
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

7-2-2012

Measuring and tuning energy efficiency on large
scale high performance computing platforms
James Howard Laros III

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Laros, James Howard III. "Measuring and tuning energy efficiency on large scale high performance computing platforms." (2012).
https://digitalrepository.unm.edu/ece_etds/150

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/150?utm_source=digitalrepository.unm.edu%2Fece_etds%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 , Chairperson

Measuring and Tuning Energy Efficiency
on Large Scale High Performance

Computing Platforms

by

James H. Laros III

A.A.S., Drafting and Design Technology,
Northampton County Area Community College, 1982

B.S., Computer Science, Chapman University, 1998

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2012

c©2012, James H. Laros III

iii

Dedication

This work is dedicated to my wife Janet. Your love and support is the only reason

this journey of so many years has become a reality.

To my daughter Nicolette, nothing I have experienced in this life has compared to

the privilege of watching you grow into the person you have become.

iv

Acknowledgments

I would like to sincerely thank and acknowledge the following people who have con-
tributed in various ways, all of which significant, to the successful completion of this
Thesis: Dr. Wei Shu - Thesis advisor, committee chair and collaborator, Univer-
sity of New Mexico Electrical and Computer Engineering Department; Dr. Howard
Pollard - Committee member, University of New Mexico Electrical and Computer
Engineering Department; Dr. James A. Ang - Committee member and Manager of
the Scalable Computer Architectures Department at Sandia National Laboratories;
Kevin Pedretti, Sue Kelly, John Vandyke, Kurt Ferreira and Courtenay Vaughan -
Collaborators, Technical Staff Sandia National Laboratories and Mark Swan - Col-
laborator, Cray Inc.

The following agencies have provided funding directly or indirectly to this re-
search: National Nuclear Security Agency (NNSA) Advanced Simulation and Com-
puting (ASC) program and the Department of Energy’s (DOE) Innovative and Novel
Computational Impact on Theory and Experiment (INSITE) program. Sandia Na-
tional Laboratories Center 1420 Sudip Dosanjh Senior Manager, Department 1422,
James Ang manager and Department 1423 Ronald Brightwell manager.

v

Measuring and Tuning Energy Efficiency
on Large Scale High Performance

Computing Platforms

by

James H. Laros III

A.A.S., Drafting and Design Technology,

Northampton County Area Community College, 1982

B.S., Computer Science, Chapman University, 1998

M.S., Computer Engineering, University of New Mexico, 2012

Abstract

Recognition of the importance of power in the field of High Performance Com-

puting, whether it be as an obstacle, expense or design consideration, has never

been greater and more pervasive. Research has been conducted in a number of areas

related to power. Little, if any, existing research has focused on large scale High

Performance Computing. Part of the reason is the lack of measurement capability

currently available on small or large platforms. Typically, research is conducted using

coarse methods of measurement such as inserting a power meter between the power

source and the platform, or fine grained measurements using custom instrumented

boards (with obvious limitations in scale). To collect the measurements necessary to

analyze real scientific computing applications at large scale, an in-situ measurement

capability must exist on a large scale capability class platform.

vi

In response to this challenge, the unique power measurement capabilities of the

Cray XT architecture were exploited to gain an understanding of power use and

the effects of tuning both CPU and network bandwidth. Modifications were made

at the operating system level to deterministically halt cores when idle. Addition-

ally, capabilities to alter operating P-state were added. At the application level,

an understanding of the power requirements of a range of important DOE/NNSA

production scientific computing applications running at large scale (thousands of

nodes) is gained, by simultaneously collecting current and voltage measurements on

the hosting nodes. The effects of both CPU and network bandwidth tuning are ex-

amined and energy savings opportunities of up to 39% with little or no impact on

run-time performance is demonstrated. Capturing scale effects was key. This thesis

provides strong evidence that next generation large-scale platforms should not only

approach CPU frequency scaling differently, but could also benefit from the capa-

bility to tune other platform components, such as the network, to achieve energy

efficient performance.

vii

Contents

List of Figures xi

List of Tables xiii

Glossary xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Overview . 2

1.3 Related Work . 4

2 Research Platform 10

2.1 Hardware Architecture . 10

2.1.1 Red Storm . 11

2.1.2 Jaguar . 12

2.2 Operating System . 12

viii

Contents

2.3 Reliability Availability and Serviceability

System . 14

3 Measuring Power 16

3.1 Overview . 16

3.2 Hardware . 16

3.3 Software . 19

3.4 Post Processing Measurement Data 22

4 Applications 24

4.1 High Performance Computing Applications 25

4.2 Synthetic Benchmarks . 26

5 Affecting Power During Idle Cycles 28

5.1 Motivation and Goals . 28

5.2 Operating System Modifications . 29

5.3 Results and Analysis . 30

5.3.1 Idle Power: Before and After 30

5.3.2 Application Power Signatures 35

5.3.3 Power and Noise . 37

6 Tuning CPU Power During Application Run-time 42

6.1 Motivation and Goals . 42

ix

Contents

6.2 Static CPU Frequency Tuning . 44

6.2.1 Operating System Modifications 44

6.2.2 Library Interface . 49

6.3 Results and Analysis: CPU Frequency Tuning 50

7 Network Bandwidth Tuning During Application Run-time 58

7.1 Enabling Bandwidth Tuning . 58

7.2 Results and Analysis: Network Bandwidth

Tuning . 62

8 Energy Delay Product 68

9 Conclusions 74

9.1 Overall . 74

References 77

x

List of Figures

3.1 RAS: Board, Cage and Cabinet Connectivity 17

3.2 RAS: Hierarchical Connectivity . 18

3.3 Sample Raw Current, Voltage and Calculated Wattage Output Data 20

5.1 Compute Node Linux (CNL) . 31

5.2 Catamount Virtual Node (CVN) . 32

5.3 Catamount N-Way Per Core Power Utilization 34

5.4 HPCC on Catamount . 36

5.5 HPCC on CNL . 37

5.6 Slowdown at Scale . 41

6.1 Input Voltage Drop in Response to P-state Frequency Changes . . . 47

6.2 AMG P-states 1-4 . 54

6.3 LAMMPS P-states 1-4 . 55

7.1 Pallas PingPong Bandwidth for All Levels of Network Bandwidth

Tuning . 61

xi

List of Figures

8.1 Experiment 1: Normalized Energy, Run-time and E ∗Tw where w =

1, 2, or 3 . 69

8.2 Experiment 2: Normalized Total Energy, Run-time and E∗Tw where

w = 1, 2, or 3 . 70

xii

List of Tables

5.1 Power Impact of Noise . 39

6.1 Test Platform P-states, CPU Frequencies and Input Voltages 46

6.2 Experiment 1: CPU Frequency Scaling: Run-time and CPU Energy

%Difference vs. Baseline . 51

7.1 Experiment 2: Network Bandwidth: Run-time and Total Energy

%Difference vs. Baseline . 64

xiii

Glossary

Capacity As in Capacity platform, refers to a platform that is primarily de-

signed to execute a number of jobs concurrently that are individu-

ally much smaller than the total number of nodes the platform is

comprised of.

Capability As in Capability platform, refers to a platform that is primarily

designed to execute a single job on all the nodes the platform is

comprised of.

Light Weight Kernels (LWK) Kernels that are generally designed to optimize

performance on capability class platforms. They typically focus on

providing the resources necessary for application execution with a

focus on performance and scalability. Light weight kernels typically

provide a small subset of the services provided by a general purpose

operating system such as Linux.

Dynamic Voltage and Frequency Scaling (DVFS) In this context refers to

the ability for a component, typically a CPU, to provide an auto-

matic or directed frequency scaling capability that results in the

potential for a reduced input voltage.

Dynamic Voltage Scaling (DVS) Refers to the platform or infrastructure abil-

ity to reduce the input voltage to a component in response to a

xiv

Glossary

component frequency change. See also, Dynamic Voltage and Fre-

quency Scaling.

Energy Delay Product (EDP) One method of providing a unified metric which

combines performance and energy.

Advanced Power Management (APM) is an API developed by Intel and Mi-

crosoft which enables an operating system in conjunction with the

BIOS to achieve power management. We will generally use this

term to refer to the ability of a CPU to support frequency or P-

state changes.

xv

Chapter 1

Introduction

1.1 Motivation

There are three walls in CPU chip architecture design, memory[1], instruction level

parallelism[2] and power. Power is widely accepted as the tallest of these walls.

Currently, the power used by a CMOS circuit is dominated by dynamic power. As

feature sizes shrink, static power (power used due to leakage current) will increasingly

become an important factor. In addition, the vast majority of power introduced into

the chip must be removed in the form of heat. As feature sizes shrink, this becomes

more difficult. More heat must be removed from a smaller area. Addressing these

issues (and others) for mobile and server CPU chip architectures has long established

motivations.

The High Performance Computing (HPC) community has for many years ignored

power as a major factor in favor of increased performance. With annual power costs

on track to rival acquisition costs of next generation platforms, power has increasingly

been identified by the HPC community as the tall pole in the path to Exascale

systems. Ubiquitous in the top three considerations of virtually every report on

1

Chapter 1. Introduction

next generation or Exascale platforms, power has been recognized across the board

by government agencies and commercial enterprises alike as possibly the greatest

challenge in fielding future HPC platforms.

Existing hardware has been successfully leveraged by present day operating sys-

tems to conserve energy whenever possible but these approaches have proved ineffec-

tive and even detrimental at large scale. While hardware must provide part of the

solution, how these solutions are leveraged on large scale platforms requires a new

and flexible approach. It is particularly important that any approach taken has a

system-level, rather than node-level, view of these issues.

1.2 Thesis Overview

In response to this challenge this research has leveraged a thus far unique ability

to measure current draw and voltage, in-situ, on a large HPC platform at a very

fine granularity and high frequency. The first experiment begins with the goal of

reducing power consumption during idle cycles. This concept is extended to multi-

core architectures by ensuring cores not in use remain in low power states during

application execution. It is common for HPC applications to use fewer than the

number of available cores per node. For many scientific applications, the memory

wall in the form of capacity, capability or both force users to limit the number of

cores per node to better balance their application memory requirements at scale.

While conserving power during idle cycles can produce large energy and related

cost savings,1 this research has additionally endeavored to explore possible energy

efficiencies during application run-time on active CPU cores.

1These changes were applied to the production Red Storm capability class platform at
Sandia National Laboratories and the Cray XT4 platform at Pittsburgh Supercomputer
Center and have reduced power related facility charges by one million dollars to date.

2

Chapter 1. Introduction

HPC applications are typically bulk synchronous. In [3], bulk synchronous pro-

grams are described to have three execution phases; computation, communication

and synchronization. In [4] and [5], the authors describe how operating system noise

can effectively slow overall computation of bulk synchronous programs. In short,

the runtime of an application will be throttled by the slowest MPI rank involved in

a bulk synchronous computation. Allowing frequency changes that are dictated lo-

cally, rather than from the systems perspective, can cause the equivalent of operating

system noise (or jitter) adversely affecting application performance.

To avoid this potential performance impact, the second experiment modifies CPU

frequency during application execution, but with a system level perspective. Initially,

it was assumed to achieve significant savings, without unacceptable impacts in per-

formance, frequency scaling would have to be performed during natural wait states

in application execution. For example, during communication wait phases. This re-

search concludes a less aggressive, and likely more stable, approach of static frequency

scaling can produce large energy savings with little to no performance penalty.

The third and final experiment included in this thesis takes advantage of the

ability to tune the performance of the network components of a large scale HPC

platform. This research demonstrates a sweet spot exists for most, if not all, HPC

applications run at large scale where maximum energy efficiency can be achieved

without unacceptable performance trade-offs. A large amount of empirical data is

provided to support this claim.

Evaluating acceptable trade-offs between energy efficiency and run-time perfor-

mance is, of course, somewhat subjective. This research indicates that the param-

eters of these trade-offs are application dependent. While the HPC community has

traditionally prioritized performance above all metrics, future per-processor or per-

platform power requirements will likely alter priorities and place more importance

on energy efficiency metrics like FLOPS/Watt, Energy Delay Product (EDP) and

3

Chapter 1. Introduction

energy or cost to solution. While this research is directed at exploring power savings

potential, performance remains a critical parameter of evaluation.

All experiments were conducted on two Cray XT class platforms; Red Storm

located at Sandia National Laboratories and Jaguar hosted by Oak Ridge National

Laboratory. The results of these experiments clearly indicate that opportunities exist

to save energy by tuning platform components, individually or together, while main-

taining application performance. The ultimate goal is to reduce energy consumption

of real applications run at very large scale while minimizing the impact on run-time

performance (defined for our purposes as wall-clock execution time).

1.3 Related Work

Power, as it relates to computers and computation, has been researched from many

perspectives. Certainly the largest body of research has been done in collaboration

by Ge, Feng and Cameron (in some cases in association with other researchers). In

[6] and [7] the authors introduce PowerPack. PowerPack is a framework for profiling

and analyzing scientific applications on distributed systems. The authors frame the

problem well, warning of future costs and stressing the need for component level

analysis. In their research the importance of fine granularity component level mea-

surement is recognized. It is clear that direct measurements are taken at node level.

It is less clear that some individual components were directly measured. It appears

the authors took great care in attempts to isolate the power draw for individual

components from the overall nodal measurements. The frequency of sample collec-

tion in this research is good. While this research does rely on a direct measurement

technique, only one node, of a 32 node cluster, was instrumented. The authors use

a technique called ”node remapping” in which they emulate measuring a single ap-

plication run by executing an application that runs on M nodes M number of times

4

Chapter 1. Introduction

ensuring that node assignments are rotated for each execution. There are obvious

scalability limitations to this technique but their analysis techniques are rigorous

and their results valuable at small scale for similar clusters built with commodity

components. The authors conclude that power has a direct relationship on relia-

bility as stated by Arrhenius’ Law[8] but there is evidence to the contrary in an

extensive study done at Google[9]. This research shows there is not a strong corre-

lation between temperature and reliability of disks. Intuitively, it would seem that

components with moving parts would be more likely affected by temperature than

a CPU, for example. Hsu in [10], however, claims informal empirical data supports

Arrenhius’ equation as applied to cluster systems. This remains an open question,

but certainly lowering power, and therefore heat, is unlikely to increase failure rates

based on currently published research. At a minimum, there is a resulting savings in

heat removal.

In [11] the authors improve on the single node sampling technique described in [6]

and [7] by expanding their collection capability to 16 nodes (this remains the limit

on node count in the remaining publications). The NEMO power aware cluster is

comprised of laptops which allow the necessary measurements to be taken. These

measurements are supplemented and verified by contrasting them with readings ob-

tained from an external power monitoring device. On the downside, total node power

is the granularity for this cluster unless they additionally instrument a single node

as described in [6] and extrapolate. The frequency of the power samples drops from

four per second to one sample every 15 to 20 seconds. Regardless, their configuration

provides good small scale information. The authors nicely define three strategies of

scheduling using Dynamic Voltage Scaling (DVS). The approach taken in this thesis

equates to what they define as external, scheduling from the command line. They

also evaluate automatic (scheduling accomplished by a daemon such as the Linux

cpuspeed daemon) and internal (scheduling initiated by the application) scheduling

approaches.

5

Chapter 1. Introduction

Another important aspect of the approach taken by these researchers is their

attempts to provide a useful single or fused metric to gauge success. Energy Delay

Product (EDP), initially proposed by Horowitz[12] to evaluate trade-offs between cir-

cuit level power saving techniques for digital designs, has been applied by Brooks[13]

to more heavily, and some would argue more appropriately, weigh delay by squaring

or even cubing the delay factor in the calculation. Cameron, in a poster presented at

SC04 [14], and in later papers, suggests a weighted approach where the delay factor

can be weighted based on the priority of performance. The decision of how to weight

performance versus power is largely a policy decision. These metrics can be useful in

evaluating individual application efficiency on a platform. In this thesis performance

versus energy use is contrasted in various ways including EDP and weighted EDP.

In [15] the authors focus on exploiting parallel processing inefficiencies to achieve

savings in power with little performance impact. The authors use micro-benchmarks

on what appears to be the aforementioned NEMO 16 node cluster or a close equiva-

lent. With micro-benchmarks, the authors achieve a respectable 25% energy savings

with only a 2% performance impact. The results presented in this thesis for real

scientific applications are better which could suggest that potential savings increase

with scale.

Ge, Feng and Cameron (et al.) make an important contribution with their re-

search. The research presented in this thesis has improved on their work significantly

by analyzing real applications on a large scale HPC platform (the majority of their

research is accomplished analyzing synthetic benchmarks). The instrumentation ap-

proach presented in this thesis allows the collection of data from thousands of nodes,

in-situ, at a higher frequency without interrupting the operating system to obtain the

data. Additionally, this thesis contains research on the effects of network bandwidth

tuning on both power and performance.

6

Chapter 1. Introduction

Li et al. in [16] models hybrid MPI/OpenMP from a performance and energy

perspective examining both dynamic concurrency throttling (DCT) and DVS. In [17]

Li takes a modeling approach to investigate task aggregation to reduce energy con-

sumption by reducing the number of nodes. Li uses AMG along with some NPB MPI

benchmarks, one of the few efforts that use a real HPC applications in their analysis.

Li et al. seem to suggest that in some cases the benefits of DVS diminish with scale.

The results for AMG in this thesis differ Li uses a hybrid implementation which is

likely quite different. Their research predicts the performance energy trade-off up

to 1024 cores (128 nodes). In both [16] and [17] the System G supercomputer at

Virginia Tech is used. System G consists of 324 nodes. The power measurements

appear to be done in a similar manner to the NEMO cluster (assumed to be the

predecessor to System G). Their research takes a different approach; more model

and analytical based versus our empirical approach. The investigation of hybrid

approaches is timely considering the likelihood of more cores per node, both homo-

geneous and heterogeneous, in the future. The research provided in this thesis would

be an excellent validation platform for their research to a much higher scale than

they have currently investigated.

Hsu and Kremer in [18] investigate a compiler based approach to leverage DVS

in efforts to reduce energy consumption during times where the CPU can be slowed

without greatly affecting performance; for example, during memory stalls. Hsu’s

later research [10] investigates a run-time approach which does not require source

code modification, compiler based or otherwise. These efforts are orthogonal to

research included in this thesis but many of the motivations are similar.

The use of performance counters to estimate power efficiency has been researched

from a micro [19, 20] and macro [21] perspective. While estimates based on perfor-

mance counters have shown to be useful, this research will show that scalable fine-

grained measurements can be leveraged at both the micro and macro level to ana-

7

Chapter 1. Introduction

lyze HPC operating system and application power use, with and without frequency

scaling, while employing network bandwidth tuning. While the approach taken is

orthogonal, clearly, modeling efforts would benefit by combining these approaches if

only for validation purposes.

In [22], the authors evaluate various methods of measuring power including cab-

inet level collection on the Cray XT architecture. The method is clearly much more

coarse and their methods proved to not be scalable. Using cabinet level data as a ver-

ification of the data collection mechanisms used in our research was considered. This

approach, if it can be implemented in a scalable way, may be leveraged in the future.

The authors concluded that measuring power at system scale is problematic and

while nodal and small scale measurements can be accomplished the scalable, large

scale, collection of samples is not feasible. The research provided in this thesis shows

that it is possible to collect scalable, fine granularity, high-frequency power measure-

ments on HPC platforms given the necessary hardware and software infrastructure.

Further, by enabling collection from all nodes used in an application (during a single

application run) the additional power effects of parallel applications, at scale, can be

observed and quantified rather than extrapolated based on nodal measurements. By

leveraging what will hopefully become a ubiquitous capability in the future, power

analysis of both operating system and applications on HPC systems can be greatly

enhanced.

Kodi et al. [23] discusses the ability to tune network bandwidth using techniques

similar to DVS (but for network components) to dynamically reconfigure optical in-

terconnects with the goal of increasing energy efficiency. The authors make many of

the same assertions made in this thesis. Kodi focuses on an analysis of the specific

optical interconnect technology. The research presented in this thesis provides evi-

dence confirming large benefits are achievable by using tunable network components

on HPC platforms.

8

Chapter 1. Introduction

Research was found involving DVS on network links as early as 2003 (Shang et

al. [24]). No evidence of an HPC platform that currently has this capability could

be found. Shang uses a modeling approach to project energy savings while applying

a history based policy. Shang’s research illustrates that implementing DVS requires

consideration of many trade-offs.

Brightwell et al. [25], [26] and [27] and Pedretti et al. [28] analyze many aspects

of network performance but do not evaluate power as part of their experiment. No

research has been found that measures energy in-situ at any scale as it relates to

network tuning.

While the research presented in this thesis suggest it is possible, there are signif-

icant challenges in developing network hardware to support the equivalent of DVS.

One goal of this research is to provide strong motivation for tunable network tech-

nologies.

Probably the greatest difference and contribution of this thesis is the sheer scale

of the experiments involving the largest set of real HPC scientific applications. This

thesis is clearly focused on empirical analysis. The necessity of extrapolation to large

scale is removed and true scale effects for scientific applications are demonstrated. No

related work was found to compare to the research contained in this thesis regarding

tuning network bandwidth and evaluating the impact on power efficiency.

9

Chapter 2

Research Platform

The only difference between men and boys is the cost of their toys. – Author Unknown

2.1 Hardware Architecture

The experiments conducted as part of this research were all accomplished on some

variant of the Cray XT architecture. To our knowledge, this is the only platform

that exposes the ability to measure current draw and voltage, in situ, as described in

Chapter 3. Both the idle cycle and frequency scaling experiments required specific

operating system modifications to the Catamount light-weight kernel[29] (LWK).

Catamount support is currently limited to the Cray XT architecture. The Cray XT

architecture also affords the rare ability to tune performance parameters of other

components. This capability is exploited to tune network bandwidth while mea-

suring the effect on application energy in Chapter 6. The following sections will

describe specific test platforms and configurations in more detail as they pertain to

this research. It is important to note, obtaining dedicated time on production HPC

platforms is difficult, and very expensive.

10

Chapter 2. Research Platform

2.1.1 Red Storm

Red Storm, the first of the Cray XT architecture line, was developed jointly by

Cray Inc., and Sandia National Laboratories. The Cray XT architecture has been

installed at numerous government and commercial sites including Oak Ridge National

Laboratories. Red Storm is currently a heterogeneous architecture containing both

dual and quad core processors. Both variants are used in the experiments discussed

in this thesis. All nodes, dual and quad, are connected via a Seastar 2.1 network

interface controller/router (Seastar NIC) in a modified mesh (mesh in X and Y

directions and a torus in the Z direction).

Dual Core Nodes The network bandwidth experiments described in Chapter 6

were accomplished on the dual core (XT3) partition of Red Storm. The XT3 Par-

tition contains 3,360 AMD 64 bit 2.4 GHz dual-core processors with 4GB of DDR

memory (2 GB per compute core). Each XT3 node is connected to the network via

a Seastar NIC. The ability to manipulate the network bandwidth of the platform is

equivalent on both the XT3 and XT4 partitions. The primary driver of using the

XT3 partition for the network bandwidth experiments was simply the availability of

this partition. The idle experiments were conducted on both the dual and quad core

partitions of Red Storm.

Quad Core Nodes Red Storm’s XT4 partition utilizes AMD 64 bit 2.2 GHz quad-

core processors with 8 GB of DDR2 memory (2 GB per compute core). Red Storm

has 6,240 quad-core compute nodes, each connected to the network via a Seastar NIC.

The frequency scaling experiments described in this thesis were conducted solely on

the quad-core processors of either Jaguar or Red Storm due to the Advanced Power

Management (APM) architectural requirements. The method of exploiting APM

features will be discussed in Chapter 6. Some of the applications used in this research

11

Chapter 2. Research Platform

are export controlled and could not be executed on Jaguar (an open platform). Since

the architectures and software stacks used were identical, we simply maximized our

use of each platform based on application requirements and test platform availability.

2.1.2 Jaguar

Use of Jaguar was granted through the Department of Energy’s Innovative and Novel

Computational Impact on Theory and Experiment (INCITE) program. Jaguar, lo-

cated at Oak Ridge Leadership Computing Facility (OLCF), was used for a portion

of the frequency scaling experiments outlined in Chapter 6. The XT4 partition of

Jaguar was specifically employed since it was both easier to gain dedicated access

to and the architecture supported Catamount with much less up front effort than

the XT5 partition would have required. Dedicated access was necessary for a num-

ber of reasons, primarily driven by our requirement to run Catamount (no longer a

Cray supported operating system for the XT architecture). The XT4 partition of

Jaguar contains 7,832 64 bit quad-core AMD Opteron processors (or nodes). Each

core executes at 2.2 GHz and has access to 8 GB of DDR2 memory (2 GB per com-

pute core). Each node on Jaguar is connected to the network via a Seastar NIC.

The network topology of the Jaguar XT4 partition is a 3D torus1. Jaguar’s network

topology differs somewhat from Red Storm’s. These differences are not significant

to the experiments conducted for this research and had no affect on the results.

2.2 Operating System

Serial number one of the Cray XT architecture employed a light-weight kernel op-

erating system named Catamount. For approximately four years, Catamount was

1The XT4 partition of Jaguar was recently decommissioned.

12

Chapter 2. Research Platform

delivered by Cray Inc. as the production operating system for the XT3 platform

line. Catamount, at the time, was the latest in the lineage of light-weight operating

systems authored, or co-authored, by Sandia National Laboratories2. Catamount

was designed to get out of the way of the application. Important hardware abstrac-

tions and memory management are all provided with performance being the primary

design consideration. When a parallel application is launched, Catamount provides

the initial set up for the application, including contiguous memory allocation, and

basically suspends itself other than handling interrupt driven tasks such as those

from network devices (Seastar NIC). This is a simplistic description but sufficient for

the purposes of this thesis. The basic point is, Catamount is a small deterministic

operating system in contrast with general purpose operating systems such as Linux.

While it has proven to be a very successful production operating system, Catamount

has also proved invaluable for operating system research at Sandia National Labo-

ratories.

The first experiment conducted as part of this research was directed at saving

energy during idle cycles since early versions of Catamount ignored this as a design

consideration. The design of Catamount preceded many of the APM capabilities

found on recent processor architectures. Once successful, later experiments explored

further power efficiencies by leveraging more advanced APM features like frequency

scaling. The deterministic nature of Catamount greatly aided in conducting this

research3. More detail on specific modifications will be included in our coverage as

necessary.

2Sandia’s most recent effort is the Kitten light-weight kernel[30].
3Much of our research has been accepted into the production environment. To date,

Sandia has saved more than one million dollars in facility power costs directly attributed
to this work

13

Chapter 2. Research Platform

2.3 Reliability Availability and Serviceability

System

Historically, Reliability Availability and Serviceability (RAS) systems were com-

monly provided by vendors on mainframe class systems. Today, RAS systems are

mostly unique to very high end custom HPC class architectures (Cray XT/XE and

IBM BlueGene L/P and Q, for example). Its hard to define a clear line where cluster

management systems become RAS systems. Generally, cluster management systems

consist of a loose collection of open source utilities that are each individually de-

signed for a narrow purpose. They are seldom integrated in any way and can often

be intrusive to the primary purpose of the platform, computation. At small scale,

the level of interference is often acceptable. RAS systems, in general, are typically

more intentionally designed and integrated, often specific to a single architecture (in

my opinion one of the failures of RAS system designs historically[31]).

The following are excerpts from the requirements for a recent capability class pro-

curement by the Alliance for Computing at Extreme Scale (ACES), a collaboration

between Sandia National Laboratories and Los Alamos National Laboratory4.

• To achieve delivery of the maximum continuous system resource availability,

the RAS system must be a well engineered, implemented and integrated part of

the proposed platform.

• There shall be a separate and fully independent and coherent RAS system.

• The RAS system shall be a systematic union of software and hardware for the

purpose of managing and monitoring all hardware and software components of

the system to their individual potential.

• Failure of the RAS system (software or hardware) shall not cause a system or

4The requirements listed were contributed to the Cielo RFP by the author of this thesis.

14

Chapter 2. Research Platform

job interrupt or necessitate system reboot.

While this is only a small portion of the requirements that described and specified

the RAS system for Cielo[32], it suggests some differentiating characteristics between

a generic cluster management system and what is considered a RAS system. For

this research, one of the most important characteristics is the separation but close

integration of the RAS system in relationship to the capability platform. This allows

for the out of band5 scalable collection of current and voltage data necessary for

all experiments included in this research. It is very important that experimental

methods do not, or minimally, affect the normal activity of the system. In related

works, other research efforts that employ laptops and measure power using the ACPI

interface are described. This method causes an operating system interrupt each time

a measurement is requested. While the interruption is minimal, at large scale this

type of measurement could introduce the equivalent of operating system noise[5],[4].

There is no such interruption during the measurements used in in our experiments.

The separate RAS network additionally allows the collection of these measurements

in a scalable manner.

5Out of band, in this context, means that control and monitoring of the platform, in
general, is accomplished without affecting the platform or the software running on the
platform. Measuring current and voltage data, for example, does not require an operating
system interrupt using our methodology.

15

Chapter 3

Measuring Power

To understand the affect we must be able to measure the effect. – Unattributed

3.1 Overview

The effort expended to measure current draw and voltage are enabling technologies

supporting this research. To date there has been no other work published that has

been based on such large scale fine grained in-situ measurements of energy on a High

Performance Computing (HPC) platform. This chapter contains a discussion of both

the hardware and software infrastructure used to support this research.

3.2 Hardware

The Cray XT architecture contains an integrated Reliability Availability and Ser-

viceability (RAS) system comprised of both hardware and software with the goal of

increasing the reliability of the overall platform (see Section 2.3). At a very high

16

Chapter 3. Measuring Power

#$'()&*"

#$%&"

)+,&")+,&"

)+,&")+,&"

-./" -./"

-./"-./"

0+"

'+$.,"

01"

Figure 3.1: RAS: Board, Cage and Cabinet Connectivity

level, the RAS system is responsible for the control and monitoring of the underlying

platform. The separate hardware allocated for the RAS system is intended to ensure

the primary purpose of the underlying platform - computation - is affected as little

as possible. The distinct, but closely integrated, nature of the RAS system provides

an out-of-band path that allows a large variety of monitoring data to be collected.

Unlike typical commodity hardware, the Cray XT3/4/5 node boards provide in-

terfaces that can be exploited to measure component level current draw and voltage.

Figure 3.1, depicts the logical board, cage and cabinet connectivity of important com-

ponents of the RAS system involved in collecting current and voltage measurements.

Each node board has an embedded processor called an L0 or level 0 (depicted in

green). The L0 has the ability (and responsibility) to interface with many on board

17

Chapter 3. Measuring Power

02"
02"
02"
02"

01"
02"
02"
02"
02"

01"
02"
02"
02"
02"

01"

3/4"

Figure 3.2: RAS: Hierarchical Connectivity

components. To obtain current and voltage measurements the i2c1 link between the

L0 and the Voltage Regulator Modules (VRM) is enlisted. Note, each node (depicted

in blue) has an associated VRM (depicted in orange). The black lines connecting

the L0 to each node’s VRM represent the i2c interface.2 The current and voltage

measurements are collected by the L0 on each board. In the Cray XT architecture

there are eight boards in a cage. Three cages comprise a cabinet. At the cabinet

level there is an additional embedded processor called an L1 or level 1 (depicted in

red in Figures 3.1 and 3.2). Each of the 24 L0s in a cabinet are connected to the

cabinet L1 via Ethernet, also depicted by black lines. The L1 acts as a parent for

each of the L0s in a cabinet.

1The i2c is one of several two wire serial bus protocols commonly used for this type of
component control and monitoring. SMBus, for example, is another common standard.

2In reality, the connectivity is more complicated, involving a number of Peripheral In-
terface Controllers (PIC micro-controllers) and Field Programmable Gate Arrays (FPGA).

18

Chapter 3. Measuring Power

Figure 3.2 represents the overall hardware RAS hierarchical topology down to the

L0 level. Each cabinet level L1 in the platform connects to the top level System Man-

agement Workstation (SMW) (depicted in blue in Figure 3.2) via Ethernet. Similar

to how the L1 acts as a parent for each underlying L0, the SMW acts as a parent for

all L1s in the platform. This configuration forms the RAS hardware hierarchy for the

Cray XT architecture. This hierarchical configuration provides sufficient scalability

for the control and monitoring of very large platforms3. While not infinitely scalable

in its current configuration, no scalability issues were encountered.

3.3 Software

While the ability to exploit the hardware (collect current and voltage data) is not

currently a feature provided by the Cray Reliability Availability and Serviceability

Management System (CRMS), the existing software infrastructure was leveraged in

the following way to conduct this research.

The CRMS consists of a number of persistent daemons which communicate in a

hierarchical manner to provide a wide range of control and monitoring capabilities.

The base CRMS software was augmented with a probing daemon that runs on each

L0 and a single coalescence daemon that runs on the top level SMW. The probing

daemon registers a callback with the event loop executing in the main L0 daemon

process (part of the standard CRMS) to interrogate the VRM at a specific bus:device

location (corresponding to each individual node or processor socket). In the standard

CRMS, the L0 daemon processes communicate to their parent L1 daemon process

(also part of the standard CRMS, executing on the cabinet level L1) through an

event router daemon (additionally part of the standard CRMS). In turn, each L1

3Systems of more than 200 cabinets have been supported by this configuration. A 200
cabinet system would be comprised of one top level SMW, 200 L1s and 6400 L0s. The
RAS system alone is larger than most commodity clusters.

19

Chapter 3. Measuring Power

communicates to the top-level SMW through an event router daemon. The results

of a series of timed probes, requested by the probing daemon, are combined at the

L0 level and communicated through the standard event router daemon hierarchy to

the coalescence daemon executing on the SMW, which outputs the results.

c14-2c0s2,1300491313,n0=0x17,n0 V=0x4fa,n0 W=0x1d,,mezz=0x46
c14-2c0s3,1300491313,n0=0x1a,n0 V=0x500,n0 W=0x21,,mezz=0x46
c14-2c0s4,1300491313,n0=0x15,n0 V=0x4e3,n0 W=0x1a,,mezz=0x46

Figure 3.3: Sample Raw Current, Voltage and Calculated Wattage Output Data

The output is a formatted flat file with timestamped hexadecimal current and

voltage values for each CPU socket monitored (results are per socket not per core).

Figure 3.3 depicts a few sample output lines from an actual experiment. The cname

(c14-2c0s3), for example, corresponds to the L0 that resides in the cabinet with X

coordinate 14 Y coordinate 2 cage 0 slot 3. The 2nd field is the time-stamp relative to

the L0 that collected the data. (Some challenges were encountered when we collected

data from L0s with poorly synchronized date and time.) The remaining fields are the

current and voltage measurements for this board and a calculated value for power

in watts. For example, the entry n0=0x1a specifies a current measurement of 26

amps. The entry n0 V=0x500 specifies a voltage measurement of 1280 millivolts

or 1.28 volts. Finally, the calculated wattage value is provided (n0 W=0x21 or 33

Watts). Typically, the wattage is calculated using the current and voltage values in

the post processing step rather than using the value specified in this output to retain

as much precision as possible. The entries omit the values for nodes 1, 2 and 3 in

the interest of space. Note, the last field labeled mezz represents the Seastar NIC.

As can be seen in the samples provided, the current draw is very consistent for the

Seastar and does not change in response to load. The power draw for most network

interfaces is dominated by the SerDes. The SerDes typically operate at a constant

rate independent of network traffic. While the current draw of the network does not

20

Chapter 3. Measuring Power

vary over time, it is useful in quantifying the total power used by the node. The

measured value from the NIC (Seastar) is used to establish a baseline in the network

bandwidth experiments (see Section 7.2).

A per socket collection granularity at a frequency of up to 100 samples per sec-

ond4 was achieved by leveraging the existing hardware and software foundation of

the CRMS. The accuracy of each sample is approximately +/-2 amperes. While

the samples are not as accurate as would be optimal, the data remains extremely

valuable for comparing deltas. Since the values reported by a single node are con-

sistent, the deltas are reliable for comparison purposes. This is in contrast with

most other platforms where measuring current draw is typically limited to inserting

a meter between a power cable and energy source, which results in a very coarse

measurement capability at best. The current draw measurements include memory

controller activity (since the processors used have an on-board memory controller)

but not power used by the memory banks themselves. The granularity and frequency

of this sampling capability has enabled real power usage to be observed and used in

new and powerful ways.

The impact of the instrumentation on the CRMS has been closely monitored.

Even at 100 samples per second little impact on the L0 was observed. Likewise, no

adverse impact to communication between the L0s and L1 devices, or between the

L1s and the SMW has been observed. The instrumentation has been tested on up

to 15 Cray XT cabinets (1440 nodes) and no scaling issues have been identified. It

should be noted that this was not intended to be a production implementation. Cray

Inc. has recently become interested in replicating our approach and this measurement

capability is expected to be a standard option of the CRMS in the near future.

4The data used in our research is generally at a one sample per second frequency.
We found little benefit in higher frequency collection for the purposes of this analysis. In
addition, we do not have sufficient information concerning the ability of the low level device
to collect discrete values at higher rates.

21

Chapter 3. Measuring Power

3.4 Post Processing Measurement Data

In all of the following experiments, current and voltage measurements are collected,

simultaneously, from 15 cabinets (1440 nodes), more specifically each node’s VRM,

at a frequency of one sample per second over the duration of the entire test period

to avoid start up and tear down overhead of the collection process. Since a range of

applications were executed at various scales, cabinets were targeted in a distributed

manner throughout the platform to achieve consistent collection coverage for the ap-

plications tested. For example, the CTH application run on 4096 nodes intersected

with 960 of the collection nodes (23% coverage). Similarly, the AMG application run

on 1536 nodes intersected with 480 of the collection nodes (31% coverage). The num-

ber of nodes sampled was not limited by the scalability of the collection mechanism

but by the available test time on these large scale platforms.

Post processing begins with ensuring all data samples used are from nodes in-

volved in the specific application run. The data samples are then synchronized with

the application execution start and finish timestamps. The resulting file is used

as input for a Perl script which accomplishes the vast majority of post processing

automatically. The post processing script has a wide range of capabilities used for

analyzing input data for a number of purposes. The following describes a typical

analysis.

In Figure 3.3 notice that a single line of data contains information for all four

nodes on a board (and the Seastar or mezz). Each line is first parsed into individual

node data and stored in a data-structure which allows great flexibility with post-

processing options. Each line also contains a time-stamp. Each data sample for

each node is stored with an associated time-stamp value. The trapezoidal rule is

used to integrate these values over time, which approximates the energy used over

the duration of the application. This value is expressed in Joules and calculated for

22

Chapter 3. Measuring Power

each individual node. In addition to this calculation, a graph is produced for each

node over the duration of the data sample. Graphs are typically produced (using

gnuplot) of the absolute measurement values in Watts on the X axis and time on

the Y axis. Alternatively, plots can be produced using the measured values relative

to the measured idle current by sampling the current for a small duration of time

before launching the application. A number of output graph types and formats can

be specified. For the purposes of displaying energy used over the duration of an

application run, the gnuplot filled-curves format is most useful for analysis (example

graph can be found in Section 6.3, Figure 6.2).

In addition to calculating an energy value and producing a graph for each node

represented in the data file a statistics file is also generated that is used as the

basis for cumulative, per application analysis. The statistics file contains the energy

for each node along with a number of additional statistics including: total energy

(sum), the average or mean, median, mode and the coefficient of variation (CV).

This analysis allows huge amounts of data to be processed while ensuring the results

are valid. The CV is leveraged to ensure the measurements are dependable since

the CV is expressed as a percentage, independent of the magnitude of the data

samples. For the purposes of this analysis, the differences between complete samples

or deltas are the primary focus. Previous experiments have proven this approach to

be very reliable and provide a solid foundation for comparison. This process is used

to produce the data and graphs that appear throughout this document.

23

Chapter 4

Applications

The applications used in this research were primarily selected based on their impor-

tance to the three Department of Energy (DOE) National Nuclear Security Admin-

istration (NNSA) nuclear weapons laboratories (Sandia, Los Alamos and Lawrence

Livermore). As part of the procurement of Cielo, (DOE/NNSA’s most recent HPC

capability platform (2010)) each laboratory in the Tri-Lab complex specified two

production scientific computing applications that would be used in the acceptance

phase of the procurement of Cielo. These applications are herein referred to as the 6X

applications (due to the requirement they, on average, must perform six times faster

on Cielo, not that there are six applications). The 6X applications include: SAGE,

CTH, AMG2006, xNOBEL, UMT and Charon. In addition to the 6X applications

LAMMPS, another production DOE application, and two synthetic benchmarks,

HPL and Pallas were used. The following sections provide short descriptions of each

application.

24

Chapter 4. Applications

4.1 High Performance Computing Applications

SAGE[33, 34] SAIC’s Adaptive Grid Eulerian hydro-code, is a multi-dimensional,

multi-material, Eulerian hydrodynamics code with adaptive mesh refinement that

uses second-order accurate numerical techniques. SAGE represents a large class of

production applications at Los Alamos National Laboratory. Both strong and weak

scaling inputs were used in our experiments.

CTH[35] is a multi-material, large deformation, strong shock wave, solid mechan-

ics code developed at Sandia National Laboratories. It has models for multi-phase,

elastic viscoplastic, porous and explosive materials. Three dimensional rectangular

meshes; two-dimensional rectangular, and cylindrical meshes; and one-dimensional

rectilinear, cylindrical, and spherical meshes are available. CTH has adaptive mesh

refinement and uses second-order accurate numerical methods to reduce dispersion

and dissipation and produce accurate, efficient results. For our experiments the test

problem used was a 3-D shaped charge simulation discretized to a rectangular mesh.

AMG2006[36], developed at the Center for Applied Scientific Computing, at

Lawrence Livermore National Laboratory, AMG is a parallel algebraic multi-grid

solver for linear systems arising from problems on unstructured grids. Based on

Hypre[37] library functionality, the benchmark, configured for weak scaling on a

logical three dimensional processor grid px × py × pz, solves the Laplace equations

on a global grid of dimension (px× 220) × (py × 220) × (pz × 220).

xNOBEL[38], developed at Los Alamos Laboratory, is a one, two, or three di-

mensional multi-material Eulerian hydrodynamics code used for solving a variety of

high deformation flow of materials problems. The problem used for this study was

the sc301p shape charge problem in two dimensions in a weakly-scaled configuration.

25

Chapter 4. Applications

UMT[39] is a 3D, deterministic, multigroup, photon transport code for unstruc-

tured meshes. The transport code solves the first-order form of the steady-state

Boltzmann transport equation.

Charon[40], developed at Sandia National Laboratories, is a semiconductor de-

vice simulation code. Charon employs the drift-diffusion model, a coupled system of

nonlinear partial differential equations that relate the electric potential to the electron

and hole concentrations. A fully-implicit, fully-coupled solution approach is utilized

where Newton’s method is used to linearize the discretized equations and a multigrid

preconditioned iterative solver is used for the sparse linear systems. Charon uses the

solvers from the Sandia National Laboratories Trilinos[41] project. The problem used

for this study is a 2D steady-state drift-diffusion simulation for a bipolar junction

transistor with approximately 31,000 degrees of freedom per MPI rank.

LAMMPS[42, 43] is a classical molecular dynamics code, and an acronym for

Large scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has poten-

tials for soft materials (biomolecules, polymers) and solid state materials (metals,

semiconductors) and coarse grained or mesoscopic systems. It can be used to model

atoms or, more generically, as a parallel particle simulator at the atomic, meso, or

continuum scale. When run in parallel, LAMMPS uses message passing techniques

and a spatial decomposition of the simulation domain.

4.2 Synthetic Benchmarks

Highly Parallel Computing Benchmark (HPL)[44] is the third benchmark in the Lin-

pack Benchmark Report, used as the benchmark for the bi-annual Top500 report[45].

While the value of the benchmark in measuring how a system will perform for real

applications can be debated, its pervasiveness is unquestionable. The benchmark

solves a random dense linear system in double precision arithmetic on a distributed

26

Chapter 4. Applications

memory system. The HPL benchmark is well understood and recognized as a com-

pute intensive application.

Pallas[46], now called the Intel MPI Benchmark (IMB), successor to Pallas

GmbH, is a suite of benchmarks designed to measure the performance of a wide

range of important MPI routines. Pallas is communication intensive.

27

Chapter 5

Affecting Power During Idle

Cycles

5.1 Motivation and Goals

The LinuxTMcommunity has long been concerned with power saving measures, partic-

ularly in the mobile computing sector. Linux has been quick to leverage architectural

features of microprocessors to reduce power consumption during idle cycles (and un-

der load as we will discuss in Chapter 6) as these features have become commercially

available. The HPC community makes great use of Linux on many of their platforms,

but light weight kernels (LWKs) are often used to deliver the maximum amount of

performance at extreme scale (Red Storm and Blue Gene, for example). To achieve

greater performance at scale, LWKs have a selective feature set when compared to

general purpose operating systems like Linux. As a result, LWKs are a prime area for

investigating opportunities for power savings, as long as performance is not affected.

In the area of idle power usage, Linux serves as an established benchmark. The goal

of the first experiment is to match or beat the idle current draw of Linux.

28

Chapter 5. Affecting Power During Idle Cycles

5.2 Operating System Modifications

The measuring capabilities described in Chapter 3 were first leveraged to examine

the current draw of the Catamount LWK. Initial findings were not surprising. As

suspected idle cycles were consuming current as Catamount busily awaits new work.

One of the advantages of most LWKs (Catamount is not an exception) is the

relative simplicity of the operating system. The last two versions of Catamount

(Catamount Virtual Node (CVN) and Catamount N-Way (CNW))1 support multi-

core sockets. The architecture of Catamount is such that there are only two regions

the operating system enters during idle cycles. We first addressed the region where

cores greater than 0 (in a zero based numbering scheme) enter during idle. (core 0 will

be referred to as the master core and cores greater than 0 slave cores.) Catamount

was modified to individually halt slave cores when idle and awaken immediately

when signaled by the master core. Slave cores are signaled prior to an application

launch. If no application is executing on a slave core, the core remains idle without

interruption. The result of this modification was a significant savings in current draw

when slave cores are idle.

As the number of cores per socket increase, the savings will likely increase on

capability platforms. Capability class applications are typically memory and/or

communication bound (these characteristics are leveraged in later experiments to

show energy savings during application run-time). Adding more cores, generally,

decreases the balance of the platform, aggravating application bottlenecks. For this

reason, many scientific HPC applications utilize less than the total number of avail-

able cores. It should be emphasized that each slave core enters and returns from the

halt state independently, resulting in very granular control on multi and many core

1The name Catamount will generally be used throughout this document unless the more
specific names CVN and CNW are necessary to point out an important distinction. Further
specific information about Catamount can be found in [29]

29

Chapter 5. Affecting Power During Idle Cycles

architectures.

After these very positive results, the region of the operating system the master

core enters during idle was targeted. While the master core is interrupted (awakened

from halt) on every timer tick (the slaves are not) significant additional energy sav-

ings during idle periods were still observed.2 Note, if only one core is used during an

application run it executes on the master core. After extensive testing, these modifi-

cations were accepted into the production release of Catamount for Red Storm and

also delivered to the Pittsburgh Computing Center.

5.3 Results and Analysis

5.3.1 Idle Power: Before and After

Figure 5.1 depicts measurements obtained running three applications (HPL[44],

PALLAS[46] and HPCC[47]) on a Dual Core AMD Opteron Processor3 using Com-

pute Node Linux (CNL). Figure 5.2, in contrast, illustrates the results obtained when

executing the same three applications on the same physical CPU using Catamount.

(Experiments compare results using the same exact hardware to limit variability of

measured results.)

The most noticeable difference between the two graphs is the idle power wattage.

CNL uses approximately 40W when idle in contrast to Catamount, which uses ap-

proximately 10W (prior to our operating system modifications Catamount used

approximately 60W). Later results obtained on quad core AMD Opteron4 sockets

showed nearly identical idle power wattage measurements for both CNL and Cata-

2Timer ticks are configured to occur 10 times per second on Catamount
3AMD Opteron 280 AMD Dual-Core Opteron 2.4GHz 2M Cache Socket 940

OSA280FAA6CB
4AMD Opteron Budapest 2.2 GHz socket AM2

30

Chapter 5. Affecting Power During Idle Cycles

Figure 5.1: Compute Node Linux (CNL)

mount5 (delta within accuracy of measurement). On this particular dual core archi-

tecture the instructions MONITOR and MWAIT are not supported. Both instructions

are supported on the quad core architecture used in subsequent testing. Linux can

be configured to poll, halt or use MONITOR/MWAIT during idle. It is possible

that what is observed in Figure 5.1 is a polling loop which in Linux is optimized

to conserve power. While CNL draws less power than our unmodified Catamount

at idle (40W for CNL vs. 60W for unmodified Catamount) it is not as optimal

as the modified Catamount implementation (10W). Later observations on the quad

5CVN was enhanced to support more than two cores, the resulting Catamount version
was named CNW. Unless otherwise specified all results shown after Figure 5.2 were obtained
running on CNW

31

Chapter 5. Affecting Power During Idle Cycles

Figure 5.2: Catamount Virtual Node (CVN)

core architecture, where CNL and Catamount draw equivalent amounts of power

during idle, are likely the result of CNL exploiting MONITOR/MWAIT. The use

of MONITOR/MWAIT should produce similar results to using HALT. Regardless,

these results are intended to show the ability to observe and contrast. These mea-

surements have demonstrated the first goal of equaling (and very possibly beating)

the idle power savings of Linux.

These results also provide a first look at Application Power Signatures (see Sec-

tion 5.3.2). Each application has a characteristic signature. While small differences

in the signature can be observed, even when running the same application on a dif-

ferent operating system the signature is easily recognized (as can be observed in

32

Chapter 5. Affecting Power During Idle Cycles

Figures 5.1 and 5.2 between CNL and Catamount).

Using the information obtained some simple calculations for a hypothetical sys-

tem can be made. For the purposes of this calculation the following assumptions are

used: a 13,000 node (dual core) system, 80% utilized (20% idle) ignoring downtime.

The idle node hours for this system over a year would be:

(13000nodes ∗ 0.2) ∗ (365 days/year ∗ 24hours/day) =

22.776 ∗ 106 node hours/year

(5.1)

If we calculate the idle Kilo-Watt hours saved based on 50W per node (the delta

between the pre-modified Catamount idle wattage and the modified Catamount idle

wattage) we get:

(22.776 ∗ 106 node hours/year ∗ 50Watts/node) ÷ 1000 =

1.1388 ∗ 106KW hours/year

(5.2)

Assuming 10 cents per Kilo-Watt hour, based on Department of Energy averages

for 2008[48], we can calculate real dollar savings for this hypothetical system.

(1.1388 ∗ 106KW hours/year ∗ 10 cents/KW hour) ÷ 100 cents/dollar =

113,880 dollars/year

(5.3)

33

Chapter 5. Affecting Power During Idle Cycles

For a capability system using a figure of 80% utilization as characterized is op-

timistic. Capability systems are typically intended to support one or more large

applications at one time which tends to drive the total resource utilization numbers

down. Additionally, this calculation does not consider idle cores resulting from ap-

plications that use less than the maximum cores available per node (as previously

discussed). In the case of dual core sockets half of the resource could remain idle (in

power saving mode) when the system is considered to be 100% utilized. In the case

of quad core sockets three fourths of the resource could potentially remain idle.

Figure 5.3: Catamount N-Way Per Core Power Utilization

Figure 5.3 illustrates incremental power usage on a quad core socket when a short

HPL job is executed on one, two, three and four cores of a quad core node. Even

34

Chapter 5. Affecting Power During Idle Cycles

though measurements are taken on a per node basis the incremental rise in power

usage when additional cores are enlisted can be observed. These results provide both

a nice illustration of per core savings and a confirmation that the operating system

modifications that were applied properly handle per core idle states.

In addition to the previous calculated savings, a 30-40% additional power savings

as a result of not having to remove the additional heat generated by higher idle

wattages would be realized. If cooling were included, the cost savings would range

from between $148,044 and $159,432 per year. By exploiting these power saving

measures, significant savings can be realized by targeting idle cores alone.

5.3.2 Application Power Signatures

Application Power Signature is the term applied to the measured power usage of an

application over the duration of that application. The term signature is used since

each application exhibits a repeatable and somewhat distinct shape when graphed. A

user knowledgeable of the application flow can easily distinguish phases of the appli-

cation simply by viewing the graphed application signature. While simply graphing

the resulting data can be useful, we have extended this by calculating the energy

used over the duration of the application. The result is termed application energy.

This metric is derrived by calculating the area under the application signature curve.

To accomplish this the post processing code was enhanced to approximate the defi-

nite integral using the trapezoidal rule. The following graphs (Figures 5.4 and 5.5)

depict the data collected while running HPCC on Catamount and CNL. HPCC was

executed using the same input file on the same physical hardware. Each run used 16

processors (four nodes, four cores per node).

In the upper right hand corner of each graph is the energy used by the application

(on a single node, all four cores). Again, notice the similarity of the signatures

35

Chapter 5. Affecting Power During Idle Cycles

Figure 5.4: HPCC on Catamount

regardless of the underlying operating system. In this case HPCC finished more

quickly on Catamount than CNL. HPCC and other applications have been shown

to execute more quickly on Catamount[49]. It is not surprising that an application

that takes longer to execute, given similar power draw during execution, will consume

more energy. In this case HPCC ran 16% faster on Catamount. The amount of energy

used by HPCC is 13% less using Catamount than CNL. HPCC was also tested on

quad core nodes using two cores per node (HPCC ran 15% faster on Catamount

and used 13% less energy) and on dual core nodes using two cores per node (HPCC

ran 10% faster on Catamount and used 10% less energy). The salient point is that

performance is not only important in reducing the run time of an application but

also in increasing the energy efficiency of that application. Additionally, without

36

Chapter 5. Affecting Power During Idle Cycles

Figure 5.5: HPCC on CNL

the ability to examine real power use at this granularity, the energy efficiency of an

application could not be as precisely quantified.

5.3.3 Power and Noise

Operating system interference, also referred to as noise or jitter, is caused by asyn-

chronous interruption of the application by the system software on the node. This

interruption can occur for a variety of reasons from the periodic timer “tick” com-

monly used by many commodity operating systems to keep track of time to the

scheduling points used to replace the currently running process with another task or

kernel daemon.

37

Chapter 5. Affecting Power During Idle Cycles

The detrimental side effects of operating system interference on HPC systems

have been known and studied, primarily qualitatively, for nearly two decades [50, 4].

Previous investigations have suggested the global performance cost of noise is due to

the variance in the time it takes processes to participate in collective operations, such

as MPI Allreduce. LWKs, like Catamount, are essentially noise-less in comparison

to general-purpose operating systems like Linux. Previous work has shown that

operating system noise can have substantial impact on the performance of HPC

applications [5]. In addition, this work shows the impact varies by application, some

showing relatively no impact in noisy environments while others exhibit exponential

slowdowns. While many aspects of the impact of noise on run time performance are

well understood, the impact of noise in terms of energy usage is not. Specifically, the

goal of this experiment is to determine if energy usage in noisy environments scales

linearly (or otherwise) with the increase in application run time.

To evaluate the impact of noise the kernel-level noise injection framework built

into the Catamount LWK [5] was used. This framework provides the ability to

direct the operating system to inject various per-job noise patterns during application

execution. The available parameters for generating the noise patten include: the

frequency of the noise (in Hz), the duration of each individual noise event (in µs),

the set of participating nodes, and a randomization method for noise patterns across

nodes (not employed for this analysis). The noise is generated (simulated) using a

timer interrupt on core 0 of the participating nodes. When the interrupt is generated,

Catamount interrupts the application and spins in a tight busy-wait loop for the

specified duration. The purpose of specifying the frequency and duration of each

noise event separately is to simulate various types of noise that occur on general

purpose operating systems. Catamount provides an ideal environment for these

studies due to its extremely low native noise signature.

38

Chapter 5. Affecting Power During Idle Cycles

The following analysis focuses on a single application (SAGE). SAGE was chosen

based on initial studies and previous analysis done in [5]. Applications like SAGE

have the potential to be significantly impacted by noise and any proportional increase

in energy.

Table 5.1 is a representative sample of our results.

Table 5.1: Power Impact of Noise

Noise Freq Duration Diff Runtime Diff App Energy (AVG)
2.5% 10Hz 2500us 4.0% 4.0 %
1% 10Hz 1000us 1.7% 1.9%

2.5% 100Hz 250us 2.6% 2.5%
2.5% 1000Hz 25us 2.6% 2.5%
1% 1000Hz 10us 0.1% 0.1%

10% 10Hz 10000us 21.6% 21.0%

A number of different noise patterns were injected, varying the frequency and

duration of the noise. The Noise percentage (column one) is determined using the

following calculation.

((Frequency(Hz) ∗Duration(us)) ÷ (1 ∗ 106)) ∗ 100 (5.4)

The frequency of the noise (column two) is how often a noise event occurs. The

duration (column three) is how long each noise event lasts. The difference in runtime

is shown in column four and is relative to the runtime of the application with no

noise injected. Likewise, the difference in application energy (column five) is rela-

tive to the energy used by the application without noise injected. The results, with

the exception of row six, are representative of multiple runs on the same equipment

using the same parameters. In addition, the runtime of the application was varied

with consistent results. The results were obtained using 16 quad core nodes. The

39

Chapter 5. Affecting Power During Idle Cycles

application utilized core 0 only since noise can only be injected on core 0 using this

framework. What was observed is that the difference in application energy used by

applications when noise is injected is linearly proportional to the difference in run-

time. If the impact of the injected noise is normalized, even in the most extreme

example (again excluding row six) the impact of noise on both the runtime and the

application energy is approximately 1.5%. The results were found to be very consis-

tent. The experiment was repeated at a larger scale (48 nodes, again utilizing only

core 0) and observed results were consistent with Table 5.1. In an effort to simu-

late effects seen at larger scale a large amount of noise (10%) was introduced while

running the same application. The results (row six of Table 5.1) show a larger im-

pact to both runtime and application energy (approximately 11% when normalized).

These results are significant in the fact that they show the same linearly proportional

increase in application energy for applications effected by noise. Though Table 5.1

shows small percentage increases in runtime for various noise patterns, accompanied

by proportional increases in the percentage of energy used, these results were ob-

tained at a relatively small scale. The run time of some applications can increase

dramatically at larger scale in noisy environments.

In Figure 5.6[5], the measured slowdown of POP, CTH, and SAGE, at scale,

is observed. In this figure the Y-axis is the global accumulation of noise for the

application. The global accumulation is computed by taking the slowdown of the app

in a noisy environment versus a baseline with no OS noise and subtract the amount of

locally injected noise. For example, if a 2.5% net processor noise signature is injected,

a 20% slowdown is measured and the global accumulation of noise would be 17.5%.

As see in Figure 5.6 with only 2.5% net processor noise injected the slowdown for

POP exceeds 1200% at scale. A proportional increase of 1200% application energy

at scale can therefore be projected. The inset of Figure 5.6 also shows considerable

slowdowns for SAGE and CTH due to noise. While not as dramatic as POP, the

additional impact on application energy projected by our analysis is proportionally

40

Chapter 5. Affecting Power During Idle Cycles

 200

 400

 600

 800

 1000

 1200

 256 512 1024 2048 4096 8192

P
e

rc
e

n
t

S
lo

w
d

o
w

n
 -

 P
e

rc
e

n
t

In
je

c
te

d

Nodes

POP
SAGE

CTH

 0

 10

 20

 30

 40

 50

 4 16 64 256 1024 4096

Figure 5.6: Slowdown at Scale

as significant. Further analysis is necessary to verify that these results are truly

representative at scale.

41

Chapter 6

Tuning CPU Power During

Application Run-time

Science progresses best when observations force us to alter our preconceptions. - Vera

Rubin

6.1 Motivation and Goals

In Chapter 5, the focus was reducing power by exploiting idle cycles. In the experi-

ments outlined in this chapter and in Chapter 7 opportunities to reduce the energy

use of a running application without affecting performance are researched. As men-

tioned previously, determining what is, and is not, an acceptable trade-off between

energy and performance is somewhat subjective. The motivation of this research is

to show that significant energy savings can be achieved by tuning architectural com-

ponents on a per application basis. The focus of the following experiment is CPU

frequency scaling during application execution.

42

Chapter 6. Tuning CPU Power During Application Run-time

Typical approaches employed by operating systems, such as Linux, while efficient

for single server or laptop implementations, have proven to be detrimental when used

at scale causing the equivalent of operating system jitter[4]. For this reason, most,

if not all, sites that deploy clusters at medium to large scale disable these features

while running applications (some sites enable these features during idle cycles). It is

clear that techniques designed for laptop energy efficiency are not directly applicable

to large scale High Performance Computing (HPC) platforms. In the following CPU

frequency scaling experiments, a more deterministic approach is taken which ensures

all cores participating in an application are operating at the target frequency in lock

step. This is termed static frequency modification. First, the runtime impact is

contrasted with the energy savings on a per application basis. This analysis focuses

on CPU energy. In (Chapter 7), the runtime impact is contrasted with total system

energy while tuning the network interface, again on a per application basis. Both

approaches provide valuable insight.

Feng reports in [6] that the CPU is the largest single component consumer of

energy on a node. While Feng’s analysis is for a commodity board that contains disk

and other components, a similar analysis can be performed on the hardware used for

these experiments. A Cray XT architecture node board contains only CPU, memory

and a Network Interface Controller (NIC)1. If 20W is allowed for memory, 25W for

the NIC (based on the measured value) and a measured value for CPU based on the

data collected for these experiments, the CPU ranges from 44-57% of the total node

power. Clearly, since the CPU is the largest consumer of power, it is productive

to analyze it both in isolation and as a component of total system power. In the

following experiment CPU data is measured in isolation.

1the small amount of power used by the embedded controller is not included since it
would be amortized across the four nodes present on the board and be largely insignificant
for this purpose.

43

Chapter 6. Tuning CPU Power During Application Run-time

6.2 Static CPU Frequency Tuning

6.2.1 Operating System Modifications

A number of targeted modifications were made to Catamount2 to accomplish this

research. First, it is necessary to interrogate chip architecture capabilities to deter-

mine if Advanced Power Management (APM) is supported. More specifically, the

CPU is interrogated to determine if hardware P-state3 control is supported. Chang-

ing P-states requires writing to P-state related Memory Status Registers (MSR). If

APM is not supported, writing to P-state MSRs is fatal. Even if APM is enabled,

however, only a single P-state is required to be defined. In addition, even if multiple

P-states (up to 5) are defined, they may have identical definitions. This is typically

not the case but enforces the importance of closely interrogating specific hardware

capabilities, and dynamically adjusting to them. From this point forward it is as-

sumed APM is supported, multiple P-states are defined, and at least P-states define

different operating frequencies.

The method of frequency scaling used in these experiments is currently limited to

frequencies defined in the P-state table, although most processors support frequency

stepping in 100MHz increments. The impetus of changing frequency is ultimately

to lower the input voltage to the processor. Power is proportional to the frequency,

capacitance and voltage squared. By this definition the largest impact to power can

2Additional detailed information specific to the AMD architecture family discussed here
can be found in the BIOS and Kernel Developers guide (BKDG)[51]

3From BKDG: P-states are operational performance states (states in which the proces-
sor is executing instructions, running software) characterized by a unique frequency and
voltage. The processor supports up to 5 P-states called P-states 0 through 4 or P0 though
P4. P0 is the highest power, highest performance P-state; each ascending P-state number
represents a lower-power, lower performance P-state than the prior P-state number. As
P-state numbers increase, the operating frequency and voltage for a given P-state must be
less than or equal to the frequency and voltage of the prior P-state. At least one enabled
P-state (P0) is specified for all processors.

44

Chapter 6. Tuning CPU Power During Application Run-time

be obtained by lowering input voltage. Both the processor and the infrastructure

must support dynamic voltage transitions to take advantage of this potential power

savings. While it is unlikely that future architectures will support independent per

core power planes, there will likely be multiple power domains per processor chip.

Understanding how these power planes are partitioned (which cores are on which

planes) will be important to achieve maximum energy savings while maintaining

performance. On the test platforms used for these experiments all cores were required

to be in the same higher 3 P-state before a lower input voltage could be achieved.

Basically, if one core is operating at a higher frequency (which requires a higher

input voltage) the input voltage to the processor remains at the voltage necessary to

support the highest active frequency (current lowest active core P-state or current

operating frequency (COF)). While describing the subtleties of serial and parallel

voltage planes is beyond the scope of this thesis, they are very important architectural

details and cannot be overlooked in practice.

At a very early stage in the boot process the default P-state and supported P-

states of each core are collected. This information is stored and used by a trap

function added to handle a variety of P-state related functionality. Since changing

P-states is a privileged call (writing to MSRs) the ability to change P-states was

added in two parts; an operating system trap and a user level library interface. The

trap implements query functionality to determine what P-states are available, what

P-state the core is presently in and of course the ability to transition from the current

P-state to an alternate supported P-state. The trap also reports the final P-state

achieved and in debug mode the number of nanoseconds the P-state transition took.

The amount of time necessary to transition between P-states is not important for the

experiments covered in this thesis since a single static change prior to application

execution is accomplished. Transition time becomes a critical consideration when

more dynamic methods of CPU frequency scaling are employed.

45

Chapter 6. Tuning CPU Power During Application Run-time

P-state CPU frequency Input Voltage
Red Storm Jaguar Red Storm Jaguar

0 2.2 GHz 2.1 GHz 1.200 V 1.200 V

1 2.0 GHz 2.1 GHz 1.200 V 1.200 V

2 1.7 GHz 1.7 GHz 1.150 V 1.150 V

3 1.4 GHz 1.4 GHz 1.075 V 1.075 V

4 1.1 GHz 1.1 GHz 1.050 V 1.050 V

Table 6.1: Test Platform P-states, CPU Frequencies and Input Voltages

Table 6.1 lists the supported P-states, corresponding CPU frequencies and re-

quired input voltages from Red Storm and Jaguar. Note that the default P-state on

Red Storm is P-state 0. Testing was conducted on P-states 0, 2, 3 and 4 on Red

Storm. On Jaguar the default P-state is P-state 1. Testing on Jaguar was conducted

using P-states 1, 2, 3 and 4. Some inconsistency was observed in the reported P-state

vids (core voltage ID) on Jaguar. Since both the current and the voltage were di-

rectly measured, these inconsistencies had no affect on the results (actual measured

values are used).

The frequency in MHz at the end of each entry is calculated using the CPU fid

(core frequency ID) and the CPU did (core divisor ID) (see BKDG[51] for additional

information). The vid specifies the necessary input voltage to support the operating

frequency of each P-state. Notice also the nbvid (north-bridge voltage ID) in each

case is the same as the vid. On the test platform the input voltage for both the CPU

and the north-bridge must be the same.

The input voltage, represented in hexadecimal, can be found in the BKDG for

the processor family. The 10h family supports both a parallel and a serial voltage in-

terface. The platforms employed in these experiments use the serial voltage interface

infrastructure. A vid of 0x1c corresponds to 1.2 volts4. By selecting P-state 2 the in-

4To determine the voltage the hexadecimal value must first be converted to its binary
representation then referenced in the appropriate table for either serial or parallel power
planes in the BKDG[51]

46

Chapter 6. Tuning CPU Power During Application Run-time

put voltage can be lowered to vid 0x20 (1.150 volts). In this example notice the vids

for P-state 0 and P-state 1 are identical. Using P-state 1 offers little advantage since

the operating frequency (fid) is lowered with no accompanying reduction in voltage.

Figure 6.1 displays the measured voltage changes (on Jaguar) when the P-state is

altered through the following states: P-state 0, P-state 2, P-state 3, P-state 1. A

difference was observed in the input voltage between P-state 0 and P-state 1. Based

on the defined P-state (Table 6.1) there should be no input voltage difference. It is

for this reason, and others, that it is important to measure actual values.

 1050

 1100

 1150

 1200

 1250

 1300

 1350

00:00 10:00 20:00 30:00 40:00 50:00 00:00 10:00 20:00 30:00 40:00

M
ill

i-
V

o
lt
s
 (

M
V

)

Time (MM:SS since start of sample)

c28-0c2s4n2

Figure 6.1: Input Voltage Drop in Response to P-state Frequency Changes

The current implementation the operating system trap has proved to be extremely

stable. Transition between P-states is done in a step-wise fashion. If, for example,

P-state 4 is requested and the core is currently in P-state 0, the transition occurs

between P-states 0 and 4 one by one. This approach was found to be more reliable

47

Chapter 6. Tuning CPU Power During Application Run-time

than directly requesting cores to transition to specific P-states. Additionally, the

transition time does not impact the results, at least in the case of static P-state

operation. This method would possibly have to be revisited if it is found that it

adversely impacts dynamic frequency scaling in future experiments.

To confirm that P-state transitions are successful the ability to monitor both

current draw and voltage on a per socket granularity is employed. After requesting

a change in P-state a corresponding drop in input voltage can be observed (see

Figure 6.1). Note, in some cases, even when the transition to a new lower voltage

P-state has been confirmed (recorded in the MSR), a drop in input voltage does not

occur (verified through measurement). While this is sub-optimal, it has the effect

of understating the results of these experiments since energy is calculated based on

measured voltages. In other words, if all voltages behaved ideally, the energy savings

would be greater than reported.

More issues were observed, in general, while running on Red Storm than on

Jaguar. Further investigation led to the discovery that while Jaguar has very recent

Peripheral Interface Controller (PIC) revisions, Red Storm’s PIC revisions are quite

dated. This is partially due to the age of Red Storm. Since Red Storm was serial

number one of this architecture, PIC updates were expected to be infrequent therefore

remote update capability was not incorporated into the platform. Benefiting from the

lessons learned from earlier installations, the hardware used on Jaguar does support

remote PIC updates and therefore it is much less intrusive to keep PIC firmware up

to date. Obtaining results for these experiments proved much less problematic on

Jaguar likely due to the up-to-date PIC firmware which affects many of the hardware

characteristics we manipulate.

48

Chapter 6. Tuning CPU Power During Application Run-time

6.2.2 Library Interface

Since changing P-states (changing COF) is a privileged operation, the trap is ac-

cessed through a variety of functions provided by a user level library. While a single

trap function implements all of the frequency change functionality, for ease of use

and clarity a library function interface is implemented to exploit each capability

individually.

• cpu pstates(void) - Returns detailed processor P-state information

• cpu freq step(P-state) - Request a P-state transition (up or down)

• cpu freq default(void) - Returns default processor P-state

In this experiment, the affects of CPU frequency modification are quantified.

Prior to executing the user application a control application is executed. The control

application simply changes the CPU’s COF by changing the CPU’s P-state to the

desired level (cpu freq step(P-state)). The control application is launched on every

core of each CPU that will be used in the test application. Note, while convenient

for these experiments, a separate control application would not be required in a

production environment. For example, a user environment variable could be defined

and used by the runtime, or a flag could be specified at launch time. Clearly, there

are many ways to enable this capability. P-state changes are accessible from any

portion of the software stack using this library interface.

Following execution of the control application the HPC application under test is

executed on the same nodes. The HPC application will run at a lower frequency

defined by the P-state selected by the control program. During the execution of

the HPC application data is collected for both current draw and voltage at one

second intervals. Once the HPC application is completed all nodes are returned to

the default P-state or a new P-state is selected for a subsequent experiment with

49

Chapter 6. Tuning CPU Power During Application Run-time

cpu freq step(P-state).

The trap and library interface was designed to support both static and dynamic

frequency scaling. Initially, it was assumed that it would be necessary to change fre-

quency often during application execution to achieve an acceptable trade-off between

performance and energy. During testing, it was discovered that large benefits exist

for static frequency scaling. Static frequency scaling has many benefits including

simplicity and stability.

6.3 Results and Analysis: CPU Frequency Tuning

The following discussion refers to Table 6.2 and Figures 6.2 and 6.3. Increases in

run-time or energy percentage in Tables 6.2 are indicated by positive numbers. Neg-

ative values or decreases are indicated by parenthesized numbers (all relative to the

baseline values listed). In all cases, great care was taken to use the same nodes for

each application execution. Figures 6.2 and 6.3 were created by overlaying the energy

results from an individual node for P-states 1-4 running the specified application.

50

C
h
ap

ter
6.

T
u
n
in

g
C

P
U

P
ow

er
D

u
rin

g
A

p
p
lication

R
u
n
-tim

e

Table 6.2: Experiment 1: CPU Frequency Scaling: Run-time and CPU Energy %Difference vs. Baseline

Baseline Frequency P-2 - 1.7 GHz %Diff P-3 - 1.4 GHz %Diff P-4 - 1.1 GHz %Diff
Nodes/Cores Run-time (s) Energy (J) Run-time Energy Run-time Energy Run-time Energy

HPL 6000/24000 1571 4.49 × 108 21.1 (26.4)

Pallas 1024/1024 6816 1.72 × 108 2.30 (43.6)

AMG2006 1536/6144 174 9.49 × 106 7.47 (32.0) 18.4 (57.1) 39.1 (78.0)

LAMMPS 4096/16384 172 2.79 × 107 16.3 (22.9) 36.0 (48.4) 69.8 (72.2)

SAGE 4096/16384 249 4.85 × 107 0.402 (39.5)
(weak) 1024/4096 337 1.51 × 107 3.86 (38.9) 7.72 (49.9)

CTH 4096/16384 1753 3.60 × 108 14.4 (28.2) 29.0 (38.9)

xNOBEL 1536/6144 542 4.96 × 107 6.09 (35.5) 11.8 (50.3)

UMT 4096/16384 1831 3.48 × 108 18.0 (26.5)

Charon 1024/4096 879 4.47 × 107 19.1 (27.8)

51

Chapter 6. Tuning CPU Power During Application Run-time

The frequency scaling experiments were conducted during five separate dedicated

systems times. Four of the experiments were conducted on Jaguar during eight to

twelve hour sessions. The final experiments were conducted on Red Storm during a

three day dedicated system time. Over this period a range of experiments were con-

ducted using both real production scientific applications and synthetic benchmarks

listed and described in Chapter 4. As can be seen in Table 6.2 some applications

were tested in all available P-states. Other applications exhibited clear results in

early testing and did not warrant further experiments. In some cases, results at

higher P-states (lower frequencies) were not obtained primarily due to hardware is-

sues (namely PIC revision issues as previously described). However, as can be seen

in Table 6.2 the results are nonetheless extensive.

Decreasing CPU frequency, in general, will slow active computation. If applica-

tions were solely gated by computation this approach would be entirely detrimental.

However, applications exhibit a range of characteristics. In this experiment, the

CPU frequency is altered and the impact on energy and run-time is measured (other

platform parameters are left unchanged). The extremes, or bounds, are represented

by two synthetic benchmarks, HPL and Pallas. Note, for all experiments both run-

time and energy are contrasted to the baseline runs conducted at P-states 0 or 1

(depending on the platform used) and reported as percent increase or decrease from

the baseline value in Table 6.2. For the baseline runs the execution time in seconds

(s) and the energy used in Joules (J) is recorded. The CPU frequency experiments

focused on the affect that CPU frequency modifications had on CPU energy alone.

In [6] Feng evaluates CPU power as a percentage of total system power both during

idle cycles and under application load. Even at idle, the CPU accounts for 14% of the

total power draw according to their measurements. More significant to this research,

Feng’s measurements suggest that during load the CPU accounts for more than a

third (35%) of the total node power draw. As previously stated, on the platforms

used in these experiments the CPU accounts for between 44% and 57% of total node

52

Chapter 6. Tuning CPU Power During Application Run-time

energy. We recognize that additional run-time will be accompanied by additional

energy use from other node components, such as memory and network. These addi-

tional factors will be accounted for in our next study that takes a broader look at

total system energy. Evaluating both CPU power in isolation and as part of total

system power provides important insights.

HPL is largely a compute intensive application. HPL was chosen to demonstrate

an application that would potentially be highly impacted by reducing CPU frequency.

HPL results were as expected. In Table 6.2 it is observed that a change to P-state

2 causes a 21.1% increase in run-time and a 26.4% decrease in energy used. This

would likely not be an acceptable trade-off for a real application unless the priority

was energy savings.

In contrast to HPL, Pallas (IMB) is a highly communication intensive benchmark.

Pallas was chosen to demonstrate an application that would be, potentially, less

affected by reductions in CPU frequency. Again, as expected, Pallas demonstrates

only a 2.30% increase in run-time and a 43.6% reduction in energy used when run

in P-state 2. This would certainly be a favorable trade-off for most, if not all,

applications. Given the results from these synthetic benchmarks, it is expected that

real applications will fall somewhere in between these two extremes. Applications

are addressed in table order.

Results for AMG2006 at P-states 1-4 at a scale of 6K cores were obtained. At

P-state 2 an increase in run-time of 7.47% was observed, accompanied by an energy

savings of 32.0%. Note, the longest of three run-times was used in each case for

the final measurements. AMG2006 had a short run-time and it was observed that

the shortest run-time in P-state 2 was actually faster than the longest run-time in

P-state 1. It is, therefore, clear that AMG2006 could benefit from a reduction in

frequency to, at a minimum, P-state 2. The trade-off at P-state 3 is not as clear.

The runtime impact is proportionally greater than the energy savings at P-states 3

53

Chapter 6. Tuning CPU Power During Application Run-time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

W
a

tt
s
 (

W
)

Time (MM:SS since start of sample)

PSTATE 1
PSTATE 2
PSTATE 3
PSTATE 4

Figure 6.2: AMG P-states 1-4

and 4. Note, while P-state 4 exhibits a significant hit in run-time the largest savings

in energy recorded in these experiments was observed. Depending on policies and/or

priorities AMG2006 might be able to take advantage of any of the available P-states

to produce significant savings in energy.

LAMMPS (tested at 16K cores), in contrast to AMG2006, does not display a

clear win when run at lower frequencies. Resuts at P-state 2 show a 16.3% increase

in run-time and a 22.9% decrease in energy. Not a clear win but in some cases this

might be an acceptable trade-off. The results for P-states 3 and 4 demonstrate a

very significant hit in run-time. Increases in run-time of this magnitude might not be

acceptable in an HPC environment, but LAMMPS does, however, show a correspond-

ingly large savings in energy at P-states 3 and 4. Again, this may be acceptable in

some circumstances where energy consumption is the primary consideration or policy

54

Chapter 6. Tuning CPU Power During Application Run-time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30

W
a

tt
s
 (

W
)

Time (MM:SS since start of sample)

PSTATE 1
PSTATE 2
PSTATE 3
PSTATE 4

Figure 6.3: LAMMPS P-states 1-4

decisions enforce energy limitations.

Figures 6.2 and 6.3 graphically depict each of the four executions of AMG2006 and

LAMMPS at P-states 1-4. The shaded area under each curve represents the energy

used over the duration of the application. Figure 6.2 clearly depicts the positive run-

time vs. energy trade-off (for AMG2006) indicated in Table 6.2 especially between

P-states 1 and 2. In contrast, more dramatic increases in run-time can be seen in

Figure 6.3 for LAMMPS. While AMG2006 showed a favorable trade-off between run-

time and energy when run at lower frequencies there might be even more benefit to

obtain. Notice the compute intensive phase of AMG2006 early in the application

execution. If CPU frequency remained high during this phase but transitioned to

a lower frequency for the remainder of the application it is likely that the benefits

would be even greater. While LAMMPS did not show a clear win when lowering CPU

55

Chapter 6. Tuning CPU Power During Application Run-time

frequency, notice the very regular compute phases throughout the entire application

execution (indicated by peaks in the graph). Chapter 9 contains a short discussion

of how these application characteristics, once understood, could be leveraged to

obtain power savings even in applications that do not present a clear choice when

we statically modify the CPU frequency.

Results for SAGE were obtained using a weak scaling problem at two different

scales (4K and 16K cores) at P-state 2. In both cases, a small increase in run-time

(0.402% at 16K and 3.86 % at 4K) is observed with a very significant reduction in

energy (39.5% at 16K and 38.9% at 4K). Results for a 4k core run of SAGE at P-

state 3 were also obtained. The impact on run-time almost doubled but remains low

while some additional energy savings were recorded. Based on these observations, it

is possible that the 16k core SAGE would also demonstrate a favorable trade-off at

P-state 3.

CTH was executed at P-states 0, 2 and 3 at a scale of 16K cores. Similar to

LAMMPS, there is no clear win with CTH when the CPU frequency is lowered.

Also, like LAMMPS, CTH has very regular compute and communication phases.

LAMMPS and CTH will likely be the targets of future experiments in dynamic CPU

frequency scaling at large scale.

Results for xNOBEL at 6K cores at P-states 0, 2 and 3 were obtained. The

results indicate that xNOBEL, like AMG2006, is a good candidate for CPU frequency

reduction, even using this static method. Having the ability to tune CPU frequency

at large scale for this application would be a clear win.

UMT and Charon behaved in a very similar manner. Since UMT was run at a

much larger scale than Charon (16K cores vs. 4K cores) the results obtained for

UMT are more meaningful and more accurately represent what could be expected

at large scale. Charon may act differently when run at larger scale but these results

56

Chapter 6. Tuning CPU Power During Application Run-time

indicate that both UMT and Charon are sensitive to CPU frequency changes. It is

possible that further analysis will reveal opportunities to dynamically scale frequency

during the execution of these applications.

The CPU is only one component that affects application performance. In the fol-

lowing chapter, network bandwidth tuning is applied and the resulting performance

vs. total system energy trade-off is evaluated.

57

Chapter 7

Network Bandwidth Tuning

During Application Run-time

7.1 Enabling Bandwidth Tuning

The goal of the following experiment was to determine the affect on run-time perfor-

mance and energy of production scientific applications run at very large scale while

tuning the network bandwidth of an otherwise balanced platform[27]. To accomplish

network bandwidth scaling two different tunable characteristics of the Cray XT plat-

form were leveraged. First, the interconnect bandwidth of the Seastar was tuned to

reduce the network bandwidth in stages to 1/2 and 1/4th of full bandwidth. Since

the network bandwidth could not be reduced further by tuning the Seastar, the in-

jection bandwidth was tuned, effectively reducing the network bandwidth to 1/8th.

This allowed for the most accurate stepwise reduction in overall network bandwidth

that could be achieved, using this architecture, and a more complete analysis of the

affects of network bandwidth tuning on energy.

58

Chapter 7. Network Bandwidth Tuning During Application Run-time

Modifying the network interconnect bandwidth on the Cray XT3 (or any XT

platform using Seastar) requires a fairly simple change to the router configuration file

which is consulted (if present) during the routing process of the boot sequence. This

unfortunately necessitates a full system reboot for every alteration of the interconnect

bandwidth. Typically, all four rails of the Seastar are configured on. This is the

default behavior but the number of rails can also be specified in the rail enable field of

the router configuration file by specifying a single hex number (representing the four

configuration bits1). In the following experiments, the interconnect bandwidth of the

Seastar was configured to effectively tune the network bandwidth to full (baseline),

1/2 and 1/4th.

Since the interconnect bandwidth on the XT architecture is far greater than the

injection bandwidth of an individual node, the interconnect bandwidth had to be

reduced to 1/2 before it produced a measurable effect. It is important to note,

the interconnect topology of this platform (Red Storm) is a modified mesh (partial

torus). Multiple nodes may route through an individual Seastar depending on com-

munication patterns and where they logically reside in the network topology. For

this reason, the experiments were limited to one application execution at a time.

This allowed for the nearest estimation of the impact of network bandwidth tuning

on an individual application. Running other applications concurrently would be an

interesting experiment but would greatly complicate analysis and was beyond the

scope of this experiment.

14 rails = 1111 = 0xF, 3 rails (not used) = 0111 = 0x7, 2 rails = 0011 = 0x3, 1 rail =
0001 - 0x1

59

Chapter 7. Network Bandwidth Tuning During Application Run-time

Tuning the node injection bandwidth, to further reduce the network bandwidth,

requires a small modification to the Cray XT bootstrap source code. Cray provided

access to this source code under a proprietary license. The portion of the code

that required modification (coldstart) serves an equivalent purpose to the BIOS on a

personal computer or server. Early in the power-on sequence, coldstart initializes the

HyperTransport (HT) link that connects each node to its dedicated SeaStar network

interface. The speed of this link is determined by its operating frequency (S) and

width in bits (B):

SMHz × 2bits/clock/link × B bits/link × 1Byte/8bits = BW (7.1)

In normal operation, the injection bandwidth is determined by the maximum

negotiated rate between the node and the Seastar. Similar to modification of the

interconnect bandwidth, a reboot is required to configure the injection bandwidth

to the desired setting. Normally the links operate at S = 800 MHz and utilize

the full B = 16 bits of each link resulting in an injection bandwidth of 3.2GB/sec

(equation 7.1). To achieve 1/8th injection bandwidth each link is configured to run

at S = 200 MHz with an B = 8 bit per link width reducing the injection bandwidth

to 400MB/sec (equation 7.1). This injection bandwidth rate was selected since it

further reduced the overall network bandwidth beyond what was possible by reducing

the interconnect bandwidth of the Seastar. It should also be noted that when the

injection bandwidth is reduced, only the individual node is impacted. While all nodes

ingress into the network are equally impacted, the network bandwidth available for

routing between nodes once on the network is not reduced. A single set of baseline

runs will be used and compared against identical runs while tuning the network

bandwidth using the previously described methods in sequence.

60

Chapter 7. Network Bandwidth Tuning During Application Run-time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

B
a

n
d

w
id

th
 (

M
B

/s
)

Message Size (Bytes)

BW Tuning
 Full
 Half
 Quarter
 Eighth

Figure 7.1: Pallas PingPong Bandwidth for All Levels of Network Bandwidth Tuning

Figure 7.1 depicts the four network bandwidth rates as measured by Pallas Ping-

Pong between two dual core nodes, one core per node. As can be seen, the maximum

bandwidth observed at 1/2 using these benchmarks is not 1/2 of full bandwidth. As

previously mentioned, this is due to the larger interconnect bandwidth capacity as

it relates to injection bandwidth. Injection bandwidth was not altered other than to

achieve the 1/8th bandwidth configuration. Below 1/2 bandwidth, the steps become

regular. While not perfect, using the configuration techniques available this is the

best approximation that could be achieved. It should be noted that the goal was

to test at reduced network bandwidths and measure impact on performance and en-

ergy. These configurations clearly achieve this goal and represent a tunable network

bandwidth capability.

61

Chapter 7. Network Bandwidth Tuning During Application Run-time

The following is the sequence of experiments for the network bandwidth study:

1. Run each application at full interconnect and injection bandwidth to establish

a benchmark (run-time and energy use)

2. Reboot into a 1/2 interconnect bandwidth configuration and run each applica-

tion

3. Reboot into a 1/4th interconnect bandwidth configuration and run each appli-

cation

4. Reboot into full interconnect bandwidth and 1/8th injection bandwidth config-

uration (to accomplish 1/8th network bandwidth) and run each application

For each phase, power samples are collected (current draw and voltage) as de-

scribed in Chapter 3. The scale used for each application, number of nodes and

cores, is listed in Table 7.1. The results will be discussed in the following section. No

operating system modifications were necessary for either the interconnect or injection

bandwidth experiments.

7.2 Results and Analysis: Network Bandwidth

Tuning

The following discussion will reference Table 7.1. As in Table 6.2, increases in run-

time or energy percentage are represented by positive numbers. Negative values or

decreases are indicated by parenthesized numbers (all relative to the baseline values

listed). Again, great care was taken to use the same nodes for each application

execution. Total energy includes the measured energy from the CPU, a measured

energy from the Seastar and an estimated energy from the memory subsystem. Since

the memory sub-system could not be measured in isolation, the energy used by this

62

Chapter 7. Network Bandwidth Tuning During Application Run-time

component was calculated using a fixed wattage over time. The current draw of the

entire mezzanine (the mezzanine contains four Seastar network chips, one per node)

was measured but as previously stated, is constant over time. This is typical of

network interface controllers since the SerDes do not throttle up and down based on

network traffic or on demand in current network chips. Since there are four Seastars

in a single mezzanine the current reading was multiplied by the input voltage. The

total was then divided by four and used as the baseline network power value for

a single NIC. For 1/2, 1/4th and 1/8th network bandwidth calculations a linear

reduction in power was assumed, which had a proportional affect on total energy.

For each energy value a per node use was calculated and multiplied by the number of

nodes to produce the final value. The calculation is as follows (where E = Energy):

(Ecpu + Enetwork + Ememory) × number of nodes= Total Energy (7.2)

The calculations use 25 W for the full network bandwidth value, 12.5 W for

1/2, 6.25 W for 1/4th and 3.125 W for 1/8th network bandwidth. A value of 20 W

was used for the memory value in all calculations primarily to avoid the network

energy having a disproportional affect on the total energy calculation. While the

ECPU value fluctuated based on the CPU usage of the application and was measured

over time, the network and memory values assumed a constant value over time. As

mentioned previously, the CPU energy was measured on a large subset of the total

nodes involved in the experiment. An average per node energy is calculated based on

the samples from all nodes and used as the ECPU value. Again note that a decrease,

or savings, in energy or run-time is indicated by a parenthesized value.

63

C
h
ap

ter
7.

N
etw

ork
B

an
d
w

id
th

T
u
n
in

g
D

u
rin

g
A

p
p
lication

R
u
n
-tim

e

Table 7.1: Experiment 2: Network Bandwidth: Run-time and Total Energy %Difference vs. Baseline

Baseline Bandwidth (BW) 1/2 BW %Diff 1/4th BW %Diff 1/8th BW %Diff
Nodes/Cores Run-time (s) Energy (J) Run-time Energy Run-time Energy Run-time Energy

SAGE strong 2048/4096 337 5.79 × 107 (0.593) (15.3) 8.90 (15.5) 20.2 (11.4)

SAGE weak 2048/4096 328 5.64 × 107 0.609 (14.3) 8.23 (15.8) 22.6 (9.63)

CTH 2048/4096 1519 2.58 × 108 9.81 (7.09) 30.2 1.04 40.4 3.50

AMG2006 2048/4096 859 1.45 × 107 (0.815) (15.8) (0.116) (22.7) 0.931 (25.9)

xNOBEL 1536/3072 533 7.01 × 107 (0.938) (15.4) (0.375) (22.2) (0.375) (25.9)

UMT 512/1024 838 3.57 × 107 0.357 (14.7) 1.07 (21.7) 6.32 (21.8)

Charon 1024/2048 1162 9.96 × 107 1.55 (13.7) 2.15 (20.8) 2.67 (24.5)

64

Chapter 7. Network Bandwidth Tuning During Application Run-time

Addressing each application in table order (see Table 7.1) it can be seen that the

strong and weak scaling versions of SAGE have very similar characteristics. Reducing

the network bandwidth by 1/2 had little affect on the run-time of both SAGE strong

(decreased by 0.593%) and SAGE weak (increased by increased by 0.609%). In the

same test, a significant savings in energy was observed for SAGE strong (a decrease

of 15.3%) and SAGE weak (decrease of 14.3%). The impact on, or increase in, run-

time is larger by more than 8X when the network bandwidth is reduced to 1/4th for

both SAGE strong and SAGE weak. Little additional energy savings were observed

for this test. As might be expected, further reductions to 1/8th network bandwidth

for both strong and weak scaling modes of SAGE produce significant impacts in

the run-time of SAGE (in excess of 20% in both modes). The accompanied energy

savings using 1/8th network bandwidth is actually smaller than the 1/4th network

bandwidth experiment. The difference in both run-time and energy savings between

strong and weak scaling at 1/8th network bandwidth might be an indicator that

additional divergence might been seen at higher scale. Based on this data, reducing

network bandwidth by 1/2, if the corresponding energy consumption of the network

could be reduced by half, would be advantageous for this application. Considering

the run-time energy trade-off, further reductions in the network bandwidth would

not be productive based on the available data.

CTH was more dramatically affected by changes in the network bandwidth than

any other real application tested. Even at 1/2 bandwidth, CTH experiences a greater

percent increase in run-time (9.81%) than is saved by reducing network energy (7.09%

decrease in total energy). At 1/4th bandwidth, CTH experiences a very large in-

crease in run-time (30.2%) accompanied by an actual increase in energy used of

1.04%. Clearly, reducing network bandwidth further is highly detrimental to both

run-time and energy as can be seen from 1/8th network bandwidth results. Even

at this moderately large scale CTH requires a high performance network to execute

efficiently.

65

Chapter 7. Network Bandwidth Tuning During Application Run-time

AMG2006 and xNOBEL, in contrast with CTH, were insensitive to the network

bandwidth changes made from the run-time perspective, which yields an opportunity

for large savings in energy. Reductions down to 1/8th network bandwidth cause

virtually no impact in run-time for both AMG2006 and xNOBEL while a 25.9%

savings in energy can be achieved for both. (AMG2006 executed 0.931% slower

while xNOBEL actually ran slightly faster, 0.375%). The savings in energy seems to

be flattening by the time the network bandwidth is reduced to 1/8th. While further

reductions in network bandwidth may or may not increase run-time there is likely

little additional energy savings available.

UMT produced similar results to AMG2006 and xNOBEL when the network

bandwidth was reduced up to 1/4th, little to no impact in run-time accompanied by

a large energy savings. At 1/8th network bandwidth different characteristics were

observed. UMT has a much higher impact to run-time at 1/8th network bandwidth

(6.32%) than at 1/4th (1.07%) with virtually no additional energy savings (21.7%

at 1/4th and 21.8% at 1/8th) . The limit of network bandwidth tuning that should

be applied to UMT, at least at this scale and on this platform, seems to have been

located. Note, UMT was run at a smaller scale relative to the other applications. It

is possible that at larger scale the results might differ.

Charon showed small, but increasing, impact on run-time as network bandwidth

was reduced. At this scale it is clear that the network bandwidth could be reduced

down to 1/4th with an acceptable impact in run-time (increase of 2.15%) accom-

panied by a very significant savings in energy (decrease of 20.8)%). Moving from

1/4th to 1/8th network bandwidth shows some signs of a flattening of energy savings

but results are not conclusive. Experiments with Charon at larger scale are also

warranted.

Overall, a large amount of evidence was observed to support the conjecture that

a tunable NIC would be highly beneficial if corresponding energy savings resulted. In

66

Chapter 7. Network Bandwidth Tuning During Application Run-time

all cases but CTH, virtually no impact to run-time would be experienced by tuning

the network bandwidth to 1/2. The result would be significant energy savings with

little to no performance impact. In the case of AMG2006, xNOBEL and UMT the

network bandwidth could be reduced to 1/4th full bandwidth with little run-time

impact, allowing for even larger energy savings. These observations indicate that a

tunable NIC would be beneficial but they also indicate a high performance network is

critical for some applications. An ability to tune the NIC, similar to how frequency is

tunable on a CPU, would be an important characteristic on next generation Exascale

platforms.

It should be stressed that this data represents a single application running at a

time. One of the reasons the interconnect bandwidth of the Seastar was designed to

be greater than the injection bandwidth of a single node is that communications on

networks, like the ones used on Red Storm and Jaguar, are not point to point. Often,

many hops are required for a messages to travel from source to destination. Having

a greater interconnect bandwidth is essential for a platform that supports a range

of applications, often sharing the interconnect bandwidth. The ability to tune this

component could not be exploited without considering the possible impact on other

applications running on the platform, at least for network topologies like meshes

and 3D-toruses. Network topologies with fewer hops on average could benefit more

easily from a tunable network since less consideration would be necessary regarding

the impact on other applications co-existing on the platform.

67

Chapter 8

Energy Delay Product

In this chapter previous data are analyzed using a range of fused metrics based on

Energy Delay Product (EDP). Many people find it useful to have a single metric

to analyze data or make policy decisions. The following discussion will reference

Figures 8.1 and 8.2.

68

Chapter 8. Energy Delay Product

0

0.5

1

1.5

2.0

P0/1 P2 P3 P4

V
a

lu
e

s
 N

O
R

M
A

L
IZ

E
D

 t
o

 d
e

fa
u

lt
 P

s
ta

te

Processor Pstate Setting

UMT (4096)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0
CTH (4096)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0
SAGE (4096)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0
AMG2006 (1536)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0

2.2MHz 1.7 MHz 1.4 MHz 1.1 MHz

Processor Frequency

HPL (6000)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

P0/1 P2 P3 P4 0

0.5

1

1.5

2.0
Charon (1024)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0
xNOBEL (1536)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0
SAGE (1024)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0
LAMMPS (4096)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0

2.2MHz 1.7 MHz 1.4 MHz 1.1 MHz

Pallas (1024)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

Figure 8.1: Experiment 1: Normalized Energy, Run-time and E ∗ Tw

where w = 1, 2, or 3
69

C
h
ap

ter
8.

E
n
ergy

D
elay

P
ro

d
u
ct

0

0.5

1

1.5

2.0

2.5

1 1/2 1/4 1/8

V
a
lu

e
s
 N

O
R

M
A

L
IZ

E
D

 t
o
 b

a
s
e
 N

e
tw

o
rk

 B
a
n
d
w

id
th

 v
a
lu

e
s

Network Bandwidth

UMT (512)
Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0

2.5

CTH (2048)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0

2.5

1 1/2 1/4 1/8

SAGE STRONG (2048)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

1 1/2 1/4 1/80

0.5

1

1.5

2.0

2.5

Charon (1024)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0

2.5

xNOBEL (1536)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

0

0.5

1

1.5

2.0

2.5

1 1/2 1/4 1/8

AMG2006 (2048)

Runtime
Energy
Energy * Time
Energy * (Time)

2

Energy * (Time)
3

Figure 8.2: Experiment 2: Normalized Total Energy, Run-time and E ∗ Tw where w = 1, 2, or 3

70

Chapter 8. Energy Delay Product

The graphs in Figures 8.1 and 8.2 were produced using the same data used to

create Tables 6.2 and 7.1. In all graphs included in Figures 8.1 and 8.2, the Runtime

curve is produced by normalizing the runtime measured for each individual appli-

cation at every P-state tested to the baseline run measured at the default P-state

(P0 or P1). In Figure 8.1 the lower X axis lists test points by P-state, the upper X

axis lists test points by CPU frequency. The Energy curve is produced identically to

the Runtime curve using measured CPU energy instead of measured runtime. Three

EDP curves are present using the following equation:

E ∗ Tw − where : E = Energy, T = Runtime and w = 1, 2 or 3 (8.1)

All three curves are included to represent how the metric might differ depending

on the weight given to time or performance. Weighting the time factor in the EDP

equation seems in-line with the existing priorities of HPC. As previously discussed,

these priorities might change in the near future.

The HPL results nicely show how weighting run-time (performance) moves the

curve upward, indicating a less favorable trade-off as performance is more highly

prioritized. Squaring the delay produces an EDP greater than one which would

typically be interpreted as detrimental. It should be noted that the unweighted EDP

curve trends below one. Using this metric alone HPL might productively be run at

a lower P-state. This should be an indication that if performance is a priority the

unweighted EDP metric might not be appropriate. The Pallas graph, however, shows

that even if the delay is cubed this metric indicates a benefit running at P-state 2.

While the results for HPL and Pallas are mostly in-line with previous observa-

tions, some of the real application results could be interpreted differently. Even based

on the EDP cubed metric, AMG2006, for example, appears to benefit when executed

at any P-state including P-state 4. This differs from the analysis in Chapter 6 based

71

Chapter 8. Energy Delay Product

on separate runtime and energy differences listed in Table 6.2. The previous con-

clusion was that a 39.1% hit in runtime would not be acceptable. Considering the

percentage hit in runtime in isolation 39.1% does sound extreme, but considering

the actual runtime value the EDP metric exposes a dimension that might otherwise

have been ignored. The runtime for AMG2006 is very short in these experiments.

Recall, it was noted that the fastest runs in P-state 2 actually took less time than the

slowest runs measured in P-state 1. Since the runtime for AMG2006 is so short, a

39.1% hit in runtime only increases the runtime by approximately 68 seconds. When

dealing with very short run-times even cubing the delay in the EDP equation might

not be enough.

If the cubed EDP is used as a metric for the remaining applications the resulting

analysis closely resembles the initial analysis based on the separate energy and run-

time differences (Table 6.2) . In conclusion, lowering the CPU frequency for CTH,

UMT and Charon is detrimental, while SAGE and xNOBEL are less sensitive to

CPU frequency changes.

The graphs in Figure 8.2 represent the runtime and total energy measurements

produced from the data used in Chapter 7. The Runtime and Energy curves are nor-

malized in the same manner as described for Figure 8.1 with the exception that total

energy is measured as described in equation 7.2. EDP is calculated using equation

8.1 using total energy. The X axis lists the steps of network bandwidth reduction.

The EDP curves, again, generally represent the previous analysis. SAGE is not sen-

sitive to the initial network bandwidth reduction to 1/2 but quickly trends negative

as bandwidth is reduced further. CTH is very sensitive to all network bandwidth

changes. AMG2006, xNOBEL, UMT and Charon in contrast are generally insen-

sitive to network bandwidth changes. Recall, however, some finer judgments were

previously stated based on the analysis of the separate energy and runtime metrics

listed in Table 8.2. In the case of UMT, diminishing returns were noted as network

72

Chapter 8. Energy Delay Product

bandwidth was decreased. The curves trend upward as 1/8th network bandwidth

is approached. This seemed easier to identify when analyzing the tabularized data.

Regardless, this method of analyzing data can help develop a quick impression of the

trends. If further analysis is warranted the raw data can be consulted. For HPC, the

EDP cubed equation is most appropriate. Bounding an equation like EDP could be

productive. For example, if a upper limit on the wall-clock time for an application is

desired, the EDP equation might indicate what level of tuning can be applied while

meeting the runtime requirements. Likewise, if the amount of energy used during a

certain period is limited, it would be possible to calculate the expected turnaround

time for a particular application.

73

Chapter 9

Conclusions

. . . not everything that can be counted counts, and not everything that counts can be

counted. – William Bruce Cameron

9.1 Overall

One of the conclusions drawn from this research is the importance of the ability

to measure power at large scale without affecting the experiment being conducted.

Previously, results such as the ones presented in this thesis have not been possible.

This research began by targeting low hanging fruit in the form of power savings

during idle cycles. The measuring capability was fine tuned and the effects that the

operating system modifications had were easily observed. Additionally, a capabil-

ity to characterize application energy use was developed. This initial work yielded

significant rewards and prompted further research as outlined in this thesis.

While it was initially assumed that a dynamic approach to tuning platform com-

ponents would be necessary to achieve a positive trade-off between performance and

energy, it was discovered that great initial gains could result from a simpler static ap-

74

Chapter 9. Conclusions

proach. Static tuning has many advantages including stability. Dynamic tuning, at

scale, has the potential to be difficult to manage. If not done properly dynamic tun-

ing could introduce reliability issues or diminishing results for performance and/or

energy. Dynamic frequency scaling, of any component, also requires consideration

of how long it takes to accomplish the desired frequency changes. If transitions are

too frequent the resulting overhead could negate any potential gain. It is likely that

many applications will require dynamic tuning to achieve energy savings while main-

taining acceptable levels of performance. Whether static or dynamic, a system level

approach is essential for scientific application, such as those used in this research,

run at large scale.

In these experiments, applications like AMG2006 and xNOBEL were shown to be

fairly insensitive to CPU frequency reductions. Both AMG2006 and xNOBEL were

also tolerant of network bandwidth reductions. It is possible that if both the CPU

frequency and network bandwidth were tuned at the same time even greater energy

savings could be realized. As an example, using the per node energy value (CPU)

for xNOBEL when executed at P-state 2 in the total energy calculation for the 1/8th

network bandwidth experiment, xNOBEL would experience a total of 56.4% increase

in energy savings with a 6% impact in runtime. Numbers could be projected for every

application but experimental results are the most meaningful.

xNOBEL was specifically selected in the previous example since it was the least

impacted by any tuning applied. CTH, however, was significantly affected by CPU

frequency adjustments. If CPU frequency was reduced while executing CTH could

the network bandwidth be reduced without further impact on run-time? Would

this result in additional energy savings making the run-time impact more palatable?

Possibly, if memory or some other component is the bottleneck, but this cannot be

definitively stated.

75

Chapter 9. Conclusions

This research indicates each application has a sweet spot based on its computa-

tion and communication requirements. Additionally, it has been observed that energy

savings and run-time are impacted, sometimes significantly, by scale. The trade-offs

are platform and application specific – when one bottleneck is removed, another will

appear, and the order the bottlenecks appear will depend on the platform. Con-

ducting these experiments on a platform like the Cray XT/XE/XK architecture is

valuable since it is well-balanced in its default configuration. As a result of these ex-

periments, we can conclude that components on future HPC platforms (exascale and

beyond) should be as tunable as possible under software control so that end-users

or system software can optimize the energy/performance tradeoff. Additionally, a

systems level approach is essential for success on HPC platforms. This research has

and continues to influence industry in this direction.

76

References

[1] S. A. McKee, “Reflections on the Memory Wall,” in Proceedings of the Confer-
ence on Computing Frontiers, ser. CF ’04. ACM, 2004.

[2] D. W. Wall, “Limits of Instruction-Level Parallelism,” in SIGARCH Comput.
Archit. News, vol. 19. ACM, 1991.

[3] A. Zavanella and A. Milazzo, “Predictability of Bulk Synchronous Programs Us-
ing MPI,” in Proceedings of the Euromicro Workshop on Parallel and Distributed
Processing. IEEE, 2000.

[4] F. Petrini, D. Kerbyson, and S. Pakin, “The Case of the Missing Supercom-
puter Performance: Achieving Optimal Performance on the 8,192 Processors of
ASCI Q,” in Proceedings of the International Conference on High Performance
Computing, Networking, Storage, and Analysis (SC). ACM/IEEE, 2003.

[5] K. B. Ferreira, R. Brightwell, and P. G. Bridges, “Characterizing Application
Sensitivity to OS Interference Using Kernel-Level Noise Injection,” in Proceed-
ings of the International Conference on High Performance Computing, Network-
ing, Storage, and Analysis (SC). ACM/IEEE, 2008.

[6] X. Feng, R. Ge, and K. W. Cameron, “Power and Energy Profiling on Scien-
tific Applications on Distributed Systems,” in Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2005.

[7] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. Cameron, “PowerPack:
Energy Profiling and Analysis of High-Performance Systems and Applications,”
Transactions on Parallel and Distributed Systems, vol. 21, no. 5, pp. 658–671,
2010.

[8] M. White, “Physics-of-Failure Based Modeling and Lifetime Evaluation,” in
Microelectronics Reliability. Jet Propulsion Laboratory, National Aeronautics
and Space Administration, 2008.

77

References

[9] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure Trends in a Large Disk
Drive Population,” in Proceedings of the 5th USENIX conference on File and
Storage Technologies. USENIX, 2007.

[10] C. Hsu and W. Feng, “Power-Aware Run-Time System for High-Performance
Computing,” in Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage, and Analysis (SC). ACM/IEEE, 2005.

[11] R. Ge, X. Feng, and K. W. Cameron, “Performance-Constrained Distributed
DVS Scheduling for Scientific Applications on Power-aware Clusters,” in Pro-
ceedings of the International Conference on High Performance Computing, Net-
working, Storage, and Analysis (SC). ACM/IEEE, 2005.

[12] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital Design,” in
Proceedings of the Symposium on Low Power Electronics. IEEE, 1994.

[13] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuktosunoglu,
J. Wellman, V. Zyuban, M. Gupta, and P. Cook, “Power-aware microarchi-
tecture: design and modeling challenges for next-generation microprocessors,”
Micro, IEEE, vol. 20, no. 6, pp. 26–44, 2000.

[14] K. W. Cameron, R. Ge, X. Feng, D. Varner, and C. Jones, “POSTER: High-
performance, Power-aware Distributed Computing Framework,” in Proceedings
of the International Conference on High Performance Computing, Networking,
Storage, and Analysis (SC). ACM/IEEE, 2004.

[15] R. Ge, X. Feng, and K. Cameron, “Improvement of Power-Performance Effi-
ciency for High-End Computing,” in Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2005.

[16] D. Li, B. de Supinski, M. Schulz, K. Cameron, and D. Nikolopoulos, “Hybrid
MPI/OpenMP Power-Aware Computing,” in Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2010.

[17] D. Li, D. Nikolopoulos, K. Cameron, B. de Supinski, and M. Schulz, “Power-
Aware MPI Task Aggregation Prediction for High-End Computing Systems,” in
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2010.

[18] C. Hsu and U. Kremer, “The Design, Implementation, and Evaluation of a Com-
piler Algorithm for CPU Energy Reduction,” in Proceedings of the Conference
on Programming Language Design and Implementation, (PLDI). ACM, 2003.

78

References

[19] F. Bellosa, “The Benefits of Event-Driven Energy Accounting in Power-Sensitive
Systems.” in SIGOPS, European Workshop. ACM, 2000.

[20] W. L. Bircher, M. Valluri, J. Law, and L. John, “Runtime Identification of Mi-
croprocessor Energy Saving Opportunities.” in Proceedings of the International
Symposium on Low Power Electronics and Design, (ISLPED). ACM, 2005.

[21] W. L. Bircher and L. K. John, “Complete System Power Estimation: A Trickle-
Down Approach Based on Performance Events,” in Proceedings of the Interna-
tional Symposium on Performance Analysis of Systems & Software, (ISPASS).
IEEE, 2007.

[22] S. Kamil, J. Shalf, and E. Strohmaier, “Power Efficiency in High Performance
Computing,” in Proceedings of the International Parallel and Distributed Pro-
cessing Symposium (IPDPS). IEEE, 2008.

[23] A. Kodi and A. Louri, “Performance Adaptive Power-Aware Reconfigurable
Optical Interconnects for High-Performance Computing (HPC) Systems,” in
Proceedings of the International Conference on High Performance Computing,
Networking, Storage, and Analysis (SC). ACM/IEEE, 2007.

[24] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic Voltage Scaling with Links for
Power Optimization of Interconnection Networks,” in Proceedings of the In-
ternational Symposium on High-Performance Computer Architecture, (HPCA).
IEEE, 2003.

[25] R. Brightwell, B. Barrett, K. Hemmert, and K. Underwood, “Challenges for
High-Performance Networking for Exascale Computing,” in Proceedings of the
International Conference on Computer Communications and Networks (IC-
CCN). IEEE, 2010.

[26] R. Brightwell, K. D. Underwood, C. Vaughan, and J. Stevenson, “Performance
evaluation of the Red Storm dual-core upgrade,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 2, pp. 175–190, 2010.

[27] R. Brightwell, K. Predretti, K. Underwood, and T. Hudson, “SeaStar Inter-
connect: Balanced Bandwidth for Scalable Performance,” IEEE Micro, vol. 26,
no. 3, pp. 41–57, 2006.

[28] K. Pedretti, R. Brightwell, D. Doerfler, K. Hemmert, and J. Laros, “The Impact
of Injection Bandwidth Performance on Application Scalability,” in Proceedings
of the European MPI Users’ Group Conference on Recent Advances in the Mes-
sage Passing Interface. Springer-Verlag, 2011.

79

References

[29] S. M. Kelly and R. B. Brightwell, “Software Architecture of the Light Weight
Kernel, Catamount,” in Cray User Group. CUG, 2005.

[30] “Kitten Light Weight Kernel,” Sandia National Laboratories. [Online].
Available: https://software.sandia.gov/trac/kitten

[31] J. H. Laros III, “A Software and Hardware Architecture for a Modular, Portable,
Extensible Reliability Availability and Serviceability System,” in Proceedings of
the Workshop on High Performance Computing Reliability Issues. IEEE, 2006.

[32] “Cielo,” Sandia National Laboratories and Los Alamos Laboratory. [Online].
Available: http://www.lanl.gov/orgs/hpc/cielo/

[33] R. Weaver and M. Gittings, “ Massively Parallel Simulations with DOEś ASCI
Supercomputers: An Overview of the Los Alamos Crestone Project ,” in Adap-
tive Mesh Refinement - Theory and Applications. Springer Berlin Heidelberg,
2005.

[34] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and M. Git-
tings, “Predictive Performance and Scalability Modeling of a Large-Scale Ap-
plication,” in Proceedings of the International Conference on High Performance
Computing, Networking, Storage, and Analysis (SC). ACM/IEEE, 2001.

[35] E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. M.
Mcglaun, S. V. Petney, S. A. Silling, P. A. Taylor, and L. Yarrington, “CTH: A
Software Family for Multi-Dimensional Shock Physics Analysis,” in Proceedings
of the International Symposium on Shock Waves. NTIS, 1993.

[36] R. D. Falgout, P. S. Vassilevski, Panayot, and S. Vassilevski, “On Generaliz-
ing the AMG Framework,” in Society for Industrial and Applied Mathmatics:
Journal on Numererical Analysis. SIAM, 2003.

[37] “Hypre,” Lawrence Livermore National Laboratory. [Online]. Available:
http://acts.nersc.gov/hypre/

[38] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker, E. Dendy,
R. Hueckstaedt, K. New, W. R. Oakes, D. Ranta, and R. Stefan, “The RAGE
Radiation-Hydrodynamic Code,” Journal of Computational Science & Discov-
ery, vol. 1, no. 1, p. 015005, 2008.

[39] “UMT2K,” Lawrence Livermore National Laboratory. [On-
line]. Available: https://asc.llnl.gov/computing resources/purple/arch-
ive/benchmarks/umt/umt1.2.readme.html

80

References

[40] P. T. Lin, J. N. Shadid, M. Sala, R. S. Tuminaro, G. L. Hennigan, and R. J.
Hoekstra, “Performance of a parallel algebraic multilevel preconditioner for sta-
bilized finite element semiconductor device modeling,” Journal of Computa-
tional Physics, vol. 228, pp. 6250–6267, 2009.

[41] “Trilinos,” Sandia National Laboratories. [Online]. Available:
http://trilinos.sandia.gov/

[42] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,”
Journal of Computational Physics, vol. 117, pp. 1–19, 1995.

[43] “LAMMPS,” Sandia National Laboratories. [Online]. Available:
http://lammps.sandia.gov/index.html

[44] J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart, “High Performance Lin-
pack HPL,” in Technical Report CS-89-85. University of Tennessee, 1989.

[45] “Top 500 Supercomputer Sites.” [Online]. Available: http://www.top500.org/

[46] “PALLAS,” Intel. [Online]. Avail-
able: http://www.intel.com/cd/software/products/asmo-
na/eng/cluster/mpi/219848.htm

[47] “HPCC,” DARPA. [Online]. Available: http://icl.cs.utk.edu/hpcc/

[48] “DOE Energy Statistics,” Department of Energy. [Online]. Available:
http://www.eia.doe.gov/cneaf/electricity/epm/table5 6 a.html

[49] C. T. Vaughan, J. P. VanDyke, and S. M. Kelly, “Application Performance
under Different XT Operating Systems,” in Cray User Group. CUG, 2008.

[50] R. Zajcew, P. Roy, D. Black, C. Peak, P. Guedes, B. Kemp, J. LoVerso,
M. Leibensperger, M. Barnett, F. Rabii, and D. Netterwala, “An OSF/1 UNIX
for Massively Parallel Multicomputers,” in Proceedings of the USENIX Technical
Conference. USENIX, 1993.

[51] “BKDG: AMD BIOS and Kernel Developers Guide for AMD Family
10h Processors Rev 3.48,” Advanced Micro Devices. [Online]. Available:
http://www.amd.com

81

	University of New Mexico
	UNM Digital Repository
	7-2-2012

	Measuring and tuning energy efficiency on large scale high performance computing platforms
	James Howard Laros III
	Recommended Citation

	thesis_approval_pdf_completed.pdf
	Laros_Thesis

	Member 8:
	Member 7:
	Member 6:
	Member 5:
	Member 4:
	Member 3:
	Member 2: Dr. James Ang
	Member 1: Dr. Howard Pollard
	Chair: Dr. Wei Shu
	Department: Electrical and Computer Engineering
	Candidate: James Howard Laros III

