
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

2-9-2010

RF channel characterization for cognitive radio
using support vector machines
Thomas Atwood

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Atwood, Thomas. "RF channel characterization for cognitive radio using support vector machines." (2010).
https://digitalrepository.unm.edu/ece_etds/25

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/25?utm_source=digitalrepository.unm.edu%2Fece_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu




 

         

     

 

RF CHANNEL CHARACTERIZATION FOR COGNITIVE  

RADIO USING SUPPORT VECTOR MACHINES 

 

 

BY 

 

THOMAS DEAN ATWOOD 
 

B.S., Electrical Engineering, Southern Illinois Univeristy, 1984 
M.S., Electrical Engineering, New Mexico State Univeristy, 1993 

 

DISSERTATION 

 

Submitted in Partial Fulfillment of the 
Requirements for the Degree of 

 
Doctor of Philosophy 

Engineering 

The University of New Mexico 
Albuquerque, New Mexico 

 

 

December, 2009



iii 

 

 

 

 

 

 

 

 

 

DEDICATION 

 

To Sue, my wife and best friend. I could not have done this without your love and 
support. I love you dearly. 

To My Lord Jesus Christ. Thank You for the talent and the abilities to get here. 

To my uncles, Richard Ulrich and Kurt Ulrich. Your lifelong examples have been a great 
inspiration. 

To my mother, Emilie Atwood. Your quiet strength and dignity is beyond description. 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

To Dr. Christos Christodoulou and Dr. Manel Martinez-Ramón. Your leadership and 
guidance through this effort is most appreciated. 

To my committee, Dr. Sudharman Jayaweera, Dr. Mark Gilmore, Dr. Pedro Embid, and 
Dr. Armin Doerry. A finer committee could not be found. 

To my children, Jessica and Daniel. Thanks for understanding when Dad wasn’t there. 

Thanks to Sandia National Laboratories for their support through the University Part-
Time Program. 

Thanks to the lunch bunch for the humor. 



 

 

 

   

   

 

RF CHANNEL CHARACTERIZATION FOR  

COGNITIVE RADIO USING 

SUPPORT VECTOR MACHINES 

 

 

BY 

 

THOMAS DEAN ATWOOD 

 

 

ABSTRACT OF DISSERTATION 

 

Submitted in Partial Fulfillment of the 
Requirements for the Degree of 

Doctor of Philosophy 

Engineering 

The University of New Mexico 
Albuquerque, New Mexico 

 

December, 2009 



 

vi 
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M.S., Electrical Engineering, New Mexico State University, 1993 
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ABSTRACT 

Cognitive Radio promises to revolutionize the ways in which a user interfaces 

with a communications device. In addition to connecting a user with the rest of 

the world, a Cognitive Radio will know how the user wants to connect to the rest 

of the world as well as how to best take advantage of unused spectrum, 

commonly called “white space”. Through the concept of Dynamic Spectrum 

Acccess a Cognitive Radio will be able to take advantage of the white space in 

the spectrum by first identifying where the white space is located and designing a 

transmit plan for a particular white space. 
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In general a Cognitive Radio melds the capabilities of a Software Defined 

Radio and a Cognition Engine. The Cognition Engine is responsible for learning 

how the user interfaces with the device and how to use the available radio 

resources while the SDR is the interface to the RF world. At the heart of a 

Cognition Engine are Machine Learning Algorithms that decide how best to use 

the available radio resources and can learn how the user interfaces to the CR. 

To decide how best to use the available radio resources, we can group 

Machine Learning Algorithms into three general categories which are, in order of 

computational cost: 1.) Linear Least Squares Type Algorithms, e.g. Discrete 

Fourier Transform (DFT) and their kernel versions, 2.) Linear Support Vector 

Machines (SVMs) and their kernel versions, and 3.) Neural Networks and/or 

Genetic Algorithms. Before deciding on what to transmit a Cognitive Radio must 

decide where the white space is located. This research is focused on the task of 

identifying where the white space resides in the spectrum, herein called RF 

Channel Characterization. Since previous research into the use of Machine 

Learning Algorithms for this task has focused on Neural Networks and Genetic 

Algorithms, this research will focus on the use of Machine Learning Algorithms 

that follow the Support Vector optimization criterion for this task. These Machine 

Learning Algorithms are commonly called Support Vector Machines. 

Results obtained using Support Vector Machines for this task are compared 

with results obtained from using Least Squares Algorithms, most notably, 

implementations of the Fast Fourier Transform. After a thorough theoretical 
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 investigation of the ability of Support Vector Machines to perform the RF 

Channel Characterization task, we present results of using Support Vector 

Machines for this task on experimental data collected at the University of New 

Mexico. 
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1   INTRODUCTION 
 

Demand for wireless services continues to explode [1]. Consider just the 

proliferation of Bluetooth-enabled devices, everything from Nintendo’s Wii 

Gaming Platform communicating to a remote gaming accessory to cameras 

downloading pictures and video to a user’s home computer. Since most 

frequency spectrum is used by licensed services, most of the growth for these 

new wireless services is in the Instrument, Scientific and Medical (ISM) bands 

because most uses in these bands are unlicensed [2]. Unlicensed doesn’t 

necessarily mean unregulated, but as long as a communications device meets 

certain minimal requirements, the device can operate in one of the ISM Bands 

[3]. 

As an example, consider the 2.4 GHz ISM Band (2.4 – 2.485 GHz), where we 

have Bluetooth (IEEE 802.15.1), Wireless Local Area Networks (WLAN – IEEE 

802.11 b/g/n), and Wireless Personal Area Networks (WPAN – IEEE 802.15.4, 

“Low-Rate WPAN and its derivative called ZIGBEE” and IEEE 802.15.3, “High-

Rate WPAN”) [23] – [26]. Considering the myriad of services that use the 2.4 

GHz ISM Band, one can easily conclude that there would be little if any available 

spectrum in this particular ISM Band. 

However, occupancy studies conducted in the US and abroad has shown that 

the total percent of time that the 2.4 GHz band is unoccupied can range as high 

as 82.6 % in a metropolitan area such as Chicago, Illinois, USA and London, 

England [4] - [7]. Additionally, even when a particular piece of spectrum is 
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 occupied, we can see from [4] – [7] that other parts of the spectrum are 

unoccupied. Assuming a communication device that possesses the intelligence 

to understand the dynamic nature of spectrum usage in a particular band, it is 

apparent from [4] - [7] that there are numerous opportunities for such a device to 

take advantage of unused spectrum. As early as 1999 such a device, called a 

“Cognitive Radio”, was identified as being feasible [9]. 

In 2002, the United States Federal Communications Commission (USFCC) 

recognized the need for such a device and issued ET Docket No. 02-135 that 

addressed the issue of “white space” in spectrum. This report identified 

“Cognitive Radio” as one method whereby the white space could be utilized [8, 

pp 67 and 71]. 

As mentioned earlier the term “Cognitive Radio (CR)” was first coined by 

Mitola, et al. in [9], [10] to introduce a concept that combined Software Defined 

Radios (SDRs) with Computational Intelligence. The purpose was to create a 

device that could learn about the radio environment, allowing the device to 

characterize the RF channel and to take advantage of the white spaces in a 

particular spectrum band through a technique referred to as Dynamic Spectrum 

Access (DSA). DSA also allows a CR to operate in multiple frequency bands, 

subject to antenna availability. A well designed CR operating in the 2.4 GHz ISM 

Band should be able to act as a Bluetooth device, and, when the user requires 

the change, act as a Wi-Fi device without having to go through any hardware 

changes. All the while, the CR must change device modes without interfering  

 



 

3 

 

with other users of the band, in accordance with [14]. 

The computational intelligence allows the CR to learn how the user interacts 

with the radio. As an example, imagine a user who has a CR that can operate as 

described above, either as a Bluetooth device or a Wi-Fi device. However, 

through past experience the device has learned that the user doesn’t want the 

CR to access a Wi-Fi network, say an unsecured Wi-Fi network. 

Consider a generic block diagram of a CR as depicted in Figure 1.1 [Ref. 12, 

adapted from Figure 7.1, page 222] 

 

 

 

Figure 1.1: Cognitive Radio Block Diagram 
 

The Cognition Engine (CE), which is part of the “Machine Learning” (ML) 

block in the above diagram, has the responsibility to properly characterize the RF 

environment and learn how the user wants their CR to interface to the outside 

world. In this context we can see that the term “properly characterize” means 

more than just acting as a spectrum analyzer. We can see that the CE must also 
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be able to distinguish between the various types of services, and their attendant 

signaling schemes, that may be present in the channel. When we consider how 

rapidly things change in the RF environment of the 2.4 GHz band, 1600 times per 

second in the case of Bluetooth, we can see that techniques in use by the ML 

block have to be very fast and have multiple capabilities. In addition, these 

techniques, to enable pocket-sized CR devices, must be compact in the context 

of hardware resources necessary to implement the techniques. Many 

researchers have investigated, and written about, how a network of CRs can be 

used to share spectrum usage information (typically referred to as “Cooperative 

Sensing), but few, if any, have investigated how an individual device can perform 

the spectrum estimation task before feeding this information to a network [70] –

[73] . This dissertation investigates a technique based on a class of machine 

learning algorithms called “Support Vector Machines” (SVMs) [40], [42] that can 

be used by the CE to properly characterize, on a real time basis, the RF 

environment. 

This dissertation contains 6 Chapters. In Chapter 2 we discuss in more detail 

the concept of cognitive radio (CR), define what is meant by a CR, introduce 

Support Vector Machines (SVMs), discuss the role of Support Vector Machines 

(SVMs) in CRs and discuss the focus of this research in the 2.4 GHz ISM band 

with particular attention paid to the noise environment that is present in the band 

due to the presence of different wireless services and other sources. Also in 

Chapter 2 we present a mathematical treatment of SVMs starting with the 
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 simplest type of classification, i.e. binary classification with linear, separable 

algorithms, to illustrate the concept of “Support Vectors”. We then progress to 

linear, non-separable algorithms and then to non-linear, separable algorithms. 

For the non-linear algorithms we discuss kernel construction and the needed 

Mercer Condition for kernels that we then use to introduce a kernel for our non-

linear algorithm that includes information of the communications channel as well 

as information about the modulations that may be present. We wrap up Chapter 

2 by discussing how a modification in the FFT spectrum estimate technique, i.e. 

the loss function, can lead to our linear spectrum estimation technique. 

 In Chapter 3 we present results using SVRs as the spectral estimation tool 

with various combinations of the two primary services of services present in the 

2.4 GHz band, i.e. Bluetooth (IEEE 802.15.1) and Wireless Local Area Networks 

(WLAN – IEEE 802.11 b/g/n). Data for these investigations are generated in the 

MATLAB/SIMULINK environment and the data from the SIMULINK models are 

imported directly into the MATLAB workspace for processing. 

In Chapter 4 we discuss the experimental setups that were used to test these 

techniques in environments that present an increasingly harsher, i.e. more 

realistic, noise environment.  

In Chapter 5 we present and discuss the results of the experimental 

campaign. The experimental campaign was divided into 2 different environments, 

ranging from propagation experiments in a Faraday cage (Room L206, Electrical 

and Computer Engineering (ECE) Building on campus) giving the most 
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controllable noise environment to propagation experiments outside the ECE 

building in the presence of multiple WiFi signals and various Bluetooth devices. 

Finally, in Chapter 6 we present our summaries, conclusions, and 

recommendations for future research. 
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2   COGNITIVE RADIOS AND SUPPORT VECTOR MACHINES 

2.1 Cognitive Radio 

As mentioned earlier the term “cognitive radio” was first coined by Mitola, et 

al. in [9], [10] to introduce a concept that combined Software Defined Radios 

(SDRs) with Computational Intelligence. According to the IEEE’s 1900.1 

standard, “Cognitive Radio is a type of radio in which communication systems 

are aware of their environment and internal state and can make decisions about 

their radio operating behavior based on that information and predetermined 

objectives [11].” In general a CR melds the capabilities of a software-defined 

radio (SDR) with a cognition engine (CE).  

There are many definitions for what an SDR is, but the International 

Telecommunications Union (ITU) definition may be the most succinct: “A radio in 

which RF operating parameters including but not limited to, frequency range, 

modulation type, or output power can be set or altered by software, or the 

technique by which this is achieved [13].” 

SDR has its roots in a program funded by Air Force Rome Labs (AFRL) in 

1987 that developed a programmable modem to replace the “Integrated 

Communications, Navigation, and Identification Architecture” (ICNIA). This led to 

the development of Speakeasy I and II and eventually the stand up of the Joint 

Tactical Radio System (JTRS) Joint Program Executive Office (JPEO) in 2005 

[15, section 1.3, pp. 4 - 8], [15]. Therefore, given that SDR and SDR technology 

has been under development for 20+ years we can reasonably say that SDR 
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 technology is mature. On the other hand, development of the ML block, 

especially development of the algorithms that enable an ML block is a relatively 

new research area [16], [17], [18, Chapter 1]. 

As stated earlier, the ML block is responsible for a variety of tasks, but we can 

represent these tasks in the following three general categories: 

1. Perception of the radio environment, 

2. Learning from the environment and adapting the performance of the 

CR to the statistical variations in the incoming RF stimuli, and 

3. Learning how the user interacts with the radio. 

With regards to information on the radio environment, the CR, to have 

maximum flexibility for the user, must be able to operate in diverse radio 

environments with no a-priori knowledge of the radio environment. As an 

example, consider a business traveler who travels from Washington, DC to 

Tokyo, Japan who doesn’t want to have to carry around multiple communication 

devices. That traveler wants to get off the plane at their destination and have the 

device that they carry be instantly useful, regardless of the communications 

environment. 

As mentioned earlier the entire area of research for the CE, especially as 

applied to the task of spectrum estimation, is relatively new.  To date, the 

majority of the research in algorithms for the CE has centered on the use of 

Genetic Algorithms (GA) or Neural Networks (NN) as the heart of the CE [19] - 

[22]. Therefore, this PhD research chose to focus on the use of Machine 
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 Learning Algorithms that follow the Support Vector optimization criterion for the 

task of spectral estimation. These Machine Learning Algorithms are commonly 

called Support Vector Machines. This approach is based on Support Vector 

Machines acting in a regression mode to extract parameters, i.e. occupied 

bandwidth, modulation types, etc, that define, based on operating standards, 

what type of radio service is in use in a particular chunk of spectrum. Because of 

the demand for services in the 2.4 GHz ISM band and as a practical limit to these 

initial exploration we are limiting our research to the 2.4 GHz Instrumentation, 

Scientific and Medical (ISM) band. 

2.2 Why SVMs Instead Of The Discrete Fourier Transform (Fast Fourier 

Transform)? 

We use SVMs because of their abilities in the presence of non-Gaussian 

noise, the ability of the algorithm to use a sparse input vector and other 

advantages detailed in Table 2.1. 

Table 2.1: 

Advantages/Disadvantages of SVM algorithms vs the DFT (FFT) 

 Advantages Disadvantages 

FFT Computational requirements 
are low. 

 

Uses the Least Squares error 
which is suboptimal for non-

Gaussian noise. 

 A-priori knowledge of signal 
models is not required. 
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Many implementations of FFT 
algorithms for spectral 

estimation are available and 
can be used right away. 

 
 

 
 

SVM Acting on the margins, i.e. the 
Support Vectors, yields a 

sparse solution. 

Computational time is long. 
 
 

 Capacity control that prevents 
overfitting to outliers. 

More computational resources 
required. 

 Training time depends only on 
the dimensionality of the input 
space, not the feature space. 

A-priori knowledge of signal model 
required to construct proper 

kernels, if needed 

 Dual formulations yield a 
global solution with no local 

minima. 

Robust to non- 
Gaussian Noise 

 

 Use of kernels as a similarity 
measure allows the tailoring of 

the algorithm to the specific 
problem at hand. 

Parameter selection, e.g. # of 
points, is required to adequately 

use these SVM techniques. 

 

The long-term goal of this research is to develop techniques that can enable a 

cognitive radio that is as portable as any cell phone currently in production. 

Therefore, to be useful in such a communications device the spectral sensing 

described above has to be performed using small, broadband and non-directive 

antennas under the assumption of heavy noise and interference [27] - [31]. 

Further, the spectral environment that is present at any time in the 2.4 GHz 

ISM band presents an essentially non-Gaussian noise environment to any 

algorithm that is trying to estimate the spectrum. As an example of the type of RF 

environment present in the 2.4 GHz ISM band, consider Figure 2.1 that shows a 

notional representation of the spectrum occupied by two 802.11 transmitters and 
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 1 Bluetooth Piconet. This spectrum only stays constant for 625 µs before the 

Bluetooth transmitters change the channel in which they are transmitting. Since 

the Bluetooth transmitters utilize a Frequency- Hopped Spread Spectrum 

channel access scheme, we can consider the total ensemble of spectrum users 

in this band to be a random process. In addition to the noise sources that are 

present from the other services interfering with each other, there is the 

Electromagnetic Interference (EMI) present from microwave ovens [61] – [63]. 

The combination of these noise sources can appear as “blocks” of noise, i.e. on 

for periods of time or ‘impulsive” noise, i.e. on for very short periods of time. 

 

Figure 2.1: Spectrum occupied by two 802.11 transmitters and one 
Bluetooth Piconet (during one 625µS period) 

 
Given these requirements we can see, based on Table 2.1, that SVMs offer 

distinct advantages that outweigh the FFT as the spectral estimating technique 

for Cognitive Radio. 

Traditional spectral estimation, as implemented through the Fast Fourier 

Transform (FFT), is characterized by tradeoffs in windowing, time domain 
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 averaging and frequency domain averaging of sampled data obtained from 

random processes in order to balance the need to reduce sidelobes and to 

ensure adequate spectral resolution [50] – [52]. 

Another way to think about the use of SVMs instead of the FFT is to consider 

some of the mathematical constraints that are placed on the use of the FFT as a 

spectral estimation tool. 

According to the Weiner-Khinchin theorem we can relate the autocorrelation, 

( )xxR , via the Fourier Transform, to the Power Spectral Density (PSD), ( )P f , by: 

 ( ) ( )exp( 2 )   




  xxP f R j f d  (1) 

For our purposes we may not have the autocorrelation function available, but 

if we make the assumption that the random process is ergodic in the mean and 

standard deviation we can rewrite the PSD as follows: 

 





 
  
  


2

1
( ) lim ( )exp( 2 )

2T
P f E x t j ft dt

T
 (2) 

Unfortunately, as can be seen from the spectrum presented in Figure 2.1, we 

cannot make the assumption that the process is ergodic, i.e. constant for a long 

period of time. This fact is important because according to [53] the performance 

of spectral estimations may be characterized by an inequality that relates the 

stability-time- bandwidth product by: 

    1S T f  (3) 

where T is the time interval over which we have taken our time samples, f is 
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 the resolution in Hertz and S is a measure of the stability of the frequency 

estimate. If we desire a small S and our T is small (remember that the time 

during which the spectrum in the band is constant is short) we must have a large 

f . We will see later that this is exactly what happens when using the FFT to 

estimate the transmitters in the band especially when we desire to get f in the 

kilohertz range. 

2.3 Support Vector Machines 

For the spectral estimation task we present an approach based on Support 

Vector Machines in a regression mode (SVR) [32] - [34]. These methods 

implicitly use a cost function (also called the loss function) which is linear, thus 

being part of the so-called robust regression methods. While SVR methods are 

sub-optimal under Gaussian noise, they are very robust under non-Gaussian 

noise conditions [35], [74], [75]. 

First introduced by Vladimir Vapnik and his co-workers in the early 90’s, 

Support Vector Machines (SVM) are a very specific class of machine learning 

algorithms, characterized by the absence of local minima, the sparseness of the 

solution and the capacity control obtained by acting on the margin, or on other 

dimension independent quantities such as the number of support vectors [40], 

[42]. Being particularly useful for solving classification and regression problems, 

SVM based techniques have achieved superior performances in a wide variety of 

real world problems due to their generalization ability and robustness against 

noise and outliers.  
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As a review of the extent to which SVMs have been used in real world 

problems the following quick literature review of the use of SVMs in a 

classification mode is presented to give the reader a feel for how useful these 

techniques have become in a little over 10 years. SVMs have been used for 

isolated handwritten digit recognition, [43], [44], [45], [46], object recognition [47], 

speaker identification [48], and face detection in images [49]. A more detailed 

literature review is contained in [33]. 

Before discussing the issue of spectrum estimation we discuss the foundation 

of SVMs, touching first on the topic of SVM Classification, then a discussion of 

SVM Regression (SVR). The following discussion is taken from a variety of 

references, in particular [34], [36] - [39], [64], [65]. 

2.4 FUNDAMENTALS OF SVMS FOR CLASSIFICATION 

2.4.1 Linear Separable - Primal Formulation 

The most fundamental SVM classification problem is binary classification. In 

the binary case, a training set is spanned by a collection of input vectors xi 

(i=1,…,l), with each vector being assigned a label yi{+1, -1} to indicate the 

corresponding class to which each belongs. Each input vector together with its 

label represents a specific data point lying in the input space. Each training pair 

is assumed to be generated i.i.d (independent and identically distributed) from an 

unknown probability distributionP( , )yx , 

  ( ),..., ( ) , 1, 1x, x , R xN
n ny y Y Y                                                    (4) 

We need to find a function f such that the next set of unseen examples ( , )yx  
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 are correctly classified. This function is defined by a set of possible mappings 

(f X x, ) , where the functions (f x, )  themselves are labeled by the adjustable 

parameters  . The learning machine that is defined by these functions is 

assumed to be deterministic, i.e. for a given input x , and choice of  , the output 

is always the same. 

The best function f would minimize the expected error, or risk, 

 ( ) ( (x), ) P( ,y)R f c f y d  x                                                              (5) 

where c is a loss function. For our simple binary classification problem, 

where  1, 1Y    , a common choice for the misclassification error 

is:
1

2
c f y f y ( (x), ) (x) . The problem in evaluating R f( ) is the fact that we do 

not know the probability function P . 

We can proceed by using the training data to approximate Equation 5 by a 

finite sum: 

 
1

1 m

ii
f P f

m 
  (x) (x )                                                            (6) 

This leads to the empirical risk (See Definition 3.4, page 67, Reference [37]) 

defined as: 

 
1

1 m

emp i
R f c i yi f i

m 
 ( ) (x , , (x ))                                                (7) 

We can see that we need to limit the complexity of the class of functions from 
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 which f is drawn [42]. We can introduce a regularization term to limit this 

complexity (See Reference [65], Chapter 5 for a more thorough discussion on 

regularization). A more specific way to control the complexity is through VC 

(Vapnik-Chervonenkis) Theory, with the attendant VC Dimension and the 

structural risk minimization (SRM) principle [40] and [42]. The VC Dimension is a 

property of a set of functions  ( )f  and can be defined for various classes of 

function f . In our case of the binary classification we have a given set of  points 

that can be labeled in all possible 2 ways. If we can find a member of the set 

 ( )f  which correctly assigns those labels, the set of points is said to be 

“shattered” by that set of functions. The VC Dimension for a set of functions 

 ( )f  is defined as the maximum number of training points that can be 

“shattered” by ( )f  . See [33, especially Sections 2.1 – 2.5] for a more detailed 

explanation with some examples to illustrate the VC Dimension concept in more 

detail. 

Returning to our original input samples we have the task of finding a 

hyperplane that separates the training samples into two classes with maximal 

separation margin, as demonstrated in Fig. 2.2. This hyperplane actually 

represents the optimal classifying function being found through a learning 

process that is carried out on the knowledge extracted from the training data set, 

such that the classifying function is able to predict the labels of novel samples 

with minimum error. 
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We choose functions of the form: 

 f b w(x) ( •x)                                                                      (8) 

where w is normal to the hyperplane. 

Vapnik showed in [42] that the VC bounds can be bounded in terms of 

another quantity, i.e. the margin, as depicted in Figure 2.2. 

 

 

 

In linearly separable cases, there exists one unique optimal separating 

hyperplane that is distinguished by the maximum margin between either class of 

samples. It can always be expressed in the form of:  

  wx x 0T b   Subject to max margin:     imax min x x
         

(9) 

Fig. 2.2: Optimal Separation Hyperplane (Solid Line) and two margin 
Hyperplanes (dashed line) in a binary classification example; Support 
Vectors are bolded 
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where w, the weight vector, defines the inclination direction of the separation 

hyperplane, and b, the bias, indicates the Euclidian distance from origin to this 

hyperplane.  

Consequently, the decision function to predict the label of a new sample can 

be written as: 

   wT
j jf x =sign x +b                                                     (10) 

where xj represents the new input data sample to be classified. The output of the 

decision function, which is a sign, predicts the label of xj. We can see that the 

binary classification process has been reduced to an optimization problem of 

finding w and b for the optimal hyperplane separating the classes subject to the 

maximum margin constraint. 

It can be shown that maximizing the margin of separation is equivalent to 

minimizing the norm of w. The capacity of a classifier, which is inversely 

proportional to its generalization ability, will decrease with the increasing of 

separation margin. It is one of the best features of SVM based classifiers 

because being able to control their capacity by acting on the margin maintains 

generalization ability. Another commonly used form of this constraint optimization 

problem (primal formulation) is:  

 
 
 

21

2
min w                                                          (11) 

subject to: 

    w x 1 1, ,T
i iy b for i l                                     (12) 
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2.4.2 Linear Separable - Dual Formulation and Lagrangian Solution  

A traditional way of solving the above constrained optimization problem is to 

apply Lagrangian Formalism. As developed in [36, especially Section 5.3] the 

primal Lagrangian is: 

   


     w α w w
2

1

1
, , x 1

2

l
T

i i i
i

L b y b                                (13) 

where αi are the nonnegative Lagrange multipliers. The corresponding dual is 

found by differentiating with respect to w and b to yield: 

 
1

i i
i

L b
y




 

 α (w, , )
w x

w
                                                         (14) 

 
1

( , , ) 





 w 

i i
i

L b
y

b

α
                                                            (15) 

The complementary conditions from the Karush-Kuhn-Tucker conditions, see for 

example [67, Appendix A], for 14 and 15 state that the product of the dual 

variables and the constraints should be zero at the optimal solution. 

 
1

0 i i
i

L
y




  

 


w x
w

                                                    (16) 

 
1

0 0



  

 


i i
i

L
y

b
                                                        (17) 

As a result, both w and b can be denoted as combinations of support vectors and 

their corresponding Lagrange multipliers: 

          w x x s x s1 2

1
y 1,

2
T T

i i i i i i i SV
i i

b y i l                  (18) 

Physically, they are the input data samples that lie on the margin hyperplane. 
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The 1s and 2s are two arbitrary support vectors from each class respectively. 

Therefore, the decision function can be improved as:  

 
#

1

SV
T

j i i i j
i

f sign y b


 
  

 
x x x                                             (19) 

2.4.3 Linear, Non-Separable – Primal Formulation 

Compared with the linearly separable case, linear, non-separable 

classification conveys significantly more practical information and for the 

research proposed here has significantly more value. In the linear, non-separable 

case, one can still place a linear classification boundary to classify the patterns, 

but since both classes are partially overlapped, there will be a number of errors. 

In order to minimize those errors, the SVM approach takes into account the 

patterns that are inside the margin or outside the margin but in the incorrect side 

of the separation hyperplane. The distances  of such patterns to the margin 

hyperplane are then accounted for in the minimization. Thus, the constraint 

optimization problem associated with nonlinearly separable classification can be 

described (primal formulation) as following: 




 
 

 
2

1

1

2

l

i
i

min Cw                                                  (20) 

subject to: 

        1 0 1, ,T
i i i iy b for and i lw x                      (21) 

where ξi are the slack variables that measure the deviation of outliers from the 

margin hyperplane, and C is the penalty parameter which controls the 
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compromise between maximizing the separation margin and minimizing the 

training errors. The slack variables are forced to be positive or zero, that is, the 

slack variables for correctly classified samples that are outside the margin are set 

to zero. 

2.4.4 Linear, Non-Separable – Dual Formulation and Lagrangian Solution 

After applying Lagrangian formalism to this problem, it yields: 

       
  

          2

1 1 1

1
, , , 1

2

l l l
T

i i i i i i i
i i i

L b C y bw α μ w w x              (22) 

where αi and μi are both nonnegative Lagrange multipliers. By forcing all the 

derivatives of (22) with respect to w, b and ξi to be zero, and applying the KKT 

complementary condition, a Dual Lagrangian function can be derived in matrix 

form as follows:  

1
1

2
T T

DL  α α YKYα                                              (23) 

where α is the vector of Lagrange multipliersi , Y is a diagonal matrix containing 

the labels, and K is the matrix of dot products between training data. Accordingly, 

the optimal solution of w appears in the following formation:  

  1, ,i i i SV
i

y i lw x                                        (24) 

Obviously, only the support vectors out of the whole set of the training data 

are involved in the computation. This will greatly reduce the computational 

complexity during the test phase in the nonlinear version of the SVM, as we 

explain below. 
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2.4.5 Kernel Trick and Mercer Condition 

SVMs belong to the class of linear algorithms that can be expressed as a linear 

combination of dot products between data. SVMs can be non-linearized through 

the Kernel Trick [40] and [42]. The basic idea is to have a nonlinear 

transformation ( )  of the data [ ]x n  into a higher (possibly infinite) Hilbert space 

for which the associated dot product is expressible as a function ( , ) K of the 

input data as: 

 ( ) , ( ) ( , )i j i jK  x x x x                                                              (25) 

Such a function is called a Mercer Kernel. A Hilbert Space provided with a kernel 

is called a Reproducing Kernel Hilbert Space. Mercer’s Theorem states the 

conditions for a kernel to be a dot product in a Hilbert Space. In particular, it 

states that a mapping function ( ) :   n H and a function ( , )K   , as in (25), 

exists if and only if ( , )K    is an integral operator in a Hilbert Space, i.e., if the 

kernel satisfies: 

     0( , ) ( ) ( )  x x x x x xi j i j i jK g g d d                                                (26) 

for any square integrable function ( )g  . 

Equation 25 is often called the “Kernel Trick” which enables the ability to work in 

huge dimensional feature spaces without actually having to perform explicit 

computations in this space. In the case of support vector machines we start from 

a primal formulation with a high dimensional feature space by applying 

transformations ( )  . The problem is not solved in the space of the primal 
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formulation but in the dual space of Lagrange multipliers after applying the kernel 

trick. 

2.4.6 Non-Linear, Separable 

Now that we have the kernel trick available a non-linear, separable problem 

can be transformed into a linearly separable one by mapping from the input 

space into a higher (possibly infinite) dimensional hypothesis Hilbert space (also 

called feature space), as illustrated by Fig. 2.3. 

 

 

 

 

 

 

 

A short explanation of what Figure 2.3 is trying to tell us is warranted. If we 

examine the left hand image we see that there is no conceivable way to place a 

separating hyperplane to separate the red from the blue samples. However, if we 

add another dimension, by the use of the transformation   , we can see that the 

placement of the separating hyperplane is now readily apparent. If we were to 

view the 3D space (right hand image) from the top we would still see the same 

pattern that we do in the left hand image.  

Using the techniques developed above in Sections 2.4.3 and 2.4.4 we can 

 

Fig. 2.3: Non-linearly separable problem in 2-D space 
becomes linearly separable in 3-D space after a nonlinear 
transformation “φ” being applied. 
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 write the primal as: 

     T
j jf sign b x w x                                                       (27) 

As before we use Langrangian Formalism to construct: 

    2

1 1 1

1
, , , 1

2

l l l
T

i i i i i i i
i i i

L b C y b    
  

          w α μ w w x        (28) 

Applying the KKT conditions: 
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yields: 

 
1 1

1

2 , ,

( ) ( , )k l k l k l k
k l k l

L y y K x x   
 

  
 

                                      (30) 

This yields a new decision function: 

     
1

SVl
T

j i i j i
i

f sign y b  


 
  

 
x x x                        (31) 

Applying the kernel trick: 

        ,
T

i j i jKx x x x                                         (32) 

where K is a continuous symmetric non-negative definite kernel. With this result, 

without knowing the explicit form of the non-linear transformation φ(.), the 

decision function can be re-organized into the following form: 
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1

,j i i i j
i

f sign y K b


 
  

 
x x x


                                (33) 

In this way, the learning process in the feature space does not involve anything 

related with the transformation φ(.). The new input data samples will be classified 

according to the output of decision function with maximized generalization ability. 

2.5 SVMs For Regression 

A more rigorous treatment of the following material is contained in [32]. 

To extend this discussion on SVM classification into a regression algorithm 

we return to Eqn 1: 

           0T bx w x   Subject to max margin:     imax min x x                 (34) 

In the case of SVM regression (SVR), we measure the error of approximation 

instead of the margin used in the classification. Vapnik developed a unique loss 

(error) function, called the “linear loss function with ε-insensitivity” as: 

 






      
   

x w
x x w

x w

0, if ( , ) ,
( , , ) ( , )

( , ) , otherwise

y f
E y f y f

y f
            (35) 

Or, the loss is equal to zero if the difference between the estimate and the 

measured value is less than ε. Graphically, we can see this in Fig. 2.4 by 

representing ε as a “tube” around the actual function. For all predicted points 

outside the tube, the loss equals the magnitude of the difference between the 

estimate and the radius of the tube. 
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Figure 2.4: Graphical representation of a “loss” function 

 
Formally speaking, the SVR is intended to minimize the functional  

2 *

1

1
( )

2

N

i i
i

L C  


  w
                                             (36)

 

subject to the constraints: 

 

 

   

    

w

w *

x
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i i i
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i i i

y b

y b                                             (37)
 

where the first constraint equation is used for positive errors and the second one 

for negative errors. These constraints actually implement the epsilon insensitive 

cost function. The application of Lagrangian analysis to the above constrained 

optimization problem leads to a solution which is similar to the one for 

 



 

27 

 

classification. In particular, the solution for the weights is 

 
1

 


 w * x
N

i i i
i                                             (38)

 

Here, the Lagrange variables are: i, i
* .  

Adding this result to the Lagrangian formulation results in a dual optimization 

problem that can be expressed in matrix form as 

  * T K  *   * T y   * 1                          (39)
 

where , *, y are vectors containing the Lagrange multiplier and the regressors 

yi respectively, and where matrix K contains the dot products K ij  x i
T x j  between 

training data. 

Equation 39 can be derived by applying a modified cost function that 

combines both Vapnik’s ε-insensitive cost function [40], [42] and Huber cost 

function [77] which was introduced in [78] for SVMs applied to system 

identification. See Figure 2.5 for a graphical representation of this cost function. 
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Figure 2.5: Composite Cost Fuction 

Mathematically we can represent this cost function as: 
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where   Ce C . Using this cost function leads to the Lagrange multipliers [79]: 

  

0

1

 

    




 

   

 

[ ] [ ]

[ ]

n C

C

n n e

C e n

 (41) 



 

29 

 

For 0  only a subset of the Lagrange multipliers will be zero [37] and the 

input samples associated with the non-zero Lagrange mulitpliers are the Support 

Vectors. The cost function, as defined in Equation 40, provides a functional that 

can be regularized by the matrix  I . A closer examination of the cost function 

explains why the SVM algorithm is robust against non-Gaussian noise. The cost 

function is quadratic for data that produces errors between  and Ce and linear for 

errors above Ce . Therefore we can adjust Ce to apply a quadratic cost for 

samples that are affected by thermal noise. The linear cost is applied to samples 

that are affected by non-Gaussian noise. 

This optimization problem can be solved using quadratic programming [54]. 

Equation 39 is in quadratic form, thus having a unique solution. Nevertheless, the 

problem may be ill posed, so the matrix needs to be numerically regularized by a 

small diagonal. It can be shown that this is equivalent to a modification of the 

cost function that adds a small quadratic section between the epsilon insensitive 

section and the linear section. This property can be exploited in terms of 

adaptation to the noise probability density, and as we show in our results allows 

SVR algorithms to operate as spectral estimators in a non-Gaussian noise 

environment. 

2.6 Parametric Spectrum Estimation 

For this research we will be investigating two types of algorithms for the 

spectral estimation task. The first algorithm is a linear algorithm that we will call 
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the Non-Parametric Algorithm as we assume no a-priori knowledge of a model of 

the signals that may be present in the channel. 

We will also use a non-linear algorithm that we will call the Parametric 

Algorithm because we assume some knowledge of what may be present in the 

channel. Because it is a non-linear algorithm, in accordance with Section 2.4.6, 

we must develop a kernel, “K” in Equation 25, which helps project the measured 

data into a higher space to develop the estimation hyperplane. Another way to 

think about the role that kernels play in SVR is to think of the kernels chosen as a 

similarity measure [37]. When we adopt this view towards what kernels are, and 

since we are trying estimate spectrum usage, we need to choose kernels that are 

composed of models of what we are trying to estimate. 

This research does not intend to delve into the intricacies of kernel theory. 

Instead the reader is referred to [36] - [39], and [55] for a more complete 

mathematical treatment of the topic. 

Our assumption of what types of kernels to use has a flaw that could be 

devastating to our spectral estimation and that is the fact that our kernels have 

no information about the type of propagation channel that may be present. If the 

channel is flat than our spectral estimation can neglect the affects of the channel, 

at best we will have an attenuation factor to contend with, but in most cases 

where a cognitive radio might be used the assumption of a flat channel is invalid. 

The predominant types of channel distortion are Rician and Rayleigh Fading 

as well as “fast” and “slow” fading [68]. In our case the main problem with this 
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 type of fading is the so-called multipath effect where versions of the original 

signal are scaled and phase shifted by the channel and is received at different 

times by the receiver. These effects are caused by the fact that a signal may 

have to travel separate paths to get to the receiver. In addition, a line-of-sight 

version of the signal, which will be stronger than all the other versions of the 

signal may (Rician Fading) or may not (Rayleigh Fading) be received as well. 

Therefore we must somehow include channel effects in the kernels that we use 

for our spectral estimation. 

We have developed an SVM-like methodology for generating the kernels to 

be used for this research that takes into account the channel affects on the 

signal.  

In the case of the 2.4 GHz ISM band we have knowledge of the types of 

signals that might be present in the channel but do not necessarily have to be 

present. Given any set of time samples [ ]x n we can write the autocorrelation as: 

 * *[n] [n] [n ] [n] [ n]    
j

r x x j x x  (42) 

If these time samples came from the channel in question, we seek to find an 

approximation to the spectrum of [n]x  using an estimation model that consists of 

a mixture of the signals that we believe might be present in [n]x . Working with 

the autocorrelation function in Equation 42 we can write an expression for the 

estimate of the total autocorrelation function: 

 
1

[n] [n]


 K

k k
k

r a r  (43) 
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where the ka terms represent the amplitudes, including 0ka , of each of the 

autocorrelation terms which correspond to a different signal that may be present 

in the channel. 

As explained before this estimation model has a serious flaw without the 

inclusion of the propagation channel. For this derivation we will work with the 

channel impulse response h[n] . Our new estimation model is: 

 
1

[n] h[n] [n]


  K

k k
k

r a r  (44) 

where we assume that the h[n] is the same for all signals and time invariant. As 

the channel is unknown this model has two sets of unknowns; the k that 

represent the spectrum and the channel impulse response. 

Adding the channel impulse response to the estimate and then not knowing 

the channel impulse response may seem like an intractable problem. But if we 

use the same sort of formulation that allows for solutions to the SVM formulation, 

hence the term “SVM-like algorithm”, we can arrive at a methodology that allows 

us to calculate what we need, i.e. the “K” for Equation 25 above, without actually 

knowing the channel response. 

Since SVMs are grounded in statistical learning theory [40] we return to 

statistical learning theory to help us find an interpretation of h[n]  and for that we 

introduce Hilbert Spaces into our derivations. 

We assume a non-linear function of time, n , that provides a mapping, 
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 :R [ ]:n n  from our input space to a higher dimension Hilbert Space. 

According to [36] and [37], we do not need to know what the transformation  is 

as long as we know the results of the dot product in the Hilbert Space are. We 

can write this as: 

   ( , ) [ ] [ ]TK n m n m  (45) 

where  is a positive definite matrix. 

To be a kernel this function must fit the conditions of Mercer’s Theorem [36], 

which provides a characterization of when a function ( , )K n m is a kernel. In 

particular this function must be positive definite, see [36, Proposition 3.5, page 

33]. A function that fits Mercer’s Theorem and is a dot product in a Hilbert Space 

is known as a Mercer’s Kernel.  is then known as a Reproducing Kernel Hilbert 

Space [37]. 

We assume that we have available a set of   [ ],1j n j N for training 

purposes in this Hilbert Space. As an estimator of their autocorrelations we can 

write: 

[ ] [ ]Tr n nw                                                            (46) 

where w is a parameter vector estimated using the data. We will refer to this 

estimator as a “primal representation” and w are its “primal variables”. 

Since the estimator parameters w are obtained using a linear algorithm 

based on data, we can state that these parameters are a linear combination of 

the parameters because of the representer theorem [37], [56]. Because of this 
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we can write that the relationship between w and the channel impulse response 

is: 





1

[ ] [ ]
N

j

h j jw                                                          (47) 

Equation 47 leads to another representation of Equation 46, which is: 

 


 
1

[ ] [ ] [ ] [ ]
N

T

j

r n h j j n
                                                  (48) 

Referring to the original SVM formulation presented earlier we can see that 

Equation 46 and 48 yield a “dual representation” for the autocorrelations. Further, 

the [ ]h j  are the “dual variables”. 

Since the nonlinear transformation “ ” remains unknown from Equation 48, 

we need to find another representation. Since the Hilbert space provides us with 

a kernel dot product, we have access to those dot products. The estimator can 

be rewritten as: 



 
1

[ ] [ ] [ ]
N

j

r n h j k j n                                                   (49) 

We note that Equation 49 is a convolution between signals [ ]k n  and [ ]h n . 

From before, we know that the kernel function is a dot product in a Hilbert 

space and that the kernel function must be positive definite. As well, 

autocorrelations have the same positive definite characteristic as kernel 

functions. Therefore, ( )k j n can be an autocorrelation function or a linear 

combination of other autocorrelation functions. This means that we can restate 
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 Equation 43 as: 




1

( ) [ ]
K

k k
k

k n a r n
                                                                   

(50) 

The Fourier Transform of Equation 50 can be written as: 

 



1

( ) ( )
K

k k
k

K j a R j
                                                                

(51) 

Note that this expression is the joint spectrum of all possible signals present 

in the signal but still does not contain information about the channel. However, to 

continue the derivation we assume that a set of ka  have been chosen for the 

kernel. Then we can write the Fourier Transform for Equation 49 as: 

    


  
1

( ) ( ) ( ) ( ) ( )
K

k k
k

R j H j K j H j a R j
                                      

(52) 

We can see that ( )H j represents the envelope of the signal [ ]x n  and 

ka represent the amplitudes of each of the spectra that might be present in the 

signal. 

Equation 50 is a form of a composite kernel called a summation kernel. The 

interpretation of such a kernel in terms of Hilbert spaces can be expressed if we 

model each kernel of the summation as a kernel in a Hilbert subspace. For the 

same purpose, we can write our nonlinear transformation [ ]n as a concatenation 

of vectors in different subspaces, or: 

    1[ ] [ ],..., [ ]
TT T

Kn n n                                                    (53) 

and the dot product between two vectors [ ]n and [ ]m as: 
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1 1

1

[ ] [ ] [ ] [ ] ... [ ] [ ]

( ) ... ( )

T T T
K K

K

n m n m n m

k n m k n m
                                                     

(54) 

Equation 50 contains weights for each kernel which means that their 

interpretation into a Hilbert Space has the concatenation of vectors weighted as 

well, or 

    1 1[ ] [ ],..., [ ]
T

T T
K Kn a n a n

                                                           

(55) 

Now we have all of the pieces necessary to proceed but we have two sets of 

unknowns [ ]h n  and ka . To solve this problem we choose to attempt a parameter 

optimization routine in which we have several choices. We choose to use the 

SVM strategy to optimize both sets of parameters, hence the choice of SVM-like 

algorithm earlier in this discussion. Choosing the SVM strategy allows us to not 

to have to make any assumptions about the parameters, such as their 

distribution and what the sources for possible model error might be. 

Before proceeding we briefly discuss why we didn’t choose an easier method, 

such as assuming that the parameters have a Gaussian distribution. Choosing a 

Gaussian distribution would allow a maximum likelihood optimization but the 

result would not be sparse. Further, a Gaussian distribution on the parameters 

implies a Gaussian Process in that channel and for the reasons stated earlier we 

cannot make that assumption when attempting to estimate spectrum usage in the 

2.4 GHz ISM band. 

To construct an SVM-like optimizer for this estimator, we mix Equation 46 
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 with Equation 55. Recall that we have a linear combination of autocorrelations 

which are interpreted as a linear combination of dot products in Hilbert spaces. 

We can split the data into “P” Hilbert Spaces and likewise the estimator 

parameters can also be split into “P” subsets of parameters that lie inside these 

subspaces. We can therefore rewrite Equation 46 as: 





1

[ ] w [ ]
P

T
k k k

k

r n a n
                                                                 

(56) 

The goal is to minimize an SVM-like functional with respect to the dual 

variables [ ]h n , for which w are the primal, and ka . In Equation 13 we were able 

to use Lagrangian formalism to solve the optimization problem. Here we are not 

so lucky, but we can optimize these two functionals iteratively. We will design 

each functional to optimize one of the two variables and during each iteration we 

will keep the other variable constant. 

Considering the primal formulation of a standard SVM regression machine 

[36], we can construct an SVM algorithm to optimize the primal variables w . The 

corresponding dual is: 

 
1

1
2

t t th Kh h r h     (57) 

subject to [ ] ,C h n C C   being one of the SVM free parameters. The other free 

parameter,  , forces sparseness in the standard SVM algorithm. Since we are 

optimizing the primal variables w and they are concerned with the channel 

impulse response and we are making the assumption that the channel is linear, 
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we can set   to zero in Equation 57. 

For the parameters ka we seek a transformation that allows them to be cast 

as the dual variables of some primal quantity. Let us rewrite Equation 44 as: 

 
1

[ ] [ ]
K

t
k k

k

r n a r n h a


                                                     (58) 

where t is an N by k matrix where column k contains the vector kr h . We desire 

parameters ka be dual variables of an optimization problem. Variables ka are a 

linear combination of vectors of matrix  . If we write: 

 a b   (59) 

we want  b  to be primal variables. This can be rewritten as: 

   1t tb a Za


      (60) 

If   1t tZ


     is a new set of data, then variables a are the dual variables 

of an estimator that can be written as: 

 tp Z b  (61) 

Combining Equations 59 and 60 yields: 

    1 1t t t tp Z Za a
 

        (62) 

and using Equation 57 we get: 

    1 1t tp r
 

      (63) 

Taking the same set of steps we can arrive at an SVM functional for the 
variables ka as: 
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        1 1 1 11
1

2
t t t t t t t ta a a r a 

   
               (64) 

Table 1 presents a summary of the algorithm just developed. 

TABLE 2.2 
Summary of SVM-like Algorithm 

Step 1: Compute the autocorrelation of the known signal as: [ ] [ ] [ ]r n x n x n    

Step 2: Construct and optimize the dual functional (Equation 57 with 0  ) as 

1

2
t th Kh h r  with respect to h  

Step 3: Construct the matrix 1[ ,......, ]t
kr h r h  , with kr defined in Equation 44. 

Step 4: Construct and optimize the dual functional (Equation 64) as: 

       -1 -1 -1 -1t t t t t t t t1
- a Θ ΘΘ ΘΘ Θ a + a Θ ΘΘ ΘΘ r - a 1ε
2

 

Step 5: Repeat Steps 2-4 until convergence 

We realize that this formulation assumes two unknowns: 1. ) The signals that 

may be used in the channel, as represented by ka in the derivation above, and 

the channel impulse response autocorrelation, as represented by h in the 

derivation above. For this research we choose to limit the channel response to a 

flat channel and propose follow on research in Chapter 6 that takes advantage of 

being able to extract information about the channel with this derivation. 
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2.7 Non-Parametric Spectrum Estimation 

Finally, by way of an introduction, we discuss how we can mathematically 

start with the DFT as a spectrum estimation tool and end with the Non-

Parametric Algorithm 

The DFT solves a parametric model of the signal with the form 

 
-1

0 0
0

cos sin [ ]
K

i i
i

y n a i b i e n 


  
  

                                          (65) 

by minimizing the expectation of e2 n . In order to ease the analysis, let c be a 

column vector containing all parameters ai and bi, and e(ω0) be a vector 

containing all functions cosi0 and sin i0 concatenated. Then the squared error 

e2 n  can be expressed as 

e2 n  y n  cTe 0  2  y 2 n  cTe 0 eT 0 c  2y n cTe 0             (66) 

The error must be minimized with respect to c and then averaged along all 

data. Thus, one must compute the gradient of the squared error and set it equal 

to zero in order to find the optimal values for c. 

 ce
2 n  

c
y n  cTe 0  2  e 0 eT 0 c  y n e 0  0                 (67) 

which, after applying expectations, results in  

E e 0 eT 0  c  E y n e 0                                         (68) 
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In order to get a solution, one must obtain the optimal value of ω0, which is 

ω0=2�/N. For this value, sinusoid functions are eigenvectors of the data. Then, 

equation above results in  

c  E y n e 0                                                       (69) 

since the matrix at the left side is the identity matrix. Substituting the expectation 

by a summation operator gives the DFT formulation. We can recognize that the 

loss function for the DFT is  e n . The SVM approach uses the same model but 

instead of applying the MMSE criterion, we apply the " "  loss function identified 

in Equation 35 or depicted graphically in Figure 2.4. Simply, we identify  



w  c

x n  1,cosn,L ,cos k 1 n,sinn,L ,sin k 1 n T                    (70) 

Observe that here we do not necessarily use the same value of ω0 as in the 

DFT. Here we consider this frequency as a free parameter. 

The end result of this manipulation, i.e. substituting the SVM cost function for 

the for the MMSE criterion, yields a formulation that is more robust against non-

Gaussian noise, at the expense of being sub-optimal in the presence of 

Gaussian noise. The introduction of the “C” parameter helps control the 

complexity of the solution set and limits the possibilities of overfitting against 

outliers that is seen in Neural Networks and Genetic Algorithms. As we will see in 

Chapter 3; the performance of the SVM regression algorithms is very robust 
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against non-Gaussian noise, as predicted by the use of the different cost 

function, but not as good in Gaussian noise. 
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3 MODELING AND SIMULATION 

3.1 Preliminaries 

This research concentrated on performing this spectrum sensing in the 2.4 

GHz Instrumentation, Science and Medical (ISM) band. We chose the 2.4 GHz 

ISM band because of the proliferation of different types of wireless services. 

These different types make the use of the 2.4 GHz ISM band quite interesting 

[23] - [26], especially when we consider that each type of service presents a 

noise source to the other services that might be trying to operate in this band. In 

fact, the interference between Bluetooth transmitters and the WiFi services got 

so bad that the Institute for Electrical and Electronic Engineers had to issue 

standard 802.15.2 to attempt to address the interference concerns between the 

two services [57].  Table 3.1 presents a brief synopsis of the various signaling 

and channelization schemes that different wireless services in this band use. 

Examining the table we see that there are four types of channelization schemes: 

1.) Frequency Hopped Spread Spectrum (FHSS), 2.) Direct Sequence Spread 

Spectrum (DSSS), 3.) Offset Frequency Division Multiplexing (OFDM), and 4.) 

Fixed Allocations. The specifications for each of these services specify not only 

how the service accesses the channel but also how much power, thereby 

defining range, each service can transmit.  

We can see that if we were to try all of the various combinations of services, 

with all of the variability in modulation and channelization that each service can 

have this research could go on for years just trying all the permutations. Instead, 
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 we chose to limit our research to the areas of Bluetooth and WiFi signals in the 

channel because these two services are the most popular at the current time as 

evidenced by what services appear most often in the various spectrum studies 

[4] – [7] and these two services seem to have the most problems coexisting [58], 

[59], and [60]. 

TABLE 3.1: Wireless Characteristics in the 2.4 GHz ISM band 

Service Channelization Bandwidth Modulation Data 
Rate 

WiFi 
802.11 b 

FHSS 
2.5/second 

DSSS 

22 MHz 
 

22 MHz 

2GMSK 
4GMSK 

 
DBPSK 
DQPSK 

8 Chip CCK 
8 Chip CCK 

1 Mbps 
2 Mbps 

1 Mbps 
2 Mbps 

5.5 
Mbps 

11 Mbps 
WiFi 

801.11g 
OFDM 

2.5/second 
5,10 or 20 

MHz 
Up to @ 64-QAM Up to 54 

Mbps 
Bluetooth 
802.15.1 

FHSS 
1600/second 

1 MHz GMSK 1 Mbps 

HR WPAN 
802.15.3 

5 Fixed 
Channels 

3 Main 
2 Coexistent 

11 MHz QPSK@8 State TCM 
DQPSK@8 State 

TCM 
16-QAM@8 State 

TCM 
32-QAM@8 State 

TCM 
64-QAM@8 State 

TCM 

11 Mbps 
22 Mbps 
33 Mbps 
44 Mbps 
55 Mbps 

LR WPAN DSSS 
16 channels 

22 MHz O-QPSK 250 
Kbps 

 

Since we are limiting the research we have chosen to implement the following 
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 simulations: 

1.) Single Bluetooth Transmitter, emulating a Bluetooth device searching 

for a Piconet to join, 

2.) Single Wi-Fi transmitter, 

3.) Full Bluetooth Piconet comprised of 8 transmitters – 1 master in an 

even channel and 7 slaves in odd channels, and 

4.) Combinations of Bluetooth and WiFi transmitters 

We had two goals in mind for the simulations, 1.) Generate time samples that 

could be exported to the MATLAB workspace for processing with the SVM 

algorithms that we have developed for this research, and 2.) Generate these time 

samples in such a way that they can be directly loaded into an arbitrary 

waveform generator for transmission over an airlink, in various settings, for 

evaluation of the algorithms in simulated and real noise situations. 

To facilitate our ability to create the needed simulations we chose to use the 

MATLAB/Simulink software suite with the following additional 

toolboxes/blocksets, Communications Blockset, Signal Processing Blockset, 

Filter Design Toolbox, and the Communications Toolbox.1  

In the Simulink models we do not add noise to corrupt the signal. The noise 

models that were available through Simulink were judged to be inadequate when 

considering the types of noise that could corrupt a signal in the 2.4 GHz ISM 

band. In the MATLAB code we have code that can implement three different 

types of noise: 1.) Average White Gaussian Noise (AWGN), 2.) Impulsive Noise, 
                                                            
1 More information can be found at www.mathworks.com 
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and 3.) Block Noise. Figures 3.1 (AWGN), 3.2 (IMPULSIVE), and 3.3(BLOCK) 

give representative examples of what these noise sources look like before being 

added to the signal that has been exported from Simulink. 

 

 

Figure 3.1: Average White Gaussian Noise (AWGN) 

 

Figure 3.2: Impulsive Noise 

 

 



 

47 

 

 

Figure 3.3: Block Noise 

3.2 Spectrum Estimation Algorithms 

We when started this research we developed a processing flowchart that 

outlined a step by step process by which a CR could decide if, and when, the 

radio could transmit. This flowchart was based on characteristics in the Bluetooth 

and Wi-Fi standards, namely channelization characteristics and modulation 

usage, which needed to be identified before a CR could decide if a channel was 

available for transmission. See Figure 3.4 for this flowchart.
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Figure 3.4: Proposed Analysis Flowchart
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Therefore, we started developing the spectrum analysis algorithm based on 

this flowchart. We can see from the steps that the analysis first seeks to analyze 

channelization and then to analyze the modulation that is used. With these two 

pieces of information we believed that we could adequately decide what services 

were in use at any given time. 

However, during development of the theory for Section 2.6 we came to realize 

that, since we need a-priori knowledge about the signals that may be present in 

the band, we could combine steps in the flowchart. 

We had already developed and tested the initial algorithm that would allow 

analysis of the channelization, hereafter called the “Non-Parametric” algorithm, 

and will continue to use Non-Parametric algorithm in areas where we have no a-

priori knowledge of the signals that may be present. Appendix A contains the 

basic MATLAB code for the Non-Parametric algorithm.2 

The theory developed in Section 2.6 above has led to a different algorithm, 

hereafter called the “Parametric” algorithm. See Appendix B for the basic 

MATLAB code for the Parametric algorithm. 

All of the simulations described below were analyzed with both versions to 

demonstrate the different abilities of each algorithm. 

 

 

 

                                                            
2 These algorithms are incomplete. Please contact the author for further information to complete these 

algorithms 
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3.3 Single Bluetooth Transmitter 

3.3.1 Introduction 

For the rest of these discussions the terms “Bluetooth” or IEEE 802.15.1 refer 

to the same service. 

A thorough explanation of the characteristics that affect channel usage by the 

Bluetooth service is in order before discussing our simulations and subsequent 

results.  See [24, especially section 7 “PHY Layer”] for more information. 

Bluetooth is designed as a relatively low data rate (when compared with 

subsequent services) Wireless Personal Area Network and as such the 

channelization and transmit powers were adjusted accordingly. 

The Bluetooth specification calls for 79 channels in the 2.4 GHz ISM band 

according to the following channelization formula: 

2402 , 0,...,78k MHz k                                                  (71) 

Transmitted symbol rate is 1 Ms/s for date rates of 1 Mbps with a 2 Gaussian 

Minimum Shift Keying (2GMSK) Modulation or 2 Mbps with 4GMSK. Transmitted 

powers range from a minimum of 0 dBm Effective Isotropic Radiated Power 

(EIRP) to a maximum of 20 dBm EIRP. 

 Figure 3.5 shows the Simulink model that was used for these simulations.3 

                                                            
3 For full model details contact the author at:tatwood@ece.unm.edu 
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Figure 3.5: Single Bluetooth Transmitter Simulink Model 

Since Bluetooth uses a Frequency Hopping Spread Spectrum approach for 

channelization at a rate of 1600 hops per second, and to get an aggregate data 

rate of 1 Mbps, the simulation must send 625 symbols every hop. Each symbol is 

sampled 100 times; therefore, the data that gets exported to the MATLAB 

workspace equals 62500 samples for each hop. 

3.3.2 Results 

The first type of signal that we examine is the simplest type, i.e., a single 

Bluetooth transmitter. We would see this type of transmission when a Bluetooth 

device is attempting to establish a Bluetooth piconet. When a Bluetooth device is 

first powered on it enters a listening mode to establish whether or not a piconet is 

present. If a piconet is present, with less than 7 slave devices on the piconet, 

then the device that has just been powered on will join that piconet. If a piconet is 
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not present; than the device will seek to establish a piconet and will switch to 

acting as the master. 

Without looking inside the data that is being transmitted the only way to tell if 

a Bluetooth device is the master or a slave is to examine in what slot the device 

is transmitting. The IEEE specification requires that the master device transmit in 

an even channel, i.e., 0,2,....78k  in Equation 53. All slave devices are to 

transmit in odd channel, i.e. 1,3,...,77k  in Equation 59. 

We start with a simulation that has no impulsive or block noise added to the 

signal.4 We add AWGN with a sigma of 1 to represent a channel with no 

interferers present. Figure 3.6 shows the spectrum estimation for this type of 

channel. As stated earlier, in this type of noise environment there is no 

advantage to using an SVM algorithm for spectrum estimation for this type of 

channel. We can see that each technique, SVM or FFT, give an equally good 

estimate for the signal when compared to the uncorrupted signal. 

In all of the following plots the following colors, line styles and line markers 

are used: 

 

                                                            
4 See Appendix C for a discussion on how noise is added to the signals. 
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Figure 3.6: Single Bluetooth Transmitter – AWGN Only 

To compare the effectiveness of the SVM estimate vs the FFT estimate in the 

presence of this type of noise the following tables present some statistics that 

were developed to quantify the performance of the SVM estimate vs the FFT 

estimate over a repetition of 100 experiments. Each experiment chooses a 

different noise representation which is a more realistic representation of what we 

might encounter when performing these spectral estimates on real world data. 

The numbers are obtained by dividing the amplitude of the highest peak by the 

amplitude of the next highest peak for each experiment. The mean of the 100 

results is than converted to decibels. This gives a measure of the amplitude ratio 

between the first and second peak as a way of demonstrating the capability of 

the SVM algorithm versus the FFT algorithm. After each run of 100 repetitions 

the level of the AWGN was increased in steps of 1 until a maximum of sigma = 5 
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 was reached. 

Table 3.2: SVM Vs FFT Amplitude Ratios, AWGN Only 

SIGMA 1 2 3 4 5 

SVM 10.6 6.3 3.4 1.7 .8 

FFT 12.4 10.6 8.8 7.0 5.5 

Consistent with our expectations of the efficiency of the SVM estimate we see 

that at all levels of “Sigma” the SVM technique is sub-optimal when compared to 

the FFT technique. Of particular interest is how the amplitude differences (for the 

SVM estimates) tends towards 0 dB (which means there is no amplitude 

difference) at the higher levels of “Sigma”. 

We also compared the SVM Estimate vs the FFT Estimate for the following 

noise combinations as well: 1.) AWGN + Impulse, 2.) AWGN + Block, and 3.) 

AWGN + Impulse + Block. Table 3.3 presents the results for these combinations. 
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TABLE 3.3 : 

SVM vs FFT Amplitude Ratios, 

AWGN + IMPULSE, AWGN + BLOCK and AWGN + IMPULSE + BLOCK 

 SIGMA 1 2 3 4 5 

NOISE 
TYPE 

      

A,I5 
SVM 
FFT 

9.8 
8.2 

5.5 
3.8 

2.8 
1.7 

1.3 
.6 

.6 

.2 

A,B6 
SVM 
FFT 

7.9 
4.2 

3.8 
.7 

1.7 
.2 

.6 
.03 

.4 
.02 

A,I,B7 
SVM 
FFT 

7.1 
3.6 

3.2 
.6 

1.3 
.1 

.6 
.04 

.5 
.04 

 

The following estimates are presented to show how the level of sigma 

increases the noise floor and lessens the amplitude difference between the peak 

and the noise floor. This illustrates graphically what has been presented in Table 

3.3. We can see how, in the presence of non-Gaussian noise, the SVM 

technique does much better than the FFT technique. 

                                                            
5 AWGN + IMPULSE 

6 AWGN + BLOCK 

7 AWGN + IMPULSE + BLOCK 
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Figure 3.7: Spectral Estimate, AWGN + Impulse, Sigma = 1 

 

Figure 3.8: Spectral Estimate, AWGN + Block, Sigma = 1 
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Figure 3.9: Spectral Estimate, AWGN + Impulse + Block, 

Sigma = 1 

Finally, as presented in [66], we investigated the frequency stability of the 

estimation techniques as a function of the number of symbols that were available 

for input to the estimation techniques. Table 3.4 presents the mean frequency 

error +/- the standard deviation versus the number of symbols. 

TABLE 3.4: MEAN FREQUENCY ERROR +/- STANDARD DEVIATION 

 

Symbols 1 2 3 4 

SVM -0.51 + 3.08 -0.25 + 0.12 -0.03 + 0.12 -0.02 + 0.07 

FFT 9.37 + 17.57 3.01 + 13.70 3.18 + 12.58 1.14 + 8.94 

     

These results are significant when we remember that the channelization for 
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 Bluetooth usage is divided into 1 MHz slots. If we are unable to resolve at the 

sub-MHz level then we are unable to positively declare that a particular channel 

is being used. As we see from Table 3.4 the FFT technique cannot distinguish 

channel usage; even after using multiple symbols to refine the estimate. On the 

other hand the SVM estimate is able to resolve channel usage after just one 

symbol. This is an important result because of the need to characterize channel 

usage fast enough to be able to allow the CR to transmit before the channel 

usage changes due to the Bluetooth FHSS setup. 

The estimates we get using the Parametric algorithm are presented in the 

following figures. The data that we can extract from the SVM-like algorithms does 

not allow for the same type of statistics that we were able to gather as we did 

earlier in this section. Instead we present the results of estimates from Channel 

42 at each of the noise combinations, i.e. AWGN, AWGN + Impulse, AWGN + 

Block, and AWGN + Impulse + Block, with sigma =1. Appendix G also presents 

further estimates with Channel 47 with sigma = 5 for each of these noise 

combinations. We also show, in Appendix G, the estimates from channel 75. At 

first glance these estimates do not seem to be as good (as measured by 

difference from baseline to peak) until we remember that these estimates use 

kernels that have information about the modulation encoded inside them. The 

shoulders of the signal estimate have the broadening that one would expect from 

a modulated signal. Compare the estimate in Figure 3.10 to the estimate in 

Figure 3.6. The estimate in Figure 3.6 was generated using a kernel that was 



 

59 

 

 composed of sines and cosines and these are relatively narrow. The estimate in 

Figure 3.14 was generated with a kernel that has knowledge of the types of 

signals that could possibly be in the channel. Since SVR estimates, especially 

the kernels that are used, can be likened to a similarity measure [37], and since 

the kernel was constructed with the modulation information as input, we would 

expect the estimate to reflect information about the modulation. For the purposes 

of this research; to be able to extract an estimate of the spectrum occupied as 

well as information about the modulation being used in one step is preferable to 

the two step process that was envisioned in Figure 3.4. 

As detailed in [76] these features can be used to classify the modulation 

being used to characterize the type of wireless service that is being used in a 

particular frequency band. 

 

Figure 3.10: Parametric Estimator – Channel 42 – AWGN, 
Sigma = 1 



 

60 

 

3.4 Single WiFi Transmitter 

3.4.1 Introduction 

Current WiFi services available for general usage by the public in the 2.43 

GHz ISM band are known as 802.11b and g. The services are described in [23]. 

WiFi services use a combination of Direct Sequence Spread Spectrum (DSSS) 

channel access and Orthogonal Frequency Division Multiplex channel access 

schemes to help reduce interference between 802.11 and Bluetooth (802.15), 

which uses a Frequency Hopped Spread Spectrum (FHSS) channel access 

scheme.  

In the 802.11b specification there are provisions for 1, 2, 5.5 and 11 Mbps 

raw data rates and up to 54 Mbps in 802.11g. 802.11g uses Orthogonal 

Frequency Division Multiplex (OFDM) for its channel access as opposed to the 

DSSS of 802.11b. See Table 3.1 for a view of the various WiFi services in the 2.4 

GHz ISM band. 

Since the spectrum usage of an OFDM system is similar to what one would 

see from any other M-ary Frequency Shift Key (FSK) system [68], i.e. Bluetooth, 

we chose not to include 802.11g in our investigations as we felt that the 

investigations done in Section 3.3 showed the ability of the SVM technique for 

M_ary type signals. For the 802.11b services all 4 available data rates have the 

same channel bandwidth, e.g. 22 MHz, the difference being the modulation and 

the chipping codes used to spread the data over the bandwidth. 

The 1 Mbps service uses Differential Binary Phase Shift Keying (DBPSK) and 
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 the 2 Mbps service uses Differential Quadrature Phase Shift Keying (DQPSK) 

for data modulation. The 1 and 2 Mbps services use an 11 chip Barker code to 

spread the output over the 22 MHz band. The 5.5 Mbps and 11Mbps services 

use the same modulation schemes but use an 8 chip Complementary Code 

Keying (CCK) to spread the energy over the 22 MHz band. We will investigate 

whether or not different modulation schemes affect our spectral estimates using 

the developed SVM techniques. 

3.4.2 Results 

We use a Simulink model to generate the time history that is then fed to the 

estimation algorithms. Figure 3.11 presents the Simulink model that we 

developed for these simulations. The model for the 2 Mbps transmitter is 

essentially the same except we replaced the DBPSK modulator by the DQPSK 

modulator. 

 

Figure 3.11: 1 Mbps WiFi Transmitter Simulink Model 

Figure 3.12 shows the results of the SVM Estimate vs the FFT estimate. An 

FFT estimate of the uncorrupted signal from the Simulink model is included as 
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 well. The transmit signal is centered at 2.463 GHz or Channel 11 as defined by 

the WiFi specifications. We add AWGN with a sigma of 1 to represent a channel 

with no interferers. 

 

 

FIGURE 3.12: Single WiFi Transmitter – SVM vs FFT – 1 Mbps, Sigma = 1 
 

As stated earlier, in this type of noise environment there is no advantage to 

using an SVM algorithm for spectrum estimation for this type of channel. In fact, 

we can see that the FFT estimate yields superior performance in this type of 

channel as measured by the difference between the baseline and the peak. 

To compare the effectiveness of the SVM estimate vs the FFT estimate in the 

presence of AWGN noise we conducted 100 experiments that used a random 

number generator to produce an AWGN sample to be added to the uncorrupted 
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 signal obtained from Simulink. Table 3.5 presents these results. In the same 

general manner as we did for the single Bluetooth experiments divide the peak of 

the estimate by the average of several samples in the noise floor for each 

experiment. We take the mean of those 100 experiments and convert that 

number to decibels and document in Table 3.5. After each run of 100 repetitions 

the level of the AWGN was increased in steps of 1 until a maximum of sigma = 5 

was reached. 

TABLE 3.5: SVM vs FFT Amplitude Ratios, AWGN Only 

 

SIGMA 1 2 3 4 5 

SVM 6.1 3.2 2.7 2.6 2.5 

FFT 11.1 6.3 4.4 3.5 3.0 

 

We also compared the SVM estimate vs the FFT estimate for the following 

noise combinations as well: 1.) AWGN + Impulse, 2.) AWGN + Block, and 3.) 

AWGN + Impulse +Block. Table 3.6 presents the results for these combinations.  
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TABLE 3.6 : 

SVM vs FFT Amplitude Ratios, 

AWGN + IMPULSE, AWGN + BLOCK and AWGN + IMPULSE + BLOCK 

 SIGMA 1 2 3 4 5 

NOISE 
TYPE 

      

A,I8 SVM 
FFT 

5.2 
4.1 

3.1 
2.7 

2.7 
2.5 

2.5 
2.4 

2.5 
2.4 

A,B9 SVM 
FFT 

4.4 
3.4 

2.9 
3.2 

2.7 
3.1 

2.6 
3.2 

2.5 
3.0 

A,I,B10 SVM 
FFT 

3.8 
3.1 

2.7 
3.0 

2.5 
2.8 

2.5 
2.9 

2.4 
2.9 

 

Finally, Figures 3.13, 3.14 and 3.15 show the spectral estimates for each of 

these noise combinations when sigma =1 to illustrate graphically what occurs to 

the signal estimate as the level of “sigma” is increased. 

 

 

 

 

 

 

                                                            
8 AWGN + IMPULSE 

9 AWGN + BLOCK 

10 AWGN + IMPULSE + BLOCK 
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Figure 3.13: Spectral Estimate, AWGN + Impulse, Sigma = 1 

 

 

Figure 3.14: Spectral Estimate, AWGN + Block, Sigma = 1 
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Figure 3.15: Spectral Estimate, AWGN + Block + Impulse, 
Sigma = 1 

As stated earlier the WiFi services use different modulation schemes, and 

spreading codes, to be able to have faster data rates fit in the same 22 MHz 

band. The 1 Mbps service uses DBPSK and the 2 Mbps service uses DQPSK 

while using an 11 chip Barker code for the spreading code. The 5.5 Mbps and 11 

Mbps services use the same modulation but use an 8 chip CCK code for the 

spreading codes. Since the occupied bandwidth is still the same, i.e. 22 MHz, we 

would not expect to see any drastic difference in the spectral estimate using 

either the SVM or FFT estimate. As we can see from Figures 3.23, 3.24, and 

3.25 below that is not exactly correct. The CCK spreading code for the 5.5 and 

11 Mbps service does not have the deep null in the middle of the occupied 

bandwidth that we see in the slower data rate estimates. This can be attributed to 
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the fact that the CCK tends to spread the energy more evenly over the occupied 

bandwidth than the Barker codes. 

Reference [23] requires that the header information that is appended to the 

raw data stream be modulated differently than the manner in which it is 

modulated for the 1 Mbps. The Simlink model for the 1 Mbps service was 

relatively easy to create in Simulink. The models for the higher data rate services 

were much harder to create and we adapted/modified a file that was available on 

the MATLAB website [69]11. We created individual Simulink Models for each of 

the higher data rates and they are available in Appendix E. Figure 3.16, 3.17 and 

3.18 show these estimates. These estimates are done with AWGN only and 

Sigma = 1. Again we can see that the FFT estimation works better than the SVM 

technique in this type of channel. 

 

                                                            
11 If the file has disappeared from the MATLAB website please contact the author 

(tatwood@ece.unm.edu) for a complete file. 
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Figure 3.16: Spectral Estimate – 2 Mbps WiFi Signal 
 

 

Figure 3.17: Spectral Estimate – 5.5 Mbps WiFi Signal 
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Figure 3.18: Spectral Estimate – 11 Mbps WiFi Signal 

Finally, since a standard WiFi usage has to have two transmitters to complete 

a two-way link, we present a few estimates for two WiFi transmitters. As a means 

to deconflict channel usage, i.e. lessen channel interference, users are allowed 

to limit their usage to Channels 1, 6 and 11 by the 802.11 specifications. Table 

3.7 lists the equivalent frequencies for these three channels [23]. 

TABLE 3.7 

WiFi Channel Numbers and Equivalent Frequencies 

CHANNEL 1 6 11 

FREQUENCY 
(MHz) 

2412 2437 2462 

 

These channel allocations are separated to ensure the non-overlap of the 

three different channels at the 22 MHz bandwidth point with an additional 
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 guardband between the channels included. Figure 3.19 shows an estimate of a 

Double WiFi transmitter with AWGN only at sigma =1. This estimate has the 

channels in basically adjacent channels so that there is no overlap in their 

occupied spectrum. The data for these estimates were generated by the same 

Simulink models that generated the Single WiFi data, we just created a double 

WiFi model. Since the estimates for the different modulations and data rates for 

the single WiFi channel did not yield any significant changes in our earlier 

investigations we limited our estimates to the 1 Mbps channel.  

 

Figure 3.19: Parametric Estimator, Double WiFi, Adjacent Channels 
Sigma = 1 

Figure 3.20 shows an estimate with AWGN + Impulsive + Block noise with 

sigma =1. As well the channels are spread much further apart to represent a 

more common usage of the channel for WiFi traffic. One thing that we see in 
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 these estimates is the fact that the FFT estimate appears to do somewhat better 

than the SVM estimate. We will see later that when we use the Parametric 

estimator we get a much better estimate including modulation information, even 

when the channels are close together. 

 

Figure 3.20: Spectral Estimate, Double WiFi, Spread Channels, A+B+I, 
Sigma = 5 

Using the Parametric estimator for this type of signal shows the same good 

results for all levels of noise that might be encountered in this band. See Figures 

3.21 and 3.22 as examples. Further spectral estimates are contained in Appendix 

G. 
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Figure 3.21: Parametric Estimator, Single WiFi, AWGN, Sigma = 1 
 
As in the case of the Bluetooth transmitter we can see the artifacts in the 

estimate that are a function of the modulation. 

 

Figure 3.22: Parametric Estimator, Single WiFi, A+B+I, Sigma = 5 

When the noise levels start getting really high (Sigma = 5) neither estimate 

does really well. Since this is a single estimate of the signal, only using 320 

samples, perhaps a strategy like the Welsh periodogram might be useful in 
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 helping to build a better spectral estimate. 

We can see that the Parametric estimate does a much better job of resolving 

two different WiFi transmitters in the same band as shown in Figure 3.23. The 

estimate is good enough to resolve the shoulders that are introduced by the 

modulation used in the channel. 

 

Figure 3.23: Parametric Estimator, Double WiFi, Sigma = 1 

3.5 Bluetooth Piconet 

3.5.1 Introduction 

A full Bluetooth Piconet can have up to 8 devices, one of which is the master 

device, in one Piconet. A single device can be in more than one Piconet, but 

each Piconet can have a total of 8 devices. The master device regulates the 

hopping pattern so that all of the devices are hopping at the same time, each 625 

µS, with a different pattern. This regulation of the hopping pattern by the master 
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 keeps the probability of more than one device, in a particular Piconet, occupying 

an individual frequency bin in the 2.4 GHz ISM band extremely low. Paying 

attention to the amount of time between Bluetooth hops defines an upper limit in 

which a CR has to characterize the RF environment and do its own required 

transmissions. If the CR is still transmitting when the channel changes, because 

of the Bluetooth hopping rate, the CR runs the risk of interfering with other 

transmitters. 

To generate the required samples to feed to the estimation algorithms we use 

the MATLAB/Simulink model as detailed in Appendix F. This model is the 

summation of 8 of the transmitters that were developed for the “Single Bluetooth 

Transmitter” as detailed in Figure 3.5. The difference is that the “slave” 

transmitters operate in the odd numbered bands as defined in Equation 69 

above. 

3.5.2 Results 

We start with a simulation that has no impulsive or block noise added to the 

signal. We add AWGN with a sigma of 1 to represent a channel with no 

interferers present. Figure 3.24 shows the spectrum estimation for this type of 

channel.  Again we can see that the SVM technique offers no apparent 

advantage over the FFT technique. In fact all of the estimates for Sigma = 1 to 5 

shows that there is no apparent advantage of the SVM technique over the FFT 

technique. Figure 3.25 shows the spectrum estimate with sigma = 5. 
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Figure 3.24: Piconet Network, AWGN Only, Sigma = 1 

 

Figure 3.25: Piconet Network, AWGN Only, Sigma =5 

In fact; we can see from the following figures that we do not see an 

advantage of the SVM technique over the FFT technique until we get to 
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 extremely heavy levels of Impulsive and Block noise being added to the base 

signal. We do see a minor improvement over the FFT estimate when there are 

heavy levels of Impulsive noise and no Block noise added as in Figure 3.27. 

 

Figure 3.26: Piconet Network, AWGN + Impulsive, Sigma = 1 

 

Figure 3.27: Piconet Network, AWGN + Impulsive, Sigma = 5 
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Figure 3.28: Piconet Network, A+I+B, Sigma = 1 

 

Figure 3.29: Piconet Network, A+I+B, Sigma = 5 

Use of the Parametric estimator shows good results until we reach a situation 

of more than 6 transmitters. Since we investigated a single Bluetooth earlier in 
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 Section 3.3 we start with two transmitters, then 5 transmitters and ending with 6 

transmitters. 

We present the estimates for 7 and 8 transmitters to show what happens to 

the estimate. These poor results are more common when the number of 

transmitters in the channel goes up then when the number is low as in around 1 

or 2 transmitters. We are documenting these effects, and offer some thoughts as 

to what may be happening, in an effort to cover all possible outcomes from this 

research. 

 

Figure 3.30: Two Bluetooth Transmitters, AWGN, Sigma = 1 
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Figure 3.31: Five Bluetooth Transmitters, AWGN, Sigma = 1 

In Figure 3.31 we note the presence of false estimates that the FFT estimate 

places in the spectrum even though the original data does not have these 

transmitters. This is important when a CR is trying to ascertain what the correct 

channel usage is for a particular frequency band.  

To show that all is not sweetness and light Figure 3.32 presents an estimate 

where the FFT technique catches all of the transmitters while the SVM technique 

doesn’t catch any of the transmitters. While this type of estimate is uncommon it 

does happen and deserves further investigation into possible mitigation steps, 

possibly a Welch periodogram where we average the estimate over a few 

different sets of symbols. 
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Figure 3.32: 5 Bluetooth Transmitters, AWGN, Sigma = 1, 
Bad Estimate 

 

Figure 3.33: Six Bluetooth Transmitters, AWGN, Sigma = 1 

In contrast to Figure 3.32; we see in Figure 3.33 a well defined estimate 
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 where we can see the modulation information as well as being able to identify 

where the transmitters are in frequency space. Also of note in all of these 

estimates for the multiple Bluetooth transmitters is the separation between the 

noise floor and the peak facilitating an easy distinction between noise levels and 

transmitter peak. 

 

Figure 3.34: Seven Bluetooth Transmitters, AWGN, Sigma = 1 
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Figure 3.35: Seven Bluetooth Transmitters, AWGN, Sigma =1, 
Bad Estimate 

 

Figure 3.36: Eight Bluetooth Transmitters, AWGN = 1, 
Bad Estimate 

Figures 3.35 and 3.36 show the worst type of estimate that the SVM 

techniques yield. It seems to appear when the total number of transmitters in the 
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channel is high, around 7 or 8. The absence of the SVM estimate denotes that 

the algorithm returns a “null” estimate. Without extensive research the causes of 

this bad estimate cannot be determined. 

3.6 Bluetooth And WiFi 

3.6.1 Introduction 

When we review any of the spectrum studies, for examples see [4] – [7], that 

have been published we see that the normal usage of the 2.4 GHz ISM is a 

mixture of Bluetooth transmitters and WiFi transmitters. Therefore to conclude 

Chapter 3 – Modeling and Simulation, we present several estimates of a mix of 

Bluetooth and WiFi transmitters in various frequency bins in the 2.4 GHz ISM 

band. 

The data for these estimates were generated by combining the SIMULINK 

simulator for the Bluetooth Piconet with the simulator for the WiFi. 

3.6.2 Results 

Figures 3.37 and 3.38 presents estimates of an estimate with AWGN only 

with sigma = 1 and an estimate of AWGN + Impulsive + Block Noise with sigma = 

5 respectively. See Appendix I for further estimates that explore more of the 

various noise combinations. 
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Figure 3.37: WiFi and Bluetooth, AWGN, Sigma = 1 

 

Figure 3.38: WiFi and Bluetooth, A+B+I, Sigma = 5 

We can see from these estimates, as well as from earlier estimates, that 

when the spectrum starts to become congested the “Non-Parametric” estimate 
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has no advantage over the FFT estimate. In fact, in a lot of the estimates the FFT 

technique does a better job than the SVM estimate. 

In the Parametric results presented below we see a dramatic improvement in 

the SVM estimate over the FFT estimate. While the definitive answer as to why 

this occurs, good follow-on work, the answer probably lies in the use of the 

kernels that are used by the SVM algorithms to perform the similarity measure. 

Since we carefully craft the kernels, using knowledge of what we expect to be in 

the channel, for use in the “Parametric” estimator versus a simple kernel 

composed of sines and cosines for the “Non-Parametric” estimator we are seeing 

the types of results that we would expect. Figures 3.39, 3.40 and 3.41 show 

estimates from the “Parametric” algorithm for a single WiFi transmitter and 2, 5 or 

6 Bluetooth transmitters. 

 

Figure 3.39: Parametric, WiFi And Two Bluetooth, AWGN, 
Sigma =1 
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Figure 3.40: Parametric, WiFi And Five Bluetooth, AWGN, 
Sigma = 1 

 

Figure 3.41: Parametric, WiFi And Six Bluetooth, AWGN, 
Sigma = 1 
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3.7 Performance with Amplitude Variations 

All of the previous estimates in Sections 3.3 thru 3.6 assumed that the 

nominal amplitudes of the signals that were generated were equal. In reality, this 

is an unreasonable assumption for these two types of signals. We would expect 

that the mix of signals that are received at a particular receiver would have a 

range of amplitudes due to a variety of channel impairments, including multipath 

and spreading loss from the distance between transmitter and receiver. As we 

can see in Table 3.8 the range of allowable transmit powers is 20 dB for 

Bluetooth transmitters and 10 dB for WiFi transmitters. What this means: even if 

all of the transmitters in a channel were at the same distance from a cognitive 

radio, the variations in allowable transmit power will mean that the received 

amplitudes will be different. 

Table 3.8: Allowable Transmit Power (EIRP) for WiFi and Bluetooth 

 Minimum EIRP Maximum EIRP 
Bluetooth 1 mW 100 mW 

WiFi 10 mW 100 mW 
 

Obviously, the various transmitters that a cognitive radio could see at a 

particular time in a particular channel will be at different distances from the 

cognitive radio, meaning the received amplitude of each signal will be different. In 

addition, each channel could have different fading characteristics that affect the 

received amplitude as well. 

Modeling the various types of channel, and the effect on received amplitudes, 
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 that are possible in real world situations is beyond the scope of this research; for 

the following investigations we will limit the channel impairments to a fixed 

channel attenuation of 0 – 20 dB for Bluetooth transmitters. We accomplish this 

by inserting an adjustable attenuator in the transmit path of each device and 

present some of the estimates, using the non-Parametric algorithm, that are 

obtained from these simulations. 

We present estimates from a full Piconet simulation, keeping the master 

transmitter at 0dB attenuation and the other channels at attenuations of 1 dB less 

for each channel, i.e. for the first estimate channel 7 is 7dB below the master. For 

each successive estimate an additional 1 dB of loss is added to each channel 

until we reach a point where the estimate can no longer extract the signal. 

Additionally, all added noise is disabled to show how the estimates work without 

additional noise to start. we present the estimate of Figure 3.42 with the different 

types of noise that we have been using before, i.e. AWGN, AWGN + Impulsive, 

AWGN + Block, and AWGN + Block + Impulsive.  
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Figure 3.42: Amplitude Difference Estimate, 
Channel 7 @ 7 dB below Master 

 

Figure 3.43: Amplitude Difference Estimate, 
Channel 7 @ 8 dB below Master 
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Figure 3.44: Amplitude Difference Estimate, 
Channel 7 @ 9 dB below Master 

 

Figure 3.45: Amplitude Difference Estimate, 
Channel 7 @ 12 dB below Master 
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Figure 3.46: Amplitude Difference Estimate, 
Channel 7 @ 15 dB below Master 

 

Figure 3.47: Amplitude Difference Estimate, 
Channel 7 @ 18 dB below Master 
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We see that, in the presence of no noise, both estimation techniques tend to do 

well down to a ~20 dB separation between the highest and the lowest transmitter. 

Looking at the transmitter that is to the left of the channel occupied by the 

master, Channel 2, shows that the estimates are starting to place the transmitter 

in the sidelobes generated by the master. Jumping ahead; Figure 3.48 shows an 

estimate when all of the transmitters have a nominal channel attenuation of 20 

dB. Now; Channel 2 and Channel 3 (directly to the right of the master) appear at 

the same level as the sidelobes of the master raising the possibility of a mis-

identification of the correct channels occupied by these two transmitters. 

 

Figure 3.48: Amplitude Difference Estimate, 
All Channels @ 20 dB below Master 

 To investigate the affect of noise combined with amplitude differences we 
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present the estimate of Figure 3.42 with the different types of noise that we have 

been using before, i.e. AWGN, AWGN + Impulsive, AWGN + Block, and AWGN 

+ Block + Impulsive and sigma set to 1. 

 

Figure 3.49: Amplitude Difference Estimate, 
Channel 7 @ 7 dB below Master, AWGN 

As expected, in the presence of only AWGN, the SVM estimate is unable to 

resolve the occupied channels as well as the FFT estimate this is consistent with 

the findings from earlier when we held all the amplitudes equal between the 

transmitters. Now let’s look at what happens when we introduce different types of 

noise. 
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Figure 3.50: Amplitude Difference Estimate, 
Channel 7 @ 7 dB below Master, AWGN + Impulsive 

 

Figure 3.51, Amplitude Difference Estimate, 
Channel 7 @ 7 dB below Master, AWGN + Impulsive + Block 
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As expected the SVM technique is better in the presence of non-Gaussian 

noise, see Figure 3.51. In Figure 3.51, because of a combination of the noise and 

the amplitude differences in the transmitter, the FFT technique places the 

estimate for Channel 7’s amplitude at approximately the same level as the noise 

background. This type of estimate could cause a Cognitive Radio to attempt to 

transmit in a portion of the spectrum that seems to be unoccupied but, in reality, 

is occupied. 
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4 EXPERIMENTAL SETUP 

4.1 Description 

Two experimental setups were constructed or modified to conduct airlink 

tests. The goal of the airlink tests was to propagate Bluetooth and/or WiFi signals 

in an increasingly more realistic propagation environment. The first site is located 

in a modified Faraday Cage, considered the best RF environment because of 

being shielded from external noise sources. The second site is an Open Air 

Propagation environment that has at least 3 distinct WiFi services in the 

immediate vicinity. For the remainder of this discussion we will name the sites as 

follows: 1.) Site 1 - Electrical Engineering Department Anechoic Chamber and 2.) 

Site 2 - Open Air Propagation Area. 

Table 4.1 lists the equipment that was used at each site. Figure 4.1 shows a 

notional schematic diagram of how the equipment was set up. The major 

difference at each of the sites was the length of the cabling that was used. 
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Table 4.1: Airlink Tests Equipment List 

Tektronix Digitizing Storage Oscilloscope – Model TDS 644A12

A.H Systems Dual Ridge Horn Antenna – Model SAS-57113 

Mini Circuits Power Amplifier – Model ZX60-301114 

Hewlett Packard Power Splitter – Model 11667B15 

Mark Microwave Mixer – Model M10208LA16 

Cumings Microwave RF Absorber, Site 1– Model LF-7917 

Agilent Spectrum Analyzer – Model N991218 

Agilent Waveform Generator – Model E4438C 

                                                            
12 Information can be found at www.tek.com 

13 Information can be found at www.AHSystems.com 

14 See Appendix J for datasheet 

15 See Appendix J for datasheet 

16 See Appendix J for datasheet 

17 Information can be found at www.cumingmw.com 

18 Information can be found at www.aglient.com 
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Figure 4.1: Notional Schematic Diagram of Test Setup 

The first location, The Electrical Engineering Department Anechoic Chamber, 

is located in Room L206 in the basement of the Electrical Engineering Building 

on the University of New Mexico (UNM) Campus. This facility is a 20’ x 20’ x 20’ 

enclosure used as a shielded screen room for High Power Pulsed Power 

experiments. As a shielded room, with bare metal walls, this room is not 

necessarily suited as a facility in which to conduct this type of propagation 

experiment. However, addition of RF absorbing material on the wall behind the 

receiving antenna and on the floor of the room gave an advertised reflection 
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 coefficient of -40 dB. Since we were only transmitting milliwatts of energy we 

decided that this attenuation was adequate for our needs. The compensation 

was the shielding effectiveness of the room, advertised at 100 dB, which would 

effectively exclude all outside signal sources, but we had no way to verify this 

number. Figures 4.2 and 4.3 show the inside of the chamber and Figures 4.4 and 

4.5 show the outside, with test equipment setup, of this room. 

 

 

Figure 4.2: View inside Chamber Showing Transmit Antenna 
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Figure 4.3: View inside Chamber Showing Receive Antenna 
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Figure 4.4: Chamber Equipment Setup #1 
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Figure 4.5: Chamber Equipment Setup #2 

The second location, where the open air airlink tests were conducted, is 

located in the quad area between the Electrical Engineering Building and the 

Centennial Library on the main campus of UNM. In the area one can detect at 

least 3 WiFi networks, depending on how good their WiFi antenna can receive. 

These 3 networks, Lobo WiFi (Main Campus WiFi), Electrical and Computer 

Engineering ( ECE) WiFi, and the School of Engineering WiFi, are located at 

geographically diverse points (ECE WiFi is the closest, Lobo WiFi is the farthest) 

from this area giving an interesting mix of signals when collecting data. Figure 
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 4.6 shows the equipment setup for this location. 

 

 

Figure 4.6: Equipment Setup – ECE Quad 

For testing at Site One we used the Agilent Arbitrary Waveform Generator, 

commonly called an “arb”, to generate all of the signals that were transmitted. At 

Site 2 there were enough signals already in the environment so we used the arb 

to generate a carrier tone so that we had a marker for the start of the 2.4 GHz 

ISM band. 

The arb has an RF bandwidth of 6 GHz and a baseband bandwidth of 100 

MHz. This capability means that the output of the arb does not have to be 
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 upconverted for use at 2.45 GHz. The user defines where they may want the 

baseband signal to start in frequency space and the arb places the carrier at that 

frequency point. Unfortunately, the arb also places a tone at the carrier frequency 

that the user either has to nulled out in some manner or allow to appear in 

whatever signals that are being generated. For our purposes we allowed the 

carrier to remain and filtered the tone out with a bandpass filter. 

The O’scope that we used has an RF bandwidth of 500 MHz at a maximum 

sampling rate of 2 Gs/s. The RF bandwidth required a downconversion of the 

received signal and we chose to place the downconverted signal in the middle of 

the O’scope’s RF bandwidth, hence the choice of the Local Oscillator at 2.2 GHz. 

In other words, the bandwidth of interest, 2.4 – 2.5 GHz, is downconverted to  

200 – 300 MHz for sampling by the O’scope. 

4.1.1 RF Background Characterization 

To get an idea of the type of RF background that is present in each of the 

areas a series of spectrum analyzer sweeps were conducted using an Agilent 

9912 Handheld Spectrum Analyzer.19 The figures below show a representative 

sweep of the RF environment in the 2.4 GHz ISM band. 

                                                            
19 See the Agilent website for more details on this instrument. 
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Figure 4.7: RF Background – Site 1 

 

Figure 4.8: RF Background – Site 2
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5 EXPERIMENTAL RESULTS 

5.1 Discussion and Presentation 

The SVM algorithms that were developed for this research requires that time 

samples be available to feed to the algorithms. In order for us to be able to 

conduct experiments to gather real data some type of sampling system needed 

to be used to gather these time samples. Since we had neither the funds to buy a 

custom sampling system nor the personnel to design and construct a custom 

sampling system (a major research project itself) we chose to use what was 

available; a Tektronix TDS 644A Digital Storage Oscilloscope. The O’Scope has 

a maximum sampling rate of 2 Gs/s and is able to collect 2000 samples for a 1 

S time record. 

A word about the data preprocessing that we perform on the data. As 

previously noted the data is downconverted to place the 2.4 GHz ISM band in the 

200 – 300 MHz band of the Oscope. The raw data that is downloaded from the 

Oscope is filtered by a bandpass filter that also removes the carrier that the arb 

places in the signal being generated. Figure 5.1 shows the magnitude response 

of the filter. 
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Figure 5.1: Filter – Magnitude Response 
Before taking the data collection equipment to the previously defined test 

locations, we hooked together all the equipment as defined in Figure 4.1. Instead 

of airlinks we hooked everything together with cable and used the Agilent 

Waveform generator to generate a single Bluetooth Transmitter. Figure 5.2 

shows a single Bluetooth transmitter placed at 2.42 GHz. 

 

Figure 5.2: Lab Test, Single Bluetooth at 2.42 GHz 
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For some of these collects we had data available from a handheld spectrum 

analyzer. Figure 5.3 shows a spectrum analyzer plot of the Bluetooth signal in 

Figure 5.2. 

 

Figure 5.3: Spectrum Analyzer Plot for Figure 5.2 

After the lab tests were considered to be satisfactory, i.e. we knew how to do 

what we needed in terms of arb programming we installed the equipment at Site 

1 as shown in Figures 4.2 – 4.5. Figure 5.4 shows the results of transmitting a 

Piconet that is when we started noticing something happening whose explanation 

we will save for the end of this chapter. 
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Figure 5.4: Site 1, Piconet 

Then we attempted to transmit a single WiFi in the upper end of the spectrum. 

 

Figure 5.5: Site 1, WiFi 
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Figure 5.6: Spectrum Analyzer for Figure 5.5 

After taking the equipment outside to the area of Site 2, directly to the east of 

the main entrance to the Electrical and Computer Engineering Building, the 

following was collected. These collects were taken ~20 minutes apart during the 

afternoon of a two school days, there are nine of them, stretching over ~2.5 

hours. 
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Figure 5.7: ECE1, 6 October 2006 @ 2 PM 

 

Figure 5.8: Spectrum Analyzer Plot for Figure 5.7 
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Figure 5.9: ECE2, 6 October 2006 @ 2:20 PM 

 

Figure 5.10: Spectrum Analyzer Plot for Figure 5.9 

 

Skipping to the 6th collect which picked up on the afternoon of 7 October 2009 to 

complete the data collects. 
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Figure 5.11: ECE6, 7 October 2009 @ 1:30 PM 

 

Figure 5.12: Spectrum Analyzer Plot for Figure 5.11 

As a final data collect we had 4 people stand ~25’ away from the receive 

antenna and activate their Bluetooth-enabled cell phones. Figures 5.13 and 5.14 
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 are the results of this collect. 

 

Figure 5.13: Final, 7 October 2009 @ 2:00 PM 

 

Figure 5.14: Spectrum Analyzer Plot for Figure 5.13 

In all of the results for these data collects we can see that there are 
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 discrepancies between the information presented by the spectrum analyzer and 

our estimates of the spectrum information contained in the raw data as collected 

by the oscilloscope. To explain why these discrepancies exist we need to 

consider a block diagram of the spectrum analyzer as presented in Figure 5.15. 

 

Figure 5.15: Spectrum Analyzer Block Diagram 

In the figures that were presented we can see that the “Resolution Bandwidth 

Filter” and “Video Filter” were set to either 1 MHz or 3 KHz. For our usage the 

“Preselector or input filter” was set to a band of 200 – 300 MHz. When a sweep is 

initiated the analyzer will move the center of Resolution Filter so that the filter 

covers contiguous, but non-overlapping portions of the spectrum to be analyzed. 

That portion of the band is then fed to the “A/D” for sampling. In the case of the 

spectrum analyzer that we used the A/D samples at a fixed rate of 30 Ms/s and 

approximately 4500 samples are generated for each 3 KHz band that the 

analyzer sweeps through. The analyzer then performs an N-point FFT on those 
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samples to get an estimate of the energy content in a particular resolution 

bandwidth. 

In contrast; the oscilloscope yields a fixed number of samples, 2000, for the 

entire 500 MHz RF bandwidth of the input. Given the limitations on record length 

and sampling rate, and adding in the fact that a Bluetooth transmitter hops once 

every 625 µS, collection of these types of signals by an O’scope like the TDS 

644A becomes a probability exercise. This statement is given credibility by the 

fact that the spectrum analyzer (SA) had to be set to average many signals and 

the resolution bandwidth of the SA had to be set as low as 3 KHz to adequately 

represent the spectrum present.  

Consider the following two figures. Figures 5.16 and 5.17 present a spectrum 

analyzer sweep of the RF environment at Site Two. The two spectrum analyzer 

plots are different because the spectrum analyzer is set to average the spectrum 

every ~5 seconds. Figure 5.16 is after 2 averages (~10 seconds) and Figure 5.17 

is after 14 seconds (~70 seconds) 
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Figure 5.16: Spectrum Analyzer Sweep at Site 2 
After 2 Averages 
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Figure 5.17: Spectrum Analyzer Sweep at Site 2 
After 14 Averages 

The conclusion that we can draw from these results is that these results point 

to characteristics of the sampling system that will need to be used for a practical 

cogntitve radio. These characteristics; 1) Programmable filters banks to select 

the spectrum of interest and 2) Fast Analog to Digital Conversion that uses little 

power, will have to fit into a device that the average consumer will require be no 

bigger than current cell phones and use no more power than current cell phones. 
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6 CONCLUSIONS 

6.1 Summary, Discussions and New Contributions 

We have demonstrated, at least theoretically, that machine learning 

algorithms that use the Support Vector criterion for optimization can work as well 

if not better than techniques that implement a least squares criterion, most 

notably the FFT. In most situations that a Cognitive Radio can be expected to 

operate the algorithms developed in this research have shown to be extremely 

robust in the presence of non-Gaussian noise. 

The two techniques developed, the Non-Parametric algorithm when no 

knowledge of the channel is assumed and the Parametric algorithms when a-

priori knowledge of the channel is available show great promise as an extremely 

capable alternative to the FFT. 

Additionally the development of the kernels for the Parametric algorithm, 

developed here for the first time, has shown that we also have a methodology to 

characterize channel impulse response when we have a-priori knowledge of the 

modulation in use in the channel. This will warrant further investigation along a 

different research path. 

Chapter Two starts by laying out the case for using SVM techniques for the 

spectrum estimation task by developing a notional model for the types of noise 

that may be present in the channel. We discuss why we believe the noise 

environment is non-Gaussian because of the spread spectrum nature, i.e. signals 

are designed to “hop” around the ISM band in a random manner. 
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Then in Chapter Two we covered the mathematical underpinnings for SVMs 

as a classification tool. After laying the groundwork for SVMs as a classification 

tool we covered the so-called “Kernel Trick” and saw how we can use this trick to 

turn a non-linear problem into a linear problem, albeit in a higher feature space. 

We then had the material necessary to cover the topic of Support Vector 

Regression. 

Once we covered Support Vector Regression we were able to turn to the 

topic of kernels for our non-linear algorithm, i.e. the Parametric algorithm, and 

developed a new class of kernels that include information on the types of signals 

that may be present in the channel and information about the channel impulse 

response. It is our belief that this research is the first research ever at attempting 

to develop these types of kernels.  

Although our simulations assumed a flat channel we now have the 

groundwork by which we can pursue further research whereby we can gather 

information about the channel impulse response. 

Finally in Chapter Two, we discussed how we can go from the DFT (FFT), 

and those algorithms dependence on the least squares criteria for optimization, 

to the Support Vector Regression algorithm and its dependence on the ε-

insensitive cost function to provide robustness in the face of non-Gaussian noise. 

In Chapter Three we present a thorough treatment of the SVM algorithm 

versus the FFT algorithm in the presence of various types of noise at different 

levels of noise power. We investigate many different types of signals that may be 
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 present in the 2.4 GHz ISM band. Included in our investigations are: 1.) Single 

Bluetooth Transmitter, 2.) Single WiFi Transmitter, 3.) Bluetooth Piconet with up 

to 8 transmitters in the net, and 4.) Combination Bluetooth and WiFi transmitters 

in the channel. For each of these different scenarios we used the non-Parametric 

and the Parametric Algorithm. 

For the single Bluetooth transmitter the SVM algorithms are clearly superior 

under all noise scenarios to the FFT algorithm. 

For the single WiFi transmitter we note some difficulties with the non-

Parametric when comparing the peak of the estimate to the noise floor, see 

Figure 3.16 as an example, when the noise is benign. However, when the noise 

gets very heavy we see that the SVM algorithms are superior to the FFT, see 

Figure 3.23 as an example. We note that the Parametric algorithm is able to 

extract information about the modulation as in Figure 3.27. 

In the case of the Bluetooth Piconet we can see that the algorithms are 

comparable to the FFT estimates until we get to a very heavy noise environment 

as in Figure 3.37. Again using the Parametric algorithm yields information about 

the modulation in light noise environments. However, we note that there is some 

anomalies present in the estimates that are unexplainable at this time, see 

Figures 3.40 and 3.43 as examples. 

Combinations of Bluetooth and WiFi transmitters are presented using both the 

non-Parametric and Parametric estimators. The algorithms tend to work very well 

until we get to a very heavy noise environment as in Figure 3.43. 
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Finally, we investigated how the estimates are affected by the difference in 

transmitter power as allowed by the IEEE specifications. 

Chapter 4 details our experimental setups, with equipment lists and a notional 

schematic of our test setups, and then presents some data taken to show the RF 

background in the environments. 

Chapter 5 details the results or our experimental campaign. Suffice it to say 

that things did not go as planned. Limitations in the use of a Digital Storage 

Scope, Tektronix TDS 644A, severely restricted the usefulness of the data that 

we collected.  

When we consider that the ultimate goal of this research is to develop a 

practical Cognitive Radio; one can say that the most interesting result of Chapter 

5 is to reveal how tough it will be to develop a time sampling system for a 

Cognitive Radio that doesn’t require a lot of space, can do its required tasks in 

the time allotted and not draw too much power from the Cognitive Radio’s 

batteries. 

6.2 Recommendations for Future Research 

1.) The issue of a time sampling system will have to be addressed before any 

further experimental work for this effort can be done, 

2.) A comparison of these techniques against the work done with Genetic 

Algorithms and Neural Networks will need to be done as these three techniques 

are the main methods for this type of work, 
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3.) Porting these algorithms to an FPGA and measurements of how fast 

(efficient) these techniques are is necessary to determine their viability in a 

practical device, 

4.) Investigation of how to meld the information obtained from these spectrum 

estimations with current work in reconfigurable antennas is necessary to move 

along the path towards a practical device, 

5.) Can the core SVM algorithms be optimized for use in Cognitive Radios? 

There many different algorithms in play for SVM research, how do we decide 

what is best for the future of Cognitive Radio. In addition, we will need to 

evaluate the other SVM algorithms for this type of work before deciding which of 

the available algorithms is best suited. 
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APPENDICES 
 

Appendix A: Basic MATLAB Code for “Non-Parametric” 
 
function Sigma1_512points_Single %The main program finishes at line 25. 
%The rest are aux functions 
 
%% Data Import and PreProcessing 
global y1 y2 y 
y=evalin('caller','SingleBluetooth'); 
HopIndex=evalin('caller','Hop_Index.signals.values'); 
Original=evalin('caller','SignalFFT.signals.values'); 
Original=fftshift(Original); 
sigma=2; % This is the noise standard deviation 
y=y+sigma*randn(size(y)); %AWGN added 
y1=(10*sigma*(randn(size(y))).*(rand(size(y))>(1-0.1))); %Impulse noise 
y2=10*sigma*noise(y); %Block noise.  
y=y+y1+y2; 
  
%% Parameters of the SVM. We will use linear kernel. 
pars.ker='linear'; %Linear kernel 
pars.gamma=10; %This is the numerical regulation parameter 
pars.C=0.1;%Capacity Parameter 
pars.epsilon=0;%Parameter that defines how cloase we need the estimation 
%to get to the input signal 
pars.methods={'svm','fft'}; 
pars.NFFT=512; 
W=100; %Window in which we compute the spectrum. This corresponds to one 
%symbol in the Bluetooth model 
  
%% Start the estimation 
figure(1) 
S=welch(y,pars,W,HopIndex,Original); %Welch periodogram that uses svm 
and/or fft 
%to compute and represent the spectra 
  
%% Computation of frequencies and representation 
[w0svm,amps]=find_frequencies(S.m1/max(S.m1),S.w1,20); %Find the highest  
%peaks of the SVM estimation 
figure(2) 
stem(amps,'*')  
hold on 
[w0fft,amps]=find_frequencies(S.m2/max(S.m2),S.w1,20); %Find the  
%highest peaks of the FFT estimation 
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stem(amps,'k') 
title('Amplitudes of the highest peaks') 
hold off 
%% Here the auxiliary functions 
function [S]=welch(y,pars,B,HopIndex,Original) 
%Computes the welch periodogram using the methods described in 
pars.methods 
  
Y=buffer(y,B,0); %Here we split the signal in frames of B samples in 
%order to average spectra 
  
NFFT=pars.NFFT; 
  
for i=1:size(Y,2) 
    ytemp=Y(:,i); 
         
    if sum(strcmp(pars.methods,'svm'))==1 
        [s1,a1,b1]=svm_fft_spectrum(pars,ytemp,NFFT); %Compute the spectrum 
        s1=fftshift(s1); %shift 
        s_svm_fft(i,:)=s1; %Store in a matrix 
        S.asvm(i,:)=a1'; %These are the fourier coefficients 
        S.bsvm(i,:)=b1'; 
        m1=mean(abs(s_svm_fft).^2,1); %Compute the average spectrum 
        S.m1=m1; 
         
    end 
    if sum(strcmp(pars.methods,'fft'))==1 %The same but with FFT 
        s2=fftshift(abs(fft(ytemp,NFFT)).^2)'; 
        s_fft(i,:)=s2; 
        m2=mean(s_fft,1); 
        S.m2=m2; 
        std2=std(s_fft); 
        S.stdfft=std2; 
    end 
  
    %% Representation 
    w=78e6*linspace(0,1,NFFT/2); 
    w1=78e6*linspace(0,1,NFFT); 
    S.w=w; 
    S.w1=w1; 
    if HopIndex<40 
        plot(w1(1:250),m1(1:250)/max(m1),'b') 
        hold on 
        plot(w1(1:250),m2(1:250)/max(m2),'r') 
        hold off 



 

134 

 

    else 
        plot(w1(260:512),m1(260:512)/max(m1),'b') 
        hold on 
        plot(w1(260:512),m2(260:512)/max(m2),'r') 
        hold off 
    end 
    hold on 
    plot(w1(260:512),Original(260:512)/max(Original),'g') 
    hold off 
    title('Spectral Estimate','FontWeight','bold','FontSize',36,... 
    'FontName','Times New Roman'); 
    ylabel('Normalized Amplitude','FontWeight','bold','FontSize',36,... 
    'FontName','Times New Roman',... 
    'EdgeColor',[1 1 1],... 
    'BackgroundColor',[1 1 1]); 
    xlabel('Frequency - Hertz','FontSize',48,'FontName','Times New Roman'); 
    legend1 = legend('SVM ESTIMATE','FFT ESTIMATE','UNCORRUPTED'); 
    set(legend1,'Position',[0.6716 0.2571 0.2113 0.1546]); 
  
end 
  
function [s_svm_fft,a,b]=svm_fft_spectrum(pars,y,NFFT) 
if length(y)<NFFT %Pad with zeros 
    y=[y;zeros(NFFT-length(y),1)]; 
end 
if length(y)>NFFT 
    y=y(1:NFFT); 
end 
  
[L,M]=meshgrid(0:NFFT-1,0:NFFT-1);  
ec=sin(2*pi*(L.*M)/NFFT); %These are the functions that reconstruct the signal  
es=cos(2*pi*(L.*M)/NFFT); 
X=[ec;es]; 
K=X'*X/NFFT+pars.gamma*eye(NFFT); %with them, we compute the kernel 
matrix 
%SVM options: regression, precomputed kernel 
options=['-s 3 -t 4 -c ' num2str(pars.C) ' -p ' num2str(pars.epsilon)];  
model = svmtrain2(y,K, options); % Train the model. Type "svmtrain2" 
%without parameters for more information 
alpha=model.sv_coef; %Alphas and support vector 
SV=X(:,model.SVs+1); 
A=SV*alpha; 
a=A(1:end/2); 
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b=A(end/2+1:end); 
s_svm_fft=a'+1j*b'; 
function r=noise(y) 
%This produces the block noise  
I1=(rand(size(y))>(1-0.01)); 
a=find(I1==1); 
aT=a'; 
b=[diff(aT) length(y)-aT(end)]; 
b=min([b;ones(size(b))*100]); 
c=round(rand(1,length(a)).*b); 
I2=zeros(size(y));I2(aT+c)=-1; 
I=cumsum(I1+I2); 
r=I.*randn(size(y)); 
  
function [w0,amps,inds]=find_frequencies(s,w,nfreq) 
%Find the peaks 
s=s(:); 
sdiff=diff(s); 
ind=[]; 
w0=zeros(size(sdiff)); 
for i=1:length(sdiff)-1 
    if sign(sdiff(i))~=sign(sdiff(i+1)) 
        w0(i)=w(i+1); 
        ind=[ind i+1]; 
    end 
end 
  
  
[a,b]=sort(s(ind),'descend'); 
amps=a(1:nfreq);inds=ind(b(1:nfreq)); 
w0=w(inds); 
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Appendix B: Basic MATLAB Code for “Parametric” 
 
Total=evalin('caller','Sum.signals.values'); 
y=Total(1:62500); 
sigma=1; % This is the noise standard deviation 
%y=y+sigma*randn(size(y)); %AWGN added 
y=y+(10*sigma*(randn(size(y))).*(rand(size(y))>(1-0.1))); %Impulse noise 
%y=y+10*sigma*noise(y); %Streamy noise. 
Delay = 1;  
DataL = 30; %Data length 
R = .5; %Roll-off 
Fs = 10; %Sample rate 
Fd = 1; %Data rate 
PropD = 0; 
%% The algorithm in table I (Sparse Primal SVM, this is the first implementation 
ever of this new algorithm :) 
%% Generation of the autocorrelation kernels 
yo=baseband_generator(Delay,DataL,R,Fs,Fd,PropD,0);        % 10MHz pulse 
y1=baseband_generator(Delay,DataL*10,R,Fs,Fd*0.1,PropD,0); % 1Mhz pulse 
  
N=min([length(yo),length(y1)]); % Normalization in pulse length 
yo=yo(1:N); 
y1=y1(1:N); 
yo=sqrt(y'*y)*yo/sqrt(yo'*yo);  % Normalization in pulse energy 
y1=sqrt(y'*y)*y1/sqrt(y1'*y1); 
  
wt=(0:(length(yo)-1))'*pi*0.1;  % Normalized frequency 
  
%Modulation of the pulses to all the possible frequencies and generation of 
%the pulse autocorrelation matrices (the kernels!) 
R=[]; 
for i=1:2:9 
    R(:,:,(i+1)/2)=toeplitz((xcorr(real(yo.*exp(1j*wt*i))))); 
end 
for i=6:15 
    R(:,:,i)=toeplitz((xcorr(real(y1.*exp(1j*wt*(i-5)))))); 
end 
r=xcorr(y);                  %STEP 1. Computing the correlation 
  
h=zeros(size(R,1),1);h(1)=1; %STEP 2 not implemented. We assume ideal 
channel here 
                              
TH=[];                       %STEP 3. This will contain the transformed variables Theta 
of table I. 
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for i=1:size(R,3) 
    TH=[TH squeeze(R(:,:,i))*h]; 
end 
  
% Here we generate the variables of functional in step 4. 
K1=TH'*pinv(TH*TH')^1; 
K=K1*TH; 
p=K1*r; 
K=[K+K']/2;          %Trick to avoid lack of simmetry due to numerical inaccuracies 
epsilon=0.2; C=100;  %SVM parameters. Choosing epsilon s an issue. C is 
trivial.  
f=-p'+epsilon*ones(size(p'));  
k=0;  
K1=zeros(size(p'));  
Ku=C*ones(size(p')); 
  
options=['-s 3 -t 4 -c 100 -p 0.2 -j 1']; 
model=svmtrain(p,K,options); 
a_SVM=model.sv_coef 
a_LS=pinv(K)*p;a_LS(find(a_LS<0))=0   % STEP 4b. LS optimization (not 
intrinsicly sparse) 
  
%% Representation 
S=10*log10(abs(fftshift(fft(xcorr(y),512))));     %Actual spectrum 
S_SVM=10*log10(abs(fftshift(fft(TH*a_SVM,512)))); %Parametric SP-SVM 
estimation 
S_LS=10*log10(abs(fftshift(fft(TH*a_LS,512))));   %Parametric LS estimation 
  
figure(1) 
plot(linspace(0,1,256),S(end/2+1:end),linspace(0,1,256),S_SVM(end/2+1:end)) 
xlabel('Normalized frequency') 
ylabel('Power density (dB)') 
  
figure(2) 
plot(linspace(0,1,256),S(end/2+1:end),linspace(0,1,256),S_LS(end/2+1:end)) 
xlabel('Normalized frequency') 
ylabel('Power density (dB)') 
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APPENDIX C: ADDITIONAL INFORMATION ON ADDING NOISE 
TO SIGNALS 

 
 
 

After the different signals are generated in the Simulink environment and then 

imported into the MATLAB workspace, we add three different types of noise to 

the signals. In addition, we can vary the noise power by the variable “sigma”. The 

noise added to the signals is divided into three different types: 1.) Average White 

Gaussian Noise, 2.) Impulsive, and 3.) Block. An analysis of the results of the 

studies in References [4]-[7], [27]-[31], and [58]-[63] suggests that values of 

sigma as high as 5 are not unreasonable when we consider the relative 

differences in transmit powers allowed by the IEEE specifications. 

C.1 Additive White Gaussian Noise (AWGN) 

AWGN is defined as wideband noise, with a constant spectral density, zero 

mean and a Gaussian distribution of noise samples. The MATLAB command is: 

y=y+sigma*randn(size(y)), where “randn” is the MATLAB random number 

generator, “sigma” is the RMS value of the noise power and “y” is the input 

signal. Figure C.1 shows a time history of 1000 samples and C.2 shows the 

mean square spectrum when sigma is set to 1. To show the effects of sigma =10, 

we present Figures C.3 and C.4 for the time history and mean square spectrum, 

respectively. 
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FIGURE C.1: TIME HISTORY, AWGN, SIGMA = 1 

 

FIGURE C.2: Mean Square Spectrum, AWGN, SIGMA = 1 

C.2 Impulsive Noise 

Impulsive Noise is defined as random, narrowband impulses of noise. To a 

WiFi carrier, bandwidth = 22 MHz, the noise presented by a Bluetooth carrier, 

bandwidth = 1 MHz, can be characterized as impulsive noise. For our simulations 

we represent impulsive noise by the following code piece: 

(10*sigma*(randn(size(y))).*(rand(size(y))>(1-0.1))). Notice that we assign a 
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 probability of occurrence of 10% or less. Figure C.3 shows a time history of 1000 

samples and Figure C.4 shows the mean square spectrum when sigma is set to 

1. 

 

FIGURE C.3: TIME HISTORY, IMPULSIVE, SIGMA = 1 

 

FIGURE C.4: MEAN SQUARE SPECTRUM, IMPULSIVE, SIGMA=1 

C.3 Block Noise 

Block Noise is defined a broadband noise but not necessarily as broadband 
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 as AWGN, e.g. consider the noise contribution that a WiFi transmitter, bandwidth 

22 MHz, adds when attempting to identify Bluetooth transmitters, bandwidth 1 

MHz. Figures C.6 and C.7 show the time history and mean square spectrum, 

respectively, for this type of noise. 

 

FIGURE C.5: TIME HISTORY, BLOCK, SIGMA = 1 

 

 

FIGURE C.6: MEAN SQUARE SPECTRUM, BLOCK, SIGMA = 1 
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All of the simulations that were done for this work assumed that all three of 

the noise sources would be present in a real channel and therefore were added 

to the Simulink output to simulate a real world signal. The following figures show 

the time history and mean square spectrum for sigma =1 and sigma = 5. 

 

FIGURE C.7: TIME HISTORY, AWGN+IMPULSIVE+BLOCK, SIGMA = 1 

 

FIGURE C.8: MEAN SQUARE SPECTRUM, AWGN+IMPULSIVE+BLOCK, 
SIGMA = 1 
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FIGURE C.9: TIME HISTORY, AWGN+IMPULSIVE+BLOCK, SIGMA = 5 

 

 

FIGURE C.10: MEAN SQUARE SPECTRUM, AWGN+IMPULSIVE+BLOCK, 
SIGMA = 5 
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APPENDIX D – BASIC MATLAB CODE FOR WiFi ESTIMATOR 

function WiFi_Estimator %The main program finishes at line 25. 
%The rest are aux functions 
%% Data Import and PreProcessing 
global y1 y2 y 
y=evalin('caller','WiFi.signals.values'); 
Original=evalin('caller','WiFi_FFT.signals.values(:,1,1)'); 
Original=fftshift(Original); 
HopIndex=45; 
sigma=1; % This is the noise standard deviation 
y=y+sigma*randn(size(y)); %AWGN added 
y1=(10*sigma*(randn(size(y))).*(rand(size(y))>(1-0.1))); %Impulse noise 
y2=10*sigma*noise(y); %Block noise.  
y=y+y1+y2; 
  
%% Parameters of the SVM. We will use linear kernel. 
pars.ker='linear'; %Linear kernel 
pars.gamma=10; %This is the numerical regulation parameter 
pars.C=0.1;%Capacity Parameter 
pars.epsilon=0;%Parameter that defines how cloase we need the estimation 
%to get to the input signal 
pars.methods={'svm','fft'}; 
pars.NFFT=512; 
W=100; %Window in which we compute the spectrum. 
  
%% Start the estimation 
figure(1) 
S=welch(y,pars,W,HopIndex,Original); %Welch periodogram that uses svm 
and/or fft 
%to compute and represent the spectra 
  
%% Computation of frequencies and representation 
[w0svm,amps]=find_frequencies(S.m1/max(S.m1),S.w1,20); %Find the highest  
%peaks of the SVM estimation 
figure(2) 
stem(amps,'*')  
hold on 
[w0fft,amps]=find_frequencies(S.m2/max(S.m2),S.w1,20); %Find the  
%highest peaks of the FFT estimation 
stem(amps,'k') 
title('Amplitudes of the highest peaks') 
hold off 
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%% Here the auxiliary functions 
function [S]=welch(y,pars,B,HopIndex,Original) 
%Computes the welch periodogram using the methods described in 
pars.methods 
  
Y=buffer(y,B,0); %Here we split the signal in frames of B samples in 
%order to average spectra 
  
NFFT=pars.NFFT; 
  
for i=1:size(Y,2) 
    ytemp=Y(:,i); 
         
    if sum(strcmp(pars.methods,'svm'))==1 
        [s1,a1,b1]=svm_fft_spectrum(pars,ytemp,NFFT); %Compute the spectrum 
        s1=fftshift(s1); %shift 
        s_svm_fft(i,:)=s1; %Store in a matrix 
        S.asvm(i,:)=a1'; %These are the fourier coefficients 
        S.bsvm(i,:)=b1'; 
        m1=mean(abs(s_svm_fft).^2,1); %Compute the average spectrum 
        S.m1=m1; 
         
    end 
    if sum(strcmp(pars.methods,'fft'))==1 %The same but with FFT 
        s2=fftshift(abs(fft(ytemp,NFFT)).^2)'; 
        s_fft(i,:)=s2; 
        m2=mean(s_fft,1); 
        S.m2=m2; 
        std2=std(s_fft); 
        S.stdfft=std2; 
    end 
  
    %% Representation 
    w=78e6*linspace(0,1,NFFT/2); 
    w1=78e6*linspace(0,1,NFFT); 
    S.w=w; 
    S.w1=w1; 
    if HopIndex<40 
        plot(w1(1:250),m1(1:250)/max(m1),'b') 
        hold on 
        plot(w1(1:250),m2(1:250)/max(m2),'r') 
        hold off 
    else 
        plot(w1(260:512),m1(260:512)/max(m1),'b') 
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        hold on 
        plot(w1(260:512),m2(260:512)/max(m2),'r') 
        hold off 
    end 
    hold on 
    plot(w1(260:512),Original(260:512)/max(Original),'g') 
    hold off 
    title('Spectral Estimate','FontWeight','bold','FontSize',36,... 
    'FontName','Times New Roman'); 
    ylabel('Normalized Amplitude','FontWeight','bold','FontSize',36,... 
    'FontName','Times New Roman',... 
    'EdgeColor',[1 1 1],... 
    'BackgroundColor',[1 1 1]); 
    xlabel('Frequency - Hertz','FontSize',48,'FontName','Times New Roman'); 
    legend1 = legend('SVM ESTIMATE','FFT ESTIMATE',’ORIGINAL’); 
    set(legend1,'Position',[0.6716 0.2571 0.2113 0.1546]); 
  
end 
  
function [s_svm_fft,a,b]=svm_fft_spectrum(pars,y,NFFT) 
if length(y)<NFFT %Pad with zeros 
    y=[y;zeros(NFFT-length(y),1)]; 
end 
if length(y)>NFFT 
    y=y(1:NFFT); 
end 
  
[L,M]=meshgrid(0:NFFT-1,0:NFFT-1);  
ec=sin(2*pi*(L.*M)/NFFT); %These are the functions that reconstruct the signal  
es=cos(2*pi*(L.*M)/NFFT); 
X=[ec;es]; 
K=X'*X/NFFT+pars.gamma*eye(NFFT); %with them, we compute the kernel 
matrix 
%SVM options: regression, precomputed kernel 
options=['-s 3 -t 4 -c ' num2str(pars.C) ' -p ' num2str(pars.epsilon)];  
model = svmtrain2(y,K, options); % Train the model. Type "svmtrain2" 
%without parameters for more information 
alpha=model.sv_coef; %Alphas and support vector 
SV=X(:,model.SVs+1); 
A=SV*alpha; 
a=A(1:end/2); 
b=A(end/2+1:end); 
s_svm_fft=a'+1j*b'; 
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function r=noise(y) 
%This produces the block noise  
I1=(rand(size(y))>(1-0.01)); 
a=find(I1==1); 
aT=a'; 
b=[diff(aT) length(y)-aT(end)]; 
b=min([b;ones(size(b))*100]); 
c=round(rand(1,length(a)).*b); 
I2=zeros(size(y));I2(aT+c)=-1; 
I=cumsum(I1+I2); 
r=I.*randn(size(y)); 
  
function [w0,amps,inds]=find_frequencies(s,w,nfreq) 
%Find the peaks 
s=s(:); 
sdiff=diff(s); 
ind=[]; 
w0=zeros(size(sdiff)); 
for i=1:length(sdiff)-1 
    if sign(sdiff(i))~=sign(sdiff(i+1)) 
        w0(i)=w(i+1); 
        ind=[ind i+1]; 
    end 
end 
  
  
[a,b]=sort(s(ind),'descend'); 
amps=a(1:nfreq);inds=ind(b(1:nfreq)); 
w0=w(inds); 
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APPENDIX E 
Further Parametric Estimates for a Single Bluetooth Transmitter 

 

 

Figure E.1: Parametric Estimator, Channel 70, AWGN, Sigma = 1 
 

 

Figure E.2: Parametric Estimator, Channel 42, A+I, Sigma = 1 
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Figure E.3: Parametric Estimator, Channel 70, A+I, Sigma = 1 

 

Figure E.4: Parametric Estimator, Channel 42, A+B, Sigma = 1 
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Figure E.5: Parametric Estimator, Channel 69, A+B, Sigma = 1 

 

Figure E.6: Parametric Estimator, Channel 42, A+B+I, Sigma = 1 
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Figure E.7: Parametric Estimator, Channel 70, A+B+I, Sigma = 1 
 

 

Figure E.8: Parametric Estimator, Channel 42, AWGN, Sigma = 5 
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Figure E.9: Parametric Estimator, Channel 42, A+I, Sigma = 5 
 

 
Figure E.10: Parametric Estimator, Channel 42, A+B, Sigma = 5 
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Figure E.11: Parametric Estimator, Channel 42, A+B+I, Sigma = 5 
 

 
 

Figure E.12: Parametric Estimator, Channel 70, AWGN, Sigma = 5 
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Figure E.13: Parametric Estimator, Channel 70, A+I, Sigma = 5 

 
 

Figure E.14: Parametric Estimator, Channel 70, A+B, Sigma = 5 
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Figure E.15: Parametric Estimator, Channel 70, A+B+I, Sigma = 5
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APPENDIX F 
 

F.1 2 Mbps WiFi Simulink Model 
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F.2 5.5 Mbps WiFi Simulink Model 
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F.3 11 Mbps WiFi Simulink Model 
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APPENDIX G 

FURTHER PARAMETRIC ESTIMATES FOR A SINGLE WiFi TRANSMITTER 

This appendix presents furthers Parametric estimates for the following noise 

combinations. These estimates are presented to show further evidence that the 

parametric estimate works as expected in these types of channels. 

 

Figure G.1: Parametric Estimator, Single WiFi, AWGN, Sigma = 5 

 

Figure G.2: Parametric Estimator, Single WiFi, A+I, Sigma = 1 
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Figure G.3: Parametric Estimator, Single WiFi, A+I, Sigma = 5 

 

Figure G.4: Parametric Estimator, Single WiFi, A+B, Sigma = 1 



 

161 

 

 

Figure G.5: Parametric Estimator, Single WiFi, A+B, Sigma = 5 

 

Figure G.6: Parametric Estimator, Single WiFi, A+B+I, Sigma = 1 
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APPENDIX H 

H.1 MATLAB/Simulink Piconet Model 
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H.2 Detail of an individual transmitter 
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APPENDIX I 

Further Estimates for the Bluetooth and WiFi Combinations 

 

FIGURE I.1: WiFi AND BLUETOOTH, AWGN, SIGMA = 5 

 

FIGURE I.2: WiFi AND BLUETOOTH, A+I, SIGMA = 1 
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FIGURE I.3: WiFi AND BLUETOOTH, A+I, SIGMA = 5 

 

FIGURE I.4: WiFi AND BLUETOOTH, A+B+I, SIGMA = 1 
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APPENDIX J 
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