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ABSTRACT 

Electrocardiogram (ECG) monitoring systems have evolved to the point where they are 

now portable and can monitor the patient 24/7 and transmit alerts and ECG data to 

parents and doctors as soon as a heart irregularity is detected.  With the advances in these 

systems, there is a need for the incorporation of ECG coding systems to reduce the 

bandwidth used when data is transmitted and to incorporate methods to provide data 

recovery in the event of a transmission error.  However, while ECG encoding systems for 

hospital or home care settings has been thoroughly researched, the application of ECG 

encoding systems to portable ECG monitoring systems where there is a much higher 

likelihood of noise interference during transmission of the data has not been fully 

investigated.  

The goal of this work is to develop a real-time ECG encoding system that requires 

low hardware and power usage, provides lossless signal compression, and provides 

recovery of as much data as possible in the event of data corruption of packets during 

transmission.  An entropy based compression algorithm is developed based on the 
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Huffman code which is then transformed to reversible variable length codes.  This allows 

the data packets to be both frontward and backwards decodable allowing for greater data 

recovery in the event that portions of a packet are corrupted.  The implementation is 

designed to be able to encode any sized bit width by utilizing a combination of 4, 6, or 8-

bit entropy coders. 

Two separate encoding systems are investigated using the before mentioned 

encoding algorithm.  The first system recomputes the Reversible Variable Length Code 

(RVLC) tables periodically while the signal is being encoded in an effort to adapt to any 

changes in the signal. The second system uses a pre-calculated RVLC table that 

minimizes the delay and also significantly reduces the required hardware resources. We 

provide optimal, reconfigurable implementations for both systems. Furthermore, the 

effectiveness and error-resilient performance of both systems are validated on 12-bit and 

16-bit ECG signals.  The performance of the system is shown to be diagnostically 

lossless in noisy communications channels with significant bit errors.  This represents a 

significant improvement over existing systems that do not employ the proposed error 

resilient encoding methods.  
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Chapter 1  

Introduction 

1.0 Overview 

Cardiac related health problems can occur at any age. The elderly and middle-aged alike 

can experience debilitating or fatal heart attacks; even young children are often the 

victims of heart related problems such as cardiac arrhythmias, which if not detected and 

treated in time can lead to tragic deaths.  Especially troubling are the cases where a child 

will experience an arrhythmia, but by the time the child is taken to a doctor the symptoms 

have subsided and the doctor has no way of diagnosing the problem and getting the child 

the care that is needed.  It is not feasible to keep a child under constant monitoring in a 

medical facility for days or weeks, but if the child never experiences an arrhythmia while 

being monitored then a correct diagnosis of the problem often cannot be made.  Often a 

child will experience multiple arrhythmias that are days or weeks apart, until finally a 

severe enough arrhythmia proves fatal. 

In recent years this problem has spurred the development of mobile ECG 

monitoring systems which can be carried by the patient to provide monitoring outside of 

a medical facility.   One of the first such systems is the Holter monitor which can provide 

constant recording of ECG data, but is limited to 24 or 48 hours of recording.  As 

technology advances, communications and computer system capabilities have become 

more efficient, smaller, and come at lower costs.  A recent system that has taken 

advantage of these advanced capabilities is presented in [1]. It is designed to provide 
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constant ECG monitoring with automatic analysis of the ECG data either continuously, or 

at frequent intervals.  Based on this analysis the monitoring system will transmit data to a 

doctor when a cardiac irregularity occurs. Other similar monitoring systems are presented 

in [2], [3], [4]. 

Analysis of the ECG data is vital to these monitoring systems as they must be able 

to determine whether the signal is normal, and what should be transmitted for analysis by 

a trained cardiologist.  Figure 1.1 shows a single ECG beat broken down into the 

segments that are evaluated during analysis of the signal.  Any abnormalities seen in the 

shape of the waves, the value of the voltage, or incorrect lengths in the time domain of 

the individual waves indicate that a cardiac irregularity may have occurred and that the 

data surrounding this event should be saved for further analysis.    

 
Figure 1.1: Single beat of an ECG signal showing critical points, intervals and segments [5] 
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One of the big components of the recent ECG monitoring systems is the ability to 

transmit the relevant ECG data over wireless channels thereby reducing or eliminating 

the need to store data in the monitoring system itself.  This however introduces the 

possibility of data corruption or loss during transmission.  Since the data being 

transmitted is likely to contain information vital to diagnosing and treating a cardiac 

irregularity, it is important to reduce the possibility of data loss as much as possible.  

Since monitoring systems are increasingly using wireless transmission features to stream 

the data they are collecting to a static location, incorporating ECG compression 

architecture with the monitoring system would allow for the data to be transmitted in a 

more efficient manner, and would also allow for the possibility of incorporating features 

such as identification and recovery from transmission errors. 

In this thesis a low energy, error resilient, scalable, lossless ECG compression 

architecture is presented.  The compression architecture is tested against selected signals 

from the PhysioBank Physiologic Signal Archives [6] which is the standard ECG 

database used to test compression systems that are targeting ECG signals.  

1.1 Innovations and Contributions 

A summary of the primary innovations and contributions includes: 

 Signal-bitwidth scalable compression  

o Effectively demonstrated for 12 and 16 bit lossless ECG compressing by 

segmenting signal samples into smaller segments, and then recombining 

after decoding. 
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 Optimal implementations running in real-time, requiring a low amount of 

hardware resources, and low power usage 

 Error-resilient hardware encoding and software decoding: 

o Optimal reversible variable length coding (RVLC) with minimal 

additional overhead (~7%, [49], [46]) 

o Frontward and backward decoding 

o Sync markers at the packet level 

 Allowing correct diagnosis of signals within certain levels of data corruption: 

o Interpolation of corrupted or lost data samples through new methods 
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Chapter 2  

Related Work 

2.0 Common Compression Techniques 

Techniques for compressing ECG data can be broken down into three main types: direct 

and transform methods [7], and a wide range of other methods that require the signal to 

be pre-processed before encoding in order to extract certain information [8].  Direct 

methods perform compression on the signal in the time domain and include Huffman, 

arithmetic, Golomb, and differential pulse code modulation, techniques among others.  

Transform methods, on the other hand, transform the data to another domain and then 

compress the signal.  The Fourier, wavelet, discrete cosine (DCT), Karhunen-Loeve 

(KL), Burrows-Wheeler, and Walsh are the main transforms used in ECG compression.  

The other methods in the third compression type that would not fall under the direct or 

transform methods generally have the characteristic that the signal must be pre-processed 

in order to extract important information.  Information that would be extracted includes 

parameter extractions such as heart-beat averaging, long-term prediction, vector 

quantization, and subband decomposition (except for those based on transform methods) 

where spectral information is split into individual signals that can be individually 

encoded using a desired technique [8]. 

2.1 Lossy 2-D Compression Methods 

One of the more recent trends in ECG compression has been to utilize lossy 2-D 

compression methods where the ECG signal is cut and aligned in 2-D “image” data 
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arrays, taking advantage of the fact that ECG signals show redundancy between 

successive beats and samples.  An argument for 2-D compression methods to take 

advantage of the correlation in ECG signals is discussed in [9].  Using this 2-D array 

configuration allows the use of various algorithms that are particularly adept at exploiting 

correlation in 2-D array data.  Several researchers utilize wavelet transform based 

methods, including 1-D and 2-D wavelet transforms in [10] and [11].  Filho et. al. 

presents a method incorporating DC equalization and complexity sorting in [12].  Chou 

et. al. converts 1-D ECG signals to 2-D representations, and then utilizes the image 

compression scheme JPEG2000 to encode the 2-D representation [13].   

2.2 Lossy Transform Compression Methods 

Over the past decade or so, lossy transform methods, especially the wavelet transform, 

have been the focus of a lot of research in the area of ECG signal compression [14-23].  

Among these wavelet schemes are methods to provide quality on demand to meet a 

specified percent root-mean-square difference (PRD) [14],[15],[16], a wavelet based 

vector quantization approach [17], tree based quantization and encoding methods 

[18],[19],[20], a low delay compression scheme [21], and a scheme focusing on real time 

packetized cardiology [22].  A discrete cosine transform scheme is also presented in [23].   

2.3 Lossy Non-Transform Compression Methods 

Researchers have also explored a wide range of non-transform based methods for 

encoding ECG signals over the past decade as well [24-33].  Among these are a rate 

distortion optimal algorithm [24], a classification algorithm with quad level vector (QLV) 

[25], multiscale pattern matching [26], various filter structures [27],[28],[8], gain shape 
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[29] and adaptive [30] vector quantization, a high complexity multidimensional 

multiscale parser algorithm [31], an input delay neural network compression scheme 

[32], and a truncated singular value decomposition algorithm [33].    

2.4 Lossless Compression Methods 

Much of the work done on ECG compression techniques has focused on lossy 

compression since it yields compression results that are significantly better than by 

lossless methods.  Most of the better lossy compression techniques result in compression 

ratios between 10:1 and 12:1, with some of the more recent implementations achieving 

average results up into the 18:1 to 20:1 range.  However, this performance comes at a 

price as lossy compression schemes may lose critical information from the ECG signal. 

This can result in a loss of diagnostic ability since the lost information may pertain to 

critical features of the signal that could hinder an accurate diagnosis.  Lossless 

compression of ECG signals is needed when comprehensive diagnostic ability is desired; 

however, very little work has been published in this area compared to the large amount of 

published work on lossy ECG compression.    

Two of the most recently published works on lossless compression for ECG 

signals are multi-channel implementations, [34], [35].  A VLSI implementation using 

DPCM prediction, adaptive k-parameter estimation and Golomb-Rice entropy encoding 

and is implemented in 65 nm CMOS is presented in [34].  This implementation also has 

the ability to handle multiple input sample bit sizes. In [35], the MPEG-4 audio coding 

algorithm is implemented in software with the ability to handle only a single size of 

sample inputs. The implementations given in [36-41] are all single channel lossless 
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encoding algorithms.  In [36] the author presents an algorithm based on K-means cluster 

based on the similarity measurement between samples.  Inversion ranks of linear 

prediction and the Burrows-Wheeler transform are used in [37].  Several methods 

[38][39] use the entropy based Golomb-Rice encoding as the basis for their 

implementations; with [38] incorporating linear decorrelation from analysis of a block of 

samples, and [39] incorporating R-R interval estimation.  [38] did incorporate error 

resiliency, but only at the block level.  Two implementations based on the wavelet 

transform are presented in [17], which was initially a lossy scheme but can become 

lossless with the correct parameters being set, and [40] which is based on the lifting 

wavelet transform.  Finally a linear block transform is used in [41].  A comparison of the 

lossless schemes is presented below in Table 2.1. 
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Author Year Ref. Technique 

Multi- 
Channel 

Max 
CR 

Avg. 
CR 

Scala-
bility 

Error 
Resiliency 

Hardware 
Imp. 

Chua 2011 [34] 

DPCM prediction with 
adaptive k-parameter 

estimation, and 
Golomb-Rice entropy 

encoding 

Yes - 2.50 Yes No 
VLSI 

Implementati
on 

Kamamoto 2009 [35] 

Enhanced codec 
software of the 
MPEG-4 Audio 
Lossless Coding 

international standard 
for compressing 

multichannel time-series 
signals 

Yes - 3.0 No No No 

Zhou 2009 [36] 
Lossless compression 
algorithm based on K-

means cluster 
No 3.90 3.20 No No No 

Arnavut 2007 [37] 

Algorithm based on 
Burrows-Wheeler 

transform and inversion 
ranks of linear 

prediction 

No - 4.525 No No No 

Ottley 2005 [38] 

Linear decorrelation 
selected from analysis 
of a block of samples, 
followed by Golomb-

Rice coding. 

No 3.13 2.67 No 

Error 
resiliency 

at the 
block 
level 

Soft-core 
CPU custom 
instruction 
for use in 

portable ECG 
monitoring 

Miaou 2005 [17] 
Wavelet based approach 

using 9/7 and 5/3 
integer filters 

No 3.75 3.068 No No No 

Giurcâneanu 2001 [39] 
R–R interval estimation 

with Golomb-Rice 
entropy encoding 

No 4.41 3.071 No No No 

Duda 2001 [40] 
Lifting wavelet 

transform 
No 3.722 3.156 No No No 

Arnavut 2001 [41] 

Linear transform 
algorithm (LTA) based 
on a new linear block 

transform (LBT) 

No ~2.5 ~2.22 No No No 

Table 2.1: Comparison of lossless ECG encoding implementations 

While there has been a variety of work done in lossless ECG coding, it is still far 

less than the amount of work done in lossy ECG coding.  With less attention having been 

devoted to this area there are still areas that have not been adequately addressed, 

including: 

 Incorporation of error resilient encoding techniques with the ability to recover 

significant amounts of data in the event of data corruption during signal 

transmission 



10 
 

 Adequate investigation of hardware implementation of ECG encoding algorithms 

with a focus on reducing the amount of hardware resources required and the 

amount of power consumed 

 Implementations that can be easily scaled or reconfigured to accommodate 

various sized signal inputs 

The work presented in [34]  is the most recently published work on lossless ECG 

compression. The authors did allow for several different sizes of signal inputs, and also 

investigated a VLSI hardware implementation.  But their implementation was focused on 

a broader scale design incorporating brain and heart monitoring.  To truly be able to 

compare strictly ECG encoders implemented in hardware and their power requirements, 

there is a need for more investigation of ECG encoders implemented in FPGA/ASIC 

technology and the power required for those implementations.  The work presented in 

[38] did incorporate error resiliency at the block level, but also chose large block sizes in 

order to reduce the amount of overhead incurred during transmission.  Single bit errors 

during transmission could result in most or all of a block being lost since there is no 

provision for determining exactly where in the block the error occurred. 

 While there has been an increasing amount of investigation into lossless ECG 

coding methods in recent years, most of the work has been done without regard to the 

need for low power and hardware requirements, adaptability to various signal widths, and 

the need for error resiliency when transmitting data over error prone mediums.  The 

implementation proposed in this thesis in an effort to broaden the scope of existing 

research in these areas. 
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Chapter 3  

Methods 
The compression algorithm presented in this thesis has the goal of providing compressed 

data for optimal data transmission, while providing the ability to reduce data loss as much 

as possible should an error occur during transmission of a data packet.  There are other 

algorithms that would have provided better compression results, but these algorithms do 

not provide any way to minimize data loss when an error occurs.  There are many 

applications that use data compression where a certain amount of data loss is acceptable; 

others, such as the transmission of ECG signals as discussed in this thesis, may require 

minimal data loss or else they run the risk of losing critical data.  The following sections 

describe the individual methods used in the encoding system presented in this thesis. 

3.0 Differential Pulse Code Modulation 

  

 ]1[][][  nxnxne  (1) 

(1) shows the equation for calculating a Differential Pulse Code Modulation (DPCM) 

sequence, which is simply first order Linear Prediction (LP).  DPCM is a method used to 

encode data by exploiting the correlation between successive samples of the input signal.  

Since the difference between successive samples is generally smaller than the samples 

themselves, the difference is encoded and normally requires fewer bits to represent it than 

are needed by the original samples.  The block diagram of this implementation is shown 

in Figure 3.1(a). 
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 ][~][][ nxnxne    (2)

 A natural extension of the DPCM operation is to predict the value of the current 

sample based on the previous M samples using LP, where the LP parameters are 

dynamically estimated.  The equation for this is shown in  (2) where ][~ nx  is the predicted 

value of the current sample, ][nx , and ][~ nx  is calculated using an Nth order linear 

predictor.  The difference between the current sample and its predicted value, ][ne , is 

quantized with the hope that these difference values will have a lower entropy then the 

original signal .  It is important to note that DPCM is the simplest form of linear 

prediction since it looks at the previous value, but it only uses a single coefficient with a 

value of one.  Since the first and only coefficient in this case is always one, DPCM 

simply takes the difference between the current and previous sample.  The coefficients of 

the LP model are determined by minimizing the error between the original and estimated 

signal in the least squares sense.  The block diagram of the LP implementation is shown 

in Figure 3.1(b). 
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Figure 3.1: (a) DPCM – First order linear prediction model (b) Nth order linear prediction model 

 

In both of the above DPCM systems, the difference sequence is normally 

quantized to a set number of bits.  If the calculated difference between the current sample 

and the predicted value of the current sample is too large to be represented by the number 

of bits chosen for quantization, then data loss occurs.  For this reason DPCM is normally 

considered to be a lossy coding scheme.  However, if DPCM is not used strictly as a data 

compression tool, but rather as a tool to reduce the entropy of a signal so that an entropy 

coder can more effectively compress the signal, then it is not necessary to quantize the 

output of the DPCM to a smaller number of bits than that of the input.  When used in this 

way the goal of the DPCM to reduce the entropy of the signal, so that a following entropy 

coder can achieve better compression results.  Therefore, in order to keep the DPCM 

operation completely lossless, the output would need one more bit than the input, since 
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the DPCM generates some negative values, to guarantee that there will not be data loss.  

The actual compression of the data will be accomplished later by the entropy encoder. 

ECG signals generally have a large amount of correlation between successive 

samples.  In many cases, the ECG signal will have sequences that increase or decrease at 

a steady rate; the DPCM without linear prediction will encode each sample in this 

sequence with the same value since the difference between the samples is the same.  This 

will lead to portions of data that can be effectively encoded using run-length coding.  

Additionally, in the implementation presented in this thesis the input ECG signals are 

broken up into smaller blocks, and then encoded and decoded individually.  Therefore, 

very often the block containing the upper bits of the samples will be zero since only the 

lower bits are needed to represent the DPCM value.  Run length encoding will be very 

effective in when this is the case.  

The author in [37] discuss the fact that Jalaleddine et. al. [7] found that for ECG 

signals, a first order linear predictor (DPCM) yield better results than prediction models 

of higher orders, while [42] found, using a different set of signals, that a second order 

prediction model achieved the best entropy results.  This research leads us to believe that 

due to the close correlation of sequential samples, that a lower order predictor will 

normally achieve better results than a higher order predictor. 

This was tested and verified in software by running sets of 12-bit and 16-bit ECG 

signals through both the DPCM and LP implementations (Figure 3.1), and then 

computing the entropy of the output signals.  As seen in Table 3.1 and Table 3.2, the 

implementation that only used single order linear prediction (DPCM) consistently 



15 
 

produced a lower entropy value than the implementation with linear prediction; this held 

true for both the 12 and 16 bit signals.  This is a nice result as it allows the simpler 

DPCM implementation to be used which will require less hardware resources since a 

predicted value does not need to be calculated and the coefficients from the linear 

predictor do not need to be calculated and stored. 

                 Entropy Values 
ECG 
Signal 

Lead Original 
Signal 

LPC: # Coefficients 
1 2 3 4 

418 ECG 8.7071 5.0477 5.9182 6.5669 7.0250 
419 ECG 9.1869 4.7987 6.1033 7.0582 6.9955 
420 ECG 9.6981 4.6830 5.0027 6.5445 6.0075 
421 ECG 8.7012 5.7515 6.3500 7.4773 7.7677 
422 ECG 8.8674 5.5145 5.0846 6.2938 7.0618 
423 ECG 7.7288 4.5692 4.4989 6.2864 5.9547 
424 ECG 9.5807 4.4477 4.5743 5.9273 5.7869 
425 ECG 9.2784 4.5721 5.0516 6.2576 5.8598 
426 ECG 9.5913 4.4532 4.6730 5.6604 5.6415 
427 ECG 10.0566 4.1904 4.7187 6.2252 5.6052 
428 ECG 9.5195 4.2963 4.8357 6.2831 5.7295 
429 ECG 9.3842 3.7853 4.2939 5.6276 4.9651 
430 ECG 8.9795 3.8222 4.7134 5.8945 5.3849 
602 ECG 9.2163 6.0324 6.7347 7.5431 7.8941 
605 ECG 7.3060 5.0394 5.9584 6.5863 6.7287 
607 ECG 7.8574 5.0523 5.8967 6.8362 7.1261 

Table 3.1: Comparison of entropy values of original, DPCM & DPCM with linear prediction for 12-
bit ECG signals 
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  Entropy Values 
ECG 
Signal 

Lead 
Original 
Signal 

DPCM with LPC: # Coefficients 
1 2 3 4 

I01 
V1 11.0128 5.2801 5.8463 6.4793 6.6797
V2 11.0571 5.3527 6.0115 6.7500 6.9486

I11 
V1 9.0795 3.2160 4.1747 5.1246 4.8323
V2 8.7161 3.3185 4.3287 5.2402 5.0432

I20 
V1 8.8060 4.0377 4.6352 5.5899 5.5423
V2 8.6443 4.2152 4.8425 5.7523 5.9156

I32 
V1 9.7863 3.5717 4.6621 5.5638 5.5262
V2 9.6871 3.7507 5.0098 5.8168 5.8321

I46 
V1 10.9828 5.9994 6.2554 7.3305 7.7105
V2 11.3890 6.1716 6.3882 7.4594 7.7784

I57 
V1 11.3666 6.9282 7.4364 8.9670 8.3423
V2 11.1157 6.8805 7.5318 8.9821 8.5187

I69 
V1 10.6359 4.2761 5.3309 5.9863 5.9424
V2 10.1248 4.9686 5.9078 6.5613 6.7879

I75 
V1 10.4226 5.4757 6.7625 7.3139 7.4913
V2 11.5332 5.7083 7.1702 7.6710 7.8511

Table 3.2: Comparison of entropy values of original, DPCM & DPCM with linear prediction for 16-
bit ECG signals 

Since the final encoding step is based on entropy encoding, it is important to note 

that the complexity of the encoder increases as the size of the samples increases.  A 

single bit increase in the number of bits used to represent the sample effectively doubles 

the total number of codes that must be calculated.  The DPCM implementation discussed 

above calculates the difference between successive samples, so its output will produce 

both positive and negative values, whereas the input was strictly positive.  Since having 

both positive and negative values in the output would require an additional bit to 

represent all the possible values, the number of symbols the entropy encoder would have 

to handle would double, and would therefore significantly increase the complexity of the 

entropy encoder.  In order to eliminate this problem, the quantizer can be implemented so 
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that the entire range of output values is mapped to strictly positive values, thereby 

eliminating the need for the additional (sign) bit.     

This mapping of a range of positive and negative values to all positive values can 

be accomplished by exploiting the fact that we know that every input into each encoder 

will be a set size.  Examining how the DPCM is calculated, and then reconstructed shows 

how we can take advantage of this fact.  The following is a simple example, using 4-bit 

inputs, of how the DPCM would normally be calculated.  This DPCM operation results in 

a 5-bit output, but when the signal is reconstructed back to the original data when the sign 

bit is always zero and is no longer needed.  In the following example, the DPCM is 

calculated according to the implementation given in Figure 3.1(a).  The difference value 

based on each input sample is calculated by taking the two’s complement of the previous 

input value, and then adding it to the current input value.  The resulting DPCM encoded 

value needs 5 bits to represent it since taking the difference between the two samples can 

result in negative values.  To undo the DPCM encoding, the decoder simply starts with an 

initial value of zero, and keeps a running sum of all the DPCM values.  Since some of the 

DPCM values are negative, this running sum is really composed of both addition and 

subtraction operations.  This will restore the data back to its original values, and the sign 

bit can then be dropped since we know that all the original input values were strictly 

positive. Table 3.3 shows the DPCM encoding and decoding of an example set of data. 
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Sample # 
Input 

Sample 
Values 

DPCM Encoded 
Value: w/ sign 

bit 
Undo DPCM 

Restored Data: 
sign bit no 

longer needed 
Initial 0000    

1 0001 00001 0000 + 00001 = 00001  0001 
2 0011 00010 0001 + 00010 = 00011 0011 
3 1100 01001 0011 + 01001 = 01100 1100 
4 0110 11010 0100 + 11010 =  00110 0110 
5 0010 11100 0110 + 11100 = 00010 0010 
6 0011 00001 0010 + 00001 = 00011 0011 
7 0011 00000 0011 + 00000 = 00011 0011 
8 0000 11101 0011 + 11101 = 00000 0000 
9 1110 01110 0000 + 01110 = 01110 1110 
10 1000 11010 1110 + 11010 = 01000 1000 

Table 3.3: Simple DPCM example with 4-bit inputs and 5-bit DPCM outputs 

The above example is a valid way of calculating the DPCM values of a signal, 

and then restoring the signal back to its original form. However, as discussed previously, 

having this extra bit is not desirable since the DPCM values will eventually be encoded 

again using an entropy encoder.  Including the sign bit will double the number of codes 

the entropy encoder would need to calculate and will increase the overhead cost 

associated with transmitting the codes to the decoder.  The need to keep the sign bit can 

be eliminated by remembering that the inputs to the encoder will all be represented using 

a set number of bits.  Since we are dropping the sign bit of the DPCM values, after a 

negative sign bit is dropped, any values that were negative (sign bit of 1) are simply the 

two’s complement of the magnitude of the negative value. For example, if the DPCM 

gave an output of -2 for a sample value, then the 2’s complement of 2, which is 14 for 4-

bit values, is used instead.  When reversing the DPCM, adding 14 would achieve the 

same result as subtracting 2, since the data size is constrained to 4-bits and the value 

would roll over to zero when needed so as to achieve the same result.  This only works 
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due to the fact that we are requiring all the inputs of the DPCM encoder to be a single 

size.  To make this process a little more clear, the same input sequence from the previous 

example is taken and the DPCM process is repeated, with the exception that this time we 

will drop the sign bit.  The DPCM is calculated the same way, but the outputs of the 

DPCM are held to 4 bits, the sign bit on any negative values is simply dropped.  The 

original values are restored from the DPCM data, the values are simply added together 

and any overflow is ignored.  This is shown in Table 3.4 and the results are the same as 

when the sign bit was kept. 

Sample # 
Input Sample 

Values 

DPCM 
Encoded 

Value: sign 
bit dropped 

Undo DPCM 
Restored Data: 

Overflow – sign bit 
dropped 

Initial 0000    
1 0001 0001 0000 + 0001 = 0001 0001 
2 0011 0010 0001 + 0010 = 0011 0011 
3 1100 1001 0011 + 1001 = 1100 1100 
4 0110 1010  1100 + 1010 = 10110 0110 
5 0010 1100   0110 + 1100 = 10010 0010 
6 0011 0001 0010 + 0001 = 0011 0011 
7 0011 0000 0011 + 0000 = 0011 0011 
8 0000 1101   0011 + 1101 = 10000 0000 
9 1110 1110 0000 + 1110 = 1110 1110 
10 1000 1010   1110 + 1010 = 11000 1000 

Table 3.4: Simple DPCM example with 4-bit inputs and 4-bit DPCM outputs with the sign bits Being 
dropped 

3.1 Run-Length Encoding 

Run-Length Encoding (RLE) is an effective tool to use in cases where there are segments 

of data that all have the same value.  In cases where there is a sequence of N samples that 

all have the same value, rather than encoding all N values it is much more efficient to 

recognize this as a run-length, and encode the sample value of the sequence, along with 

the number of samples contained in the run length.  If RLE is performed on the output of 
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a DPCM operation, then there are two ways that run-lengths can be created. The first is in 

the case stated above, where a segment of the input signal’s values are all the same; in 

this case the DPCM operation will output all zeros for this segment since the difference 

between equal valued samples is zero.  The second case where run-lengths could be 

generated is if the input signal’s values are increasing or decreasing at a steady rate. If for 

example you have a string of ten values where each value is one greater than the last, then 

the DPCM will output a string of DPCM values that all have a value of “0001” for the 4-

bit case.  While ECG signals do not normally include long sequences of samples that are 

all the exact same value, they do include segments that are steadily increasing/decreasing 

by constant amounts.  Plus, if a 12 or 16-bit ECG signal is split into smaller bit sizes, then 

the higher bits may very well contain strings of identical values since only the lower bits 

may be required to represent the full value of the sample.  Therefore, implementing a 

RLE operation so that the input to the RLE block comes from the output of the DPCM 

transformation can provide additional compression performance. 

 When a valid run-length is identified, the first sample in the run length is encoded 

normally.  This first sample serves as the identifier for what the remaining values in the 

run length are.  Following this first sample, a run-length flag is encoded so that the 

decoder knows to treat the following sample as a run-length count value and not as 

normal sample.  When the decoder encounters a run-length flag, it simply retrieves the 

previously decoded sample, and restores as many of that value as is indicated by the run-

length count.  A diagram of the run-length encoding structure is shown in Figure 3.2. 
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First RL Sample RL Flag RL Count 

 
Figure 3.2: Order of encoded values used to represent a run-length sequence 

3.2 Segmenting Samples for Entropy Coding 

One of the challenges when encoding ECG data is that there are several numbers of bits 

that are commonly used to represent the digitized signals.  11, 12, or 16 bit 

representations are the most common, but there are also 8 bit representations that are used 

as well.  For an 8 bit representation there are 256 different possible values, for 12 bit 

representations this balloons to 4,096 possible values, and 65,536 possible values for the 

16 bit representation.  This presents a problem since calculating and storing 65,536 

different codes would be enormously time consuming, as well as require an exorbitant 

amount of resources.  In addition, the codes will have to be transmitted along with the 

compressed data, so it is desirable to reduce the total number of codes needed so that the 

overhead cost associated with transmitting the codes is reduced. 

This problem can be addressed by recognizing that as the number of bits used to 

represent the inputs increases, the number of different possible input values increases 

exponentially.  We can exploit this fact by taking the bits used to represent each input, 

and breaking it up into several smaller bit segments.  These separate segments can then 

be encoded and decoded individually. Once the segments have been individually 

decoded, they can then be concatenated back together to restore the original full length 

input values.  This will effectively reduce the number of individual codes that need to be 

calculated.  For example, as discussed above the 16 bit representation would require the 
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calculation of 65,536 individual codes, however, if each 16 bit value was encoded using 

two 8-bit encoders the total number of codes that would need to be calculated would be 

2*256 = 512.  This is an enormous reduction in the number of codes that have to be 

calculated and stored.  Breaking up the input bits into combinations of 4, 6, and 8 bit 

segments is investigated, since these can be easily combined to reach the 12 and 16 bit 

ECG representations. Segments longer than 8 bits are not considered, since anything 

above 8 bits requires too many codes, and the time needed to compute the large number 

of codes would not be acceptable.   

3.3 Histogram Calculation 

Since the implementation being proposed is based on entropy encoding, it is necessary to 

generate histograms to provide the statistics which will be used in the calculation of the 

final codes used to encode the ECG signals.  In order to generate codes with which to 

encode the signal samples that have gone through the DPCM and RLE blocks, it is 

necessary to have values for the probabilities of all the possible symbols of the input 

signal.  Since the statistics of the input signal are not known in advance, an initial 

histogram based on ECG signals from the PhysioBank Physiologic Signal Archives [6] 

are used to generate codes that will be used to encode the initial part of the signal.  As the 

signal data is processed a new histogram will need to be calculated from the current 

samples of the signal being encoded.  When enough of the signal has been calculated to 

form a suitable histogram based on the new signal, then new codes would be calculated.  

Once the new codes have been calculated, then the old codes would be replaced with the 

new codes, and the new codes transmitted so that the decoder has the codes to use for 

decoding and restoring the data. 
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3.4 Huffman Coding 

Once a histogram, based on a fixed number of input samples, has been calculated, 

Huffman codes are then generated based on the algorithm described in [43].  It should be 

noted that the implementation used here does not actually calculate the probabilities of 

the symbols in order to simplify the hardware and to avoid having to use floating point 

representation.  Instead, calculation of the Huffman codes is done using the actual 

number of times each symbol occurred instead of using the probabilities.  This has the 

same affect and creates the same code table that using actual probabilities would have 

created.     

In order to implement the Huffman algorithm, two queue structures are used to 

hold the leaf nodes that are used to create the binary tree.  The Huffman codes are 

calculated using the following steps: 

1. The histogram values are sorted in decreasing order so that the value that is 

most likely to occur will be accessed last, and the value that is least likely to 

occur will be accessed first.   

2. Examine the next accessible nodes in each (non-empty) queue and take the 

two nodes that have the lowest values. This may mean taking two nodes from 

the same queue, or one from each queue.  The two nodes representing the two 

values least likely to occur are taken and their values added together to form a 

new node, with the original two nodes as children.  If there is a tie when 

choosing which queue to take nodes from, always choose the first queue, this 
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will maintain the mathematical optimality of the Huffman coding while 

minimizing both the variance and the length of the longest code.   

3. Each time two nodes are added together, the first node selected from the 

queues is assigned a ‘0’, and the second node selected is assigned a ‘1’.  This 

new node is then stored in the second queue structure.   

4. If there is still more than one node in the two queues combined, go back to 

step 2.  Repeat this process until all the nodes from the first queue have been 

chosen and all the nodes from the second queue have been combined until 

there is only 1 node left.  

5. The one remaining node is the root node of the binary tree and valid Huffman 

codes for all possible symbols have been calculated.  The codes are then 

obtained from the node tree generated by the above steps by starting at the 

root node and traversing down to the leaf node that represents the desired 

value.  The values, ‘1’ or ‘0’, of each node passed are collected in order and 

these form the code.   

The following figure shows an example of the binary tree and resulting code table 

generated from a set of 8 possible values and their histogram (number of times each value 

occurs).  The small numbers on the binary tree represent the value (0, 1) assigned to a 

particular branch, while the large values on the tree gives the total number of value 

occurrences that can be reached from that point in the binary tree. 
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Figure 3.3: Example of Huffman code table calculation using 8 values and 20 total occurrences of 
those values 

 
Once the Huffman codes have been calculated, they are then transformed into 

Reversible-Variable-Length Codes (RVLC) in order to provide error resiliency since 

RVLC codes are symmetrical and can be decoded both frontwards and backwards.  These 

RVLC codes are the final codes used to encode the input data after it has gone through 

the DPCM and RLE transformations. 

3.5 Reversible Variable Length Coding 

RVLC codes are generally calculated by taking a previously calculated table of variable 

length codes, and using the characteristics of the variable length codes to provide metrics 

from which the RVLCs are then calculated.  Takishima et al. in [44] and Tsai et al. in 

[45] provide algorithms for calculating RVLCs from Huffman codes.  However, the 

algorithms they describe calculate symmetrical codeword’s on a full binary Huffman tree 

and pre-calculate the number of available codeword’s at each level before generating the 

symmetrical RVLC.  The overall design procedure used in these algorithms requires high 

complexity when adapting pre-calculated values at each level to the given Huffman code 
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table.  There also are restrictions imposed during this adaption process which can lead to 

valid symmetrical codeword's being missed at some levels. 

Jeong and Ho present a new algorithm in [46] which simplifies the adaption 

process to the given Huffman code table, and also often reduces the average code length 

since this algorithm does not miss any symmetrical codewords.  This algorithm generates 

RVLCs from the Huffman table, but it is able to provide a simpler and faster 

implementation by taking advantage of some basic characteristics of RVLCs.  When 

Huffman codes are generated, the codes must satisfy the prefix condition, i.e. the first 

portion of a code can not be identical to any of the shorter codes.  RVLCs on the other 

hand must satisfy both the prefix and the suffix condition in order to be decoded in both 

the forward and backward directions.  However, when considering the symmetrical 

RVLC, the prefix condition automatically leads to the suffix condition due to the 

symmetrical bit patterns of RVLC codes.  Therefore, if all the bits of a chosen 

symmetrical codeword which satisfies the prefix and suffix conditions are inverted, a 

second symmetric codeword is obtained which also satisfies the prefix and suffix 

conditions.  This means that if we have S Huffman codes that we need to calculate 

RVLCs for, then we only need to calculate codes for one side of the Huffman tree which 

will be S/2 (round up if not an integer value) codeword’s.  This gives us half of the 

needed codeword’s, and the other half can be easily generated be simply inverting the 

bits of the S/2 calculated codeword’s.  Essentially, if you consider a binary tree and look 

at the two branches off the main node, this algorithm finds all the RVLC codes on the ‘0’ 

branch (it finds S/2 codes on the ‘0’ side). Since these S/2 codes meet all the conditions 

of a RVLC code, then their complements must also meet the conditions as well.  Since 
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we only need to check the prefix and symmetric properties when calculating codes for 

one side of the Huffman tree, and not for both sides, the time required to calculate the 

RVLC codes and the number of values searched through to find the symmetric values is 

dramatically reduced. 

When calculating the initial RVLCs for the left side of the Huffman tree, the table 

of RVLCs will contain only one code that consists of all ‘0’ bits or else the prefix 

condition would not be satisfied.  Therefore, all the codes that are longer than this zero-

code ( LZ ), where L is the level at which the LZ  code appears, must start with less than L 

zeros in order for the prefix condition to be satisfied.  This choice will affect the number 

of RVLC’s that are found at each level, and will therefore affect average code length of 

the generated RVLCs.  In order to reduce the average code length as much as possible, 

the characteristics of the probabilities of the Huffman codes are taken into account, and 

the best fit of the RVLC to the probability distribution of the Huffman code is obtained 

by setting L equal to the shortest Huffman code min_HL .  Table 3.5 shows an example of 

how a set of RVLC codes is generated from a set of Huffman codes.  The first column 

shows the values from the left side of a binary tree, while the next three columns show 

whether each value from the binary tree meets the necessary conditions of a RVLC code.  

If a value does not meet any of the four conditions it is immediately discarded, if it meets 

all the conditions, then it is selected as an RVLC code and replaces the next most 

common Huffman code.   
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Values 
Selected 
from Left 
Side of 

Binary Tree 

Symm-
etric? 

Symmetric. 
Code > 0 or 

length 
(Zero_Code) 

= LZ ? 

Prefix 
Condition 

Met? 

Valid 
RVLC 
Codes 
Found 

Find 
Remainder of 
RVLC Codes 
by Inverting 

Previous 
Column 

000      
001      
010    010 101 
011      
0000    0000 1111 
0001      
0010      
0011      
0100      
0101      
0110    0110 1001 
0111      
00000      

…      
00100    00100 11011 

…      
01010      

…      
01110    01110 10001 

…      
000000      

…      
001100    001100 110011 

…      
010010    010010 101101 

…      
011110    011110 100001 

Table 3.5: Example of the process used to select RVLC codes with 4LZ  
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The algorithm for generating RVLC’s according to the algorithm described above 

is shown here. 

1. The bit length of LZ  for the left half region of the binary Huffman tree is 

selected to be the same length as the shortest Huffman code, min_HL . 

2. Until all the necessary number of symmetric codes from the left half region 

of the binary tree have been selected (S/2 codes in all), all available 

symmetrical codeword’s are chosen from the highest remaining level (i.e. 

shortest symmetrical codewords are evaluated first).  These symmetrical 

codeword’s are further weeded out by eliminating all codeword’s that violate 

the prefix condition (i.e. symmetrical codes that starts with a previous 

smaller code are not selected), and any all zero codes whose lengths do not 

equal LZ . 

3. Combining the selected codeword’s with their bit-inversed codeword’s gives 

a full RVLC table of symmetrical codes that can be decoded from both 

directions. 

4. The shortest Huffman code is replaced with the shortest RVLC codeword.  

This is repeated with all remaining codes until all Huffman codes have been 

replaced. This maintains the goal of assigning the shortest codeword’s to the 

most frequently seen symbols. 
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3.6 ECG Signal Database 

The ECG signals used to evaluate the best DPCM implementation to use, as well as to 

evaluate the final compression algorithm, were taken from the PhysioBank Physiologic 

Signal Archives [6].  These archives contain a comprehensive collection of ECG records 

available to the biomedical research community.  This database of ECG records is often 

used as a standard database for determining the effectiveness of encoders geared towards 

ECG signals.  Two collections of ECG records were chosen from the PhysioBank 

database from which individual signals (leads) were chosen to test the compression 

system.   The 12-bit signals contain 30 minutes worth of ECG data, while the 16-bit 

signals contain 35 minutes worth.  About one third of each signal, 150,000 data samples 

or about 10 minutes worth will be used in the testing of the encoding systems presented 

here. 

The MIT-BIH Malignant Ventricular Arrhythmia Database was chosen to select 

12-bit signals from because it contained 22 half-hour plus ECG recordings of subjects 

who experiences sustained episodes of ECG irregularities.  The records contain ECG 

signals with a variety of different irregularities.  The individual signals were selected by 

taking the first 16 records, and by taking the first ECG lead from each of the selected 

records.  This provided a broad range of signals to be used for testing the ECG encoder 

and decoder.  All signal values were shifted into the range of all positive numbers.  A 

more detailed description of these records is given in Table 3.6. 
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Signal 
Num 

Record
Record 
Lead 

Number 
of 

Abnormal 
Episodes 

Total 
Time 

Affected 

1 418 ECG 61 4:06 
2 419 ECG 33 3:29 
3 420 ECG 3 4:42 
4 421 ECG 50 5:46 
5 422 ECG 5 11:55 
6 423 ECG 5 8:12 
7 424 ECG 9 8:41 
8 425 ECG 3 5:55 
9 426 ECG 10 13:04 
10 427 ECG 2 24:12 
11 428 ECG 8 34:48 
12 429 ECG 17 31:50 
13 430 ECG 32 34:19 
14 602 ECG 5 6:44 
15 605 ECG 1 0:29 
16 607 ECG 9 33:32 

Table 3.6: Detailed description of selected 12-bit ECG signals chosen from the MIT-BIH Malignant 
Ventricular Arrhythmia Database.  Each signal from this database contains 525,000 samples, and is 

sampled at a rate of 250 Hz for a total length (Time) of 35 minutes. 

The St. Petersburg INCART 12-lead Arrhythmia Database was chosen to select 

16-bit signals from because it contained 75 recordings extracted from 32 Holter records, 

with each record being 30 minutes in length.  The records contain ECG signals where the 

patients were undergoing coronary artery disease, and exhibiting a range of different 

ECG irregularities. A more detailed description of these signals is given in Table 3.7. 
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Signal # Record 
Record 
Lead 

Number of 
Abnormal 
Episodes 

1 I01 V1 
344 

2 I01 V2 
3 I11 V1 

28 
4 I11 V2 
5 I20 V1 

290 
6 I20 V2 
7 I32 V1 

57 
8 I32 V2 
9 I46 V1 

426 
10 I46 V2 
11 I57 V1 

29 
12 I57 V2 
13 I69 V1 

169 
14 I69 V2 
15 I75 V1 

620 
16 I75 V2 

Table 3.7: Description of representative set of 16-bit ECG signals chosen from the St. Petersburg 
INCART 12-lead Arrhythmia Database. Each signal from this database contains 462,600 samples, 

and is sampled at a rate of 257 Hz for a total length (Time) of 30 minutes. 
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Chapter 4  

Implementation Methodology 

4.0 Design Considerations for 12-bit and 16-bit 
ECG Encoding Systems 

The compression system presented here was designed to be able to adapt to changing 

characteristics within the signal itself, and to be able to handle different signal types 

using a single compression system.  When considering ECG signals in particular, there 

will be variance between signals from different patients, but unless an irregularity occurs, 

the ECG signal should be relatively periodic for long stretches of time.  The 

characteristics of the signal may change if the patient increases or decreases physical 

activity, for example, but it should then remain periodic for a number of samples before 

the next change.  This inherent periodicity in ECG signals means that having the ability 

for the compression system to periodically recalculate its codes may not be needed in 

some cases.  The following two encoding systems were designed to investigate the effect 

that the periodicity of the ECG signals has, and which type of implementation is would 

be better suited for ECG compression in terms of both performance and required 

resources.   

 The first system (system A) was designed to periodically update its code tables 

based on the current characteristics of the signal, while the second system (System B) 

uses a single set of pre-loaded code tables to encode the entire signal thereby requiring 

significantly less hardware resources.  These two systems were designed to meet the goal 

of requiring few hardware resources, low power usage, and to provide error resiliency to 
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limit data during signal transmission.  The selected ECG signals will be run through both 

configurations, and the compression results along with the hardware requirements for 

each configuration can be used to determine which is more beneficial.  

ECG signals are commonly quantized into 12 and 16 bits. Separate systems were 

set up for each case. Since DPCM is performed on the signals before they are encoded, 

the values of the resulting individual samples after DPCM in both the 12 and 16 bit 

representations should be small. This means that the large portion of the upper bits in 

both the 12 and 16 bit representations should not be needed to represent the value to be 

encoded, and should therefore be ‘0’.  It would be expected then that the 16 bit 

representation would have a greater percentage of zeros in the high bits than the 12 bit 

representation would.  This higher number of zero bits gives the best chance of allowing 

the highest bits to be encoded using run length techniques which would allow for the best 

compression possible.  Therefore, we would expect that the compression system 

presented here would achieve a better overall compression ratio on the ECG signals that 

use 16 bits to represent the data then those that use 12 bits. 

4.1 System Configuration 

A simplified block diagram of the type of implementation presented is this thesis 

is shown in Figure 4.1.  The input signal samples will be split into a chosen number and 

size of segments, with each segment being encoded independently of the others.  The 

encoded segments will then be packed together and transmitted over a communications 

channel to a desired location where they can later be decoded and analyzed as needed.  

Table 4.1 shows a comparison of the number of codes required for the different possible 
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segment configurations.  While the 4-4-4-4 segment encoding configuration is listed as a 

possibility in the table, it was not implemented in this design since having four different 

segments to package and transmit posed large problems with the transmission structure 

being targeted.  Additionally, the single segment 12 and 16 bit configurations were not 

used either, since the total number of individual codes would require a large amount of 

time and resources to generate. In our research of previous work done in the area of lossy 

and lossless ECG compression, presented in section 2.4, we did not find any other 

instances of implementations that split the incoming signal, encoded the segments 

separately, and then recombined the segments upon decoding to restore the original 

signal.  
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Figure 4.1: Top level diagram of signal encoder where n(0) through n(i) are the bit widths of the data 
going to the segment encoders, and the sum from n(1) through n(i) equals the bit width of the original 

ECG signal 
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Input 

Bit Size 
Possible Coding  
Configurations 

Number of Codes 
Required 

Bytes of 
BRAM 

Required 
(System A)  

Bytes of 
BRAM 

Required 
(System B) 

 
12 

4-4-4 48 324 120 
4-8, 8-4 272 2684 1048 

6-6 128 1030 374 
12 4,096 - - 

 

16 

4-4-4-4 64 - - 
4-6-6, 6-4-6, 6-6-4 144 1138 414 
4-4-8, 4-8-4, 8-4-4 288 2792 1088 

8-8 512 5152 2016 
16 65,536 - - 

Table 4.1: Comparison of segmented encoding configurations, the number of codes required for each 
configuration, and the number of BRAM bytes to implement each encoder configuration.  Bolded 

configurations are implemented and tested.  Italicized configuration for both the 12 and 16-bit 
implementations provided the best results. BRAM requirements only given for implementations that 

were demonstrated  

The top level diagram of the proposed entropy coding implementation is shown in 

Figure 4.2.  The final coding scheme is based on an entropy coder using Huffman codes 

which are then transformed into Reversible Variable Length Codes (RVLC). The RVLC 

codes are symmetrical, and are therefore frontwards and backwards decodable.  In 

addition, they satisfy the prefix condition, meaning that a smaller code is not identical to 

the beginning of any longer code.  Because RVLC codes are symmetrical, this means that 

if the prefix condition is met, the suffix condition will automatically be met as well. 

These conditions ensure that each RVLC code chosen is not only decodable from both 

directions, but that each code is uniquely decodable as well.  If the prefix/suffix 

conditions were not met, it could be possible to have a code whose value could be 

contained in the beginning of a longer code. If this was the case the beginning portion of 

the longer code could be wrongly decoded as the shorter code, which would wreck the 

whole decoding process and result in incorrect data restoration.  Incorporating RVLC 
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codes allows the decoder to decode backwards from a synchronization marker when an 

error occurs, thereby minimizing the data loss due to transmission errors.  In order to 

maximize the compression results from the entropy coder, a Differential Pulse Code 

Modulation (DPCM) operation is first performed on the data signal, followed by run 

length coding (RLC).  Due to the inherent correlation between neighboring samples in 

ECG waveforms, the combination of DPCM followed by RLC significantly reduces the 

entropy of the signal and results in more effective entropy coding. 

DPCM 

Histogram 

RLE 

Gen Huff 

Encoder 

RVLC Code 
Gen Mem 

Sort Hist 

Hist/Huff Mem 

Gen RVLC 

RVLC Code 
and Flag Mem 

 
Figure 4.2: Entropy coding system top level view for a 4, 6, or 8-bit segment encoder with the ability 

update the RVLC tables 
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 4-Bit 6-Bit 8-Bit 

Histogram Storage & 
Huffman Calculation 

Memory 
16x22-bits 64x26-bits 256x30-bits 

RVLC Generation Code 
Memory 

16x12-bits 64x15-bits 256x19-bits 

RVLC Final Code Storage 
Memory 

16x16-bits 64x22-bits 256x31-bits 

RVLC Final Flag Storage 
Memory 

4x16-bits 4x22-bits 4x31-bits 

Total Memory Usage 40 Bytes 187 Bytes 1008 Bytes 
Table 4.2: Memory size requirements for 4, 6, and 8 segment encoders 

The entire set of VHDL files for the encoder, and the Java software files for the decoder 

can be accessed at http://ivpcl.org.  This is done to allow others to continue work on all or 

part of the implementation proposed in this thesis, and to allow for exact reproducibility 

of the results presented in this paper. 

4.2 Component Implementation 

4.2.1 Run-Length Coder 

In order to be able to encode the data in a way that allows for error resiliency, the values 

that are sent for any run lengths must be encoded in the entropy coder since RVLC codes 

are used to allow for recovery from errors.  The number of different values that the 

entropy coder can encode is based on the number of bits used to represent the input and is 

given as: sizebitinput __2 .  Since there is a limit on the largest value that the entropy coder can 

encode, the maximum length that can be sent for the run length must be able to be 

represented in the same number of bits used to represent the input values.  This means 

that the longest run length that can be sent is: 12 __ sizebitinput . 
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As the ECG signal samples are fed into the encoding system, each sample is 

compared against the previous sample to determine if they are identical.  If the current 

and previous samples are identical, then the current value is not transmitted, and a run 

length counter is incremented. This process is repeated until either the run length has 

reached its maximum allowed length, or a data sample is presented that is not identical to 

the previous sample.  This means that for a sequence of identical values, the first value in 

the sequence will be encoded normally and will not be included in the run length since 

the run length count doesn’t start until a second identical value is seen.  Therefore the 

decoder only needs the number of values in the run length, and not the actual value of the 

run length samples, to be able to decode it since the value immediately preceding the run 

length is the same as the values in the run length.        

When the end of the run length has been identified, the run length counter is 

compared against a specified minimum run length value to ensure that transmitting the 

run length value would provide better compression results then if the individual signal 

samples had been transmitted instead.  This is a concern because when a run length 

occurs, a flag has to be encoded along with the run length so that the decoder can 

differentiate between a normally encoded sample, and an encoded run length.  Since this 

flag adds extra bits onto the data that is transmitted for a run length, a run length must be 

long enough to make including the extra bits for the flag worthwhile.  If a run length of 

only two or three samples is detected, it will often be more efficient to encode those 

samples individually rather than as a run length.  The known length of the flag used to 

indicate a run length is compared to the most common shortest codes for each encoder 
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segment, to determine what the minimum run length will be.  If this minimum run length 

is not met then the short run length is simply encoded as individual samples. 

4.2.2 Histogram Calculation 

The generation of the histogram is performed based on the ECG data samples that are 

currently being sent into the system.  The goal of periodically recalculating the codes is to 

be able to identify changes in the properties of the signal and to provide updated codes 

that provide the best compression possible for the changing signal. Therefore, when new 

codes are recalculated, the histogram must provide a histogram of the most recent data 

seen.  The system monitors the incoming signal and will recalculate the code tables at 

constant predefined intervals.  The system provides an input to the histogram calculator 

long enough prior to the system needing to recalculate the codes, so that the there is 

enough time to calculate a full histogram of the current signal.  A predefined constant 

value can be preset in the system to identify how many samples constitute a full 

histogram.  This value can be changed to provide the ability to control how many samples 

in the current signal will be used to build up the histogram. 

A block of memory is used to store the histogram values as it is being calculated.  

The index’s of the memory range between [ 0, 12 __ sizebitinput  ], where the input bit size 

is either four, six, or eight.  The index’s of the memory are used to represent the different 

possible sample values, while the value stored in the memory at each index represents the 

number of times that value has been seen.  When a sample is sent into the system, it is 

sent through the DPCM transform to reduce the entropy, the resulting value is the sent 
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into the run length/entropy encoder.  At the same time, if the system has indicated that 

histogram is being calculated, then the value stored in the histogram memory is accessed 

using the DPCM value as the index, and the histogram value is incremented and then 

stored back to the same index location.  

Since a block of memory with a predefined size is used for storing the histogram, 

it is necessary to limit the maximum number of samples that can be used to generate a 

single histogram table.  The number of values used must be limited to the maximum 

value that one histogram memory location can store.  Otherwise, if the histogram is 

dominated by a couple of values, it would be possible for the histogram value for those 

signals to exceed the number of bits used to store it, causing that value to overflow and 

roll back to zero.  This would create an inaccurate histogram which would adversely 

affect the compression of the signal.  Limiting the number of values used to calculate the 

histogram is acceptable, since it is desired to have the histogram only be based on a select 

portion of the ECG signal so that the code tables that are generated accurately reflect the 

characteristics of the current signal. 

4.2.3 Sorting the Histogram 

The basis of the entropy coder is that the shortest codes will be mapped to the most 

commonly seen sample values after they have been transformed in the DPCM process.  

In order to perform this mapping, the histogram has to be sorted so that the histogram 

values are easily accessible in descending order from the largest histogram value to the 

smallest.  Once the histogram has finished being calculated, the values are read out of the 

histogram memory and stored in the Huffman code memory.  Each memory index of the 
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Huffman memory is wide enough to store both the histogram value, and the index 

location representing the sample value that the histogram count represents.  The 

histogram/index value pairs are then sorted and stored in the Huffman code memory from 

largest to smallest histogram count value.  

Since the Huffman encoding assigns the shortest codes to the most frequently 

seen signal values, the same memory can be used to store both the sorted histogram 

values and the generated Huffman codes.  The shortest Huffman codes are calculated 

first; therefore, as they are calculated they are stored in the memory location of the largest 

remaining histogram value and take on the sample value stored at the same histogram 

location.  

4.2.4 Huffman Coder 

Once a valid histogram has been calculated, the Huffman codes based on that histogram 

are calculated using the traditional Huffman algorithm described in section 3.4.  

However, the actual hardware implementation used was slightly different.  Rather than 

use two queues as described previously, a single memory block was used to generate the 

Huffman codes.  The histogram codes were sorted, from least to most likely to occur, 

according to their frequency of occurrence, so as histogram values are removed and 

added together, these intermediate values that would normally be stored in the second 

queue, are instead stored back in the next available vacated histogram memory location.  

This effectively reuses the vacated histogram memory locations to store the combined 

histogram values.  It just requires a little additional logic to keep pointers of the next 

original histogram values and recombined histogram values to be evaluated.    
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4.2.5 Reversible Variable Length Codes 

Once the full Huffman table has been calculated, the RVLC codes based on that 

histogram are calculated using the approach described in section 3.5.  The length of the 

shortest Huffman code is used to set the parameters of the RVLC generation algorithm.  

Enough RVLC codes are generated to replace all the Huffman codes, and then four 

additional RVLC codes are generated to be used as flags that can be used during the 

packaging of the codes for transmission.  One of the flags is used to indicate that a run 

length sequence was encoded, and the others are left for the any other uses that may be 

desired or required in the packaging of the codes.  

4.2.6 Packaging Encoded Data for Transmission 

Once the encoding of the data has been completed, it must then be packaged and 

transmitted to a chosen location where it can be decoded and analyzed at a later time.  

Since one of the major goals of this implementation is to minimize the amount of signal 

data that is lost in the event of data loss or corruption during transmission, there are 

specific things that can be done when packaging the data that would assist the encoder in 

restoring as much of the original signal as possible.  This requires adding in a small 

amount of additional information into the data before it is transmitted. This will affect the 

overall compression performance of the system, but the payoff is that the decoder then 

has the ability to restore a greater amount of the encoded data. 

One of the first steps often taken to minimize the amount of data loss or 

corruption during transmission, is to include synchronization markers at various points in 
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the encoded data so that even if data is lost or corrupted, the synchronization markers 

provide a point of reference from which to continue decoding.  The synchronization 

marker will consist of signal sample values that have not been DPCM encoded, that will 

be placed at specific points in the encoded string.  This is important in the 

implementation presented here because of the fact that we are using the DPCM transform 

to reduce the entropy of the signal.  Reversing the DPCM transform requires keeping a 

running sum of all the decoded values in order to restore the original signal.  If even one 

of the values is lost, then it is impossible to reverse the DPCM transform beyond that 

point until the next synchronization marker is reached.   

While synchronization markers provide a point from which to restart the process 

of reversing the DPCM transform, all the data from the point where the data was lost to 

the next synchronization marker will be lost unless there is a way to start at the next 

synchronization marker, and decode the data backwards until the point where the error 

occurred is reached.  This is why the DPCM encoded data was also RVLC encoded.  

RVLC codes are symmetric, i.e. the value that is obtained is the same whether it is 

observed starting at the left of the value and going right (frontwards), or is observed 

starting at the right of the value and going left (backwards).  Therefore, encoding the data 

with these RVLC values will allow for the data on both sides of the corrupted portion of 

the signal to be recovered, at which point interpolation methods can be used to 

approximate the values that were not able to be recovered. 

For the purposes of the research done for the implementations being described 

here, the medium used to transmit the data is a packet based bus with a variable length 

payload that has a maximum length of 256 bytes.  The type of bus and the specific 
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properties that it contains are important in determining the best way to package and 

transmit the encoded data.  Each packet that is sent contains both header data as well as 

the payload data.  The header data contains a one byte address specifying the destination 

of the packet, a two byte object address that can be used to specify what type of data is in 

a given packet, and a one byte payload length value that is one less than the actual length 

of the payload (i.e. a one byte payload will have a payload length of zero, and a 256 byte 

payload will have a header payload length of 255).  The packet format described above is 

shown in Figure 4.3. 

1 Byte 2 Bytes 1 Byte 1 - 256 Bytes 

* - In order to be able to indicate lengths of up to 256 using a single byte, the payload 
length sent in the header is the actual payload length - 1.  A payload length of zero 
would mean there was one byte of payload data, and a payload length of 255 would 
mean there were 256 bytes of data in the payload. 

Destination Address Object Address Payload Length* Payload Data 

 
Figure 4.3: Packet format of transmission medium 

 

The first thing to take into account when considering how to package the data is 

how the decoder will be able to identify where an error may have occurred.  While the 

RVLC encoding will allow decoding of the data in both directions, it can not guard 

against a bit flip in the data throwing the decoder off.  Suppose there was a RVLC code 

that had a value of “111” as well as one that had a value of “101101”, and a bit was 

flipped in the second value during transmission causing it to become “111101”.  If the 

decoder was decoding this from left to right, it would read the first three bits and think 

that it found a valid RVLC code of “111”, when in reality the actual RVLC code was 

something else entirely.  This type of bit flip would cause the decoder to wrongly decode 

several values before it got stuck and not be able to decode the remaining encoded data.  
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To address this problem, the last bit in every byte of the transmission packet payload will 

be reserved as a parity bit and will be calculated based on the seven previous bits, as seen 

in Figure 4.4.  When the decoder receives the packet, the first step it will take will be to 

go through the payload data and double check that the parity bit in each byte still has the 

correct value. If the parity is wrong then the decoder knows that the data in that particular 

byte was altered, and will know that any code or portion of a code that was stored in that 

byte can not be accepted as a correct code. 

D D D D D D D P 

Destination Address Payload Length Object Address 

1 Byte 2 Bytes 1 Byte

Payload Data 

1 - 256 Bytes 

1 Byte

D – One bit of encoded data 
P – Parity bit calculated from previous 7 bits of encoded data 

 
Figure 4.4: Structure of each byte of packet payload data 

 
Another problem with reconstructing the original sample values from the DPCM 

encoding is seen when a bit flip occurs in a packet, thereby interrupting the process of the 

decoder keeping a running sum of the DPCM encoded values to reverse the DPCM 

encoding.  The data was encoded in such a way as to allow for as much of the encoded 

data to be recovered as possible when an error like this occurs, but losing even one 

sample is enough to disrupt the ability to recover the original data if the decoder can only 

undo the DPCM encoding from one direction.  The solution to this problem is to use the 

synchronization markers that are already embedded in the transmitted data.  This value 

can simply be decoded by undoing the RVLC encoding, and does not rely on the DPCM 

encoding at all.  This provides a value directly from the original signal, providing a basis 

from which the DPCM values recovered after an error occurs can be decoded, as well as 
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a providing a point from which to restart the DPCM decoding in the next packet.  This 

value is placed in every single packet that is transmitted, and will be the very first value 

packed into the payload portion of the packet for each block of data from each encoding 

segment.  

As the data is encoded, it is packaged into packets of the form previously 

described.  Since the codes used to encode the signal data are different lengths, when 

packaged into the payload portion of the transmission packet the codes will often be 

packaged with portions of the code in sequential bytes.  This is acceptable since the 

decoder first removes the parity bits, and then reformats the data into a single string.  This 

single string is then decoded by reversing the RVLC and DPCM encoding.  After the last 

byte of data for each segment in the encoder is packaged, there will often be a byte that is 

only partially filled.  Values must be provided for all the bits in the byte, but the decoder 

must also be able to know that these extra bits do not contain any encoded data.  In order 

to meet these requirements, a single bit with a value of ‘1’ is always added after last 

encoded data has been packaged for each encoder segment.  Then, if there are any bits 

left undefined in the last byte, they are all filled with ‘0’s.  This will occasionally result in 

an extra entire bit being added when the encoded data fills up the last byte completely.  In 

this case when the extra ‘1’ bit is added, it is placed in an additional byte whose 

remaining bits are filled with ‘0’s except for the last one which is the parity bit.  This 

occasional extra byte is necessary to allow the decoder to know what bits are extra data, 

and which actually contain encoded signal data.  After the decoder removes all the parity 

bits from the encoded data, it looks at the end of the string and ignores all the ‘0’ bits 
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until it sees the first ‘1’ bit.  This ‘1’ bit is also ignored since it is the first extra bit that 

was added in, and the remaining data is then known to contain the encoded signal values. 

The encoding of the full ECG signal requires two or three encoding segments 

depending on which configuration is selected (8-4, 4-6-4, etc.).  This means that data 

from all the segments will have to be encoded in each transmission packet.  The easiest 

way to do this would be to encode all the segments from the first sample together, then all 

from the second sample together, and so on.  This would work if it were not for the fact 

that run length encoding is being utilized.  Since each signal sample is broken up into 

either two or three segments and each segment is encoded separately, a signal sample 

may have one segment be encoded by itself, while another segment is part of a run length 

encoding.  This means that it is not always possible to encode all the segments from a 

single sample together. In addition this could result in different amounts of signal values 

being encoded in each transmission packet.  If an entire packet were to get lost there 

would be no way to know exactly how many sample portions from each encoding 

segment were lost.  

In order to ensure that the decoder can stay synchronized as it decodes the data, 

the encoded data will be packaged so that each encoder segment has its data packaged 

together.  An example of this is shown in Figure 4.5 for a three segment encoder and in 

Figure 4.6 for a two segment encoder.  Since the entire first segment is packaged before 

the next segment(s) are packaged, it is necessary to know how many encoded signal 

samples are going to be packaged in each transmission packet.  The number of encoded 

signal samples encoded in each transmission packet must be kept to a value that allows 

all the data from all the segments to fit in a single transmission packet.   
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Segment 1 Segment 2 Segment 3 

Destination Address Payload Length* Object Address Payload Data 

S S S F F F 

S – Synchronization value placed at start of encoded segment data 
F – Filler data to fill out the remaining bits of last byte of each segment 

 
Figure 4.5: Payload packaging configuration for 3-segment encoder 

  

Segment 1 Segment 2 

Destination Address Payload Length* Object Address Payload Data 

S S F F 

S – Synchronization value placed at start of encoded segment data
F – Filler data to fill out the remaining bits of last byte of each segment  

Figure 4.6: Payload packaging configuration for 2-segment encoder 
 

4.3 Decoding Packets with Errors 

The ability of the decoder to recover from errors depends on several contributing factors.  

The structure of the packet plays a roll in how much data is able to be recovered, but the 

largest contributing factor is the number of bit errors present in a single packet.  The two 

and three segment packet structures shown in Figure 5 (Methodology) and Figure 6 

(Methodology), encode each segment data in such a way as to be independently 

decodable from the other segments in the packet. Each segment contains a 

synchronization marker, and the data from neighboring segments never share space in a 

single byte of data.  However, it is important to keep in mind that portions of the data 

from a single sample of the original ECG signal are spread over all the segments in a 

packet.  If one segment contains an error, then the sample that particular portion of 

corrupted data belongs too will be corrupted. 
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The total number of bit errors that are present in a packet affects the decoder’s 

ability to recover from errors the most.  Figure 4.7 shows a two segment encoder that has 

a single bit error in the packet.  In this case the decoder begins at the beginning of 

segment 1, and decodes until it reaches the location of the error.  Each byte contains a 

single parity bit, so the error can be traced to the specific byte that it occurs in, but not to 

the exact bit.  Once the decoder has reached the error, then it goes to the next packet, 

takes the synchronization marker from the same segment number, and decodes the 

segment with the error in the backwards direction.  With this ability to recover data in 

both directions, a single bit error will only result in a few samples being corrupted, rather 

than having every sample from the bit error to the next resynchronization marker 

corrupted. 

 
 
  
    

Segment 1 Data Segment 2 Data 

Forward Decode Reverse Decode (Using sync marker  
from packet N+1) 

Single Bit Error 

 
Figure 4.7: Payload packaging configuration for 2-segment encoder with single bit error 
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The next consideration would be in the event that there were two errors in a single 

packet.  In this case the amount of data able to be recovered depends on the location of 

the errors.  Figure 4.8 shows the case where one error occurs in each segment of data in 

the two segment encoder.  This case is very similar to the single bit error case since each 

segment is independently decodable.  Each segment is decoded in the forward direction 

up to the error, the resync markers are obtained from the next packet and the segments 

are then decoded in the reverse direction until they again encounter the error.  This again 

allows the recovery of all but a small number of samples affected by the bit errors. 

 
 
 
  

    
Segment 1 Data Segment 2 Data

Forward Decode Reverse Decode (Using sync marker  
from packet N+1) 

Single Bit Error 

 
Figure 4.8: Payload packaging configuration for 2-segment encoder with two bit errors in separate 

segments 

The other option for the two bit error case is if both errors occur in the same 

segment, as shown in Figure 4.9.  This is the case that would cause the most data loss 

since the decoder has no way to decode that data that lies between the two corrupted bits.  

The decoder follows the same method to recover data, first from the forward direction, 

and then from the reverse direction, but all the data between the errors is not able to be 

recovered.  
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Segment 1 Data Segment 2 Data

Forward Decode Reverse Decode (Using sync marker  
from packet N+1) 

Bit Error Bit Error

 
Figure 4.9: Payload packaging configuration for 2-segment encoder with two bit errors in the same 

segment 

For the case where there are three or more bit errors in a single packet, the 

analysis is the same, but with more errors you guarantee that the distance between the to 

furthest apart errors in a single segment will be larger, resulting in a greater amount of 

data being lost. 

4.4 Estimation of Unrecoverable Corrupted Data 
Samples 

While the encoding algorithm presented in this paper allows for lossless encoding and 

exact decoding of the original data this is only truly possible in a perfect environment 

where there are no external influences on the encoded data.  In the situation where the 

signals are encoded, and then transmitted over some medium to another location, there is 

the very real possibility of having errors injected into the packet data during transmission. 

If the transmission is affected in such a way that causes the packet to never reach 

its destination, there is no way the encoding/decoding algorithm can recover the data 

from the lost packet.  The best that could be done strictly from the decoder side would be 

to have a method to estimate the lost data through either linear interpolation, or though 

some method of estimating the data based on previous similar periodic signal data.  The 

transmission scheme could incorporate resend logic that would resend a packet that was 
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not successfully delivered, but this would depend on the transmission technology, and not 

the encoder/decoder implementation presented here. 

Since the signal packet structure, discussed in Section 4.2.6, has synchronization 

markers in every packet, losing an entire packet would not affect the decoder’s ability to 

recover the data from previous or following packets.  If a packet is lost completely, the 

decoder will identify and flag the samples which were not successfully recovered, but 

will continue decoding the remaining packets normally. 

The other case to consider is if a packet is not completely lost, but instead has 

portions of its encoded data corrupted.  The decoder will attempt to decode as much of 

the data as possible, and will then perform a simple linear interpolation to estimate the 

values of the unrecovered samples.  Since DPCM is performed on the ECG signals and 

the difference between the signal values is encoded rather than the signal values 

themselves, it is very likely that a large amount of the upper bits will be all zeros since 

the difference between successive samples is generally pretty small.  This means that if 

an error occurs in the upper bits, even though it may corrupt a number of samples, the 

interpolator will look at the values before and after the error and will perform linear 

interpolation to estimate the values of the corrupted samples.  When the error occurs in 

the upper ‘zero’ bits of the samples, the interpolator will often estimate the ‘zero’ value 

correctly and will result in those samples being recovered exactly. 
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4.5 Identifying Accuracy of Estimated Data 
Samples 

In the discussion in sections 2.2 and 2.3 on previous work done in the area of lossy ECG 

compression, the standard metric used to determine how close the compressed signal is to 

the original is the percent root mean-square difference (PRD) between the two signals.  

The PRD is defined as 
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where X and X̂ denote the original and reconstructed signals respectively, and L denotes 

the total number of samples.   

In 1990 the American Heart Association recommended a goal PRD of 5% for routine 

visual readings of compressed and reconstructed ECG signals [47].  This gives us a 

benchmark with which to compare our results.    
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Chapter 5  

Results 

5.0 Hardware Requirements for the Encoder 
System Configurations 

Though the achieved compression ratios of the individual encoder system configurations 

are important in determining which system configuration is the optimal solution, the 

hardware requirements of each configuration must also be taken into account. In some 

cases it may be necessary to sacrifice a small amount of compression performance if it 

meant that the hardware requirements would be significantly lower, or vice versa. The 

hardware requirements for each system configuration was obtained both for the 

implementation that had the ability to recalculate the code tables during compression, and 

for the implementation that used a single code table to compress the entire signal.   

The encoding system was targeted for implementation in the Xilinx Spartan-3e 

(XC3S1200E) FPGA device [48].  This device contains 60 CLB rows by 46 CLB 

columns, for a total of 2,168 CLB’s.  Each CLB in this family of devices contains four 

slices, and each slice contains two look-up tables to implement logic, and two dedicated 

storage elements that can be used as flip-flops or latches.  This equates to a total of 

17,344 LUTs/Flip-Flops or 19,512 equivalent logic cells.  The device contains 8,762 bits 

of RAM16/SRL16, and 138,752 distributed RAM bits.  Table 5.1 and Table 5.2 list the 

hardware requirements for each segment configuration of the 12-bit encoders. Table 5.3 

and Table 5.4 lists the hardware requirements for each segment configuration of the 16-

bit encoders. 
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Configuration Flip-Flops (%) Slice (%) LUT (%) Pwr (50 MHz) Pwr (1 MHz) 
4-8 1425 8% 3113 35% 5426 31% 42.78 mW 23.82 mW 
8-4 1426 8% 3171 36% 5503 31% 43.11 mW 23.99 mW 
6-6 1409 8% 3720 37% 5774 33% 41.96 mW 23.57 mW 

4-4-4 1664 9% 2791 32% 4809 27% 54.47 mW 29.19 mW 
Table 5.1: Resource and power utilization for 12-bit ECG signal encoder configurations using  

System A segment encoders 
 
 

Configuration Flip-Flops (%) Slice (%) LUT (%) Pwr (50 MHz) Pwr (1 MHz) 
4-8 582 3% 971 11% 1705 9% 18.17 mW 8.70 mW 
8-4 583 3% 969 11% 1700 9% 19.31 mW 8.76 mW 
6-6 578 3% 769 8% 1302 7% 17.47 mW 8.51 mW 

4-4-4 715 4% 899 10% 1500 8% 19.01 mW 9.13 mW 
Table 5.2: Resource and power utilization for 12-bit ECG signal encoder configurations using  

System B segment encoders 
 
 
 

Configuration Flip-Flops (%) Slice (%) LUT (%) Pwr (50 MHz) Pwr (1 MHz) 
8-8 1662 9% 4169 48% 7295 42% 48.17 mW 26.18 mW 

4-4-8 1922 11% 3929 45% 6813 39% 51.50 mW 29.70 mW 
4-8-4 1922 11% 3930 45% 6815 39% 54.75 mW 30.49 mW 
8-4-4 1922 11% 3925 45% 6807 39% 51.74 mW 29.69 mW 
4-6-6 1904 10% 3970 45% 6935 39% 54.44 mW 30.41 mW 
6-4-6 1901 10% 3973 45% 6933 39% 54.65 mW 30.77 mW 
6-6-4 1898 10% 4050 46% 7083 40% 54.26 mW 30.63 mW 

Table 5.3: Resource and power utilization for 16-bit ECG signal encoder configurations using  
System A segment encoders 

 
 
 

Configuration Flip-Flops (%) Slice (%) LUT (%) Pwr (50 MHz) Pwr (1 MHz) 
8-8 614 3% 1011 11% 1720 9% 20.70 mW 8.76 mW 

4-4-8 777 4% 1160 13% 1945 11% 24.69 mW 9.02 mW 
4-8-4 777 4% 1159 13% 1945 11% 21.79 mW 9.03 mW 
8-4-4 777 4% 1161 13% 1951 11% 20.62 mW 9.01 mW 
4-6-6 766 4% 984 11% 1623 9% 20.00 mW 8.88 mW 
6-4-6 768 4% 985 11% 1615 9% 19.74 mW 8.83 mW 
6-6-4 770 4% 984 11% 1615 9% 19.09 mW 8.84 mW 

Table 5.4: Resource and power utilization for 16-bit ECG signal encoder configurations using  
System B segment encoders 

 
 

The systems that used code table recalculations obviously required significantly 

higher hardware resources since there was considerably more logic involved to generate 

the histograms, perform the sorting of the histograms, and to perform the Huffman and 

RVLC encoding. On the other hand, among all the hardware configurations that 
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implemented RVLC table recalculations, there was no significant variation in the 

required hardware resources.  

 The systems that did not perform RVLC code table recalculations required 

significantly fewer hardware resources. Furthermore, we did not find significant 

variations among different configurations. This indicates that the size of the hardware 

should not be the deciding factor in choosing what configuration to use.  Instead, the 

choice can be made simply by determining what configuration provides the best 

compression performance.  

5.1 Results for System A and System B Encoding 
Configurations 

Compression of each of the sixteen signals selected for the 12 and 16-bit ECG 

representations was performed and the results analyzed to determine which encoding 

configuration provided the best results, and whether having periodic code table 

recalculations was beneficial for these types of signals.  Each of the ECG signals was pre-

processed and code tables for each signal and system configuration combination were 

generated based on the first 10,000 samples (~10 minutes). When each signal was 

encoded in each of the individual segment configurations, the pre-processed code tables 

generated from that signal for that configuration was loaded into the memory for the 

encoder to use until the system could recalculate the code tables on its own. Here, we 

report results first from use of the optimum code tables (the code tables generated from 

the signal being compressed), and then from the use of any set of code tables (from the 

12-bit signals) to encode any of the 12-bit signals and the same for the 16-bit signals.  
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5.1.1 Encoding of 12-Bit ECG Signals with Optimal 
RVLC Code Tables 

Figure 5.1 shows a comparison of the compression ratios for each of the 12-bit ECG 

signals when compressed using each of the different encoding segment configurations.   

 
Figure 5.1: Compression ratio results for 12-bit encoding with optimal Huffman codes. For each 

encoding configuration, a boxplot is used to summarize the variation. Here, each box indicates the 
25th percentile, the median, and the 75th percentile. The whiskers extend to the extreme values. 
Based on the combination of independent encoders, we have four possibilities. For example 4-8 
implies the use of a 4-bit encoder for the most significant bits and an 8-bit encoder for the least-

significant bits. 

When using optimal RVLC code tables computed for each ECG signal, the 6-6 

encoder configuration provided the best overall compression results. To see if there are 

significant differences when using the same RVLC table to encode the entire signal, we 

present results for the 6-6 encoder configurations in Figure 5.2. From Figure 5.2, it is 

clear that there is no significant gain from re-calculating optimal RVLC tables for each 
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ECG signal. Instead, it makes sense to compute optimal RVLC tables once, and then use 

the same optimal code tables for all other ECG signals. 

 
Figure 5.2: Compression ratios of 12-bit signals both with (System A) and without (System B) RVLC 

code table recalculations. 

5.1.2 Encoding of 12-Bit ECG Signals without Code 
Table Recalculations 

From Figure 5.2, we saw that when the signals were encoded using their own pre-

calculated code tables and had no code table recalculations that the performance was 

almost identical to when code table recalculations were used.  However, what if we didn’t 

want to have to calculate a specific code table for each individual signal?  It may be 

possible that from a subset of similar signals, a universal code table could be generated 

that would provide close to the same compression results.  To investigate this possibility, 
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we will take each signal and compress it 16 times using its own code table, and the code 

tables from each of the other 12-bit signals.   

The results from encoding each of the 16 signals with code tables from each of 

the 16 signals are displayed in Figure 5.3.  The line in the center of the box indicates 

where the 50th percentile, and the top and bottom of each box indicate where the 75th and 

25th percentile is respectively.  Significant outliers are shown in the red plus sign.  For 

additional reference, the black diamonds show the compression ratio for each signal 

when its own code table was used. 

 

 
Figure 5.3: Range of compression ratios for 6-6 segment encoding configuration when code tables 

from each of the other 12-bit signals are used, compared against CR’s when the optimal code tables 
were used (black diamonds) 
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  When we inspect the results shown in Figure 5.3, we see that while each signal 

generally achieves close to its best compression performance is when its own code table 

is used.  However, the results from when other code tables are used are only fractionally 

less, with a very small standard deviation.  This indicates that the code table from any 

other similar signal may be used to encode a particular signal without the fear of having 

the overall compression results suffer significantly.  Or, if given a subset of similar 

signals, a single code table could be calculated from this set of signals that would achieve 

very satisfactory results on the entire set of signals. 

5.1.3 Encoding of 16-Bit ECG Signals with Code Table 
Recalculations 

Similar to the 12-bit case, compression of each of the sixteen signals selected for the 16 

bit ECG signals was encoded with periodic code table recalculations and a comparison of 

the results are displayed in Figure 5.4.   
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Figure 5.4: Compression ratio results for 16-bit encoding with optimal Huffman codes. For each 

encoding configuration, a boxplot is used to summarize the variation. Here, each box indicates the 
25th percentile, the median, and the 75th percentile. The whiskers extend to the extreme values. 
Based on the combination of independent encoders, we have four possibilities. For example 8-4-4 

implies the use of a 8-bit encoder for the most significant eight bits and an two 4-bit encoders for the 
least-significant eight bits. 

As seen from Figure 5.4, for the 16 bit ECG signals, the compression system 

configured in the 8-8 bit segment configuration provided the best average compression 

results.  But once again this does not tell us what value, if any, performing periodic code 

table recalculations provides.  In order to determine if the code table recalculations 

provide any value, the same set of 16-Bit signals will again be compressed without 

including the hardware to recalculate the codes.  This will allow for a comparison of the 

compression results and hardware usage of both versions of the encoding system to 

determine which one provides the best combination of compression results and hardware 

usage. 
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Figure 5.5 shows the compression ratios of each of the 16-bit signals encoded 

twice using the 8-8 segment configuration. The first set of results was plotted with the 

signals having their pre-calculated code tables pre-loaded in memory, and then their code 

tables recalculated every 10,000 samples (~39 seconds apart).  Secondly, the same set of 

signals was again encoded using their pre-calculated code tables, but this time the single, 

pre-loaded, set of code tables was used to encode the entire signal.  Looking at these 

results shows that there was virtually no benefit to recalculating the code tables.  Only 

signals had a noticeably higher compression ratio when the code tables were recalculated, 

and a couple actually achieved better compression results with no code table 

recalculation.  Overall, the difference between the two sets of results is not significant 

enough to warrant including the extra hardware required to perform the code table 

recalculations. 
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Figure 5.5: Compression ratios of 16-bit signals both with (System A) and without (System B) RVLC 

code table recalculations. 

5.1.4 Encoding of 16-Bit ECG Signals without Code 
Table Recalculations 

From Figure 5.5, we saw that when the signals were encoded using their own pre-

calculated code tables with no code table recalculations that the performance was almost 

identical to when code table recalculations were used.  Similar to the 12-bit case, it would 

be useful to determine if a single code table could be generated from a subset of similar 

signals, and be used on a larger set of signals while still achieving close to the same 

compression results.  To investigate this possibility, we will take each signal and 

compress it 16 times using its own code table, and the code tables from each of the other 

16-bit signals.  
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The results from encoding each of the 16 signals using code tables from each of 

the 16 signals are displayed in Figure 5.6.  The line in the center of the box indicates 

where the 50th percentile, and the top and bottom of each box indicate where the 75th and 

25th percentile is respectively.  Significant outliers are shown in the red plus sign.  For 

additional reference, the black diamonds show the compression ratio for each signal 

when its own code table was used. 

  
Figure 5.6: Range of compression ratios for 88 segment encoding configuration when code tables 

from each of the other 16-bit signals are used, compared against CR’s when the optimal code tables 
were used (black diamonds) 

When we inspect the results shown in Figure 5.6, we see that while each signal 

generally achieves close to its best compression performance is when its own code table 

is used.  However, the results from when other code tables are used are normally only 

fractionally less, with a very small standard deviation.  This indicates that the code table 
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from any other similar signal may be used to encode a particular signal without the fear 

of having the overall compression results suffer significantly.  Or, if given a subset of 

similar signals, a single code table could be calculated from this set of signals that would 

achieve very satisfactory results on the entire set of signals. 

5.2 Evaluation of Error Recovery Capabilities of 
ECG Signal Decoder 

In order to evaluate the performance of the decoder when one or more bit errors are 

present in a packet, we performed a series of simulations where the decoder decoded the 

signals with different amounts of errors injected into the encoded packets. In section 4.3 a 

discussion was provided on how the sample loss rate would be affected by different 

amounts of bit errors.  In this evaluation we will consider packet corruption rates of 1%, 

5%, and 10%.  For each packet corruption rate we will first insert single bit errors, and 

then insert two bit errors per corrupted packet and compare the difference in the number 

of unrecovered samples.  While the number of unrecovered samples is an important 

metric, we will also be looking at the PRD values of the estimated samples to see how 

close the estimation was to the original sample values.  This will allow us to evaluate not 

only how many samples were unrecovered, but also what the likelihood is that the 

estimated samples will fall within an acceptable range that will still allow for accurate 

diagnosis of the ECG signal. 
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5.2.1 Decoding Analysis of 12-Bit ECG Signals with 
Injected Errors 

Each encoded 12-Bit signal was injected with errors and then run through the decoder, 

and the total amount of unrecovered samples was recorded.  This was done 15 times per 

signal for each of the different packet corruption rates.  The first two plots in Figure 5.7 

show the results for both one and two bit errors per corrupted packet.  The third plot 

shows the single bit case again, but this time the decoder performed only frontwards 

decoding, but did not perform backwards decoding.  This means that the decoder 

recovered data up to where the error occurred, but could not recover any data from the 

packet after the error occurred since the reverse decoding was disabled.  This shows the 

improvement in the amount of recovered data that is attributed to being able to decode 

the packet from both directions. 
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(a)                              (b)                        (c) 

Figure 5.7: Average number of unrecovered samples at different error rates for 12-bit signals. (a) 
Results with 1 bit error per corrupted packet. (b) Results with 2 bit errors per corrupted packet. (c) 

Results with 1 bit error per corrupted packet and only decoded in the frontward direction. 
 
For the case where a single bit error was injected into each 

corrupted packet, the average number of samples exactly decoded samples 
from the entire signal was above 99% for each packet error percentage.  
For the case where two bit errors were injected into each corrupted packet, 
the amount of exactly decoded samples was 96% or higher for all selected 
packet corruption rates.(a)                              (b)                        (c) 

Figure 5.8 shows a series of boxplots of the PRDs of the error injected signals 

after they have been restored, with any unrecoverable samples being estimated using 

linear interpolation.  This shows that for the given cases, the average PRD remained 

below 5% while the percentage of corrupted packets was 10% or below.  
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(a)                              (b)                        (c) 

Figure 5.8: Average PRD of restored 12-bit signals with errors introduced. (a) PRD results with 1 bit 
error per corrupted packet. (b) PRD results with 2 bit errors per corrupted packet. (c) PRD results 

with 1 bit error per corrupted packet and only decoded in the frontward direction. 
 
 

5.2.2 Decoding Analysis of 16-Bit ECG Signals with 
Injected Errors 

Each encoded 16-Bit signal was injected with errors and then run through the decoder, 

and the total amount of unrecovered samples was recorded.  This was done 15 times per 

signal for each of the different packet corruption rates.  The first two plots in Figure 5.9 

show the results for both one and two bit errors per corrupted packet.  The third plot 

shows the single bit case again, but this time the decoder performed only frontwards 

decoding, but did not perform backwards decoding.  This shows the improvement in the 

amount of recovered data that is attributed to being able to decode the packet from both 

directions. 
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(a)                              (b)                        (c) 

Figure 5.9: Average number of unrecovered samples at different error rates for 16-bit signals. (a) 
Results with 1 bit error per corrupted packet. (b) Results with 2 bit errors per corrupted packet. (c) 

Results with 1 bit error per corrupted packet and only decoded in the frontward direction. 

Again we calculate the percentage of the signal that is exactly recovered to give a 

different view of our results. For the case where a single bit error was injected into each 

corrupted packet, the average number of samples exactly decoded from the entire signal 

was above 99% for each packet error percentage.  For the case where two bit errors were 

injected into each corrupted packet, the amount of exactly decoded samples from the 

entire signal was above 97% or higher for all packet corruptions rates. 

Figure 5.10 shows a series of boxplots of the PRDs of the error injected signals 

after they have been restored, with any unrecoverable samples being estimated using 
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linear interpolation.  This shows that for the given cases, the average PRD remained 

below 5% while the percentage of corrupted packets was below 10% or lower. 

 
(a)                              (b)                        (c) 

Figure 5.10: Average PRD of restored 16-bit signals with errors introduced. (a) PRD results with 1 
bit error per corrupted packet. (b) PRD results with 2 bit errors per corrupted packet. (c) PRD 

results with 1 bit error per corrupted packet and only decoded in the frontward direction. 
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Conclusions 

In this thesis, the objective of designing and implementing a low-energy, error resilient, 

scalable, lossless ECG encoder was attained.  Two systems (System A and System B) 

were investigated with the first having the ability to recalculate the code tables at various 

points during the encoding of the ECG signal, and the second using a pre-defined set of 

code tables to encode the entire signal.  The results from both systems showed that the 

system that used a single set of code tables for the entire signal (System B), and therefore 

required significantly less resources, performed as well as System A.   

  In addition, corruption of the data packets during transmission was simulated and 

the ability of the decoder to recover as much data as possible was tested.  The samples 

that were not able to be exactly recovered were estimated using linear interpolation to 

provide values as close to the originals as possible.  For single bit errors the average 

number of unrecovered samples per corrupted packet was less than three samples, and the 

average PRD was within a few percentage points of the 5% PRD recommended for 

recovery of an entire signal when the packet corruption rates were 10% or less.  This held 

true for both the single and double bit error cases.  Overall, when a single bit error was 

injected per corrupted packet, the decoder was able to exactly recover over 99% of the 

samples at any packet corruption rate, and for the case where two bit errors were injected 

into each corrupted packet the recovery rate of the samples from the entire signal was 

above 96% for both the 12 and 16-bit representations.. 

  Both versions of the ECG encoding system were implemented in VHDL and 

targeted towards the Xilinx Spartan-3e (XC3S1200E) FPGA device.  The implementation 
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of the encoding systems in this technology is easily transferrable to future generations of 

FPGAs. 
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Future Work 

 Investigate more advanced methods of interpolating the corrupted samples to 

further improve signal reconstruction 

 Investigate scrambling the encoded data prior to transmission in order to 

minimize the effect of burst errors 

  Port design to a VLSI hardware platform to further reduce power requirements, 

and integrate with existing portable telemedicine systems, especially wearable 

ECG monitoring systems for detecting abnormal heart beats 

 Explore implementation into other similar non-ECG systems 
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