
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

8-30-2011

A real-time, reconfigurable system for energy, error-
resilient, and scalable lossless ECG coding
Paul Essenmacher

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Essenmacher, Paul. "A real-time, reconfigurable system for energy, error-resilient, and scalable lossless ECG coding." (2011).
https://digitalrepository.unm.edu/ece_etds/82

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/82?utm_source=digitalrepository.unm.edu%2Fece_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

i

ii

A REAL-TIME, RECONFIGURABLE SYSTEM FOR

ENERGY, ERROR-RESILIENT, AND SCALABLE
LOSSLESS ECG CODING

BY

PAUL ESSENMACHER

B.S., Electrical Engineering, University of New Mexico, 2008

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

August, 2011

iii

ACKNEWLEDGEMENTS

I would like thank my advisor and thesis chair, Dr. Marios S. Pattichis, for his

encouragement and teaching through classroom learning and the months of developing

and writing this thesis. His passion for his work overflows into his interactions with his

students and provided motivation and encouragement through this whole process.

 I would also like thank Dr. Payman Zarkesh-Ha, and Dr. Howard Pollard for

being a part of my thesis committee and for their valuable critiques and recommendations

pertaining to this study.

And most importantly, I would like to thank my wife, Susan Essenmacher, for her

unconditional love and support throughout this endeavor, and for her understanding and

patience when I had to be gone long hours. Also, to my three sons, Ethan, Micah, and

Levi, thank you for making me laugh and for asking daddy to “stay home”, and providing

a constant reminder to take an occasional break and spend time with my family. I love

you all.

iv

A REAL-TIME, RECONFIGURABLE SYSTEM FOR
LOW-ENERGY, ERROR-RESILIENT, AND SCALABLE

LOSSLESS ECG CODING

by

Paul Essenmacher

B.S., Electrical Engineering, University of New Mexico, 2008

M.Sc., Electrical Engineering, University of New Mexico, 2011

ABSTRACT

Electrocardiogram (ECG) monitoring systems have evolved to the point where they are

now portable and can monitor the patient 24/7 and transmit alerts and ECG data to

parents and doctors as soon as a heart irregularity is detected. With the advances in these

systems, there is a need for the incorporation of ECG coding systems to reduce the

bandwidth used when data is transmitted and to incorporate methods to provide data

recovery in the event of a transmission error. However, while ECG encoding systems for

hospital or home care settings has been thoroughly researched, the application of ECG

encoding systems to portable ECG monitoring systems where there is a much higher

likelihood of noise interference during transmission of the data has not been fully

investigated.

The goal of this work is to develop a real-time ECG encoding system that requires

low hardware and power usage, provides lossless signal compression, and provides

recovery of as much data as possible in the event of data corruption of packets during

transmission. An entropy based compression algorithm is developed based on the

v

Huffman code which is then transformed to reversible variable length codes. This allows

the data packets to be both frontward and backwards decodable allowing for greater data

recovery in the event that portions of a packet are corrupted. The implementation is

designed to be able to encode any sized bit width by utilizing a combination of 4, 6, or 8-

bit entropy coders.

Two separate encoding systems are investigated using the before mentioned

encoding algorithm. The first system recomputes the Reversible Variable Length Code

(RVLC) tables periodically while the signal is being encoded in an effort to adapt to any

changes in the signal. The second system uses a pre-calculated RVLC table that

minimizes the delay and also significantly reduces the required hardware resources. We

provide optimal, reconfigurable implementations for both systems. Furthermore, the

effectiveness and error-resilient performance of both systems are validated on 12-bit and

16-bit ECG signals. The performance of the system is shown to be diagnostically

lossless in noisy communications channels with significant bit errors. This represents a

significant improvement over existing systems that do not employ the proposed error

resilient encoding methods.

vi

Table of Contents

LIST OF FIGURES ... IX

LIST OF TABLES ...XII

INTRODUCTION..1

1.0 Overview ... 1

1.1 Innovations and Contributions .. 3

RELATED WORK ..5

2.0 Common Compression Techniques .. 5

2.1 Lossy 2-D Compression Methods ... 5

2.2 Lossy Transform Compression Methods .. 6

2.3 Lossy Non-Transform Compression Methods .. 6

2.4 Lossless Compression Methods .. 7

METHODS ...11

3.0 Differential Pulse Code Modulation ... 11

3.1 Run-Length Encoding ... 19

3.2 Segmenting Samples for Entropy Coding... 21

3.3 Histogram Calculation .. 22

3.4 Huffman Coding ... 23

3.5 Reversible Variable Length Coding .. 25

3.6 ECG Signal Database .. 30

vii

IMPLEMENTATION METHODOLOGY ...33

4.0 Design Considerations for 12-bit and 16-bit ECG Encoding Systems 33

4.1 System Configuration ... 34

4.2 Component Implementation.. 38

4.2.1 Run-Length Coder .. 38

4.2.2 Histogram Calculation .. 40

4.2.3 Sorting the Histogram ... 41

4.2.4 Huffman Coder ... 42

4.2.5 Reversible Variable Length Codes ... 43

4.2.6 Packaging Encoded Data for Transmission .. 43

4.3 Decoding Packets with Errors ... 49

4.4 Estimation of Unrecoverable Corrupted Data Samples 52

4.5 Identifying Accuracy of Estimated Data Samples .. 54

RESULTS ...55

5.0 Hardware Requirements for the Encoder System Configurations 55

5.1 Results for System A and System B Encoding Configurations 57

5.1.1 Encoding of 12-Bit ECG Signals with Optimal RVLC Code Tables ... 58

5.1.2 Encoding of 12-Bit ECG Signals without Code Table Recalculations . 59

5.1.3 Encoding of 16-Bit ECG Signals with Code Table Recalculations 61

5.1.4 Encoding of 16-Bit ECG Signals without Code Table Recalculations . 64

5.2 Evaluation of Error Recovery Capabilities of ECG Signal Decoder 66

5.2.1 Decoding Analysis of 12-Bit ECG Signals with Injected Errors 67

5.2.2 Decoding Analysis of 16-Bit ECG Signals with Injected Errors 69

viii

CONCLUSIONS ..72

FUTURE WORK ...74

REFERENCES ...75

ix

List of Figures

Figure 1.1: Single beat of an ECG signal showing critical points, intervals and
segments [5] ...2

Figure 3.1: (a) DPCM – First order linear prediction model (b) Nth order linear
prediction model ..13

Figure 3.2: Order of encoded values used to represent a run-length sequence21

Figure 3.3: Example of Huffman code table calculation using 8 values and 20 total
occurrences of those values ...25

Figure 4.1: Top level diagram of signal encoder where n(0) through n(i) are the bit
widths of the data going to the segment encoders, and the sum from n(1)
through n(i) equals the bit width of the original ECG signal35

Figure 4.2: Entropy coding system top level view for a 4, 6, or 8-bit segment encoder
with the ability update the RVLC tables ..37

Figure 4.3: Packet format of transmission medium ...45

Figure 4.4: Structure of each byte of packet payload data ...46

Figure 4.5: Payload packaging configuration for 3-segment encoder49

Figure 4.6: Payload packaging configuration for 2-segment encoder49

Figure 4.7: Payload packaging configuration for 2-segment encoder with single bit
error ..50

Figure 4.8: Payload packaging configuration for 2-segment encoder with two bit
errors in separate segments ..51

Figure 4.9: Payload packaging configuration for 2-segment encoder with two bit
errors in the same segment ...52

Figure 5.1: Compression ratio results for 12-bit encoding with optimal Huffman
codes. For each encoding configuration, a boxplot is used to summarize
the variation. Here, each box indicates the 25th percentile, the median, and
the 75th percentile. The whiskers extend to the extreme values. Based on

x

the combination of independent encoders, we have four possibilities. For
example 4-8 implies the use of a 4-bit encoder for the most significant bits
and an 8-bit encoder for the least-significant bits. ...58

Figure 5.2: Compression ratios of 12-bit signals both with (System A) and without
(System B) RVLC code table recalculations. ..59

Figure 5.3: Range of compression ratios for 6-6 segment encoding configuration
when code tables from each of the other 12-bit signals are used, compared
against CR’s when the optimal code tables were used (black diamonds)60

Figure 5.4: Compression ratio results for 16-bit encoding with optimal Huffman
codes. For each encoding configuration, a boxplot is used to summarize
the variation. Here, each box indicates the 25th percentile, the median, and
the 75th percentile. The whiskers extend to the extreme values. Based on
the combination of independent encoders, we have four possibilities. For
example 8-4-4 implies the use of a 8-bit encoder for the most significant
eight bits and an two 4-bit encoders for the least-significant eight bits.62

Figure 5.5: Compression ratios of 16-bit signals both with (System A) and without
(System B) RVLC code table recalculations. ..64

Figure 5.6: Range of compression ratios for 88 segment encoding configuration when
code tables from each of the other 16-bit signals are used, compared
against CR’s when the optimal code tables were used (black diamonds)65

Figure 5.7: Average number of unrecovered samples at different error rates for 12-bit
signals. (a) Results with 1 bit error per corrupted packet. (b) Results with 2
bit errors per corrupted packet. (c) Results with 1 bit error per corrupted
packet and only decoded in the frontward direction.68

Figure 5.8: Average PRD of restored 12-bit signals with errors introduced. (a) PRD
results with 1 bit error per corrupted packet. (b) PRD results with 2 bit
errors per corrupted packet. (c) PRD results with 1 bit error per corrupted
packet and only decoded in the frontward direction.69

Figure 5.9: Average number of unrecovered samples at different error rates for 16-bit
signals. (a) Results with 1 bit error per corrupted packet. (b) Results with 2
bit errors per corrupted packet. (c) Results with 1 bit error per corrupted
packet and only decoded in the frontward direction.70

Figure 5.10: Average PRD of restored 16-bit signals with errors introduced. (a) PRD
results with 1 bit error per corrupted packet. (b) PRD results with 2 bit

xi

errors per corrupted packet. (c) PRD results with 1 bit error per corrupted
packet and only decoded in the frontward direction.71

xii

List of Tables
Table 2.1: Comparison of lossless ECG encoding implementations9

Table 3.1: Comparison of entropy values of original, DPCM & DPCM with linear
prediction for 12-bit ECG signals ..15

Table 3.2: Comparison of entropy values of original, DPCM & DPCM with linear
prediction for 16-bit ECG signals ..16

Table 3.3: Simple DPCM example with 4-bit inputs and 5-bit DPCM outputs18

Table 3.4: Simple DPCM example with 4-bit inputs and 4-bit DPCM outputs with the
sign bits Being dropped ...19

Table 3.5: Example of the process used to select RVLC codes with 4LZ 28

Table 3.6: Detailed description of selected 12-bit ECG signals chosen from the MIT-
BIH Malignant Ventricular Arrhythmia Database. Each signal from this database
contains 525,000 samples, and is sampled at a rate of 250 Hz for a total length (Time)
of 35 minutes..31

Table 3.7: Description of representative set of 16-bit ECG signals chosen from the St.
Petersburg INCART 12-lead Arrhythmia Database. Each signal from this database
contains 462,600 samples, and is sampled at a rate of 257 Hz for a total length (Time)
of 30 minutes..32

Table 4.1: Comparison of segmented encoding configurations, the number of codes
required for each configuration, and the number of BRAM bytes to implement each
encoder configuration. Bolded configurations are implemented and tested. Italicized
configuration for both the 12 and 16-bit implementations provided the best results.
BRAM requirements only given for implementations that were demonstrated36

Table 4.2: Memory size requirements for 4, 6, and 8 segment encoders38

Table 5.1: Resource and power utilization for 12-bit ECG signal encoder
configurations using System A segment encoders ..56

Table 5.2: Resource and power utilization for 12-bit ECG signal encoder
configurations using System B segment encoders ..56

xiii

Table 5.3: Resource and power utilization for 16-bit ECG signal encoder
configurations using System A segment encoders ..56

Table 5.4: Resource and power utilization for 16-bit ECG signal encoder
configurations using System B segment encoders ..56

1

Chapter 1

Introduction

1.0 Overview

Cardiac related health problems can occur at any age. The elderly and middle-aged alike

can experience debilitating or fatal heart attacks; even young children are often the

victims of heart related problems such as cardiac arrhythmias, which if not detected and

treated in time can lead to tragic deaths. Especially troubling are the cases where a child

will experience an arrhythmia, but by the time the child is taken to a doctor the symptoms

have subsided and the doctor has no way of diagnosing the problem and getting the child

the care that is needed. It is not feasible to keep a child under constant monitoring in a

medical facility for days or weeks, but if the child never experiences an arrhythmia while

being monitored then a correct diagnosis of the problem often cannot be made. Often a

child will experience multiple arrhythmias that are days or weeks apart, until finally a

severe enough arrhythmia proves fatal.

In recent years this problem has spurred the development of mobile ECG

monitoring systems which can be carried by the patient to provide monitoring outside of

a medical facility. One of the first such systems is the Holter monitor which can provide

constant recording of ECG data, but is limited to 24 or 48 hours of recording. As

technology advances, communications and computer system capabilities have become

more efficient, smaller, and come at lower costs. A recent system that has taken

advantage of these advanced capabilities is presented in [1]. It is designed to provide

2

constant ECG monitoring with automatic analysis of the ECG data either continuously, or

at frequent intervals. Based on this analysis the monitoring system will transmit data to a

doctor when a cardiac irregularity occurs. Other similar monitoring systems are presented

in [2], [3], [4].

Analysis of the ECG data is vital to these monitoring systems as they must be able

to determine whether the signal is normal, and what should be transmitted for analysis by

a trained cardiologist. Figure 1.1 shows a single ECG beat broken down into the

segments that are evaluated during analysis of the signal. Any abnormalities seen in the

shape of the waves, the value of the voltage, or incorrect lengths in the time domain of

the individual waves indicate that a cardiac irregularity may have occurred and that the

data surrounding this event should be saved for further analysis.

Figure 1.1: Single beat of an ECG signal showing critical points, intervals and segments [5]

3

One of the big components of the recent ECG monitoring systems is the ability to

transmit the relevant ECG data over wireless channels thereby reducing or eliminating

the need to store data in the monitoring system itself. This however introduces the

possibility of data corruption or loss during transmission. Since the data being

transmitted is likely to contain information vital to diagnosing and treating a cardiac

irregularity, it is important to reduce the possibility of data loss as much as possible.

Since monitoring systems are increasingly using wireless transmission features to stream

the data they are collecting to a static location, incorporating ECG compression

architecture with the monitoring system would allow for the data to be transmitted in a

more efficient manner, and would also allow for the possibility of incorporating features

such as identification and recovery from transmission errors.

In this thesis a low energy, error resilient, scalable, lossless ECG compression

architecture is presented. The compression architecture is tested against selected signals

from the PhysioBank Physiologic Signal Archives [6] which is the standard ECG

database used to test compression systems that are targeting ECG signals.

1.1 Innovations and Contributions

A summary of the primary innovations and contributions includes:

 Signal-bitwidth scalable compression

o Effectively demonstrated for 12 and 16 bit lossless ECG compressing by

segmenting signal samples into smaller segments, and then recombining

after decoding.

4

 Optimal implementations running in real-time, requiring a low amount of

hardware resources, and low power usage

 Error-resilient hardware encoding and software decoding:

o Optimal reversible variable length coding (RVLC) with minimal

additional overhead (~7%, [49], [46])

o Frontward and backward decoding

o Sync markers at the packet level

 Allowing correct diagnosis of signals within certain levels of data corruption:

o Interpolation of corrupted or lost data samples through new methods

5

Chapter 2

Related Work

2.0 Common Compression Techniques

Techniques for compressing ECG data can be broken down into three main types: direct

and transform methods [7], and a wide range of other methods that require the signal to

be pre-processed before encoding in order to extract certain information [8]. Direct

methods perform compression on the signal in the time domain and include Huffman,

arithmetic, Golomb, and differential pulse code modulation, techniques among others.

Transform methods, on the other hand, transform the data to another domain and then

compress the signal. The Fourier, wavelet, discrete cosine (DCT), Karhunen-Loeve

(KL), Burrows-Wheeler, and Walsh are the main transforms used in ECG compression.

The other methods in the third compression type that would not fall under the direct or

transform methods generally have the characteristic that the signal must be pre-processed

in order to extract important information. Information that would be extracted includes

parameter extractions such as heart-beat averaging, long-term prediction, vector

quantization, and subband decomposition (except for those based on transform methods)

where spectral information is split into individual signals that can be individually

encoded using a desired technique [8].

2.1 Lossy 2-D Compression Methods

One of the more recent trends in ECG compression has been to utilize lossy 2-D

compression methods where the ECG signal is cut and aligned in 2-D “image” data

6

arrays, taking advantage of the fact that ECG signals show redundancy between

successive beats and samples. An argument for 2-D compression methods to take

advantage of the correlation in ECG signals is discussed in [9]. Using this 2-D array

configuration allows the use of various algorithms that are particularly adept at exploiting

correlation in 2-D array data. Several researchers utilize wavelet transform based

methods, including 1-D and 2-D wavelet transforms in [10] and [11]. Filho et. al.

presents a method incorporating DC equalization and complexity sorting in [12]. Chou

et. al. converts 1-D ECG signals to 2-D representations, and then utilizes the image

compression scheme JPEG2000 to encode the 2-D representation [13].

2.2 Lossy Transform Compression Methods

Over the past decade or so, lossy transform methods, especially the wavelet transform,

have been the focus of a lot of research in the area of ECG signal compression [14-23].

Among these wavelet schemes are methods to provide quality on demand to meet a

specified percent root-mean-square difference (PRD) [14],[15],[16], a wavelet based

vector quantization approach [17], tree based quantization and encoding methods

[18],[19],[20], a low delay compression scheme [21], and a scheme focusing on real time

packetized cardiology [22]. A discrete cosine transform scheme is also presented in [23].

2.3 Lossy Non-Transform Compression Methods

Researchers have also explored a wide range of non-transform based methods for

encoding ECG signals over the past decade as well [24-33]. Among these are a rate

distortion optimal algorithm [24], a classification algorithm with quad level vector (QLV)

[25], multiscale pattern matching [26], various filter structures [27],[28],[8], gain shape

7

[29] and adaptive [30] vector quantization, a high complexity multidimensional

multiscale parser algorithm [31], an input delay neural network compression scheme

[32], and a truncated singular value decomposition algorithm [33].

2.4 Lossless Compression Methods

Much of the work done on ECG compression techniques has focused on lossy

compression since it yields compression results that are significantly better than by

lossless methods. Most of the better lossy compression techniques result in compression

ratios between 10:1 and 12:1, with some of the more recent implementations achieving

average results up into the 18:1 to 20:1 range. However, this performance comes at a

price as lossy compression schemes may lose critical information from the ECG signal.

This can result in a loss of diagnostic ability since the lost information may pertain to

critical features of the signal that could hinder an accurate diagnosis. Lossless

compression of ECG signals is needed when comprehensive diagnostic ability is desired;

however, very little work has been published in this area compared to the large amount of

published work on lossy ECG compression.

Two of the most recently published works on lossless compression for ECG

signals are multi-channel implementations, [34], [35]. A VLSI implementation using

DPCM prediction, adaptive k-parameter estimation and Golomb-Rice entropy encoding

and is implemented in 65 nm CMOS is presented in [34]. This implementation also has

the ability to handle multiple input sample bit sizes. In [35], the MPEG-4 audio coding

algorithm is implemented in software with the ability to handle only a single size of

sample inputs. The implementations given in [36-41] are all single channel lossless

8

encoding algorithms. In [36] the author presents an algorithm based on K-means cluster

based on the similarity measurement between samples. Inversion ranks of linear

prediction and the Burrows-Wheeler transform are used in [37]. Several methods

[38][39] use the entropy based Golomb-Rice encoding as the basis for their

implementations; with [38] incorporating linear decorrelation from analysis of a block of

samples, and [39] incorporating R-R interval estimation. [38] did incorporate error

resiliency, but only at the block level. Two implementations based on the wavelet

transform are presented in [17], which was initially a lossy scheme but can become

lossless with the correct parameters being set, and [40] which is based on the lifting

wavelet transform. Finally a linear block transform is used in [41]. A comparison of the

lossless schemes is presented below in Table 2.1.

9

Author Year Ref. Technique

Multi-
Channel

Max
CR

Avg.
CR

Scala-
bility

Error
Resiliency

Hardware
Imp.

Chua 2011 [34]

DPCM prediction with
adaptive k-parameter

estimation, and
Golomb-Rice entropy

encoding

Yes - 2.50 Yes No
VLSI

Implementati
on

Kamamoto 2009 [35]

Enhanced codec
software of the
MPEG-4 Audio
Lossless Coding

international standard
for compressing

multichannel time-series
signals

Yes - 3.0 No No No

Zhou 2009 [36]
Lossless compression
algorithm based on K-

means cluster
No 3.90 3.20 No No No

Arnavut 2007 [37]

Algorithm based on
Burrows-Wheeler

transform and inversion
ranks of linear

prediction

No - 4.525 No No No

Ottley 2005 [38]

Linear decorrelation
selected from analysis
of a block of samples,
followed by Golomb-

Rice coding.

No 3.13 2.67 No

Error
resiliency

at the
block
level

Soft-core
CPU custom
instruction
for use in

portable ECG
monitoring

Miaou 2005 [17]
Wavelet based approach

using 9/7 and 5/3
integer filters

No 3.75 3.068 No No No

Giurcâneanu 2001 [39]
R–R interval estimation

with Golomb-Rice
entropy encoding

No 4.41 3.071 No No No

Duda 2001 [40]
Lifting wavelet

transform
No 3.722 3.156 No No No

Arnavut 2001 [41]

Linear transform
algorithm (LTA) based
on a new linear block

transform (LBT)

No ~2.5 ~2.22 No No No

Table 2.1: Comparison of lossless ECG encoding implementations

While there has been a variety of work done in lossless ECG coding, it is still far

less than the amount of work done in lossy ECG coding. With less attention having been

devoted to this area there are still areas that have not been adequately addressed,

including:

 Incorporation of error resilient encoding techniques with the ability to recover

significant amounts of data in the event of data corruption during signal

transmission

10

 Adequate investigation of hardware implementation of ECG encoding algorithms

with a focus on reducing the amount of hardware resources required and the

amount of power consumed

 Implementations that can be easily scaled or reconfigured to accommodate

various sized signal inputs

The work presented in [34] is the most recently published work on lossless ECG

compression. The authors did allow for several different sizes of signal inputs, and also

investigated a VLSI hardware implementation. But their implementation was focused on

a broader scale design incorporating brain and heart monitoring. To truly be able to

compare strictly ECG encoders implemented in hardware and their power requirements,

there is a need for more investigation of ECG encoders implemented in FPGA/ASIC

technology and the power required for those implementations. The work presented in

[38] did incorporate error resiliency at the block level, but also chose large block sizes in

order to reduce the amount of overhead incurred during transmission. Single bit errors

during transmission could result in most or all of a block being lost since there is no

provision for determining exactly where in the block the error occurred.

 While there has been an increasing amount of investigation into lossless ECG

coding methods in recent years, most of the work has been done without regard to the

need for low power and hardware requirements, adaptability to various signal widths, and

the need for error resiliency when transmitting data over error prone mediums. The

implementation proposed in this thesis in an effort to broaden the scope of existing

research in these areas.

11

Chapter 3

Methods
The compression algorithm presented in this thesis has the goal of providing compressed

data for optimal data transmission, while providing the ability to reduce data loss as much

as possible should an error occur during transmission of a data packet. There are other

algorithms that would have provided better compression results, but these algorithms do

not provide any way to minimize data loss when an error occurs. There are many

applications that use data compression where a certain amount of data loss is acceptable;

others, such as the transmission of ECG signals as discussed in this thesis, may require

minimal data loss or else they run the risk of losing critical data. The following sections

describe the individual methods used in the encoding system presented in this thesis.

3.0 Differential Pulse Code Modulation

]1[][][nxnxne (1)

(1) shows the equation for calculating a Differential Pulse Code Modulation (DPCM)

sequence, which is simply first order Linear Prediction (LP). DPCM is a method used to

encode data by exploiting the correlation between successive samples of the input signal.

Since the difference between successive samples is generally smaller than the samples

themselves, the difference is encoded and normally requires fewer bits to represent it than

are needed by the original samples. The block diagram of this implementation is shown

in Figure 3.1(a).

12

][~][][nxnxne (2)

 A natural extension of the DPCM operation is to predict the value of the current

sample based on the previous M samples using LP, where the LP parameters are

dynamically estimated. The equation for this is shown in (2) where][~ nx is the predicted

value of the current sample,][nx , and][~ nx is calculated using an Nth order linear

predictor. The difference between the current sample and its predicted value,][ne , is

quantized with the hope that these difference values will have a lower entropy then the

original signal . It is important to note that DPCM is the simplest form of linear

prediction since it looks at the previous value, but it only uses a single coefficient with a

value of one. Since the first and only coefficient in this case is always one, DPCM

simply takes the difference between the current and previous sample. The coefficients of

the LP model are determined by minimizing the error between the original and estimated

signal in the least squares sense. The block diagram of the LP implementation is shown

in Figure 3.1(b).

13

Quantizer
x[n] e[n] [n]e~

1]-x[n

(a)

Quantizer

Predictor

x[n] e[n] [n]e~

(b)

[n]x~

Figure 3.1: (a) DPCM – First order linear prediction model (b) Nth order linear prediction model

In both of the above DPCM systems, the difference sequence is normally

quantized to a set number of bits. If the calculated difference between the current sample

and the predicted value of the current sample is too large to be represented by the number

of bits chosen for quantization, then data loss occurs. For this reason DPCM is normally

considered to be a lossy coding scheme. However, if DPCM is not used strictly as a data

compression tool, but rather as a tool to reduce the entropy of a signal so that an entropy

coder can more effectively compress the signal, then it is not necessary to quantize the

output of the DPCM to a smaller number of bits than that of the input. When used in this

way the goal of the DPCM to reduce the entropy of the signal, so that a following entropy

coder can achieve better compression results. Therefore, in order to keep the DPCM

operation completely lossless, the output would need one more bit than the input, since

14

the DPCM generates some negative values, to guarantee that there will not be data loss.

The actual compression of the data will be accomplished later by the entropy encoder.

ECG signals generally have a large amount of correlation between successive

samples. In many cases, the ECG signal will have sequences that increase or decrease at

a steady rate; the DPCM without linear prediction will encode each sample in this

sequence with the same value since the difference between the samples is the same. This

will lead to portions of data that can be effectively encoded using run-length coding.

Additionally, in the implementation presented in this thesis the input ECG signals are

broken up into smaller blocks, and then encoded and decoded individually. Therefore,

very often the block containing the upper bits of the samples will be zero since only the

lower bits are needed to represent the DPCM value. Run length encoding will be very

effective in when this is the case.

The author in [37] discuss the fact that Jalaleddine et. al. [7] found that for ECG

signals, a first order linear predictor (DPCM) yield better results than prediction models

of higher orders, while [42] found, using a different set of signals, that a second order

prediction model achieved the best entropy results. This research leads us to believe that

due to the close correlation of sequential samples, that a lower order predictor will

normally achieve better results than a higher order predictor.

This was tested and verified in software by running sets of 12-bit and 16-bit ECG

signals through both the DPCM and LP implementations (Figure 3.1), and then

computing the entropy of the output signals. As seen in Table 3.1 and Table 3.2, the

implementation that only used single order linear prediction (DPCM) consistently

15

produced a lower entropy value than the implementation with linear prediction; this held

true for both the 12 and 16 bit signals. This is a nice result as it allows the simpler

DPCM implementation to be used which will require less hardware resources since a

predicted value does not need to be calculated and the coefficients from the linear

predictor do not need to be calculated and stored.

 Entropy Values
ECG
Signal

Lead Original
Signal

LPC: # Coefficients
1 2 3 4

418 ECG 8.7071 5.0477 5.9182 6.5669 7.0250
419 ECG 9.1869 4.7987 6.1033 7.0582 6.9955
420 ECG 9.6981 4.6830 5.0027 6.5445 6.0075
421 ECG 8.7012 5.7515 6.3500 7.4773 7.7677
422 ECG 8.8674 5.5145 5.0846 6.2938 7.0618
423 ECG 7.7288 4.5692 4.4989 6.2864 5.9547
424 ECG 9.5807 4.4477 4.5743 5.9273 5.7869
425 ECG 9.2784 4.5721 5.0516 6.2576 5.8598
426 ECG 9.5913 4.4532 4.6730 5.6604 5.6415
427 ECG 10.0566 4.1904 4.7187 6.2252 5.6052
428 ECG 9.5195 4.2963 4.8357 6.2831 5.7295
429 ECG 9.3842 3.7853 4.2939 5.6276 4.9651
430 ECG 8.9795 3.8222 4.7134 5.8945 5.3849
602 ECG 9.2163 6.0324 6.7347 7.5431 7.8941
605 ECG 7.3060 5.0394 5.9584 6.5863 6.7287
607 ECG 7.8574 5.0523 5.8967 6.8362 7.1261

Table 3.1: Comparison of entropy values of original, DPCM & DPCM with linear prediction for 12-
bit ECG signals

16

 Entropy Values
ECG
Signal

Lead
Original
Signal

DPCM with LPC: # Coefficients
1 2 3 4

I01
V1 11.0128 5.2801 5.8463 6.4793 6.6797
V2 11.0571 5.3527 6.0115 6.7500 6.9486

I11
V1 9.0795 3.2160 4.1747 5.1246 4.8323
V2 8.7161 3.3185 4.3287 5.2402 5.0432

I20
V1 8.8060 4.0377 4.6352 5.5899 5.5423
V2 8.6443 4.2152 4.8425 5.7523 5.9156

I32
V1 9.7863 3.5717 4.6621 5.5638 5.5262
V2 9.6871 3.7507 5.0098 5.8168 5.8321

I46
V1 10.9828 5.9994 6.2554 7.3305 7.7105
V2 11.3890 6.1716 6.3882 7.4594 7.7784

I57
V1 11.3666 6.9282 7.4364 8.9670 8.3423
V2 11.1157 6.8805 7.5318 8.9821 8.5187

I69
V1 10.6359 4.2761 5.3309 5.9863 5.9424
V2 10.1248 4.9686 5.9078 6.5613 6.7879

I75
V1 10.4226 5.4757 6.7625 7.3139 7.4913
V2 11.5332 5.7083 7.1702 7.6710 7.8511

Table 3.2: Comparison of entropy values of original, DPCM & DPCM with linear prediction for 16-
bit ECG signals

Since the final encoding step is based on entropy encoding, it is important to note

that the complexity of the encoder increases as the size of the samples increases. A

single bit increase in the number of bits used to represent the sample effectively doubles

the total number of codes that must be calculated. The DPCM implementation discussed

above calculates the difference between successive samples, so its output will produce

both positive and negative values, whereas the input was strictly positive. Since having

both positive and negative values in the output would require an additional bit to

represent all the possible values, the number of symbols the entropy encoder would have

to handle would double, and would therefore significantly increase the complexity of the

entropy encoder. In order to eliminate this problem, the quantizer can be implemented so

17

that the entire range of output values is mapped to strictly positive values, thereby

eliminating the need for the additional (sign) bit.

This mapping of a range of positive and negative values to all positive values can

be accomplished by exploiting the fact that we know that every input into each encoder

will be a set size. Examining how the DPCM is calculated, and then reconstructed shows

how we can take advantage of this fact. The following is a simple example, using 4-bit

inputs, of how the DPCM would normally be calculated. This DPCM operation results in

a 5-bit output, but when the signal is reconstructed back to the original data when the sign

bit is always zero and is no longer needed. In the following example, the DPCM is

calculated according to the implementation given in Figure 3.1(a). The difference value

based on each input sample is calculated by taking the two’s complement of the previous

input value, and then adding it to the current input value. The resulting DPCM encoded

value needs 5 bits to represent it since taking the difference between the two samples can

result in negative values. To undo the DPCM encoding, the decoder simply starts with an

initial value of zero, and keeps a running sum of all the DPCM values. Since some of the

DPCM values are negative, this running sum is really composed of both addition and

subtraction operations. This will restore the data back to its original values, and the sign

bit can then be dropped since we know that all the original input values were strictly

positive. Table 3.3 shows the DPCM encoding and decoding of an example set of data.

18

Sample #
Input

Sample
Values

DPCM Encoded
Value: w/ sign

bit
Undo DPCM

Restored Data:
sign bit no

longer needed
Initial 0000

1 0001 00001 0000 + 00001 = 00001 0001
2 0011 00010 0001 + 00010 = 00011 0011
3 1100 01001 0011 + 01001 = 01100 1100
4 0110 11010 0100 + 11010 = 00110 0110
5 0010 11100 0110 + 11100 = 00010 0010
6 0011 00001 0010 + 00001 = 00011 0011
7 0011 00000 0011 + 00000 = 00011 0011
8 0000 11101 0011 + 11101 = 00000 0000
9 1110 01110 0000 + 01110 = 01110 1110
10 1000 11010 1110 + 11010 = 01000 1000

Table 3.3: Simple DPCM example with 4-bit inputs and 5-bit DPCM outputs

The above example is a valid way of calculating the DPCM values of a signal,

and then restoring the signal back to its original form. However, as discussed previously,

having this extra bit is not desirable since the DPCM values will eventually be encoded

again using an entropy encoder. Including the sign bit will double the number of codes

the entropy encoder would need to calculate and will increase the overhead cost

associated with transmitting the codes to the decoder. The need to keep the sign bit can

be eliminated by remembering that the inputs to the encoder will all be represented using

a set number of bits. Since we are dropping the sign bit of the DPCM values, after a

negative sign bit is dropped, any values that were negative (sign bit of 1) are simply the

two’s complement of the magnitude of the negative value. For example, if the DPCM

gave an output of -2 for a sample value, then the 2’s complement of 2, which is 14 for 4-

bit values, is used instead. When reversing the DPCM, adding 14 would achieve the

same result as subtracting 2, since the data size is constrained to 4-bits and the value

would roll over to zero when needed so as to achieve the same result. This only works

19

due to the fact that we are requiring all the inputs of the DPCM encoder to be a single

size. To make this process a little more clear, the same input sequence from the previous

example is taken and the DPCM process is repeated, with the exception that this time we

will drop the sign bit. The DPCM is calculated the same way, but the outputs of the

DPCM are held to 4 bits, the sign bit on any negative values is simply dropped. The

original values are restored from the DPCM data, the values are simply added together

and any overflow is ignored. This is shown in Table 3.4 and the results are the same as

when the sign bit was kept.

Sample #
Input Sample

Values

DPCM
Encoded

Value: sign
bit dropped

Undo DPCM
Restored Data:

Overflow – sign bit
dropped

Initial 0000
1 0001 0001 0000 + 0001 = 0001 0001
2 0011 0010 0001 + 0010 = 0011 0011
3 1100 1001 0011 + 1001 = 1100 1100
4 0110 1010 1100 + 1010 = 10110 0110
5 0010 1100 0110 + 1100 = 10010 0010
6 0011 0001 0010 + 0001 = 0011 0011
7 0011 0000 0011 + 0000 = 0011 0011
8 0000 1101 0011 + 1101 = 10000 0000
9 1110 1110 0000 + 1110 = 1110 1110
10 1000 1010 1110 + 1010 = 11000 1000

Table 3.4: Simple DPCM example with 4-bit inputs and 4-bit DPCM outputs with the sign bits Being
dropped

3.1 Run-Length Encoding

Run-Length Encoding (RLE) is an effective tool to use in cases where there are segments

of data that all have the same value. In cases where there is a sequence of N samples that

all have the same value, rather than encoding all N values it is much more efficient to

recognize this as a run-length, and encode the sample value of the sequence, along with

the number of samples contained in the run length. If RLE is performed on the output of

20

a DPCM operation, then there are two ways that run-lengths can be created. The first is in

the case stated above, where a segment of the input signal’s values are all the same; in

this case the DPCM operation will output all zeros for this segment since the difference

between equal valued samples is zero. The second case where run-lengths could be

generated is if the input signal’s values are increasing or decreasing at a steady rate. If for

example you have a string of ten values where each value is one greater than the last, then

the DPCM will output a string of DPCM values that all have a value of “0001” for the 4-

bit case. While ECG signals do not normally include long sequences of samples that are

all the exact same value, they do include segments that are steadily increasing/decreasing

by constant amounts. Plus, if a 12 or 16-bit ECG signal is split into smaller bit sizes, then

the higher bits may very well contain strings of identical values since only the lower bits

may be required to represent the full value of the sample. Therefore, implementing a

RLE operation so that the input to the RLE block comes from the output of the DPCM

transformation can provide additional compression performance.

 When a valid run-length is identified, the first sample in the run length is encoded

normally. This first sample serves as the identifier for what the remaining values in the

run length are. Following this first sample, a run-length flag is encoded so that the

decoder knows to treat the following sample as a run-length count value and not as

normal sample. When the decoder encounters a run-length flag, it simply retrieves the

previously decoded sample, and restores as many of that value as is indicated by the run-

length count. A diagram of the run-length encoding structure is shown in Figure 3.2.

21

First RL Sample RL Flag RL Count

Figure 3.2: Order of encoded values used to represent a run-length sequence

3.2 Segmenting Samples for Entropy Coding

One of the challenges when encoding ECG data is that there are several numbers of bits

that are commonly used to represent the digitized signals. 11, 12, or 16 bit

representations are the most common, but there are also 8 bit representations that are used

as well. For an 8 bit representation there are 256 different possible values, for 12 bit

representations this balloons to 4,096 possible values, and 65,536 possible values for the

16 bit representation. This presents a problem since calculating and storing 65,536

different codes would be enormously time consuming, as well as require an exorbitant

amount of resources. In addition, the codes will have to be transmitted along with the

compressed data, so it is desirable to reduce the total number of codes needed so that the

overhead cost associated with transmitting the codes is reduced.

This problem can be addressed by recognizing that as the number of bits used to

represent the inputs increases, the number of different possible input values increases

exponentially. We can exploit this fact by taking the bits used to represent each input,

and breaking it up into several smaller bit segments. These separate segments can then

be encoded and decoded individually. Once the segments have been individually

decoded, they can then be concatenated back together to restore the original full length

input values. This will effectively reduce the number of individual codes that need to be

calculated. For example, as discussed above the 16 bit representation would require the

22

calculation of 65,536 individual codes, however, if each 16 bit value was encoded using

two 8-bit encoders the total number of codes that would need to be calculated would be

2*256 = 512. This is an enormous reduction in the number of codes that have to be

calculated and stored. Breaking up the input bits into combinations of 4, 6, and 8 bit

segments is investigated, since these can be easily combined to reach the 12 and 16 bit

ECG representations. Segments longer than 8 bits are not considered, since anything

above 8 bits requires too many codes, and the time needed to compute the large number

of codes would not be acceptable.

3.3 Histogram Calculation

Since the implementation being proposed is based on entropy encoding, it is necessary to

generate histograms to provide the statistics which will be used in the calculation of the

final codes used to encode the ECG signals. In order to generate codes with which to

encode the signal samples that have gone through the DPCM and RLE blocks, it is

necessary to have values for the probabilities of all the possible symbols of the input

signal. Since the statistics of the input signal are not known in advance, an initial

histogram based on ECG signals from the PhysioBank Physiologic Signal Archives [6]

are used to generate codes that will be used to encode the initial part of the signal. As the

signal data is processed a new histogram will need to be calculated from the current

samples of the signal being encoded. When enough of the signal has been calculated to

form a suitable histogram based on the new signal, then new codes would be calculated.

Once the new codes have been calculated, then the old codes would be replaced with the

new codes, and the new codes transmitted so that the decoder has the codes to use for

decoding and restoring the data.

23

3.4 Huffman Coding

Once a histogram, based on a fixed number of input samples, has been calculated,

Huffman codes are then generated based on the algorithm described in [43]. It should be

noted that the implementation used here does not actually calculate the probabilities of

the symbols in order to simplify the hardware and to avoid having to use floating point

representation. Instead, calculation of the Huffman codes is done using the actual

number of times each symbol occurred instead of using the probabilities. This has the

same affect and creates the same code table that using actual probabilities would have

created.

In order to implement the Huffman algorithm, two queue structures are used to

hold the leaf nodes that are used to create the binary tree. The Huffman codes are

calculated using the following steps:

1. The histogram values are sorted in decreasing order so that the value that is

most likely to occur will be accessed last, and the value that is least likely to

occur will be accessed first.

2. Examine the next accessible nodes in each (non-empty) queue and take the

two nodes that have the lowest values. This may mean taking two nodes from

the same queue, or one from each queue. The two nodes representing the two

values least likely to occur are taken and their values added together to form a

new node, with the original two nodes as children. If there is a tie when

choosing which queue to take nodes from, always choose the first queue, this

24

will maintain the mathematical optimality of the Huffman coding while

minimizing both the variance and the length of the longest code.

3. Each time two nodes are added together, the first node selected from the

queues is assigned a ‘0’, and the second node selected is assigned a ‘1’. This

new node is then stored in the second queue structure.

4. If there is still more than one node in the two queues combined, go back to

step 2. Repeat this process until all the nodes from the first queue have been

chosen and all the nodes from the second queue have been combined until

there is only 1 node left.

5. The one remaining node is the root node of the binary tree and valid Huffman

codes for all possible symbols have been calculated. The codes are then

obtained from the node tree generated by the above steps by starting at the

root node and traversing down to the leaf node that represents the desired

value. The values, ‘1’ or ‘0’, of each node passed are collected in order and

these form the code.

The following figure shows an example of the binary tree and resulting code table

generated from a set of 8 possible values and their histogram (number of times each value

occurs). The small numbers on the binary tree represent the value (0, 1) assigned to a

particular branch, while the large values on the tree gives the total number of value

occurrences that can be reached from that point in the binary tree.

25

7

7

2

2

1

1

0

0
0

1

0

1

0

1

0

1

0

1

0

1

0

1

0
1

2

4

6

13

20
2

1

3

6

0

4

5

7

Value Assigned Code
0 0001
1 01
2 1
3 0011
4 00011
5 000101
6 00010
7 000100

Figure 3.3: Example of Huffman code table calculation using 8 values and 20 total occurrences of
those values

Once the Huffman codes have been calculated, they are then transformed into

Reversible-Variable-Length Codes (RVLC) in order to provide error resiliency since

RVLC codes are symmetrical and can be decoded both frontwards and backwards. These

RVLC codes are the final codes used to encode the input data after it has gone through

the DPCM and RLE transformations.

3.5 Reversible Variable Length Coding

RVLC codes are generally calculated by taking a previously calculated table of variable

length codes, and using the characteristics of the variable length codes to provide metrics

from which the RVLCs are then calculated. Takishima et al. in [44] and Tsai et al. in

[45] provide algorithms for calculating RVLCs from Huffman codes. However, the

algorithms they describe calculate symmetrical codeword’s on a full binary Huffman tree

and pre-calculate the number of available codeword’s at each level before generating the

symmetrical RVLC. The overall design procedure used in these algorithms requires high

complexity when adapting pre-calculated values at each level to the given Huffman code

26

table. There also are restrictions imposed during this adaption process which can lead to

valid symmetrical codeword's being missed at some levels.

Jeong and Ho present a new algorithm in [46] which simplifies the adaption

process to the given Huffman code table, and also often reduces the average code length

since this algorithm does not miss any symmetrical codewords. This algorithm generates

RVLCs from the Huffman table, but it is able to provide a simpler and faster

implementation by taking advantage of some basic characteristics of RVLCs. When

Huffman codes are generated, the codes must satisfy the prefix condition, i.e. the first

portion of a code can not be identical to any of the shorter codes. RVLCs on the other

hand must satisfy both the prefix and the suffix condition in order to be decoded in both

the forward and backward directions. However, when considering the symmetrical

RVLC, the prefix condition automatically leads to the suffix condition due to the

symmetrical bit patterns of RVLC codes. Therefore, if all the bits of a chosen

symmetrical codeword which satisfies the prefix and suffix conditions are inverted, a

second symmetric codeword is obtained which also satisfies the prefix and suffix

conditions. This means that if we have S Huffman codes that we need to calculate

RVLCs for, then we only need to calculate codes for one side of the Huffman tree which

will be S/2 (round up if not an integer value) codeword’s. This gives us half of the

needed codeword’s, and the other half can be easily generated be simply inverting the

bits of the S/2 calculated codeword’s. Essentially, if you consider a binary tree and look

at the two branches off the main node, this algorithm finds all the RVLC codes on the ‘0’

branch (it finds S/2 codes on the ‘0’ side). Since these S/2 codes meet all the conditions

of a RVLC code, then their complements must also meet the conditions as well. Since

27

we only need to check the prefix and symmetric properties when calculating codes for

one side of the Huffman tree, and not for both sides, the time required to calculate the

RVLC codes and the number of values searched through to find the symmetric values is

dramatically reduced.

When calculating the initial RVLCs for the left side of the Huffman tree, the table

of RVLCs will contain only one code that consists of all ‘0’ bits or else the prefix

condition would not be satisfied. Therefore, all the codes that are longer than this zero-

code (LZ), where L is the level at which the LZ code appears, must start with less than L

zeros in order for the prefix condition to be satisfied. This choice will affect the number

of RVLC’s that are found at each level, and will therefore affect average code length of

the generated RVLCs. In order to reduce the average code length as much as possible,

the characteristics of the probabilities of the Huffman codes are taken into account, and

the best fit of the RVLC to the probability distribution of the Huffman code is obtained

by setting L equal to the shortest Huffman code min_HL . Table 3.5 shows an example of

how a set of RVLC codes is generated from a set of Huffman codes. The first column

shows the values from the left side of a binary tree, while the next three columns show

whether each value from the binary tree meets the necessary conditions of a RVLC code.

If a value does not meet any of the four conditions it is immediately discarded, if it meets

all the conditions, then it is selected as an RVLC code and replaces the next most

common Huffman code.

28

Values
Selected
from Left
Side of

Binary Tree

Symm-
etric?

Symmetric.
Code > 0 or

length
(Zero_Code)

= LZ ?

Prefix
Condition

Met?

Valid
RVLC
Codes
Found

Find
Remainder of
RVLC Codes
by Inverting

Previous
Column

000
001
010 010 101
011
0000 0000 1111
0001
0010
0011
0100
0101
0110 0110 1001
0111
00000

…
00100 00100 11011

…
01010

…
01110 01110 10001

…
000000

…
001100 001100 110011

…
010010 010010 101101

…
011110 011110 100001

Table 3.5: Example of the process used to select RVLC codes with 4LZ

29

The algorithm for generating RVLC’s according to the algorithm described above

is shown here.

1. The bit length of LZ for the left half region of the binary Huffman tree is

selected to be the same length as the shortest Huffman code, min_HL .

2. Until all the necessary number of symmetric codes from the left half region

of the binary tree have been selected (S/2 codes in all), all available

symmetrical codeword’s are chosen from the highest remaining level (i.e.

shortest symmetrical codewords are evaluated first). These symmetrical

codeword’s are further weeded out by eliminating all codeword’s that violate

the prefix condition (i.e. symmetrical codes that starts with a previous

smaller code are not selected), and any all zero codes whose lengths do not

equal LZ .

3. Combining the selected codeword’s with their bit-inversed codeword’s gives

a full RVLC table of symmetrical codes that can be decoded from both

directions.

4. The shortest Huffman code is replaced with the shortest RVLC codeword.

This is repeated with all remaining codes until all Huffman codes have been

replaced. This maintains the goal of assigning the shortest codeword’s to the

most frequently seen symbols.

30

3.6 ECG Signal Database

The ECG signals used to evaluate the best DPCM implementation to use, as well as to

evaluate the final compression algorithm, were taken from the PhysioBank Physiologic

Signal Archives [6]. These archives contain a comprehensive collection of ECG records

available to the biomedical research community. This database of ECG records is often

used as a standard database for determining the effectiveness of encoders geared towards

ECG signals. Two collections of ECG records were chosen from the PhysioBank

database from which individual signals (leads) were chosen to test the compression

system. The 12-bit signals contain 30 minutes worth of ECG data, while the 16-bit

signals contain 35 minutes worth. About one third of each signal, 150,000 data samples

or about 10 minutes worth will be used in the testing of the encoding systems presented

here.

The MIT-BIH Malignant Ventricular Arrhythmia Database was chosen to select

12-bit signals from because it contained 22 half-hour plus ECG recordings of subjects

who experiences sustained episodes of ECG irregularities. The records contain ECG

signals with a variety of different irregularities. The individual signals were selected by

taking the first 16 records, and by taking the first ECG lead from each of the selected

records. This provided a broad range of signals to be used for testing the ECG encoder

and decoder. All signal values were shifted into the range of all positive numbers. A

more detailed description of these records is given in Table 3.6.

31

Signal
Num

Record
Record
Lead

Number
of

Abnormal
Episodes

Total
Time

Affected

1 418 ECG 61 4:06
2 419 ECG 33 3:29
3 420 ECG 3 4:42
4 421 ECG 50 5:46
5 422 ECG 5 11:55
6 423 ECG 5 8:12
7 424 ECG 9 8:41
8 425 ECG 3 5:55
9 426 ECG 10 13:04
10 427 ECG 2 24:12
11 428 ECG 8 34:48
12 429 ECG 17 31:50
13 430 ECG 32 34:19
14 602 ECG 5 6:44
15 605 ECG 1 0:29
16 607 ECG 9 33:32

Table 3.6: Detailed description of selected 12-bit ECG signals chosen from the MIT-BIH Malignant
Ventricular Arrhythmia Database. Each signal from this database contains 525,000 samples, and is

sampled at a rate of 250 Hz for a total length (Time) of 35 minutes.

The St. Petersburg INCART 12-lead Arrhythmia Database was chosen to select

16-bit signals from because it contained 75 recordings extracted from 32 Holter records,

with each record being 30 minutes in length. The records contain ECG signals where the

patients were undergoing coronary artery disease, and exhibiting a range of different

ECG irregularities. A more detailed description of these signals is given in Table 3.7.

32

Signal # Record
Record
Lead

Number of
Abnormal
Episodes

1 I01 V1
344

2 I01 V2
3 I11 V1

28
4 I11 V2
5 I20 V1

290
6 I20 V2
7 I32 V1

57
8 I32 V2
9 I46 V1

426
10 I46 V2
11 I57 V1

29
12 I57 V2
13 I69 V1

169
14 I69 V2
15 I75 V1

620
16 I75 V2

Table 3.7: Description of representative set of 16-bit ECG signals chosen from the St. Petersburg
INCART 12-lead Arrhythmia Database. Each signal from this database contains 462,600 samples,

and is sampled at a rate of 257 Hz for a total length (Time) of 30 minutes.

33

Chapter 4

Implementation Methodology

4.0 Design Considerations for 12-bit and 16-bit
ECG Encoding Systems

The compression system presented here was designed to be able to adapt to changing

characteristics within the signal itself, and to be able to handle different signal types

using a single compression system. When considering ECG signals in particular, there

will be variance between signals from different patients, but unless an irregularity occurs,

the ECG signal should be relatively periodic for long stretches of time. The

characteristics of the signal may change if the patient increases or decreases physical

activity, for example, but it should then remain periodic for a number of samples before

the next change. This inherent periodicity in ECG signals means that having the ability

for the compression system to periodically recalculate its codes may not be needed in

some cases. The following two encoding systems were designed to investigate the effect

that the periodicity of the ECG signals has, and which type of implementation is would

be better suited for ECG compression in terms of both performance and required

resources.

 The first system (system A) was designed to periodically update its code tables

based on the current characteristics of the signal, while the second system (System B)

uses a single set of pre-loaded code tables to encode the entire signal thereby requiring

significantly less hardware resources. These two systems were designed to meet the goal

of requiring few hardware resources, low power usage, and to provide error resiliency to

34

limit data during signal transmission. The selected ECG signals will be run through both

configurations, and the compression results along with the hardware requirements for

each configuration can be used to determine which is more beneficial.

ECG signals are commonly quantized into 12 and 16 bits. Separate systems were

set up for each case. Since DPCM is performed on the signals before they are encoded,

the values of the resulting individual samples after DPCM in both the 12 and 16 bit

representations should be small. This means that the large portion of the upper bits in

both the 12 and 16 bit representations should not be needed to represent the value to be

encoded, and should therefore be ‘0’. It would be expected then that the 16 bit

representation would have a greater percentage of zeros in the high bits than the 12 bit

representation would. This higher number of zero bits gives the best chance of allowing

the highest bits to be encoded using run length techniques which would allow for the best

compression possible. Therefore, we would expect that the compression system

presented here would achieve a better overall compression ratio on the ECG signals that

use 16 bits to represent the data then those that use 12 bits.

4.1 System Configuration

A simplified block diagram of the type of implementation presented is this thesis

is shown in Figure 4.1. The input signal samples will be split into a chosen number and

size of segments, with each segment being encoded independently of the others. The

encoded segments will then be packed together and transmitted over a communications

channel to a desired location where they can later be decoded and analyzed as needed.

Table 4.1 shows a comparison of the number of codes required for the different possible

35

segment configurations. While the 4-4-4-4 segment encoding configuration is listed as a

possibility in the table, it was not implemented in this design since having four different

segments to package and transmit posed large problems with the transmission structure

being targeted. Additionally, the single segment 12 and 16 bit configurations were not

used either, since the total number of individual codes would require a large amount of

time and resources to generate. In our research of previous work done in the area of lossy

and lossless ECG compression, presented in section 2.4, we did not find any other

instances of implementations that split the incoming signal, encoded the segments

separately, and then recombined the segments upon decoding to restore the original

signal.

Entropy
Encoder

Encoding Configuration

Pa
ck

ag
e

&
 T

ra
ns

m
it

C
od

es

an
d

C
om

pr
es

se
d

D
at

a
n(1)

n(i-1)

n(i)

Entropy
Encoder

Entropy
Encoder

Figure 4.1: Top level diagram of signal encoder where n(0) through n(i) are the bit widths of the data
going to the segment encoders, and the sum from n(1) through n(i) equals the bit width of the original

ECG signal

36

Input

Bit Size
Possible Coding
Configurations

Number of Codes
Required

Bytes of
BRAM

Required
(System A)

Bytes of
BRAM

Required
(System B)

12

4-4-4 48 324 120
4-8, 8-4 272 2684 1048

6-6 128 1030 374
12 4,096 - -

16

4-4-4-4 64 - -
4-6-6, 6-4-6, 6-6-4 144 1138 414
4-4-8, 4-8-4, 8-4-4 288 2792 1088

8-8 512 5152 2016
16 65,536 - -

Table 4.1: Comparison of segmented encoding configurations, the number of codes required for each
configuration, and the number of BRAM bytes to implement each encoder configuration. Bolded

configurations are implemented and tested. Italicized configuration for both the 12 and 16-bit
implementations provided the best results. BRAM requirements only given for implementations that

were demonstrated

The top level diagram of the proposed entropy coding implementation is shown in

Figure 4.2. The final coding scheme is based on an entropy coder using Huffman codes

which are then transformed into Reversible Variable Length Codes (RVLC). The RVLC

codes are symmetrical, and are therefore frontwards and backwards decodable. In

addition, they satisfy the prefix condition, meaning that a smaller code is not identical to

the beginning of any longer code. Because RVLC codes are symmetrical, this means that

if the prefix condition is met, the suffix condition will automatically be met as well.

These conditions ensure that each RVLC code chosen is not only decodable from both

directions, but that each code is uniquely decodable as well. If the prefix/suffix

conditions were not met, it could be possible to have a code whose value could be

contained in the beginning of a longer code. If this was the case the beginning portion of

the longer code could be wrongly decoded as the shorter code, which would wreck the

whole decoding process and result in incorrect data restoration. Incorporating RVLC

37

codes allows the decoder to decode backwards from a synchronization marker when an

error occurs, thereby minimizing the data loss due to transmission errors. In order to

maximize the compression results from the entropy coder, a Differential Pulse Code

Modulation (DPCM) operation is first performed on the data signal, followed by run

length coding (RLC). Due to the inherent correlation between neighboring samples in

ECG waveforms, the combination of DPCM followed by RLC significantly reduces the

entropy of the signal and results in more effective entropy coding.

DPCM

Histogram

RLE

Gen Huff

Encoder

RVLC Code
Gen Mem

Sort Hist

Hist/Huff Mem

Gen RVLC

RVLC Code
and Flag Mem

Figure 4.2: Entropy coding system top level view for a 4, 6, or 8-bit segment encoder with the ability

update the RVLC tables

38

 4-Bit 6-Bit 8-Bit

Histogram Storage &
Huffman Calculation

Memory
16x22-bits 64x26-bits 256x30-bits

RVLC Generation Code
Memory

16x12-bits 64x15-bits 256x19-bits

RVLC Final Code Storage
Memory

16x16-bits 64x22-bits 256x31-bits

RVLC Final Flag Storage
Memory

4x16-bits 4x22-bits 4x31-bits

Total Memory Usage 40 Bytes 187 Bytes 1008 Bytes
Table 4.2: Memory size requirements for 4, 6, and 8 segment encoders

The entire set of VHDL files for the encoder, and the Java software files for the decoder

can be accessed at http://ivpcl.org. This is done to allow others to continue work on all or

part of the implementation proposed in this thesis, and to allow for exact reproducibility

of the results presented in this paper.

4.2 Component Implementation

4.2.1 Run-Length Coder

In order to be able to encode the data in a way that allows for error resiliency, the values

that are sent for any run lengths must be encoded in the entropy coder since RVLC codes

are used to allow for recovery from errors. The number of different values that the

entropy coder can encode is based on the number of bits used to represent the input and is

given as: sizebitinput __2 . Since there is a limit on the largest value that the entropy coder can

encode, the maximum length that can be sent for the run length must be able to be

represented in the same number of bits used to represent the input values. This means

that the longest run length that can be sent is: 12 __ sizebitinput .

39

As the ECG signal samples are fed into the encoding system, each sample is

compared against the previous sample to determine if they are identical. If the current

and previous samples are identical, then the current value is not transmitted, and a run

length counter is incremented. This process is repeated until either the run length has

reached its maximum allowed length, or a data sample is presented that is not identical to

the previous sample. This means that for a sequence of identical values, the first value in

the sequence will be encoded normally and will not be included in the run length since

the run length count doesn’t start until a second identical value is seen. Therefore the

decoder only needs the number of values in the run length, and not the actual value of the

run length samples, to be able to decode it since the value immediately preceding the run

length is the same as the values in the run length.

When the end of the run length has been identified, the run length counter is

compared against a specified minimum run length value to ensure that transmitting the

run length value would provide better compression results then if the individual signal

samples had been transmitted instead. This is a concern because when a run length

occurs, a flag has to be encoded along with the run length so that the decoder can

differentiate between a normally encoded sample, and an encoded run length. Since this

flag adds extra bits onto the data that is transmitted for a run length, a run length must be

long enough to make including the extra bits for the flag worthwhile. If a run length of

only two or three samples is detected, it will often be more efficient to encode those

samples individually rather than as a run length. The known length of the flag used to

indicate a run length is compared to the most common shortest codes for each encoder

40

segment, to determine what the minimum run length will be. If this minimum run length

is not met then the short run length is simply encoded as individual samples.

4.2.2 Histogram Calculation

The generation of the histogram is performed based on the ECG data samples that are

currently being sent into the system. The goal of periodically recalculating the codes is to

be able to identify changes in the properties of the signal and to provide updated codes

that provide the best compression possible for the changing signal. Therefore, when new

codes are recalculated, the histogram must provide a histogram of the most recent data

seen. The system monitors the incoming signal and will recalculate the code tables at

constant predefined intervals. The system provides an input to the histogram calculator

long enough prior to the system needing to recalculate the codes, so that the there is

enough time to calculate a full histogram of the current signal. A predefined constant

value can be preset in the system to identify how many samples constitute a full

histogram. This value can be changed to provide the ability to control how many samples

in the current signal will be used to build up the histogram.

A block of memory is used to store the histogram values as it is being calculated.

The index’s of the memory range between [0, 12 __ sizebitinput], where the input bit size

is either four, six, or eight. The index’s of the memory are used to represent the different

possible sample values, while the value stored in the memory at each index represents the

number of times that value has been seen. When a sample is sent into the system, it is

sent through the DPCM transform to reduce the entropy, the resulting value is the sent

41

into the run length/entropy encoder. At the same time, if the system has indicated that

histogram is being calculated, then the value stored in the histogram memory is accessed

using the DPCM value as the index, and the histogram value is incremented and then

stored back to the same index location.

Since a block of memory with a predefined size is used for storing the histogram,

it is necessary to limit the maximum number of samples that can be used to generate a

single histogram table. The number of values used must be limited to the maximum

value that one histogram memory location can store. Otherwise, if the histogram is

dominated by a couple of values, it would be possible for the histogram value for those

signals to exceed the number of bits used to store it, causing that value to overflow and

roll back to zero. This would create an inaccurate histogram which would adversely

affect the compression of the signal. Limiting the number of values used to calculate the

histogram is acceptable, since it is desired to have the histogram only be based on a select

portion of the ECG signal so that the code tables that are generated accurately reflect the

characteristics of the current signal.

4.2.3 Sorting the Histogram

The basis of the entropy coder is that the shortest codes will be mapped to the most

commonly seen sample values after they have been transformed in the DPCM process.

In order to perform this mapping, the histogram has to be sorted so that the histogram

values are easily accessible in descending order from the largest histogram value to the

smallest. Once the histogram has finished being calculated, the values are read out of the

histogram memory and stored in the Huffman code memory. Each memory index of the

42

Huffman memory is wide enough to store both the histogram value, and the index

location representing the sample value that the histogram count represents. The

histogram/index value pairs are then sorted and stored in the Huffman code memory from

largest to smallest histogram count value.

Since the Huffman encoding assigns the shortest codes to the most frequently

seen signal values, the same memory can be used to store both the sorted histogram

values and the generated Huffman codes. The shortest Huffman codes are calculated

first; therefore, as they are calculated they are stored in the memory location of the largest

remaining histogram value and take on the sample value stored at the same histogram

location.

4.2.4 Huffman Coder

Once a valid histogram has been calculated, the Huffman codes based on that histogram

are calculated using the traditional Huffman algorithm described in section 3.4.

However, the actual hardware implementation used was slightly different. Rather than

use two queues as described previously, a single memory block was used to generate the

Huffman codes. The histogram codes were sorted, from least to most likely to occur,

according to their frequency of occurrence, so as histogram values are removed and

added together, these intermediate values that would normally be stored in the second

queue, are instead stored back in the next available vacated histogram memory location.

This effectively reuses the vacated histogram memory locations to store the combined

histogram values. It just requires a little additional logic to keep pointers of the next

original histogram values and recombined histogram values to be evaluated.

43

4.2.5 Reversible Variable Length Codes

Once the full Huffman table has been calculated, the RVLC codes based on that

histogram are calculated using the approach described in section 3.5. The length of the

shortest Huffman code is used to set the parameters of the RVLC generation algorithm.

Enough RVLC codes are generated to replace all the Huffman codes, and then four

additional RVLC codes are generated to be used as flags that can be used during the

packaging of the codes for transmission. One of the flags is used to indicate that a run

length sequence was encoded, and the others are left for the any other uses that may be

desired or required in the packaging of the codes.

4.2.6 Packaging Encoded Data for Transmission

Once the encoding of the data has been completed, it must then be packaged and

transmitted to a chosen location where it can be decoded and analyzed at a later time.

Since one of the major goals of this implementation is to minimize the amount of signal

data that is lost in the event of data loss or corruption during transmission, there are

specific things that can be done when packaging the data that would assist the encoder in

restoring as much of the original signal as possible. This requires adding in a small

amount of additional information into the data before it is transmitted. This will affect the

overall compression performance of the system, but the payoff is that the decoder then

has the ability to restore a greater amount of the encoded data.

One of the first steps often taken to minimize the amount of data loss or

corruption during transmission, is to include synchronization markers at various points in

44

the encoded data so that even if data is lost or corrupted, the synchronization markers

provide a point of reference from which to continue decoding. The synchronization

marker will consist of signal sample values that have not been DPCM encoded, that will

be placed at specific points in the encoded string. This is important in the

implementation presented here because of the fact that we are using the DPCM transform

to reduce the entropy of the signal. Reversing the DPCM transform requires keeping a

running sum of all the decoded values in order to restore the original signal. If even one

of the values is lost, then it is impossible to reverse the DPCM transform beyond that

point until the next synchronization marker is reached.

While synchronization markers provide a point from which to restart the process

of reversing the DPCM transform, all the data from the point where the data was lost to

the next synchronization marker will be lost unless there is a way to start at the next

synchronization marker, and decode the data backwards until the point where the error

occurred is reached. This is why the DPCM encoded data was also RVLC encoded.

RVLC codes are symmetric, i.e. the value that is obtained is the same whether it is

observed starting at the left of the value and going right (frontwards), or is observed

starting at the right of the value and going left (backwards). Therefore, encoding the data

with these RVLC values will allow for the data on both sides of the corrupted portion of

the signal to be recovered, at which point interpolation methods can be used to

approximate the values that were not able to be recovered.

For the purposes of the research done for the implementations being described

here, the medium used to transmit the data is a packet based bus with a variable length

payload that has a maximum length of 256 bytes. The type of bus and the specific

45

properties that it contains are important in determining the best way to package and

transmit the encoded data. Each packet that is sent contains both header data as well as

the payload data. The header data contains a one byte address specifying the destination

of the packet, a two byte object address that can be used to specify what type of data is in

a given packet, and a one byte payload length value that is one less than the actual length

of the payload (i.e. a one byte payload will have a payload length of zero, and a 256 byte

payload will have a header payload length of 255). The packet format described above is

shown in Figure 4.3.

1 Byte 2 Bytes 1 Byte 1 - 256 Bytes

* - In order to be able to indicate lengths of up to 256 using a single byte, the payload
length sent in the header is the actual payload length - 1. A payload length of zero
would mean there was one byte of payload data, and a payload length of 255 would
mean there were 256 bytes of data in the payload.

Destination Address Object Address Payload Length* Payload Data

Figure 4.3: Packet format of transmission medium

The first thing to take into account when considering how to package the data is

how the decoder will be able to identify where an error may have occurred. While the

RVLC encoding will allow decoding of the data in both directions, it can not guard

against a bit flip in the data throwing the decoder off. Suppose there was a RVLC code

that had a value of “111” as well as one that had a value of “101101”, and a bit was

flipped in the second value during transmission causing it to become “111101”. If the

decoder was decoding this from left to right, it would read the first three bits and think

that it found a valid RVLC code of “111”, when in reality the actual RVLC code was

something else entirely. This type of bit flip would cause the decoder to wrongly decode

several values before it got stuck and not be able to decode the remaining encoded data.

46

To address this problem, the last bit in every byte of the transmission packet payload will

be reserved as a parity bit and will be calculated based on the seven previous bits, as seen

in Figure 4.4. When the decoder receives the packet, the first step it will take will be to

go through the payload data and double check that the parity bit in each byte still has the

correct value. If the parity is wrong then the decoder knows that the data in that particular

byte was altered, and will know that any code or portion of a code that was stored in that

byte can not be accepted as a correct code.

D D D D D D D P

Destination Address Payload Length Object Address

1 Byte 2 Bytes 1 Byte

Payload Data

1 - 256 Bytes

1 Byte

D – One bit of encoded data
P – Parity bit calculated from previous 7 bits of encoded data

Figure 4.4: Structure of each byte of packet payload data

Another problem with reconstructing the original sample values from the DPCM

encoding is seen when a bit flip occurs in a packet, thereby interrupting the process of the

decoder keeping a running sum of the DPCM encoded values to reverse the DPCM

encoding. The data was encoded in such a way as to allow for as much of the encoded

data to be recovered as possible when an error like this occurs, but losing even one

sample is enough to disrupt the ability to recover the original data if the decoder can only

undo the DPCM encoding from one direction. The solution to this problem is to use the

synchronization markers that are already embedded in the transmitted data. This value

can simply be decoded by undoing the RVLC encoding, and does not rely on the DPCM

encoding at all. This provides a value directly from the original signal, providing a basis

from which the DPCM values recovered after an error occurs can be decoded, as well as

47

a providing a point from which to restart the DPCM decoding in the next packet. This

value is placed in every single packet that is transmitted, and will be the very first value

packed into the payload portion of the packet for each block of data from each encoding

segment.

As the data is encoded, it is packaged into packets of the form previously

described. Since the codes used to encode the signal data are different lengths, when

packaged into the payload portion of the transmission packet the codes will often be

packaged with portions of the code in sequential bytes. This is acceptable since the

decoder first removes the parity bits, and then reformats the data into a single string. This

single string is then decoded by reversing the RVLC and DPCM encoding. After the last

byte of data for each segment in the encoder is packaged, there will often be a byte that is

only partially filled. Values must be provided for all the bits in the byte, but the decoder

must also be able to know that these extra bits do not contain any encoded data. In order

to meet these requirements, a single bit with a value of ‘1’ is always added after last

encoded data has been packaged for each encoder segment. Then, if there are any bits

left undefined in the last byte, they are all filled with ‘0’s. This will occasionally result in

an extra entire bit being added when the encoded data fills up the last byte completely. In

this case when the extra ‘1’ bit is added, it is placed in an additional byte whose

remaining bits are filled with ‘0’s except for the last one which is the parity bit. This

occasional extra byte is necessary to allow the decoder to know what bits are extra data,

and which actually contain encoded signal data. After the decoder removes all the parity

bits from the encoded data, it looks at the end of the string and ignores all the ‘0’ bits

48

until it sees the first ‘1’ bit. This ‘1’ bit is also ignored since it is the first extra bit that

was added in, and the remaining data is then known to contain the encoded signal values.

The encoding of the full ECG signal requires two or three encoding segments

depending on which configuration is selected (8-4, 4-6-4, etc.). This means that data

from all the segments will have to be encoded in each transmission packet. The easiest

way to do this would be to encode all the segments from the first sample together, then all

from the second sample together, and so on. This would work if it were not for the fact

that run length encoding is being utilized. Since each signal sample is broken up into

either two or three segments and each segment is encoded separately, a signal sample

may have one segment be encoded by itself, while another segment is part of a run length

encoding. This means that it is not always possible to encode all the segments from a

single sample together. In addition this could result in different amounts of signal values

being encoded in each transmission packet. If an entire packet were to get lost there

would be no way to know exactly how many sample portions from each encoding

segment were lost.

In order to ensure that the decoder can stay synchronized as it decodes the data,

the encoded data will be packaged so that each encoder segment has its data packaged

together. An example of this is shown in Figure 4.5 for a three segment encoder and in

Figure 4.6 for a two segment encoder. Since the entire first segment is packaged before

the next segment(s) are packaged, it is necessary to know how many encoded signal

samples are going to be packaged in each transmission packet. The number of encoded

signal samples encoded in each transmission packet must be kept to a value that allows

all the data from all the segments to fit in a single transmission packet.

49

Segment 1 Segment 2 Segment 3

Destination Address Payload Length* Object Address Payload Data

S S S F F F

S – Synchronization value placed at start of encoded segment data
F – Filler data to fill out the remaining bits of last byte of each segment

Figure 4.5: Payload packaging configuration for 3-segment encoder

Segment 1 Segment 2

Destination Address Payload Length* Object Address Payload Data

S S F F

S – Synchronization value placed at start of encoded segment data
F – Filler data to fill out the remaining bits of last byte of each segment

Figure 4.6: Payload packaging configuration for 2-segment encoder

4.3 Decoding Packets with Errors

The ability of the decoder to recover from errors depends on several contributing factors.

The structure of the packet plays a roll in how much data is able to be recovered, but the

largest contributing factor is the number of bit errors present in a single packet. The two

and three segment packet structures shown in Figure 5 (Methodology) and Figure 6

(Methodology), encode each segment data in such a way as to be independently

decodable from the other segments in the packet. Each segment contains a

synchronization marker, and the data from neighboring segments never share space in a

single byte of data. However, it is important to keep in mind that portions of the data

from a single sample of the original ECG signal are spread over all the segments in a

packet. If one segment contains an error, then the sample that particular portion of

corrupted data belongs too will be corrupted.

50

The total number of bit errors that are present in a packet affects the decoder’s

ability to recover from errors the most. Figure 4.7 shows a two segment encoder that has

a single bit error in the packet. In this case the decoder begins at the beginning of

segment 1, and decodes until it reaches the location of the error. Each byte contains a

single parity bit, so the error can be traced to the specific byte that it occurs in, but not to

the exact bit. Once the decoder has reached the error, then it goes to the next packet,

takes the synchronization marker from the same segment number, and decodes the

segment with the error in the backwards direction. With this ability to recover data in

both directions, a single bit error will only result in a few samples being corrupted, rather

than having every sample from the bit error to the next resynchronization marker

corrupted.

Segment 1 Data Segment 2 Data

Forward Decode Reverse Decode (Using sync marker
from packet N+1)

Single Bit Error

Figure 4.7: Payload packaging configuration for 2-segment encoder with single bit error

51

The next consideration would be in the event that there were two errors in a single

packet. In this case the amount of data able to be recovered depends on the location of

the errors. Figure 4.8 shows the case where one error occurs in each segment of data in

the two segment encoder. This case is very similar to the single bit error case since each

segment is independently decodable. Each segment is decoded in the forward direction

up to the error, the resync markers are obtained from the next packet and the segments

are then decoded in the reverse direction until they again encounter the error. This again

allows the recovery of all but a small number of samples affected by the bit errors.

Segment 1 Data Segment 2 Data

Forward Decode Reverse Decode (Using sync marker
from packet N+1)

Single Bit Error

Figure 4.8: Payload packaging configuration for 2-segment encoder with two bit errors in separate

segments

The other option for the two bit error case is if both errors occur in the same

segment, as shown in Figure 4.9. This is the case that would cause the most data loss

since the decoder has no way to decode that data that lies between the two corrupted bits.

The decoder follows the same method to recover data, first from the forward direction,

and then from the reverse direction, but all the data between the errors is not able to be

recovered.

52

Segment 1 Data Segment 2 Data

Forward Decode Reverse Decode (Using sync marker
from packet N+1)

Bit Error Bit Error

Figure 4.9: Payload packaging configuration for 2-segment encoder with two bit errors in the same

segment

For the case where there are three or more bit errors in a single packet, the

analysis is the same, but with more errors you guarantee that the distance between the to

furthest apart errors in a single segment will be larger, resulting in a greater amount of

data being lost.

4.4 Estimation of Unrecoverable Corrupted Data
Samples

While the encoding algorithm presented in this paper allows for lossless encoding and

exact decoding of the original data this is only truly possible in a perfect environment

where there are no external influences on the encoded data. In the situation where the

signals are encoded, and then transmitted over some medium to another location, there is

the very real possibility of having errors injected into the packet data during transmission.

If the transmission is affected in such a way that causes the packet to never reach

its destination, there is no way the encoding/decoding algorithm can recover the data

from the lost packet. The best that could be done strictly from the decoder side would be

to have a method to estimate the lost data through either linear interpolation, or though

some method of estimating the data based on previous similar periodic signal data. The

transmission scheme could incorporate resend logic that would resend a packet that was

53

not successfully delivered, but this would depend on the transmission technology, and not

the encoder/decoder implementation presented here.

Since the signal packet structure, discussed in Section 4.2.6, has synchronization

markers in every packet, losing an entire packet would not affect the decoder’s ability to

recover the data from previous or following packets. If a packet is lost completely, the

decoder will identify and flag the samples which were not successfully recovered, but

will continue decoding the remaining packets normally.

The other case to consider is if a packet is not completely lost, but instead has

portions of its encoded data corrupted. The decoder will attempt to decode as much of

the data as possible, and will then perform a simple linear interpolation to estimate the

values of the unrecovered samples. Since DPCM is performed on the ECG signals and

the difference between the signal values is encoded rather than the signal values

themselves, it is very likely that a large amount of the upper bits will be all zeros since

the difference between successive samples is generally pretty small. This means that if

an error occurs in the upper bits, even though it may corrupt a number of samples, the

interpolator will look at the values before and after the error and will perform linear

interpolation to estimate the values of the corrupted samples. When the error occurs in

the upper ‘zero’ bits of the samples, the interpolator will often estimate the ‘zero’ value

correctly and will result in those samples being recovered exactly.

54

4.5 Identifying Accuracy of Estimated Data
Samples

In the discussion in sections 2.2 and 2.3 on previous work done in the area of lossy ECG

compression, the standard metric used to determine how close the compressed signal is to

the original is the percent root mean-square difference (PRD) between the two signals.

The PRD is defined as

%100
)]([

)](ˆ)([

1

2

1

2

L

i

L

i

iX

iXiX
PRD Equation (3)

where X and X̂ denote the original and reconstructed signals respectively, and L denotes

the total number of samples.

In 1990 the American Heart Association recommended a goal PRD of 5% for routine

visual readings of compressed and reconstructed ECG signals [47]. This gives us a

benchmark with which to compare our results.

55

Chapter 5

Results

5.0 Hardware Requirements for the Encoder
System Configurations

Though the achieved compression ratios of the individual encoder system configurations

are important in determining which system configuration is the optimal solution, the

hardware requirements of each configuration must also be taken into account. In some

cases it may be necessary to sacrifice a small amount of compression performance if it

meant that the hardware requirements would be significantly lower, or vice versa. The

hardware requirements for each system configuration was obtained both for the

implementation that had the ability to recalculate the code tables during compression, and

for the implementation that used a single code table to compress the entire signal.

The encoding system was targeted for implementation in the Xilinx Spartan-3e

(XC3S1200E) FPGA device [48]. This device contains 60 CLB rows by 46 CLB

columns, for a total of 2,168 CLB’s. Each CLB in this family of devices contains four

slices, and each slice contains two look-up tables to implement logic, and two dedicated

storage elements that can be used as flip-flops or latches. This equates to a total of

17,344 LUTs/Flip-Flops or 19,512 equivalent logic cells. The device contains 8,762 bits

of RAM16/SRL16, and 138,752 distributed RAM bits. Table 5.1 and Table 5.2 list the

hardware requirements for each segment configuration of the 12-bit encoders. Table 5.3

and Table 5.4 lists the hardware requirements for each segment configuration of the 16-

bit encoders.

56

Configuration Flip-Flops (%) Slice (%) LUT (%) Pwr (50 MHz) Pwr (1 MHz)
4-8 1425 8% 3113 35% 5426 31% 42.78 mW 23.82 mW
8-4 1426 8% 3171 36% 5503 31% 43.11 mW 23.99 mW
6-6 1409 8% 3720 37% 5774 33% 41.96 mW 23.57 mW

4-4-4 1664 9% 2791 32% 4809 27% 54.47 mW 29.19 mW
Table 5.1: Resource and power utilization for 12-bit ECG signal encoder configurations using

System A segment encoders

Configuration Flip-Flops (%) Slice (%) LUT (%) Pwr (50 MHz) Pwr (1 MHz)
4-8 582 3% 971 11% 1705 9% 18.17 mW 8.70 mW
8-4 583 3% 969 11% 1700 9% 19.31 mW 8.76 mW
6-6 578 3% 769 8% 1302 7% 17.47 mW 8.51 mW

4-4-4 715 4% 899 10% 1500 8% 19.01 mW 9.13 mW
Table 5.2: Resource and power utilization for 12-bit ECG signal encoder configurations using

System B segment encoders

Configuration Flip-Flops (%) Slice (%) LUT (%) Pwr (50 MHz) Pwr (1 MHz)
8-8 1662 9% 4169 48% 7295 42% 48.17 mW 26.18 mW

4-4-8 1922 11% 3929 45% 6813 39% 51.50 mW 29.70 mW
4-8-4 1922 11% 3930 45% 6815 39% 54.75 mW 30.49 mW
8-4-4 1922 11% 3925 45% 6807 39% 51.74 mW 29.69 mW
4-6-6 1904 10% 3970 45% 6935 39% 54.44 mW 30.41 mW
6-4-6 1901 10% 3973 45% 6933 39% 54.65 mW 30.77 mW
6-6-4 1898 10% 4050 46% 7083 40% 54.26 mW 30.63 mW

Table 5.3: Resource and power utilization for 16-bit ECG signal encoder configurations using
System A segment encoders

Configuration Flip-Flops (%) Slice (%) LUT (%) Pwr (50 MHz) Pwr (1 MHz)
8-8 614 3% 1011 11% 1720 9% 20.70 mW 8.76 mW

4-4-8 777 4% 1160 13% 1945 11% 24.69 mW 9.02 mW
4-8-4 777 4% 1159 13% 1945 11% 21.79 mW 9.03 mW
8-4-4 777 4% 1161 13% 1951 11% 20.62 mW 9.01 mW
4-6-6 766 4% 984 11% 1623 9% 20.00 mW 8.88 mW
6-4-6 768 4% 985 11% 1615 9% 19.74 mW 8.83 mW
6-6-4 770 4% 984 11% 1615 9% 19.09 mW 8.84 mW

Table 5.4: Resource and power utilization for 16-bit ECG signal encoder configurations using
System B segment encoders

The systems that used code table recalculations obviously required significantly

higher hardware resources since there was considerably more logic involved to generate

the histograms, perform the sorting of the histograms, and to perform the Huffman and

RVLC encoding. On the other hand, among all the hardware configurations that

57

implemented RVLC table recalculations, there was no significant variation in the

required hardware resources.

 The systems that did not perform RVLC code table recalculations required

significantly fewer hardware resources. Furthermore, we did not find significant

variations among different configurations. This indicates that the size of the hardware

should not be the deciding factor in choosing what configuration to use. Instead, the

choice can be made simply by determining what configuration provides the best

compression performance.

5.1 Results for System A and System B Encoding
Configurations

Compression of each of the sixteen signals selected for the 12 and 16-bit ECG

representations was performed and the results analyzed to determine which encoding

configuration provided the best results, and whether having periodic code table

recalculations was beneficial for these types of signals. Each of the ECG signals was pre-

processed and code tables for each signal and system configuration combination were

generated based on the first 10,000 samples (~10 minutes). When each signal was

encoded in each of the individual segment configurations, the pre-processed code tables

generated from that signal for that configuration was loaded into the memory for the

encoder to use until the system could recalculate the code tables on its own. Here, we

report results first from use of the optimum code tables (the code tables generated from

the signal being compressed), and then from the use of any set of code tables (from the

12-bit signals) to encode any of the 12-bit signals and the same for the 16-bit signals.

58

5.1.1 Encoding of 12-Bit ECG Signals with Optimal
RVLC Code Tables

Figure 5.1 shows a comparison of the compression ratios for each of the 12-bit ECG

signals when compressed using each of the different encoding segment configurations.

Figure 5.1: Compression ratio results for 12-bit encoding with optimal Huffman codes. For each

encoding configuration, a boxplot is used to summarize the variation. Here, each box indicates the
25th percentile, the median, and the 75th percentile. The whiskers extend to the extreme values.
Based on the combination of independent encoders, we have four possibilities. For example 4-8
implies the use of a 4-bit encoder for the most significant bits and an 8-bit encoder for the least-

significant bits.

When using optimal RVLC code tables computed for each ECG signal, the 6-6

encoder configuration provided the best overall compression results. To see if there are

significant differences when using the same RVLC table to encode the entire signal, we

present results for the 6-6 encoder configurations in Figure 5.2. From Figure 5.2, it is

clear that there is no significant gain from re-calculating optimal RVLC tables for each

59

ECG signal. Instead, it makes sense to compute optimal RVLC tables once, and then use

the same optimal code tables for all other ECG signals.

Figure 5.2: Compression ratios of 12-bit signals both with (System A) and without (System B) RVLC

code table recalculations.

5.1.2 Encoding of 12-Bit ECG Signals without Code
Table Recalculations

From Figure 5.2, we saw that when the signals were encoded using their own pre-

calculated code tables and had no code table recalculations that the performance was

almost identical to when code table recalculations were used. However, what if we didn’t

want to have to calculate a specific code table for each individual signal? It may be

possible that from a subset of similar signals, a universal code table could be generated

that would provide close to the same compression results. To investigate this possibility,

60

we will take each signal and compress it 16 times using its own code table, and the code

tables from each of the other 12-bit signals.

The results from encoding each of the 16 signals with code tables from each of

the 16 signals are displayed in Figure 5.3. The line in the center of the box indicates

where the 50th percentile, and the top and bottom of each box indicate where the 75th and

25th percentile is respectively. Significant outliers are shown in the red plus sign. For

additional reference, the black diamonds show the compression ratio for each signal

when its own code table was used.

Figure 5.3: Range of compression ratios for 6-6 segment encoding configuration when code tables

from each of the other 12-bit signals are used, compared against CR’s when the optimal code tables
were used (black diamonds)

61

 When we inspect the results shown in Figure 5.3, we see that while each signal

generally achieves close to its best compression performance is when its own code table

is used. However, the results from when other code tables are used are only fractionally

less, with a very small standard deviation. This indicates that the code table from any

other similar signal may be used to encode a particular signal without the fear of having

the overall compression results suffer significantly. Or, if given a subset of similar

signals, a single code table could be calculated from this set of signals that would achieve

very satisfactory results on the entire set of signals.

5.1.3 Encoding of 16-Bit ECG Signals with Code Table
Recalculations

Similar to the 12-bit case, compression of each of the sixteen signals selected for the 16

bit ECG signals was encoded with periodic code table recalculations and a comparison of

the results are displayed in Figure 5.4.

62

Figure 5.4: Compression ratio results for 16-bit encoding with optimal Huffman codes. For each

encoding configuration, a boxplot is used to summarize the variation. Here, each box indicates the
25th percentile, the median, and the 75th percentile. The whiskers extend to the extreme values.
Based on the combination of independent encoders, we have four possibilities. For example 8-4-4

implies the use of a 8-bit encoder for the most significant eight bits and an two 4-bit encoders for the
least-significant eight bits.

As seen from Figure 5.4, for the 16 bit ECG signals, the compression system

configured in the 8-8 bit segment configuration provided the best average compression

results. But once again this does not tell us what value, if any, performing periodic code

table recalculations provides. In order to determine if the code table recalculations

provide any value, the same set of 16-Bit signals will again be compressed without

including the hardware to recalculate the codes. This will allow for a comparison of the

compression results and hardware usage of both versions of the encoding system to

determine which one provides the best combination of compression results and hardware

usage.

63

Figure 5.5 shows the compression ratios of each of the 16-bit signals encoded

twice using the 8-8 segment configuration. The first set of results was plotted with the

signals having their pre-calculated code tables pre-loaded in memory, and then their code

tables recalculated every 10,000 samples (~39 seconds apart). Secondly, the same set of

signals was again encoded using their pre-calculated code tables, but this time the single,

pre-loaded, set of code tables was used to encode the entire signal. Looking at these

results shows that there was virtually no benefit to recalculating the code tables. Only

signals had a noticeably higher compression ratio when the code tables were recalculated,

and a couple actually achieved better compression results with no code table

recalculation. Overall, the difference between the two sets of results is not significant

enough to warrant including the extra hardware required to perform the code table

recalculations.

64

Figure 5.5: Compression ratios of 16-bit signals both with (System A) and without (System B) RVLC

code table recalculations.

5.1.4 Encoding of 16-Bit ECG Signals without Code
Table Recalculations

From Figure 5.5, we saw that when the signals were encoded using their own pre-

calculated code tables with no code table recalculations that the performance was almost

identical to when code table recalculations were used. Similar to the 12-bit case, it would

be useful to determine if a single code table could be generated from a subset of similar

signals, and be used on a larger set of signals while still achieving close to the same

compression results. To investigate this possibility, we will take each signal and

compress it 16 times using its own code table, and the code tables from each of the other

16-bit signals.

65

The results from encoding each of the 16 signals using code tables from each of

the 16 signals are displayed in Figure 5.6. The line in the center of the box indicates

where the 50th percentile, and the top and bottom of each box indicate where the 75th and

25th percentile is respectively. Significant outliers are shown in the red plus sign. For

additional reference, the black diamonds show the compression ratio for each signal

when its own code table was used.

Figure 5.6: Range of compression ratios for 88 segment encoding configuration when code tables

from each of the other 16-bit signals are used, compared against CR’s when the optimal code tables
were used (black diamonds)

When we inspect the results shown in Figure 5.6, we see that while each signal

generally achieves close to its best compression performance is when its own code table

is used. However, the results from when other code tables are used are normally only

fractionally less, with a very small standard deviation. This indicates that the code table

66

from any other similar signal may be used to encode a particular signal without the fear

of having the overall compression results suffer significantly. Or, if given a subset of

similar signals, a single code table could be calculated from this set of signals that would

achieve very satisfactory results on the entire set of signals.

5.2 Evaluation of Error Recovery Capabilities of
ECG Signal Decoder

In order to evaluate the performance of the decoder when one or more bit errors are

present in a packet, we performed a series of simulations where the decoder decoded the

signals with different amounts of errors injected into the encoded packets. In section 4.3 a

discussion was provided on how the sample loss rate would be affected by different

amounts of bit errors. In this evaluation we will consider packet corruption rates of 1%,

5%, and 10%. For each packet corruption rate we will first insert single bit errors, and

then insert two bit errors per corrupted packet and compare the difference in the number

of unrecovered samples. While the number of unrecovered samples is an important

metric, we will also be looking at the PRD values of the estimated samples to see how

close the estimation was to the original sample values. This will allow us to evaluate not

only how many samples were unrecovered, but also what the likelihood is that the

estimated samples will fall within an acceptable range that will still allow for accurate

diagnosis of the ECG signal.

67

5.2.1 Decoding Analysis of 12-Bit ECG Signals with
Injected Errors

Each encoded 12-Bit signal was injected with errors and then run through the decoder,

and the total amount of unrecovered samples was recorded. This was done 15 times per

signal for each of the different packet corruption rates. The first two plots in Figure 5.7

show the results for both one and two bit errors per corrupted packet. The third plot

shows the single bit case again, but this time the decoder performed only frontwards

decoding, but did not perform backwards decoding. This means that the decoder

recovered data up to where the error occurred, but could not recover any data from the

packet after the error occurred since the reverse decoding was disabled. This shows the

improvement in the amount of recovered data that is attributed to being able to decode

the packet from both directions.

68

(a) (b) (c)

Figure 5.7: Average number of unrecovered samples at different error rates for 12-bit signals. (a)
Results with 1 bit error per corrupted packet. (b) Results with 2 bit errors per corrupted packet. (c)

Results with 1 bit error per corrupted packet and only decoded in the frontward direction.

For the case where a single bit error was injected into each

corrupted packet, the average number of samples exactly decoded samples
from the entire signal was above 99% for each packet error percentage.
For the case where two bit errors were injected into each corrupted packet,
the amount of exactly decoded samples was 96% or higher for all selected
packet corruption rates.(a) (b) (c)

Figure 5.8 shows a series of boxplots of the PRDs of the error injected signals

after they have been restored, with any unrecoverable samples being estimated using

linear interpolation. This shows that for the given cases, the average PRD remained

below 5% while the percentage of corrupted packets was 10% or below.

69

(a) (b) (c)

Figure 5.8: Average PRD of restored 12-bit signals with errors introduced. (a) PRD results with 1 bit
error per corrupted packet. (b) PRD results with 2 bit errors per corrupted packet. (c) PRD results

with 1 bit error per corrupted packet and only decoded in the frontward direction.

5.2.2 Decoding Analysis of 16-Bit ECG Signals with
Injected Errors

Each encoded 16-Bit signal was injected with errors and then run through the decoder,

and the total amount of unrecovered samples was recorded. This was done 15 times per

signal for each of the different packet corruption rates. The first two plots in Figure 5.9

show the results for both one and two bit errors per corrupted packet. The third plot

shows the single bit case again, but this time the decoder performed only frontwards

decoding, but did not perform backwards decoding. This shows the improvement in the

amount of recovered data that is attributed to being able to decode the packet from both

directions.

70

(a) (b) (c)

Figure 5.9: Average number of unrecovered samples at different error rates for 16-bit signals. (a)
Results with 1 bit error per corrupted packet. (b) Results with 2 bit errors per corrupted packet. (c)

Results with 1 bit error per corrupted packet and only decoded in the frontward direction.

Again we calculate the percentage of the signal that is exactly recovered to give a

different view of our results. For the case where a single bit error was injected into each

corrupted packet, the average number of samples exactly decoded from the entire signal

was above 99% for each packet error percentage. For the case where two bit errors were

injected into each corrupted packet, the amount of exactly decoded samples from the

entire signal was above 97% or higher for all packet corruptions rates.

Figure 5.10 shows a series of boxplots of the PRDs of the error injected signals

after they have been restored, with any unrecoverable samples being estimated using

71

linear interpolation. This shows that for the given cases, the average PRD remained

below 5% while the percentage of corrupted packets was below 10% or lower.

(a) (b) (c)

Figure 5.10: Average PRD of restored 16-bit signals with errors introduced. (a) PRD results with 1
bit error per corrupted packet. (b) PRD results with 2 bit errors per corrupted packet. (c) PRD

results with 1 bit error per corrupted packet and only decoded in the frontward direction.

72

Conclusions

In this thesis, the objective of designing and implementing a low-energy, error resilient,

scalable, lossless ECG encoder was attained. Two systems (System A and System B)

were investigated with the first having the ability to recalculate the code tables at various

points during the encoding of the ECG signal, and the second using a pre-defined set of

code tables to encode the entire signal. The results from both systems showed that the

system that used a single set of code tables for the entire signal (System B), and therefore

required significantly less resources, performed as well as System A.

 In addition, corruption of the data packets during transmission was simulated and

the ability of the decoder to recover as much data as possible was tested. The samples

that were not able to be exactly recovered were estimated using linear interpolation to

provide values as close to the originals as possible. For single bit errors the average

number of unrecovered samples per corrupted packet was less than three samples, and the

average PRD was within a few percentage points of the 5% PRD recommended for

recovery of an entire signal when the packet corruption rates were 10% or less. This held

true for both the single and double bit error cases. Overall, when a single bit error was

injected per corrupted packet, the decoder was able to exactly recover over 99% of the

samples at any packet corruption rate, and for the case where two bit errors were injected

into each corrupted packet the recovery rate of the samples from the entire signal was

above 96% for both the 12 and 16-bit representations..

 Both versions of the ECG encoding system were implemented in VHDL and

targeted towards the Xilinx Spartan-3e (XC3S1200E) FPGA device. The implementation

73

of the encoding systems in this technology is easily transferrable to future generations of

FPGAs.

74

Future Work

 Investigate more advanced methods of interpolating the corrupted samples to

further improve signal reconstruction

 Investigate scrambling the encoded data prior to transmission in order to

minimize the effect of burst errors

 Port design to a VLSI hardware platform to further reduce power requirements,

and integrate with existing portable telemedicine systems, especially wearable

ECG monitoring systems for detecting abnormal heart beats

 Explore implementation into other similar non-ECG systems

75

References
[1] E. Kyriacou, et. al., "Integrated platform for continuous monitoring of children with

suspected cardiac arrhythmias," 9th International Conference on Information

Technology and Applications in Biomedicine, pp.1-4, 5-7 Nov. 2009.

[2] K. M. Chang and S. H. Liu; "Portable sleep monitoring by ECG and accelerator and

Bluetooth transmission," 2nd International Conference on Biomedical Engineering
and Informatics., pp.1-4, Oct. 2009.

[3] J. Dong, S. Zhang, and X. Jia, "A portable intelligent ECG monitor based on wireless
internet and embedded system technology," International Conference on Biomedical
Engineering and Informatics, vol.2, pp. 553-556, May 2008.

[4] D. Lucani, G. Cataldo, J. Cruz, G. Villegas, and S. Wong, "A portable ECG
monitoring device with Bluetooth and Holter capabilities for telemedicine
applications," 28th IEEE Annual International Conference on Engineering in
Medicine and Biology Society, pp. 5244-5247, Aug.-Sept. 2006.

[5] “The McGill Physiology Virtual Lab - Cardiovascular Laboratory: Electrocardiogram:
Introduction,” http://www.medicine.mcgill.ca/physio/vlab/cardio/introECG.htm,
accessed May 2011.

[6] A. L. Goldberger, et. al., “PhysioBank, PhysioToolkit, and PhysioNet: components of
a new research resource for complex physiologic signals,” Circulation, vol. 100, no.
23, pp. e215-e220 [Circulation Electronic Pages;
http://circ.ahajournals.org/cgi/content/full/101/23/e215], June 13 2000.

[7] S. M. S. Jalaleddine, C. G. Hutchens, R. D. Strattan, and W. A. Coberly, “ECG data
compression techniques-a unified approach,” IEEE Transactions on Biomedical
Engineering, vol. 37, no. 4, pp. 329-343, April 1990.

[8] M. Blanco-Velasco, F. Cruz-Roldan, F. Lopez-Ferreras, A. Bravo-Santos, and D.
Martinez-Munoz, “A low computational complexity algorithm for ECG signal
compression,” Medical Engineering and Physics, vol. 26, no. 7, pp. 553-568, Sep.
2004.

[9] E. Alexandre, A. Pena, and M. Sobreira, “On the use of 2-D coding techniques for
ECG signals,” IEEE Transactions on Biomedical Engineering, vol. 10, no. 4, pp. 809-
811, Oct. 2006.

[10] B. Huang, Y. Wang, and J. Chen, “2-D compression of ECG signals using ROI mask
and conditional entropy coding,” IEEE Transactions on Biomedical Engineering,
vol. 56, no. 4, pp. 1261-1263, Apr. 2009.

76

[11] S.C. Tai, C. C. Sun, and W. C. Yan, “A 2-D ECG compression method based on
wavelet transform and modified SPIHT,” IEEE Transactions on Biomedical
Engineering, vol. 52, no. 6, pp. 999-1008, June 2005.

[12] E. B. de Lima Filho, N. M. M. Rodrigues, E. A. B. Silva, S. M. M. de Faria, V. M.
M. da Silva, and M. B. de Carvalho., “ECG signal compression based on Dc
equalization and complexity sorting,” IEEE Transactions on Biomedical
Engineering, vol. 55, no. 7, pp. 1923-1926, July 2008.

[13] H. H. Chou, Y. J. Chen, Y. C. Shiau, and T. S. Kuo. “An effective compression
algorithm for ECG signals with irregular periods,” IEEE Transactions on
Biomedical Engineering, vol. 53, no. 6, pp. 1198-1205, June 2006.

 [14] C. T. Ku, K. C. Hung, T. C. Wu, and H. S. Wang, “Wavelet-based ECG data
compression system with linear quality control scheme,” IEEE Transactions on
Biomedical Engineering, vol. 57, no. 6, pp.1399-1409, June 2010.

[15] M. Blanco-Velasco, F. Cruz-Roldan, J. I. Godine-Llorente, and K. E. Barner, “ECG
compression with retrieved quality guaranteed,” Electronics Letters, vol. 42, no. 23,
pp. 1466-1467, Nov. 2004.

[16] S. G. Miaou and C. L. Lin, “A quality-on-demand algorithm for wavelet-based
compression of electrocardiogram signals,” IEEE Transactions on Biomedical
Engineering, vol. 49, no. 3, pp. 233-239, March 2002.

[17] S. G. Miaou and S. N. Chao, “Wavelet-based lossy-to-lossless ECG compression in
a unified vector quantization framework,” IEEE Transactions on Biomedical
Engineering, vol. 52, no. 3, pp. 539-543, Jan. 2005.

[18] A. Alesanco, and J. Garcia, “Automatic real-time ECG coding methodology
guaranteeing signal interpretation quality,” IEEE Transactions on Biomedical
Engineering, vol. 55, no. 11, pp. 2519-2527, Nov. 2008.

[19] L. Brechet, “Compression of biomedical signals with mother wavelet optimization
and best-basis wavelet packet selection,” IEEE Transactions on Biomedical
Engineering, vol. 54, no. 12, pp. 2186-2192, Dec. 2007.

[20] S. G. Miaou, H. L. Yen, and C. L. Lin, “Wavelet-based ECG compression using
dynamic vector quantization with tree codevectors in a single codebook,” IEEE
Transactions on Biomedical Engineering, vol. 49, no. 7, pp. 671-680, July 2002.

[21] B. S. Kim, S. K. Yoo, and M. H. Lee, “Wavelet-based low delay ECG compression
algorithm for continuous ECG transmission,” IEEE Transactions on Information
Technology in Biomedicine, vol. 10, no. 1, pp. 77-83, Jan. 2006.

[22] A. Alesanco, S. Olmos, R. S. H Istepanian, and J. Garcia, “Enhanced real-time ECG
coder for packetized telecardiology applications,” IEEE Transactions on
Information Technology in Biomedicine, vol. 10, no. 2, pp. 229-236, April 2006.

77

[23] A. Bendifallah, R. Benzid, and M. Boulemden, “Improved ECG compression
method using discrete cosine transform, “ Electronics Letters, vol. 47, no. 2, pp. 87-
89, Jan. 2011.

[24] R. Nygaard, G. Melnikov, and A. K. Katsaggelos, “A rate distortion optimal ECG
coding algorithm,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 1,
pp. 28-40, Jan. 2001.

[25 H. Kim, R. F. Yazicioglu, P. Merken, C. Van Hoof and H. J. Yoo, “ECG signal
compression and classification algorithm with quad level vector for ECG Holter
system,” IEEE Transactions on Information Technology in Biomedicine, vol. 14,
no. 1, pp. 93-100, Jan. 2010.

[26] E. B. L. Filho, N. M. M. Rodrigues, E. A. B. da Silva, M. B. de Carvalho, S. M. M.
de Faria, and V. M. M. da Silva, “On ECG signal compression with 1-D multiscale
recurrent patterns allied to preprocessing techniques,” IEEE Transactions on
Biomedical Engineering, vol. 56, no. 3, pp. 896-900, March 2009.

[27] O. Sayadi and M. B. Shamsollahi, “ECG denoising and compression using a
modified extended Kalman filter structure,” IEEE Transactions on Biomedical
Engineering, vol. 55, no. 9, pp. 2240-2248, April 2008.

[28] C. M. Fira and L. Goras, “An ECG signals compression method and its validation
using NN’s,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 4, pp.
1319-1326, April 2008.

[29] C. C. Sun and S. C. Tai, “Beat-based ECG compression using gain-shape vector
quantization,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 11, pp.
1882-1888, Nov. 2005.

[30] S. G. Miaou and H. L. Lin, “Multichannel ECG compression using multichannel
adaptive vector quantization,” IEEE Transactions on Biomedical Engineering, vol.
48, no. 10, pp. 1203-1207, Oct. 2001.

[31] E. B. de Lima Filho, E. A. B. da Silva, M. B. de Carvalho, W. S. da Silva Junior, and
J. Koiller, “Electrocardiographis signal compression using multiscale recurrent
patterns,” IEEE Trans. On Circuits and Systems I: Regular Papers, vol. 52, no. 12,
pp. 2739-2753, Dec. 2005.

[32] A. Chatterjee, A. Nait-Ali, and P. Siarry, “An input-delay neural-network-based
approach for piecewise ECG signal compression," IEEE Transactions on
Biomedical Engineering, vol.52, no.5, pp. 945-947, May 2005.

[33] J. J. Wei, C. J. Chang, N. K. Chou, and G. J. Jan, “ECG data compression using
truncated singular value decomposition,” IEEE Transactions on Information
Technology in Biomedicine, vol. 5, no. 4, pp. 290-299, Dec. 2001.

78

[34] E. Chua, C. C. Fu, and W. C. Fang, “VLSI implementation of a mixed bio-signal
lossless data compressor for portable brain-heart monitoring systems,” IEEE
International Conference on Consumer Electronics, pp. 557-558, Jan. 2011.

[35] Y. Kamamoto, et. al., “An efficient lossless compression of multichannel time-series
signals by MPEG-4 ALS,” IEEE International Symposium on Consumer
Electronics, pp. 159-163, May 2009.

[36] Q. Zhou, “Study on ECG data lossless compression algorithm based on K-means
cluster,” International Conference on Future Computer and Communication, pp.
91-93, June 2009.

[37] Z. Arnavut, “ECG signal compression based on Burrows-Wheeler transformation
and inversion ranks of linear prediction,” IEEE Transactions on Biomedical
Engineering, vol. 54, no. 3, pp. 410-418, March 2007.

[38] A. Ottley and R. Boltan, “Hardware-assisted lossless ECG coder,” Canadian
Conference on Electrical and Computer Engineering, pp. 362-365, May 2005.

[39] C. D. Giurcâneanu, I. Tabus, and S. Mereuta, “Using contexts and R-R interval
estimation in lossless ECG compression,” Computer Methods and Programs in
Biomedicine, vol. 67, no. 3, pp. 177–186, Mar. 2002.

[40] K, Duda, P. Turcza, and T. P. Zieliński, “Lossless ECG compression with lifting
wavelet transform,” Proc. IEEE Instrumentation and Measurement Technology
Congress., vol. 1 pp. 640-644, May 2001.

[41] Z. Arnavut, “Lossless and near-lossless compression of ECG signals,” 23rd Annual
Conference of the IEEE Enginering in Medicine and Biology Society, vol. 3, pp.
2146-2149, Oct. 2001.

[42] A. Koski, “Lossless ECG encoding,” Compuer. Methods and Programs in
Biomedicine, vol. 52, no. 1, pp. 23–33, Jan. 1997.

 [43] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” in
Proceedings of the Institute of Radio Engineers., vol. 40, no. 9, 1952, pp.1098-
1101.

[44] Y. Takishima, M. Wada, and H. Murakami, “Reversible variable length codes,”
IEEE Transactions on communications, vol. 43, no. 2/3/4, pp. 158-162, April 1995.

[45] C. W. Tsai and J. L. Wu, “On constructing the Huffman-code-based reversible
variable-length codes,” IEEE Transactions on Communications, vol. 49, no. 9, Sept.
2001

[46] W. H. Jeong, Y. S. Yoon, and Y. S. Ho, “Design of reversible variable length codes
using properties of the Huffman code and average length function," 2004
International Conference on Image Processing, Oct. 2004, pp. 817-820.

79

 [47] J. J. Bailey, et. al., “Recommendations for standardization and specifications in
automated electrocardiography—bandwidth and digital signal processing,”
Circulation, vol. 81, pp. 730–739, Feb. 1990.

[48] Xilinx. (2009, Aug.) www.Xilinx.com. [Online]. HYPERLINK
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf

[49] Y. Takishima, M. Wada and H. Murakami, “Reversible variable length codes,” IEEE
Transactions on Communications, vol. 43, no. 2/3/4, pp. 158-162, April 1995.

	University of New Mexico
	UNM Digital Repository
	8-30-2011

	A real-time, reconfigurable system for energy, error-resilient, and scalable lossless ECG coding
	Paul Essenmacher
	Recommended Citation

	Microsoft Word - Thesis_Final_May_31

