = 0;

 }

 // Convert VCC - 0.002

 Result_32 = ADC1BUF2 * Vcc_Scaled_SF;

 Result_16 = Result_32 >> 13;

 Result_16 -= Vcc_Scaled_Bias;

 Vcc_Value = Result_16;

 IFS0bits.AD1IF = 0; // Clear the A/D interrupt flag bit

}

//**

// END ISRs

//**

101

Appendix C

Guardian.h file used in WAP and WM Embedded C code

#define Fosc 80000000 //Internal Clock Freq.

#define Fcy Fosc/2

#define Baudrate 115200

//Define UART buadrate register value

#define BRGVAL ((Fcy/Baudrate)/4)-1

#define TRANSMIT 1

#define RECEIVE 0

//Define inputs/outputs

#define GOOD_CONNECTION_LED LATBbits.LATB6 //LED_2 - WM

#define DATA_RECEIVED LATBbits.LATB6 //LED_2 - WAP

#define ACCEL_LIMIT_LED LATBbits.LATB7 //LED_3 - WM

#define RF_ACTIVE LATBbits.LATB7 //LED_3 - WAP

#define BUTTON_1 PORTBbits.RB8

//Port Names for transmitter

#define CLK LATAbits.LATA2

#define CS LATAbits.LATA4

#define TX_DAT LATBbits.LATB3

#define RX_DAT PORTBbits.RB3

#define RX_DR1 PORTBbits.RB4

#define CE LATBbits.LATB5

#define BEACON_CHAN 0x01

#define BROADCAST_WM_NUM 0xAA

//Max PAYLOAD_LEN is 29 bytes

#define PAYLOAD_LEN 10 //Set payload length in number of bytes

//Define Wireless Access Point Commands

#define WAP_CHECK_EMERGENCY 0x10

#define WAP_DATA_REQUEST 0x20

#define WAP_BEACON 0x30

#define WAP_CLEAR_ACCEL_EVENT 0x40

//Define Wrist Module Commands

#define WM_EMERGENCY 0x01

#define WM_SOH_RESPONSE 0x02

102

Appendix D

General Information

Sample of logged patient vital signs data

Figure 26: Sample Log Data

Sample of Guardian database directory structure.

Figure 27: Sample Database Directory Structure

103

REFERENCES

[1] D. Piazza, N.J. Kirsch, A. Forenza, R.W. Heath, and K.R. Dandekar, “Design and

Evaluation of a Reconfigurable Antenna Array for MIMO Systems,” IEEE

Transactions on Antennas and Propagation, vol. 56, issue 3, pp. 869-881, Mar. 2008

[2] Zhao Youping, Mao Shiwen, J.O. Neel, and J.H. Reed, “Performance Evaluation of

Cognitive Radios: Metrics, Utility Functions, and Methodology,” Proceedings of the

IEEE, vol. 97, issue 4, pp. 642-659, Apr. 2009

[3] J.E Cabral. Jr., and Yongmin Kim, “Multimedia systems for telemedicine and their

communications requirements,” IEEE Communications Magazine, vol. 34, issue 7,

pp. 20-27, Jul. 1996

[4] Y.B. Choi, J.S. Krause, Seo Hyewon, K.E. Capitan, and Chung Kyusuk,

“Telemedicine in the USA: standardization through information management and

technical applications,” IEEE Communications Magazine, vol. 44, issue 4, pp. 41-48,

Apr. 2006

[5] M. Krol, “Telemedicine,” IEEE Potentials, vol.16, issue 4, pp. 29-31, Nov. 1997

[6] O.R.L. Sheng, P.J.-H Hu, Wei Chih-Ping, and Ma Pai-Chun, “Organizational

management of telemedicine technology: conquering time and space boundaries in

health care services,” IEEE Transactions on Engineering Management, vol. 46, issue

3, pp. 265-278, Aug. 1999

Datasheet References:

[D1] Microchip Technology Incorporated, “PIC24HJ32GP202/204 and

PIC24HJ16GP304,” Datasheet, Preliminary Release, rev. B, Jun. 2008

[D2] Nordic Semiconductor ASA, “Single chip 2.4 GHz Transceiver nRF2401A,”

Product Specification, rev. 1.0, Dec. 2004

[D3] Analog Devices Incorporated, “Small, Low Power, 3-Axis ±3 g iMEMS©

Accelerometer ADXL330,” Datasheet, rev. 0, Mar. 2006

[D4] Analog Devices Incorporated, “Low Voltage Temperature Sensors

TMP35/TMP36/TMP37,” Datasheet, rev. E, Aug. 2008

