
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

9-29-2010

Cost Effectiveness Analysis in Orthopaedic Surgery
Husham Sharifi

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Sharifi, Husham, "Cost Effectiveness Analysis in Orthopaedic Surgery" (2010). Yale Medicine Thesis Digital Library. 161.
http://elischolar.library.yale.edu/ymtdl/161

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/161?utm_source=elischolar.library.yale.edu%2Fymtdl%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


 

 

 

 

Cost Effectiveness Analysis in Orthopaedic Surgery 

 

 

 

 

A Thesis Submitted to  

Yale University School of Medicine 

In Partial Fulfillment of the Requirements for the 

Degree of Doctor of Medicine 

 

 

 

by 

Husham Sharifi 

2010 

 

 



 2 

Abstract 

COST EFFECTIVENESS ANALYSIS IN ORTHOPAEDIC SURGERY.  

Husham Sharifi and Mohammad Diab. Department of Orthopaedic Surgery, University of 

California at San Francisco, San Francisco, CA. (Sponsored by Jonathan Grauer, Department of 

Orthopaedic Surgery, Yale University School of Medicine.) 

 

The purpose of this thesis was to explore the use of cost effectiveness for interventions in 

orthopaedics. This was done through three cost effectiveness articles that have been published by 

the author. In each of these articles, similar methodologies were used. Decision models were 

constructed for cost-effectiveness analyses of competing orthopaedic interventions. Outcome 

probabilities and effectiveness values were derived from the literature. Effectiveness was 

expressed in quality adjusted life years gained. Cost data were compiled and verified from either 

hospital cost data or from Medicare data. Costs and utilities were discounted in accord with the 

United States Panel on Cost Effectiveness in Health and Medicine. Principal outcome measures 

were average incremental costs, incremental effectiveness, incremental quality-adjusted life 

years, and, in the case of one article, net health benefits. In particular the articles compared the 

following: 1. Core decompression versus conservative management for osteonecrosis of the hip 

as a way to delay hip replacement; 2. Total knee arthroplasty versus unicompartmental knee 

arthroplasty; and 3. Periacetabular osteotomy versus total hip arthroplasty for a young adult with 

developmental dysplasia of the hip. The more cost effective intervention was identified in each 

case, along with implications of the results for clinical and operative decision-making. Cost 

effectiveness was found to be a useful tool in orthopaedic surgery under limited circumstances of 

either scarce data on new interventions or the need to use more resources to achieve greater 

effectiveness. It also can provide excellent insight into ways to direct future clinical research. 
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Introduction 

The goal of clinical research is identify issues of concern to doctors and answer the questions that 

those issues raise [1]. Randomized trials are the gold standard for providing these answers [2]. 

Unfortunately, randomized trials pose several inherent difficulties to structure, especially in 

orthopaedic surgery. Most surgeries in orthopaedics have outcomes that are durable. They last for 

years without any need for revision. A randomized trial would need to follow patients over an 

extended span of time, which can be logistically complex. The problem becomes even more 

challenging when one tracks a cohort large enough to achieve statistical significance. Even if 

these challenges could be surmounted, they would not provide answers until long into the future. 

Decisions still need to be made in the short and medium term. The expertise that comes from 

experience can be used for interim decisions, and that expertise can be supplemented by decision 

analysis.  

 

The typical use of decision analysis in economic circles has been to assess competing alternatives 

for achieving a common endpoint. Its use in orthopaedic surgery is to quantify variables for 

patient outcome and apply these numbers to a model that adequately represents reality [3-5].  To 

understand how this is the case, one must first have a clear definition of decision analysis. 

Decision Analysis  

The core idea of decision analysis is that resources are finite and that patient benefit must be 

maximized given finite resources. This differs from regular clinical judgment in that the 

information is quantified and the steps of the decision are put into a model. The model usually 

takes the form of a decision tree, with the choice under consideration at the base of the tree. The 

tree is built from left to right by adding successive branches. Each branch is made at a node, and 

each node has an outcome. Outcomes are quantified in a way that represent value for the patient. 
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In its simplest form a decision tree has only one decision to make, that of the first branch. In 

orthopaedic surgery this usually means choosing one surgical technique over another. All 

successive branches are constituted by chance nodes, in which each node is assigned a probability 

of occurring based on the chance of a certain outcome. The chance may be determined by a 

complication rate and a consequently mediocre outcome, by no complications and a consequently 

excellent outcome, by needing a revision, by death, or in fact by any clinically relevant event.   

 

In building such a tree the burden of approximating reality is on the modeler. The outcomes and 

probabilities must come from the best possible evidence. When randomized trials are not 

available, other sources may be suitable. Observational trials constitute such a source, as do 

registries and claims databases. The latter may be especially useful with respect to cost 

calculations. All these must be accessed through a systematic review of the literature. Systematic 

review may already have been done in a database such as the Cochrane database, or it may need 

to be done by the modeler. Inclusion and exclusion criteria should be determined beforehand and 

should be transparent to anyone looking at the model. The goal of the literature review is to find 

clinically relevant outcomes and probabilities. Although a decision tree is formed before the onset 

of reviewing the literature, it should be continuously revised to reflect clinical reality as closely as 

possible. The literature review itself can help iterate and improve the tree.   

 

Just as the exclusion/inclusion criteria should be transparent, the results of the literature review 

should be transparent. In fact they should comprise part of the reported methodology. In the ideal 

case the modeler would present a meta-analysis in which effect size is calculated according to a 

meta-regression. Study characteristics would be statistically controlled when calculating overall 

averages. In reality most decision analysis studies will compile simple means. There will also be 

cases in which the literature does not provide adequate results. This may be especially true for 
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quantified measurements of health outcomes. In such a case one may need to rely on expert 

opinion (i.e., the opinion of an experienced doctor involved in the modeling effort). 

 

The quantification of health outcomes is in fact one of the more difficult tasks in developing a 

decision analysis. One may try to achieve objectivity by measuring an outcome as the absence of 

a well-known complication. In cardiology, for example, this could be the measurement of 

whether ventricular remodeling occurs after a myocardial infarction. The administration of an 

ACE inhibitor reduces the probability of such a complication. The percentage of patients who do 

not have ventricular remodeling would be the outcome. There are many limitations to such an 

approach, a discussion of which is outside the scope of this thesis.  

 

The trend among researchers in the field of decision analysis is to include outcomes that represent 

the value experienced either by the patient directly or by society at large. To be specific, an extra 

year of life in a vigorous state of health may have a higher value for a patient than an extra year 

spent undergoing chemotherapy. That year may also be valued differently by society, which loses 

the benefit of an individual’s contributions and, in some form, incurs the cost of treatment. 

Conventional opinion is that the best way to capture these differences is in the form of quality 

adjusted life years (QALYs) [6-8]. Numerically, QALYs are defined as the extra years of life 

achieved by the patient multiplied by a utility that represents the quality of living during those 

years. The utility is measured on a scale of 0 to 1, with 0 being death and 1 being the highest 

possible quality of life. In most cases these utilities are obtained from the patients themselves, 

using measurement techniques such as time tradeoff and standard gamble [6]. In a minority of 

cases, utilities are determined by a proxy for the patient, such as the doctor [9, 10]. There are 

questionnaires that assess utility, such as EuroQoL and the Short Forms. Additionally, there are 

new methods that translate Short Form 36 and Short Form 12 into utilities that range from 0 to 1 

[11].  
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The next step is to cull the literature for probability rates of possible outcomes. The process for 

doing so is described above, and often the effort of finding appropriate outcomes leads one to 

discover corresponding probabilities and complications. This activity helps to fill in and further 

develop the decision tree. Once all of these data are established and appropriately modeled, one 

can run the tree. It can be run as a Markov model, if the states under consideration are best 

represented as iterations over an extended period of time. Alternatively, it can be run as a static 

decision tree, in which final outcomes – that is, outcomes at the far right of the tree – are 

multiplied by the probability of the branch that leads to them. These are then represented on the 

node that gives rise to the branch. The process is continued with probabilities and branches that 

precede each node. It is repeated until the single decision at the left-most side of the tree is 

reached. That yields a utility of one decision versus another, which in orthopaedics means one 

procedure versus another. 

 

Such a static model is of course restrictive. Even with the most careful literature review and the 

most conscientious model development, one still does not capture even a small fraction of clinical 

reality. Sensitivity analysis offers enough flexibility to address this problem. Input for the model 

is varied along clinically relevant ranges, which is defined both from the literature and from 

expert opinion of doctors in the field. When limited evidence supports a particular variable, the 

range for the sensitivity analysis should be broad. When an abundance of evidence exists, the 

range can be narrow. In all cases the robustness of variables is assessed. Robustness determines 

how much a result depends on a specific variable. A result depends greatly on the value of a 

sensitive variable; it depends very little on the value of a robust variable. Put differently, a small 

change in a sensitive variable produces a large change in the final result. A large change in a 

robust variable produces a small change in the final result. Such an understanding of the model 

comes from one-way, univariate sensitivity analysis – that is, changing one variable at a time and 
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seeing what the consequent model outcome is. Whenever possible, one should also perform 

multivariate sensitivity analysis in which 2 or more variables are changed simultaneously and 

consequent model outcome is assessed. Even for weak models, this activity allows doctors to use 

results in a way that is much more likely to reflect the reality they face from day to day. 

 

The entire process that has been described is in fact not cost effectiveness analysis. (See 

Appendix A for the distinction between cost effectiveness and cost utility.) It does not include 

cost. The inclusion of cost may appear simple at face value; in reality it poses tremendous 

challenges. First, one must decide whether they use readily available charge data, such as is 

published in Medicare diagnostic related groups (DRGs). These rarely reflect the actual 

expenditure to the care provider, and the difference can be either an underestimate or an 

overestimate. More accurate estimations often require permission to review hospital financial data 

and are more difficult to access. Fortunately, the accounting software of the hospital’s financial 

department does an adequate job of assessing the resources used by an institution for a given 

procedure.  

 

The other challenge is the perspective from which cost is calculated. The cost incurred by the 

individual is different than the cost incurred by the health care system. Premium-based insurance 

plans in fact create incentives for direct conflict between these two. Furthermore, the cost 

incurred by society is a third cost altogether. One way to grapple with the issue is to separate 

direct costs and indirect costs. Direct costs includes goods, services, and other resources that were 

consumed in the provision of care. Indirect costs include issues such as opportunity costs, which 

measure what cost an individual incurs when losing one opportunity in order to benefit from 

another opportunity. For example, a woman who misses several days of work to undergo a 

procedure benefits from the procedure but loses some amount of wage earnings. Another example 

of an indirect cost is when a spouse must spend time taking care of a patient in the post-operative 
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period instead of participating in other activities. In essence indirect costs capture the idea of cost 

from the perspective of society. For this reason they are favored by practitioners of cost 

effectiveness.  

 

The assessment of indirect costs can be daunting. There is admittedly no satisfying solution, as of 

the writing of this thesis, to the challenge. It appears to be a common problem in the world of 

modeling outside of medicine as well, which suggests that it may be inherent to the methodology 

of decision analysis. Some physicians suggest that the calculations produced by hospital 

accounting software serve as adequate proxies for cost from a societal perspective, which 

includes indirect costs [6, 7]. 

 

The final step in the inclusion of cost is to ensure that monetary values accurately reflect the 

value of money in the present day. In the world of finance, there is enough liquidity and 

transparency in currency exchange that we can roughly assess the value of a currency with 

respect to goods and other currencies. This results in historical records of the changing value of 

money, which in the US has been a rate of inflation of 2-5% for the last 25 years. When data on 

outcomes are gathered, they must be discounted by a percentage rate that takes into account the 

real devaluation of our currency. The model can then use cost data expressed in current dollar 

values. The same requirement applies to projections into the future. Convention dictates that both 

costs and utilities should be discounted at approximately 5% [6, 7]. 

 

Decision analysis in orthopaedic surgery 

Orthopaedic surgery as a field can benefit from decision analysis as it is described above. The 

following 3 articles illustrate the use of cost effectiveness analysis, with the application of the 

principles that have been laid out. These articles are the product of research conducted and 
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published by the author of this thesis. The first article analyzes the cost effectiveness of core 

decompression of a hip with osteonecrosis as a way to delay hip replacement. The second article 

analyzes the cost effectiveness of total knee arthroplasty versus unicompartmental knee 

arthroplasty. The third article analyzes the cost effectiveness of periacetabular osteotomy versus 

total hip arthroplasty in the treatment of the young adult with developmental dysplasia of the hip.  
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Methods 

Cost-effectiveness Analysis of Core Decompression 

General Framing and Design 

This cost-effectiveness analysis follows the methodological guidelines of the Panel on Cost 

effectiveness in Health and Medicine convened by the US Public Health Service in 1993[6]. The 

panel outlined an explicit set of recommendations in a reference case analysis. These reference 

case guidelines established a common set of standards to improve the comparability of cost-

effectiveness analyses. Issues addressed in the reference case analysis include standard practices 

for framing and perspective of the study, identification of outcomes, estimation of costs, and 

testing of uncertainty [6]. This study was constructed adhering to these standards.  

 

Consistent with the reference case guidelines, this analysis compares the cost-effectiveness of 

core decompression to the commonly accepted treatment alternative of observation in the early 

stages of osteonecrosis. This analysis assumes a target patient population seeking treatment of 

femoral osteonecrosis at the age of 40 years. The time horizon of this analysis encompasses the 

remaining life expectancy for this target population.  

 

The cost effectiveness ratios for observation and core decompression were analyzed from the 

societal perspective. The boundary of the analysis is limited to the costs and health effects 

directly impacting the target population. Estimates of costs, effectiveness, and the probability of 

various outcomes were obtained from literature review.  

 

Literature Review 
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Literature review was used to construct the event pathways following observation and core 

decompression. A literature search identified 269 articles between 1978 and 2004 using the 

keywords osteonecrosis, decompression, hip, and outcome. Seventy- eight articles were identified 

as relevant to the treatment of osteonecrosis with either core decompression or observation. 

Fifteen publications were review articles and excluded from further analysis. The remaining 

articles were assessed on their quality. We excluded articles with fewer than 50 subjects. 

Additional criteria used to select articles included adequate reporting of magnetic resonance 

imaging staging and standardized surgical technique. A total of 11 studies were identified and 

selected for abstraction using these criteria. A summary of the abstracted data are included in 

Appendix B. 

 

Decision Model 

Decision tree software (TreeAge Pro; TreeAge Software Inc, Williamston, Mass) was used to 

create a model for the treatment of femoral head osteonecrosis [8, 12-17]. A simplified schematic 

of the decision tree is shown in Figure 1. The model begins with the decision for either 

observation or core decompression. Literature review was used to identify possible outcomes and 

their probability after each of these treatment alternatives. These event pathways were 

incorporated as branches in the decision tree. This model assumed a target population of patients 

seeking treatment of osteonecrosis at the age of 40 years. This age is consistent with the typical 

age at which core decompression is performed for osteonecrosis of the hip [18]. The time horizon 

of the model follows events through the remaining life expectancy of 39 years for this age group 

[19]. The event pathway for observation follows the clinical course of patients with early 

osteonecrosis and assumes that they become symptomatic and require THA after a 2-year period. 

This period is consistent with the natural history of osteonecrosis [18, 20, 21].  
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QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

 

Figure 1: Simplified schematic of decision model for the treatment of femoral head osteonecrosis 

 

The event pathways following core decompression were constructed following literature review. 

There has been a wide range of results reported on the efficacy of core decompression [22-30]. A 

reference case was created and assumed a period of 10 years before the need for primary hip 

arthroplasty after core decompression compared with 2 years with observation. This assumption 

is consistent with the more favorable reports of the results of core decompression. The efficacy of 

core decompression in delaying hip arthroplasty for this duration has not been definitively 

established in the published literature. Given this uncertainty, the effects on the cost-effectiveness 

of core decompression of both shorter and longer assumptions for its efficacy are examined in the 

sensitivity analysis. The primary complication included in the model following core 

decompression is subtrochanteric hip fracture requiring operative intervention. This complication 

has been infrequently reported, but rates as high as 5% have been published [22-30]. An 

intermediate value of 2% was selected for the reference case, and sensitivity analysis was used to 

examine the effect of rates in the range of 0% to 5%.  

 

Subsequent events after observation and core decompression are modeled to include the potential 

need for hip arthroplasty and revisions over the lifetimes of the target population. Complications 

after hip arthroplasty include dislocation, infection, and death [31]. The decision model 
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incorporates the need for subsequent hip revision surgery and the possible complications that can 

arise. The incidence of complications is assumed to increase with subsequent revision procedures, 

whereas the durability of revision arthroplasty is assumed to decrease relative to primary 

arthroplasty [32-34]. The probabilities of infection, dislocation, and mortality used in this model 

are shown in Table 1. The rates of these complications were selected to fall in the midrange of 

estimates reported in the literature. Most studies have reported rates of infection leading to 

implant failure near the value of 1% used in the reference case of this study [32, 33, 35, 36]. 

Mortality and dislocation rates have not been as definitively established. The reference case of 

0.5% for mortality is consistent with the low rates generally reported [37]. The dislocation rate of 

2.5% used in the reference case is consistent with reports of large database studies [31, 33]. 

Sensitivity analysis was used to address the uncertainty of these assumptions for complication 

rates by examining the effect of higher and lower rates on the results. 

 

Complication Probability (%) 

Complication rate primary THA 4 

Infection 1 

Dislocation 2.5 

Mortality 0.5 

Complication rate revision THA 10 

Complication rate second or third revision THA 15 

Table 1: Complication Rates Used in Decision Model After THA 

 

Effectiveness 

This study is a special case of cost-effectiveness analysis termed cost-utility analysis. Cost-utility 

analyses are differentiated by the fact that effectiveness is measured in units that incorporate a 



 16 

subjective measure of utility such as quality adjusted life years (QALYs). The treatment of 

osteonecrosis has limited effect on survival but does result in significant changes in the quality of 

life of patients. The use of QALYs to measure effectiveness allows the survival of patients in 

different health states to be corrected for health related quality of life using a utility factor.  

 

Utility factors were assigned to all health states in the model to adjust survival for quality of life. 

The reference case guidelines define utility along a continuum with a factor of 1.0 representing 

perfect health and a factor of 0.0 representing death [6] . Specific utility values for each health 

state in this study were assigned following a literature review. Table 2 lists the health states 

included in the decision model along with their corresponding utility values. Large-scale studies 

have used questionnaires to establish utility values for a variety of health states. Arthritis has 

consistently been shown to have a utility value near 0.7 [11, 38-40]. Knee and hip arthroplasties 

have been shown to increase quality of life weightings close to normal values. Based on these 

studies, this analysis uses a utility value of 0.9 for successful hip arthroplasty. Revision 

arthroplasty is given a lower utility value to reflect the diminished clinical results compared with 

primary arthroplasty. The utility values used for resection arthroplasty and surgical complications 

were also identified in literature review.  

 

Health state Utility value 

Primary THA 0.9 

Treatment of dislocation 0.5 

Treatment of infection 0.5 

Surgery and postoperative recovery 0.5 

Death 0.0 

Successful core decompression 0.9 
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Revision THA 0.85 

Resection hip arthroplasty 0.6 

Table 2: Utility Values for Health States Occurring in Decision Model 

 

The period after successful core decompression was assigned a utility similar to that of successful 

arthroplasty. This reflects the assumption that successful core decompression results in a well-

functioning hip but does not completely restore normal utility. The ability of core decompression 

to control symptoms and maintain a high level of function has not been definitively documented 

in the published literature. To address this uncertainty, sensitivity analysis was used to examine 

the impact of both higher and lower utility values after core decompression on its cost-

effectiveness. 

 

Costs 

Gross-costing methodology was used to estimate the direct lifetime treatment costs after both 

observation and core decompression [6]. This methodology relies on global Medicare charge and 

reimbursement data to approximate the direct costs for various procedures. Indirect costs such as 

lost productivity were not included in this analysis. The surgical interventions occurring in the 

decision model were assigned their appropriate International Classification of Diseases, Ninth 

Revision; diagnosis related groups (DRGs); and Current Procedural Terminology (CPT) codes. 

Gross cost estimates were then determined for short-term care hospitalizations and physician 

services based on charge and reimbursement data for these codes. The cost estimates are shown in 

Table 3.  
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Procedure DRG (cost [$]) 

Core decompression 210 (8086) 

Primary THA 209 (9183) 

Revision THA 209 (9183) 

Resection arthroplasty 210 (8086) 

Reduction of dislocated hip prosthesis 210 (8086) 

Operative treatment of infected hip prosthesis 210 (8086) 

Open reduction and internal fixation of hip fracture 210 (8086) 

Table 3: Costs for DRG and CPT Codes Occurring in Decision Model Using 1998 Medicare 

Data 

 

Gross cost estimates for short-term care hospitalizations were determined from mean hospital 

costs for the DRG associated with each intervention. Mean hospital costs were based on data 

from the Centers for Medicare and Medicaid Services reported for 1998 [41]. These costs are 

derived by applying Medicare cost-to-charge ratios to the data from the MedPAR data source 

[41]. The MedPAR data source is released annually by Medicare and provides cost estimates for 

each DRG. This study used the MedPAR data for 1998 pertaining to all US hospitals [41, 42].  

 

The gross costs for physician services were determined from mean Medicare reimbursement for 

the CPT code associated with each surgical intervention. The mean reimbursement reported by 

the Centers for Medicare and Medicaid Services in 1998 for the Los Angeles, California, carrier 

was used. This global reimbursement includes preoperative care, surgical fees, and 90 days of 

postoperative care [43]. 
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Discounting 

Cost-effectiveness analysis requires that all future costs and health consequences be discounted 

and stated in their present-day values. Discounting is performed to correct for the fact that costs 

that are deferred to the future are preferable to immediate expenditures. Costs and health effects 

were discounted in the reference case at a constant rate of 3% annually. Sensitivity analyses were 

conducted with discount rates of 0% and 5% [6, 8]. 

 

Sensitivity Analysis 

Sensitivity analysis was conducted to test the uncertainty of the reference case results. Cost 

effectiveness analysis combines information from several data sources to generate estimates of 

the probability of different outcomes and assign values to their utility and costs. Uncertainty 

about the true values of these underlying parameters results in uncertainty about the cost-

effectiveness ratios generated in the reference case. Sensitivity analysis is used to determine the 

impact of varying the assumed values for key variables on the conclusions generated by the cost-

effectiveness analysis.  

 

Initially, cost effectiveness ratios were calculated using the reference case assumptions for both 

observation and core decompression. Sensitivity analysis was then performed using different 

assumptions for the values of the underlying variables [6]. Several key variables were selected for 

sensitivity analysis. These variables included the delay in hip arthroplasty resulting from core 

decompression, the functional utility after successful core decompression, the incidence of 

complications after core decompression, and the incidence of complications after both primary 

and revision hip arthroplasty. 
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Cost-Effectiveness Analysis of Unicompartmental Knee 

Arthroplasty as an Alternative to Total Knee Arthroplasty for 

Unicompartmental Osteoarthritis 

This cost-effectiveness analysis follows the methodological guidelines of the Panel on Cost-

Effectiveness in Health and Medicine convened by the United States Public Health Service in 

1993[6]. Consistent with these reference case guidelines, the present analysis compares the cost-

effectiveness of unicompartmental arthroplasty with the commonly accepted treatment alternative 

of total knee arthroplasty for unicompartmental arthritis. This analysis assumes a target patient 

population seeking treatment for unicompartmental arthritis at the age of sixty-five years. The 

time horizon of this analysis encompasses the remaining eighteen years of life expectancy for this 

target population [19]. The cost effectiveness ratios for unicompartmental and total knee 

arthroplasty were analyzed from the societal perspective. The boundary of the analysis is limited 

to the costs and health effects directly impacting the target population. Estimates of costs, 

effectiveness, and the probability of various outcomes were obtained from a literature review. 

 

Literature Review 

A literature review was used to construct the event pathways following initial treatment with 

unicompartmental knee arthroplasty and total knee arthroplasty. We identified 345 articles, 

published from 1975 through 2004, using the following keywords: unicompartmental, 

unicondylar, knee arthroplasty, results, outcomes, cost, and effectiveness. We included articles 

published in the years 1994 through 2004 in order to best reflect the results from the current 

clinical use of unicompartmental knee arthroplasty. We excluded studies involving fewer than 

fifty subjects. Additional criteria used to select articles included the selection of patients with an 

intact anterior cruciate ligament and documented unicompartmental disease and the exclusion of 

patients who had a prior patellectomy or tibial osteotomy. A total of nine studies were identified 
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and selected for abstraction with use of these criteria [44-52].  

 

Decision Model 

Decision-tree software (TreeAge Pro; TreeAge Software, Williamstown, Massachusetts) was 

used to create a model for the treatment of unicompartmental arthritis [8, 12-17]. A simplified 

schematic of the decision tree is shown in Figure 2. The model begins with the decision for either 

unicompartmental or total knee arthroplasty. A literature review was used to identify possible 

outcomes and their probability following each of these treatment alternatives.  

 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

 

Figure 2: Simplified schematic of the decision model for the treatment of unicompartmental 

arthritis of the knee. TKA = total knee arthroplasty, and UKA = unicompartmental knee 

arthroplasty. 

 

The event pathways following unicompartmental knee arthroplasty and total knee arthroplasty 

were constructed following the literature review. A wide range of results has been reported on the 

effectiveness of unicompartmental knee arthroplasty [44-53]. The reference case assumes a 

period of twelve years for the durability of a unicompartmental arthroplasty. This assumption is 

consistent with results of unicompartmental knee arthroplasty in the nine studies selected for data 

abstraction [44-52]. Sensitivity analysis was used to examine the effects on the cost-effectiveness 

of unicompartmental knee arthroplasty of both shorter and longer assumptions for its durability. 
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Total knee replacement was assumed in the reference case to have a survival of fifteen years. This 

value is longer than the survival assumed for unicompartmental knee replacement and reflects the 

fact that long-term outcomes have been more thoroughly documented for total knee replacement 

[54].  

 

Subsequent events following unicompartmental knee arthroplasty and total knee arthroplasty 

were modeled to include the potential need for revision total knee arthroplasty as well as 

complications over the lifetime of the target population. Complications included infection and 

death[54]. The rates of these complications were selected to fall in the midrange of estimates 

reported in the literature. Most studies have described rates of infection leading to implant failure 

near the value of 1% used in the reference case of this study [54-56]. The reference case of 0.5% 

for mortality is consistent with the low rates generally reported [56]. 

 

Effectiveness 

Utility factors were assigned to all health states in the model to adjust survival for quality of life. 

The reference case guidelines define utility along a continuum with a factor of 1.0 representing 

perfect health and a factor of 0.0 representing death [38]. Specific utility values for each health 

state in this study were assigned following a literature review (Table 4). Arthritis has been shown 

to have a utility value near 0.723 [38]. Knee and hip arthroplasty have been shown to increase 

quality-of-life weightings close to normal values. On the basis of these studies, this analysis uses 

a utility value of 0.9 for successful unicompartmental and total knee arthroplasty [11, 38-40]. 

Revision arthroplasty is given a lower utility value to reflect the diminished clinical results 

compared with primary arthroplasty. Previously published data were used to assign a utility value 

of 0.6 for resection arthroplasty and 0.5 to periods of surgery and postoperative recovery 

following complications [40]. Sensitivity analysis was used to examine the effect of uncertainty 

about the utility values for unicompartmental knee arthroplasty and total knee arthroplasty on the 
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cost-effectiveness results. 

 

Health State Utility Value 

Primary total knee arthroplasty  0.9 

Unicompartmental knee arthroplasty  0.9 

Treatment of infection  0.5 

Surgery and postoperative recovery  0.5 

Death  0.0 

Revision total knee arthroplasty  0.85 

Resection knee arthroplasty 0.6 

Table 4: Utility Values for Health States Occurring in the Reference Case of the Decision Model 

 

Costs 

Gross-costing methodology was used to estimate the direct lifetime treatment costs following 

both unicompartmental and total knee arthroplasty [6]. The surgical interventions occurring in the 

decision model were assigned their appropriate ICD-9 (International Classification of Diseases–

Ninth Revision), DRG (Diagnosis-Related Group), and CPT (Current Procedural Terminology) 

codes. Gross-cost estimates for acute care hospitalizations were determined from mean hospital 

costs for the DRG associated with each intervention. The mean hospital costs were based on data 

from the Centers for Medicare and Medicaid Services reported for 1998 [57]. These costs are 

derived by applying Medicare cost-to-charge ratios to the data from the Medicare Provider 

Analysis and Review File (MEDPAR) data source [57]. The MEDPAR data source is released 

annually by Medicare and provides cost estimates for each DRG [42, 57]. The gross costs for 

physician services were determined from the mean Medicare reimbursement for the CPT code 

associated with each surgical intervention (Table 5) [43]. 
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 DRG CPT 

Procedure Code Cost Code Cost 

Unicompartmental knee arthroplasty  209  $9183  27446  $1445 

Primary total knee arthroplasty  209  $9183  27447  $1951 

Revision total knee arthroplasty  209  $9183  27487  $2298 

Resection arthroplasty  210  $8086  27488  $1348 

Operative treatment of infection around knee prosthesis  

210 

 

$8086 

 

27310 

 

$797 

Table 5: Costs for DRG and CPT Codes in Decision Model with Use of 1998 Medicare data. 

Values are based on 1998 United States dollars. DRG = Diagnosis-Related Group, and CPT = 

Current Procedural Terminology. 

 

Discounting 

Cost-effectiveness analysis requires that all future costs and health consequences be discounted 

and stated in terms of their present-day values. Discounting is performed to correct for the fact 

that costs that are deferred to the future are preferable to immediate expenditures. Costs and 

health effects were discounted in the reference case at a constant rate of 3% annually [6, 8]. 

 

Sensitivity Analysis 

Sensitivity analysis was used to determine the impact of varying the assumed values for key 

variables on the conclusions generated by this cost-effectiveness analysis. Cost effectiveness 

analysis combines information from several data sources in order to generate estimates of the 

probability of different outcomes and to assign values to their utility and costs. Uncertainty about 

the true values of these underlying parameters results in uncertainty about the cost-effectiveness 
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ratios generated in the reference case. Sensitivity analysis was performed with use of different 

assumptions for the values of the underlying variables [6]. Several key variables that were 

selected for sensitivity analysis included the durability of unicompartmental knee replacements 

relative to total knee replacements, the functional utility following unicompartmental 

arthroplasty, and the cost of unicompartmental knee arthroplasty. 

 

Cost-Effectiveness Analysis of Periacetabular Osteotomy 

General Model Overview 

The model and analysis in this study were constructed according to the guidelines set forth by the 

Panel on Cost- Effectiveness in Health and Medicine by the United States Public Health Service 

in 1993 [6, 7, 58].  

 

We compared the cost-effectiveness of periacetabular osteotomy and total hip arthroplasty in 

young adults with developmental dysplasia of the hip. The upper age limit of our population was 

forty-five years, and the time horizon of the model was thirty years. The cost-effectiveness for the 

two procedures is reported from a societal perspective, which accounts for costs and outcomes 

that are important for society rather than for the payer, the physician, or any other single entity 

[59]. Effectiveness and outcome probabilities were obtained from the literature or estimated when 

data were lacking.  

 

The analysis was performed through a decision tree by using a common decision-analysis 

package (TreeAge Pro 2005; TreeAge Software, Williamstown, Massachusetts). An essential 

component of this model was the assumption of a linear annual failure rate for periacetabular 

osteotomy and total hip arthroplasty. A systematic review of the literature and expert opinion 

were used to validate the decision tree [9, 60-71]. We searched PubMed through September 2006 
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for articles using the terms ‘‘periacetabular osteotomy’’ and ‘‘total hip arthroplasty.’’ Inclusion 

criteria were a sample size of greater than twenty-five hips, follow-up of longer than three years, 

mean patient age of forty-five years or less, quantitative outcomes reported as Harris hip scores, 

and outcomes reported by Tonnis grade for periacetabular osteotomy. All data points for total hip 

arthroplasty, except for cost, were taken from the literature. Where data were not available for 

periacetabular osteotomy, we took the most conservative estimate based on the expert opinion of 

two senior orthopaedic surgeons. The model included only objective outcomes. Pain, although 

not directly assessed, was taken into account by use of the Harris hip score. Because several 

periacetabular osteotomy studies have shown a correlation between postoperative success and the 

preoperative radiographic grade of coxarthrosis [65, 70, 72, 73], we ran the model once for each 

Tonnis grade, measuring costs and outcomes for each run. Total hip arthroplasty outcome was the 

same regardless of preoperative radiographic coxarthrosis grade [66]. 

 

Decision Model  

Our decision tree (Fig. 3) consists of two primary treatment arms: periacetabular osteotomy and 

total hip arthroplasty. Branching points thereafter represent complications and terminate in 

outcomes. Outcomes were assigned a quantitative health-related quality of-life value derived 

from the literature. Clinical outcome probabilities, including complications and failure rates, were 

derived from the literature. The total hip arthroplasty arm of the model is similar to past models 

of arthroplasty [9, 74, 75]. The weight of each variable was explored by means of multivariate 

sensitivity analysis.  
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Figure 3: Main decision tree. PAO = periacetabular osteotomy; THA = total hip arthroplasty; 

DDH = developmental dysplasia of the hip; OA = osteoarthritis; HO = heterotopic ossification 

 

Table 6 summarizes the sensitive variables used in the model. Sensitive variables yield 

quantitatively large effects on model outcome and are hence addressed in detail herein. In 

contrast, robust variables are those that, as determined by sensitivity analysis, do not significantly 

affect model outcome. Probability inputs for the model were annual probabilities derived by 

dividing the overall failure rate by the average follow-up time reported in the literature, thereby 

yielding a linear failure rate. For total hip arthroplasty, the complications modeled were aseptic 

and septic failure. Our model represents quality of life after a successful revision total hip 

arthroplasty as being slightly lower than quality of life after a successful primary total hip 

arthroplasty [76, 77]. Similar to a previously validated total hip arthroplasty model, aseptic failure 

included prosthetic wear, loosening, and breakage [9]. The literature reports an annual aseptic 
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failure rate in the range of 1.9% to 3.7% [74, 78-83]. We selected a weighted average of the 

above studies at an annual aseptic failure rate of 2.6%. 

 

Variable Value 

Probability of Primary Aseptic Failure .026 per annum 

Average Lifespan of THA 14 years 

Average Lifespan of PAO 10 years 

Utility of an Excellent Outcome 1.0 

Table 6: Sensitive variables used in the model.  Sensitive variables have a significant effect on 

model outcome.   

 

For periacetabular osteotomy, the complications modeled were periacetabular osteotomy failure 

resulting in conversion to total hip arthroplasty, periacetabular osteotomy revision secondary to 

overcorrection or undercorrection, and heterotopic ossification. Failure rates of periacetabular 

osteotomy were modeled to be different according to Tonnis grade, with rates of 1%, 3%, and 9% 

for Tonnis grades 1, 2, and 3, respectively [70]. The probability of revision was modeled to be 

4% [68], and the probability of heterotopic ossification was 2.4% [70]. Other possible 

complications, such as neural or vascular injury, were so rare [63] and transient that they exerted 

no effect on cost and effectiveness and were thus excluded from the model.  

 

The longevity of total hip arthroplasty varies with respect to the population in which the 

procedure is performed. When it was possible, we used total hip arthroplasty studies that 

described results in an age group similar to that in which periacetabular osteotomy is a treatment 

option. By extracting data from articles that directly report a mean or median survival of total hip 

arthroplasty [80, 82, 84], and by confirming those values by extrapolating median survival 



 29 

through an assumption of a linear failure rate, we found that survival of total hip arthroplasty 

ranges from 6.6 to 25.9 years [74, 78-82]. The value we chose to use, fourteen years, is the 

weighted average of the above trials.  

 

Because of the lack of longer-term follow-up with periacetabular osteotomy, the longevity of the 

procedure is still unknown. In order to determine a survival range for sensitivity analysis, we 

extrapolated the median survival of periacetabular osteotomy by assuming a linear failure rate in 

articles describing follow-up for periacetabular osteotomy beyond four years. The resulting range 

of values for median survival was 8.6 to 19.6 years, while the weighted mean survival was ten 

years [60, 68, 70, 72, 73, 85, 86]. For the best and worst-case scenarios, we used empirical data 

derived from studies describing the survivability of periacetabular osteotomy in hips with more 

than four years of follow-up [71, 72, 85], ranging from 7.1 years in one study [85] to twelve years 

(twenty-two of twenty-six hips) in another [73]. The value chosen for our reference case was ten 

years, and it was based on the weighted mean survival reported above. 

 

Medical Costs 

Cost data (not charge data) were compiled and verified with use of our institution’s activity-based 

costing software (IDX, Burlington, Vermont) that tracked our hospital decision support system. 

Cost data are reported in 2004 U.S. real dollars. The range of values was determined by 

identifying the lowest and highest costs in our patient cohort. Costs for heterotopic ossification 

were estimated, and the impact of estimating that cost was assessed in the sensitivity analysis. 

When we varied the cost of heterotopic ossification from $5000 to $15,000, it changed the 

breakeven points by less than one month, which is negligible over the multiple year time horizon 

of our model. Thus, estimating the cost of heterotopic ossification was not deemed important. 

Costs were discounted at a rate of 5% in order to yield the present monetary value. The time of 

failure of a hip impacted cost— hips that failed earlier incurred potentially more cost in the time 
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course of the model. 

 

Utilities 

We determined effectiveness in terms of health-related quality of life, which was ascertained by 

applying the continuous utility assessment method devised by Hazen et al. [10] and applied to 

total hip arthroplasty by Chang et al. [9]. We mapped health-related quality of- life values to 

Harris hip scores according to the system of Chang et al., and patient utility analyses done before 

and after total hip arthroplasty [56, 67, 87]. Consistent with the outcomes reported in the 

literature, a successful primary periacetabular osteotomy in hips with Tonnis grade-1, 2, and 3 

coxarthrosis had health-related quality-of-life values of 1.0, 0.8, and 0.6, respectively [70]. The 

same health-related quality-of-life value was given to either total hip arthroplasty or 

periacetabular osteotomy, according to the outcome assessed by Harris hip scores, and a 

corresponding adjectival rating was given. In our final analysis, utility values were multiplied by 

the discounted number of years spent in a health state to yield quality adjusted life years 

(QALYs) gained. QALYs were discounted at a rate of 5% to yield present value [6, 8, 12]. As 

with cost, the time of failure of a hip impacted the outcome patients with a hip that failed earlier 

potentially may live longer with a lower health related quality of life. A successful total hip 

arthroplasty subsequent to failure of a periacetabular osteotomy was assigned a good health-

related quality-of-life outcome of 0.8 rather than the excellent outcome of 1.0, associated with a 

primary total hip arthroplasty.  

 

Incremental cost-effectiveness ratios were used to aid comparison of treatments. The incremental 

cost-effectiveness ratio presented in the results is averaged over the thirty-year time horizon of 

the model. The incremental cost-effectiveness ratio is calculated as follows: (CostPAO – 

CostTHA) / (QALYsPAO – QALYsTHA), with PAO indicating periacetabular osteotomy and 

THA indicating total hip arthroplasty. The net health benefit was used as a measure of outcome 
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from a societal perspective because it takes into account the willingness of the health-care system 

to pay (WTP). The net health benefit may be calculated as QALYs – Cost /WTP [88]. The net 

health benefit, while not usually reported in the orthopaedic literature, is used in other specialties 

as it offers the advantage of easy comparison between different treatment strategies. When two 

cost-saving treatments are compared, the better modality has the higher net health benefit, 

whereas it would have the lower incremental cost-effectiveness ratios since incremental cost-

effectiveness ratios can be expressed in negative terms [88-91]. 

 

Sensitivity Analysis 

Sensitivity analysis addressed the uncertainty inherent to drawing data from multiple sources [6]. 

In the case of our model, variables that made a substantial contribution to results were deemed to 

be sensitive, whereas those that contributed <1% to the total outcome were deemed robust. We 

varied sensitive variables according to coxarthrosis, measured radiographically as grade 1, 2, or 3 

according to the method of Tonnis [92].  

 

An expanded sensitivity analysis was conducted on the average duration of Tonnis-grade 1 and 

grade-2 hips after periacetabular osteotomy on the basis of a best-case and a worst case scenario 

for survival. For these two end-point scenarios, we chose the lowest and highest average survival 

rates reported in the literature for periacetabular osteotomy [73, 85]. We did not do this for 

Tonnis grade-3 hips because changing the value of hip survival does not change the results 

substantially. 
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Results 

Cost-effectiveness Analysis of Core Decompression 

Reference Case Results 

A reference case was created that assumed that core decompression delays the need for THA for 

10 years. Given the uncertainty of this assumption, the effects on the cost-effectiveness of core 

decompression of both shorter and longer assumptions for its efficacy are examined in the 

sensitivity analysis.  

 

In the reference case, the pathway of core decompression is assumed to delay hip arthroplasty for 

10 years and resulted in 20.20 QALYs, whereas observation resulted in 19.75 QALYs. This 

represents an incremental gain of 0.45 QALYs when core decompression was chosen over 

observation. Core decompression generated total expected lifetime treatment costs of $27498. 

This results in an incremental increase in cost of $4298 when compared with the lifetime 

treatment costs of $23200 for observation followed by arthroplasty. This led to an incremental 

cost-effectiveness ratio of $9551 for each QALY gained when core decompression was chosen 

over observation. 

 

Sensitivity Analysis 

Effect of Changing the Assumed Length of the Delay in the Need for THA After Core 

Decompression.  

The reference case assumes that core decompression delays hip arthroplasty for 10 years as 

compared with 2 years with observation in the early stages of osteonecrosis. Core decompression 

has not been definitively demonstrated to result in delays of this length. There are conflicting 

reports in the literature, with some authors showing delays of this length and others reporting 
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results below this threshold [18, 93]. Sensitivity analysis was used to evaluate the effects of 

varying the underlying assumption for the success of core decompression on its cost effectiveness 

ratio. The cost effectiveness of core decompression decreases as its assumed ability to delay hip 

arthroplasty decreases. The cost effectiveness ratio rises to more than $25000 per life year as the 

period of delay falls below 7 years. The $50000 cost per life year gained threshold is passed as 

this period falls below 5 years. 

 

Effect of Function After Core Decompression. 

The reference case assumes that successful core decompression prevents painful symptoms 

during the period it is delaying the need for primary arthroplasty. This control of pain is reflected 

in the high utility value of 0.9 assigned to patients during this waiting period. Sensitivity analysis 

was conducted to model clinical situations in which core decompression does not perform well in 

mitigating the functional limitations caused by advancing osteonecrosis. The cost-effectiveness 

ratio of core decompression rises to more than $50000 per QALY gained when the utility during 

the period after the procedure and before conversion to THA is assumed to be lower than 0.86. 

 

Effect of Complication Rate After Core Decompression.  

Subtrochanteric hip fractures complicating core decompression have been reported infrequently, 

although some studies have shown rates as high as 5%. Sensitivity analysis demonstrated that the 

cost-effectiveness ratio rose or fell only slightly over the range of values from 0% to 5%. Even at 

an assumed fracture rate of 5%, the cost-effectiveness ratio of core decompression remained 

lower than $12000 per QALY. 

 

Effect of Complication Rates After Arthroplasty. 

The rates of complications after THA have been reported by several authors [31, 33-37]. The 

assumed durability of hip arthroplasty and incidence of complications including death, 
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dislocation, and infection were selected to be in the midrange of accepted values. Sensitivity 

analysis was used to examine the impact of using high- and low-range values for these variables. 

As the assumed complication rates after hip arthroplasty decrease, core decompression becomes a 

less cost-effective treatment option. This occurs because some of the cost-effectiveness gains 

from core decompression result from the delay or avoidance of the costs and negative health 

impacts that result from these complications. However, these effects were not large and did not 

alter the conclusions of this study. Even under conditions in which the complication rates of THA 

are assumed to be negligible, core decompression remained highly cost-effective with an 

incremental cost effectiveness ratio lower than $13000 per QALY gained. 

 

Effect of Discount Rate.  

Analyses assuming discount rates of 0% and 5% in addition to the baseline assumption of 3% 

were conducted. These variations in the discount rate did not have a large impact on the cost-

effectiveness ratios. A discount rate of 0% led to an incremental cost effectiveness ratio for core 

decompression of $12429 per QALY gained. A discount rate of 5% resulted in a ratio of $9620 

per QALY gained. These ratios fall well below the threshold of $50000 per QALY commonly 

used to judge procedures as moderately cost-effective [6]. 

 

Cost-Effectiveness Analysis of Unicompartmental Knee 

Arthroplasty as an Alternative to Total Knee Arthroplasty for 

Unicompartmental Osteoarthritis 

Reference Case Results 

A reference case was created with use of the assumption that unicompartmental arthroplasty 

results in a high level of function for twelve years. The assumption of twelve years of function is 
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consistent with that in published clinical series, but there are limited data available that directly 

compare the durability of unicompartmental knee replacement and total knee replacement [44-

53]. Given the uncertainty of this assumption, the impact on the cost-effectiveness of 

unicompartmental arthroplasty of both shorter and longer assumptions for its effectiveness is 

examined in the sensitivity analysis.  

 

In the reference case, the pathway of unicompartmental knee arthroplasty resulted in a small gain 

in effectiveness to 12.21 quality-adjusted life years compared with 12.19 quality adjusted life 

years when total knee arthroplasty is chosen. There was minimal change in costs, with an increase 

from $18,995 to $19,000 (in 1998 United States dollars). The incremental cost-effectiveness ratio 

for unicompartmental knee arthroplasty under the reference case assumption is negligible with a 

cost of $277 per quality-adjusted life year gained. This ratio indicates that unicompartmental knee 

arthroplasty was more effective than total knee arthroplasty, and this increased effectiveness 

required a minimal additional cost. 

 

Sensitivity Analysis 

Effect of the Durability of Unicompartmental Knee Replacement Compared with Total Knee 

Replacement 

The durability of unicompartmental knee replacements remains uncertain relative to total knee 

replacements. Sensitivity analysis was used to evaluate the effects of this uncertainty by varying 

the underlying assumption for the durability of unicompartmental knee replacements and 

determining the changes to the cost-effectiveness ratio. The cost effectiveness of 

unicompartmental knee arthroplasty is lost as the durability of the implant is assumed to decrease. 

The reference case assumes a survival of fifteen years for primary total knee replacement. The 

assumption of a longer survival for total knee replacement compared with unicompartmental knee 

replacement reflects the longer experience and more complete documentation of the durability of 
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total knee replacement. The cost-effectiveness of unicompartmental knee arthroplasty relies 

largely on its ability to produce clinical results approaching those of total knee arthroplasty. In 

sensitivity analyses that assume unicompartmental knee replacement has a survival of eleven 

years, it becomes both less effective (12.16 compared with 12.19 quality-adjusted life years) and 

more costly than standard total knee arthroplasty ($19,233 compared with $18,995). This scenario 

results in total knee arthroplasty becoming a dominant choice. Specifically, total knee 

arthroplasty becomes both more effective and less costly when unicompartmental knee 

replacement is assumed to have a survival below the threshold of eleven years (Table 7).  

 

Values Used in Sensitivity Analysis Incremental Cost of 

Unicompartmental 

Compared with Total 

Knee Arthroplasty 

Incremental Effectiveness 

of Unicompartmental 

Compared with Total Knee 

Arthroplasty (QALY) 

Incremental Cost-

Effectiveness Ratio of 

Unicompartmental Compared 

with Total Knee Arthroplasty 

(Cost/QALY) 

Reference case 

Unicompartmental knee 

replacement survival assumed to 

be 12 yr. 

Total knee replacement survival 

assumed to be 15 yr. 

+$5  +0.02  $277 

   

   

Scenario 1 

Unicompartmental knee 

replacement survival assumed to 

be 11 yr. 

Total knee replacement survival 

assumed to be 15 yr. 

+$238   0.03   TKA is dominant  

   

   

Scenario 2 

Unicompartmental knee 

replacement survival assumed to 

be 17 yr. 

Total knee replacement survival 

assumed to be 20 yr. 

+$6,236  +0.13  $45,958 

   

   

Scenario 3  

Unicompartmental knee 

replacement survival assumed to 

be 15 yr. 

Total knee replacement survival 

assumed to be 20 yr. 

+$6,859  +0.05  $117,103 

   

   

Cost of unicompartmental knee 

arthroplasty increased by 25%  

+$2,661  +0.02  $165,354 

Cost of unicompartmental knee 

arthroplasty decreased by 25% 

-$2,652 +0.02 Unicompartmental knee 

replacement is dominant 
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Table 7: Incremental Costs, Effectiveness, and Cost-Effectiveness Ratios with Use of Reference 

Case and Sensitivity Analyses 

 

 

 

 

Multivariate sensitivity analysis was also performed with use of a broader range of fifteen to 

twenty years for the expected durability of total knee replacement. These analyses indicated that 

it is necessary for the assumed survival of the unicompartmental knee replacement to be within 

three to four years of the assumed survival of the total knee replacement in order to maintain the 

cost-effectiveness of choosing unicompartmental knee arthroplasty. This is demonstrated by 

analyses that assume that total knee replacement survival is twenty years. With use of this 

assumption, the incremental cost-effectiveness ratio of unicompartmental knee arthroplasty is 

$45,958 per quality-adjusted life-year gained compared with total knee arthroplasty when a 

unicompartmental knee replacement is assumed to survive for seventeen years. This is below the 

commonly accepted threshold of $50,000 per quality-adjusted life year often used to determine 

cost effective procedures [6, 9]. In contrast, when the survival of a unicompartmental knee 

replacement is assumed to be fifteen years and the survival of a total knee replacement is assumed 

to be twenty years, the incremental cost-effectiveness ratio increases to more than $100,000 per 

quality-adjusted life-year gained (Table 7). The incremental cost effectiveness ratio continues to 

increase, and the cost-effectiveness of unicompartmental knee arthroplasty decreases as the 

survival of a unicompartmental knee replacement is assumed to be lower relative to the survival 

of a total knee replacement. 

 

Effect of Function Following Unicompartmental Knee Arthroplasty 
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The initial published findings indicate that unicompartmental knee arthroplasty results in function 

that is at least comparable with that seen after total knee arthroplasty [44, 46-52, 94]. The 

reference case reflects these results by assuming that both unicompartmental knee arthroplasty 

and total knee arthroplasty result in a high level of function and pain relief. However, there are a 

limited number of controlled studies that have directly compared the clinical function after 

unicompartmental knee arthroplasty and total knee arthroplasty. This uncertainty was addressed 

in a sensitivity analysis that examined the effect of higher and lower values for the utility of 

unicompartmental knee arthroplasty on its cost effectiveness.  

 

The reference case results show a small gain of 0.02 quality-adjusted life years when 

unicompartmental knee arthroplasty is chosen over total knee arthroplasty. These gains are lost 

when the utility of unicompartmental knee arthroplasty is assumed to be less than that of total 

knee arthroplasty. Conversely, there is a further incremental increase in the cost-effectiveness 

when the utility of unicompartmental knee arthroplasty is assumed to be >0.9. When 

unicompartmental knee arthroplasty is assigned the maximal value of 1.0, it results in a total of 

13.20 quality-adjusted life years as opposed to 12.19 quality-adjusted life years for a gain of 1.01 

quality-adjusted life years. Unicompartmental knee arthroplasty becomes a more cost-effective 

choice under these assumptions, as the gains in incremental effectiveness increase with no 

additional cost relative to the reference case. 

 

Effect of Cost of Unicompartmental Knee Arthroplasty 

There is a small incremental additional cost from unicompartmental knee arthroplasty with use of 

the reference case assumptions for the relative costs of unicompartmental and total knee 

arthroplasty. The minimal cost increase in the reference case results from the assumption that 

there is a decrease in the physician’s fee for unicompartmental knee arthroplasty relative to the 

fee reimbursement for total knee arthroplasty. Unicompartmental knee arthroplasty becomes a 
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less cost-effective alternative in a sensitivity analysis in which the cost of unicompartmental knee 

arthroplasty is assumed to be higher than the cost of total knee arthroplasty. An increase of 25% 

resulted in an incremental cost-effectiveness ratio of $165,354 per quality adjusted life year 

gained when unicompartmental knee arthroplasty was chosen over total knee arthroplasty. This 

indicates that the cost-effectiveness of unicompartmental knee arthroplasty may be lost if it 

requires a large relative increase in cost compared with total knee arthroplasty (Table 7 above).  

 

The use of gross costing based on Medicare reimbursement does not account for the potential 

savings of unicompartmental knee arthroplasty from implant costs or decreased hospital length of 

stay. This is due to the fact that both unicompartmental knee arthroplasty and primary total knee 

arthroplasty are assigned the same DRG, resulting in a similar cost assumption for the hospital 

stay. A sensitivity analysis was performed to examine the effect of a 25% cost-savings in a 

comparison of unicompartmental knee arthroplasty with total knee arthroplasty. A decrease of 

25% in the assumed costs of unicompartmental knee arthroplasty resulted in an overall savings of 

$2652 in the lifetime treatment costs compared with those of primary total knee arthroplasty 

(Table 7 above). 

 

Cost-Effectiveness Analysis of Periacetabular Osteotomy 

Cost 

Costs were averaged over the thirty-year time horizon of the model. The average cost of total hip 

arthroplasty in all three Tonnis grades of coxarthrosis was $32,790. In Tonnis grade-1 and grade-

2 hips, periacetabular osteotomy yielded a cost of $26,592 and $30,673, respectively. The cost of 

periacetabular osteotomy in Tonnis grades 1 and 2 was cost-saving compared with total hip 

arthroplasty, i.e., it was below the abscissa in Figure 4. Periacetabular osteotomy in Tonnis grade 

3 was associated with a cost of $33,465, which resulted in an incremental cost (above the abscissa 
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in Figure 4) of $675. 
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Figure 4.  Average incremental costs and incremental quality-adjusted life years for peri-

acetabular osteotomy (PAO) compared with total hip arthroplasty (THA). 

 

Effectiveness 

QALYs gained were averaged over the thirty-year time horizon of the model. In each of the three 

Tonnis grades of coxarthrosis, total hip arthroplasty resulted in an average of 4.7QALYs gained. 

Periacetabular osteotomy in Tonnis grade-1, 2, and 3 hips yielded an average of 4.85, 3.3, and 3.2 

QALYs gained, respectively. Compared with the QALYs gained with total hip arthroplasty, the 

increment in QALYs gained with periacetabular osteotomy in Tonnis grade-1 coxarthrosis was 

0.15 (represented in Figure 4 by the data point for Tonnis grade-1 hips lying to the right of the 

ordinate). In addition, for Tonnis grade-2 and grade-3 hips, total hip arthroplasty yielded, on the 
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average, more QALYs (both data points lie to the left of the ordinate) than did periacetabular 

osteotomy (Fig. 4).While over thirty years, total hip arthroplasty is more effective (i.e., it yields 

more QALYs) on the average than periacetabular osteotomy in Tonnis grade-2 coxarthrosis, 

periacetabular osteotomy becomes the more effective treatment by year 19.4 of the model. For 

Tonnis grade-3 coxarthrosis, total hip arthroplasty is and remains more effective throughout the 

time period of the model. 

 

Cost-Effectiveness and Incremental Cost-Effectiveness 

Cost-effectiveness ratios were averaged over the thirty-year time horizon of our model. The cost-

effectiveness ratio of total hip arthroplasty was $11,631/QALY for all three Tonnis grades. In 

Tonnis grade-1, 2, and 3 coxarthrosis, periacetabular osteotomy had a cost-effectiveness ratio of 

$7856/QALY, $10,807/ QALY, and $15,005/QALY, respectively. Since periacetabular 

osteotomy in Tonnis grade-1 coxarthrosis is, on the average, both more effective than total hip 

arthroplasty and more cost-saving (lower right quadrant in Figure 4), it is the dominant procedure 

in this setting. For Tonnis grade-1 coxarthrosis, periacetabular osteotomy is more cost-effective 

over thirty years and surpasses total hip arthroplasty in cost-effectiveness at 5.5 years. In Tonnis 

grade-2 coxarthrosis, periacetabular osteotomy is less costly than total hip arthroplasty on the 

average but also less effective (lower left quadrant in Figure 4). While both incremental cost and 

effectiveness are negative for periacetabular osteotomy in Tonnis grade-2 coxarthrosis, the former 

effect is greater than the latter effect, making periacetabular osteotomy ultimately more cost-

effective than total hip arthroplasty in this grade, with an associated incremental cost-

effectiveness ratio of –$824/QALY. For Tonnis grade-2 coxarthrosis, periacetabular osteotomy is 

more cost-effective over thirty years and surpasses total hip arthroplasty in cost-effectiveness at 

18.25 years. Periacetabular osteotomy was both more costly and less effective on the average than 

total hip arthroplasty in Tonnis grade-3 coxarthrosis (upper left quadrant in Figure 4); as a result, 

total hip arthroplasty is the dominant procedure in this setting. 
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Net Health Benefits 

Figures 5 and 6 depict the results for the two treatments in terms of net health benefits. In Tonnis 

grade-1 coxarthrosis (Fig. 5), periacetabular osteotomy yields a greater net health benefit after 

10.1 years in comparison with total hip arthroplasty. In Tonnis grade-2 coxarthrosis (Fig. 6), 

periacetabular osteotomy reaches equivalence by 19.1 years, after which it becomes dominant. If 

periacetabular osteotomy can be expected to have a greater longevity than the crossover points of 

10.1 years and 19.1 years for Tonnis grade 1 and 2, respectively, then periacetabular osteotomy as 

a treatment would be preferable to total hip arthroplasty in terms of net health benefits. Finally, at 

no point does periacetabular osteotomy yield a negative net health benefit in both Tonnis grades 1 

and 2, whereas total hip arthroplasty does so at 23.5 years and 25.1 years, respectively. These 

results are summarized in Table 8, which shows how long (in years) a periacetabular osteotomy 

must survive to become the preferred treatment modality. 
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Figure 5. Tönnis 1 Incremental Net Health Benefits $/QALY's (WTP = $50,000). 
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Figure 6. Tonnis 2 Incremental Net Health Benefits $/QALY's (WTP = $50,000). 

 

  Effectiveness Cost Cost Effectiveness NHB 

Survival of PAO 

needed to be 

preferred 

treatment (years) 

Tönnis 

grade 1 

10.8 PAO always 

preferred 

5.5 10.1 

Tönnis 

grade 2 

19.4 PAO always 

preferred 

18.25 19.1 

Tönnis 

grade 3 

THA always 

preferred 

THA always 

preferred 

THA always preferred THA always 

preferred 

Table 8. The number of years PAO needs to survive for it to be a preferred treatment over THA, 

given assessment by either Effectiveness, Cost, Cost-Effectiveness or NHB (Net Health Benefits). 

 

Sensitivity Analysis 
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We performed a multivariate sensitivity analysis for each Tonnis grade. Multivariate analysis 

identified five consistently sensitive variables for Tonnis grades 1 and 2 that contributed >99% of 

the total variability in outcome: (1) average lifespan of the periacetabular osteotomy, (2) 

probability of a failed periacetabular osteotomy, (3) average lifespan of a total hip arthroplasty, 

(4) probability of an aseptic revision, and (5) utility of excellent outcome.  

 

We summarize the results of our worst and best-case analyses in Table 9. The cost-effectiveness 

and effectiveness of periacetabular osteotomy improved considerably as the functional life of the 

Tonnis grade-1 hip after periacetabular osteotomy increased. In the worst-case scenario, 

periacetabular osteotomy is, on the average, more cost-effective than total hip arthroplasty and 

reaches equivalence at 11.45 years for Tonnis grade-1 coxarthrosis. In the worst-case scenario for 

Tonnis grade-2 coxarthrosis, periacetabular osteotomy, while it is not more cost-effective, on the 

average, than total hip arthroplasty, reaches equivalence at 18.6 years. The range of reaching 

equivalence is broader from best-case to worst-case scenarios for Tonnis grade-1 compared with 

Tonnis grade-2 coxarthrosis because periacetabular osteotomy survival is not as sensitive a 

variable for the latter. For both Tonnis grade-1 and grade-2 hips, periacetabular osteotomy always 

remained below $50,000 per QALY gained for all of the values we tested in our sensitivity 

analysis. 

 

 Tönnis grade 1 Tönnis grade 2 

 Avg CE ($/QALY) : 

EV time (years) 

Avg E (QALYs) : 

EV time (years) 

Avg CE ($/QALY) : 

EV time (years) 

Avg E (QALYs) : EV 

time (years) 

Worst case 

scenario  

- 5689 : 11.45 -1.1 : 16.35 200 : 18.6  -1.9 : 19.8  

Reference -7856 : 5.5 .15 : 10.8 - 824: 18.25 - 1.4 : 19.4 
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case 

Best case 

scenario 

- 8800 : 2.45 1.0 : 5.9 - 1152 : 17.8  -1.1 : 19.2 

 

Table 9. Sensitivity analysis based on worst case and best case durability of a PAO hip showing 

average incremental cost-effectiveness (Avg CE), average incremental effectiveness (Avg E), the 

time point where equivalence between PAO and THA is attained (EV time) in terms of cost-

effectiveness and effectiveness, and the peak effectiveness of PAO in terms of maximum potential 

gain in QALYs over the time span of our model.   
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Discussion 

With each passing year, healthcare costs consume an ever increasing percentage of our Gross 

Domestic Product (GDP) [95]. Disease burden in the US is no greater than in peer countries of 

the Organization for Economic Co-operation and Development (OECD), but our input costs are 

intrinsically more expensive [96]. Unfortunately, we are getting a bad deal for this high price, at 

least by the metrics we claim to be important. Within the group of OECD countries, the US has 

among the highest infant mortality rates, the lowest life expectancies, and the greatest level of 

obesity [97]. We pay a premium cost for an inferior result. 

 

One possible reason for this combination is our reimbursement structure. Before 1982, the 

government reimbursed physicians according to the cost of a procedure. Resource intensive 

procedures predictably acquired favor. Diagnostic related groups (DRGs) were instituted to 

address the perverse incentive of trying to use more resources in order to increase 

reimbursements. The new incentive created by DRGs, however, was to spend less time per 

procedure in order to perform as many procedures as possible. We still do not know with precise 

statistics how this dynamic has affected outcomes in medical practice.  

 

Most recently, there have been attempts to link reimbursement to outcome metrics, such as 

quality or efficiency [98]. There are several potential requirements to make a value-based 

reimbursement structure that focuses first and foremost on patient welfare while still accounting 

for resource constraints. Two of the most prominent requirements are unambiguous measures of 

quality and accurate measurements of cost. Within the realm of orthopaedic surgery, this thesis 

presented 3 articles that compared quality and cost for alternative treatments.  

 

Defining costs 
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Costs can be direct or indirect, as was discussed in the introduction. In terms of cost effectiveness 

analysis, this is usually where researchers end their measurements. That is a mistake. 

Considerations of other types of cost are crucial, in particular fixed cost, variable cost, average 

total cost, and marginal cost. 

 

Fixed cost is defined as a cost that does not vary with usage. The cost of an operating room table 

is an example. The hospital buys the table and installs it. The cost of doing so remains the same 

no matter how many times it is used. Fixed costs can change over the long term, however, 

especially if the product depreciates. The operating table may require, for example, more 

maintenance as it gets older. A subset of fixed costs that cannot change over the long term is sunk 

costs. These costs occur when an item with a fixed cost cannot be used for any other purpose in 

the short term or long term. An old operating table might be used for instructional purposes in 

another setting, but the operating suite itself has only one purpose. The former is a regular fixed 

cost; the latter is a sunk cost. 

 

Variable costs change according to the amount of output being produced. The salaries of scrub 

nurses paid on a per time basis are examples of variable costs, as they increase with both longer 

surgeries and with the number of surgeries performed. The amount of gloves and towels used for 

a surgery constitute another example. Total costs equal fixed costs plus variable costs.  

 

Average total cost is simply the total cost divided by the quantity produced. Marginal costs are 

the cost of producing one extra unit. Marginal cost differs from average total cost when the 

production of an extra unit raises or lowers the variable cost. In the corporate world the difference 

between the two is obvious. When workers in a car factory make their first car, they become more 

proficient at their job. Production of their second car is therefore done more rapidly and with 

fewer mistakes (i.e., variable cost goes down). Production of their third car improves as well, 
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although data show that the rate of improvement decreases – that is, there is a negative second 

derivative that represents diminishing returns. This means that marginal cost is less with each 

subsequent car, up to a certain plateau.  

 

Perhaps the same applies to the learning curve of a surgeon for a new procedure. The state of 

surgery research, however, is that none of this has been studied. From an economics perspective, 

we do not have good data on marginal costs in the healthcare environment. This is acceptable 

when deciding whether to apply a new intervention to a population that is receiving no 

intervention at all. In that case average total costs can be used. It is a problem in cases such as the 

articles in this thesis, in which one compares a newer procedure to a more established procedure. 

Marginal cost is a more sensible approach for comparing competing procedures [99, 100].  

 

Interpreting results 

The driving reason for doing a cost effectiveness analysis is ambiguity. If a newer intervention 

were both more effective and less costly, it would be adopted without hesitation – indeed, without 

analysis. Analysis is necessary for two reasons: 1. Cases in which the effectiveness and cost of 

the newer intervention are not known with accuracy; and 2. Cases in which the newer 

intervention is superior in just one category, typically in being more effective, but inferior in the 

other category, typically in being more costly.  

 

For the first reason, cost effectiveness analysis is done to give a range of values that a doctor can 

use in his practice. This was the case for the knee arthroplasty article in this thesis. The costs of 

the procedures were not easily available to the researchers, especially the indirect costs as usually 

represented in hospital accounting software. We were compelled to use DRG charge data and 

validate these data with costs from the literature. Additionally, the outcome of the newer 

procedure, the unicompartmental knee arthroplasty, was not known with any statistical power. 



 50 

We therefore conducted a sensitivity analysis with several scenarios to explore how long the 

unicompartmental knee arthroplasty would need to last before revision in order to be as cost 

effective as a total knee arthroplasty. The take-home message for an orthopaedic surgeon is that a 

UKA does not need to last as long as a TKA to be as cost effective. It could last 3 - 4 years less, 

and this difference held whether the duration of the TKA were 20 years, 15 years, or some value 

in between. The experienced orthopaedic surgeon could assess how long his total knees last and 

prognosticate accordingly.  

 

The PAO article illustrates both cases. There is an ambiguity about the effectiveness of PAO, and 

PAO may be superior in only one category, cost or effectiveness. Data on the outcomes of PAO 

are scarce. This was one of the motivations for conducting research on it. We wanted to 

understand, at a minimum, how long a PAO must last in order for it to be a worthwhile procedure 

compared to THA. The answer to this question happened to differ according to Tonnis grade. For 

it to be worthwhile just in terms of effectiveness in Tonnis grade 1, it needed to last 10.8 years. 

For it to be worthwhile just in terms of effectiveness in Tonnis grade 2, it needed to last 19.4 

years. In Tonnis grade 3 it was never more effective, and when cost was factored in, these 

numbers changed. PAO was found to be less costly in Tonnis grades 1 and 2 and more costly in 

Tonnis grade 3. For example, when factoring in cost and effectiveness for Tonnis grade 1, a PAO 

needed to last only 5.5 years to be the preferred choice. In Tonnis grade 2 it needed to last 18.25 

years to be preferred.  

 

By reporting the results in this manner, we gave the orthopaedic surgeon the option to use them as 

he wishes. If money were no object, it would mean that the surgeon would use only the duration 

thresholds for effectiveness. In resource-limited environments, by contrast, the duration threshold 

for cost-effectiveness could be considered.  
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This approach also demonstrates the situation in which PAO may be better in only certain 

settings. Specifically, PAO was found to be much less costly on average in Tonnis grade 1. It was 

also found to be slightly more effective. If one believes that these assertions are well founded, the 

decision to use PAO is automatic. In this setting PAO is the dominant choice. Similarly, in 

Tonnis grade 3 PAO is both more costly and less effective. If one believes that these particular 

assertions are well founded, one must conclude that THA in this setting is dominant. Beyond the 

usefulness of quantifying these issues and analyzing them in a transparent structure, cost 

effectiveness analysis is a worthy exercise in the middle scenario. For PAO, this was Tonnis 

grade 2, where PAO is less costly than THA but on average is also less effective. This grey zone 

is where the orthopaedic surgeon will seek out data to make a judgment. In the absence of data, a 

model such as ours can be used, which is precisely what was represented in Figure 4 in the results 

section for PAO.  

 

Limitations of cost effectiveness 

Perhaps one of the greatest limitations of this kind of research comes from the state of research in 

orthopaedic surgery. There is such a shortage of well-conducted, large randomized trials in 

orthopaedics that the data sources for the models are limited. Even the most well constructed 

model has little value when its inputs are of low quality. The gold standard for assessing clinical 

benefits is the randomized controlled trial. In the case of many orthopaedic procedures, and 

certainly in the case of the ones assessed in this thesis, this is not easily feasible. Such trials 

would take years to complete and would have prohibitive costs. By the time they were completed, 

the technology of the field would have evolved to a new stage.  

 

Large registries are an acceptable alternative, such as the nationwide hip registry in Sweden. 

Indeed, much of my THA data comes from that registry. Whether or not such a registry is 
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possible in a country without a national healthcare system, such as the US, is still an open 

question. 

 

Another problem with assessing cost and effectiveness in medicine in general is that the best way 

to do so would be to integrate these factors into the very methodology of every prospective 

clinical trial. Tracking resource use and assessing outcomes should in fact be done simultaneously 

in order to understand specific links between which resources lead to which outcomes. 

Unfortunately, the data points required to achieve statistical significance for economics variables 

are much greater than those needed for clinical variables. The addition of economic analysis to a 

clinical trial is therefore highly likely to make the trial underpowered [100, 101].  

 

Given this situation, we face a problem of “garbage in, garbage out.” The only time the issue can 

be avoided is when the older technology has an established abundance of data, such as with THA. 

In that case we can use sensitivity analysis on the newer technology to assess when and how it 

can be useful. As pointed out, this approach was used in the analysis of PAO and THA. 

 

There is also a concern with the methodology of cost effectiveness analysis. QALYs are by 

definition subjective measurements of value. They depend on individual preferences, translated 

into utilities, and these individual preferences are then applied to the general public. There may 

be huge variations for any given patient on how they value an extra year of life with, for example, 

the ability to walk free of pain [102, 103]. Furthermore, differences in these preferences may vary 

dramatically across cultures as well as within professions that have greater physical demands 

[104]. There is also the considerable ethical problem that QALYs by definition will be less for 

older patients with fewer remaining years of life and for patients with co-morbidities that 

guarantee a lower baseline utility. All of these issues highlight that cost effectiveness is a relative 



 53 

measure. It should be used to enhance clinical judgment with the comparative thresholds and 

benchmarks it can produce. Absolute statements of cost effectiveness are not useful.  

 

Cost effectiveness analysis can also be used to advance the state of research. Models allow us to 

estimate, for example, an adequate population size needed to conduct a randomized trial. They 

would also inform us how much time would be required for completion. These models can help 

identify which variables (i.e., duration of the implant, complication rates, patient characteristics) 

are most influential in determining the total cost effectiveness of the procedure. A doctor can then 

pay particular attention to these in the decision process. A researcher can use these to target 

fruitful areas of inquiry [105], and in fact the model itself may prove simply that no conclusions 

can be drawn until more powerful data are gathered on sensitive variables. Finally, cost 

effectiveness helps us determine whether the information in the literature is specific enough. If in 

fact it is too general, then it serves as a warning to the researcher or surgeon that patients should 

be subdivided depending on characteristics. For PAO versus THA, for example, this could mean 

subdivision of THA into several categories of implants, such as ceramic on ceramic, metal on 

metal, and ultra-high molecular weight polyethylene. 
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Appendix A – Definition of Cost Utility Analysis 

Each article contained the term cost effectiveness in it, but this term is a misnomer. A cost 

effectiveness analysis, in the strict sense, measures health outcomes in units that are specific to 

the two procedures under comparison. For example, a fractured femur could potentially be fixed 

by external fixation or by internal fixation. One common outcome shared by these two methods is 

the rate of nonunion. The cost of each procedure would be compared with nonunion rates in a 

cost effectiveness analysis. In essence a cost effectiveness analysis uses an outcome that is 

deemed important by the doctor. 

 

By contrast, a cost utility analysis uses units that are standardized to all potential procedures, and 

the unit of outcome takes into account the preferences of the patient. The current consensus for a 

standardized unit is the quality adjusted life year (QALY), which equals the number of extra 

years of life, or in the typical case for orthopaedics, extra years of function, multiplied by the 

utility of those years for the patient. While utility assessment can be difficult, there are methods 

for its calculation. One example is the Rosser Index Matrix, which determines patient utility on a 

scale of 0 to 1 by comparing disability ratings of orthopaedics patients to the self-reported distress 

of the patient [106]. Once these standardized utilities are obtained, a cost utility analysis can be 

performed, as was done in the articles here.  

 

Nonetheless, convention favors the use of cost effectiveness to mean cost utility. For the sake of 

ease, I follow this convention.  
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Appendix B – Literature Review for Core Decompression 
 

A.1. Summary of Literature Search 

 

A.1.1 Search Strategy 

Keywords (in permutation) Osteonecrosis, decompression, hip, outcome 

Dates 1978-2004 

Total articles 269 

Articles not relevant 191 

Relevant articles analyzed 78 

Excluded reviews 15 

Excluded articles <50 subjects 30 

Excluded articles that failed criteria 22 

Articles remaining from 78 11 

 

 

A.1.2. Randomized Control Trial Used for Core Decompression and Conservative Treatment 

A.1.2.1. Randomized control trial, more than 50 subjects 

 

• Ref [30] 

A.1.3. Articles Used for Core Decompression 

A.1.3.1. Prospective, more than 50 subjects  

 

• Refs [22, 24-26, 28, 29]. 

A.1.3.2. Retrospective, more than 50 subjects 
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• Refs [23, 27]. 

A.1.4. Articles Used for Conservative Treatment 

 

• Refs [20, 21]. 
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