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Abstract

The main thrust of this dissertation is to develop, prototype and test new customized

algorithms for infrared spectral imaging and remote sensing of terrestrial features and

objects, with particular focus on a general class of sensors with noisy and overlap-

ping spectral bands. While the principal driver of this dissertation is the bias-tunable

quantum-dot-in-a-well (DWELL) sensor, developed at the Center for High Technol-

ogy Materials (CHTM), the scope of the proposed algorithms is broad and extends

to traditional sensors with fixed bands. The algorithms formulated in this work also

represent a step towards enabling future compressive sensing capabilities based on

bias tunable detectors such as the DWELL imager.
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The key contributions of this dissertation span three distinct types of algorithms

for multispectral (MS) and hyperspectral (HS) imagery. The first algorithm is the

Canonical Correlation Feature Selection (CCFS), which utilizes the spectral content

of the data to form a weighted linear superposition of the bias-tunable DWELL

bands in order to achieve algorithmic spectral matching in the presence of noise for

the purpose of feature selection and classification. Mathematically, the CCFS can

be interpreted as a customized projection algorithm, which minimizes a generalized

distance between the spectrum of an object and the linear space spanned by the

filters bands, while maximizing the signal-to-noise ratio.

The second algorithm extends the CCFS to a spatio-spectral feature selection

framework. In this framework the spatial content of the HS imagery is used to

enhance the canonical spectral features exposed by the CCFS algorithm by applying a

sequence of spatial masks to the canonical features. The resulting stacked hyperpixels

combine spatial and spectral features that have been obtained independently from

each other. Consequently, the extension of the CCFS rests on the assumption of

spatial-spectral separability of the hyperspectral image, i.e., that the spatial content

of a hyperspectral image is independent of the spectral bands, but can be used to

enhance the latter.

The third algorithm is a joint spatio-spectral algorithm for MS and HS image seg-

mentation, which integrates the spectral information into the spatial feature extrac-

tion process in order to achieve simultaneous spatio-spectral feature selection. Unlike

the second algorithm, this algorithm does not assume spatial-spectral separability of

the hyperspectral image. Instead, it utilizes the concept of spectral ratio contrast

to define edge signatures using bands that maximize the spectral contrast between

any two materials based on their spatio-spectral signatures. The edge signatures are

then fused with a spatial mask to obtain a three-dimensional spatio-spectral mask

in which the third (spectral) dimension of each pixel can be independently chosen.
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This dissertation also provides a thorough and systematic validation and testing

of the three algorithms using laboratory data and real infrared imagery from the

DWELL Focal Plane Array (FPA) and the Airborne Hyperspectral Imager (AHI).

Our results include supervised classification and spectral unmixing and abundance

estimation using AHI hyperspectral imagery, rock classification study using labora-

tory and DWELL FPA imagery, and HS and MS edge detection using the AHI and

the DWELL FPA imagery.
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Chapter 1

Introduction

1.1 Motivation

Spectral imaging for remote sensing of terrestrial features and objects has emerged

as a supplement to high-spatial-resolution, large-aperture satellite imaging systems.

Subsequently, the significant interest and advance in the infrared (IR) sensing tech-

nologies prompted the development of sophisticated short-wave (SW), mid-wave

(MW) and long-wave (LW) IR multispectral (MS) and hyperspectral (HS) sensing

systems. By using tens or even hundreds of spectral bands operating in the 0.4–

18 µm range, these systems offer highly resolved spectral imaging. One example is

the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),

which captures high spatial resolution data in 14 bands, from the visible to the ther-

mal IR portion of the spectrum. Another example is the Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS) [5], which contains 224 contiguous spectral channels

(bands) with wavelengths from 0.4 to 2.5 µm, and is focused on identifying, mea-

suring, and monitoring the constituents of the Earth’s surface and atmosphere. The

Airborne Hyperspectral Imager (AHI) [6] and the Spatially Enhanced Broadband
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Array Spectrograph System (SEBASS) [7] are two other examples of HS sensors

that operate in the LWIR portion of the spectrum and contain, respectively, 256 and

128 narrowband channels.

A typical infrared MS or HS system relies on either deploying multiple detec-

tors, each sensing at a specific range of wavelengths, or a single broadband detector

combined with a bank of IR optical filters, each tuned to a specific wavelength. In

either case, the sensor represents a highly complex opto-mechanical instrument that

requires precision alignment and calibration. Once the calibration is complete and

the sensor is deployed, the sensor functionality cannot be easily modified. As a result,

the sensor cannot be easily adapted to take advantage of a specific sensing situation

and one is typically forced to acquire all available imagery data before its relevance

can be determined. This leads to the acquisition of maximum and often massive

amounts of data that has to be stored for subsequent processing in applications such

as classification, abundance estimation, image segmentation and analysis, etc. Be-

sides the large storage demands, the analysis of this MS and HS imagery requires

powerful hardware systems and efficient processing algorithms.

The quantum-dot-in-a-well (DWELL) IR photodetector [8, 9, 10], developed and

fabricated in the Center for Hight Technology Materials (CHTM) at the University

of New Mexico (UNM), is a new emerging technology that has the potential to

provide an unprecedented flexibility in the sensing process [8, 11] through continuous

spectral tunability. The asymmetric DWELL bandstructure leads to bias-dependent

spectral response, which is attributable to the quantum-confined Stark effect. As

a result, the photocurrent produced by the application of each bias voltage can be

thought of as an output of a distinct band. This means that in the context of MS

and HS sensing, a single DWELL detector can be utilized as a MS IR sensor; the

photocurrents measured at different operational biases can be viewed as outputs of

different spectrally broad and overlapping bands [12]. The DWELL detectors are
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Figure 1.1: Spectral response of a DWELL detector as a function of the applied bias

voltage.

based on a mature GaAs growing technologies and have desirable features such as

intrinsic sensitivity to normal IR incidence light and low dark currents [8, 11].

Such on-demand electronically controlled tunability, that can be optimized for

specific applications, has the potential to greatly simplify the opto-mechanical com-

plexity of the MS and HS sensing systems. Furthermore, this capability is an excellent

fit to compressive sensing once the sensor is combined with algorithms and reconfig-

urable readout integrated circuits (ROICs). In particular, compressive sensing can

greatly reduce the massive amounts of data that must be acquired by traditional MS

sensors by utilizing only the bands that are relevant to the scene.

The flexibility afforded by on-demand electronically controlled tunability is not

without a price, however. For instance, as Fig. 1.1 shows, the DWELL’s spectral re-

sponse is relatively broad (≈ 1−2µm). As a result, the spectral bands corresponding

to different bias voltages overlap significantly, making the photocurrents generated

by the DWELL bands highly correlated. Another complication is bias-dependance of
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the noise (dark current) present in the photocurrents. As a result, efficient utilization

of the DWELL requires the development of specialized post-processing algorithms

and methods that take into consideration these attributes. Robustness with respect

to bias- or band-dependent noise is one of the traits required of these algorithms.

Correlated data is another issue that has to be addressed at the post-processing stage.

The algorithms should be also able to exploit the on-demand controlled tunability

of the DWELL to improve the overall efficacy of the sensing process. However, at

present there are very few algorithms dealing with these issues and the literature

devoted to this subject is rather sparse. Some recent results have been reported in

[12, 13, 14, 15] and the references cited therein, but besides these sources not much

work has been done to address data processing for sensors with noisy and overlapping

bands. This dissertation aims to contribute towards the development of this much

needed capability.

1.2 Contributions of this dissertation

The main thrust of this dissertation is to develop, prototype and test new customized

algorithms for a general class of sensors with noisy and overlapping bands. While

our principal driver is the DWELL sensor, the scope of the algorithms proposed in

this dissertation is significantly broader and extends to traditional sensors with fixed

bands. These algorithms also represent a step towards future compressive sensing

capability based on bias tunable detectors such as DWELL.

Algorithms for MS and HS image analysis can be broadly divided into three

categories based on how they utilize the acquired imagery data. The first category

includes methods which exploit only the spectral content of the MS and HS data.

The most well-known among these methods are the Principal Component Analysis

(PCA), Independent Component Analysis (ICA), Projection Pursuit (PP) [16, 17],
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Matching Pursuits [18, 19], and the Maximal Noise Fraction (MNF) transform [20],

to name just few. The second category comprises of methods that utilize both

the spectral and the spatial information, but in a disjoint manner; see for example

[21, 22, 23, 24] for representative work. Finally, in the third category we find methods

that are characterized by their joint use of spectral and spatial information in a way

that exploits the intrinsic correlation between the spectral and the spatial content

of HS and MS imagery. The multi-color gradient (MCG) edge detector [25, 1, 26],

the morphological color gradient (MoCG) [27], and the total variation methods for

restoration of vector valued images [28, 29, 30] are examples of methods that belong

to this category.

The key contributions of this dissertation are the development and the verification

of three algorithms that target sensors with overlapping bands, such as the DWELL.

These algorithms fall into each one of the three categories described above. Below

we present a concise summary of the main contributions.

The first contribution of this work is the Canonical Correlation Feature Selec-

tion (CCFS) algorithm [12, 14]. The CCFS utilizes the idea of forming a weighted

linear superposition of the bias-dependent photocurrents; in this way it resembles

the DWELL-based algorithmic spectrometer (DAS) formulated and examined in

[31, 32, 33, 15], which achieves continuous DWELL spectral tuning for optimal spec-

tral reconstruction. With the CCFS we pursue a different objective. Instead of

determining sets of weights to be used for spectral reconstruction, the training step

of the CCFS algorithm determines sets of weights that are optimally suited for a spe-

cific classification problem. More precisely, for a given spectrum, representing a class

of objects of interest, and in the presence of noise, the CCFS seeks a set of weights

that are used to form an optimal superposition of the DWELL’s bias-dependent

bands. Such superposition band can be thought of as the most “informative general-

ized direction” in the DWELL spectral space for the given spectrum in the presence
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(a)

(b)

Figure 1.2: Left to right: abundance estimation maps for building, vegetation and

road endmembers, and for an SNR level of 20dB: (a) using three superposition

features selected by the CCFS algorithm from a subset of 50 bands in the range 7.7

µm to 8.6 µm; (b) using three features selected by the noise-adjusted PP from a

subset of 50 bands in the range 7.7 µm to 8.6 µm.

of noise. Thus, the CCFS algorithm accomplishes algorithmic spectral matching in

the presence of noise for the purpose of classification.

Figure 1.2 (a–b) compares the performance of the CCFS algorithm with the

noise-adjusted PP algorithm in the presence of noise. The figure shows three groups

of fractional abundance maps, one for building, vegetation and road endmembers,

from left to right respectively, and for a signal-to-noise ratio (SNR) level of 20dB.

The CCFS (a) and the noise-adjusted PP (b) are applied to 50 consecutive AHI

bands in the range 7.7 to 8.6 µm. The maps show improved performance of the
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CCFS compared to the noise-adjusted PP. Specifically, PP was not able to clearly

discriminate between the endmembers of vegetation and road in this SNR case.

Rigorous derivation and a precise formulation of the CCFS algorithm is presented

in Chapter 2 where we also provide interpretation of the optimal feature-selection

criterion in terms of SNR.

Our second contribution is extension of CCFS to a spatio-spectral feature selection

framework. The objective of this work is to explore integration of spatial and spectral

information in a way that enhances the canonical spectral features exposed by the

CCFS, using the spatial content of the hyperspectral imagery. To this end we assume

separability of the hyperspectral image, i.e, that the spatial content of a hyperspectral

image is independent of the spectral bands, but can be used to enhance the latter.

The extension of the CCFS algorithm utilizes the concept of spectrally enhanced

spatial features [21, 22], which are obtained by considering the pixels simultaneously

in the spectral domain, using their spectral content, and in the spatial domain by

applying a spatial feature extraction approach. The resulting Canonical Correlation

Spatio-Spectral Feature Selection (CCSS-FS) agorithm consists of two distinct stages:

a spatially independent spectral feature selection, based on the CCFS, followed by

spatially enhanced classification.

Figure 1.3 compares thematic maps of AHI imagery created from the classification

results based on different subsets of spectrally enhanced spatial features. For an SNR

of 10dB, these results show a noticeable improvement in the classification accuracy

when three canonical superposition features, selected with respect to three classes

of interest (road, ground and buildings), are extended with ’Mean’, ’Median’ and

’Gaussian’ spatial features, as shown in Fig. 1.3 (i) and (v). The investigation of

different combinations of spectrally enhanced spatial features has demonstrated that

in this problem, the combination presented in Fig. 1.3 (v) gives consistently, for

different SNR values, the best classification results. Chapter 4 provides a detailed

7



Chapter 1. Introduction

(i) (ii) (iii) (iv) (v)

Figure 1.3: Performance of the CCSS-FS algorithm for different combinations of

spectral and spatial features and an SNR of 10dB. Left to right: thematic maps

for (i) three CCFS features; (ii) three CCFS features extended with three ’Mean’

spatial features; (iii) three CCFS features extended with three ’Laplacian’ spatial

features; (iv) case (ii) extended with three ’Gaussian’ spatial features; and (v) case

(iv) extended with three ’Median’ spatial features.

description of the CCSS-FS algorithm and results from a validation study using AHI

HS imagery.

Our third contribution is a joint spatio-spectral algorithm for MS and HS image

segmentation. Image segmentation is one of the most difficult and important tasks

in image processing [2, p.567] required for computerized analysis of digital images.

For MS and HS images this task is further complicated by the presence of features

such as iso-luminant edges, [2, p.336] and [34]. Such attributes manifest the fact

the spectral and the spatial contents of an MS or HS image cannot in general be

treated independently from each other. In other words, an MS or HS image is in

general non-separable in the spectral and the spatial domain. Sufficient conditions

for separability of HS and MS images are investigated in Chapter 4.

Consequently, the objective here is to incorporate the spectral information into

the spatial feature extraction process, i.e., to perform a simultaneous spatio-spectral
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feature selection. The solution to this problem is not as intuitive as in the CCSS-

FS algorithm, where we assume separability of spatial and spectral domains, and

is much more challenging to achieve. We focus on the development of edge detec-

tion algorithms for MS and HS images based on a three-dimensional spatio-spectral

mask, in which the third (spectral) dimension of each pixel can be independently

chosen. In other words, we propose a mask that does not operate in a single image

plane but instead fuses information from multiple planes. The action of the three-

dimensional mask is compared schematically with the MCG and with a standard

gray-scale gradient operator in Fig. 1.4.

The spectral plane for each element in the three-dimensional mask is selected in

a way that enhances the targeted spatial feature. Our approach uses the concept of

spectral ratio contrast to define an edge signature for an edge between two materials.

An edge signature is a combination of spectral ratios calculated using bands that

enhance the spectral contrast between the two materials.

The joint spatio-spectral algorithm, termed spectral ratio contrast (SRC) edge

detector, also has two stages. The first stage is a training step which identifies the

bands that maximize the spectral contrast between two given materials. The second

stage is the feature extraction using the three-dimensional mask with bands defined

at the training step.

Figure 1.5 compares the edge maps derived using the SRC algorithm with the edge

maps obtained by the MCG approach and by the application of two well-known gray-

scale edge detectors to individual DWELL FPA bands. Figure 1.5 (ii) clearly shows

the ability of the SRC to capture the “weak”, almost iso-luminant edge between the

granite and limestone classes in this scene, which is missed by the other approaches.

Spectral ratios and cross-spectral ratios have been previously used for quantita-

tive vegetation monitoring. Examples include the Normalized Difference Vegetation
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(a)

(b)

(c)

Figure 1.4: Joint spatio-spectral feature extraction using cross-band ratios (a) vs.

multi-color gradient [1] approach (b) and standard [2] intensity-based gradient (c) .

Index (NDVI) [35], the Soil-Adjusted Vegetation Index (SAVI) [36] and the Atmo-

spherically Resistant Vegetation Index (ARVI) [37]. Other applications of spectral

and cross-spectral ratios include regional seismic discrimination [38, 39, 40, 41] and

deblurring of noisy multichannel images [30], among others. However, to the best
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(i) (ii) (iii) (iv) (v)

Figure 1.5: Comparison between edge maps obtained by the SRC and three bench-

mark edge detectors. Left to right: (i) DWELL FPA image comprising of phyllite,

granite and limestone at bias 0.7 V; (ii) the SRC edge map; (iii) the MCG edge map;

(iv) the Canny [3] edge map at 0.5 V; (v) the Sobel [4] edge map at 0.5 V.

of our knowledge, the application of spectral ratio contrast to edge detection in this

dissertation is new and previously unexplored research direction.

Another contribution of this dissertation is the extensive validation of the three

algorithms using laboratory data and real IR imagery from the DWELL Focal Plane

Array (FPA) and AHI. In particular, we carried out the following studies. First,

we performed supervised classification, spectral unmixing and abundance estimation

of hyperspectral imagery obtained from the AHI using the CCFS. CCFS was also

applied to rock classification study using laboratory data and DWELL FPA imagery.

Second, we carried out a performance validation of CCSS-FS for target detection

and classification applications using remotely sensed imagery collected by the AHI.

We also studied the sensitivity of the CCSS-FS algorithm with respect to the initial

set of sensor bands and with respect to the number and types of spatial features

utilized during the classification stage.

Finally, we performed edge detection for HS and MS imagery using the AHI and

the DWELL FPA data. We compared the joint spatio-spectral SRC algorithm with

the multi-color gradient edge detection approach [26] and several gray-scale edge
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detector such as Canny [3] and Sobel [4], applied to individual image bands.

1.3 Overview of the dissertation

For the convenience of the reader, whenever appropriate, the chapters provide concise

review of the relevant background information and related work, as well as brief

summaries of our conclusions and findings.

We have organized this dissertation as follows. In the focus of Chapter 2 is the

rigorous mathematical development of the CCFS algorithm. We formulate the math-

ematical model for sensors with noisy and spectrally overlapping bands in Section 2.2

and then use this theory to develop the CCFS algorithm in Section 2.3.

Performance of the CCFS algorithm and comparison with noise-adjusted Pro-

jection Pursuit approach [42] is provided in Chapter 3. There we test the CCFS

algorithm on three different applications. In Section 3.1 we study separability and

classification analysis of rock species using the CCFS and laboratory spectral data

obtained with a single-pixel quantum-dot infrared photodetector (QDIP). The sec-

ond application of the CCFS is for supervised classification, spectral unmixing, and

abundance estimation of hyperspectral imagery obtained from AHI. Results from this

study are presented in Section 3.2. Our third application also deals with rock-type

classification; however, in this case we apply the CCFS to real DWELL FPA imagery

acquired at the CHTM. These results are presented in Section 3.3 and demonstrate,

for a first time, the MS capability of the DWELL FPA by considering three different

scene configurations.

In Chapter 4 we extend the CCFS approach to a spatio-spectral feature-selection

and classification framework for hyperspectral imagery. Details of the extension are

presented in Section 4.2, while Section 4.4 contains validation results using AHI data
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in the context of supervised classification. Specifically, we study the sensitivity of

the spatio-spectral feature-selection approach with respect to the initial set of sensor

bands and the improvement of the classification accuracy with respect to the number

and type of spatial features, utilized during the classification stage. In Section 4.3 of

this chapter we briefly discuss separability of the spatial-spectral information in MS

and HS imagery.

The joint spatio-spectral SRC algorithm for MS and HS edge detection is formu-

lated and studied in Chapter 5. The details of of our approach, including definition of

edge signatures, complexity estimates, and implementation are discussed in Section

5.2. In Section 5.3 we present validation study of the SRC algorithm and com-

parison with the benchmark MCG edge detector using the DWELL FPA and AHI

imagery data. For the convenience of the readers, the benchmark MCG approach [1]

is reviewed in Appendix A.
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1. B. S. Paskaleva, W-Y. Jang, M. M. Hayat, Y. D. Sharma, S. C. Bender, and

S. Krishna, “Multispectral Classification with Bias-tunable Quantum Dots-

in-Well Focal Plane Arrays,” IEEE Trans. Geoscience and Remote Sensing.

Special issue on hyperspectral imaging and signal processing. Submitted.

2. W-Y. Jang, B. S. Paskaleva, M. M. Hayat, S. C. Bender, and S. Krishna,
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Chapter 2

Canonical Correlation Feature

Selection

The main focus of this chapter is a rigorous development of a novel canonical corre-

lation feature selection (CCFS) algorithm that is particularly well-suited for spectral

sensors with overlapping and noisy bands. Our approach combines a generalized

canonical correlation analysis framework and a minimum mean-square-error crite-

rion for the selection of feature subspaces. This criterion induces ranking of the

best linear combinations of the noisy overlapping bands and, in doing so, guarantees

a minimal generalized distance between the centers of classes and their respective

reconstructions in the space spanned by sensor bands.

2.1 Background and overview of relevant work

In the past two decades, infrared spectral imaging in the wavelength range of 4–18

µm has found many applications in night vision, battlefield imaging, missile tracking

and recognition, mine detection and remote sensing, to name just few. Examples of
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spectral imagers operating in the 3–5 µm and 8–12 µm atmospheric windows include

the Airborne Hypersectral Imager (AHI) and the Spatially Enhanced Broadband

Array Spectrograph System (SEBASS), which contain, respectively, 256 and 128

narrow-band channels. However, the price of offering such sophisticated spectral

imaging is enormous due to the complexity of the optical systems that render the

detailed spectral information. Efforts have been made to develop two-color and

even multi-color focal-plane arrays (FPA) for long-wave (LW) applications [43, 44];

these sensors can be electronically tuned to two or more regions of the spectrum.

Clearly, such tunable sensors offer greater optical simplicity as the spectral response

is controlled electronically rather than optically. However, most existing multi-color

sensors are limited in that the spectral sensitivity can only be electronically switched,

but not continuously tuned.

More recently, a new technology has emerged for continuously tunable midwave-

infrared (MWIR) and longwave-infrared (LWIR) sensing that utilizes intersubband

transition in nanoscale self-assembled systems; these devices are termed quantum-dot

infrared photodetectors (QDIPs). QDIP sensors promise a less expensive alternative

to the traditional hyperspectral (HS) and multispectral (MS) sensors while offering

more tuning flexibility and continuity compared to multi-color sensors [44]. QDIPs

are based on a mature GaAs-based processing, they are sensitive to normally incident

radiation and have lower dark currents compared to their quantum-well counterparts

[8, 11]. Unfortunately, QDIPs have low quantum efficiencies, and much effort is

currently underway to enhance that efficiency through increasing the number of QD

layers as well as using new supporting structures such as photonic crystals [45, 46].

Additionally, QDIPs with a dot-in-a-well (DWELL) configuration exhibit a bias-

dependent spectral response, which is attributable to the quantum Stark effect,

whereby the detector’s responsivity can be altered in shape by varying the applied
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Figure 2.1: Normalized spectral responses of QDIP 1780. The left cluster of spectral

responsivities corresponds to the range of negative bias voltages between -4.2 V and

-1 V. The right cluster of spectral responsivities corresponds to the range of positive

bias voltages between 1 V and 2.6 V.

bias. Figure 2.1 shows the bias-dependant spectral responses of the QDIP device1

used in this work, measured with a broadband source and a Fourier transform in-

frared spectrophotometer at a temperature of 30 K. Bias voltages in the range -4.2

V to -1 V and 1 V to 2.6 V, in steps of 0.2 V, were applied to this device. Therefore,

a single QDIP can be exploited as a MS infrared sensor; photocurrents of a single

QDIP, driven by different operational biases, can be viewed as outputs of different

spectrally broad and overlapping bands.

1This QDIP was fabricated by Professor Krishna’s group at the Center for High Tech-

nology Materials at the University of New Mexico.
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The inherent and often significant spectral overlap in the bands of a QDIP sensor

produces a high level of redundancy in the output photocurrents of these bands.

This redundancy, which is not dissimilar to the redundancy present in the outputs

of the cones of the human eye, necessitates the development of lower dimensional,

uncorrelated representations of the sensed data.

Comprehensive exploration of the bias-dependent tunability of the QDIP and

DWELL detectors has led to the development of customized algorithms, which enable

more efficient MS sensing. One example is the DWELL-based algorithmic spectrom-

eter (DAS) reported in [31, 32, 33, 15]. DAS achieves continuous DWELL spectral

tuning for optimal target spectra reconstruction. The main idea is to probe a target

spectra by a DWELL photodetector sequentially in time while changing the applied

bias. As a result, a set of bias-dependent photocurrents, each corresponding to a

spectral band, is generated. Then, for each tuning wavelength, a projection algo-

rithm is used to produce a set of optimal superposition weights, one per bias. The

resulting superposition photocurrent will approximate the value of the spectrum of

the target for the specified tuning wavelength. This stage is iterated for each tuning

wavelength within the spectral regions of interest.

The presence of noise in the photocurrents, i.e., dark current and Johnson noise,

further complicates extraction of reliable spectral information from the highly over-

lapping and broad spectral bands of QDIP devices. Johnson noise results from

the random motion of electrons in resistive elements and occurs regardless of any

applied voltage [47]. On the other hand, current resulting from the generation and

recombination process within the photoconductor will cause fluctuation in the carrier

concentration and, hence, fluctuation in the conductivity of the semiconductor [47].

Generation and recombination noise, or so-called shot noise, becomes important in

small band-gap semiconductors, in which the Johnson noise can also be high. Finally,

at very low frequencies (e.g., less than 1 KHz) flicker noise, also known as 1/f noise,
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also becomes an issue; it arises from surface and interface defects and traps in the

bulk of the semiconductor. However, for integration times of 1 ms or smaller, this

noise is not important. Noise in QDIP detectors is dominated by the Johnson noise

at temperatures less than 40 K, and by the shot noise at higher temperatures (e.g.,

77 K or above).

It is well known that in the presence of noise the existing feature-reduction tech-

niques may not always yield reliable information compression. It was shown by

Green et al. [20] that in the Principal Component Analysis (PCA) approach, the

variance of the MS/HS data does not always reflect the actual signal-to-noise ratio

(SNR), due to unequal noise variances in different spectral bands. Therefore, it is

possible that a band with a low variance may have a higher SNR than a band with a

high variance. As a result, modified approaches such as the Maximal Noise Fraction

(MNF) transform were developed [20] based on maximizing the SNR; this method

first whitens the noise covariance and then performs PCA. Other techniques include

“higher-order methods” such as the Projection Pursuit (PP) and the Independent

Component Analysis (ICA) [16, 48, 49]; these methods search for “interesting” pro-

jection directions generating features that maximally deviate from “Gaussianity,”

or directions that maximize a certain projection index. Following the idea of the

MNF transform [20], Lennon and Mercier in [42] proposed to adjust both PP and

ICA to the noise in such a way that the SNRs of the noise-adjusted components are

significantly increased compared to the SNRs of the components determined by the

original algorithms.

In this Chapter we develop the mathematical theory for spectrally adaptive

feature-selection approach for a general class of sensors with overlapping and noisy

spectral bands. Using this theory we develop the canonical correlation feature se-

lection (CCFS) algorithm. Our work draws upon the geometrical sensing model

developed by Wang et al. [50, 51], in which the sensing process is viewed as a pro-
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jection of the scene space, defined as the space of all spectra of interest, onto a space

spanned by the sensor bands, termed the sensor space.

Similar to the DAS algorithm [33], the CCFS is also based upon the principle of

forming a weighted linear superposition of the bias-dependent photocurrents; how-

ever, its objective is quite different. Instead of determining sets of weights to be used

for target spectral reconstruction, the CCFS algorithm determines sets of weights

that are optimally suited for specific detection/classification problems. In particu-

lar, for a given spectrum, representing a class of targets of interest, the CCFS seeks

a set of weights used to form a superposition of the QDIP’s bias-dependent bands.

Such superposition band can be thought of as the most “informative generalized

direction” for the given target spectrum in the presence of noise. In other words,

the CCFS algorithm can accomplish algorithmic spectral matching for the purpose

of target classification. Moreover, this process of selecting a superposition band is

repeated in a hierarchical fashion to yield a canonical set of superposition bands that

will generate, in turn, the best set of features for classes of objects.

It is instructive to compare the CCFS with the matching pursuit (MP) algorithm

reported in [18, 19]. The main goal of the MP algorithm is to represent efficiently

any function f(t) in terms of a family of functions D (called a dictionary), where

the family is usually extremely redundant. Depending on the local properties of

f(t), the idea is to select adaptively a subset of elements of D that best represents

f(t), i.e., MP is a procedure that expands functions over a set of waveforms, selected

appropriately among large and redundant dictionary. Therefore, the MP algorithm

can be viewed as a version of the greedy algorithm. In contrast, with the CCFS

we also aim to find the best representation out of a redundant set, however, the

search is not restricted to the subset of the functions in the dictionary (filter space).

Roughly speaking, we can think of MP as a band selection procedure (selection of a

set of bands from the original set), whereas the CCFS is primarily a feature selection
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(extraction) process.

This Chapter is organized as follows. The mathematical theory for feature se-

lection for sensors with noisy and spectrally overlapping bands is developed in Sec-

tion 2.2. We use this theory in Section 2.3 to formulate the CCFS algorithm and

summarize our conclusions in Section 2.4.

2.2 Mathematical model for spectral sensing

2.2.1 Preliminaries

We start by reviewing the relevant concepts in spectral sensing. The spectral char-

acteristics of bands are represented by a finite set of real-valued square-integrable

spectral filters, or simply bands, {f̂i(λ)}ki=1, where the variable λ represents wave-

length. The spectral response of the ith band is given by f̂i(λ) = R0fi(λ), where

the unit of f̂i(λ) is response per watt of power incident on the detector. The scalar

R0 can be thought of as the peak responsivity, and will assume the units required

by f̂i(λ), while the functions {fi(λ)}ki=1 will be treated as dimensionless functions.

Similarly, the emitted spectra of materials of interest can be described by another

set of square-integrable functions of wavelength, {p̂i(λ)}mi=1. The emitted spectra of

the ith type material can be represented by p̂i(λ) = P0pi(λ), where P0 is another

constant that carries the units of the emitted radiance [W/cm2/sr/µm]. As a result,

the spectral pattern pi(λ) can be assumed dimensionless. We define the universal

linear space containing all the spectral patterns of interest and all spectral responses

as the spectral space, Φ. For example, Φ can be the Hilbert space L2([0,∞)) of

all real-valued square-integrable functions. The subspaces spanned by the spectral

bands {fi(λ)}ki=1 and the spectral patterns {pi(λ)}mi=1 are respectively termed the

sensor space, F , and the pattern space, P .
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Figure 2.2: Spectral sensing model for sensors with non-overlapping bands.

Ideally, the process of sensing a pattern with a spectral sensor can be represented

mathematically as an inner product between the pattern and each one of the sensor

bands,

〈p, fi〉
4
=

∫ ∞
−∞

p(λ)fi(λ)dλ, (2.1)

producing a set of photocurrents, one for each band as shown in Fig. 2.2. In actuality,

however, the photocurrents are perturbed by noise, yielding the noisy photocurrent

Ii for the ith band sensing the pattern p,

Ii =

∫ λmax

λmin

p(λ)fi(λ)dλ+Ni, (2.2)

where Ni represents additive pattern-independent noise associated with the ith band,

and the interval [λmin, λmax] represents the common spectral support. Conceivably,

different bands yield different noise levels, for example, due to different bias voltages

in the case of a QDIP. The concept is illustrated in Fig. 2.3 again for the simple case
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Figure 2.3: Spectral sensing model for sensors with broad and overlapping noisy

bands.

of sensor with two bands and scene containing just one class of materials. For a given

spectral pattern, the output corresponding to a single spectral band constitutes the

feature of that pattern with respect to the band. A spectral signature is then defined

as a k-dimensional vector in IRk, whose coordinates are the measured photocurrents

(features) associated with each spectral band.

2.2.2 Problem-specific feature selection

We now develop the key building blocks for our canonical feature selection algorithm.

Specifically, we will seek to optimally replace the k-dimensional spectral signature

in IRk with a single spectral feature. This transformed feature, Ĩ, for the pattern p,
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is defined as weighted linear combination of all features, i.e., Ĩ =
∑k

i=1 aiIi, where

the weights ai are to be optimized for each pattern p. We term such a feature Ĩ a

superposition current. Equation (2.2) can then be expressed in the following form:

Ii =
k∑
i=1

ai(〈p, fi〉+Ni) = 〈p,
k∑
i=1

aifi〉+
k∑
i=1

aiNi. (2.3)

From (2.3) we can deduce a useful analogy for the superposition current. Comparing

this equation with (2.2), we see that the superposition current can be viewed as the

output of an imaginary band, f =
∑k

i=1 aifi. We will term the band f a superposition

band since it is a weighted superposition of the sensor’s bands and it is also associated

with the superposition current.

Hitherto, the problem of determining the best superposition current, Ĩ, for a

given spectral pattern can be thought of as the problem of determining the optimal

superposition band f in F that offers the best approximation of p. Note that for a

given superposition band f in F , the approximation (or representation) of p rendered

by this band is

pf
4
= (〈p,

k∑
i=1

aifi〉+
k∑
i=1

aiNi)f, (2.4)

which is a vector in F that is along the direction of f but whose length is random

due to noise.

Accordingly, one suitable criterion for the selection of a superposition band is to

minimize the distance between the spectral pattern and its representation according

to the superposition band. More precisely, we would select a set of coefficients

a1, . . . , ak so that the L2 norm of the error vector, ‖p − pf‖, is minimized. Noting

that f =
∑k

i=1 aifi, we have

pf =
k∑
i=1

k∑
j=1

aiaj(〈p, fi〉+Ni)fj.
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Hence, for a given pattern p, we propose an optimal superposition band, represented

by the vector a∗, as

a∗
4
= argmin

a∈IRk,‖f‖=1

E
[∥∥∥p− k∑

i=1

k∑
j=1

aiaj(〈p, fi〉+Ni)fj

∥∥∥2]
, (2.5)

where a = (a1, . . . , ak)
T is a weight vector associated with the superposition band f .

To provide a better insight into the criterion in (2.5), and particularly the con-

straint ‖f‖ = 1, let us assume for the moment that the noise is absent. In this case,

one can show that the minimization of the noiseless versions of the criterion (2.5) is

equivalent to computing the projection pF of p onto F . More precisely, let pF be the

orthogonal projection of p onto the subspace F . By the minimum-distance property

of the projection pF [52, Theorem 4.11]

inf
g∈F
‖p− g‖ = ‖p− pF‖.

The lemma bellow shows that pF can be obtained, up to a sign difference, by pro-

jecting p onto unit-norm vectors in F and then selecting the vector that yields the

minimum error between the projection along that unit vector and p.

Lemma 1 Define fp
4
= ± pF
‖pF‖

, then

inf
f∈F
‖p− 〈p, f〉f‖ = min

f∈F ,‖f‖=1
‖p− 〈p, f〉f‖ = ‖p− 〈p, fp〉fp‖ = ‖p− pF‖.

Proof. By using the fact that (p − pF) is orthogonal to pF , [52, Theorem 4.11], we

obtain

〈p, fp〉fp =
〈(p− pF) + pF , pF〉

〈pF , pF〉
pF = pF . (2.6)

Therefore,

‖p− 〈p, fp〉fp‖ = ‖p− pF‖. (2.7)
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Hence, because infg∈F ‖p − g‖ = ‖p − pF‖, (2.7) along with the fact that ‖fp‖ = 1

together imply

inf
f∈F ,‖f‖=1

‖p− 〈p, f〉f‖ = ‖p− 〈p, fp〉fp‖. (2.8)

Thus, we have proved that the infimum in (2.8) is achieved at f = fp, or

inf
f∈F ,‖f‖=1

‖p− 〈p, f〉f‖ = min
f∈F ,‖f‖=1

‖p− 〈p, f〉f‖ = ‖p− 〈p, fp〉fp‖ . 2

With the above interpretation of pF , and by realizing that the inner product

associated with a superposition band represented by the weight vector a is corrupted

by the additive noise
∑k

i=1 aiNi, as seen from (2.3), we arrive at the optimization

criterion stated in (2.5). This justifies our selection of (2.5) as a criterion in the

noiseless case and motivates its use as a meaningful criterion in the general case

when the photocurrents are corrupted by additive noise.

The following lemma characterizes the minimization in (2.5).

Lemma 2 Let f =
∑k

i=1 aifi, a = (a1, . . . , ak)
T , and consider pf given by (2.4).

Without loss of generality, assume that ‖p‖ = 1, and further assume that the noise

components in (2.4), N1, . . . , Nk, are zero-mean and independent random variables

with variances σ2
i , i = 1, . . . , k. Then,

argmin
a∈IRk,‖f‖=1

E
[∥∥pf − p∥∥2]

= argmax
a∈IRk,‖f‖=1

{
〈p, f〉2 −

k∑
i=1

a2
iσ

2
i

}
. (2.9)

Proof. Note that

E
[∥∥p− pf∥∥2

]
= ‖p‖2 − 2

k∑
i=1

k∑
j=1

aiaj〈p, fi〉〈p, fj〉
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+
k∑
i=1

k∑
j=1

aiaj〈p, fi〉〈p, fj〉‖f‖2

+
k∑
i=1

k∑
j=1

aiajE[NiNj]‖f‖2 − 2
k∑
i=1

k∑
j=1

aiajE[Ni]〈p, fj〉

+ 2
k∑
i=1

k∑
j=1

aiajE[Ni]〈p, fj〉‖f‖2. (2.10)

Using the stated assumptions on noise statistics and the norm of p, we obtain

argmin
a∈IRk,‖f‖=1

E
[∥∥p− pf∥∥2

]
= argmin

a∈IRk,‖f‖=1

{
1− 〈p, f〉2 +

k∑
i=1

a2
iσ

2
i

}
= argmax

a∈IRk,‖f‖=1

{
〈p, f〉2 −

k∑
i=1

a2
iσ

2
i

}
. (2.11)

2

Lemma 2 provides useful information about the structure of the mean-square-

error (MSE) in (2.9). If we define the SNR associated with the superposition band,

f , represented by a, as

SNRa =
〈p, f〉2∑k
i=1 a

2
iσ

2
i

(2.12)

the criterion (2.11) can be written in terms of SNRa as follows:

argmin
a∈IRk,‖f‖=1

E
[∥∥p− pf∥∥2

]
= argmax

a∈IRk,‖f‖=1

{(
SNRa − 1

) k∑
i=1

a2
iσ

2
i

}
.

The quantity 〈f, p〉2 in (2.12) reflects how much energy from the scene is preserved

during the spectral sensing process and relates this energy to the mutual position,

i.e., angle, between the pattern p and any sensor band fi that contributes to the
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superposition band. More precisely, defining the interior angle, θp,fi , between the

spectral pattern p and any sensor band fi as

θp,fi = cos−1

(
〈p, fi〉
‖p‖‖fi‖

)
,

if a given pattern p is “almost collinear” to any of the sensor bands {fi}ki=1, then θp,fi

will be nearly zero and the quantity 〈p, fi〉 will attain its maximum value. In such

cases, the contribution of that spectral band to the direction of the superposition

band needs to be maximized in order to maximize the SNR for the superposition

band. If P ⊂ F , then the angle between p and any fi will be zero, meaning that the

pattern space will be completely captured by the sensor space. On the other hand, if

the angle between a given pattern p ∈ P and a spectral band fi ∈ F is close to π/2,

then this indicates lack of correlation between the spectral pattern and the spectral

band. In such a case, the pattern cannot be sensed reliably by that particular band

and the contribution of that band in the superposition band needs to be minimized.

In the presence of noise, due to the superpositions process, the noise variance

corresponding to the superposition band will accumulate, resulting in lower SNR

and therefore higher approximation error. As a result, the optimal superposition

band in a noisy environment may not coincide with the direction of projection of the

pattern onto the sensor space, and the amount of the deviation will depend upon the

SNR for the individual bands.

In the next section, we use and extend the principle of optimal superposition band

presented in this section to formulate the CCFS. This algorithm allows us to search

for a set of weight vectors that yield the “best” collection of “sensing directions”

minimizing the MSE in sensing a class of patterns.
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2.3 Canonical correlation feature-selection algo-

rithm

We begin by reviewing germane aspects of canonical correlation (CC) analysis [53,

54, 55] of two Euclidean subspaces. In essence, based on a computed sequence of

principal angles, θk, between any two finite-dimensional Euclidean spaces U and V ,

CC analysis yields the so-called canonical correlations, ρk = cos(θk), between the two

spaces. The first canonical correlation coefficient, ρ1, is computed as ρ1 = max
i,j

uTi vj,

where the vectors ui (i = 1, . . . ,m) and vj (i = 1, . . . , n) are unit length vectors that

span U and V , respectively. The two vectors for which the maximum is attained are

then removed, and ρ2 is computed from the reduced sets of the bases. This process

is repeated until one of the remaining subspaces becomes null.

The CC analysis approach, however, is not applicable to cases for which the

inner products between vectors are accompanied by additive noise, as in the case

of the photocurrents seen in (2.2). In this case, a stochastic version of “principal

angle” must be introduced and used. This new criterion was precisely introduced

in Lemma 2. Thus, in our approach we will follow the general principle of CC

analysis while embracing the minimization stated in (2.9) as a criterion for maximal

correlation.

In our formulation of the CCFS algorithm we will restrict the attention to finite

dimensional spaces. Let us assume that all the spectral patterns and the sensor’s

bands belong to an n-dimensional subspace of the Hilbert space Φ. Thus, without

loss of generality, we can think of the Hilbert space Φ as IRn, and the functions

p ∈ P and f ∈ F as Euclidean vectors p and f in IRn, where p and f are the

coordinate vectors of f and p, respectively. Furthermore, the inner product 〈p, f〉

can be represented by the dot product pT f .
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Assume further that F is the span of k (k ≤ n) linearly independent spectral

bands, represented by the columns of a matrix F = [f1| . . . |fk]. We term F the

filter matrix. Let P denote the span of a set of m linearly independent patterns

{pi}mi=1 representing the means of each one of m classes of interest. The matrix

P = [p1| . . . |pm] is termed the pattern matrix. We will assume further that m < k.

The CCFS algorithm begins the search for the first canonical band by determining

m weight vectors ai, i = 1, . . . ,m, one for each class of interest. In particular, for

the mean of the lth class, we determine a vector of weights al = (al,1, . . . , al,k)
T as

al = argmin
a∈IRk,‖Fa‖=1

E
[∥∥pl − (pTl Fa + nTa)Fa

∥∥2
]

= argmax
a∈IRk,‖Fa‖=1

{((
pTl Fa

)2

aTΣNa
− 1

)
aTΣNa

}
,

(2.13)

where the last equality follows from the identity (2.9) in Lemma 2, specialized to the

present setting. Specifically, in (2.13) each component al,j weights the corresponding

sensor band fj, j = 1, . . . , k. Note that (2.13) is the equivalent matrix representation

of (2.5), where

n =
(
N1, . . . , Nk

)T
is a random vector whose components Ni are independent, zero-mean random vari-

ables with variance σ2
i . We reiterate our earlier assertion in Section 2.2 that for each

pattern pi minimizing (2.13) is equivalent to selecting a direction
∑k

j=1 ai,jfj in F

that satisfies (2.9) and exhibits minimal combined noise variance and angle between

the pattern and the direction.

The minimization process outlined in (2.13) is repeated m times determined by

the number of classes of interest, where each class is represented by its mean pi, i =

1, . . . ,m. This process yields a set of m superposition bands, or sensing directions,

f1 = Fa1, · · · , fm = Fam, each one optimized with respect to the mean of each

class. If the feature-selection algorithm stops here and the so determined set of m
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superposition bands is used, it can be the case that these bands span a very small

subspace of the sensor space, because almost collinear patterns will determine almost

collinear directions.

The algorithm continues by selecting from this optimized set of superposition

bands the one that is the most “collinear” with its corresponding mean, i.e., the

superposition band that gives the minimum MSE for a particular class:

f̃
1

= argmin
f i;i=1,...,m

E
[∥∥pi − (pTi f i + nTai

)
f i
∥∥2
]

= argmax
f i;i=1,...,m

{((
pTi f i

)2

aTi ΣNai
− 1

)
aTi ΣNai

}
, (2.14)

where the last equality follows from Lemma 2. We term the superposition band f̃1

the first canonical band.

To ensure complete cover of the scene space within the filter space, the search for

the second canonical band f̃2 is conducted in the orthogonal complement of f̃1 and

it is with respect to the means of the remaining classes. More precisely, if f̃1 = f `1 ,

for some `1 ∈ {1, . . . ,m}, then the `1th class is excluded from the search for f̃2.

In general, if f̃ j is the jth optimal superposition band, then f̃ j+1 is selected by

searching in the orthogonal complement of f̃1, . . . , f̃ j and over all classes less the

`1, . . . , `jth classes, where `i is defined through f̃ i = f `i . We continue in this fashion

until we obtain a set of m canonical bands f̃1, . . . , f̃m. The process is illustrated in

Fig. 2.4 for a simple case of a sensor with two bands and a scene with two classes.

Note, that the canonical order of the superposition bands does not depend on the

presentation order of the classes of interest, because at the end of each optimization

cycle the algorithm always selects the pair that yields the smallest estimation error.

Each one of these canonical bands can be applied to the data to yield the so-called

CC features.
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Figure 2.4: Canonical correlation feature selection algorithm.

2.3.1 Implementation of the CCFS

Because the spectral bands fi, i = 1, . . . , k, are highly correlated, they provide a

numerically ill-conditioned basis set for F . Instead of solving (2.13) directly, we may

replace this problem by an equivalent problem for which the minimization is carried

out with respect to an orthonormal basis set for F . This replacement will also speed

up the numerical implementation of the optimization.

More precisely, let F = QR be the reduced QR factorization of the matrix F.

Then the minimization problem

argmin
a∈IRk,‖QRa‖=1

E

[∥∥pi − (pTi QRa + nTa)QRa
∥∥2
]

(2.15)

is equivalent to the problem in (2.13). Moreover, the optimization criterion in (2.15)
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can be recast in the equivalent form

argmin
b∈IRk,‖Qb‖=1

E
[∥∥pi − pTi QbQb− nTR−1bQb

∥∥2
]

(2.16)

= argmin
b∈IRk,‖Qb‖=1

[
1− (pTi Qb)2 + (R−1b)TΣNR−1b

]
,

where b = Ra is the set of weights for the ith class mean derived with respect to the

orthonormal basis set {qi}ki=1 for F , and qi is the ith column of Q. We recall that

the representation with respect to the original sensor space is f =
∑k

i=1 aifi = Fa,

where a = R−1b. Then,

q =
k∑
i=1

biqi = Qb = FR−1b = Fa .

Therefore, minimizing (2.16) with respect to b is equivalent to minimizing (2.15)

with respect to the coefficients a.

Let n1 = nR−1 where n is a random vector. The mean of the transformed random

vector can be calculated according to the formula

E[n1] = E[nR−1] = R−1E[n] = 0 . (2.17)

Likewise, using that

E
[
nTn

]
= ΣN = diag(σ2

i )

we easily find the following formula for the covariance of n1:

E
[
(n1)2

]
= E

[
(nR−1)2

]
= E

[
(R−1)TnTnR−1

]
= (R−1)TE

[
nTn

]
R−1= (R−1)TΣnR−1 .

In the sequel we use the notation

Σ1
N , (R−1)TΣnR−1 = E

[
(n1)2

]
. (2.18)
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Form the above discussion it follows that we have replaced the minimization with

respect to the ill-conditioned sensor basis in (2.13) by minimization with respect to

an orthonormal basis. In the new optimization problem the filter matrix F is replaced

by Q and the noise components n are replaced by their linear transformations n1, still

with zero mean. However, the transformed noise components are not independently

distributed anymore and their covariance matrix is given by (2.18).

Let us now discus in more details the jth step of the CCFS. We will use the

symbols aj, bj, Qj, Rj and fj to denote the quantities computed at the jth step of

the CCFS. The optimal direction at step j is given by

f̃
j

= Q̃
j
b̃
j
. (2.19)

To find the orthogonal complement of f̃
j

at step j + 1, we compute the QR factor-

ization of Fj+1, where

Fj+1 = [̃f
j|qj1| . . . |q

j
k−j] ⊂ span{ri}ki=1 . (2.20)

Then, Fj+1 = Qj+1Rj+1, where Qj+1 = [qj+1
1 |q

j+1
2 | . . . |q

j+1
k−j+1] and qj+1

1 =f̃
j
. There-

fore, the orthogonal complement of f̃
j

is given by

(qj+1
1 )⊥ = (̃f

j
)⊥ = Q̃

j+1
= [qj+1

2 | . . . |q
j+1
k−j+1] . (2.21)

It follows that at the j + 1-st step of the CCFS, we have to solve the minimization

problem

min
bj+1

E
[
‖ p− (〈p, Q̃j+1

b〉+ Nj+1)Q̃
j+1

b ‖2
]
, (2.22)

where nj+1 is the noise vector containing the noise components with respect to each

basis vector {qj+1
i }

k−j+1
i=1 . At the j + 1-st step, this vector is linearly transformed

according to

nj+1 = n1Xj+1 , (2.23)
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where Xj+1 = R1(−1)Q1T Q̃
j+1

= TQ̃
j+1

, and T , R1(−1)Q1T . The transformed

covariance is given by

E
[
(Nj+1)2

]
= E

[
(Q̃

j+1
)TQ1(R1)−TNTN(R1)−1 (Q1)T Q̃

j+1
]

(2.24)

= (Q̃
j+1

)TTΣNTT Q̃
j+1

. (2.25)

We can conclude that at each optimization step, the noise mean remains the same.

However, after the first optimization step, the covariance matrix is not diagonal

anymore, and the correlation among the noise components depends on the current

and the initial orthonormal bases for the sensor space.

Because the optimal directions have physical meaning only with respect to the

sensor bands, at each step the algorithm recalculates the weights (coefficients) of the

linear combinations with respect to these bands. We have already shown that at the

first step f̃
1

= Q1b1 = F1a1 where F1 , F, and a1 = (R1)−1b1. At each step, we

seek the coefficients of the representation in the form

f̃
j

= F1aj . (2.26)

Substituting (2.19) into (2.26) and using the decomposition F1 = Q1R1, equation

(2.26) can be rewritten as

Q̃
j
b̃
j

= Q1R1aj . (2.27)

Therefore the coefficients with respect to the original filter space at each step are:

aj = (R1)−1Q1T Q̃
j
b̃
j
. (2.28)

2.3.2 Summary of the CCFS

In this section we outline the key steps of the CCFS. The algorithm is implemented

in MatlabTM using the Optimization toolbox.
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1. Given a set {p1, . . . ,pm} of m classes of interest, estimate the mean of each

class.

2. Compute the QR factorization of the basis F for the filter space.

3. Solve the optimization problem in (2.11) for each class mean to find the optimal

superposition bands {f1, . . . , fm}.

4. From the set {f1, . . . , fm}, select the superposition band f̃
1
, which gives the

minimum MSE according to (2.14).

5. Using QR factorization find the orthogonal complement (̃f
1
)⊥ of the superpo-

sition band determined in Step 4.

6. Retain (̃f
1
)⊥ while discarding f̃

1
and the associated class from the pattern space.

7. Repeat Steps 3-6 until the pattern space P is empty.

2.4 Conclusions

We have developed a problem-specific feature-selection algorithm, termed CCFS,

that is appropriate for the general class of sensors whose bands are both noisy and

spectrally overlapping. Our approach is based upon statistical projection-like con-

cepts in Hilbert spaces in conjunction with canonical correlation analysis. For a

given class of patterns, the CCFS algorithm seeks for a set of weights that are used

to determine the optimal superposition band or sensing direction. The obtained sens-

ing direction is optimal in a sense that it provides the best MMSE estimate of the

mean of a class in the sensor space. In particular, the superposition band yields the

best sensing direction, taking into account both information content and noise. The

superposition-band selection procedure is repeated sequentially as many times as the

number of the classes of interest, producing a canonical set of superposition bands.
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At each stage, the algorithm excludes from the search for the optimal direction the

class that has been selected in the prior stage; moreover, every superposition band

is selected from a subspace of the sensor space that is in the orthogonal complement

of the previous sensing direction.
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Application of the CCFS to

Classification and Remote Sensing

Problems

In this Chapter we demonstrate the efficacy and the scope of the CCFS algorithm.

To this end, three different applications are considered. The first application is

separability and classification analysis of rock species using laboratory spectral data

and a quantum-dot infrared photodetector (QDIP). The QDIP belongs to the class

of bias tunable DWELL photodetectors. In this study the CCFS algorithm is applied

to the spectral responses of the QDIP and laboratory measured spectral rock data for

the purpose of separability and classification analysis of seven classes of rocks [56, 57].

The second application deals with supervised classification and spectral unmixing,

and abundance estimation of hyperspectral (HS) imagery obtained from the Airborne

Hyperspectral Imager (AHI) sensor.

Our third application also deals with rock-type classification; however, in this

case we apply the CCFS to real DWELL FPA imagery acquired at the CHTM.
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Our results demonstrate, for a first time, the MS capability of the DWELL FPA by

considering three different scene configurations. We conduct thorough analysis of

the separability and classification errors between granite, limestone and an optical

filter, as a function of the applied bias. Finally, the CCFS algorithm is applied to the

classification problem of discriminating between granite and hornfels. We compare

the CCFS classification results with classification results obtained using different

combinations of the original DWELL bands.

Results from the first and the third applications demonstrate that proper post-

processing can facilitate the emergence of bias tunable sensors, such as QDIP and

DWELLs, as a promising technology for midwave- and longwave-infrared remote

sensing and spectral imaging. Furthermore, our second study shows that the scope

of the CCFS also extends to more traditional sensors with fixed bands, such as AHI.

3.1 Rock-type classification using laboratory data

In the last few decades, the LWIR wavelengths have been used successfully to dis-

tinguish a number of primary silicates (feldspars, quartz, opaline silica) that are

spectrally bland or have features that are non-unique at shorter wavelengths [58].

Thus, the thermal-infrared (TIR) region of the spectrum is excellent for examining

pure samples as well as mineralogically complex geologic materials (i.e., rocks) and

is gaining popularity as a remote sensing wavelength range for geologic applications

[59], [60]. Our previous investigation of the rock-type classification problem, using

Multispectral Thermal Imager (MTI) that operates in the shortwave (SW), MWIR

and LWIR portions of the spectrum has shown that the MTI sensor in conjunction

with supervised Bayesian classifier offers high discrimination accuracy among the

different rock types; hence, MTI performance can serve as a good benchmark in this

case study [56]. (MTI was designed to be a satellite-based system for terrestrial
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observation with an emphasis on obtaining qualitative information of the surface

temperature [61]. Currently, MTI operates with set of 15 bands, covering the broad

range from 0.45 µm to 10.7 µm.)

3.1.1 Definition of training and testing sets

Generally, rocks can be divided into three main geological groups: igneous, metamor-

phic and sedimentary, which correspond to the different geological processes involved

in the rock’s formation. Geologists have further divided these three main rock cate-

gories into seven generic classes, which we have adopted in this study. To create the

training and testing data sets, we select a number of spectra of common rock sam-

ples in different grain sizes from the Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) hyperspectral database [62]. Table 3.1 describes

the rock classes and the endmembers included in the training set.

The limited number of endmembers, shown in Table 3.1, however, prevents di-

rect application of a Bayesian classifier. This fact forces us to increase the size of

the training set by perturbing the endmebers in each rock-class with different mixing

materials. To create the perturbations we use a simple, two-component linear mixing

model, where each mixture is considered as a linear combination of a representative

endmember and a mixing endmember, weighted by the correspondent abundance

function β. For the abundance function, we use five randomly chosen values of β

between 1% and 10% for the mixing endmembers, and (100−β)% for the representa-

tive endmembers. Using the above mixing model, we create spectral mixtures of the

representative endmembers with minerals, vegetation, soil and water [56]. We also

create mixtures between fine- and coarse-size rocks, and between coarse- and fine-size

rocks, according to their geological properties that make such mixtures realistic. All

mixing endmembers used to enlarge the training set are presented in Table 3.2.
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Group Endmembers

Hornfelsic hornfels (fine, coarse)

Granoblastic pink quartzite, marble (fine, coarse) and gray

quartzite (coarse)

Schistose gray slate, chlorite schistose (fine, coarse) and

chlorite

Semischistose felstic gneiss (fine, coarse)

Igneous andesite, basalt, diorite, gabbro, granite, rhyolite

(fine, coarse), tan rhyolite and tuff (cup 8, 9)

Clastic Sedimentary shale, siltstone, fossiliferous limestone and red

sandstone (fine, coarse)

Chemical Sedimentary limestone (fine, coarse) and dolomite

Table 3.1: Rock-type groups and their representative endmembers.

Minerals andradite, anorthite, dolomite, quartz and topaz

Rocks basaltic andesite, diorite gneiss, limestone and siltstone (fine

and coarse)

Water, Soil distilled water, see water, dark brown loam, fine sandy loam

and brown to dark brown sand

Vegetation conifer and grass (green), spruce cellulose, citrus pectin, white

peppermint, CA buckwheat, brown sycamore and brown leaf

(dry)

Table 3.2: Mixing endmembers used to create random perturbations of the represen-

tative endmembers listed in Table 3.1.
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Minerals andradite, antigorite, erionite, fluorite, quartz and spodumene

Rocks basalt, pink marble and black shale (fine and coarse)

Water, Soil see foam, grayish brown loam, dark grayish brown silty loam,

reddish fine sandy loam and dark reddish fine sandy loam

Vegetation deciduous (green), cotton cellulose, citrus pectin, sycamore-loer

(yellow), CA brown buckwheat and sycamore (dry)

Table 3.3: Mixing endmembers used to create random perturbations of the represen-

tative endmembers listed in Table 3.1 in order to create Test Set-1 and Test Set-2.

Figure 3.1 shows spectral signatures of the endmembers for the class hornfelsic,

fine and coarse size in thick black lines, as well as their mixtures with rocks, minerals,

soils and vegetation.

For our study we created two testing sets where the mixing endmembers used to

create these sets are shown in Table 3.3. In Set-1, the representative endmembers

in Table 3.1 were perturbed with rocks listed in Table 3.3. For the abundance

function, we use five randomly chosen values within the range 1% to 10%. Set-

2 is an enlargement of Set-1 with the addition of mixtures of the representative

endmembers, as shown in Table 3.1, with soils, minerals and vegetation listed in

Table 3.3.

The addition of all the mixtures helps to increase the rank of the covariance

matrix to 13 in the case of QDIP and 11 in the case of MTI, which still fails short

of full rank for 26-dimensional data in the case of QDIP and 13-dimensional data in

the case of MTI. To mitigate this problem, we select a subset of 13 arbitrary QDIP

bands. The performance of this subset is averaged over different arbitrarily selected

subsets of 13 bands. In the case of MTI, we were able to identify high correlation

for bands C and L with their adjacent spectral bands, so they were removed without
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Figure 3.1: Reflectivity of the hornfels showing fine (top group) and coarse size

(bottom group), as well as their perturbations.

loosing relevant information.

We employ a supervised Bayesian classifier with the assumptions for normal class

populations and equal priors [63]. The second assumption is reasonable as the train-

ing set was defined by geologists in accordance with the geological properties of the

rocks; thus, the number of samples in the training set for a certain group does not

represent the frequency of occurrence of the rocks in the nature. Instead, number of

samples per class reflects the rock diversity within a given class.
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3.1.2 Separability and classification results

To set a benchmark for the performance of the CCFS algorithm, we begin by present-

ing the separability and classification results in the ideal case when noise is absent,

and without using the CCFS algorithm.

Figure 3.2: Left: comparison in rock-type separation and classification in the absence

of noise. Right: Comparison in rock-type separation for CCFS, DCCFS, noise-

adjusted PP, 7 QDIP bands and 7 MTI bands in presence of noise with average SNR

values of 10, 20, 30 and 60dB.

We first compare separability and classification performance for QDIP and MTI

sensors. Four sets of separability and classification results are summarized in Fig. 3.2,

left and right respectivly. The first set corresponds to using 13 arbitrary bands out

of the 26 QDIP bands. The second set of results corresponds to using 11 out of the

15 MTI bands (bands A-E, G, I, O, J, K and M) [61]. The third set is based on
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Figure 3.3: Seven QDIP bands used in the rock-type classification.

a subset of 7 arbitrarily selected QDIP bands, shown in Fig. 3.3. The final, fourth

set of results is based on 7 MTI bands (bands G, I, O, J, K, M and N) selected to

approximate the spectral range of the QDIP bands. The results presented in Fig. 3.2

(left) suggest that the MTI and QDIP bands yield comparable performance in the

absence of noise.

3.1.3 Effect of noise

In this section we consider the presence of noise and compare the separability and

classification results for the CCFS algorithm with four different cases, each using 7

bands and for four different SNR values. The results are averaged over 100 indepen-
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Figure 3.4: Comparison in rock-type classification for CCFS, DCCFS, noise-adjusted

PP, QDIP bands and MTI bands in presence of noise with average SNR values of

10, 20, 30 and 60dB. Left: Test Set-1. Right: Test Set-2.

dent noise realizations for each SNR value. We define the SNR as

SNR =
1

MN

M∑
i=1

N∑
j=1

(fTi pj)
2

σ2
i

, (3.1)

where M and N respectively denote the number of sensor’s bands and the number

of the spectral patterns included in the training set. To achieve a particular SNR

value, we scale the noise mean and variance.

Throughout this section we assume that the bias-dependent noise components

Ni, where i is the band (or bias) index, are zero-mean normally distributed random

variables. This follows from the fact that amplitude distributions for both thermal

and shot noise converge to normal distributions by the central limit theorem. For the

large number of electrons generating the thermal noise, the amplitude distribution of

the thermal noise converges to zero-mean normal distribution. On the other hand,
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the actual numbers of generation-recombination events underlying the shot noise will

exhibit a Poisson distribution [47]. However, this number will become approximately

normally distributed for a large average number of generation-recombination events

[64]. Therefore, the amplitude distribution of the total noise will be also normal with

mean equal to the mean of the shot noise and a variance equal to the sum of the

variances of the two types of noise. Since the mean of the shot noise is deterministic

and known (being equal to the DC value of the measured dark current), it can be

subtracted from the noise without having any ramifications on the analysis or the

algorithm development.

For this case study, the number of selected superposition bands is determined

by the number of classes of interest - 7. The first case is termed deterministic

CCFS (DCCFS) and it employs the CCFS algorithm but without accounting for the

photocurrent noise during the selection process. In the second case, termed noise-

adjusted PP [42, 65], we use seven features extracted using the noise-adjusted PP

algorithm. Finally, the last two cases correspond to the classifiers used in Fig. 3.2

(left) applied to noisy data; these cases are termed QDIP-7 bands and MTI-7 bands.

Figures 3.2 (right) and 3.4, left and right, compare the separability and classifica-

tion performances respectively (for the training and testing sets) for the five cases

described above.

The first observation is that embedding the noise statistics in the canonical

feature-selection leads to a significant improvement in the classification. As we can

see from the results presented in Fig. 3.2 (right) and Fig. 3.4, for the first three SNR

cases (average SNR of 10dB, 20dB and 30dB), the CCFS algorithm performs almost

twice as good as the DCCFS algorithm. In the limiting case of a very high SNR,

the performance of the CCFS and DCCFS algorithms becomes almost identical, as

expected, and the classification error drops to 10-15%.

We next compare the CCFS algorithm with the arbitrary selection of 7 QDIP
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bands. For the average SNR of 10dB, as shown in Fig. 3.2 (right) the separability

error from the latter case is 63%, compared to 41% in the CCFS case. This result

underscores the higher sensitivity of QDIP bands to significant noise levels compared

to the canonical superposition bands. Notably, by using the CCFS algorithm we were

able to achieve a significant improvement in the classification performance (approx-

imately 20%). As expected, when the average SNR increases, the performances of

the two cases become comparable.

The separability and classification results also indicate that the CCFS approach

offers classification capabilities comparable to those offered by the MTI bands when

high levels of noise are present. When the SNR increases to 30dB, as shown in

Fig. 3.4, the classification results corresponding to the MTI bands almost reach the

noiseless case classification error, as shown in Fig. 3.2 (left); however, this trend is

much slower in the case of CCFS. The results suggest that the bands designed via

the CCFS approach are still more susceptible to noise, compared to the MTI bands.

Such a conclusion should not be surprising in view of the fact that the MTI sensor

contains well-separated spectral bands with almost non-overlapping finite supports

and distinct spectral characteristics. As a result, even for high noise levels, the

photocurrents obtained with MTI bands are often well separated.

3.1.4 Comparison with the projection-pursuit approach

We now turn attention to a comparison between the CCFS algorithm and the noise-

adjusted version of the PP feature-selection algorithm [16, 48, 66]. In this study we

adopt the state-of-the art fast ICA for the implementation of the PP algorithm and

its noise-adjusted version [49, 65], which are used as a benchmark.

For low average SNR of 10dB, the separability and classification accuracy achieved

with the CCFS algorithm is approximately 10% better than the one obtained with the
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noise-adjusted PP. As the SNR increases, the performance of the two algorithms be-

comes very similar, yielding almost identical separability and classification accuracy

in the cases of the average SNR of 20dB and 30dB, as shown in Fig. 3.2 (right) and

Fig. 3.4. However, Fig. 3.2 (right) and Fig. 3.4 show that when the SNR reaches ex-

tremely high values, the CCFS algorithm once again outperforms the noise-adjusted

PP approach, yielding a 10% classification error compared to the 20% error by the

noise-adjusted PP for the training set and testing Set-1.

3.1.5 Conclusions

The CCFS algorithm was applied to a QDIP LWIR sensor as a realistic representative

of the class of sensors with highly overlapping and noisy bands. As demonstrated

by the separability and classification results, in the presence of noise, the CCFS

algorithm can effectively reduce the sensor-space dimensionality while maintaining

good separability and classification results. The CCFS algorithm outperforms the

noise-adjusted PP technique in the cases of low and high SNR. The CCFS algorithm

promises robustness to the photocurrent noise by yielding sensing directions with

maximal information content and minimized cumulative noise associated with each

direction.

3.2 Spectral unmixing and abundance estimation

using AHI hyperspectral imagery

Our second case study concerns application of the CCFS to AHI imagery for two

classes of problems. In the first problem we investigate the application of the CCFS

for supervised Bayesian classification of three spectral classes from the image shown

in Fig. 3.5. The second problem uses the CCFS in the context of spectral unmixing
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and abundance estimation for three endmembers from the image shown in Fig. 3.6.

AHI is an LWIR pushbroom hyperspectral imager with a 256-by-256 element

Rockwell TCM2250 HgCdTe FPA mechanically cooled to 56K [6]. The AHI sensor

contains 256 spectral bands in the range 7–11.5 µm, with 0.1 µm spectral resolu-

tion for each spectral band. Further details on the AHI system and related data

acquisition and calibration issues can be found in [6].

The AHI scene used in the first problem is shown in Fig. 3.5 for λ = 10.0967

µm, and consists of classes of objects such as roads (R), vegetation (V) and build-

ing (B) roofs. The size of this AHI image is 4451 by 256 pixels with 256 spectral

bands. To perform supervised classification, we select by visual examination three

representative areas for each one of the three classes of interest and use spectral

signatures corresponding to these areas as training sets for the classifier. We create

the test sets by selecting three areas that represent different spatial locations of the

same image but correspond visually to the same classes. The training and testing

sets contain 1250 pixels each, 450 pixels per class. The three sections of the scene,

shown in Fig. 3.5 for λ = 10.0967 µm, represent the three classes of interest; these

approximate regions are used to extract the training (left) and testing (right) sets.

After the training and testing spectral sets are determined, we apply Bayesian

classification, in conjunction with the CCFS, to both sets and calculate separability

and classification errors for different SNR cases. AHI spectral bands are approxi-

mated uniformly by triangular pulses with peaks at the central frequencies and base

widths of 0.1 µm. Similarly to the rock-type classification problem described earlier,

we consider four average SNRs in the range 10 to 60dB. For each SNR we determine

sets of three superposition bands and then apply them to the spectral content of

each pixel in the training and testing regions as shown in Fig. 3.5.

We also examined the application of the CCFS to the spectral unmixing and
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Figure 3.5: Training (left) and testing (right) areas selected from AHI test-flight im-

age of an urban area at 10.0967 µm. The rectangular boxes indicate the approximate

areas used to select the training and testing sets for the endmembers.

abundance estimation problem of AHI imagery. The scene used in this study is a

different AHI test-flight image, sections of which are shown in Fig. 3.6. The scene

represents a snapshot of an urban area at λ = 7.8267 µm and contains different

classes of objects such as buildings, roads, vegetation, parking lots and cars.

Spectral unmixing consists of three main stages: feature-extraction, endmembers

determination followed by unmixing and fractional abundance estimation. Unmix-

ing methods can generally be classified by the endmember determination process

as automatic and interactive; the automatic methods estimate the number of the

endmembers, their spectral signatures and abundance patterns using only the mixed

data, the mixing model with no a priori information about the ground materials and

any human intervention [67, 68, 69]. In interactive unmixing, an analyst or expert
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Figure 3.6: Segments of AHI test-flight image of an urban area at 7.8267 µm.

chooses the “pure pixels” from the image or the endmember spectra from spectral

library and then estimates the fractional abundance patterns of the component ma-

terials in the image. For this study we use the interactive method, while following

the three stages described above.

First, by means of visual inspection, three main endmember categories, i.e.,

building-roof (B), roads (R) and vegetation-ground (V) are identified in the scene

areas captured in the image in Fig. 3.6. The representative spectral signatures are

determined by calculating the mean of each region corresponding to the designated
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Figure 3.7: Left to right: abundance estimation maps for endmebers building, veg-

etation and road, respectively, using three uniformly spaced AHI spectral bands in

the range 7.7 to 8.6 µm.

endmember category. Endmembers determination is followed by spectral feature-

extraction where the CCFS is applied to determine the three most informative di-

rections in the AHI spectral space with respect to the three endmembers and in

the presence of noise. The extraction of the three superposition features, one for

each endmember, follows the same approach as done in the supervised classification

problem described earlier.

3.2.1 Abundance estimation

The last step is to estimate the abundance fraction of each endmember in every

pixel from the tested area. Assuming a linear mixing model, the fractions of the
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endmembers can be determined by solving the problem of minimizing

e =‖ x− Sb ‖2,

where S is the 3× 3 matrix resulting from the application of the CCFS algorithm to

the data. The 3 columns of S correspond to the 3 endmembers and the 3 rows are

the superposition features. The vector x represents the mixed spectrum and b is the

3 × 1 fractional abundance vector. Considering the physical meaning of the mixing

model, the elements of the abundance vector b can be subject to two constrains:

3∑
i=1

bi = 1 and bi ≥ 0, i = 1, 2, 3.

3.2.2 Results and discussion

To set a benchmark for the performance of the CCFS algorithm in the supervised

classification and abundance estimation problems, we first discuss the results in the

absence of noise. Bayesian classification results for the three classes of interests

(roof, road and vegetation,) for five randomly selected subsets of the AHI spectral

bands, show perfect separability and classification. As for the problem of spectral

unmixing and abundance estimation, Fig. 3.7 presents the abundance maps of the

three endmembers (B, V and R) when using three uniformly separated AHI spectral

bands in the range 7.7 to 8.6 µm. The size of the subimage used here is 500 by

256 pixels. It is seen from Fig. 3.7 that each map is able to correctly estimate the

fraction of abundance of the corresponding endmember.

Next, we consider the effect of noise and compare the performance of the CCFS

algorithm, in supervised classification and spectral unmixing, to that obtained using

the noise-adjusted PP. As in the rock-type classification example, 4 different SNR

values are considered in the range 10 to 60dB. The search for the three optimal direc-

tions for both the CCFS and the noise-adjusted PP is performed over two different
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Figure 3.8: Separability (left) and classification (right) results for two subsets of AHI

bands and when the CCFS and the noise-adjusted PP are used.

subsets of the AHI bands. The first subset consists of 40 consecutive AHI bands

in the range 7.7 µm to 8.6 µm, and the second set consists of 21 uniformly spaced

bands in the range 7.7 µm to 11.2 µm.

The separability and classification results for supervised classification of road,

roof and vegetation classes, averaged over 50 noise realizations, are presented in

Fig. 3.8 for both the CCFS and the noise-adjusted PP algorithms. The performance

of the CCFS in this application is consistent with that corresponding to the rock-

type classification problem, and it demonstrates good classification in modest SNR

scenarios of 10–30dB. Feature-selection from 21 uniformly spaced AHI bands (for

both CCFS and noise-adjusted PP) gives better separability and classification than

feature-selection from 40 consecutive AHI bands. This results can be explained by the

fact that the 40 consecutive AHI bands exhibit higher spectral correlation compared

to the 21 uniformly separated bands, and thus, they are potentially more sensitive
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to the presence of noise. The noise-adjusted PP shows comparable performance to

the CCFS algorithm; however, as in the rock-type classification problem, the CCFS

gives improved separability and classification compared to the noise-adjusted PP for

the lowest (10dB) and highest (60dB) SNR cases.

We note that for the applications in our study we have observed a very high

sensitivity of the performance of the fast ICA implementation of the PP to the initial

guess for the projection matrix. In some cases, the classification and separability

errors were low; however, in other cases they were much higher than the averaged

errors presented in the tables. One possible explanation is that the initialization of

the projection matrix by random numbers may not necessarily yield a good initial

guess for the hyperspectral data involved.

Figure 3.9 (a-c) shows three groups of fractional abundance maps, for SNR values

of 20, 30 and 60dB, respectively, and when the CCFS is applied to 50 consecutive

AHI bands in the range 7.7 to 8.6 µm. The corresponding results for the noise-

adjusted PP algorithm are shown in Figs. 3.10 (a-b). The size of the subimage used

for this problem is 250 by 256 pixels and it represents a subsection of the image

shown in Fig. 3.7.

It is seen that the CCFS algorithm shows once again good performance. The

CCFS and the noise-adjusted PP perform similarly for the SNR value of 10dB (results

not shown). Figures 3.9 (a) and 3.10 (a) compare the abundance maps created

using the three CCFS features and the three noise-adjusted PP features, respectively,

for the SNR value of 20dB. The maps show improved performance of the CCFS

compared to the noise-adjusted PP, which is not able to clearly discriminate between

the endmembers of V and R in this SNR case. As expected, the results improve for

both CCFS and noise-adjusted PP as the SNR is increased, as shown in Figs. 3.9 (b)

and 3.10 (b).
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(a)

(b)

(c)

Figure 3.9: Abundance estimation maps for B, V and R endmembers (left to right)

using three superposition features selected by the CCFS algorithm from a subset of

50 bands in the range 7.7 µm to 8.6 µm, and for SNR levels of (a) 20dB; (b) 30dB;

(c) 60dB.

For the high SNR case of 60dB, we compare the performance of the CCFS de-

scribed by the abundance maps in Fig. 3.9 (c) to the AHI image in Fig. 3.6 and to

the abundance maps shown in Fig. 3.7, representing the noiseless case when three

58



Chapter 3. Application of the CCFS to Classification and Remote SensingProblems

(a)

(b)

Figure 3.10: Abundance estimation maps for building, vegetation and road endmem-

bers (left to right) using three superposition features selected by the noise-adjusted

PP from a subset of 50 bands in the range 7.7 µm to 8.6 µm, and for SNR level of

(a) 20dB and (b) 30dB.

AHI bands are used. The results show that at high SNR values, the performance of

the CCFS algorithm approaches the noiseless limit.

3.2.3 Conclusions

The following conclusions can be drawn from the examples presented in this section.

Our results indicate that the CCFS algorithm offers a noticeable improvement over

the noise-adjusted PP algorithm in the cases of low and high SNR. Of course, these

improvements come at a price of using numerical optimization procedures to com-
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pute the CCFS weights, which is the most expensive step in the CCFS algorithm.

However, the cost of the optimization step can be significantly reduced by a judicious

choice of the initial guess for the CCFS weights. Our implementation takes advan-

tage of the fact, that in the absence of noise, the optimization algorithm essentially

computes the standard orthogonal projection; we therefore choose the coefficients of

this projection as an initial guess for the optimization algorithm. In our calculations

we have observed that this choice of the initial guess results in substantial reduction

in the number of optimization steps needed for convergence.

3.3 Rock-type classification using DWELL FPA

imagery

This section presents our third case study. In this study we demonstrate, for a first

time, a MS classification capability of a DWELL FPA. To this end, we image a

given scene repeatedly using a sequence of bias voltages in the tuning range of the

FPA. Then we apply several classification and feature-selection techniques to the

totality of readouts, over multiple biases, for each pixel to identify the “class” of

the material captured by that pixel. The MS capability is demonstrated for two

classification problems: separation among different combinations of three IR filters

and discrimination between rocks. Classification is performed using Euclidean- and

Mahalanobis-distance classifiers in conjunction with the CCFS algorithm.

The DWELL FPA used in our study is a 320 by 256 detector array, developed and

fabricated at CHTM. For details about the fabrication process we refer the readers

to [70, 71]. Figure 3.11 shows a representative cartoon of the DWELL FPA.

The DWELL FPA responses have been characterized in [70] by using CamIRa
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Figure 3.11: An illustration of IR FPA with uniform pixels.

demonstration system1. The tuning range of the DWELL FPA is between 0.3 to 1.2

V with an optimal operating temperature2 of 30 K. The image acquisition laboratory

setup at the CHTM used for this study is shown in Fig. 3.12.

3.3.1 Bias tunability of the DWELL FPA

Three different scenes, shown in Fig. 3.13 (a-c), are used to demonstrate the DWELL

FPA bias tunability. The first scene, shown in Fig. 3.13 (a), consists of two optical

filters with passbands at 4-5 µm and 8.5 µm, termed MW2 and LW3, respectively,

and a background consisting of a blackbody source. The filters are manufactured by

Northumbria Optical Coatings Ltd. The blackbody is manufactured by MIKRON

1Manufactured by SE-IR Corporation, 87A Santa Felicia Drive, Goleta, CA 93117, USA.
2Recently, an optimized DWELL FPA was reported in [70] demonstrating an increase in

the operating temperature up to 80 K. The higher operating temperature has been achieved

by a strain reduction and an increased number of stacks in the active region improving the

responsivity and the absorption quantum efficiency.
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Figure 3.12: An illustration of the laboratory setup at the CHTM for image acqui-

sition with the DWELL FPA. Diagram is curtesy of Woo-Yong Jang.

company (model M315) and provids a temperature between ambient 5oC and 350oC,

a control to within 0.2oC, and an emissivity of +0.99.

The scene in Fig. 3.13 (b) includes granite (G), limestone (L) and the MW2 fil-

ter. The scene in Fig. 3.13 (c) includes granite and hornfels (H). All images shown

in Fig. 3.13 (a-c) are taken at 0.6 V. The left column of images in Fig. 3.13 (a-c)

corresponds to raw data. Normalized images at 0.6 V are shown on the right column

in Fig. 3.13, (a-c). The DWELL FPA data is normalized at each pixel by the approx-

imate area of the multi-bias pixel response prior to the spectral ratio calculations

in order to eliminate the intensity effect. More details about the normalization are

given in the sequel.

Figure 3.14 and Fig. 3.15, left and right, show plots of the spectral ratios for pairs

of sensed materials as a function of the applied bias. Figure 3.14 shows the spectral
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(a)

(b)

(c)

Figure 3.13: DWELL FPA images, at 0.6 V. Left column shows raw imagery and

right column shows normalized imagery; (a) filters MW2 (left) and LW3 (right); (b)

MW2 (top), limestone (left), granite (right); (c) granite (left), hornfels (right).

ratios calculated for pairs of materials from the scene in Fig. 3.13 (a). The spectral

ratios vary between 0.4 to almost 1.4 when the applied bias changes in the range

from 0.3 V to 1.2 V with a step of 0.1 V. The fact that the ratio values change from

one bias to another indicates the DWELL FPA can sense different spectral contents

of the targets observed in a scene simply by changing the applied bias.

The widest spectral ratio range is observed between the filter LW3 and the back-

ground and the narrowest range is observed between the filter LW3 and the metal

holder. These results are not surprising since the filter LW3 shown in Fig. 3.16 (a)
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Figure 3.14: Ratios of pixel values for various pairs of the objects MW2, LW3, metal

holder and the background, as a function of the DWELL FPA bias.

has a passband that is far away from the peak response of the DWELL FPA, and

thus, it transmits a very small portion of the background. On the other hand, the

metal holder is a solid object that does not transmit light and its spectral response

is expected to be quite similar to that of the LW3 filter response.

Figure 3.15, left, shows the pairwise spectral ratio plots between the granite,

limestone, and the background. Figure 3.15, right, shows the pairwise spectral ratio

plots between the granite, hornfels, and the background. As observed from the plots,

the ratios between granite and limestone, and between granite and hornfels do not

exhibit wide range as, for example, the granite-background ratio or the limestone-

background ratio. Note in Fig. 3.16, right, that all three rock types have similar
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Figure 3.15: Left: ratio of pixel values for the pairs granite-limestone, granite-

background and limestone-background, as a function of the applied DWELL FPA

bias. Right: ratio of pixel values for the pairs granite-hornfels, granite-background

and hornfels-background, as a function of the DWELL FPA bias.

spectra in the 4-8 µm range. The spectral ratios between the granite-limestone and

granite-hornfels however, show some variations with respect to the applied bias. The

classification results presented bellow also demonstrate that the spectral contrast

captured by the bias-tunable DWELL FPA is sufficient to discriminate between the

rocks.

3.3.2 Classification problems

The first classification problem considered in this section is that of separating between

MW2 and LW3 spectral filters and the metal holder. For this problem we consider the

scenes shown in Fig. 3.13 (a). The second classification problem is to discriminate

between pairs of rocks drawn from the set of the three distinct rock types: granite,

hornfels and limestone. The scene configurations for this problem are shown in
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Figure 3.16: Left: normalized spectral responses of a single-pixel DWELL at a bias

range of 0.3 V to 1.2 V, and the normalized spectra of the three filters: MW1, MW2

and LW3. Right: normalized spectral responses of a single-pixel DWELL at a bias

range of 0.3 V to 1.2 V, and the normalized spectra of the three rocks: granite,

hornfels and limestone.

Filter classification Identified classes

Scene (a) MW2 and LW3 filters, metal and background

Rock classification Identified classes

Scene (b) MW2 filter, limestone, granite and background

Scene (c) granite, hornfels and background

Table 3.4: Summary of identified classes for the filter and rock classification problems.

Fig. 3.13 (b-c) . The classes identified for both classification problems are summarized

in Table 3.4.

Two types of normalization techniques are applied to the raw digital numbers

(DNs) that are retrieved directly as an output of the DWELL FPA. First, as an

integrated part of the image acquisition process, at each bias voltage, pixel’s DN
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values are radiometrically corrected by a two-point nonuniformity correction (NUC)

algorithm to compensate for the spatially nonuniform response of the detectors within

the FPA [72]. The two-point nonuniformity correction is performed using blackbody

temperatures at 22o C and 150o C.

Next, for every radiometrically corrected pixel and its replicas at each bias volt-

age, the pixel’s value is normalized as follows:

Ij =
Ij

∆v
n∑
i=1

Ii

. (3.2)

This is equivalent to normalization by the area enclosed under the multi-bias re-

sponse of each pixel in the DWELL FPA. The normalized multi-bias response of a

pixel can then be written as:

I = (I1, . . . , In). (3.3)

This normalization minimizes the role of broadband emissivity in the discrimination

process and emphasizes the spectral contrast. The normalized images at 0.6 V for

both classification problems are shown on the right columns in Fig. 3.13, (a-c).

For both classification problems we perform a supervised classification comprising

of training and testing steps. To determine representative multi-bias signatures for

each class listed in Table 3.4 we follow the same approach as used in [12]. Specifically,

for each class we compute statistical means and covariance matrices using spatially

uniform regions that are visually associated with that class. Subsequently, Euclidean-

and Mahalanobis-distance classifiers are trained by the classes’ mean multi-bias sig-

natures and the covariance matrices.

At the testing step, the trained classifiers are used to classify the objects in

Table 3.4 from a set of testing scenes. These scenes capture the same images as

the training scenes but were acquired at different times. As a result, the testing
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Number of pixels Number of pixels

(training set) (testing set)

Scene (a) MW2: 154, LW3: 108, metal: 126 MW2: 330, LW3 : 320, metal: 260

Scene (b) G: 340, L: 360, MW2: 360 G: 420, L: 450, MW2: 300

Scene (c) G: 224, H: 308 G: 525, H: 870

Table 3.5: The number of pixels in the training and testing data sets for the filter

and rock classification problems.

scenes carry inherent variability in the data due to the difference in the measurement

conditions from day-to-day and the presence of ambient and system noise. The

testing images are normalized in the same fashion as the training images. The size

of training and testing data sets for the filter and rock classification problems are

listed in Table 3.5.

3.3.3 MS classification results

The thematic maps for the filter and rock classification problems using Euclidean-

distance classifier are presented in Figures 3.17–3.20. These maps show the distri-

bution of the derived classes over the spatial area captured by the DWELL FPA.

Each map defines a partitioning of the area into sets, each including the points with

identical class labels. In order to investigate the effect of the bias selection on the

classification accuracy, the classification is performed for multiple combinations of

biases.

The thematic maps for the filter classification problem, specified in Table 3.4,

are shown in Fig. 3.17. The calculated average classification errors per class are

summarized in Table 3.6. The results in Fig. 3.17 are obtained using four different
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Figure 3.17: Thematic maps for the filter classification problem: left to right: (i) one

bias at 0.3 V; (ii) one bias at 0.7 V; (iii) two biases at 0.6 V and 0.7 V; (iv) all ten

biases in the range of 0.3 V to 1.2 V, step 0.1 V.

sets of bias voltages, shown from left to right as follows: (i) one bias at 0.3 V; (ii)

one bias at 0.7 V; (iii) two biases at 0.6 V and 0.7 V; (iv) all ten biases in the range

of 0.3 V to 1.2 V.

For the first bias voltage set the Euclidean-distance classifier consistently shows

good classification. In contrast, for the second bias voltage set the Euclidean-distance

Bias (V) MW2 LW3 Metal

Error [%] Error [%] Error [%]

0.3 0 0 5

0.7 18 58 46

0.6, 0.7 3 9 7

0.3 – 1.2 0 0 5

Table 3.6: Classification errors for the filter classification problem using the

Euclidean-distance classifier. The errors are calculated for the number of pixels

defined in Table 3.5, testing sets.
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Figure 3.18: Thematic maps for the MW2-G-L classification problem: (i) one bias

at 0.4 V; (ii) one bias at 0.7 V; (iii) two biases at 0.3 and 0.4 V; (iv) all ten biases

in the range of 0.3 V to 1.2 V, step 0.1 V.

classifier cannot discriminate successfully between the filters, metal holders and back-

ground, as shown by thematic map (ii) in Fig. 3.17. This result indicates that the

bias voltage at 0.7 V is not a good choice for this scene. However, adding a sec-

ond bias voltage at 0.6 V to the second set (resulting in our third bias voltage set)

improves the classification, as shown by thematic map (iii) in Fig. 3.17. Finally,

Bias (V) MW2 Limestone Granite

Error [%] Error [%] Error [%]

0.4 2.076 29.81 1.91

0.7 62.62 47.26 17.94

0.3, 0.4 0.34 12.77 3.82

0.3 – 1.2 0.34 17.84 1.43

Table 3.7: Classification errors for the MW2-G-L classification problem using the

Euclidean-distance classifier. The errors are calculated for the number of pixels

defined in Table 3.5, testing sets.
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Figure 3.19: Thematic maps for the granite-hornfels classification problem: (i) one

bias at 0.3 V; (ii) two biases at 0.6 V and 0.7 V; (iii) one bias at 1.2 V; (iv) all ten

biases in the range of 0.3 V to 1.2 V, step 0.1 V.

thematic map (iv) in Fig. 3.17 indicates almost perfect classification results for the

fourth set of bias voltages, i.e., when all ten biases are used.

Thematic maps and classification errors for the rock classification problems are

shown in Figures 3.18–3.19, and Tables 3.7–3.8, respectively. For the G-L-MW2

Bias (V) Granite Hornfels

Error [%] Error [%]

0.3 55 46

1.1 0 20

0.6, 0.7 5 27

0.3 – 1.2 1 17

CCFS-2 features 1 16

Table 3.8: Classification errors for the granite-hornfels classification problem using

the Euclidean-distance classifier. The errors are calculated for the number of pixels

defined in Table 3.5, testing sets.
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Figure 3.20: The leftmost plot shows the normalized image of granite (left) and

hornfels (right) at 0.6 V. Middle: thematic maps for granite-hornfels classification

problem when all biases in the range of 0.3 to 1.2 V, with step 0.1 V, are used. Right:

thematic maps for granite-hornfels classification problem when two superposition

bands obtained by the CCFS are used.

classification problem we use four different sets of bias voltages defined as follows:

(i) one bias at 0.4 V; (ii) one bias at 0.7 V; (iii) two biases at 0.3 and 0.4 V; and (iv)

all ten biases in the range of 0.3 V to 1.2 V. The first and the second thematic maps

in Fig. 3.18 show that the first bias voltage set gives more accurate results than the

second one, i.e., bias at 0.4 V is more effective for this scene content than the bias

at 0.7 V. Using the third bias-voltage set, which combines two biases at 0.3 V and

0.4 V, improves the classification accuracy compared to the first two cases (the third

thematic map in Fig. 3.18.) Moreover, from the fourth thematic map in Fig. 3.18

we see that the third bias set gives results comparable to those using the fourth bias

set, i.e., when all ten DWELL FPA bands are used.

The thematic maps between granite and hornfels are presented in Fig. 3.19. The

four different bias voltage sets used for this classification problem are as follows: (i)

one bias at 0.3 V; (ii) two biases at 0.6 V and 0.7 V; (iii) one bias at 1.2 V; and (iv)

all ten biases in the range of 0.3 V to 1.2 V. In contrast to the filter classification

problem, where the bias at 0.3 V led to almost perfect classification results, we see
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that in the present setting the same bias voltage results in significant classification

errors between the two rocks. Nonetheless, the third thematic map in Fig. 3.20 shows

that accurate classification for the G-H classification problem by a single bias voltage

is still possible, but for a different value at 1.2 V. Interestingly enough, when using

the second set of bias voltages (0.6 V and 0.7 V) we obtain classification results whose

accuracy falls between the two previous cases: it is better than that with 0.3 V but

worse than the accuracy achieved with 1.2 V. As expected, the fourth bias voltage

set, i.e., all ten DWELL FPA bands yields almost perfect classification results.

To summarize, our results for the filters, G-L-MW2 and G-H classification prob-

lems demonstrate that accurate classification can be achieved by either considering a

broader range of spectral information, namely by using all bias voltages, or by using

specific biases, or combination thereof. However, as our results show, the optimal

sub-selection of the bias range depends on the specific classification problem. Our

next results show that this ambiguity can be reduced by using the CCFS algorithm to

select optimal subsets of bands for the granite-hornfels (G-H) classification problem.

We perform classification for this problem using two superposition CCFS bands

in conjunction with the Euclidean-distance classifier. The first superposition band

is optimized with respect to granite and the second is optimized with respect to

hornfels. The corresponding thematic map is shown in Fig. 3.20, right. Comparison

between the two thematic maps in Fig. 3.20, middle and right, shows that the two

bands selected by the CCFS perform almost the same as when all ten bands are used.

Moreover, the classification errors presented in Table 3.8 indicate that in general, the

two superposition bands give better accuracy than that obtained from two randomly

selected bands, for example the combination of 0.6 and 0.7 V.

In the next section we examine how the between-class separability and the clas-

sification accuracy depend on the selection of the bias voltages. For this study we

use the G-L-MW2 classification problem.
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3.3.4 Separability analysis and bias selection

The idea of using a measure of between-class separability to select spectral bands

or features has been widely used in machine learning and computer vision. Let

µG = (µG(v1), . . . , µG(vm)) and µL = (µL(v1), . . . , µL(vm)) denote the means of class

granite and limestone, respectively, for given biases v1, . . . , vm.

We define the normalized separability between the two rock types at bias voltage

vi as follows:

Svi =
|µG(vi)− µL(vi)|
‖µG − µL‖2

, (3.4)

where |µG(vi)− µL(vi)| is the distance between the means of the classes granite and

limestone, respectively, when only bias voltage vi is applied, and ‖µG−µL‖2 denotes

the Euclidean-distance between the (vector) mean of classes granite and limestone

when all biases are used. The normalized separability metric provides information

about the contribution of the individual biases to the overall separability achieved

when all bias voltages are used.

For bias voltages in the range of 0.3 to 0.5 V the normalized separability between

the granite and limestone is in the range of 40−50%, as shown in Fig. 3.21 (a). This

means that bands at 0.3, 0.4 or 0.5 V contribute almost half of the total separability

between the two rocks. However, at 0.6 V the normalized separability drops to

approximately 16%. In the range of 0.9 V to 1.1 V the individual band’s contributions

are all bellow 20%. Figure 3.21 (b) shows the average classification error between

granite, limestone and the MW2 from the scene in Fig. 3.13 (b), as a function of the

applied bias. The average classification error is calculated by averaging the number

of misclassified pixels for the classes of interest over the number of tested pixels per

class and over the number of classes.

Comparison between the results presented in Fig. 3.21 (a) and (b) demonstrates

that in general bias voltages that exhibit higher contribution to the overall separa-
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bility lead to lower classification error. For example, in the range of 0.3 to 0.5 V, for

all bands that are characterized by high granite-limestone separability, the averaged

classification error is between 5 to 12%. The bias at 0.7 V, characterized by lower

contribution to the overall separability, leads to highest classification error of 42%.

For the range of 0.9 V to 1.2 V, where the bands exhibit relatively low contribution

to the overall separability, the classification error varies between 10 to 15%.

Figure 3.22 (a) shows the progression in the normalized separability between

granite and limestone as bias voltages are added one by one in an increasing order.

In reference to the normalized separability calculated as described by (3.4), let

V = {v1, . . . , vn}

denote the set of all bias voltages and

α = i1, i2, . . . , ik , 1 < k ≤ 10

be a multi-index where 1 ≤ im ≤ n. We define the subset Vα of V as follows:

Vα = {vi1 , . . . , vik} .

The progression of the normalized separability as a function of the number of bias

voltages can now be re-cast in the following form:

SVα =
‖µG(Vα)− µL(Vα)‖2

‖µG − µL‖2

. (3.5)

We observe that the addition of the bias at 0.4 V to the bias at 0.3 V increases

the contribution to the total separability (when all biases are used) from 50% to

70%. Furthermore, the addition of the bias at 0.5 V increases the contribution up to

80%. However, note that sequential addition of the biases in the range of 0.6 V to 1.2

V increases the contribution to the total separability only by 20%. This observation

is consistent with the results shown in Fig. 3.21 (a). Similarly, Fig. 3.22 (b) shows
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the progression of the average classification error for granite, limestone and MW2 for

two classifiers (based upon the Euclidean and Mahalanobis distances) as a function

of the number of applied biases.

Two cases are considered. In the first case, the bands are added in sequential

order from low bias to high bias, one at a time. As expected, the highest error (20%)

is achieved when bias 0.3 and bias 0.4 V are used and the lowest error is achieved

when all biases are used. Note that for all bands used, the Mahalanobis-distance

classifier gives lower error than the Euclidean-distance classifier. In the second case,

the biases are added sequentially in descending order, one at a time. As in the first

case, the highest error is achieved when two bias voltages are used (1.2 V and 1.1 V,

respectively) and the lowest error is achieved again when all biases are used.

Notably, the error magnitude depends on the order in which the biases are added.

Clearly, two DWELL biases at 1.2 V and 1.1 V lead to more than twice the increase

in the classification error (∼ 50%) compared to biases at 0.3 V and 0.4 V (18%).

The trend is similar up to 5-6 biases used for classification. These results again

are consistent with the results presented in Fig. 3.21 (a) and (b) showing that bands

corresponding to the bias voltage in the range of 0.3 to 0.5 V give better performance

in terms of separability and accuracy of the classification between the three objects:

granite, limestone and the filter.

Table 3.9 presents the results of an exhaustive search for optimal bias and for the

optimal combinations of biases, in the range of two to ten, as a function of minimizing

the average error between granite, limestone and the MW2 filter for the Mahalanobis-

distance classifier. The overall trend in the results presented in Table 3.9 demon-

strates that, as the number of biases included in the optimal combination increases,

the classification error decreases. For example, the optimal combination of two bias

voltages gives a classification error of approximately 6%, while using all biases leads

to an error of less than 1%. Note however, that optimal combination of five and
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Mahalanobis distance Biases

Error [%] (V)

5.83 0.3, 1.2

1.16 0.8, 0.9, 1.2

0.36 0.6, 0.8, 0.9 1.2

0 0.3, 0.6, 0.8, 0.9, 1.2

0 0.3, 0.6, 0.7, 0.8, 0.9, 1.2

0.08 0.3, 0.6, 0.7, 0.8, 0.9,1.1, 1.2

0.12 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.1, 1.2

0.35 0.3, 0.5, 0.6, 0.7, 0.8, 0.9,1.0, 1.1, 1.2

0.34 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2

Table 3.9: Combinations of biases that minimize the error in the Mahalanobis-

distance classifier for the MW2-G-L classification problem.

six biases gives almost the same classification error as the case when all biases are

used, thus optimized subsets of five or six biases are sufficient to achieve perfect

classification for this problem.

3.3.5 Conclusions

In this section we have demonstrated for the first time the MS-based classification of

the DWELL FPA by exploiting the DWELL’s bias tunability along with traditional

and customized algorithms. The DWELL FPA performance has been validated using

two classification problems: (1) separation between three IR spectral filters and

(2) discrimination among two pairs of rocks and a filter. The second classification

problem is more challenging than the first one as the rocks exhibit lower overall
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spectral contrast within the tuning range of the DWELL FPA.

Our verification studies with the DWELL FPA imagery allow us to draw several

conclusions. First, the studies show that, as a result of its bias tunability, the DWELL

FPA can successfully capture spectral contrast between different materials, which, in

turn, enables their accurate classification. Second, the results from the separability

and classification analysis for optimal bias selection in both problems demonstrate

that accurate classification can be achieved by either considering a broader range

of spectral information, i.e., by using all bias voltages, or by using specific biases,

or combination thereof. Our results also indicate that the sub-selection of the bias

range depends on the classification problem. As expected, the selection of biases

varies from case to case. Finally, a customized feature-selection algorithms that

specifically addresses the abundant spectral overlap and noise in the DWELL bands,

such as the CCFS, can additionally enhance the MS capability of the DWELL FPA

by selecting only few optimized superposition bands that yield the same classification

results as when using all DWELL FPA bands.
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(a)

(b)

Figure 3.21: (a) Separability between granite and limestone for each individual bias

used; (b) Classification error between granite, limestone and filter as a function of

each individual bias used.

79



Chapter 3. Application of the CCFS to Classification and Remote SensingProblems

(a)

(b)

Figure 3.22: (a) Normalized separability between granite and limestone when the

biases (bands) are added sequentially in an increasing order; (b) Average classifica-

tion error between granite, limestone and filter when the biases (bands) are added

sequentially in both an increasing and a decreasing order.
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Chapter 4

Spatio-Spectral Feature Selection

This chapter extends the canonical-correlation feature-selection (CCFS) approach,

developed in Chapter 2, to a collective spatio-spectral feature-selection and classifi-

cation framework for hyperspectral (HS) and multispectral (MS) imagers. The main

idea is to integrate the spatial and the spectral information in a way that enhances

the canonical spectral features exposed by the CCFS, using the spatial content of

the hyperspectral imagery. To this end we assume separability of the hyperspectral

image, i.e, that the spatial content of the image is independent of the spectral bands,

but can be used to enhance the latter.

The extension of the CCFS algorithm in this Chapter utilizes the concept of

spectrally enhanced spatial features, which are obtained by using both the spectral

and the spatial contents of an HS/MS image. The resulting Canonical Correlation

Spatio-Spectral Feature Selection (CCSS-FS) method consists of two distinct stages:

a spatially independent spectral feature selection, based on the CCFS, followed by

spatially enhanced classification.

The performance of the CCSS-FS framework is tested on classification applica-

tions using remotely sensed imagery collected by the Airborne Hyperspectral Imager
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(AHI) [6].

We have organized this chapter as follows. In Section 4.1 we provide the necessary

background and review the relevant work. The extension of the CCFS algorithm

is developed in Section 4.2, and in Section 4.4 we present the verification studies

of the extended algorithm. Discussion of separability of the spatial and spectral

information content in MS/HS images is given in Section 4.3. We close the Chapter

with a summary of our conclusions in Section 4.5.

4.1 Background and overview of relevant work

HS and MS images can be viewed as a three-dimensional array of real numbers, or a

hypercube, whose elements are called pixels. Throughout this dissertation we employ

the following formal notation for HS and MS images:

u ∈ IRI×J×K , u = {uk(i, j) ∈ IR | 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K} . (4.1)

The (i, j) plane represents the spatial image or the scene, consisting of pixels with

finite resolution, and the third dimension k is the spectral domain, represented by

tens or even hundreds of spectral bands, constituting spectral replicas of each pixel.

One of the important characteristics of the data structure represented by (4.1)

is the complex nature of the relations between pixels and their neighbors along the

i, j and the k directions within the image hypercube. First, due to possible man-

ufacturing limitations, a pixel’s spectral replicas are typically correlated, because

adjacent bands may have overlapping spectral ranges. Second, pixel replicas from

different bands are spatially correlated since they are images of the same object but

with respect to different waveranges. Third, due to the scene topology, there is high

spatial correlation between the adjacent pixels in each spectral image. Such complex

interplay between the spatial and spectral domains calls for approaches that allow
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us to take this interplay under consideration during the feature selection and the

classification stages.

The integration of the spatial and spectral information for improved classification

of HS and MS images is a subject of an active ongoing research. Several different

ideas have already been proposed and tested in various detection and classification

problems. The most popular approach is to include both spectral and textural in-

formation in the classifier via composite kernels. This is usually achieved by means

of the so-called “stacked” approach, in which feature vectors are build from concate-

nation of spectral and spatial features. Benediktsson at al. in [73] have proposed

the use of extended morphological profiles (EMPs). These profiles rely on classical

mathematical morphology operations such as erosion and dilation [74], which are

used to process a binary or grayscale image with a set of known shape, called struc-

turing element. These basic operations are used to construct opening and closing

operators; with these operators, if the structure of the image cannot be contained in

the structuring element then it is totaly removed, otherwise it is preserved. A mor-

phological profile [73] is defined as a composition of the opening and closing profiles,

both of them viewed as n dimensional vectors, where n is the number of openings or

closings, respectively.

Extension of this concept to HS and MS imagery requires spectral feature selec-

tion stage in order to determine few spectral components. In [75] the full spectral

information was used to construct the EMPs; however, Benediktsson et al. [73] pro-

posed to use only the first few principal components (PCs), and then extend each

one of them with the morphological information. The extended profile is a single

stacked vector used as an input feature for the classifier.

In [76] Gamba et al. propose to combine spatial characterization using Markov

Random Fields (MRF) with spectral neuro-fuzzy classification. To this end, Gamba

et al. start with a spectral classification step performed by a neuro-fuzzy classifier.
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The result of this step is then used in an MRF-based spatial analysis stage, which

is performed jointly with a maximum likelihood spectral-based reclassification stage.

In doing so, the pattern recognition capabilities of the neuro-fuzzy classifier, which

has demonstrated excellent performance at a single-pixel level, are combined with

the spatio-spectral capabilities of the MRF framework.

The segmentation hierarchies approach [77] is another idea that can be utilized

for spatio-spectral analysis of MS and HS imagery. Loosely speaking, a segmenta-

tion hierarchy is a set of several segmentations of the same image at different levels

of detail. The segmentation at a coarser level can be produced by simply merging

the regions at finer levels of detail. In MS and HS imagery, spatially adjacent re-

gions iteratively merge through a specified merge selection process based on spectral

criteria. We refer the readers to [77] for further details.

In the light of the above discussion, the objectives of this Chapter are as follows.

First, we seek to extend the CCFS algorithm to a collective spatio-spectral feature-

selection and classification framework for HS and MS imagers, using the concept of

“stacked” or concatenated feature vectors, which represent spectrally enhanced spatial

features. This approach parallels that of [73] with two key distinctions. Instead of

using principal component analysis to select the spectral content, we apply the CCFS

algorithm, and instead of using morphological operations to define the spectrally

enhanced spatial features, we employ spatial masks such as ’Sobel’ [4], ’Median’, and

’Variance’ [2], to name just few.

Our second objective is to validate the performance of the CCSS-FS framework

in classification problems using real HS imagery. To this end we use remotely sensed

imagery collected by the AHI. Sensitivity of the spatio-spectral feature-selection ap-

proach with respect to the initial set of sensor bands and with respect to the number

and types of spatial features utilized during the classification stage is also investigated

in this chapter.
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4.2 Extension of the CCFS to a spatio-spectral

feature selection.

To develop the extension of the CCFS algorithm we utilize the idea of spectrally

enhanced spatial features. This approach can be viewed as an extended kernel method

that deals with the non-stationary nature of the spectral signatures [73]. As already

mentioned, the spectrally enhanced spatial features are obtained by considering both

the spectral and the spatial information content of each pixel, and can be viewed as

“stacked” or concatenated feature vectors.

Typical spatial feature extraction techniques utilize functions, called masks or

kernels, that operate on pixel values in a predefined neighborhood M ×N of a pixel

with spatial coordinates (i, j) [2, 74]. The kernel’s coefficients determine the type

of the extracted spatial feature. However, for HS and MS images a spatial feature

contains as many spectral components K, as the number of the spectral bands used

to obtain the image. Consequently, such spatial features may be thought of as a

result of an application of an M × N ×K dimensional mask to each hyperspectral

pixel. We call such spatial feature a spectrally enhanced spatial feature. Note that if

the kernel represents a simple delta function, the spectrally enhanced spatial feature

will be the spectral signature itself. Therefore, a spectral signature can be viewed as

the simplest case of a spectrally enhanced spatial feature.

To define the extension of the CCFS algorithm along these lines, we consider a two

stage spatio-spectral feature-extraction technique. At the first stage, and for a given

classification/detection problem, the optimal superposition bands are determined by

applying the CCFS algorithm from Chapter 2 to each class of interest. At the second

stage, after the most informative superposition bands have been determined and

applied to the spectral imagery, various spatial feature-extraction techniques based

on suitable M×N spatial masks, can be applied based on certain a priori information
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Figure 4.1: The first stage of the CCSS-FS algorithm.

about the scene. A set of spatial features can possibly contain information about

edges, points and lines, as well as texture features, and morphological profile features,

among others [21]. Moreover, each one of these spatial features is now a spectrally

enhanced superposition feature, that contains as many spectral components as the

number of the selected superposition bands from the CCFS stage. Thus, an extended

pixel profile is created that can be used as an input to the classifier.

A formal description of the CCSS-FS framework is as follows. Assume that

u ∈ IRI×J×K is a MS/HS image, as defined in (4.1). At the first stage of the CCSS-

FS we apply the CCFS algorithm from Chapter 2 to u in order to obtain a set

{f̃1, . . . , f̃S} of superposition bands, where S is the number of classes of interest, or

endmembers. The S superposition bands represent the most informative spectral

directions for the given set of endmembers, where typically S � K.
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Figure 4.2: The second stage of the CCSS-FS algorithm.

Using the superposition bands, we define a new reduced image hypercube

u0 ∈ IRI×J×N ,u0 = (u0
1, . . . ,u

0
S)

where each image plane u0
s is obtained by the application of superposition band f̃s

to the original image hypercube u. This completes the first stage of the CCSS-FS

algorithm, which is shown in Fig. 4.1.

At the second stage we select a set {M1, . . . ,MM} of spatial masks based, for

example, on certain a priori information about the scene captured in u. For simplic-

ity, we restrict attention to masks with square N × N regions of operations, whose
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response on a gray-scale image u is given by

Mm(i, j) =
∑

−N≤n1,n2≤N

ωm(n1, n2)u(i+ n1, j + n2) . (4.2)

We recall that in (4.2) u(i, j) is the pixel’s intensity value at the center {i, j} of the

mask, ωm(n1, n2) are the weights at offsets {n1, n2} relative to the center of the mask,

and N is the diameter of Mm.

To define the spectrally enhanced spatial features we first apply each one of the

masksMm to the reduced image hypercube u0 to obtain the sequence of its replicas

um =Mm(u0) , 1 ≤ m ≤M .

To complete the second stage of the CCSS-FS the replicas and the original reduced

hypercube are concatenated to obtain another image hypercube

ũ = (u0
1, . . . ,u

0
S,u

1
1, . . . ,u

1
S, . . . ,u

M
1 , . . . ,u

M
S ) , ũ ∈ IRI×J×MS . (4.3)

The image hypercube in (4.3) redefines the original image hypercube u in a way that

optimizes its spectral and spatial content with respect to the endmembers and the

spatial features reflecting the a priori knowledge about the scene. The second stage

of the CCSS-FS approach is shown schematically in Fig. 4.2.

It is clear that the CCSS-FS algorithm described above and the approaches sur-

veyed in Section 4.1 share the same idea of “stacked” or “concatenated” spectral

and spatial features. Implicit in this class of methods is also the assumption that the

spatial and the spectral features are essentially separable. We remind that the key

distinction between these approaches and the CCSS-FS is in the use of the CCFS

algorithm at the first stage of the spatio-spectral feature selection. This means that

in the CCSS-FS the spectral features are optimized with respect to a given set of

endmembers, as opposed to methods in which the first principal components of the

total image hypercube u are used.
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4.3 Separable scene and sensor models

In this Section we examine the notion of separability in MS and HS imagery that is

implicit in the definition of the CCSS-FS. For this purpose it is more convenient to

work with continuous scene and sensing models. In particular, we assume that the

scene can be described by a continuous function of the spatial coordinates x, y and

the spectral variable λ:

p(x, y, λ) ∈ C0; p : X × Y × Λ→ IR . (4.4)

In (4.4) X, Y and Λ are closed intervals in IR.

A single sensor operation in a focal plane array (FPA) containing I × J pixels

is modeled by a bounded linear functional that can be identified with a continuous

function

Fi,j,k(x, y, λ) : X × Y × Λ→ IR , (4.5)

where 1 ≤ i ≤ I and 1 ≤ j ≤ J refer to the spatial position of the pixel within the

FPA and 1 ≤ k ≤ K refers to the band number of the sensor. Each Fi,j,k is assumed

to have a compact support:

supp(Fi,j,k(x, y, λ)) ⊂ Xi × Yj × Λk,

where

Xi = [i− 1, i]∆x, Yj = [j − 1, j]∆y, Λk = [k, k̄]∆λ ,

and ∆x = 1/(I − 1), ∆y = 1/(J − 1) and ∆λ = 1/(K − 1).

A hyperspectral image u = {uk(i, j)} ∈ IRI×J×K is obtained by integration of the

functional Fi,j,k(x, y, λ) and the scene p(x, y, λ):

uk(i, j) = 〈Fi,j,k, p〉 ,
∫
Xi

∫
Yj

∫
Λk

Fi,j,k(x, y, λ)p(x, y, λ)dxdydλ ,

1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K.

(4.6)
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We make the following definitions:

Def. 1 : Scene p(x, y, λ) is separable iff there exist C0 functions q : X × Y → IR

and r : Λ→ IR such that p(x, y, λ) = q(x, y)r(λ).

Def. 2 : Sensor Fi,j,k(x, y, λ) is separable iff there exist bounded linear functionals

Fi,j : X×Y → IR and Fk : Λ→ IR such that Fi,j,k(x, y, λ) = Fi,j(x, y)Fk(λ) for

all 1 ≤ i ≤ I, 1 ≤ j ≤ J and 1 ≤ k ≤ K.

Def. 3 : A MS or HS image u is separable iff there exist a a matrix U ∈ IRI×J

and a vector V ∈ IRK such that u = U ⊗ V , i.e., uk(i, j) = U(i, j)V (k) for all

0 ≤ i ≤ I, 0 ≤ j ≤ J and 0 ≤ k ≤ K.

In general, a hyperspectral image u is not necessarily separable, even if the sensor

itself is separable. This can be seen from the following calculation:

uk(i, j) =

∫
Xi

∫
Yj

∫
Λk

Fi,j,k(x, y, λ)p(x, y, λ)dxdydλ (4.7)

=

∫
Xi

∫
Yj

∫
Λk

Fi,j(x, y)Fk(λ)p(x, y, λ)dxdydλ

=

∫
Xi

∫
Yj

Fi,j(x, y)

(∫
Λk

Fk(λ)p(x, y, λ)dλ

)
dxdy

=

∫
Xi

∫
Yj

Fi,j(x, y)gk(x, y)dxdy,

where gk(x, y) =
∫

Λk
Fk(λ)p(x, y, λ)dλ. The function gk implicitly depends on the

given spectral band. As a result, the last integral in (4.7) cannot be represented as

a product of two numbers U(i, j) and V (k) that depend only on the spatial and the

spectral dimensions, respectively. The following result provides further information

about the separability of the hyperspectral image.

90



Chapter 4. Spatio-Spectral Feature Selection

Lemma 3 A MS/HS image u is separable iff both the sensor Fi,j,k and the scene

p(x, y, λ) are separable.

Proof. Let us first assume that both Fi,j,k and p(x, y, λ) are separable. Then

uk(i, j) =

∫
Xi

∫
Yj

∫
Λk

Fi,j,k(x, y, λ)p(x, y, λ)dxdydλ

=

∫
Xi

∫
Yj

∫
Λk

Fi,j(x, y)Fk(λ)q(x, y)r(λ)dxdydλ

=

(∫
Xi

∫
Yj

Fi,j(x, y)q(x, y)dxdy

)(∫
Λk

Fk(λ)r(λ)dλ

)
= U(i, j)V (k).

Let us now assume that u is separable, i.e., uk(i, j) = U(i, j)V (k) for all i, j, k. Then

U(i, j) and V (k) can be represented as:

U(i, j) =

∫
Xi

∫
Yj

Hi,j(x, y)q(x, y)dxdy (4.8)

and

V (k) =

∫
Λk

Kk(λ)r(λ)dxdy (4.9)

On the other hand

uk(i, j) =

∫
Xi

∫
Yj

∫
Λk

Fi,j,k(x, y, λ)p(x, y, λ)dxdydλ .

Thus, ∫
Xi

∫
Yj

∫
Λk

Fi,j,k(x, y, λ)p(x, y, λ)dxdydλ

=

∫
Xi

∫
Yj

Hi,j(x, y)q(x, y)dxdy

∫
Λk

Kk(λ)r(λ)dxdy .

(4.10)

Eq.(4.10) implies that

Fi,j,k(x, y, λ) = Hi,j(x, y)Kk(λ) , p(x, y, λ) = q(x, y)r(λ). 2
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In what follows we examine some conditions on p under which the separable

model is a good approximation. Assume that p(x, y, λ) ∈ Ck. Then we can expand

p(x, y, λ) about λ0 using Taylor series as follows:

p(x, y, λ) = p(x, y, λ0) + pλ(x, y, λ0)(λ− λ0) + pλλ(x, y, λ0)
(λ− λ0)2

2
+O(∆λ2) .

We further assume that pλλ(x, y, λ0)(λ− λ0)2/2 is small compared to

p(x, y, λ0) + pλ(x, y, λ0)(λ− λ0).

This assumption holds in the cases when (λ− λ0)2 is small and when pλλ(x, y, λ0) is

small. In such a case, the scene can be approximated only by the linear terms in the

Taylor expansion as:

p(x, y, λ) ≈ p0(x, y) + p1(x, y)(λ− λ0) .

Hence, in such a case p(x, y, λ) is approximately separable in the spatial and spectral

domains. From this analysis we can conclude that separable images can be thought

of as superpositions of a static (bias) scene p0 and a scene that varies linearly with

the spectral frequency λ.

4.4 Applications

In this section we apply the CCSS-FS algorithm to an AHI1 hyperspectral imagery

in the context of supervised classification. First, by means of visual inspection, three

main endmember categories of buildings (B), roads (R) and ground/vegetation (G)

were identified in the scene area captured by the image in Fig. 4.3. The representa-

tive spectral signatures were determined following the approach adopted in [12] by

1We remind the reader that the AHI sensor contains 256 spectral bands in the range

7–11.5 µm, with 0.1 µm spectral resolution for each spectral band. Further details on the

AHI system and related data acquisition and calibration issues can be found in [6].
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Figure 4.3: The AHI test flight image taken on July 26nd, 2004.

calculating the mean of spatially uniform regions that visually correspond to each

designated endmember category. In addition, we selected two representative testing

sets, which capture different parts of the scene shown in Fig. 4.3, and which contain

all classes of interest. Endmember extraction was followed by spectral feature selec-

tion, where the CCFS algorithm from Chapter 2 was used to determine the three

most informative directions {f̃B, f̃R, f̃G} in the AHI spectral space with respect to

the three endmembers, and in the presence of noise. In particular, the performance

of the CCSS-FS was investigated for four average signal-to-noise ratios (SNR) values

in the range 10 to 60dB.

AHI spectral bands were approximated uniformly by piecewise linear functions

with peaks at the center frequencies and base widths of 0.1 µm. After the three

superposition bands {f̃B, f̃R, f̃G} for each SNR were determined, they were applied

to the spectral content of each pixel in the testing data sets. Next, various spatial
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feature-extraction techniques were applied to every pixel within the three superpo-

sition image planes in order to obtain the spectrally enhances spatial features. We

used spatial masks of the form given in (4.2), each operating on 5× 5 pixels’ areas,

i.e., N = 5 in (4.2). Specifically, in the second stage of the CCSS-FS algorithm

we applied the ’Mean’, ’Unsharp’, ’Gaussian’, ’Laplacian’, ’Sobel’, ’Log’, ’Prewitt’,

’Median’ and ’Variance’ [2] spatial masks.

The so-created spatio-spectral features were then appended to the three canonical

features, as shown in Fig. 4.2, for a total of 30 spectrally enhanced spatial features.

Different subsets of all 30 spectrally enhanced spatial features for both testing sets

were used as an input to an Euclidean-distance classifier. In every testing case, the

results of the classification are presented in the form of thematic maps.2

Figure 4.4 compares the thematic maps created from the classification results

based on different subsets of spectrally enhanced spatial features. For an SNR of

10dB, these results show a noticeable improvement in the classification accuracy

when the three superposition features are extended with ’Mean’, ’Median’ and ’Gaus-

sian’ spatial features, as shown in Fig. 4.4 (i) and (v). The investigation of different

combinations of spectrally enhanced spatial features has shown that the combina-

tion presented in Fig. 4.4 (v) gives consistently, for different SNR values, the best

classification results.

Figures 4.5 and 4.6 compare the performance of the CCSS-FS algorithm when the

spectral features are selected by the CCFS and the noise-adjusted projection pursuit

(NAPP) algorithms [65, 20] for the SNR cases of 10 and 20dB respectively. In this

particular application, we observed similar performance with the CCFS spectral fea-

2Thematic maps are primarily designed to show a theme, a single spatial distribution

or a pattern, using a specific map type. These maps show the distribution of a feature over

a limited geographic area. Each map defines a partitioning of the area into a set of closed

and disjoint regions, each includes all the points with the same feature value.
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tures and the NAPP spectral features for both 10 and 20dB cases. The performance

of both algorithms is similar again with the addition of spatially enhanced spectral

features during the the classification stage.

The optimally performing combination of spectrally enhanced spatial features

was used to investigate the sensitivity of the CCSS-FS algorithm with respect to the

initial subsets of the AHI bands used during the first, CCFS, stage. We compare the

performance of the CCSS-FS based on CCFS superposition features selected from

subsets of 50 consecutive and 50 uniformly spaced AHI spectral bands. Cases (i) and

(iii) in Fig. 4.7 show the classification performance based only on the superposition

spectral features, when the superposition spectral features were selected from a set

of 50 uniformly spaced AHI bands, and for SNR values 10dB and 20dB. The cases

(ii) and (iv) in Fig. 4.7 show the classification performance based on the optimally

performing combination of spectrally enhanced spatial features. Comparing these

results with the results presented in Fig. 4.5 and 4.6 for the CCFS case, it is clear

that uniformly spaced bands exhibit much lower sensitivity to noise compared to

consecutive spectral bands, where the spectral correlation due to the bands’ overlap

is significant. As we can see for the case of SNR of 20dB, the results presented in

Fig 4.7 are already in the limits of the noiseless case. For an SNR of 10dB, however,

as shown in Fig 4.7, cases (i) and (ii), the extension of the canonical features with

optimal selection of spatial features removed most of the classification errors.

4.5 Conclusions

In this Chapter we have developed a simple methodology for the integration of spa-

tial and spectral contents during feature selection and classification of hyperspectral

imagery. The methodology is built upon the extension of the CCFS framework to

a sequential spatio-spectral feature-selection (CCSS-FS) approach that utilizes the
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(i) (ii) (iii) (iv) (v)

Figure 4.4: CCSS-FS thematic maps at SNR of 10dB. Left to right: (i) three CCFS

features; (ii) three CCFS features extended with three Mean spatial features; (iii)

three CCFS features extended with three Laplacian spatial features; (iv) case (ii)

extended with three Gaussian spatial features; and (v) case (iv) extended with three

Median spatial features.

idea of spectrally enhanced spatial features. Our studies show that inclusion of

contextually appropriate spatial features, extracted for each canonical superposition

band, can lead to noticeable improvement in the classification accuracy for low and

medium SNR cases. Additionally, more significant improvement is observed when

the first stage of the CCSS-FS, i.e., the spectral feature selection using the CCFS, is

performed on a set of consecutive spectral bands that exhibit higher spectral correla-

tion compared to uniformly spaced spectral bands. Our results confirm the potential

of combining spectral superposition bands with a proper spatial feature extraction

to utilize efficiently imagery from MS and HS sensors.
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a

b

(i) (ii) (iii) (iv) (v)

Figure 4.5: Thematic maps based on the classification results for classes building,

road and vegetation/ground using three superposition features selected by the CCFS

and the noise-adjusted PP algorithms from a subset of 50 consecutive AHI bands

and for SNR of 10dB. (a) Testing image 1; (b) Testing image 2. Left to right: (i)

image classification without noise compensation; (ii) three CCFS features; (iii) three

noise-adjusted PP features; (iv) case (ii) extended with Mean, Median and Gaussian

spatial features; (v) case (iii) extended with Mean, Median and Gaussian spatial

features.
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a

b

(i) (ii) (iii) (iv) (v)

Figure 4.6: Thematic maps based on the classification results for classes building,

road and vegetation/ground using three superposition features selected by the CCFS

and the noise-adjusted PP algorithms from a subset of 50 consecutive AHI bands

and for SNR of 20dB. (a) Testing image 1; (b) Testing image 2. Left to right: (i)

image classification without noise compensation; (ii) three CCFS features; (iii) three

noise-adjusted PP features; (iv) case (ii) extended with Mean, Median and Gaussian

spatial features; (v) case (iii) extended with Mean, Median and Gaussian spatial

features.
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(i) (ii) (iii) (iv)

Figure 4.7: Thematic maps based on the classification results for classes building,

road and vegetation/ground. Left to right: (i) three CCFS features, selected from a

subset of 50 uniformly spaced AHI bands, SNR of 10dB; (ii) case (i) extended with

the optimal spatial features; (iii) same as case (i), but SNR of 20dB; (iv) case (iii)

extended with the optimal spatial features.
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Chapter 5

Joint Spatio-Spectral Feature

Selection

In this chapter we turn attention to algorithms for joint spatio-spectral (JSS) feature

selection. By “joint” we mean algorithms that simultaneously take into consideration

spatial and spectral characteristics of a given multispectral (MS) or hyperspectral

(HS) image. JSS feature selection offers unique opportunities for image processing

and remote sensing because it allows us to take advantage of the correlation between

spatial and spectral features. At the same time, development of JSS algorithms poses

additional challenges. In this chapter we develop and verify, using AHI and DWELL

imagery, a new approach for edge detection in HS and MS images, termed Spectral

Ratio Contrast (SRC) edge detection algorithm that uses the concept of spectral

ratio signatures.

The chapter is organized as follows. In Section 5.1 we review the relevant previous

work on multi-color edge detection and the use of spectral ratio indices in image

processing. The novel SRC edge detector and its implementation are presented in

Section 5.2. In Section 5.3 we validate the SRC edge detector using AHI and DWELL
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imagery data. For a benchmark, we consider the Multi Color Gradient (MCG) edge

detector proposed in [1]. For the convenience of the readers, a brief summary of the

MCG approach and its application to edge detection are presented in Appendix A.

Our key findings are summarized in Section 5.4.

We recall the notation (4.1) for multi-color, MS, or HS images, introduced in

Chapter 4. Specifically, such an image is a three-dimensional array of real numbers,

also called an image hypercube:

u ∈ RI×J×K ; u = {uk(i, j) ∈ R : 1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ k ≤ K} . (5.1)

For fixed i and j, the k-dimensional vector u(i, j) = (u1(i, j), . . . , uK(i, j)) is called

hyper-pixel. The indices i and j denote the spatial position of the hyper-pixel within

a Focal Plane Array (FPA), and k is the band number. The value of uk(i, j) is

referred to as the intensity of the k-th band. Alternatively, for a fixed k, the two-

dimensional array uk(i, j) is the k-th image plane, or color slice, of the multi-color

image. For MS images the number of bands K is typically between 10 and 15. For

hyperspectral images K can be as high as several hundred bands.

5.1 Background and overview of relevant work

Image segmentation is one of the most important and difficult tasks in digital image

processing. It represents a key stage of automated image analysis and interpretation.

Segmentation algorithms for gray-scale images utilize basic properties of intensity

values such as discontinuity and similarity [2, p.568]. For example, grayscale edges

are defined as sets of pixels whose derivative values exceed a preset threshold. As a

result, detection of discontinuities in gray-scale images is typically based on spatial

masks which calculate a measure of the gray-level discontinuity for a specified (usually

the central) pixel in the mask. The response of a mask at any pixel in the image is
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given by a weighted sum of the gray-scale values [2, p.569].

Mathematically, a gray-scale image such as a broadband infrared (IR) image, can

be modeled by a single-valued function u(x, y) of the spatial coordinates (x, y). The

pixels of the image are the values uij = u(xi, yj) of that function at N ×M uniform

grid points {xi, yj}. Using this model it is easy to see that the action of a given

mask on a gray-scale image can be thought of as a finite difference approximation

of a differential operator acting on the function u(x, y). Among the most popular

gray-scale edge detectors are Canny [3], Sobel [4], and Perwitt [2], to name just few.

The Canny edge detector is considered to be one of the most robust gray-scale

edge detectors. The Canny algorithm works in a multi-stage fashion [3], [78, Chapter

5]. First, the image is smoothed by Gaussian convolution. Then, a simple 2-D first

derivative operator is applied to the smoothed image to identify the regions with high

first-order spatial derivatives which give rise to “ridges” in the gradient magnitude

image. The algorithm then tracks along the tops of these ridges and sets to zero

all pixels that are not actually on the ridge top so as to give a thin line in the

output, a process known as non-maximal suppression. The tracking process exhibits

hysteresis controlled by two thresholds. Tracking can only begin at a point on a

ridge higher than the first threshold. Tracking then continues in both directions

out from that point until the height of the ridge falls below the second threshold.

This hysteresis helps to ensure that noisy edges are not broken up into multiple edge

fragments. Figure 5.1 compares the edge maps obtained by the Canny and the Sobel

edge detectors applied to individual image planes obtained by the DWELL FPA.

In this chapter we consider image segmentation algorithms for multi-color images

with particular emphasis on detection of multi-color edges. Switch from a gray-scale

to a multi-color image significantly complicates edge detection. First, the standard

definition of a gray-scale edge as a “ramp,” or “ridge” between two regions [2, p.573]

is not appropriate anymore, because a multi-color image has multiple image planes
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(i) (ii) (iii) (iv)

Figure 5.1: Edge maps obtained by application of the Canny [3] and Sobel [4] gray-

scale edge detectors to individual bands of the raw DWELL FPA imagery shown

in Fig. 5.13 (left), consisting of limestone, granite and background. The bands are

identified by their corresponding bias voltages as follows: (i) 0.3 V; (ii) 0.5 V; (iii)

0.7 V; (iv) 0.9 V. Top row: Canny edge detector. Bottom row: Sobel edge detector.

(channels) corresponding to different spectral bands. Depending on the scene, two

distinct regions may exhibit the same intensity for one or more bands. In other words,

with respect to these bands, the edge between the two regions is iso-luminant, i.e., it

is characterized by a jump in color rather than intensity. It is clear that iso-luminant

edges cannot be detected by a standard gradient operator because they do not exhibit

an intensity “ramp” that can be estimated by the magnitude of this operator. This

has been pointed out by Chan [28] who argues that gray-scale algorithms should not

be applied directly1 to multi-color images because intensity-based processing fails to

1Extension of other imaging techniques, based on differential operators, from gray-scale

to multi-colored images faces similar difficulties. One example is Rudin-Osher-Fatemi’s

Total Variation de-noising method [79] for gray-scale images. In [28] Chan developed
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detect iso-luminant edges.

This phenomenon is illustrated in Fig. 5.1 using the DWELL FPA imagery shown

on Fig. 5.13, left. The image comprises of a background, granite and limestone

classes, and is characterized by an almost iso-luminant edge between the granite and

the limestone. The edge maps in Fig. 5.1 were obtained by the Canny and the Sobel

edge detectors, applied to the individual bands in the DWELL FPA image. From

the edge maps shown in the bottom row in Fig. 5.1 we can clearly see that the Sobel

edge detector has missed the edge between granite and limestone in all image planes.

The more sophisticated Canny edge detector picks this edge in some planes but not

in all image planes.

Extension of differential edge detection to multi-color images has followed two

principal paths [80]. A straightforward approach is to apply differential operators

such as the gradient separately to each image plane and then somehow integrate

this information to obtain edge and segmentation information. For example, one can

apply a segmentation model to every image plane separately and then use bitwise

logic operations to obtain segmentation for the multi-color image. Chan [34] points

out that this can result in undesirable segmentation because information in separate

channels is treated as independent whereas in actuality it is not.

Regarding edge detection, Sapiro [29] identifies three main drawbacks of the

straightforward approach. First, edges can be defined by combinations of differ-

ent planes and may be missing in some of the image planes. Examples are color

images where iso-luminance areas show edges only for specific planes. Second, sep-

arate processing of image planes disregards the fact that, in general, information in

them is highly correlated. Third, integration of information from separate image

planes is not trivial and often is done in an ad hoc manner. In cases when an edge

appears only in a subset of image planes there are no clear ways to integrate the

extensions of the TV norm that are applicable to multivalued images.
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information.

A second approach to multi-color edge detection is to embed the variations of

all color channels in a single measure, which is then used to obtain the edge maps

[80]. Typically, this approach is developed by starting from a given gray-scale op-

erator which is then consistently extended to multi-color images. By “consistently”

we mean that the extended multi-color operator reduces to its original gray-scale

prototype when applied to a single color image. Two representative examples of this

approach are the multi-color gradient (MCG), proposed by Di Zenzo in [1], and the

morphological color gradient (MoCG) of Evans and Liu [27].

The MCG operator [1] represents a consistent extension of the standard gradient

operator to multi-color images. In contrast to the standard gray-scale gradient, which

measures differences in the intensity values of the pixels in a mask, the MCG measures

the local “steepness” of the multi-color image considered as a manifold embedded in a

Euclidean space. A hyper-pixel belongs to a multi-color edge if the local steepness of

the manifold, as measured by MCG, exceeds a given threshold. Because MCG edge

detection utilizes simultaneously spatial and spectral information, it is an instance of

a joint spatio-spectral image processing algorithm. We refer the reader to Appendix

A for a brief summary of the MCG operator and MCG-based edge detection, which

is used as the benchmark for the studies in Section 5.3.

Similarly, the MoCG operator [27] is a consistent extension of the morphological

gray-scale gradient operator [81] to multi-color images. The latter is defined as

the difference of the dilation and the erosion operators [74, 2], applied to a given

structuring element γ. The starting point in [27] is the following equivalent form of

the morphological gradient

∇u = max |u(i1, j1)− u(i2, j2)| ∀(i1, j1), (i2, j2) ∈ γ (5.2)

where u(i, j) is a gray-scale image. The idea of [27] is to replace the absolute value
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operator in (5.2) by a vector norm; using the notation in (5.1) the proposed extension

of (5.2) can be written as

∇u = max ‖u(i1, j1)− u(i2, j2)‖p ∀(i1, j1), (i2, j2) ∈ γ , (5.3)

where ‖ · ‖p is the p-th vector norm in the Euclidean space RK :

‖x‖p = p

√√√√ K∑
k=1

|xk|p .

The MoCG extension of (5.2) is another example of a joint spatio-spectral operator.

Because for K = 1 any vector norm reduces to an absolute value of the single scalar

component, it is clear that MoCG is indeed a consistent extension of (5.2).

The multi-color gradient and related ideas have been used with great success

in digital image processing applications [26, 29, 25, 82], among others. However,

as shown by the complexity estimate in Section 5.2.2, for multi-color images with

large numbers of bands, such as hyperspectral imagery, computation of the multi-

color gradient can be quite expensive. In this chapter we propose and develop an

alternative joint spatio-spectral approach that utilizes information only from a few

bands. Our main idea is to use the notion of spectral ratio contrast, i.e., band ratios,

to define an edge signature (index) for an edge between two materials.

The edge signature represents a combination of spectral ratios calculated using

bands that enhance the spectral contrast between the two materials. In conjunction

with a spatial mask, the edge signatures give rise to a multispectral operator that

can be viewed as a three-dimensonal extension of the mask, as shown in Fig. 5.2. In

the extended mask, the third (spectral) dimension of each hyper-pixel can be chosen

independently. Such a mask does not operate in a single image plane but instead

fuses information from multiple planes.

We term this joint spatio-spectral approach Spectral Ratio Contrast (SRC) edge

detection algorithm. SRC has two stages. The first stage is a training step which

106



Chapter 5. Joint Spatio-Spectral Feature Selection

Figure 5.2: Fusion of spectral edge signatures with a spatial mask yields a non-

separable joint spatio-spectral mask.

identifies the bands that maximize the spectral contrast between two given materials.

The second stage is the feature extraction step using the three-dimensional mask

defined by the bands selected at the training step. The presence of two stages in

SRC is one important distinction from the MCG-based edge detection and other

unsupervised edge detection algorithms. A second key difference is that SRC is not

derivative-based, i.e., edge detection is effected by matching a given edge signature

rather than by measuring the gradient magnitude.
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Spectral ratios and cross-spectral ratios have been previously used for quantita-

tive vegetation monitoring. Examples include the Normalized Difference Vegetation

Index (NDVI) [35], the Soil-Adjusted Vegetation Index (SAVI) [36] and the Atmo-

spherically Resistant Vegetation Index (ARVI) [37]. NDVI is perhaps the simplest

of these indices and is defined by the formula

NDVI = (NIR− V IS)/(NIR + V IS) , (5.4)

where NIR and V IS stand for near infrared and visible light reflected by vegeta-

tion [35]. Vegetation indices have demonstrated excellent capacity to distinguish

vegetation areas from non-vegetation surfaces. From (5.4) we also see that an in-

dex compresses the data by a factor of two per ratio which is a significant added

advantage of this approach.

Regional seismic discrimination [38, 39, 40, 41] and deblurring of noisy multichan-

nel images [30] are two other applications where spectral ratios have been successfully

utilized. In seismic applications spectral ratios are used to discriminate between nat-

ural events such as earthquakes and man-made events such as nuclear or chemical

explosions. For example, [40] examines the use of five different spectral ratios based

on combinations of various phase and frequency bands to this end. Their analysis

identifies high-frequency ratio and short-period to long period Rayleigh wave ratio

as two of the most consistent discriminants for separating earthquakes from explo-

sions [40]. As a result, spectral ratios have found use in important applications such

as monitoring of the comprehensive nuclear test-ban treaty adopted by the United

Nations in 1996. We refer the reader to [41] for further details.

Application of spectral ratios to define multispectral operators for edge detection

in this dissertation is novel and previously unexplored research direction. Besides the

potential for significant data compression in HS and MS image processing, spectral

ratios appear to be particularly well-suited for intelligent sensing algorithms using the

DWELL sensor. Indeed, the training phase of the proposed SRC approach extracts
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information about the most informative, with respect to edge detection, bias voltages

(bands) in the sensed image. Image acquisition for a scene then can be carried out

using only the relevant bias voltages, thereby significantly reducing the amount of

data necessary for the image segmentation.

5.2 Spectral ratio contrast algorithm for edge de-

tection

In this section we develop the joint spatio-spectral SRC approach for edge detection

in MS and HS images. Given two distinct materials A and B, the main idea is to

create a unique signature EAB for the edge EAB between A and B using the spectral

ratios of their hyper-pixels. In other words, we seek those bands from A and B whose

ratios can best discriminate EAB from the rest of the spatial features in the scene.

We define EAB as the set of hyper-pixels on the boundary between A and B. Thus,

pixels belonging to EAB are characterized by the existence of small neighborhoods

containing elements from both A and B. Let

a = (a1, . . . , aK) ∈ RK and b = (b1, . . . , bK) ∈ RK

denote the representative hyper-pixels of A and B, respectively. For example, a and

b may correspond to the class-means determined from a training set. In what follows,

given a vector c ∈ RK we will use the notation

1/c , (1/c1, . . . , 1/cK) .
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We define the spectral ratio index between A and B as the following K ×K matrix:

A/B , aT (1/b) =



a1

b1

a1

b2

· · · a1

bK
a2

b1

a2

b2

· · · a2

bK

· · · · · · · · · · · ·
aK
b1

aK
b2

· · · aK
bK


. (5.5)

The spectral ratio index of A is the matrix A/A , aT (1/a). Clearly, the diagonal of

A/A is given by (1, . . . , 1).

The first step of the SRC approach is to identify a small subset of S ratios from

(5.5), S � K, that can reliably discriminate the edge EAB between A and B from

other spatial features. We call such a subset spectral ratio index or signature of the

edge EAB. Succinctly, the edge signature of EAB is a set

EAB = {(p1, q1, ρ1), . . . , (pS, qS, ρS) , ρs = aps/bqs , 1 ≤ S < K} . (5.6)

The integer S is referred to as the length of the edge signature. We remind that the

goal is to find edge signatures with the shortest possible lengths so that S � K.

In order to extract spatial features such as edges, the edge signatures must be

combined with a suitable spatial mask to obtain a joint spatio-spectral SRC mask;

this is the second step of SRC. As in standard gray-scale image processing, the

purpose of this mask is to compute the image response to a spatial structuring

element. However, in SRC the spatial mask is used in a fundamentally different

manner. Whereas in gray-scale edge detection the response is single-valued and

represents a weighted average of the intensity values of the pixels in the structuring

element, in SRC the response is multi-valued and returns the ratios of suitably defined

pixel pairs from that structuring element.

Intuitively, in the SRC mask the band indices play the role of “weights” and

summation of pixel intensities is replaced by their division according to a pair of band
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indices. Therefore, starting from a given spatial mask we can define a joint-spatio-

spectral SRC mask by retaining the spatial domain of the former and redefining

its action in terms of spectral ratios corresponding to the bands from a given edge

signature.

To illustrate the process of converting a spatial mask into a SRC mask, consider a

gray-scale maskM whose response on a gray-scale image u is defined by the formula

M(i, j) =
∑

−N≤m,n≤N

ω(m,n)u(i+m, j + n) , (5.7)

where u(i, j) is the pixel’s intensity value at the center {i, j} of the mask, ω(m,n) are

the weights at offsets {m,n} relative to the center of the mask, and N is the diameter

ofM. We assume thatM contains M distinct pixel pairs {um−(i, j), um+(i, j)}Mm=1,

centered at {i, j}, with weights {ωm−, ωm+}Mm=1, so that the response of M can be

written more simply as a sum over all distinct pixel pairs as follows:

M(i, j) =
M∑
m=1

(
ωm−um−(i, j) + ωm+um+(i, j)

)
. (5.8)

To explain this notation, consider the 3× 3 single-band image and the associated

3×3 mask shown in Fig. 5.3. For this mask the distinct pixel pairs centered at {i, j}

are given by

{u(i, j − 1), u(i, j + 1)};

{u(i− 1, j), u(i+ 1, j)};

{u(i− 1, j − 1), u(i+ 1, j + 1)};

and {u(i− 1, j + 1), u(i+ 1, j − 1)} ,

respectively. Therefore, in this case M = 4 and we can make the following associa-
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Figure 5.3: Left: 3 by 3 section of a single-band image; right: 3 by 3 spatial mask.

tion:

{u1−(i, j), u1+(i, j)} → {u(i, j − 1), u(i, j + 1)}

{u2−(i, j), u2+(i, j)} → {u(i− 1, j), u(i+ 1, j)}

{u3−(i, j), u3+(i, j)} → {u(i− 1, j − 1), u(i+ 1, j + 1)}

{u4−(i, j), u4+(i, j)} → {u(i− 1, j + 1), u(i+ 1, j − 1)}

(5.9)

Because the pixel pairs are used to define spectral ratios, the order of their elements

is not important.

To define the response of the joint spatio-spectral SRC mask we discard the

weights in (5.8) and combine the pixel pairs in M with the band indices from a

given edge signature EAB. The result is a mapping KAB

KAB : RI×J×K 7→ RI×J×(M×S) , (5.10)

from the three-dimensional MS or HS image cube with spatial dimensions I × J and

a spectral dimension K into a smaller hypercube, with the same spatial dimensions

I × J but with a reduced spectral dimension MS � K. Recall that M denotes the
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number of distinct pairs of pixels involved in the mask and S is the length of the

edge signature EAB.

At every spatial location {i, j}, the response of KAB can be viewed as an M × S

matrix of spectral ratios given by

KAB(i, j) =



u1−
p1

(i, j)

u1+
q1

(i, j)

u1−
p2

(i, j)

u1+
q2

(i, j)
· · ·

u1−
ps (i, j)

u1+
qs (i, j)

u2−
p1

(i, j)

u2+
q1

(i, j)

u2−
p2

(i, j)

u2+
q2

(i, j)
· · ·

u2−
ps (i, j)

u2+
qs (i, j)

· · · · · ·
um−pn (i, j)

um+
qn (i, j)

· · ·

uM−p1 (i, j)

uM+
q1

(i, j)

uM−p2 (i, j)

uM+
q2

(i, j)
· · ·

uM−ps (i, j)

uM+
qs (i, j)


∈ RM×S . (5.11)

In the sequel, we denote the element (m, s) of the matrix in (5.11) by

κmAB(i, j, s) =
um−ps (i, j)

um+
qs (i, j)

.

The sequence of spectral ratios in each row of the matrix KAB(i, j) is computed

by using a distinct pixel pair and bands prescribed by a given edge signature. For

example, if KAB is derived from the 3 × 3 mask shown in Fig. 5.3, then the first

row corresponds to the ratios of the first pair of pixels {u1−(i, j), u1+(i, j)}, i.e., the

horizontal pair u(i, j − 1) and u(i, j + 1), the second row corresponds to the second

pair of pixels {u2−(i, j), u2+(i, j)}, i.e., the vertical pair u(i − 1, j) and u(i + 1, j),

and so on.

To develop a better understanding of the joint spatio-spectral character of KAB

consider an even simpler example in which the spatial mask comprises of the first

two pairs in (5.9) and the edge signature has length 1, i.e., a case where M = 2 and

S = 1. Therefore, at every spatial location {i, j} the response KAB(i, j) is a 2 × 1

matrix. Computation of the row elements in this matrix is illustrated schematically

113



Chapter 5. Joint Spatio-Spectral Feature Selection

Figure 5.4: Computation of the joint spatio-spectral SRC mask KAB(i, j) for the first

two pairs in (5.9) and edge signature EAB of length 1 (M = 2 and S = 1.)

in Fig. 5.4. This figure clearly shows that, unlike a conventional mask, KAB does not

operate in a single image plane but instead fuses information from multiple planes

and is not-separable into spectral and spatial components. The spectral plane for

each element in KAB is selected through the edge signature EAB, i.e., the indices

{p, q}, in a way that enhances that feature.

We now proceed with the formulation of the training and feature extraction stages

of the SRC approach and explain how KAB can be used to discriminate the edges be-

tween A and B. For clarity the selection criteria used to determine the edge signature
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(5.6) are presented separately from the algorithm description.

5.2.1 Implementation of the SRC algorithm

For simplicity we describe the SRC approach assuming two distinct materials A and

B, and then briefly discuss extension to more general cases. The algorithm has two

stages: (1) a training step where one determines the appropriate edge signatures and

defines the associated three-dimensional SRC mask, and (2) a feature-extraction step

where the response of this mask on a given MS or HS image is used to effect the

spatial feature extraction. Detailed description of each step follows.

Training stage

The three key components of this step are (1) selection of representative training data

sets for materials A and B, (2) defining a selection criteria for determining the edge

signature (5.6), and (3) selection of a spatial maskM used to define the SRC mask in

(5.11). The second step is essential for the success of the SRC approach. In Sections

5.2.4–5.2.3 we propose two possible selection criteria that are used subsequently in

the verification studies.

The training stage proceeds as follows. Let

a = {ak(i, j) ∈ R : i ∈ I(A), j ∈ J(A), 1 ≤ k ≤ K} ,

and

b = {bk(i, j) ∈ R : i ∈ I(B), j ∈ J(B), 1 ≤ k ≤ K}

denote the training sets for classes A and B, respectively, where I(A), J(A), I(B)

and J(B) are index sets that define the training samples. Using the training data we
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compute the class means ā ∈ RK and b̄ ∈ RK according to

ā =
1

dim(A)

 ∑
i∈I(A),j∈J(A)

ak(i, j)

 ,

and

b̄ =
1

dim(B)

 ∑
i∈I(B),j∈J(B)

bk(i, j)

 ,

and the spectral ratio index A/B according to (5.5). Using the chosen selection

criteria we identify a subset of A/B that defines the edge signature EAB, and an

associated tolerance value εAB. Finally, using the spatial maskM and the edge index

EAB we define the SRC mask KAB according to (5.11). In summary, the output from

the training step comprises of

1. The edge signature EAB;

2. The associated tolerance value εAB;

3. The SRC mask KAB.

Feature extraction stage

At this step, we apply KAB to a given multispectral image u ∈ RI×J×K . For each

hyper-pixel u(i, j), located at position {i, j} with respect to the FPA, we proceed as

follows. First, we compute the M × S ratios giving the response KAB(i, j) at u(i, j),

as defined in (5.11). Recall that M denotes the number of the distinct pixels pairs

involved in the calculation of KAB(i, j) and S is the length of EAB, i.e., the number

of ratios used to discriminate the edge between A and B.

The response (calculated ratios) of the SRC mask at a given hyper-pixel u(i, j)
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is then used as an input to form an indicator matrix

χ(i, j) =



δ1
1 δ1

2 · · · δ1
S

δ2
1 δ2

2 · · · δ2
S

· · · · · · δms · · ·

δM1 δM2 · · · δMS


∈ RM×S (5.12)

for that pixel. The elements δms of (5.12) are assigned the values of 0 or 1 according

to the following rule:

δms =


1 if

 κmAB(i, j, s) ∈ ρs + [−εAB, εAB], or

(κmAB(i, j, s))−1 ∈ ρs + [−εAB, εAB]

0 otherwise

, (5.13)

where εAB is the tolerance determined at the training step. The use of the both

κmAB(i, j, s) and its reciprocal (κmAB(i, j, s))−1 in (5.13) is required to account for the

two possible material configurations at the m-th pixel pair {um−(i, j), um+(i, j)}.

Specifically, the first ratio captures the case when um−(i, j) is of class A and um+(i, j)

is of class B, whereas the reciprocal ratio is needed to account for the possibility that

um−(i, j) is of type B and um+(i, j) is of type A. Therefore, the use of the two ratios

removes dependence on the direction of the transition between A and B, and is

similar to the use of the magnitude in the gradient operator to achieve its rotational

invariance.

If the hyper-pixel pair {um−ps (i, j), um+
qs (i, j)} belongs to the same material type,

then the test in (5.13) will force most, if not all, elements δms in the m-th row of

χ(i, j) to zero. Conversely, if the hyper-pixels forming the pair are from the two

different materials, either κmAB(i, j, s) or its reciprocal (κmAB(i, j, s))−1 will be close to

the ratio ρs from the edge signature EAB. As a result, the above test will set most if

not all of the elements δms in the m-th row of χ(i, j) to one.

In summary, for a given pixel pair {um−ps (i, j), um+
qs (i, j)}, the number of non-zeros
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in the associated m-th row of the indicator matrix reveals the number of times the

response of the SRC mask KAB(i, j) has matched, to within the specified tolerance,

the spectral ratios from the edge signature EAB. Because the pixel pairs used to form

the response KAB(i, j) correspond to different edge orientations, e.g., horizontal,

vertical or diagonal, the number of ones in each row indicates the strength of the

particular edge direction at position {i, j}.

We use the information contained in the rows of χ(i, j) to define an edge map

FAB : RI×J×K 7→ RI×J , i.e., a mapping that assigns the value 1 to pixel location

{i, j} if u(i, j) belongs to an edge EAB, and 0 otherwise, as follows. We classify

u(i, j) as belonging to EAB if the edge strength in at least one direction, as measured

by the number of ones in the rows of χ(i, j), exceeds a specified integer tolerance

value S̃ ≤ S. If none of the edge strengths exceed S̃, then u(i, j) /∈ EAB and we set

FAB(u(i, j)) = 0.

This criterion can be conveniently expressed in terms of the matrix infinity norm.

For a given matrix A ∈ RK×L the infinity norm ‖M‖∞ is defined as the maximum

absolute row sum of M:

‖M‖∞ = max
1≤s≤K

L∑
l=1

|akl| .

Using this norm, we define the edge map FAB : RI×J×K 7→ RI×J as follows: given

an integer 1 ≤ S̃ ≤ S,

FAB(u(i, j)) =

 1 if ‖χ‖∞ ≥ S̃

0 if ‖χ‖∞ < S̃ .
(5.14)

The value of the integer parameter S̃ can be used to adjust the sensitivity of

the feature extraction step to, e.g., noise. For example, increasing S̃ makes the

algorithm less sensitive to noise but more restrictive. Conversely, decreasing S̃ makes

the algorithm less restrictive but more sensitive to noise. A similar effect can be
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Figure 5.5: The training phase of the SRC algorithm.

achieved by setting S̃ = S and increasing or decreasing the number of ratios in the

edge signature EAB.

Extension of the above approach to three or more materials is straightforward.

We briefly describe the case of three distinct materials A, B and C. In this case there

are three possible edge classes: between A and B, between A and C and between B

and C. Accordingly, at the training stage we define three edge signatures, EAB, EAC ,

and EBC , three tolerance values εAB, εAC , and εBC , and three joint spatio-spectral

masks KAB, KAC , and KBC .

At the feature extraction stage we use the responses of KAB, KAC , and KBC to

identify the hyper-pixels belonging to edge EAB between A and B, edge EAC between
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Figure 5.6: The feature extraction phase of the SRC algorithm.

A and C, and edge EBC between B and C. The final image segmentation is obtained

by the union of the three edges:

EABC = EAB ∪ EAC ∪ EBC . (5.15)

The training and testing phases of the SRC algorithm are shown schematically

in Fig. 5.5 and Fig. 5.6, respectively. Because the edge signatures and the associated

tolerance values are determined independently for each pair of classes, the feature

extraction depends only on the quality of the selection criteria used to obtain the edge

signature for this pair and not on the strength of the edge, as measured by its MCG

value. As a result, the SRC approach is particularly well suited to situations where

the edge between two given materials is “weak,” as measured by its MCG value,
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compared to the edges between the other materials in the scene. For scenes that

contain both “weak” and “strong” edges, as measured by their MCG gradients, an

MCG-based feature extraction would require sophisticated locally adaptive threshold

strategies to capture the “weak” edges. If a single, non-adaptive threshold is used,

in order for MCG to pick the weak edges one has to increase the tolerance to a point

where the noise level may become unacceptable. This conjecture is confirmed by the

verification study in Section 5.3 using DWELL data corresponding to a scene with

weak and strong edges.

Before we turn attention to strategies for selecting the edge signature from the

spectral ratio index A/B, we estimate, in the next section, the complexity of the SRC

algorithm. Then, in Sections 5.2.3–5.2.4 we discuss two approaches to determine the

edge signatures in the SRC algorithm that will be used later in Section 5.3 to compare

and contrast SRC with other feature extraction algorithms.

5.2.2 Complexity of the SRC algorithm

In this section we estimate the complexity of the feature extraction stage in the

SRC algorithm and compare it with the cost of the MCG algorithm, described in

Appendix A. The training stage is not included in the SRC complexity estimate

because it is usually done off-line, before the actual image processing commences.

Consider an HS or an MS image given by a hypercube with dimensions I×J×K.

We recall that I×J is the dimension of the image plane whereas K is the number of

spectral bands, which ranges from tens for MS images, to hundreds for HS images.

The cost of the feature extraction stage of SRC comprises of (1) the cost to com-

pute the response KAB(i, j) of the SRC mask at every pixel, including the reciprocal

ratios (κmAB(i, j, s))−1 needed in (5.13), (2) the cost to form the indicator matrix

(5.12), and (3) the cost to compute the edge map according to (5.14). From these
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three steps the first one is the costliest, as it involves floating point arithmetic. The

second and the third steps require mostly integer arithmetic and logical operations

that are faster than floating point arithmetic. Nonetheless, for simplicity, in the cost

estimate we count all operations as being the same, without regard to the fact that

some of them take less CPU time to execute.

Computation of the response KAB(i, j) at a single pixel (including the computa-

tion of the reciprocal ratios) takes 2MS operations. Thus, the total operation count

for Step 1 is 2(I × J) ×MS. Forming the indicator matrix at Step 2 is based on

(5.13) and requires at most four comparisons. Therefore, the cost of forming a single

entry of χ(i, j) is 4 operations, the cost of forming χ(i, j) is 4MS and the cost of

forming χ(i, j) for all pixels is 4(I × J)×MS.

Finally, Step 3 requires computation of the matrix infinity norm of χ(i, j) for every

pixel location {i, j}. Recall that the matrix infinity norm is the maximum absolute

row sum of the matrix. Summing up the elements in a single row of χ(i, j) takes

S − 1 operations and so, computation of all row sums requires M(S − 1) operations.

In the worst-case scenario, finding the largest of these sums takes M−1 comparisons.

It follows that the per-pixel cost of Step 3 is M(M − 1)(S − 1) operations, and the

total cost of this step is (I × J)×M(M − 1)(S − 1). To summarize, the total cost

of the feature extraction step in SRC is shown in the Table 5.1.

We proceed to estimate the complexity of the MCG edge detector, as described

in Section A.3 of Appendix A. For every pixel the cost of MCG comprises of (1) com-

putation of the entries g11(i, j), g12(i, j) and g22(i, j) of the discrete first fundamental

form G(i, j), (2) computation of the eigenvalues of G(i, j), and (3) computation of

the monitor function and application of the threshold to compute the edge map.

Computation of the diagonal entries g11(i, j) and g12(i, j) takes the same amount

of operations: one subtraction and one multiplication per term times K−1 additions
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Step Cost in floating point operations

Computation of the response KAB 2(I × J)×MS

Forming of the indicator matrix χ(i, j) 4(I × J)×MS

Computation of the edge map FAB (I × J)×M(M − 1)(S − 1)

Total operations (I × J)× (M2(S − 1) + 5MS +M)

Table 5.1: Cost estimate of the SRC algorithm applied to an image hypercube with

dimensions I × J ×K.

to sum up all terms, for a total of 2(K − 1) operations. The cost of the off-diagonal

element is two subtractions and one multiplication per term times K − 1 additions

to sum up all terms, for a total of 3(K − 1) operations. Therefore, the total cost to

compute the first fundamental form for all hyper-pixels is 5(I × J)× (K − 1).

Computation of the two eigenvalues of G(i, j) can be done directly at a cost of 9

operations bringing the total cost of this step for the image to 9(I × J) operations.

Finally, the last step requires 3 operations per pixel: two operations to compute the

monitor function and one comparison to apply the threshold. Thus, the total cost

of this step is 3(I × J) operations, and the total cost of the MCG edge detector,

obtained by summing up the operation counts at each step, is shown in Table 5.2.

To appreciate the gains enabled by the SRC consider the case of the AHI data

used in the verification studies in Section 5.3.1. In the experiments we utilize 200 out

of the available 256 AHI bands. The longest and the shortest edge signatures used

with the SRC algorithm have 5 and 1 ratios, respectively. The joint spatio-spectral

mask KAB is generated using 4 pixel pairs. As a result, for the longest edge signature
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Step Cost in floating point operations

Computation of G(i, j) 5(I × J)× (K − 1).

Computation of the eignevalues λ±(i, j) 9(I × J)

Computation of the edge map 3(I × J)

Total operations (I × J)× (5K + 7)

Table 5.2: Cost estimate of the MCG algorithm applied to an image hypercube with

dimensions I × J ×K.

S = 5, M = 4, and the SRC cost estimate is

42(5− 1) + 5× 4× 5 + 4 = 168

floating point operations per pixel. In contrast, the cost estimate for the MCG is

5× 200 + 7 = 1007

floating point operations per pixel, i.e., a 6 fold increase over the cost of SRC. The

difference is even more pronounced when the SRC is used with the single ratio

signature for which S = 1. The SRC cost estimate reduces to

42(1− 1) + 5× 4× 1 + 4 = 24

giving a 42 fold gain in performance over the MCG.

5.2.3 Pairwise ratio edge index

In this section we describe a strategy in which the selection of the spectral ratios

forming the edge signature EAB is restricted to the diagonal elements of the spectral
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ratio index A/B defined in (5.5). These ratios correspond to spectral bands with the

same numbers, thus the term “pairwise ratios”.

To motivate this strategy note that in the ideal case the spectral ratio index A/A

for two identical materials has diagonal elements equal to one. Therefore, hyper-

pixels from the same class will have nearly constant pairwise ratios close to 1, while

hyper-pixels from different classes will have at least some of their pairwise ratios

away from 1. We illustrate these observations using a sample of actual2 AHI data.

The AHI image, shown in Fig. 5.7 has three different types of materials: building

(B), ground (G) and road (R).

Figure 5.7: AHI training data: building (B), ground (G) and road (R) identified by

red, yellow and cyan boxes, respectively.

Figure 5.8 shows several hyper-pixels from the B-class and their pairwise ratios,

and Figure 5.9 shows the band ratios for the class-average hyper-pixels of the classes

in Fig. 5.7. As expected, the pairwise ratios from the same class are clustered near

the line y = 1, whereas hyper-pixels from different classes exhibit greater variation

2We use this data to define the training set for the AHI study in Section 5.3.
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Figure 5.8: AHI training data. Red plots show a subset of hyper-pixels from the

building class (B). Blue plots show band ratios between these hyper-pixels.

in their pairwise ratios.

From the plots in these figures it follows that variability of pairwise band ratios

can play the same role for multi-color images as gray-scale discontinuity and similarity

for gray-scale images. The objective is to define the pairwise ratio edge signatures

using a small number of ratios (S � K) that can discriminate the edges between the

different class types. Roughly speaking, we seek diagonal elements of the spectral

ratio index A/B that best capture the “shape” of its diagonal.

One fairly straightforward approach that performs well in practice, is to use the

maximum and the minimum pairwise ratios, i.e., set

EAB = {(kmax, kmax, ρkmax), (kmin, kmin, ρkmin)} ,

where kmin and kmax are the band indices corresponding to the minimum and max-

imum diagonal elements of A/B, respectively. Note that for consistency with the
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Figure 5.9: AHI training data: band ratios of class-average hyper-pixels.

notation in (5.6) both bands forming the ratio are stated explicitly even though they

are the same.

The associated tolerances can be determined in several different ways. A good

estimate can be obtained by computing the spread of the min and max ratios for the

training data. For example, we can set

∆min = max
i,j

akmin
(i, j)

bkmin
(i, j)

−min
i,j

akmin
(i, j)

bkmin
(i, j)

;

∆max = max
i,j

akmax(i, j)

bkmax(i, j)
−min

i,j

akmax(i, j)

bkmax(i, j)
;

and then define

εmin = τ∆min and εmax = τ∆max

for some positive τ .

Application of the min-max pairwise selection strategy to the AHI training data

shown in Fig. 5.7, yields the following set of edge signatures for the edges between
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the B, G, and R classes:

EBG = {(6, 6, 1.153), (20, 20, 1.412)} (5.16)

EBR = {(6, 6, 1.050), (20, 20, 1.130)} (5.17)

ERG = {(50, 50, 0.800), (6, 6, 0.911)} (5.18)

From Fig. 5.9 we can see that EBG, EBR, and ERG capture distinctive shape charac-

teristics of the pairwise ratios for these classes.

The 2-band pairwise min-max signatures defined in (5.16)–(5.18) are the sim-

plest possible that capture the relevant variation in the band ratios. More complex

pairwise signatures can be created by including additional band ratios in a recursive

manner as follows. Starting from a basic 2-band min-max signature we can obtain

a 3-band signature by adding the band corresponding to the next maximum ratio.

Alternatively, we can obtain a 4-band signature by adding 2 bands for the next max-

imum and minimum ratios, or another 3-band signature by adding the band for the

next minimum ratio. This process can be repeated until a satisfactory signature is

obtained.

The comparative study in Section 5.3 shows that in the absence of noise per-

formance of the simple edge signatures in (5.16)–(5.18) is comparable to that of

MCG-based feature extraction. Our study also shows that sensitivity to noise can

be further reduced by increasing the number of pairwise band ratios in the signature,

i.e., the number S̃ in (5.14).

Because the choice of ratios in the pairwise strategy is limited to the diagonal

elements of the spectral ratio index A/B in (5.5), it is clear that in some cases this

strategy may not perform as well as a more general strategy that allows one to choose

from all possible ratio combinations in A/B. For example, if two materials have

hyper-pixels that are translations of each other, i.e., differ by a constant intensity
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factor, then the pairwise strategy will fail if the data is normalized. Likewise, a

“weak” edge will have pairwise ratio close to one and so, its pairwise signature will

be close to that of identical materials. Consequently, the pairwise approach will tend

to miss weak edges. An alternative ratio selection strategy that is not restricted to

the diagonal elements of A/B is presented in the next section.

5.2.4 Cross-ratio edge index

Figure 5.10: DWELL FPA training data: background (B), limestone (L) and granite

(G) identified by blue, red and green boxes, respectively. The image corresponds to

a bias voltage of 0.7 V.

In this section we propose a general cross-ratio strategy for determining the edge

signature EAB. In this strategy the bands for each ratio are selected in a two-step pro-

cess and may be different, thus the term “cross-ratio.” The key distinction between

the cross-ratio approach and the pairwise approach in the last section is that now

the choice of the ratios in the edge signature is not limited to the diagonal elements
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Figure 5.11: Class-averages for granite vs. limestone (left plot) and background vs.

limestone (right plot).

of the spectral contrast matrix

A/B =



a1

b1

a1

b2

· · · a1

bK
a2

b1

a2

b2

· · · a2

bK

· · · · · · · · · · · ·
aK
b1

aK
b2

· · · aK
bK


.

To motivate this strategy we use a sample of actual DWELL FPA data for a scene

that contains both weak and strong edges. The DWELL image, shown in Fig. 5.10

was taken at bias voltage 0.7 V and has three different types of materials: limestone

(L), granite (G) and background (B). Visual inspection of Fig. 5.10 reveals a very

weak edge between the L and the G classes and a strong edge between the G and

the B classes. Comparison of class-average hyper-pixels in Fig. 5.11 quantifies this

observation. The representative hyper-pixels ḡ and l̄ for the G and the L classes,

shown on the left, are nearly parallel and very close to each other, which means that

for the DWELL FPA the two classes are nearly undistinguishable. Consequently, we
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can write

ḡi ≈ l̄i + c for all bias voltages (bands) vi ,

for some constant C. Taking the difference of two pairwise ratios for bands i and j

gives
ḡi
li
− ḡj
l̄j
≈ l̄i + c

l̄i
− l̄j + c

l̄j
= c

(
1

l̄i
− 1

l̄j

)
.

Because of the magnitudes of l̄i the right hand-side above is small, i.e., the pairwise

ratios of granite vs. limestone will have almost no significant variation across the

bands. This can be viewed as an alternative characterization of a “weak” edge in

terms of pairwise band ratios. On the other hand, the right plot in Fig. 5.10 shows

high spectral contrast between the L and the G classes.

Motivated by this analysis we propose the following two-step procedure, which

gives rise to edge signatures that enhance weak edges. Assume two materials A and

B with representative hyper-pixels a and b, respectively. Let 1 < S ≤ K be a fixed

integer. The case S = 1 obviously gives a pairwise ratio and for this reason will not

be considered below.

The first step in the proposed strategy is to select the S bands {i1, . . . , iS} where

the classes A and B have maximum separation. Given representative hyper-pixels ā

and b̄ for A and B, respectively, we set

i1 = arg max
1≤i≤K

|āi − b̄i| ;

i2 = arg max
1≤i≤K, i6=i1

|āi − b̄i| ;

i3 = arg max
1≤i≤K, i6=i1,i2

|āi − b̄i| ;

and so on. After the S bands {i1, . . . , iS} have been determined we proceed to

compute the spectral ratios using all possible band combinations:

ρpq =
āip
b̄iq

, 1 ≤ p, q ≤ S .
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Without loss of generality we may assume that all ratios are less than or equal to

one; if ρpq > 1 for some p and q we simply replace it by its reciprocal.

At the second step we define EAB by selecting ratios that exhibit the strongest

spectral contrast between the classes. To rank the ratios according to their spectral

contrast we note that owing to the assumption that all ρpq ≤ 1, the ratios closest to

zero correspond to the strongest spectral contrast between any two bands. Thus we

select the first pair of bands, {p1, q1}, as the pair corresponding to the smallest ratio:

ρ1 = ρp1q1 = arg min
1≤p,q≤S

ρpq ,

the second pair of bands {p2, q2} as the pair corresponding to the next smallest ratio,

ρ2 = ρp2q2 = arg min
1≤p,q≤S, p6=p1,q 6=q1

ρpq ,

and so on. To define the edge signature we choose the first R ratios:

EAB = {(p1, q1, ρ1), . . . , (pR, qR, ρR)} . (5.19)

To illustrate this selection criterion we apply it to define an edge signature ELG for

the edge ELG between limestone and granite from the DWELL training data shown

in Fig. 5.10. For simplicity we choose the smallest possible number of bands (S = 2)

for this approach. It is easy to see that

i1 = 3 and i2 = 4 ,

as shown in Fig. 5.11. The two maximum separation bands in this case are conse-

quitive because the class-averages l̄ and ḡ are monotone as functions of the band

index; this may not be the case in general. The four possible band combinations

yield the following four L/G ratios:

ρ33 = 0.8063, ρ34 = 0.74502, ρ43 = 0.8651, and ρ44 = 0.7994 .
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The ranking of the ratios according to the strength of their spectral contrast gives

ρ1 = ρ34, ρ2 = ρ44, ρ3 = ρ33, and ρ4 = ρ43 .

Using one ratio (R = 1) gives the following edge signature:

EHG = {(3, 4, 0.74502)} (5.20)

for the edge between limestone and granite. The signature (5.20) is used in the

DWELL studies in Section 5.3.

5.2.5 Implementation of the SRC mask

In this section we describe the implementation of the joint spatio-spectral mask KAB

used in the verification studies in Section 5.3. Selection of bands for the ratios in an

edge signature (5.6) was already discussed in detail in Sections 5.2.3–5.2.4. In this

section we focus on the fusing of the edge signature with a specific spatial maskM.

For simplicity, we use the 3 × 3 spatial mask M shown in Fig. 5.3. Recall that

for this mask M = 4, i.e., M has four distinct pixel pairs given by

{u1−(i, j), u1+(i, j)} → {u(i, j − 1), u(i, j + 1)}

{u2−(i, j), u2+(i, j)} → {u(i− 1, j), u(i+ 1, j)}

{u3−(i, j), u3+(i, j)} → {u(i− 1, j − 1), u(i+ 1, j + 1)}

{u4−(i, j), u4+(i, j)} → {u(i− 1, j + 1), u(i+ 1, j − 1)}

Let EAB be an edge signature with length S > 0. Using EAB in conjunction with the

mask M yields a joint spatio-spectral mask KAB

KAB : RI×J×K 7→ RI×J×(4×S) (5.21)
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whose response at a hyper-pixel u(i, j) is given by the 4× S matrix

KAB(i, j) =



u1−
p1

(i, j)

u1+
q1

(i, j)

u1−
p2

(i, j)

u1+
q2

(i, j)
· · ·

u1−
ps (i, j)

u1+
qs (i, j)

u2−
p1

(i, j)

u2+
q1

(i, j)

u2−
p2

(i, j)

u2+
q2

(i, j)
· · ·

u2−
ps (i, j)

u2+
qs (i, j)

u3−
p1

(i, j)

u3+
q1

(i, j)

u3−
p2

(i, j)

u3+
q2

(i, j)
· · ·

u3−
ps (i, j)

u3+
qs (i, j)

u4−
p1

(i, j)

u4+
q1

(i, j)

u4−
p2

(i, j)

u4+
q2

(i, j)
· · ·

u4−
ps (i, j)

u4+
qs (i, j)



as defined in (5.11). The associated indicator matrix χ(i, j) defined from this output

according to (5.13) measures the strength of the edges along the horizontal, vertical

and two diagonal image axes.

Definition of (5.21) can be easily modified by adding or removing pixel pairs.

For example, a simpler definition of KAB results from using only the first two pixel

pairs {u1−(i, j), u1+(i, j)} and {u2−(i, j), u2+(i, j)} from M. In this case M = 2,

KAB : RI×J×K 7→ RI×J×(2×S) and the response of KAB at a hyper-pixel u(i, j) is

given by the 2× S matrix

KAB(i, j) =


u1−
p1

(i, j)

u1+
q1

(i, j)

u1−
p2

(i, j)

u1+
q2

(i, j)
· · ·

u1−
ps (i, j)

u1+
qs (i, j)

u2−
p1

(i, j)

u2+
q1

(i, j)

u2−
p2

(i, j)

u2+
q2

(i, j)
· · ·

u2−
ps (i, j)

u2+
qs (i, j)

 .

The indicator matrix derived from this response measures the strength of the edges

only along the horizontal and the vertical image axes.
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5.3 Application of the SRC edge detection algo-

rithm

The purpose of this section is to perform verification of the joint spatio-spectral SRC

algorithm using real MS and HS imagery data. As a benchmark, we use edge maps

obtained by the MCG edge detector. For definition of the MCG and its application

to edge detection we refer to Appendix A. Also included for some data samples are

edge maps obtained by the application of a standard gray-scale (GS) edge detector

to individual HS or MS image bands. The study uses imagery from the AHI and

DWELL FPA imagery acquired at the CHTM at UNM.

The objectives of the study are twofold. First, we aim to show that the new

SRC algorithm, with either the pairwise ratio edge index described in Section 5.2.3

or the cross-ratio index from Section 5.2.4, is comparable with the benchmark MCG

edge detector, and that in cases when the scene contains weak and strong edges, the

SRC actually outperforms the MCG. We remind that such scenes represent challenge

for magnitude-based edge detectors, which may require sophisticated locally adaptive

threshold strategies to capture the “weak” edges. Our second objective is to compare

and contrast the performance of the SRC with the pairwise and cross-ratio edge

indices, especially for scenes that contain both weak and strong edges.

In our study we use both the raw sensor data, as well as normalized sensor data.

Normalization of the DWELL FPA MS imagery and the AHI HS imagery in this

section follows the same procedure as described in Chapter 3, Section 3.3.2.

5.3.1 Edge detection using AHI imagery

For this study we train the SRC algorithm using the AHI training data shown in

Fig. 5.7. Recall that the scene contains three different classes: building (B), ground
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Signature/Band min max max 1 max 2 max 3

EBG 6 20 31 51 64

ERG 50 6 28 195 60

Table 5.3: Summary of the bands defining the pairwise ratio signatures for the edges

between building and ground and ground and road classes using the AHI training

data shown in Figure 5.12.

(G), and road (R). We first present results for the SRC algorithm with a pairwise

ratio edge index determined according to the procedure described in Section 5.2.3.

SRC with pairwise ratio edge index

The SRC and the MCG edge detectors were tested on several configurations of the

AHI imagery data. We first apply the algorithms to both normalized and non-

normalized versions of the original AHI training and testing data sets. The experi-

ments are then repeated for the AHI training and testing data perturbed with noise.

The pairwise ratio edge signatures for the SRC are determined as follows. We

begin with a basic 2-band min-max signature and then add one by one the bands

corresponding to the next three maximum ratios. This yields four different edge

signatures with lengths ranging from 2 to 5. The bands used for the EBG (building

and ground) and ERG (ground and road) edge signatures are summarized in Table 5.3.

Figure 5.12 shows the corresponding pairwise ratios superimposed with the plots of

the diagonal elements of the B/G and R/G matrices, defined in (5.5).

Figure 5.15 compares performance of the SRC and the MCG edge detectors for the
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Figure 5.12: Pairwise ratio edge signatures ERG and EBG defined using the AHI

training data: the green line shows the diagonal of the spectral ratio matrix R/G;

the red line is the diagonal of the spectral ratio matrix B/G and the boxes show the

band numbers used for ERG and EBG.

AHI training data without the noise. In this particular setup, the same image is used

both for training and testing the algorithms according to the following procedure.

In the training phase, small uniform regions were identified for each class present

in the scene, as shown in Fig. 5.7. Then, the trained SRC edge detector is tested

over the entire scene using both raw and normalized AHI data. The first row in

Fig. 5.15 shows the results obtained with the raw data and the second row shows

the results with normalized AHI data. From the results presented in Fig. 5.15 we

see that the SRC performs at least as well as the MCG algorithm. Moreover, when
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the normalized data is used, the SRC gives slightly better edge maps compared to

those obtained with the MCG.

Figure 5.16 compares the SRC and the MCG edge detectors for the unperturbed

AHI testing data. The testing data is extracted from the same AHI test scene as

the training set, but represents a different spatial region. In this study the SRC is

applied with the same edge signatures as determined in the training phase. Figure

5.17 compares the edge maps derived by using the SRC with the 2-band (min,max)

edge signature, the 5-band edge signature (min, max, max1, max2 and max3), and

the MCG. From this figure we can conclude that in the absence of noise, the shortest

and the longest edge signatures perform equally well.

Figure 5.18 compares the SRC with the 5-band signature, the MCG edge detector,

and a gray-scale (GS) edge detector based on the standard gradient operator. The

GS edge detector is applied to each one of the bands in the AHI testing image, and

the best and the worst results are presented in Fig. 5.18. On the one hand, we see

that it may be possible to find a band for which the standard GS operator will recover

most of the essential spatial features in the image. On the other hand, we also see

that if that single band is not carefully selected, then the standard GS algorithm

may miss most of the important features in the edge map.

Our second study examines the performance of the SRC with different pairwise

ratio edge signatures when the AHI testing data is perturbed with noise. The signal-

to-noise ratio (SNR) used in this case is approximately 50dB, uniformly across all

bands. The goal of this study is to corroborate the remark made at the end of Section

5.2.1 that the number of the ratios in the edge signature can be used to control the

sensitivity of the SRC to the presence of noise. To this end, we apply the SRC starting

with the shortest 2-band (min,max) signature and then gradually increase the length

of the signature to 5. The bands from Table 5.3 are used to define a sequence of 4

edge signatures as follows: (min,max), (min,max,max1), (min,max,max1,max2) and
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(min,max,max1,max2,max3).

Figure 5.19 clearly demonstrates that the sensitivity of the SRC algorithm to

noise is noticeably reduced as the number of the bands in the edge signature is

increased from 2 to 5. This conclusion is further confirmed by Figure 5.20, which

compares the SRC with the 2-band and the 5-band edge signatures and the MCG

edge detector.

One final and significant conclusion that can be gleaned from Fig. 5.15 and

Fig. 5.16 is that the performance of the SRC does not deteriorate significantly when

the AHI training and testing data are normalized. In contrast, the MCG edge map

shows noticeable increase in the noise level for the normalized AHI data. This can

be explained by noting that normalization smoothes the image manifold and so, the

strength of the edges, as measured by their MCG values, decreases. At the same

time, the spectral contrast, as measured by the band ratios, is affected to a lesser

degree by the normalization, and in some cases may even improve. This behavior

can be explained by noting that band ratios are almost invariant to band scaling.

SRC with cross-ratio edge index

In this series of experiments we apply the SRC with the cross-ratio edge signatures

described in Section 5.2.4. We restrict attention to signatures with S = 2 and R = 1.

Recall that S is the number of bands used and that R is the number of ratios selected

from the set of all possible S2 band ratios. Therefore, to define the edge signatures

used in this section, we first select the two bands where the classes forming the edge

exhibit the greatest separation. Then we form all possible 22 = 4 ratios and choose

the two bands that result in the strongest spectral contrast. The edge signatures

obtained through this procedure contain a single ratio formed by these two, possibly

different, bands.
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Signature → EBG ERG EBR

Band ↓ raw norm raw norm raw norm

band 1 50 6 50 6 20 20

band 2 20 7 49 7 19 19

Table 5.4: The cross-ratio edge signatures between classes B, G and R obtained by

application of the strategy in Section 5.2.4 to the AHI training data shown in Figure

5.21.

We use this strategy to train the SRC for the AHI testing data shown in Fig. 5.7.

The single ratio edge signatures obtained at the training phase are shown in Table

5.3. We note that none of the edge signatures in this table correspond to pairwise

ratios, i.e., the ratios on the diagonals of the corresponding spectral contrast matrices.

This means that edge signatures in Table 5.3 could not have been obtained by the

pairwise strategy formulated in Section 5.2.3.

Figure 5.21 compares the edge maps of the SRC with the signatures in Table

5.4, and the MCG algorithm for normalized and non-normalized AHI training data.

Results for the normalized and non-normalized AHI testing data are presented in

Fig. 5.22. Except for the use of a different edge signature, the setup for these exper-

iments is the same as before.

In the case of non-normalized AHI training and testing data we see that the SRC

and the MCG produce virtually the same edge maps. When the data is normalized,

the deterioration of the MCG edge map is much more noticeable than that of the

SRC algorithm; this mirrors the earlier results shown in Fig. 5.15 and Fig. 5.16.
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One important conclusion can be drawn from the results presented so far. By

choosing bands with maximum separation and allowing unrestricted band combi-

nations to form the ratios, we are able to define edge signatures with the minimal

possible length which perform as well as the longer edge signatures whose ratios were

restricted to the diagonal of the spectral contrast matrix. This is an important result

because it enables potentially significant data compression with minimal loss of the

ability to extract the spatial features.

5.3.2 Edge detection using DWELL FPA imagery

This section continues the verification of the SRC algorithm using data acquired

with the DWELL FPA at the CHTM at the University of New Mexico. We use two

DWELL FPA training and testing data sets shown in Fig. 5.13. The left plot in this

figure is a representative image of the first data set which comprises of three distinct

classes: background (B), granite (G) and limestone (L). The right plot in Fig. 5.13

shows a representative image of the second data set. The second data set contains

four distinct classes: background (B), phyllite (P), granite (G) and limestone (L).

Color photographs of the materials used in the study are shown in Fig. 5.14.

Following the procedure established in Section 5.3.1, the same images are used

for the training and the testing of the SRC algorithm. Specifically, to train the SRC

algorithm, small uniform regions were identified for each class present in the scene

(the regions marked by the color boxes in Fig. 5.13), and used to determine the edge

signatures. Then, the trained SRC edge detector is applied over the entire scene. As

before, the benchmark edge maps are computed by the MCG edge detector.

The DWELL FPA images in Fig. 5.13 are characterized by the presence of strong

edges between class B and the rest of the classes, and a weak edge between classes

G and L. Therefore, our principal goal is to demonstrate the ability of the SRC
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Figure 5.13: Images of the DWELL FPA training and testing data sets at bias

voltage 0.7 V. The left image shows the first data set consisting of background (B),

granite (G) and limestone (L) classes. The second data set consists of background

(B), phyllite (P), granite (G) and limestone (L) classes, and is shown on the right.

The DWELL FPA training data for the G, L, P and B classes is identified on the

images by green, red, magenta and blue boxes, respectively.

algorithm to capture weak edges with the cross-ratio edge signatures. Accordingly,

we begin with presentation of results for the SRC with cross-ratio signatures and

then move on to discuss the performance of the SRC with the pairwise ratio edge

signatures.

SRC with cross-ratio edge index

To obtain the cross-ratio edge signatures we follow the procedure described in Section

5.2.4. As in the case of the AHI data, we restrict attention to signatures with S = 2

and R = 1, where S denotes the number of maximally separated bands used to

compute the ratios, and R is the number of ratios selected from all possible S2

combinations. We remind the reader that in this approach the R ratios are selected

according to the strength of their spectral contrast; thus, for R = 1 we select the
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Figure 5.14: Photographs of the materials used in the DWELL study. Shown from

left to right are the phyllite (P), granite (G), and limestone (L). Images courtesy of

www.geology.com.

Signature → EGB ELB ELG

Band ↓ raw norm raw norm raw norm

band 1 6 1 6 1 3 9

band 2 7 10 7 10 4 10

Table 5.5: The cross-ratio edge signatures between the B, G, and L classes obtained

by application of the strategy in Section 5.2.4 to the first DWELL FPA training data

set, identified by the boxes on the left image in Fig. 5.13.

ratio with the strongest spectral contrast. Likewise, for each pair of classes we select

the two bands where these classes exhibit the greatest separation.

The single ratio edge signatures for the two data sets obtained at the training

phase are shown in Table 5.5 and Table 5.6, respectively. What is by now a familiar

situation, we note that none of the edge signatures in these tables correspond to

pairwise ratios, i.e., they could not have been obtained by the pairwise strategy
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Signature → EPL EPB EPG ELG

Band ↓ raw norm raw norm raw norm raw norm

band 1 5 9 6 1 5 9 5 10

band 2 4 10 7 10 4 10 6 9

Table 5.6: The cross-ratio edge signatures between the B, G, L and P classes obtained

by application of the strategy in Section 5.2.4 to the second DWELL FPA training

data set, identified by the boxes on the right image in Fig. 5.13.

formulated in Section 5.2.3.

Results for the first DWELL FPA data set are shown in Fig. 5.23 and Fig. 5.24.

The edge maps in the first figure are computed using the raw DWELL FPA data.

From the plots in the top row we see that the SRC with the cross-ratio signatures

in Table 5.5 is capable of recovering both the strong edges between the B, G and

L classes, as well as the weak edge ELG between classes G and L. This should be

contrasted with the plots at the bottom row in Fig. 5.23 which show that the MCG

edge detector picks the weak edge only after its tolerance is increased to a degree

that results in significant noise levels in the edge map.

From the bottom row in Fig. 5.24 we see that the MCG edge map deteriorates

even further when the normalized DWELL FPA data is used. In addition to the

noise, the weak edge is now smeared compared to the one obtained using the raw

data. The SRC edge map also experiences some degree of degradation; however, the

weak edge ELG continues to be clearly identifiable.

Results for the second DWELL FPA data set are presented in Fig. 5.25 and
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Fig. 5.26. The second data set is in a sense more challenging because the two classes

with the weak edge are now positioned against a phyllite backdrop that is less con-

trasting than the background class. Nonetheless, from the top rows in Fig. 5.25 and

Fig. 5.26, it is clear that the SRC with the cross-ratio signatures in Table 5.6 recovers

the strong edges and the weak edge between classes L and G.

Interestingly enough, Fig. 5.26 shows that for the normalized DWELL data the

resolution of the weak edge by the SRC is slightly improved compared to the raw

data case. The SRC edge map in Fig. 5.26 is more noisy than in Fig. 5.25, but this

should be contrasted with the MCG edge map, shown at the bottom row of Fig. 5.26,

in which the weak edge is significantly smeared.

Finally, in Fig. 5.28 we compare the SRC edge detector with three gray-scale edge

detectors applied to the individual bands of the first DWELL FPA data set. The

purpose of this experiment is to demonstrate that the straightforward application of

gray-scale edge detectors to individual bands may fail to recover the complete edge

map. For this study we use native MatlabTM implementations of the Canny, Sobel

and Prewitt edge detectors and DWELL FPA bands at 0.5, 0.7, 0.9 and 1.1 V.

From Fig. 5.28 we see that neither one of the three gray-scale edge detectors was

able to identify the very weak edge between granite and limestone classes. More-

over, Sobel and Prewitt edge detectors also fail to capture the relatively weak edge

between phyllite and granite and limestone. This, and the previous examples further

demonstrate the potential of the spectral contrast ratio concept for segmentation of

MS and HS images.

SRC with pairwise ratio edge index

The goal is to show that the pairwise ratio edge signature, which is satisfactory

for scenes with edges of about the same strength, may become inadequate for some
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scenes with weak and strong edges. To this end, we use the more challenging, second

set of DWELL FPA training and testing data shown on the right plot in Fig. 5.13.

Because we aim to demonstrate the failure of the pairwise ratio signatures to

recover weak edges, for the purposes of this study we can reuse all but the ELG

edge signature from Table 5.6. To define a pairwise ELG for the non-normalized raw

DWELL FPA data we proceed as follows.

Recall that increasing the number of the ratios in the edge signature makes the

SRC edge detector more restrictive. Because we are already dealing with a weak

edge, it makes sense to consider pairwise signatures ELG with the shortest possible

length S = 1, i.e., signatures consisting of a single ratio selected from the diagonal

of the spectral contrast matrix L/G. Using the raw DWELL FPA training data in

Fig. 5.13 we find that the diagonal of L/G is given by

(0.9385, 0.9451, 0.9549, 0.9496, 0.9547, 0.9597, 0.9727, 0.9824, 0.9867, 0.9890) .

The minimum and maximum pairwise ratios are achieved at bands 1 and 10, re-

spectively. However, the maximum value 0.9890 has almost no spectral contrast.

Therefore, we choose the minimum value corresponding to band 1. For the sake of

comparison we include two more signatures obtained by using the bands from Table

5.6 in a pairwise fashion. To summarize, for the raw DWELL FPA testing data we

reuse the edge signatures EPL, EPB, and EPG defined in Table 5.6, and redefine ELG

as follows:

E1
LG = {1, 1, 0.9385} ; E5

LG = {5, 5, 0.9547} ; E6
LG = {6, 6, 0.9597} . (5.22)

Our results are shown in Fig. 5.27. The top row in this figure compares the

edge maps for edge ELG obtained by the SRC algorithm with the three pairwise

signatures defined in (5.22), and the original cross-ratio signature ELG from Table

5.6. The bottom row in Fig. 5.27 shows the complete SRC edge maps corresponding
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to the same choices of ELG. We remind that all other edge signatures are exactly the

same as in Table 5.6.

An immediate conclusion that can be drawn from the plots in Fig. 5.27 is that,

in at least some cases, the pairwise ratio signatures fail to recover weak edges. This

conclusion can be quantified by comparing the pairwise signatures in (5.22) with

the original definition from Table 5.6. There, to determine ELG we formed the four

possible ratios for bands 5 and 6

ρ55 = 0.9547; ρ56 = 0.7577; ρ65 = 1/0.8270; and ρ66 = 0.9597 .

and selected the one3 with the strongest spectral contrast, i.e., the ratio ρ56. The

resulting cross-ratio

ELG = {5, 6, 0.7577}

has by far the strongest spectral contrast from all ratios used in our study. Because

the smallest diagonal element of L/G is already greater than ρ56, it follows that for

this particular data set no pairwise ratio can provide the same spectral contrast as

the cross-ratio based on bands 5 and 6.

5.4 Conclusions

In this chapter we developed and tested a novel joint spatio-spectral approach for

image segmentation of MS and HS images. The SRC algorithm differs from the exist-

ing edge detection methodologies for such images in several important ways. Unlike

the multi-color gradient (MCG) [1] or the morphological color gradient (MoCG) [27]

approaches, the SRC algorithm is not an extension of an existing gray-scale pro-

cessing methodology, instead it is designed from the onset as a dedicated MS/HS

3We write ρ65 in terms of its reciprocal because the spectral contrast of each ratio is

estimated by taking the smaller of the original value and its reciprocal.
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edge detection algorithm. In particular, the SRC algorithm fuses a given spatial

mask with the spectral band ratios from a given edge signature into a non-separable,

three-dimensional spatio-spectral mask.

Another equally important distinction is that our approach utilizes the concept of

the spectral ratio contrast to estimate similarity and discontinuity in a given HS/MS

image, rather than measuring the rate of change in the image, as in the MCG and

MoCG algorithms. Among other things, by requiring only a few bands per edge

signature, the use of spectral ratios in the SRC enables unprecedented levels of data

compression at the feature extraction stage. This aspect of the SRC approach is

particularly attractive for HS images, for which the number of bands can be as

high as several hundred. One final distinction between the SRC and the approaches

reviewed in Section 5.1 of this chapter, is that the SRC is a two-stage procedure

comprising of a training phase and a feature extraction phase.

In Section 5.3 we carried out an extensive verification of the SRC algorithm

using real HS and MS imagery collected by the AHI and the DWELL FPA sensors,

respectively, and the MCG edge detector as a benchmark. For moderately difficult

scenes in which the edges are of approximately the same strength, as measured

by their MCG values, the SRC and the MCG edge detectors generate essentially

identical edge maps. However, for more challenging imagery containing both “weak”

and “strong” edges, the SRC edge detector outperforms the MCG edge detector by a

wide margin. This provides a strong validation of the spectral ratio contrast concept

by showing that with a suitably defined procedure to define the edge signatures,

band ratios can reliably discriminate weak edges from the background noise and

other spatial features in the image.

Last but not least, our study provides further validation of the fact that band-

wise application of standard gray-scale edge detectors to MS and HS images may fail

to produce complete edge maps due to the inability of intensity-based processing to
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identify iso-luminant edges.

(i) (ii) (iii) (iv) (v)

Figure 5.15: Comparison between the SRC with the 2-band min-max signature and

the MCG edge detectors for raw (top row) and normalized (bottom row) AHI training

data: (i) AHI training image at band 10; (ii) SRC edges EBG; (iii) SRC edges ERG;

(iv) combined SRC edge map; (v) MCG edge map.
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(i) (ii) (iii) (iv) (v)

Figure 5.16: Comparison between the SRC with the 2-band min-max signature and

the MCG edge detectors for raw (top row) and normalized (bottom row) AHI testing

data: (i) AHI test image at band 10; (ii) SRC edges EBG; (iii) SRC edges ERG; (iv)

combined SRC edge map; (v) MCG edge map.
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(i) (ii) (iii)

Figure 5.17: Comparison of the SRC and the MCG edge detectors using two different

edge signatures in SRC: (i) SRC edges with the 2-band min-max ratio signature; (ii)

SRC edge map with the 5-band signature defined by taking all 5 bands in Table 5.3;

(iii) MCG edge map.
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(i) (ii) (iii) (iv)

Figure 5.18: Comparison between the Sobel [4] edge detector applied band-wise and

the SRC with the 5-band signature defined by taking all 5 bands in Table 5.3, and

the MCG edge detectors: (i) Sobel edge map for the worst performing band; (ii)

Sobel edge map for the best performing band; (iii) SRC edge map; (iv) MCG edge

map.
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(i) (ii) (iii) (iv)

Figure 5.19: Progression in the performance of the SRC edge detector for noisy AHI

testing data with an SNR of 50dB, when the number of the pairwise ratios in the edge

signatures is gradually increased: (i) SRC edge map with 2-band min-max signature;

(ii) SRC edge map with a 3-band signature defined by taking the first 3 bands in

Table 5.3; (iii) SRC edge map with a 4-band signature defined by taking the first 4

bands in Table 5.3; (iv) SRC edge map with a 5-band signature defined by taking

all 5 bands in Table 5.3.
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(i) (ii) (iii)

Figure 5.20: Comparison between the SRC and the MCG edge detectors for noisy

AHI testing data with an SNR of 50dB: (i) SRC edge map with the 2-band min-max

signature; (ii) SRC edge map with the 5-band signature defined by taking all 5 bands

in Table 5.3; (iii) MCG edge map.
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(i) (ii) (iii) (iv) (v)

Figure 5.21: Comparison between the SRC edge detector with the cross-ratio sig-

natures defined in Table 5.4, and the MCG edge detector for raw (top row) and

normalized (bottom row) AHI training data: (i) AHI training image at band 10; (ii)

edges EBG; (iii) edges ERG; (iv) Combined SRC edge map; (v) MCG edge map.
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(i) (ii) (iii) (iv) (v)

Figure 5.22: Comparison between the SRC edge detector with the cross-ratio sig-

natures defined in Table 5.4, and the MCG edge detector for raw (top row) and

normalized (bottom row) AHI testing data: (i) AHI test image at band 10; (ii) edges

EBG; (iii) edges ERG; (iv) Combined SRC edge map; (v) MCG edge map.
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(i) (ii) (iii) (iv) (v)

Figure 5.23: Comparison between the SRC edge detector (top row) with the cross-

ratio signatures in Table 5.5, and the MCG edge detector (bottom row) for the

DWELL’s first testing data set consisting of limestone, granite and background; raw

data. Top row: (i) the DWELL test image at 0.7 V; (ii) edges EGB; (iii) edges ELB;

(iv) edges ELG; (v) combined SRC edge map. Bottom row: (i) the DWELL test

image at 0.7 V; (ii–v) MCG edge maps for a sequence of increasingly permissive

tolerances.
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(i) (ii) (iii) (iv) (v)

Figure 5.24: Comparison between the SRC edge detector (top row) with the cross-

ratio signatures in Table 5.5, and the MCG edge detector (bottom row) for the

DWELL’s first testing data set consisting of limestone, granite and background;

normalized data. Top row: (i) the DWELL test image at 0.7 V; (ii) edges EGB;

(iii) edges ELB; (iv) edges ELG; (v) combined SRC edge map. Bottom row: (i) the

DWELL test image at 0.7 V; (ii–v) MCG edge maps for a sequence of increasingly

permissive tolerances.
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(i) (ii) (iii) (iv) (v)

Figure 5.25: Comparison between the SRC edge detector (top row) with the cross-

ratio signatures in Table 5.6, and the MCG edge detector (bottom row) for the

DWELL’s second testing data set consisting of phyllite, limestone, granite and back-

ground; raw data. Top row: (i) the DWELL test image at 0.7 V; (ii) edges EPB;

(iii) edges ELG; (iv) edges EPG; (v) combined SRC edge map. Bottom row: (i) the

DWELL test image at 0.7 V; (ii–v) MCG edge maps for a sequence of increasingly

permissive tolerances.
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(i) (ii) (iii) (iv) (v)

Figure 5.26: Comparison between the SRC edge detector (top row) with the cross-

ratio signatures in Table 5.6, and the MCG edge detector (bottom row) for the

DWELL’s second testing data set consisting of phyllite, limestone, granite and back-

ground; normalized data. Top row: (i) the DWELL test image at 0.7 V; (ii) edges

EPB; (iii) edges ELG; (iv) edges EPG; (v) combined SRC edge map. Bottom row: (i)

the DWELL test image at 0.7 V; (ii–v) MCG edge maps for a sequence of increasingly

permissive tolerances.
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(i) (ii) (iii) (iv)

Figure 5.27: Comparison between the performance of the pairwise and the cross ratio

edge signatures in the SRC edge detector. Top row shows the edge map for the weak

edge between classes L and G obtained with the following edge signatures defined

in (5.22) and Table 5.6: (i) edges ELG using E1
LG; (ii) edges ELG using E5

LG; (iii)

edges ELG using E6
LG; (iv) edges ELG using ELG from Table 5.6. Bottom row: (i–iv)

complete SRC edge maps for the same choices of ELG.
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(i) (ii) (iii) (iv) (v)

Figure 5.28: Comparison between the performance of the SRC edge detector with

the signatures defined in Table 5.6 and the Canny (top row), Sobel (middle row) and

Prewitt (bottom row) gray-scale edge detectors applied to individual DWELL FPA

bands: (i) SRC edge map; (ii) gray-scale edge maps at 0.5 V; (iii) gray-scale edge

maps at 0.7 V; (iv) gray-scale edge maps at 0.9 V; (v) gray-scale edge maps at 1.1

V. The weak edge between granite and limestone is indicated by the red circle in

column (i).
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Appendix A

Multi-Color Gradient Edge

Detector

In this Appendix we briefly review the definition of the multi-color gradient [1] and

explain the idea of the MCG-based edge detector. The MCG algorithm is used as a

benchmark for the validation of the performance of the PSS edge detection-algorithm

developed in this dissertation and described in Chapter 5.

A.1 Definition of the multi-color gradient

Recall that a multi-color image is a three-dimensional array (5.1) of real numbers. To

explain the definition of the multi-color gradient operator it is convenient to regard

the algebraic data representation (5.1) as sampling of a differentiable multi-valued

function

u : Ω 7→ IRK , u(x1, x2) = (u1(x1, x2), . . . , uk(x1, x2)) . (A.1)
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In (A.1) Ω = [0, 1]2 is the image plane. The coordinate functions uk : Ω 7→ IR

correspond to the image planes of the multi-color image generated by the bands of

the sensor.

The data model (A.1) is also referred to as vector-valued or multi-color image; see

[28, 25]. In this model the spatial position of the pixel is assumed to be continuously

varying in Ω while the band is discrete.

We define the multi-color gradient (MCG) operator following the ideas of Di Zenzo

[1] and Cumani [26]. These authors provide extension of the standard gradient to

multi-color images of the form (A.1) by treating the image as a manifold in IRK . This

approach has been used in [25, 29] for extension of anisotropic diffusion methods for

image processing to multi-color images. We first review the definition of MCG using

the functional image model (A.1) and then use this definition to motivate an MCG

operator for the discrete image model (5.1).

The MCG operator [1] for (A.1) is defined as follows. Assume that the Jacobian

(Du)ki =
∂uk
∂xi

, 0 ≤ k ≤ K, i = 1, 2

is rank-2 for all (x1, x2) ∈ Ω. Then the map u : Ω 7→ IRK defines a two-dimensional

manifold (surface) in IRK . This surface is parameterized by the pixel coordinates,

i.e., Ω serves as parameterization domain.

Let P ∈ Ω and Q = P + dP where dP = (dx1, dx2) is infinitesimal displacement.

The differential

du =
2∑
i=1

∂u

∂xi
dxi ,

where
∂u

∂xi
=

(
∂u1

∂xi
. . . ,

∂uk
∂xi

)
,

estimates the “jump” (the difference) in the image values between the two pixels

P and Q. It follows then that the variation in the image can be measured by the
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Euclidean norm of du:

|du|2 =

(
2∑
i=1

∂u

∂xi
dxi

)2

=
2∑

i,j=1

∂u

∂xi
· ∂u

∂xj
dxidxj . (A.2)

Using the notation

gij =
∂u

∂xi
· ∂u

∂xj
=

K∑
k=1

∂uk
∂xi
· ∂uk
∂xj

we see that (A.2) defines a quadratic form

g(dx1, dx2) =
2∑

i,j=1

(gij)dxidxj .

This form is known as the first fundamental form of the manifold u(x1, x2).

A.2 Application of the MCG to edge detection

Intuitively, the first fundamental form g measures the ”steepness” of the manifold.

Therefore, it can be used to estimate the rate of change in a multi-color image. This

is precisely the idea of MCG edge detection exploited in [1, 26].

Specifically, if (dx1, dx2) = (cos θ, sin θ) is a unit vector, then g(dx1, dx2) measures

the rate of change of the image in the direction of this vector. The fastest change

will occur along directions parallel to the eigenvector corresponding to the maximum

eigenvalue of the matrix gij. Direct computation shows that

λ± =
1

2

(
g11 + g22 ±

√
(g11 − g22)2 + 4g2

12

)
.

The eigenvectors are v± = (cos θ±, sin θ±) with

θ+ =
1

2
arctan(2g12/(g11 − g22)) ; θ− = θ+ + π/2 .

Following Sapiro [25] we call θ+ the direction of maximal change and λ+ the

maximal rate of change. θ− is the direction of minimal change and λ− is the rate
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of minimal change. If, at a point (x1, x2) λ+ is much larger than λ−, it follows that

the multi-color image changes rapidly in the direction of θ+ and so an edge can be

placed in the perpendicular direction. On the other hand, if λ+ ≈ λ−, the image

changes at the same rate in all directions and no edge exists.

It follows that edges can be detected by a monitor function f(λ+ − λ−) that

attenuates the difference between the maximal and minimal rates of change [25]. The

use of the first fundamental form to define a multi-color gradient operator ensures

consistency with the standard gray-scale edge detection because in the limit case of

a single band (K = 1) the MCG operator yields the standard gradient. Indeed, if

K = 1 we have that u(x1, x2) = u(x1, x2) and the components of the first fundamental

form are given by

gij =
∂u

∂xi
· ∂u
∂xj

.

A direct calculation shows that λ+ = |∇u|2, and λ− = 0. Therefore, an multi-color

edge detector based on, e.g.,

f(λ+ − λ−) = |λ+ − λ−|1/2

is consistent extension of a gray-scale edge detector based on the magnitude of the

standard gradient.

A.3 Implementation of the MCG edge detector

To implement an edge detector for the discrete multi-color image (5.1) we view this

rank-3 tensor as a discrete sample of the continuous image function (A.1). Accord-

ingly, specialization of MCG to (5.1) requires numerical approximation of the partial

derivatives of the image planes uk(x1, x2). We restrict attention to implementation

using a 3× 3 mask and central differences along the coordinate axes to approximate

the partial derivatives. In this case, the elements of the first fundamental form are
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approximated by

g11(i, j) =
K∑
k=1

(uk(i, j − 1)− uk(i, j + 1))2 ,

g22(i, j) =
K∑
k=1

(uk(i− 1, j)− uk(i+ 1, j))2 ,

and

g12(i, j) =
K∑
k=1

(uk(i, j − 1)− uk(i, j + 1))(uk(i− 1, j)− uk(i+ 1, j)) ,

respectively, and the discrete first fundamental form at pixel (i, j) is given by

G(i, j) =

 g11(i, j) g12(i, j)

g12(i, j) g22(i, j)

 .

Let λ+(i, j) and λ−(i, j) denote the eigenvalues of G(i, j). We implement the MCG

edge detector for (5.1) using the following monitor function

∆λ(i, j) = |λ+(i, j)− λ−(i, j)|1/2 .

Specifically, the super-pixel at (i, j) belongs to an edge if

∆λi,j > τ

where τ is a positive threshold parameter.
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