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Abstract

Despite the advances in fetal healthcare, in Australia around 9-10 out of 1000 babies die

in perinatal period, which is defined as starting from 22 weeks of pregnancy and extend-

ing to the first week after birth. This mortality rate is three to four times higher in some

developing countries. Furthermore, false alarms produced by the current fetal surveil-

lance technology impose unnecessary interventions, which involve additional costs and

potential maternal and fetal risks. Therefore there is a critical need for more accurate fe-

tal assessment methods for reliable identification of fetal risks. Fetal heart assessment is

one of the main concerns in fetal healthcare and provides significant information about

the fetal development and well-being. The aim of this research is to develop automated

and accurate fetal heart assessment methods using noninvasive and less specialized tech-

niques.

In this research, automated methods were developed for estimation of the fetal cardiac

valve intervals which are fundamental and clinically significant part of the fetal heart

physiology. For this purpose simultaneous recordings of one dimensional Doppler Ul-

trasound (1-D DUS) signal and noninvasive fetal Electrocardiography (fECG) were used.

New methods were developed for decomposition of the DUS signal into the component

manifesting the valves’ motion. Opening and closing of the valves were then identified

automatically based on the features of the DUS component, their temporal order and du-

ration from the R-peak of fECG. Result of evaluating the cardiac intervals over healthy

gestational ages and in heart anomaly cases, showed evidences of their effectiveness in

assessing fetal development and well-being.

Fetal heart activity is influenced by not only the fetal conditions and maturation, but

also the maternal psychological and physiological conditions. Therefore this research
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also focused on the relationship between maternal and fetal heart rates. To this aim, a

model-free method based on Transfer Entropy (TE) was used to quantify directed in-

teractions between maternal and fetal heart rates at various time delays and gestational

ages. The changes of the coupling throughout gestation provided detailed information

on the fetal-maternal relationship, which can provide novel clinical markers of healthy

versus pathological fetal development.
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Chapter 1

Introduction

FETAL healthcare is a field of increasing interest and significance around the globe.

In Australia around 9-10 out of 1000 babies die in perinatal period which is from 22

weeks of pregnancy to the first week after birth [9]. This mortality rate is three to four

times higher in some developing countries [170]. Perinatal mortality is mostly caused by

congenital malformations and perinatal hypoxia [27]. The most common of major con-

genital diseases is Congenital Heart Diseases (CHD), which is the cause of over half of

neonatal mortality and morbidity due to structural defects [51]. The incidence of CHD

is 1 out of 125 babies each year and even with the current improved treatment options,

every fifth child with CHD dies during the first year of life. The mortality rate correlates

closely with the severity of the heart defect and its early clinical manifestations. Early

detection of CHD and perinatal hypoxia may reduce perinatal morbidity and mortality

[128], while providing tremendous medical, psychological and economical benefits [61].

Since 85% of fetuses with CHD are not detected and classified in the high risk category,

screening of low risk cases is also necessary [87].

Another indication for fetal assessment is to investigate the fetal development, which

can be affected by conditions which restrict the normal growth of the fetus. Intrauterine

growth restriction (IUGR) indicates a higher risk for perinatal morbidity and mortality

[33]. IUGR fetuses have 50% higher neonatal mortality rates. Furthermore IUGR results

in 10%-30% higher incidence of minor and major congenital anomalies, leading to 30% to

60% of the IUGR perinatal deaths [33,145]. The incidence of IUGR is approximately 4% to

8% of children born in developed countries and 6% to 30% in developing countries [33].

Detection and management of IUGR in clinical practice are through the fetal assessment

1



2 Introduction

methods, such as ultrasound and biophysical profile (BPP), amniotic fluid volume (AFV)

and Doppler assessment of the fetal circulation, which will be discussed in detail in the

next chapter.

Despite the advances in fetal surveillance which reduced perinatal morbidity and mor-

tality rate in the high risk population, the majority of stillbirths and anomalies still oc-

cur in low risk pregnancies [27]. Furthermore, false alarms produced by the current fe-

tal surveillance technology impose unnecessary interventions, which involve additional

costs and potential maternal and fetal risks. Therefore there is a need for more effective

and sensitive methods of identifying fetal risks, as well as simple and less specialized

techniques applicable to the larger population of low risk pregnancies.

1.1 Research aims

To estimate the fetal cardiac valve intervals automatically based on the electrical and mechanical

activities of the fetal heart

Fetal Cardiac valve intervals are fundamental and clinically significant part of the fe-

tal heart physiology and can be used as sensitive markers for fetal development and

well-being. In this research automated methods were investigated for estimation of the

cardiac intervals, through noninvasive and easy-to-operate devices. Simultaneous use of

one-dimensional Doppler Ultrasound (1-D DUS) signal and noninvasive fetal Electrocar-

diography (fECG) provides information on the electrical and mechanical activity as well

as electromechanical coupling of the fetal heart. As will be discussed in the literature

review, previous studies used signal processing techniques to extract the information

content of the 1-D DUS signal, from which the cardiac intervals were manually deter-

mined. However, the DUS signal is nonstationary, highly susceptible to noise and has

a transient nature which complicates the extraction of the information on the mechani-

cal activity of the heart. Furthermore manual identification of the cardiac valve timings

is time consuming, requires special expertise and is subject to inter and intra observer

and visual errors. As such, improved approaches to extract the information content of

the DUS signal and automated estimation of fetal cardiac intervals were investigated in
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this research. The effect of gestational progression and fetal development as well as fetal

heart anomalies on the intervals were investigated to provide novel markers of healthy

versus pathological development.

To investigate the relationship between maternal and fetal heart rates with advancing gestation

Evidence of the relationships between maternal and fetal heart rates have been found

in previous studies. However the knowledge about the mechanism, directionality and

development of this relationship throughout gestation is still limited. The second part of

the thesis is aimed at investigating any linear or nonlinear interactions between mater-

nal and fetal heart rates in both directions. Another purpose of this part is to study the

changes in the coupling with gestational progression, which may provide clinical marker

to assess fetal development.

1.2 Overview of thesis

The first part of the thesis is on the background of the research, including chapter two

which reviews the fetal health assessment methods. It begins with conventional fetal

screening methods in clinical practice, then highlights the methods for fetal heart assess-

ment. These methods include the techniques currently in use in clinical practice and

research. More detailed reviews of literature are included at the beginning of the follow-

ing parts.

The second part of the thesis includes chapter 3 to 8 aimed at estimating and analyzing

fetal cardiac intervals. It begins with chapter 3 is focused on the automated estimation

of fetal cardiac intervals from simultaneous recordings of DUS and fECG signals. This

chapter provides a background on the previous studies and describes the new automated

methods developed for this purpose. Chapter 4 and 5 address the shortcomings of the

methods in chapter 3 and present two new methods for improved estimation of fetal

cardiac intervals. Chapter 4 introduces a more efficient method than the technique pro-

posed in chapter 3, and chapter 5 is focused on a more accurate technique. The methods

described in chapters 3 to 5 estimate fetal cardiac intervals from DUS and fECG. Al-
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though fECG has a crucial role as a reference in these methods, simultaneous recording

with DUS, extraction and processing of fECG complicate these methods. Therefore in

chapter 6, the estimation of the cardiac intervals from DUS signal without fECG, is in-

vestigated. Considering that the DUS signal is highly susceptible to noise and variable

on a beat-to-beat basis, it is crucial to assess the signal quality to ensure its validity for

a reliable estimation of the cardiac timings. Therefore an automated quality assessment

is investigated in chapter 7 to classify the quality of the DUS signal. In chapter 8, fetal

cardiac intervals are estimated for normal fetuses as well as the cases with heart anoma-

lies to investigate the effect of anomalies on the intervals which can be used as clinical

markers.

In chapter 9, beat-by-beat estimated fetal heart rate from fECG is used to investigate its

relationship with the maternal heart rate. The transfer of information between maternal

and fetal heart rate is also analyzed for different stages of pregnancy to provide a marker

for fetal development throughout gestation.

Finally, chapter 10 summarizes the major contributions of this thesis and provides sug-

gestions for future studies to fill the gaps and further develop the research in this area.
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Introduction to Part I

A large body of research advocates improved fetal assessment techniques for early

and reliable detection of antepartum fetal risks, aimed at reducing perinatal mor-

bidity and mortality. This Part provides a background to the fetal health screening tech-

niques with a focus on cardiac assessment methods.





Chapter 2

Fetal health assessment methods

This chapter first provides a general review of the current fetal health assessment methods in clinical

practice and research and then reviews the methods specific to fetal cardiac assessment. More detailed

reviews of literature are included at the beginning of the thesis parts. This chapter is a slightly modified

version of the published book chapter:

• F. Marzbanrad, Y. Kimura, M. Palaniswami, et al., ”Fetal Heart Rate Variability”. ECG

Time Series Variability Analysis: Engineering and Medicine, (eds:H. Jelinek, D. Cornforth, A.

Khandoker), Chapter 18, CRC Press, ISBN 9781482243475, 2015.

2.1 Conventional fetal screening methods

EARLY identification of fetal risks is a field of increasing interest and significance

around the globe. A large body of research advocates various fetal assessment tech-

niques to evaluate antepartum fetal risks. Such risks indicate the need for intervention

which is aimed at reducing the risk of intrauterine death [40, 109, 156]. The risks include

but not limited to utero-placental insufficiency, hypoxia or fetal abnormalities. Antenatal

fetal assessment may particularly have an impact for some maternal or pregnancy re-

lated conditions associated with increased perinatal morbidity and mortality, which are

summarized in table 2.1 [178]. Fetal assessment is not only necessary for high risk preg-

nancies, but also recommended for all pregnancies in general, since it has been reported

that low risk pregnancies have a larger contribution in perinatal mortality than high risk

pregnancies [176].

Conventional techniques of fetal assessment include: fetal movement counting, Amniotic

Fluid Volume (AFV) test, sonographic assessment and Biophysical Profile (BPP), Contrac-

9
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tion Stress Test (CST), Non Stress Test (NST), Vibroacoustic Stimulation (VAS), Doppler

velocimetry and integrated methods [19, 37, 40, 109, 156]. These techniques are briefly in-

troduced in this chapter.

2.1.1 Fetal movement counting

Fetal movement counting is one of the oldest and simplest techniques, aimed at iden-

tifying reduced fetal movement which indicates the need for further assessment. This

method can be performed in different ways including Cardiff and Sadovsky, which vary

in the procedure and required time of the test [56]. Although the test can be done by

mother, the perception of movement is usually not accurate nor reliable, as it may be con-

fused by uterine contractions or aortic pulsation. A diverse range of movement counts

is suggested for maternal perception which further complicates the assessment and di-

minishes the reliability of the test. Furthermore, routine and daily movement counting

by mother followed by appropriate action in the case of reduce motion, is reported to

offer no advantage over informal inquiry about movements and selective use of formal

Table 2.1: Maternal, fetal and pregnancy related conditions which are indications for fetal surveillance;
modified from the table in [16, 103, 156, 178, 197].

Maternal Conditions Fetal and pregnancy related conditions

Antiphospholipid syndrome Pregnancy-induced hypertension/Pre-eclampsia

Hypertensive disorders Insulin requiring gestational diabetes

Hyperthyroidism Decreased fetal movements

Hemoglobinopathies Multiple gestation (with significant growth discrepancy)

Cyanotic heart disease Intrauterine growth restriction (IUGR)

Systemic lupus erythematosus Small for gestational age (SGA) fetus

Chronic renal disease Post-term pregnancies (> 294 days)

Pre-pregnancy diabetes Isoimmunization (moderate to severe)

Advanced maternal age Previous fetal demise (unexpected/recurrent)

Morbid obesity Preterm prelabor rupture of membranes (PPROM)

with oligohydramnios

Polyhydramnios

Chronic abruption
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counting in high-risk cases [56].

2.1.2 Amniotic fluid volume

Established in early 1980s, Amniotic Fluid Volume (AFV) has been used as a chronic

marker of the intrauterine environment [196]. The gold standard for this measurement

is based on the dye-dilution measurement which cannot be applied repeatedly during

pregnancy. Instead, ultrasound based methods such as maximum vertical pocket (MVP)

and amniotic fluid index (AFI) have been advocated, which are both correlated with ac-

tual AFV, specially in the normal range [34, 163]. According to a study by Magann et

al., both methods are useful for predicting variable decelerations, low Apgar scores and

caesarean delivery for fetal distress [106]. Although both MVP and AFI techniques are

similar in prediction of adverse perinatal outcomes, neither of them is used as an effective

sole test for fetal assessment [40].

2.1.3 Doppler velocimetry

The process of Doppler assessment of umbilical artery involves the use of continuous or

pulsed wave Doppler to determine arterial flow in a segment of umbilical cord, which

is identified using B-mode sonography. The pattern of the waveform is then evaluated

mostly through the ratio of Systolic/Diastolic (S/D) and the resistance index, based on

quantifying the end diastolic velocity relative to the peak systolic velocity. The presence

of diastolic flow has a higher impact than S/D value, e.g. the absence or reversed end

diastolic flow is associated with increased incident of perinatal morbidity and mortality

[77], as well as 80% and 46% risk of hypoxia and acidosis, respectively [137].

Using Doppler velocimetry is recommended in pregnancies complicated by hyperten-

sion and specially in the case of growth restriction [4]. However, according to the large

number of controlled, randomized, nonrandomized and observational Doppler studies,

examination of the fetoplacental circulation is of little value in unselected low-risk preg-

nancies [109]. Therefore it is not used as a screening test in general pregnancies.
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2.1.4 Nonstress test by Cardiotography

Fetal Heart Rate (FHR) provides a reliable evaluation of the Autonomic Nervous System

(ANS) function, which regulates the heart beat dynamics. FHR monitoring is commonly

used to assess fetal well-being, and can also provide information about the development

of fetal ANS. As discussed earlier, fetal movement counting is one of the basic techniques

of fetal assessment. Based on a study in 1978, around 99.8% of fetal movements which

last for more than 3 seconds are associated with FHR accelerations [186]. Therefore moni-

toring of FHR as a Non-Stress Test (NST) has become popular for fetal assessment. Move-

ment of the fetuses with no acidosis and no neurological depression shows intermittent

FHR acceleration [186]. FHR deceleration is another parameter which is associated with

an abnormal status of the pregnancy, especially when followed by a womb contraction

occurring within a given time period [26, 87]. NST aims to reduce the rate of fetal com-

promise caused by fetal hypoxia or placental insufficiencies.

FHR monitoring is generally performed by Cardiotography (CTG) for which the nonin-

vasive DUS transducer is used during a 20 minute test. Additionally, a strain gauge or

a tokodynamometer is also used to monitor the uterine activity. NST is defined as reac-

tive if at least two accelerations of more than 15 bpm from the baseline ( which is 110-160

bpm) lasting more than 15 seconds, occur within the 20 minute test. However the absence

of accelerations may be due to the fetal sleep and in that case the test is extended to 40

minutes [19]. In practice, if the fetus does not show reactivity after 40 minutes, further as-

sessment is performed by contraction stress test or biophysical profile test. Vibroacoustic

stimulation can also be used to interrupt fetal sleep and provoke FHR acceleration which

results in a decrease in the test duration and the number of false positive results due to

fetal sleep [184]. Another factor involved with false positive results is the gestational age,

since 50% of the normal fetuses in 24-28 weeks and 15% of the ones in 28-32 weeks of

pregnancy fail to show reactivity in FHR [44, 96].

Overall, nonreactive FHR may be associated with prolonged fetal sleep, immaturity of

the fetus, ingestion of sedatives by the mother and cardiac or neurologic anomalies of the

fetus. The false negative rate of this test is quite low 0.3%, but the false positive rate is

around 50% [46].



2.1 Conventional fetal screening methods 13

DUS signal has been the main tool for CTG. However this signal is susceptible to noise

and is nonstationary mainly due to the movement of the fetus and distortion of the ul-

trasound signals while passing through the amniotic fluid and abdominal layers. These

characteristics of the DUS signal complicates finding fiducial points to detect fetal beats

and FHR estimation. Therefore advanced signal processing techniques are required to

retrieve the fetal cardiac information from this signal. The DUS signal can provide more

details about the fetal heart other than only the fetal heart rate. The Doppler shift of

the ultrasound beam reflected from moving valves of the fetal heart and collected by the

transducer uncovers the opening and closure of the fetal cardiac valves [134, 135, 174].

Using this DUS signal, the timings of cardiac valve motions are estimated and used to

evaluate different systolic and diastolic cardiac intervals [79, 85, 174]. This is one of the

main focuses of this work and will be discussed in detail in chapters 3 to 7.

2.1.5 Contraction stress test

The Contraction Stress Test (CST) was introduced in 1970s based on an intrapartum ob-

servation of the association between recurrent late FHR decelerations and fetal hypox-

emia [158]. Since then, it has been used to detect the fetal hypoxemia prior to the acidemia

development. The process begins with a nonstress test. If during NST a minimum fre-

quency of 3 uterine contractions in 10 minutes does not occur, CST is performed for which

either intravenous admission of dilute oxytocin or maternal nipple stimulation is used to

achieve adequate contractions. The result of this test can be categorized as: ”negative”,

if no late or significant variable decelerations observed; ”positive”, if late decelerations

with at least 50% of contractions detected; ”suspicious”, when intermittent late or vari-

able decelerations are found; ”hyper-stimulation”, in the case of decelerations with con-

tractions of more than 90 seconds’ duration or 2-minute frequency and ”unsatisfactory”

if fewer than three contractions per 10 minutes or an un-interpretable tracing is observed

[40].

A study by Lagrew shows that nonreactive positive CST is well associated with fetal

growth restriction, increased incidence of late decelerations in labor and low 5-minute

Apgar scores [91]. Compared to NST, this technique is less dependent on the fetal sleep
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and age. The positive predictive value of CTS is as high as 50% and the predicting value

of negative cases is significantly high, such that the rate of only 1 still birth per 1000 nor-

mal fetuses within 1 week of a negative test is reported [53, 69].

However CST has some disadvantages such as the multiple time requirement of the test

to provoke contractions and 10% to 15% rate of equivocal tests. Moreover it can not be

used in certain maternal or fetal conditions in which testing might be necessary, for ex-

ample, in the case of maternal uterine rapture or bleeding; or for the fetuses with the age

of less than 37 weeks with the risk of preterm labor [19, 37].

2.1.6 Biophysical profile

Beginning in 1980s, fetal biophysical profile (BPP) method was developed based on real

time ultrasound technique to investigate not only AFV but also the fetal breathing move-

ments as well as body and reflex movement. The sonographic parameters are proposed

to be considered together with FHR monitoring to assess both short term and long term

fetal status and placental function and reserve [156]. Manning proposed a combination

of five parameters to be assessed for BPP which are NST, fetal breathing movements, fetal

body movements, fetal tone and AFV [114] each scored at 0-2 to provide an overall score

of 0-10 for BPP. The idea was to improve specificity of the test by including breathing and

tone, since breathing movements decrease during hypoxemia; and to improve sensitivity

by considering AFV evaluation [19]. Manning observed correlations between BPP score

and the risk of intrauterine asphyxia or death. Based on studying 90000 patients, the false

negative rate of BPP was found 0.06% for a weekly interval of normal tests [38, 111, 112].

However the false positive rate was 50% [110].

Some of the disadvantages of this method are the requirement of both FHR and sonog-

raphy which results in increased cost and time and it may not be used as a fetal surveil-

lance technique for unselected populations [19, 109]. A number of modified versions of

BPP have been proposed, such as the elimination of the NST test if sonography shows

normal conditions, resulted in no negative predictive value loss based on an experiment

on 2500 cases [113]. The combination of NST and AFV may also be investigated as a

modified BPP, which provides similar scores to full BPP for fetuses with abnormal NST
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Table 2.2: Summary of the major conventional fetal assessment methods and their evidence and indication,
adopted from [40].

Test Level of Evidence Recommendation level for high risk patients

Contraction stress test II-2 B

Nonstress test II-2 C

Vibroacoustic stimulation II-1

Amniotic fluid volume II-2 C

Biophysical profile II-2 B
Level of evidence: I, at least one adequate randomized controlled trial; II-1, well-designed
nonrandomized controlled trial; II-2, well-designed cohort or case-control trial; Strength of
recommendation: A, good evidence to support recommendation; B, fair evidence to support
recommendation; C, insufficient evidence to support or reject recommendation.

results [130, 136].

2.1.7 Summary of the fetal screening methods

The major conventional methods are summarized in Table 2.2. The level of evidence and

strength of recommendations are also indicated for each method based on the criteria

recommended by the US Preventive Services Task Force [40].

However these tests are not completely supported by the most rigorous essays required

for assessment of screening, diagnostic or therapeutic interventions [40].

2.2 Fetal cardiac assessment

Fetal circulation is one of the main concerns in fetal assessment which has a crucial im-

portance; especially the evaluation of the heart action may give more useful information

about the fetus during pregnancy [109]. As discussed earlier, FHR monitoring is com-

monly used for this purpose.

As discussed in the first chapter, another indication for evaluating fetal heart is congeni-

tal heart disease [7], which is the most common among major congenital diseases. Even

now that there are improved treatment options available, every fifth child with CHD dies
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during the first year of life. The mortality rate correlates closely with the severity of the

heart defect and its early clinical manifestations. Therefore early detection of these con-

ditions may reduce perinatal morbidity and mortality [128]. Furthermore, it provides

tremendous medical, psychological and economical benefits [61]. The examination for

identification of CHD is not only necessary for high risk populations, but screening of

low risk cases is also important; because 85% of fetuses with CHD are not detected and

classified in the high risk category [87].

Although FHR monitoring has been used as NST or CST to find accelerations, decelera-

tions and baseline variability of fetal heart rate, it is not enough for a thorough assessment

of the fetal state. Beat by beat evaluation of fetal heart rate is required for more detailed

analysis, such as short-term heart rate variability. There are several methods that can

be used for monitoring FHR noninvasively, such as CTG, Ultrasound M-mode analysis,

fECG, magnetocardiography (MCG) and Phonocardiography (PCG) [149]. The fECG and

MCG methods can provide information about the electrical activity of the fetal heart. The

structure of the heart and blood flow through the valves can be visualized and examined

by fetal echo-cardiography. This method is a useful mean for diagnosing structural heart

defects, but it is a highly specialized and expensive technique, which is not generally

used for screening low risk population. Systolic and diastolic cardiac intervals can also

be evaluated based on the opening and closure timings of the valves as well as the onset

of the QRS complex of fECG. Although valve motions can be visualized by echocardio-

graphy, there is a simpler and less expensive method for identification of opening and

closing of the valves, using 1-D DUS. These methods are described in detail in the next

chapters.

In following section, a short description of the fetal heart physiology is provided, then

the cardiac assessment techniques are reviewed.

2.2.1 Fetal heart physiology

Similar to the heart after birth, fetal heart is a muscular organ which provides a continu-

ous blood circulation. However it undergoes significant changes during its development

and even with the first breaths or in few hours after birth, which makes it structurally
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and functionally different from the newborn’s heart. While its critical development be-

tween the 3rd and 7th weeks of gestation, it changes from a simple tube to a structure

with four chambers. Although it is capable of pumping to circulate the blood in its

early form in the 3rd week, the heartbeat can be heard after 20 weeks and the fECG and

MCG can be recorded through the maternal abdomen after 16 to 20 weeks of pregnancy

[82, 149, 166, 192].

A developed fetal heart consists of 4 chambers, similar to the heart after birth: right

atrium (RA), right ventricle (RV), left atrium (LA) and left ventricle (LV). The atria are

thin-walled structures mainly responsible for holding the blood, while the ventricles are

larger and thick-walled chambers for pumping the blood. As a pump, the heart has

valves to ensure the blood flow in the right direction. Atrioventicular valves which swing

from the atria into the ventricles, include a three-leafed tricuspid valve on the right, and a

two-leafed mitral valve on the left side of the heart. There are also two semilunar valves

from the ventricles, namely the Aortic and Pulmonary valves opening to the Aorta and

the pulmonary artery, respectively.

The heart has a nerve system which stimulates it to beat repeatedly in the following

sequence. Each heartbeat begins in the right atrium stimulated by an action potential sig-

nal from the sinoatrial (SA) node. The signal causes the atrial muscle cells to depolarize

and contract during the atrial systole phase, corresponding to the P wave of the fECG.

Then the signal leaves the atria to enter the ventricles via atriaventicular or AV node, in

the inter-atrial septum. It spreads through the bundle branches and the large diameter

purkinje fibers along the ventricle walls. As signal spreads through the ventricles, the

contractile fibers depolarize and contract very rapidly during ventricular systole. The

period of conduction that follows atrial systole and precedes the contraction of the ven-

tricles is depicted on the ECG by the PR segment. The ECGs QRS complex represents

the rapid ventricular depolarization. It is followed by the ventricular diastole, when the

signal leaves the ventricles and the ventricular wall recovers and repolarizes. Ventricular

repolarization corresponds to the T-wave of the ECG and the total time for both depolar-

ization and repolarization of the ventricles is represented by the QT interval. Figure 2.1

illustrates the connection of ECG tracing with the electrical and mechanical events in a
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Figure 2.1: The ECG tracing corresponding to the electrical and mechanical events in a
cardiac cycle is illustrated. The figure is modified from the e-book ”Anatomy and Phys-
iology II”, originally published by OpenStax College, and released under the CC-By li-
cense: https://creativecommons.org/licenses/by/3.0/ [143].

cardiac cycle [143].

The fetal heart has the same basic structure and function as the newborn heart, except

some important differences. Since all of the oxygen that the fetus requires is provided

by the placenta, fetal lungs do not need to operate and the majority of fetal blood de-

tours away from the lungs, via two openings: Foramen ovale opens between the right

and left atria and Ductus Arteriosus links aorta and pulmonary artery. When the blood

enters into the right atrium, some of it flows into the right ventricle, similar to the adult

heart; while some blood flows to the left atrium through the Foramen ovale. The latter

passes directly to the left ventricle to be pumped out to the body without passing the

lungs. Some of that blood in the right ventricle which would normally go to the lungs

through the pulmonary artery, bypasses the lungs and enters the aorta via Ductus arte-

riosus. Ductus arteriosus and the flap of the foramen will remain open until 30 minutes

after the newborns first breathing. Their closure is due to an increase in pressure on the
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Figure 2.2: The anatomic structure of the fetal heart is illustrated.

left side and a decrease on the right side of the heart. Therefore the blood can flow to the

lungs to provide oxygen to the body [50]. Figure 2.2 illustrates the anatomic structure of

the fetal heart.

2.2.2 Fetal echocardiography

Fetal echocardiography is the most informative and noninvasive technique for fetal car-

diac assessment, based on ultrasound. The four chamber view of the heart is one of the

easiest and most useful views to obtain in fetal echocardiography, by which the position

and the size of the heart in the chest and its inner parts, the structure and the function

of the heart are examined. For example the size and contractility of the ventricles and

the appearance of the atrioventricular valves are among the features evaluated from the

four-chamber view [5].

As an extended basic examination, views of the outflow tracts can be also evaluated

which includes the right and left ventricular outflow tracts of the heart. The latter is also

called ”five chamber view” and demonstrates the four chambers and the aorta emerging

from the left ventricle. The pulmonary artery which opens to the right ventricle is illus-
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Figure 2.3: Summary of the views, showing the four-chamber view and the outflow tracts
of the heart, by first imaging the four-chamber view and then moving towards the fetal
neck; to view the five-chamber, 3-vessel, and tracheal views. Adopted with permission
from [42]

trated in the right outflow tract view[3]. According to a study of the low risk population

for CHD screening with prospective study design, the sensitivity of 60.3% was obtained

using the four chamber view examination and the sensitivity of the extended examina-

tion was found to be 65.5% [142].

The speed and accuracy of cardiac analysis has been enhanced by the introduction of

Doppler color mapping about two decades ago [41]. The presence and direction of the

blood flow and the presence of small vessels as well as the areas of turbulence can be

found and confirmed by means of color doppler. Figure 2.3 illustrates a summary of

four-chamber view, the five-chamber, three-vessel, and tracheal views of the fetal heart

[42].

Pulsed wave Doppler is recommended for a complete evaluation of the fetal heart, spe-

cially in the case of fetal cardiac malformation or compromise. This technique demon-

strates the blood flow velocity through the cardiac valves. Figure 2.4 shows four ex-
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Figure 2.4: Pulsed Doppler waveforms captured from the inflows within ventricles and
the aortic and pulmonary outflow tracts. The waveform in early diastole is shown with
the green bar. The E wave occurs when the mitral valve opens and the blood flows
into the ventricles. The blue bar shows atrial systole and specified as A wave, when the
atria contract and the remaining blood is forced into the ventricle. The contraction of
the ventricles is shaded with yellow, as the systolic waveform. Adopted with permission
from [42].

amples of the pulsed Doppler waveforms recorded from inflows to the left and right

ventricles, as well as the pulmonary and aortic outflow tracts [42]. Overall, the follow-

ing aspects of Doppler evaluation are examined: the direction, pattern and velocity of

the flow and measuring volume flow and function. M-mode echocardiography is less

used in fetal cardiac evaluation but has the main following applications: measurement

of cardiac structures, estimation of left ventricular function and evaluation of atrial and

ventricular contraction sequence [5]. Moreover, three dimensional (3D) and four dimen-

sional (4D) fetal echocardiography are other more recently developed means of the fetal

heart assessment. They enable a real-time 3D/4D of the examination of the fetal heart,

which can provide a reliable reassurance of normality or to accurately diagnose major

structural heart defects for the fetuses at risk for cardiac anomalies [15, 28, 70]. Overall,

fetal echocardiography is an expensive method and only particular maternal and fetal

conditions indicate the need for it. Furthermore, in most cases, primary care physicians

or obstetricians cannot appropriately analyze the heart views and only qualified special-

ists can perform this highly specialized examination [24].
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2.2.3 Fetal electrocardiography

Invasive fetal electrocardiography

Though a series of studies in 1960s, Hon et al. proposed capturing the details of fECG

directly recorded through an electrode attached to the fetal scalp and improving its signal

to noise ratio [65–67]. The process was invasive and required the rupture of membrane,

by inserting the electrodes through the cervix and attaching to the presenting part of

the fetus, e.g. via a scalp clip. The problem of noise reduction was partly solved using

an 8-50 Hz filter, which however potentially obscured the P and T waves. Hon et al.

also developed an online averaging technique performed on a Mnemotron CAT digital

computer. The signal-to-noise ratio was improved by a factor of 10 to 20, enabling con-

sistently recording of fECG with P and T waves and minor baseline changes during labor

[67, 182].

In an early study in 1962, Larks et al., suggested the importance of the morphological

changes of the ST segment, such as an association between depression or elevation of ST

segment with apparent intrauterine and neonatal difficulties [94,95]. Later, ST waveform

analysis of fECG for intrapartum surveillance (STAN) became a method for fetal surveil-

lance. STAN combines the standard FHR tracing by CTG with an automated analysis

of fECG through ST-waveform analysis (STAN, Neoventa Medical, Moelndal, Sweden)

[6, 139]. It was shown that the rates of umbilical artery metabolic acidosis and operative

delivery for fetal distress were significantly lower when a combination of FHR monitor-

ing and ST-waveform analysis was used, than the FHR monitoring alone [6]. A significant

reduction in term neonates suffering from moderate to severe neonatal encephalopathy

was observed using this method [140]. Improvements in fetal outcome by increasing us-

age of STAN was also reported by Noren et al. [139]. The general indications for STAN

include completion of 36 weeks of gestation and situations where internal monitoring

was the preferred fetal surveillance method. High-risk pregnancies, suspicious or abnor-

mal CTG antenatally or in early labor, labor induction, oxytocin augmented labor, and

presence of meconium stained amniotic fluid are other examples [139]. This invasive

technique is more suitable during labor and not feasible for the antepartum period, and
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Figure 2.5: An example of the configuration of electrodes for noninvasive fECG.

is only for monitoring singletons. Furthermore, only one differential electrode is possi-

ble, therefore it does not provide a three dimensional electrical field emanating from the

fetal heart [30].

Noninvasive fetal electrocardiography

Noninvasive fECG through the maternal abdomen has been a challenging area of re-

search in engineering and clinical technology over the last decade [82,99,166]. For nonin-

vasive fECG, data are collected using a set of electrodes placed on the maternal abdomen,

while as discussed above, invasive fECG requires uterine rupture for intrauterine elec-

trodes with direct contact to fetal skin [92, 146]. Figure 2.5 shows a sample configuration

of the electrodes in practice. Noninvasive fECG can be used during pregnancy as early as

16th week of gestation. The obtained signal by this method contains a weak fECG with

a low signal to noise ratio, because of the small size of the fetal heart and several low
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conductive layers through which the signal passes to reach the maternal abdomen sur-

face. Furthermore, fECG is not the only recorded signal, but is mixed with the maternal

ECG (MECG) overlapping in time and frequency domain. It is also contaminated by ma-

ternal respiratory, motion artifacts and uterine contractions. Therefore signal processing

is highly necessary to recover the fECG from the abdominal mixture. The movement of

fetus itself also has an influence depending on the orientation of the fetus. Moreover, lim-

itation of clinical knowledge about the fetal cardiac function, compared to adult’s have

limited the advancement in this field [30, 166]. Nevertheless, noninvasive fECG, even in

its current stage of development, provides a comparable or higher accuracy of FHR than

an ultrasound method, while allowing additional interpretation of the electrical activity

of the fetal heart [30, 74].

Although the main purpose of analyzing fECG is to estimate R peaks and find heart rate

on a beat to beat basis, a more accurate estimation of fECG waveform with more details of

P-wave and T-waves as well as accurate QRS complex will provide additional morpho-

logical information based on PR, ST, QT intervals. Different factors have influence on the

fECG waveform, including hypoxia, ion channel activity of myocardial cells, autonomic

nervous activity and congenital heart defects. For example, the ST segment waveform

of fECG is changed in case of hypoxia [57, 82]. The QT interval can be used to detect

long QT (LQT) syndrome, which is a high risk for developing life-threatening arrhyth-

mias and sudden cardiac death in children and adults [173]. PR and QT intervals also

change with gestational age as investigated by Kimura et al., [82] and shown in figure 2.6

[82,169]. Therefore these intervals can be used to assess the development of the fetus dur-

ing pregnancy. However beat by beat identification of T waves from noninvasive fECG is

more difficult and challenging than the R wave, because of noise and interferences which

contaminate the fECG [30, 166]. In addition to the beat-to-beat FHR and morphological

information, fECG can also provide contraction monitoring [63] or fetal movement and

position [30, 165].

Availability of public gold standard databases is also crucial for improving the extraction

of fECG. Early public data bases include: (i) the Daisy database constituted of 8 channels

(4 abdominal and 3 thoracic) and the abdominal ECG (AECG) lasting for 10 sec sampled
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Figure 2.6: The standard values of PR intervals (a) and QTc (b) throughout gestation
weeks [82, 169]

at 250 Hz. (ii) The Non-Invasive Fetal Electrocardiogram Database (NIFECGDB), avail-

able on PhysioNet [55] sampled at fs = 1 kHz. 55 multichannel abdominal ECG record-

ings taken from a single subject (21 to 40 weeks of gestation), fs = 1 kHz, without reference

annotations. (iii) Abdominal and Direct Fetal Electrocardiogram Database (ADFECGDB),

available on PhysioNet [55] sampled at fs = 250 Hz with 5 min of recordings (4 abdom-

inal channels) from 5 women in labor (38 to 41 weeks of gestation), fs = 1 kHz, scalp

ECG available for reference. All these databases are low dimensional (number of record-

ings, number of abdominal channels available) and few data have any reference annota-

tions, which are fetal QRS complex location from a single annotator [30, 166]. The Phys-

ioNet/Computing in Cardiology Challenge in 2013 provided a public set of noninvasive

fECG data to facilitate the evaluation of signal processing techniques for fECG extraction.

The database contained 447 records from the following resources: ADFECGDB [126],

Simulated fECGs [13], NIFECGDB [55], noninvasive fECG and Scalp fECG database [30].

It was aimed at improving the estimation of not only the QRS complex, but also the QT

interval. Reference QRS annotations and QT intervals were reviewed as a gold standard,

using simultaneous direct fECG wherever available [30].

Extraction of fECG typically involves preprocessing of the abdominal ECG, estimation

and then removal of the MECG, estimation of fECG, identification of RR intervals and

postprocessing. The preprocessing is the first step, which includes removal of noise

and artifacts, power-line noise and baseline wandering, using filtering and averaging ap-

proaches. Various approaches has been attempted for separation of fECG by cancellation
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of MECG. As reviewed in [30, 166], major achievement in recovering the fECG has been

through the techniques described as follows. Adaptive filtering is one of the techniques

used to cancel MECG or other artifacts or to extract fECG by training an adaptive or

matched filter [146,161,202]. Partition-based weighted sum filters [175], least square error

fittings [115], Kalman filtering methods [8,60,167] and template subtraction [8,25,115,187]

are other alternatives. The complication of some of these methods is that they require a

reference which may be MECG or a waveform similar to the interfering signal, in order

to exclude it from the mixture. Linear decomposition techniques are based on single or

multichannel decomposition of the collected data which are assumed to be linear and

stationary mixtures of the signals and noises. The applied methods may use time, fre-

quency or scaling properties of the signals, such as Wavelet Analysis methods [78, 101],

spatial filtering, such as singular value decomposition (SVD) methods [22, 36, 76], using

the independency of the mixing components in Blind Source Separation (BSS) techniques

[10, 39, 208] or a combination of these approaches [72, 195, 206]. For example a number

of papers used Principal Component Analysis (PCA) [76, 102], Independent Component

Analysis (ICA) [207], or Periodic Component Analysis [164]. Nonlinear decomposition

techniques assume that fECG is not necessarily linearly mixed with interferences and

noise, therefore some methods use nonlinear transform or nonlinear projection to recover

the fECG [159, 172]. The fusion of different techniques, such as a subset of the aforemen-

tioned methods was also proposed for an improved estimation of fECG [12, 14].

Considering the large noise contamination and low signal to noise ratio, sole use of BSS

may not be promising and it may not be stable for this application, as it tends to extract

noise rather than the tiny fECG signal [82]. A more stable method is Blind Source Sepa-

ration with Reference (BSSR) which improved BSS methods by adding a learning process

with reference signals. The references might be periodic signals mimicking the fECG or

a reference using one dimensional (1-D) DUS [169]. This method was used for fECG ex-

traction in our research, benefitting from the availability of the simultaneous 1-D DUS

signal as a reference. The schematic illustration of this method is shown in figure 2.7, and

it is discussed in detail in chapter 3.

Validity of the BSSR method was also tested by comparing with invasively recorded
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Figure 2.7: The schematic diagram of the BSSR fetal ECG extraction system [82, 169]

fECG in a previous study [82]. Beat to beat fetal heart rate variability was found to be

precisely consistent and coincident for invasively and noninvasively recorded fECG, as

shown in figure 2.8 (correlation coefficient: 0.998 and less than 0.51 bpm bias according

to Bland-Altman test) [82]. Heart rate variability measures calculated from fECG and

Doppler CTG were also compared based on 10 subjects between 24-38 gestation weeks

by Kimura et al., [82]. An example of results for a 24-week subject is illustrated in fig-

ure 2.9 [82]. The correlation coefficient and Bland Altman plots were used to evaluate

the comparisons. It was found that compared to Doppler Ultrasound method, FHR from

fECG provides more details on short term variability (STV) of heart rate [82]. STV is

shown to be associated with fetal autonomic activity [81] and can be used as an effective

tool for fetal assessment.

Using the BSSR method, reliable fECG traces can be extracted and were shown to be

useful for detecting the fetal heart arrhythmia including Premature Atrial Contractions

(PAC), Premature Ventricular Contractions (PVC) and Sick Sinus Syndrome (SSS) [82]. If

these kind of Arrhythmia is diagnosed during pregnancy, it can be a marker of congeni-

tal heart defects. There are also transient arrhythmia, usually with functional causes by

physiological phenomena such as hyperactivation of ion channels in the fetal myocardial
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Figure 2.8: Accuracy of noninvasive fECG, a) The red graph shows an instantaneous
heart rate tracing pattern of a deceleration calculated from noninvasive fECG. The blue
graph shows an instantaneous heart rate tracing of the deceleration calculated from the
scalp electrode fECG. Both heart rates are almost coincident. b) A linear correlation be-
tween the two heart rates (correlation coefficient: 0.9986). c) The Bland-Altman plots
showing a small bias of 0.51 bpm. The minimum value for the limits of agreement was -
0.51 bpm and the maximum was +0.51 bpm whereas 95% intervals of the points lie within
±1bpm [82].
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Figure 2.9: Comparison of Doppler CTG with noninvasive fECG extracted by BSSR. a)
One example of comparison between fetal heart rate from fECG (blue line) and fetal heart
rate from traditional Doppler CTG (red line) in a singleton fetus at 24 weeks of gesta-
tion. b) The blue line shows the moving average of fECG over each of the 15 time points
(3.75sec) (average fECG). The red line represents the Doppler -30bpm line. c) A linear
relationship between the two signals (the correlation coefficient: 0.970). d) Bland-Altman
plot showing a significantly small bias of 1.3bpm. The minimum value for the limits of
agreement was -1.6bpm and the maximum was +1.0bpm, whereas 95% intervals of the
points lie within ±5bpm [82].
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cell. Furthermore ectopic beats, which might be recognized as an important pathologic

association, can be detected using fECG.

2.2.4 Fetal magnetocardiography

Fetal Magnetocardiography (MCG) is the recording of a very weak magnetic field (10−12

tesla) generated by the flowing currents in the fetal heart. Superconductive Quantum

Interface Device (SQUID) is a very sensitive sensor which is used to record fetal MCG.

Liquid helium has to be used to cool SQUID and overall the instruments of the fetal

MCG are expensive, large size and complex [149, 150]. Examples of the signals recorded

by fECG and MCG were compared in [149] and the averaged waveforms are illustrated

in figure 2.10. The fECG is the best of twenty channels while MCG is compromised

by the noise due to simultaneous recording of fECG [149]. This fECG trace is of the

best quality recordings which is not guarantied for any recording at any time. However,

MCG provides good quality waveforms as well as a map on the maternal abdomen by

means of a trigger, therefore fECG can be averaged over that. Thus the fetal MCG can be

used as a complement of fECG. The detailed waveforms obtained by fetal MCG can be

used for diagnosing the conduction disorders of the fetal heart and arrhythmias. During

fetal MCG the patient is advised to have minimal movements during recording and the

duration of the test is usually short, but fECG can be measured at any time or even at

home during pregnancy [149].

2.2.5 Phonocardiography

Fetal Phonocardiography (fPCG) is performed by placing a special microphone on the

maternal abdomen to detect fetal heart sounds. Different from adult’s, fetal heart sound

has low intensity and narrow frequency band. It is weakened while traveling to the

maternal abdomen surface. The ambient noise is also one of the disturbances for this

technique and one of the causes for low SNR. However more prominent disturbances are
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Figure 2.10: The traces of fECG and MCG (a) which are simultaneously recorded, as well
as the average waveform for one cardiac cycle of fECG and fMCG (b). Modified from the
figure in Peters et al., 2001 [149]
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caused by the fetal movement and breathing as well as maternal heart sound, internal

movements and breathing. Fetal PCG is generally used after 30th week of pregnancy,

although some useful sounds may be recorded in 28th week as well [87]. In 1986, fPCG

was investigated by Colley et al., and compared with a simultaneous ultrasound record

of fetal activity. They found the pattern of fPCG correlated with 86% of the total fetal

breathing detected with ultrasound and a further distinctive pattern was found to be as-

sociated with 90% of fetal movements [31].

The fPCG signal mainly consists of two sounds; S1 which is produced by the closure of

the atrioventricular (Mitral and tricuspid) valves and S2 that originates from the closure

of semilunar (Aortic and pulmonary) valves. The systolic time interval is defined as the

interval from S1 to S2 and the diastolic interval is the duration from S2 to the next S1. The

S1 sound is of a lower frequency band (peaking around 20 Hz) than S2 signal (peaking

around 32 Hz) and the maternal heart sound is mostly lower than 25Hz. The features ob-

tained by this method include the fetal heart rate (long term measurement) from which

heart rate variability parameters can be obtained, valve sound, systolic and diastolic time

intervals, heart murmur due to the turbulent blood flow, which can be used to diagnose

CHD and assess the fetal breathing [87].

2.2.6 Summary of the cardiac assessment methods

Table 2.3 shows an overview of the advantages and disadvantages of different heart mon-

itoring techniques [149].
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Table 2.3: overview of different methods for FHR monitoring, modified from the table in Peters et al., 2001
[149].

Methods Apparatus Gestational age Accuracy Remarks
Doppler inexpensive; easy ≥20 weeks* 95+% reliable , can also be
ultrasound to handle FHR short-term used during

variability may labor and
not be observable, recorded from
valve movements 16th week.
(through further
processing)

Fetal expensive, ≥18 weeks 90-95% reliable FHR, cardiac scanning
Echocardiography specialized, anatomy, physiology is possible from

skilled of heart depends 11th week by
personnel on quality images; transvaginal
required accuracy intervals probe

limited
Noninvasive fECG inexpensive; easy ≥20 weeks* 60% reliable in can be used

to handle possibly with last month, for during labor,
a dip around FHR beat to beat good for
32 weeks accuracy, limited long term

fECG morphology ambulatory use
FMCG expensive, ≥20 weeks fully reliable, measured in

skilled waveforms observable 13th week.
personnel in an averaged signal;
required accuracy intervals

about 5 ms
FPCG inexpensive; easy ≥30 weeks FHR, systolic and good for

to handle diastolic intervals long term use
and heart murmurs
can be detected

* In our study noninvasive fECG was recorded and successfully separated for the fetuses in as
early as 16 weeks, together with simultaneous 1-D DUS.
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Introduction to Part II

S IMULTANEOUS recording of the electrical and mechanical activities of the fetal

heart provides the measurement of fetal cardiac intervals which are sensitive mark-

ers for fetal development and well-being. This section provides a review of the previous

methods and the proposed automated methods for estimation of fetal cardiac valve in-

tervals.





Chapter 3

Estimation of fetal cardiac valve
intervals by 1-D Doppler ultrasound

and fetal electrocardiography

Fetal cardiac intervals can be estimated using simultaneous recording of Doppler Ultrasound and

fECG signals. This chapter provides a background on the conventional and the new automated meth-

ods developed for this purpose.

This chapter is a slightly modified version of the published articles [119, 122, 123]:

• F. Marzbanrad, Y. Kimura, K. Funamoto, et al. Automated estimation of fetal cardiac timing

events from Doppler ultrasound signal using hybrid models, IEEE Journal of Biomedical and

Health Informatics, vol.18, no.4, pp.1169-1177, 2014. doi: 10.1109/JBHI.2013.2286155.

• F. Marzbanrad, A. H. Khandoker, K. Funamoto, et al. Automated Identification of fetal cardiac

valve timings, In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual

International Conference of the IEEE, pp. 3893-3896. IEEE, 2013.
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3.1 Introduction and literature review

3.1.1 Extended application of 1-D Doppler ultrasound

FETAL heart rate monitoring is commonly performed by CTG for which noninva-

sive 1-D DUS signal is used. This signal can provide more details about the fetal

heart, other than only the heart rate. The Doppler shift of the ultrasound beam which is

39
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reflected from the moving valves of the fetal heart and collected by the transducer, un-

covers the opening and closure of the fetal cardiac valves [134, 135, 174]. Although valve

motion timings can be also detected by fetal echocardiography, as discussed in chapter

2, this method is expensive and highly specialized, requires skilled specialists to operate

and is only performed for particular fetal and maternal conditions. Using 1-D DUS signal,

the timings of cardiac valve movements are estimated with less expertise and cost, which

efficiently provide different systolic and diastolic cardiac intervals [79,85,174]. However,

a reference such as fECG is also required for this purpose. The main reason is that there

is no single well defined fiducial point in the waveform to identify each heart cycle [149].

Furthermore, fECG is required to estimate the electromechanical coupling indices, which

are fundamental and clinically significant parts of the heart physiology [100, 199].

3.1.2 Fetal cardiac intervals

The opening and closure timings of the cardiac valves are the main bases for estimat-

ing the mechanical and electromechanical indices of the fetal heart [134]. These intervals

are illustrated in figure 3.1. Considering the synchronous operation of both sides of the

fetal heart, the semilunar and atrioventricular valve motions are expressed as the aorta

and mitral valve movements respectively throughout the thesis. Among the cardiac in-

tervals, Systolic Time Intervals (STI) have received considerable attention as indicators

of myocardial function. The STI interval is the time from the onset of the QRS complex

of the fECG to the closing time of Aorta (Ac) and offers assessment of ventricular func-

tion. It consists of the Pre-Ejection Period (PEP) and the Ventricular Ejection Time (VET).

PEP starts with the onset of ventricular depolarization (Q-wave of fECG) and ends at the

onset of ejection which is the aorta opening (Ao) time. VET is the systole phase which

corresponds to the ventricular ejection of blood into the arterial system, characterized by

the time between opening and closing of Aorta. PEP is further divided into Electrome-

chanical Delay Time (EDT) and Isovolumic Contraction Time(ICT). EDT is the period

from the onset of ventricular depolarization (Q-wave of fECG) to the moment that mitral

valve closes (Mc). It is followed by ICT which is the time between closing of mitral and
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Figure 3.1: An illustrative example of fetal cardiac intervals: Systolic Time Interval (STI),
Electromechanical Delay Time (EDT), Isovolumic Contraction Time(ICT), Pre-Ejection
Period (PEP), Ventricular Ejection Time (VET), Diastolic Time Interval (DTI), Isovolumic
Relaxation Time (IRT), Ventricular Filling Time (VFT).

opening of Aorta. The diastolic time follows the STI interval and is also important for

assessing the myocardial blood flow and ventricular filling. During the diastolic period,

Isovolumic Relaxation Time (IRT) occurs from Ac to mitral opening (Mo) time and is fol-

lowed by Ventricular Filling Time (VFT) from opening to closing time of mitral [20].

From a clinical standpoint, PEP, ICT and VET are the most useful cardiac intervals for fe-

tal assessment [134]. For example, PEP is reported as a sensitive indicator of the function

state of the fetal myocardium and the loading conditions of the heart, which can indi-

cate the fetal cardiac performance [47,127]. Furthermore, the development of hypoxemia

and acidosis is early manifested by prolongation of PEP [134, 144]. Another study sug-

gested to use ICT as a reliable index to be substituted for fetal cardiac contractility [204].

Other cardiac intervals are also valuable in clinical practice [134, 205]. Additional uses

of these intervals for identification of abnormalities and assessment of the fetal develop-

ment throughout gestation are discussed in the following chapters.
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Figure 3.2: An illustrative example of mitral and aorta opening and closing identification
from the raw 1-D DUS signal (b), and fECG as a reference (c).

.

3.1.3 A review of the previous methods

Previous studies found that the high-frequency component (e.g. > 100 Hz, for ultra-

sound frequency of 1.15 MHz) of the DUS signal is linked to the valve movements, as the

valves move faster than the heart walls. The lower frequency content is associated with

the cardiac wall motion and the movement of other organs, which are relatively slower

than the valve motion [134, 135, 174]. Therefore in order to identify the valve motion us-

ing the DUS signal, the component corresponding to valve motion should be extracted

from the components related to the movement of the cardiac wall or other organs.

An example of the DUS signal with the corresponding valve motion events is shown in

figure 3.2. The DUS signal shown in figure 3.2 (b) is one of the best quality signals. As

the figure shows, the valve motion events can not be easily identified from the raw DUS

signal, therefore the DUS signal needs to be processed. The signal is also contaminated

by noise and interferences from the movement of maternal and fetal organs; the content

of the DUS signal is highly variable and it depends on the respective fetus and transducer

orientation [174].

Early studies in the 1980s proposed noninvasive methods which mainly aimed to ana-

lyze the systolic time interval, using noninvasive abdominal ECG and the DUS signal

[86, 135, 144, 168]. All of these methods were based on band pass filtering approaches to
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extract the high frequency component of the DUS, from which the valve movements were

identified manually by experts. There were three main issues with these methods needed

to be resolved. Firstly, due to the noisiness and variability of the DUS data on a beat-to-

beat basis, as well as the wide changes in the signal contents and spectral characteristics

over time, band pass filters could not effectively provide the component originated by

the valve motion. Secondly, as also discussed in chapter 2, extraction of the fECG from

the abdominal mixture requires is still a challenge [82, 99, 166]. Finally, manual identifi-

cation of beat-to-beat opening and closing of valves is time consuming, requires special

expertise and is subject to inter and intra observer and visual errors. Improvement in the

aforementioned aspects is essential to make this technique more reliable and applicable

with less expertise.

Several studies suggested applying improved signal processing techniques and more

powerful processors to extract the information content of the DUS signal [79,90,119,174].

Shakespear et al., used Short Time Fourier Transform (STFT) analysis of the DUS sig-

nal and showed that the component with a higher frequency band is generally linked to

valve movement, while the low frequency component is associated with the cardiac wall

motion [174]. However the frequency range of the valve motion related component was

not constant over time. They showed that using averaged spectrogram data the Doppler

frequency shifts associated with cardiac motion events can be visualized (fECG was used

as reference), as illustrated in figure 3.3. The variation in the content of the signal across

the examples are also evident in these figures. It is not always possible to capture and

visualize all valve and wall motion events using this technique. As shown in Figure 3.3

(b), the valve motions may not be detectable from the spectrogram [174]. Considering

the nonstationarity and transient nature of the DUS signal as well as the wide changes in

the signal content and spectral characteristics over time, it was proposed by Khandoker

et al., to apply the multi-resolution wavelet analysis to the DUS signal [79]. Using the

wavelet analysis, valve movements were visualized as peaks in the detailed signal (at

level 2 wavelet decomposition). Figure 3.4 shows two examples of the DUS signals de-

composed by this method and the detected valve motions. It is proposed in this work

to use Empirical Mode Decomposition (EMD) as an alternative which is a data-driven
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Figure 3.3: Three examples of DUS spectrograms annotated to show how the cardiac
activity including atrial wall contraction (Atc), ventricular wall contraction (Vc), aorta
opening and closing (Ao and Ac), mitral opening and closing (Mo and Mc) are manifested
[174].
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Figure 3.4: Figures (a) and (f) show two examples of fECG extracted from abdominal
ECG signals using BSSR [169]. Figures (b) and (g) Show the raw DUS signals recorded
simultaneous with fECG. The detailed signals after wavelet decomposition of (b) and (g)
at level 2 are shown in figures (c) and (h), respectively. The cubic splines envelope of
maxima of the detailed signal is then taken as illustrated in figures (d) and (i). In order
to verify the detected valve motions, Pulsed wave Doppler signals of fetal aortic and
mitral valve movements are shown in figures (e) and (j) and annotated to illustrate the
connection of the signals with the valve motions [79].
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algorithm used for decomposing nonlinear and nonstationary time series. As discussed

in the next section, this algorithm can effectively separate the component linked to valve

movements [119, 123].

Since fECG is used as a reference, it is necessary to have a reliable and precise detection

of the R waves from the fECG. A blind source separation with reference method was pro-

posed by Sato et al., to separate the fECG used in this current research [169].

Another challenge is the need for automated identification of valve movement. Different

from the previous manually techniques for detection of the valve motion, a number of

methods are proposed for automated detection of the valve events, as described in the

current and following chapters.

3.2 Methods

3.2.1 Data

Simultaneous recordings of the abdominal ECG and Doppler ultrasound signals from 45

pregnant women at the gestational age of 16 to 41 weeks with normal single pregnancies

were collected at Tohoku University Hospital in Japan. A total of 45 recordings (each

of 1 minute length) were sampled at 1 kHz with 16-bit resolution. The reason we used

1-minute recordings was that the standard fetal ECG measurement protocol was set up

to that duration. Also ethics committee allowed only one minute ECG to be recorded to

minimize the inconvenience for the participating mothers. All 45 subjects were divided

into three age groups for analysis: 16-29 weeks, 30-35 weeks and 36-41 weeks, including

15, 12 and 18 fetuses, respectively. The study protocol was approved by Tohoku Uni-

versity Institutional Review Board and written informed consent was obtained from all

subjects. The continuous DUS data were obtained using Ultrasonic Transducer 5700 (fe-

tal monitor 116, Corometrics Medical Systems Inc.) with 1.15 MHz signals. To compare

the actual appearance of the aortic valve’s opening and closing pattern with valve tim-

ing events appeared in DUS signals, pulsed-wave Doppler signals were obtained from

convex 3.5 Hz of HITACHI ultrasound scanner (Ultrasonic diagnostic instrument Model
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EUB-525; HITACHI health medical corporation). The detailed procedure for experimen-

tal set up and transabdominal ECG data collection was described in a previous study by

Sato et al., [169].

3.2.2 fECG extraction

Data from 12 channels were recorded bipolarly from the electrodes placed on the mater-

nal abdomen, sampled every 1 ms (1 kHz sampling) with 16-bit resolution and bandpass

filtered by 1 - 100 Hz finite impulse response filter. Twelve electrodes were used for

abdominal ECG recording, ten of which were arranged on the maternal abdomen, one

reference electrode on the back and one electrode was set at the right thoracic position.

To separate fECG from the composite abdominal signal, a combination of maternal ECG

cancelation and blind source separation with the reference signal (BSSR) was used [169].

In brief, electrical activities of the heart can be modeled as a vector in the direction of ex-

citation called the heart vector [183]. The recorded signal in each electrode was modeled

as a projection of the heart vector on the axis spanned by the electrode and the reference.

The maternal ECG component was excluded by subtracting the linear combination of

mutually orthogonal projections of the heart vector. After that, fECG was extracted from

the complex mixture based on its correlation with DUS signal as a reference, using BSSR

which is a kind of neural network method [169].

The R-peaks of fECG were then automatically detected by applying a lower threshold

(e.g. 5 times the mean of fECG over 10 second intervals) and peak-detection based on

zero crossing of the decreasing first derivative of the signal.

3.2.3 Decomposition of the DUS signal by Empirical Mode Decomposition

One of the main methods used in this work is EMD which was first introduced by Huang

et al. [68]. It is a single channel method for decomposing a complicated signal into a set of

different oscillatory modes. These components are called Intrinsic-Mode functions (IMF)

and are zero mean, orthogonal and spectrally independent. The IMFs do not necessarily

have constant frequency or amplitude range.
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EMD is an empirical procedure which is defined only by an algorithm and basically does

not focus on any analytical formulation for theoretical analysis. It has been used exten-

sively in image, speech and audio processing applications as well as biomedical signal

processing [21, 45, 129, 141, 181] where its effectiveness is shown.

In brief, the EMD adaptively decomposes a signal into the IMFs through a specific al-

gorithm, namely ”sifting procedure”. Therefore for each mode, the highest frequency

component is locally extracted out of the input signal.

The sifting process is based on two constraints:

1. The number of zero crossing and extrema in the whole data must be the same or at

most differ by one.

2. At each point, the mean value of the upper and lower envelopes which are constructed

based on the local maxima and minima is zero.

The sifting algorithm begins with identifying local maxima and minima of the signal to

be decomposed. Then the local maxima and minima are interpolated to find the upper

and lower envelopes respectively. The mean of these two envelopes is subtracted from

the signal. The process is repeated for the residue until it meets a stoppage criteria which

limits the size of the standard deviation computed for two consecutive residues. The first

IMF is then obtained from the residue of the final subtraction. The whole procedure is

performed on the residue of this IMF to find the second IMF. This process continues to

obtain all IMFs and the final residue has zero or one extrema. More details can be found

in [68].

In this study it is proposed to apply EMD to the DUS signal to decompose it to the IMFs

which naturally have different frequency bands. An example of applying EMD to the

DUS data is shown in figure 3.5. The peaks of the envelope of the first IMF provide the

features for identification of the cardiac valve events.

3.2.4 Automated valve motion detection

After applying EMD to the DUS data as shown in figure 3.5, according to the findings

in the previous studies, the component with the higher frequency band (higher than 100

Hz) i.e. the first IMF, is linked to the valve motions [174]. On the other hand the low
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Figure 3.5: The decomposition of the DUS signal to different IMFs using EMD

frequency components generally correspond to the wall motion. More precisely, the ab-

solute value of the first IMF has a sequence of peaks which is associated with opening

and closure of the atrioventricular and semilunar valves. For a better assessment, the en-

velope of that IMF was obtained using spline interpolation over local maxima and then

(low-pass) filtered. The intervals of the cardiac cycles were also found using R-R intervals

of the fECG. Then the filtered IMF was normalized over each cardiac cycle and its peaks

were detected.

In previous studies, the cardiac events were manually assigned to the peaks and the in-

tervals were calculated. In this study we aim to identify them automatically. To this aim,

each peak should be classified as an indicator of one of the cardiac valve timing events or
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none of them. The first approach is based on Hidden Markov Model (HMM). It can find

the events based on the probabilistic model of their occurrence sequence and timings.

However it was found that the amplitude as well as the timing of the peaks can also be

used to classify them. Therefore in the next approach, Support Vector Machine (SVM)

was used as a powerful classifier to identify the events. Because the temporal depen-

dency of the occurrence of events is not considered in SVM, some extra peaks might be

classified as the same event in some cardiac cycles, or an incorrect order of events might

be noticed. Thus the Hybrid HMM-SVM approach is proposed to be used in order to

overcome the defects of SVM and HMM. The time segment of each cardiac cycle was set

by using fECG as a reference.

3.2.5 Hidden Markov Models (HMM)

HMM was developed in the 1960s [11] and has been widely used in various applications.

Different from the Markov Model, observed symbols in HMM are emitted from some

hidden states. The formal definition of HMM is [18]:

λ = (A, B, π) (3.1)

A is a transition matrix, B is the emission matrix and π is the initial probability. Given a

sequence of observations, the HMM process is aimed to find the sequence of the hidden

states that the model went through, based on the transition probability that each state fol-

lows another one and the emission probability of the observations from each state. More

details can be found in [18]. If there is an available set of examples from a process, the

model can be estimated by either supervised or unsupervised training. In this study the

supervised approach was used because both input and output of the process were avail-

able as a training set, for which we had prior information. In our experiments Hidden

Markov Models from statistics toolbox of MATLAB was used.

In the first approach, HMM was applied to the filtered version of the first IMF for recog-

nizing valve movements. The sample procedure for detecting a cardiac event is shown
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in figure 3.6. First, the peaks of the first IMF were identified based on the declining zero

crossing first derivative and negative second derivative criteria. In order to find the tim-

ing of the peaks of the IMF envelope in each cardiac cycle, the whole sequence had to

be split into different segments using the R-R intervals of the fECG. The time difference

from the beginning of the segment to the occurrence of each peak in that segment was

then calculated, assigned to each peak and denoted by ti. This data set made our obser-

vation set. The hidden states S = (s1, s2, ..., sN) were set as the opening (o) and closure (c)

of the Mitral and Aortic valves: Mo, Mc, Ao, Ac and four transitional states: T1, T2, T3,

T4, which may occur between each pair of valve motion states.

A training set for which we had prior information about the timings of cardiac events

was then used for the HMM training process. First, HMM was trained based on the

prior information about the training set (if each peak represented one of the valve motion

or transitional events) to provide an estimation of the transition and emission matrices.

Each element ij of the transition matrix was estimated as the number of times the event

sj followed si in the training set, divided by the total number of si in that set. Each ele-

ment bj(k) of the emission matrix was estimated by the number of times an observation
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(peak timing) was linked to the state sj in the training set, divided by the total number

of sj. Since the training set may not be rich enough to estimate the emission probability

for every time bin, the estimated emission matrix may contain many zeros and isolated

spikes. Therefore the estimated emission matrix was filtered by a low pass filter and then

normalized. This filtered matrix and the transition matrix were then used to decode the

new data. By decoding, a matrix containing the probability of the occurrence of each

event was obtained for each peak. Then the event with the highest estimated posterior

probability of occurrence among all states was assigned to each peak.

3.2.6 Support Vector Machines (SVM)

In this approach, SVM was used to classify the peaks of the IMF envelope as a sign of

each event (or no event). SVM developed by Vapnik [193] is a powerful technique for

classification. Two class SVM is designed to find a separating hyperplane with the max-

imum margin with the classes. In the case of nonlinear classification, the data is first

transformed by a Kernel function into the higher dimensional space in which it becomes

linearly separable. SVM is based on the “structural risk minimization” criteria in order

to attain low probability of generalization error [64]. More details on SVM can be found

in [2].

To construct SVM, a kernel function K(xi, x) must be first selected. The choice of the ker-

nel may affect the performance of SVM. The Radial Basis Function (RBF) is one of the

kernels which is used in many applications. It is defined as follows:

K(xi, xj) = exp(−
||xi − xj||2

2σ2 ) (3.2)

where σ is the width of the RBF function. In this study, the RBF kernel was used and σ

was experimentally chosen to be 1.

SVMs are usually formulated for binary (two-class)problems. However they may be ex-

tended to multiclass problems. In this study the one-against-all approach was used for

multiclass SVM [2]. The classes were the same as the states in HMM approach.

SVM was used as the second approach for classifying the peaks corresponding to one of
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the valve motion or other transitional events. For example, the procedure for recogniz-

ing an event from the first IMF is shown in figure 3.7. In order to obtain the features, first

EMD was applied to the DUS data, the envelope of the IMF was taken and all peaks were

determined based on the derivative of the signal. Then, the signal was broken into seg-

ments using R-R intervals of fECG as the reference. The time interval from the beginning

of each segment to the occurring time of each peak in that segment and the amplitude of

the peak were acquired as the features in a matrix Y. SVM uses a training set with the

prior knowledge which assumes the events associated with the peaks. The SVM structure

was developed based on the training set. The new data were classified by SVM to find

the event represented by each peak, based on the amplitude and timing of the peaks. The

Support Vector Machine functions from Bioinformatics toolbox of MATLAB were used

for this study.
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3.2.7 Hybrid SVM-HMM

The Hybrid SVM/HMM method has been developed for the speech recognition [54, 59].

In this research we propose to use it for recognizing the cardiac events. It is a combi-

nation of HMM and SVM. In order to combine SVM and HMM, a probabilistic output

of SVM must be obtained, because HMM is based on probability models. Platt’s SVM

method [152] can provide such an output. In this method the distance of each sample

from the separating hyperplane is transformed to the posterior probability of classifying

the sample. The posterior probability output of the SVM, P(class|input), is obtained by

calculating: P(y = +1| f (x)), where:

f (x) =
l

∑
i=1

αiyiK(x, xi) + b (3.3)

and parametric Sigmoid is fitted to the output of the SVM classifier:

P(y = +1| f (x)) =
1

1 + exp(A f (x) + B)
(3.4)

The parameters A and B are determined by minimizing the negative log likelihood of

the training data which has the form of a cross-entropy error function. In the hybrid

SVM/HMM process the transition matrix and the initial probability is first determined

based on the HMM training process. The SVM is also trained using the training set. The

SVM classification process is then performed on the new data and the emission proba-

bility distribution is obtained by using the output of the Platt’s SVM through the Bayes’

rule. Therefore the HMM model is constructed. Based on this model, the most probable

hidden states are recognized through the decoding process.

For example the procedure of identifying the events from first IMF is shown in figure 3.8.

First the data were broken into segments. Here again, the fECG was used as a reference

for segmentation. Then the time and the amplitude of the peaks were taken into the ma-

trix Y. A training set for which we had prior information was used for SVM and HMM

training. The new data were then classified by the hybrid SVM/HMM method to ob-

tain the probability of the occurrence of the events for each peak. Then one of the valve
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motion or transitional events for which the estimated occurrence probability was higher

than other events was assigned to each peak.

3.3 Results

In order to evaluate the results, the timings of opening and closure of the valves were

verified by the Pulsed-wave Doppler images. It visualizes the direction and the charac-

teristics of the blood flow through the valves. In this technique, the aortic blood flow

Doppler waveform is recorded from the long axis of the five-chamber view of the heart.

The M-mode cursor is placed perpendicular to the inter-ventricular septum at the level

of the mitral valve to examine end-systole and end-diastole (closure of atrioventricular

valves).

In this study the total number of 45 different data sets of DUS and corresponding fECG

were used for testing the algorithm and obtaining the timings. In order to train the hybrid

SVM/HMM classifier, the timings of the events for 30 cardiac cycles from three different

normal fetuses were determined manually based on expertise. The algorithm was then
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Table 3.1: Mean ± standard error of the average time intervals (msec) over 45 normal fetuses and the
accuracy of identified events.

intervals Mean± rate rate

Standard Error (new method) (previous study [79])

R-R 413.6± 26.0 100.0% 100.0%

R-Mc 14.3± 2.3 91.1% 84.0%

R-Ao 51.1± 3.4 95.3% 87.0%

R-Ac 204.6± 5.5 98.8% 97.6%

R-Mo 276.4± 5.4 94.5% 89.7%

Ao-Ac 153.5± 6.3 94.6% 87%

Table 3.2: Results of Kruskal-Wallis test (p-values) and pairwise comparison with Mann-Whitney-
Wilcoxon method for changes of the estimated intervals versus different age groups. The mean ± Standard
Error (SE) (msec) of the timings for different age groups are shown. Significant differences between pairs of
age groups: 16-29 vs 30-35, 16-29 vs 36-41 and 30-35 vs 36-41 are marked by (a), (b) and (c), respectively.

Interval p-value Mean±SE Mean±SE Mean±SE
age group 16-29 age group 30-35 age group 36-41

EDT 0.0967 25.3±4.8 24.2±5.5 26.4±4.0
ICT 0.0558 36.4±2.6 35.6±2.7 37.7±3.4
IRT 0.0218 73.0±4.6 (A) 69.7±4.5 (A,C) 72.2±4.9 (C)

PEP 0.0026 61.7±4.8 (A) 59.9±5.2 (A,C) 64.0±4.0 (C)

STI 1× 10−8 213.9±5.2 (B) 214.0±7.1 (C) 218.2±7.1 (B,C)

VET 0.0333 152.2±3.7 (A,B) 154.2±6.9 (A) 154.2±7.7 (B)

applied to new data sets from different fetuses to find the timings during 40 cardiac cy-

cles for each data set. Figure 3.9 shows an example of the high frequency IMF and the

identified events, the fECG and the Pulsed Doppler image of the mitral valve movement

for three cardiac cycles from one of the test sets. Figure 3.10 shows the result of using

another data set with the fECG and the Pulsed Doppler image of the aortic valve move-

ment. Figure 3.11 shows estimated timings of the valve movements from one of the test

data sets. Only few event timings were missed using this method. Table 3.1 shows the

percentage of the estimated events using all data sets from 45 fetuses for a total of 1777

cardiac cycles and the mean and standard error of the average estimated time intervals

over all fetuses.

The identification of the events by using the SVM, HMM and the hybrid SVM/HMM

method were compared in Figure 3.12. By comparing the results with the Pulsed Doppler
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Figure 3.9: (a) First IMF of the Doppler ultrasound signal decomposed by EMD. (b) Envelope of the
normalized IMF and the identified timings. (c) The simultaneous fetal electrocardiogram signal extracted
from abdominal ECG signals using BSSR. (d) Pulsed wave Doppler signal of fetal mitral valve movements
annotated to show how the specific signals are linked with opening and closing events. Mo and Mc represent
the opening and closing of mitral valve. The fetus was at 35 weeks of gestation.

image, it is shown that the hybrid method performs better than the previous study by

Khandoker et al. [79].
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Figure 3.10: (a) First IMF of the Doppler ultrasound signal decomposed by EMD. (b) Envelope of the
normalized IMF and the identified timings. (c) The simultaneous fetal electrocardiogram signal extracted
from abdominal ECG signals using BSSR. (d) Pulsed-wave Doppler signal of fetal Aortic valve movements
annotated to show how the specific signals are linked with opening and closing events. Ao and Ac represent
the opening and closing of aortic valve. The fetus was at 29 weeks of gestation.
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Figure 3.11: An example of identified events: mitral opening and closing (Mo and Mc) and aortic valve
opening and closing (Ao and Ac).

Table 3.3: Results of Multiple comparison by Mann-Whitney-Wilcoxon method (P-values).

intervals 16-29 vs 30-35 16-29 vs 36-41 30-35 vs 36-41

IRT 0.0032 0.1973 0.0222

PEP 0.0095 0.0966 0.0004

STI 0.4588 0.0000 0.0000

VET 0.0192 0.0091 0.4808

3.3.1 Changes of the cardiac intervals with gestational progression

The estimated intervals were also analyzed by Kruskal-Wallis test to investigate their

changes during pregnancy. Data from all 45 fetuses were divided into three different

age groups: 16-29, 30-35 and 36-41 weeks, including 15, 12 and 18 fetuses, respectively.

Table 3.2 and 3.3 show the results of Kruskal-Wallis test (p-values), mean and standard

error of the timings for each age group as well as their pair-wise comparison with Mann-

Whitney-Wilcoxon method.

Figure 3.13 shows the result of comparison of the changes in PEP with the findings of an

earlier study by Mensah et al., [127].
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Figure 3.12: Comparison of the identification of the valve movements by using HMM (a), SVM (b) and
Hybrid SVM/HMM (c)

3.4 Discussion

In previous studies, intervals of cardiac events have been estimated from DUS signal by

using digital filtering, STFT or wavelet [79, 80, 90, 134, 174]. The DUS signal is nonlinear

and nonstationary and wide changes in the signal content and spectral characteristics are

noticed on a beat-to-beat basis. The transient nature of the DUS signal and its variability

are also shown in previous papers [174]. Therefore it is not convincing to use fixed pa-

rameters such as cut off frequency for filtering methods for the whole signal and different

subjects. Thus EMD which is a data driven method is more suitable for this application.

EMD has been extensively used for decomposing nonlinear and nonstationary signals,

including the DUS signal but for estimating the fetal heart rate [88, 162] and it has not
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Figure 3.13: Changes of the mean and 95% confidence interval of PEP compared to the results of the
previous study by Mensah et al., [127].

been used for this specific application before. The results show that by applying EMD

the component which is linked to valve movements is practically separated and its peaks

which correspond to the events can be discriminated.

All previous studies were based on manual identification of the cardiac event timings.

However it is difficult to recognize the peaks manually, especially for nonexperts. More-

over the appearance of particular types of events in DUS signal strongly depends on the

location of the ultrasound transducer and the fetus. Some peaks which are linked to

the cardiac events may not be visible in some situations or some extra peaks may appear

which may be confusing for manual recognition. It also takes time to carefully investigate

the DUS signal component in order to recognize the events. There are some visual errors

as well as inter- and intra- observer errors when events are recognized based on human

observation. Therefore in this research an automated method was proposed to recognize

the events. For this purpose the hybrid SVM/HMM method was proposed to be used,

which has been previously employed only in speech processing applications. Further-

more, to our best knowledge, the combination of EMD and the hybrid SVM/HMM has

never been used before. The hybrid method classifies the peaks of the decomposed com-

ponent of the DUS signal to be linked to each cardiac event, based on the pattern of the

peaks, the timings and the sequence of the events. The better training of the classifier

with the DUS signals with different patterns, the more powerful automated recognition
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of the cardiac events. As shown in table 3.1, by using this method, a higher percentage

of the valve movement events was identified, compared to the previous manual method.

The results were also compared with the Pulsed Doppler images which verified the suc-

cessful identification of the events.

The estimation of the timing of cardiac events would be very difficult without using fECG

as a reference for segmentation. In this study the position of the R-waves was used for

segmentation of the signal into different cardiac cycles. Results of this method provide

the continuous and beat-to-beat identification of cardiac intervals, which can be used for

clinical purposes.

The relationship between the cardiac intervals and the gestational age was also investi-

gated in this study. According to the Kruskal-Wallis test and pairwise comparison with

Mann-Whitney-Wilcoxon, STI was found to be the most changeable with the age. On the

other hand ICT was more stable during pregnancy as also reported by Koga [86]. Ac-

cording to a recent study by Mensah-Brown et al., PEP increases with the gestational age

(r= 0.57 , p < 0.0001)[127]. In this study based on the pairwise comparison, it is found

that PEP slightly decreases (p < 0.0095) from the age group of 16-29 to 30-35, and then

significantly increases to the age of 36-41 (p = 0.0004, table 3.3). As shown in figure 3.13

the estimated timings are mostly in the same range of 95% confidence interval of the

previous study [127], especially after 30 weeks. The disagreement between the results

before 30 weeks may be caused by the lower accuracy of our technique compared to the

ultrasound imaging for the early gestation fetuses. The results of pairwise comparison

indicate that except for EDT and ICT, all intervals of the age group 36-41 are significantly

different from previous ages. For example STI does not change significantly from the age

of 16-29 to 30-35 (p = 0.4588), but after that sharply increases toward the final weeks of

pregnancy (p < 0.0001). The trend of changes in PEP is also different in the final stage.

Therefore the final weeks of pregnancy are the most critical.

IRT intervals were found to be longer in this study than the timings reported in [108].

The reason may be that the age of the fetuses analyzed in [108] was from 6 to 10 weeks

of gestation, but the average age of the fetuses we analysed was 31 weeks. The cardiac

function changes with the development of the fetal heart. A part of the difference may be
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related to this developmental change.

A limitation of this study is that the quantitative comparison with the pulsed wave

Doppler image based valve motion timings was not provided. More accurate methods

such as trans-vaginal pulsed Doppler imaging can be used in the first trimester fetuses

[108]. However our system is compatible with this wide-continuous monitoring of fetal

heart during second to third trimesters. More accurate quantitative comparison of the

results of the proposed method with pulsed Doppler images requires image processing

and recognition process which are beyond the scope of this study.

3.5 Conclusion

DUS signal is nonlinear, nonstationary, noisy and variable on a beat to beat basis. There-

fore using a combination of EMD as a data driven method for decomposing nonlinear

and nonstationary signal and hybrid SVM/HMM for automated identification of the

events improved the estimation of cardiac intervals. Results showed that 94.5% of mi-

tral opening, 91.1% of mitral closing, 95.3% of aortic valve opening and 98.8% of aortic

valve closing were identified by this method, which were higher than the manual ap-

proaches. The identified timings were verified by pulsed doppler images.

Furthermore the trend of changes of the cardiac intervals for growing gestational age

groups was analysed. Results showed significant changes in STI, IRT, VET and PEP from

early to late gestation. In particular the intervals which corresponded to the last weeks

before delivery were significantly different from their values during the earlier weeks.





Chapter 4

A multi-dimensional hidden Markov
model approach to automated

identification of fetal cardiac valve
motion

The focus of this chapter is on an improved automated identification of the fetal cardiac valve open-

ing and closing from Doppler Ultrasound signal and fECG as a reference. A novel combination of

EMD and multi-dimensional Hidden Markov Models (MD-HMM) was employed which provided

beat-to-beat estimation of cardiac valve event timings with improved precision and recall compared to

the one dimensional HMM and hybrid SVM-HMM approaches.

This chapter is a slightly modified version of the published article [116]:

• F. Marzbanrad, A. Khandoker, M. Endo, et al. A Multi-dimensional Hidden Markov Model

Approach to Automated Identification of Fetal Cardiac Valve Motion, IEEE Engineering in

Medicine and Biology Conference EMBC 2014, pp.1885-1888.

4.1 Introduction

AChallenge in identification of the fetal cardiac valve motions is to automate this

task. In earlier studies [79, 85, 135, 144, 168, 174], the opening and closing of the

valves were identified manually from the peaks of the DUS component by skilled spe-

cialists. Manual identification process requires special skills and is time consuming and

subject to inter and intra observer errors. Therefore an automated technique was pro-

posed in chapter 3, using HMM to find the cardiac valve opening and closing as hidden

states, from the peak timings of the DUS signal component as observation [119]. HMM

65
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only takes one observation symbol at each time, which was the peak timing as proposed

in chapter 3 [119], while other features such as the amplitude of the peaks can also be

used for identification. To incorporate additional features, the hybrid Support Vector

Machines (SVM)-HMM was proposed to recognize the events as discussed in chapter 3

[123]. However combining SVM with HMM made it more complicated, by additional

processes such as: nonlinear transformation with Kernel, solving an optimization (dual)

problem, repetition of procedure for multiclass SVM and estimating the probabilistic out-

put.

The focus of this chapter is to improve the precision and recall of the automated identi-

fication of fetal cardiac valve movement by incorporating additional features using MD-

HMM which is less complex than hybrid SVM-HMM.

4.2 Method

4.2.1 Data

Similar to the process described in chapter 3, the Doppler ultrasound and abdominal ECG

signals were recorded simultaneously at the Tohoku University Hospital, Sendai, Japan.

Furthermore, 16 additional recordings were received from Japan at the time this study

was conducted, made a total of 61 recordings available. Pregnant women and fetuses

were all healthy with single pregnancy and the gestational age of 16 to 41 (33±6) weeks.

All recorded signals were 1 minute in length and sampled at 1 kHz with 16-bit resolution.

The study protocol was approved by Tohoku University Institutional Review Board and

written informed consent was obtained from all participants. Ultrasonic Transducer 5700

(fetal monitor 116, Corometrics Medical Systems Inc.) with 1.15 MHz signal was used to

collect the continuous DUS.

Data were divided into training and testing sets. Training set was obtained from 345

cardiac cycles of DUS components and fECG from 21 fetuses. The cardiac valve mo-

tion events of the training set were identified manually based on expertise. Data from

the remaining subjects were used for test set. M-mode and pulsed wave Doppler fetal

echocardiography were performed simultaneous with DUS and fECG for two test sub-
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jects to verify the mitral and aortic valve timings. Convex 3.5 Hz of HITACHI ultrasound

scanner (Ultrasonic diagnostic instrument Model EUB-525; HITACHI health medical cor-

poration) was used for this purpose. The fECG recording and processing were the same

as the procedures described in chapter 3.

4.2.2 DUS signal decomposition and segmentation

DUS signal was decomposed by EMD as described in the previous chapter. By apply-

ing EMD to the DUS signal, the first IMF corresponding to valve motions was obtained

[119, 123]. The envelope of its absolute value was taken by interpolating its maxima and

smoothing by low pass filter. The peaks of the envelope provided the features for iden-

tification of the opening and closing of the valves. The envelope was segmented into

cardiac cycles using R-R intervals of the simultaneous fECG and then normalized.

4.2.3 Identification of valve timing events by multi-dimensional HMM

The valve timings can be automatically identified from the peaks of the envelope of the

first IMF using HMM, as described in chapter 3 [119]. The timings of the observed peaks

of the first IMF envelope were used as observations to find the hidden states: Mitral clos-

ing (Mc), transition 1 (TR1), Aorta opening (Ao), transition 2 (TR2), Aorta closing (Ac),

transition 3 (TR3), Mitral opening (Mo), transition 4 (TR4).

The identification process was performed in training and decoding phases. In the train-

ing phase, the probability of emissions and transition between states were estimated.

Each element ij of the transition matrix was found by dividing the number of times the

event sj followed si in the training set by the total number of si in that set. Each element

bi(t) of the emission matrix was calculated from the number of times an observation was

linked with the state si in the training set, divided by the total number of si. Viterbi algo-

rithm was used for decoding the observation set and finding the most probable sequence

of states linked to the peaks of the IMF envelope.

In this chapter, it is proposed to use multi-dimensional HMM which was developed for

telerobotic applications [62,203], in order to add new features to the observation, such as
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the amplitude of the peaks to improve identification.

To add a new dimension, an additional set of emission probabilities was estimated in the

training phase which was the probability of observing a peak amplitude given a hidden

state at that peak time. The peak amplitudes were quantized and scaled to be mapped

into a range of integers from 1 to 200. The emission probability can be expressed as fol-

lows:

bi,d(od(t)) = P(od(t)|s = i) (1)

where i is the state number, o indicates the observation sequence in discrete time t, which

has two dimensions, the timing (d = 1) and amplitude (d = 2) of the peaks. Since the

training set was not rich enough to estimate the emission probability for every time bin

and amplitude value, the estimated emission matrices contained some zeros and isolated

spikes. Therefore the estimated emission matrix was filtered by a low pass filter and then

normalized. Figure 4.1 shows emission probability trained based on 345 cardiac cycles

from 21 fetuses.

The amplitude and timing of the peaks given each state were independent as verified

by Hilbert-Schmidt Independence Criterion (HSIC) test with a Gamma approximation

and the median distance as kernel size (type I error upper bound was < 0.17 for Mc,

< 0.03 for Ao and < 0.01 for other states)[58]. Therefore the probability density function

of the observation, specific to each state (e.g. state i) was modified as follows and used in

Viterbi algorithm.

Bi(O(t)) =
n

∏
d=1

bi,d(od(t)) (2)

where n indicates the dimension of the observation which is 2 in this application. More

details about the multi-dimensional Viterbi algorithm can be found in [62].

4.2.4 Cross-validation

The MD-HMM approach was compared to one dimensional HMM and hybrid SVM-

HMM, using 10-fold cross validation. The training set was randomly partitioned into 10

subsets with almost equal size; one subset for validation and 9 subsets for training. The

whole process was repeated 10 times with different subsets for validation.
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Figure 4.1: Emission probability distribution trained based on 345 cardiac cycles from 21
fetuses, for different observed peak amplitude and timing from the preceding R-peak.

The precision and recall of the identification of each valve timing event was calculated as

follows and averaged over the 10 folds:

Precisioni =
Ti

Ti + ∑j Fij
(4.1)

Recalli =
Ti

Ti + ∑j Fji
(4.2)

where i refers to one of the valve motion events (Mo, Mc, Ao or Ac), Ti is the number of

true estimation of event i and Fij indicates the number of times event j was mistakenly

identified as event i.

4.3 Results

The precision and recall of identifying valve motion events was obtained from 10-fold

cross-validation of the training set including 345 cardiac cycles of DUS signal and fECG



70
A multi-dimensional hidden Markov model approach to automated identification of

fetal cardiac valve motion

Table 4.1: Precision (%) of identification of valve motion events by cross validation of
different methods applied to the training set including 345 cardiac cycle recordings from
21 fetuses.

Methods Mc Ao Ac Mo Average
MD-HMM 91.5 89.1 81.5 69.4 82.9
SVM-HMM 90.8 90.6 77.9 60.0 79.8

HMM 90.8 88.1 71.2 59.4 77.4

Table 4.2: Recall (%) of identification of valve motion events by cross validation of dif-
ferent methods applied to the training set including 345 cardiac cycle recordings from 21
fetuses.

Methods Mc Ao Ac Mo Average
MD-HMM 92.9 91.2 81.5 69.6 83.8
SVM-HMM 93.8 92.7 77.9 60.2 81.2

HMM 91.3 89.4 71.2 59.6 77.9

from 21 fetuses. The new MD-HMM method, one dimensional HMM approach [119] and

hybrid SVM-HMM [123] were compared in tables 4.1 and 4.2 which show the improved

precision and recall using the new method.

The MD-HMM method was applied to two test data (not involved in training) for one

of which, the simultaneous M-mode image of the aortic valve motion and for the other

one the pulsed wave Doppler image from mitral was collected. Figure 4.2 and 4.3 show

the m-mode and pulsed wave Doppler images which verify the identification of the aorta

and mitral valve motions respectively. As shown in figure 4.3, the last Mc event did not

appear nor was it identified from the DUS signal. However Mc was identified for 95.1%

of all cardiac cycles combined from 61 subjects. The rate of identified events across 61

subjects (8510 cardiac cycles) from training and testing sets, the mean and standard error

(SE) of the average interval of fECG R-wave to each valve motion are summarized in

table 4.3.

4.4 Discussion

In this study a new automated method was proposed to identify the beat-to-beat fetal

cardiac valve timings with improved precision and recall. The shortcoming of the (one
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Figure 4.2: (a) The M-mode image of the aortic valve operation. The aorta opening (Ao)
and closing (Ac) events are depicted by dashed lines. (b) The envelope of the first IMF
and the events identified by the MD-HMM method. (c) Simultaneously recorded fECG.

dimensional) HMM is that it only takes one observation symbol at each time [119]. By

extending it to the multi-dimensional HMM, multiple features can be used for identi-

fication. By adding the peak amplitude feature, the average precision and recall were

improved from 77.4% to 82.9% and from 77.9% to 83.8%, respectively. Other parameters

such as the width of the peaks can also be used in future studies.

Another method to incorporate multiple features for this application is the hybrid SVM-

HMM which was described in the previous chapter [123]. The precision and recall of

the MD-HMM was slightly higher than the hybrid SVM-HMM method. Furthermore,

the MD-HMM method is simpler than the hybrid method. The procedures added to
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Figure 4.3: (a) Pulsed wave Doppler image of fetal mitral valve movements. Dashed
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HMM for SVM-HMM include: nonlinear transformation with Kernel, solving an opti-

mization problem (dual problem [193]), repetition of procedure in the one-against-all

scheme for multiclass SVM and fitting sigmoid (Platt’s method) to obtain a probabilis-

tic output. While for MD-HMM training, an extra estimation of the emission matrix is

added for each extra dimension which is simply calculated from the number of times an

observation is to linked each state, divided by the total number for that state. For decod-

ing, the emission probabilities are multiplied under the condition of their independence,

to obtain the probability density function of the observation for each state required in
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Table 4.3: Mean ± SE of cardiac intervals and the rate of identified events for 61 fetuses
are summarized. The identification rate was calculated from the number of identified
cardiac valve events out of 8510 beats from 61 fetuses.

Intervals Mean ± SE rate* (%)
R-R 420.9 ± 34.1 100

R-Mc 26.5 ± 2.9 95.1
R-Ao 64.1 ± 3.7 98.8
R-Ac 220.7 ± 4.7 99.9
R-Mo 297.1 ± 7.4 99.9

Viterbi algorithm. Overall, the process of MD-HMM is less complex than the SVM-HMM

specially for low dimension, but detailed comparison of their complexity requires further

study.

Mitral closing event had the lowest identification rate (table 4.3) and also did not appear

in the last beat shown in figure 4.3. Mitral closes when the pressure of the left ventricle

exceeds the left atrial pressure, which is followed by opening of aorta. A reason for lower

identification rate of Mc is that time difference between Mc and Ao is very short and in

some cases their corresponding peaks of IMF cannot be distinguished. As reported in the

results of this and the next chapter, mitral opening was identified with the least preci-

sion and recall. This is mostly because mitral opens in two phases (E phase followed by

A phase) which is not the case for other valve movement events. This complicated the

identification of the peak corresponding to the onset of the E phase.

4.5 Conclusion

In this chapter a new method was proposed for automated identification of fetal cardiac

valve motions using a combination of EMD and multi-dimensional HMM. Employing

MD-HMM enabled the use of amplitude of the peaks of the first IMF as well as their

timings, which improved the precision and recall of the identification of cardiac valve

motion. The average precision obtained by the MD-HMM was 82.9%, which was higher

than one dimensional HMM (77.4%) and hybrid SVM-HMM (79.8%). More than 95.1% of

valve motion timing events were identified using this method and they were also verified

by M-mode and pulsed Doppler images for two fetuses.





Chapter 5

Model-based estimation of Fetal
Cardiac Timing Events

In this chapter, an efficient model is proposed using K-means clustering and hybrid SVM-HMM

modeling techniques. As described in chapter 3, the valve motion can be automatically identified

by hybrid SVM-HMM based on the amplitude and timing of the peaks of the DUS high frequency

component. Different patterns of the DUS components were found in this study which were variable

on a beat to beat basis and throughout gestation. The amplitude of the peaks linked to the valve motion

was different across the patterns and this affected the valve motion identification by the previous hybrid

SVM-HMM method. Therefore, clustering of the DUS components based on K-means was proposed

and the hybrid SVM-HMM was trained for each cluster separately. The valve motion events were

consequently identified more precisely by beat-to-beat attribution of the DUS component peaks. It

was an improvement compared to the hybrid method without clustering and this model would be

useful for reliable screening of fetal wellbeing.

This chapter is a slightly modified version of the published article [117]:

• F. Marzbanrad, Y. Kimura, K. Funamoto, et al. Model based Estimation of Aortic and Mitral

valves Opening and Closing Timings in Developing Human Fetuses. IEEE Journal of Biomed-

ical and Health Informatics vol.PP, no.99, pp.1, 2014. doi: 10.1109/JBHI.2014.2363452.

5.1 Introduction

AS discussed in chapter 3, a method based on HMM was proposed for identifica-

tion of valve motions [119]. Opening and closing of different valves, assumed as

hidden states, were identified from the observed sequences of the peaks of the DUS sig-

nal component using HMM [119]. It was later found that the amplitude of the peaks can

improve valve movement identification, in addition to the timing of the peaks. There-

75
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fore, hybrid SVM-HMM and MD-HMM approaches were proposed in chapter 3 and 4,

in which both the transition model of the valve motion and pattern of the peaks were

used to identify the valve motion events from the observed peaks of the DUS signal com-

ponent [123].

Although SVM-HMM provides a better estimation of fetal cardiac timings compared to

HMM, nonstationary characteristics of the DUS signal complicate the classification of the

peaks. The variable pattern of the DUS component is observed for both inter and intra

subjects, which primarily depends on the orientation of the fetal heart to the transducer

[174]. For example, the peak corresponding to aortic valve opening is sometimes smaller

and sometimes larger than the peak representing the mitral closure. If a common training

set is used for all existing patterns of the DUS components, the identification precision of

valve motion by hybrid SVM-HMM is decreased.

In this chapter, K-means clustering is first used to find the patterns of the DUS compo-

nents and match each beat-to-beat DUS components to one of the models. Then, the

valve motion events are identified from the peaks of the DUS component using hybrid

SVM-HMM trained specifically for its corresponding cluster. In this study, six patterns

were identified for DUS components and the occurrence rate of each pattern was also

analyzed for the fetuses in different age groups to investigate its relationship with the

gestational age.

5.2 Materials and Methods

5.2.1 Data

Similar to the process described in the previous chapters, the DUS signal from 1.5 MHz

Ultrasonic Transducer 5700 and the abdominal ECG signals were collected by a multi-

channel data acquisition system. Signals were recorded simultaneously from 61 pregnant

women at the gestational age of 16 to 41 (33± 6) weeks with healthy single pregnancy

at Tohoku University Hospital, Japan. DUS signal patterns were compared in two age

groups of early gestation (16-32 weeks) and late gestation (36-41 weeks), including 24

and 28 fetuses respectively.
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M-mode and pulsed-wave Doppler were acquired simultaneous with DUS and fECG

recordings, using convex 3.5 Hz of HITACHI ultrasound scanner, to verify the mitral and

aortic valve opening and closing time obtained from the DUS signal. Ultrasonic diagnos-

tic instrument Model EUB-525; from Hitachi health medical corporation and ACCUVIX

A30; from Samsung Medison were used in this experiment. More details about the ex-

perimental set up can be found in our previous study [169].

5.2.2 fECG extraction

The fECG extraction process was the same as in the previous chapters. Data from 12

channels were recorded bipolarly from the electrodes placed on the maternal abdomen,

and fECG was extracted from the composite abdominal signal, using a combination of

maternal ECG cancelation and blind source separation with the reference signal (BSSR)

[169]. The R-peaks of fECG were then automatically detected by applying a lower thresh-

old (e.g. 5 times the mean of fECG over 10 second intervals) and peak detection using

the derivative of the signal.

5.2.3 DUS signal decomposition

The collected DUS signal (figure 5.1-(a)) contained components linked to the movement

of the fetal cardiac valves, walls or other organs. As discussed in the previous chapters

and shown in [174], the high frequency component of the DUS signal is linked to the

valve movement, while the low frequency component is associated with the cardiac wall

motion. To obtain the valve motion related component, the DUS signal was decomposed

by the multiresolution Wavelet analysis as described in the previous studies [79, 122]. In

this part of thesis EMD is not used for decomposition, because wavelet analysis provides

the components with more consistent amplitude range which can be better clustered,

hence more suitable for the purpose of this study. The wavelet analysis uses a set of

basis functions to decompose the signal into the detailed and the approximate signals,

which are the higher and lower frequency components, respectively. The decomposition

is repeated on the approximation signal to obtain detail and approximation signals at
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the next level. In this study, the second order complex Gaussian was used as mother

wavelet. The detailed signal of the DUS signal at level 2 is the high frequency component

(100 − 200 Hz) which corresponds to the valve motion events (figure 5.1-(b)) [79, 174].

The envelope of the absolute value of this signal was taken by interpolating its maxima

and smoothing by low pass filter (figure 5.1-(c)). In the rest of the chapter, this envelope

is called ”DUS component” for simplicity.

5.2.4 Segmentation and normalization

The DUS component was segmented into cardiac cycle sections and then normalized.

Segmentation was performed using R-peaks of the simultaneously recorded fECG. Each

segment of the DUS component was taken from R-R intervals of the corresponding fECG.

It was then normalized by subtracting the mean and dividing by the standard deviation

of the DUS component estimated over the segment. An example is shown in figure 5.1-

(c).

5.2.5 Training

The training phase consisted of three sections: Clustering in which different models of the

segments of the DUS components were automatically obtained using K-means clustering,

HMM training in which the transition model was estimated from the training data and

SVM training in which the SVM structure was developed. Training data set was obtained

from 345 cardiac cycles of DUS components and fECG from 21 fetuses. The cardiac valve

motion events for this train set, were identified manually based on expertise.

Clustering

K-means clustering method was used to estimate different templates for the segments of

the DUS components. The k-means clustering [105] is a classical, most widely known

and well-studied unsupervised learning approach, which iteratively clusters data into

groups with members close to each other and far from members of other clusters. It is a

fast algorithm with uncomplicated computation for each iteration and converges in few
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sian as mother wavelet; (a) the DUS signal, (b) the detailed signal at level 2, (c) the enve-
lope of the detailed signal (the DUS component) and its segments divided by dash-dot
lines, (d) Simultaneously recorded fECG.
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iterations [185].

For clustering and template matching, the first 350 samples (350 msec) of the DUS com-

ponent in each segment were used (x in eq. (5.1)). However for HMM-SVM training

and recognition, all samples (full length) of the segments were considered. The K-means

clustering algorithm was performed based on Euclidean distance. It was used to find the

clusters C1, ..., Ck, such that:

arg min
C1,...,Ck

k

∑
h=1

∑
xo∈Ch

‖ xo − µh ‖2, (o = 1, 2, ..., M) (5.1)

where xo is the observed DUS component of segment (o), M is the number of observation

segments (e.g. 345 segments) and µh is the mean of the observation segments in cluster

Ch. Different number of clusters k from 3 to 16 was tested and the mean silhouette value

was the highest for 6 clusters. The final number was therefore decided to be six (k = 6)

which resulted a reasonable combination of the mitral and aortic valve motion peaks with

different comparative sizes across the clusters. The centroid of the clusters and the DUS

component segments of each cluster are shown in figure 5.2. K-means clustering function

from statistics toolbox of MATLAB was used for clustering.

The percentage of observing each pattern was calculated for each fetus. Then the percent-

age of each pattern was compared for early and late gestation groups applying Mann-

MannWhitneyWilcoxon test.

SVM-HMM training

The hybrid SVM-HMM method was proposed for recognizing the fetal valve motion in

chapter 3 [123]. In brief SVM and HMM were combined to automatically identify the

valve motion events based on the transition of the states and pattern of the observation.

This method includes training and testing processes which are described below and in

the next section, respectively.

Similar to the chapter 3, in this application eight hidden states were defined, including

the valve motion and the transition events between them, namely: Mitral closing (Mc),

transition 1 (TR1), Aorta opening (Ao), transition 2 (TR2), Aorta closing (Ac), transition 3
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Figure 5.2: The DUS component segments which were clustered into six profiles are
shown in the top figure (a), the centroid of each cluster are shown in the bottom fig-
ure (b). The mean ± SD duration of the valve motion timings of the training set for each
cluster is marked with downward-pointing triangles in figure (b).
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(TR3), Mitral opening (Mo), transition 4 (TR4). The HMM observation is the DUS compo-

nent and the features are the timing and amplitude of the peaks of each segment of DUS

component. In the hybrid SVM-HMM training, the transition matrix is estimated from

HMM training process and the emission matrix is obtained from SVM training. The SVM-

HMM training process was performed for the training data of each cluster (Ch, h = 1..., 6)

separately.

Emission matrices were estimated using SVM and the observation was classified into

eight classes which were the same as the hidden states as described above, i.e. Mc, TR1,

Ao, TR2, Ac, TR3, Mo, TR4. For the training process, all peaks of each segment of DUS

components were identified using the derivative of the signal. Then the amplitude of

each peak and the interval between the peak and its proceeding R-wave were acquired

as the classification features. In the SVM training process, the SVM classifier was trained

and the support vectors were identified. This process was performed on the training data

of each cluster separately to obtain the SVM classifier specific to each of the six clusters.

5.2.6 Automated recognition of valve motion

The main algorithm for identification of cardiac valve events includes template matching

and hybrid SVM-HMM. The latter uses the trained models from the training process to

find the valve timings for the new (test) data.

Template matching

The DUS components of the test data were segmented into cardiac cycles using their

corresponding fECG R-R intervals. Then each segment was attributed to one of the clus-

ters which gave the minimum Euclidean distance between the first 350 samples of each

segment (y) and centroid of the cluster:

H(y) = argmin
h
‖ y− µh ‖2, (h = 1, 2, ..., 6) (5.2)

where y is a segment of DUS component from test data and H is the cluster index. In or-

der to identify the valve motion events in each segment, the trained model for its matched
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Figure 5.3: Block diagram of the training and testing processes.

cluster was used in hybrid SVM-HMM process.

Hybrid SVM-HMM

For each segment of the DUS components in the test data (y), the time and amplitude of

the peaks were used to classify them by SVM classifier trained for the corresponding clus-

ter of that segment (CH(y)). As described in chapter 3, since HMM is based on probability

models, a probabilistic output of SVM was obtained using Platt’s method which provides

the posterior probability of classifying the sample, i.e. P(class|input) [152]. The emission

probability distribution was estimated using the output of the Platt’s SVM through the

Bayes’ rule [123].

The transition probability (from HMM training) and the emission probability matrices

specific to each cluster were used to find the most likely sequence of events for each new

segment of the DUS component, using Viterbi algorithm [155]. The block diagram of the

training and testing process is shown in figure 5.3.
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5.3 Results

5.3.1 Clustering

In the training phase the segments of the DUS components were clustered by K-means

method. Six clusters with different patterns of the DUS component segments are shown

in figure 5.2. The mean± standard deviation (SD) ranges of the valve motion timings are

shown in figure 5.2(b) for each cluster. The cluster centroids have peaks in the time range

of the valve motion events, but with different comparative amplitude across 6 clusters.

5.3.2 Comparison of patterns for gestational age

The percentage of beats with each DUS pattern was calculated for 24 and 28 fetuses in

early (16-32 weeks) and late gestation (36-41 weeks), respectively. The percentage of each

pattern was compared between two groups using MannWhitneyWilcoxon test, consid-

ering p-value < 0.05 as significant. Table 5.1 shows the p-values for comparing each

pattern and figure 5.4 shows the median and 25%-75% quartile ranges of the percentage

of occurring for each pattern in early and late gestation groups. The Result shows that

Table 5.1: P-value results for comparison of the percentage of different patterns for the
fetuses in early gestation (16-32 weeks) and late gestation (36-41 weeks), applying Man-
nWhitneyWilcoxon.

Patterns p-value
1 0.0083
2 0.1541
3 0.0422
4 0.0061
5 0.0448
6 0.0258

the patterns 1 and 6 occurred with significantly higher rate after 36 weeks, compared to

the cases before 32 weeks. On the other hand patterns 3, 4 and 5 were observed with sig-

nificantly higher rates for the early gestation group. The percentage difference between

two age groups was not significant for pattern 2.
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5.3.3 Validation with Echocardiography images

M-mode and pulsed-wave Doppler were acquired simultaneous to DUS and fECG record-

ings for two fetuses to validate the aorta and mitral motion timings respectively. The data

from these two cases were not involved in the training process and only used for testing.

M-mode image is used to evaluate the structure and operation of the valves. Figure

5.5 shows opening and closing of the aorta using M-mode recording for 5.7 seconds,

which are marked and compared with the results of the proposed method. This figure

shows that the aorta opening and closing events identified by the proposed method were

aligned with the events shown in the M-mode image. The identified opening and closing

events of mitral are not shown to avoid confusion.

The blood flow Doppler waveform through the mitral valve is shown by Pulsed wave

Doppler in figure 5.6 (a). The valve motion events were identified in two ways; using

K-means clustering and hybrid SVM-HMM for each cluster (figure 5.6(b)) and using the

hybrid SVM-HMM without clustering (figure 5.6(c)) [122,123]. For both methods wavelet

was used to obtain the DUS component, applying the same training set, but the set was

partitioned into the clusters for the new method.

Figure 5.6 shows that the identified mitral movement events by the new method were

aligned with the pulsed wave doppler images (figure 5.6(b)), while some of them were

misidentified by the previous method (figure 5.6(c)). This comparison can be investigated

in more details by considering the mitral opening event occurred at 1543 msec, misclas-

sified by the previous method. The new technique found the segment of 1268-1700 msec

closest to the cluster 2. The range of mitral opening event for this cluster is illustrated in

figure 5.7(a). It is shown that the amplitude of this peak and its interval from the preced-

ing R-peak of fECG at 1543 msec, is well situated in range of Mo events in figure 5.7(a).

On the other hand, the trained range of the Mo peak amplitude in figure 5.7(b) was wider

and included even small amplitudes, because clustering was not performed in the pre-

vious method and training was based on the DUS components with various patterns.

This is one reason why the peak at 1596 msec was wrongly recognized as Mo. It is worth

noting that SVM is only a part of classification, and transition of the events takes part in

recognition of the events in the HMM part of the hybrid method.
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Figure 5.5: (a) The M-mode image of the opening and closing time of the aortic valve
for a fetus at 24 weeks of gestation. The dashed lines depict the aorta opening (Ao) and
closing (Ac) events. (b) The DUS components and the events identified by the automated
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Figure 5.7: (a) The trained SVM for classification of mitral opening for the second cluster,
used by the new method. (b) The trained SVM for classification of mitral opening for all
training data regardless of the clusters by the previous method.
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5.3.4 Cross validation results

To quantitatively compare the results of the new method with the previous method which

was based on SVM-HMM without clustering [123], 10-fold cross validation was per-

formed on the training data. Training data containing 345 segments of DUS component

from 21 fetuses were partitioned into training and testing sub-sets. Partitioning was per-

formed for each cluster to include all clusters in training and testing. The identification

precision and recall of each valve timing event were calculated as follows and averaged

over the 10 folds:

Precisioni =
Ti

Ti + ∑j Fij
(5.3)

Recalli =
Ti

Ti + ∑j Fji
(5.4)

where i refers to one of the valve motion events (Mo, Mc, Ao or Ac), Ti is the number of

true estimation of event i and Fij indicates the number of times event j was mistakenly

identified as event i. Table 5.2 summarizes the precision and recall of different identified

events by two methods. Cross validation result shows improvement of precision and

recall of identifying mitral opening by 10.8% and 9.4%, respectively and aorta closing

by 10.7%. Overall, the average precision and recall were improved in the new method

(precision: 83.4% and recall: 84.2%) compared to the previous approach (precision: 79.0%

and recall: 79.8%)[123].

Table 5.2: Precision (%) and recall (%) of valve motion identification using the new hybrid
SVM-HMM with clustering versus the previous SVM-HMM approach without clustering
[123].

Parameter Methods Mc Ao Ac Mo Average
Precision New 89.5 87.8 86.3 69.9 83.4

Previous [123] 91.6 89.7 75.6 59.1 79.0
Recall New 92.4 89.2 86.3 68.7 84.2

Previous [123] 93.4 90.8 75.6 59.3 79.8
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Table 5.3: Mean± standard error (SE) of the intervals between R-peak of fECG and valve
motion and the rate of identified events.

Intervals Mean ± SE (msec) Rate*
R-R 420.5 ± 34.1 100 %

R-Mc 24.2 ± 4.1 98.6 %
R-Ao 59.8 ± 5.0 99.8 %
R-Ac 220.2 ± 7.9 99.7 %
R-Mo 304.6 ± 11.0 98.8 %

* The rate is calculated from the number of identified valve motion
events out of 8510 beats belonging to 61 fetuses.

5.3.5 Extended results

The proposed method was also applied on data from other fetuses not involved in train-

ing, to evaluate the identification rate and valve timing intervals. The average intervals

between R-peak of the fECG and valve openings and closings for 8510 beats belonging

to 61 cases and the rate of identified events are summarized in table 5.3.

5.4 Discussion

The DUS signal has a transient nature and the signal content is widely variable even on a

beat-to-beat basis, depending on the orientation of the fetal heart and the DUS transducer.

The DUS signal variability for inter and intra subjects was also discussed by Shakespeare

et al. [174]. In this chapter, it was shown that the development and maturation of the fetal

heart also take part in the variability of the patterns. Multiple factors may contribute to

the observed differences of the signal patterns for the fetuses before 32 weeks and after

36 weeks, including fetal growth, physiological development and changes in the domi-

nant positioning. It was proposed in previous studies to use STFT, Wavelet transform or

EMD to extract the component linked to the valve motion, but this component does not

have a single pattern for all beats and different fetuses. Figure 5.1 (c) shows an example

in which the change in the pattern of DUS component is observed in successive beats.

The DUS component patterns were clustered into six groups by K-means and the DUS

components had peaks linked to the valve motion in a common range of timing and am-
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plitude within each groups, different from other clusters. Figure 5.2 shows the centroid

of each cluster and the range of valve motion events determined from the training data

specific to each cluster, which demonstrates the difference in the average amplitude of

peaks linked to each event across clusters. This was the point to use clustering to train

the SVM-HMM for each cluster separately and decode the peaks of the DUS components

based on trained SVM-HMM specific to the matched cluster.

Compared to the method in which clustering was not performed (discussed in chapter

3), this method achieved better precision and recall. Because the DUS components of

the training set without clustering, had different patterns and the amplitude and timing

range of the peaks representing the events were wide and disparate. When data were

clustered before training, the peaks linked to each event were concentrated and more

unified in a certain range of timing and amplitude, from which the valve opening and

closing were better identified. For example the trained SVM for one of the clusters by

the new method (figure 5.7 (a)) was compared with the SVM trained based on the whole

training set regardless of their pattern (figure 5.7 (b)) according to the previous method.

The first SVM could better discriminate the range of amplitudes corresponding to Mo.

As discussed in previous chapters, Systolic Time Intervals including ICT, PEP and VET,

are significant indicators of myocardial function. The STIs which depend on the onset of

QRS complex of fECG, Mc, Ao and Ac could be estimated with more than 98.6% identi-

fication rate and higher than 86.3% precision by this method. The pulsed wave Doppler

and M-mode echocardiography may be performed to find the cardiac intervals but need

skilled specialists to perform and are highly specialized compared to the Doppler Ul-

trasound method suggested in this study. The use of DUS signal and fECG provides

a simpler way and with the automated technique proposed, beat-to-beat valve motion

timings are continuously evaluated with less time and skill for operation. Furthermore,

using pulsed-wave Doppler, the recording is captured in one screen size and the motion

of only one valve (e.g. mitral or aorta) at a time is monitored; while DUS signal enables

identification of opening and closure of mitral and aorta in each beat with a recording

of DUS and fECG. In this chapter M-mode and pulsed wave doppler images were used

to verify the results of automated identification. More quantitative comparisons can be
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performed in future studies.

5.5 Conclusion

Opening and closing of fetal cardiac valves are reflected as peaks in the high frequency

component of the DUS signal. In this study, we found six different patterns for the DUS

component. The occurrence rate of five patterns for the fetuses with less than 32 weeks

of age was different from the fetuses older than 36 weeks. Each pattern had different

amplitude range and timing of the peaks linked to the aortic and mitral valve motion. K-

means clustering was applied to the DUS components in training set and SVM-HMM was

trained for each cluster separately. In this way, valve motion events were detected from

each DUS component based on the trained SVM-HMM specific to its matching cluster.

The identification of opening and closing of the mitral by SVM-HMM was improved

using clustering compared to the method without clustering as verified by pulsed wave

Doppler image. The average precision and recall of the method with clustering were

83.4% and 84.2% respectively, which were higher than the method without clustering.

More than 98.6% of cardiac valve motion events were identified by the new method.





Chapter 6

Automated measurement of ICT from
Doppler ultrasound signals without

using fECG

Isovolumic Contraction Time (ICT) is the interval from mitral closing to aorta opening. Fetal ICT

can be noninvasively measured from DUS signal by automated identification of mitral and aortic valve

timings as discussed in previous chapters. Fetal ECG has a crucial role as a reference in automated

methods by identifying the onset of each cardiac cycle. However simultaneous recording of abdominal

ECG and DUS and separation of fECG from the noisy mixture of ECG complicate this method. In

this chapter the automated identification of valves’ motion without using fECG was investigated. The

DUS signal was decomposed by EMD to high and low frequency components linked to valve and

wall motion, respectively. The peaks of the latter were used for segmentation of the high frequency

component as a substitute for fECG. Results show a significant positive linear correlation between

average ICT obtained with and without using fECG.

This chapter is a slightly modified version of the published article [120]:

• F. Marzbanrad, Y. Kimura, M. Endo, et al. Automated measurement of fetal Isovolumic Con-

traction Time from doppler ultrasound signal without using fetal electrocardiography, Com-

puting in Cardiology Conference (CinC), 2014 , vol., no., pp.485-488, 2014.

6.1 Introduction

FETAL ICT is the Mc-Ao interval which is a reliable index of fetal cardiac contractility

and can sensitively detect impaired cardiac function [85,204]. A study by Koga et al.,

found the prolonged ICT significantly correlated with abnormalities in perinatal course

and it was suggested as a prediction of adverse outcome for the fetus [85]. Automated
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Figure 6.1: An illustrative example of mitral closing and aorta opening identification
from the raw 1-D DUS signal (a), and fECG as a reference (b), to estimate ICT as Mc to
Ao interval.

.

differentiation of mitral and aorta opening and closing events from the peaks of the high

frequency component of DUS, was described in previous chapters. Figure 6.1 shows

an illustrative example of ICT using DUS signal. Simultaneously recorded fECG has

a crucial role in automated methods; by specifying the beginning of cardiac cycle for

segmentation. However simultaneous recording of abdominal ECG with DUS signal and

separation of fECG from a noisy mixture of maternal ECG and other interfering signals

and artifacts complicate this technique.

In this chapter automated identification of valve movements from DUS signal without

using fECG was investigated. To this aim the DUS signal was decomposed by EMD to

IMFs. The first IMF (high frequency) was linked to the valve motion and the fourth IMF

(low frequency) was related to the cardiac wall motion. The peaks of the latter were

used for segmentation as a substitute for fECG R-waves. The mitral and aortic valve

movements were automatically identified by hybrid SVM-HMM as described in chapter

3.
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6.2 Methods

6.2.1 Data

Similar to the discussed procedure in chapter 3, DUS signal was recorded from 21 preg-

nant women at the gestational age of 16 to 41 weeks with normal single pregnancies at

Tohoku University Hospital in Japan. The continuous DUS data were obtained with 1

minute in length and sampled at 1 kHz with 16-bit resolution. For comparison purposes,

abdominal ECG signals were also recorded simultaneous with DUS. The fECG extraction

process was described in previous chapters.

6.2.2 DUS signal decomposition

Similar to the chapter 3, DUS was decomposed by EMD into a set of IMFs. The first IMF

i.e. the highest frequency content was used to identify the valve movements. The peaks

of the absolute value of this IMF can be linked to the opening and closing of the mitral

and aortic valves. The fourth IMF, i.e. the low frequency component, includes peaks asso-

ciated with fetal cardiac wall motion. The atrial wall contractions (Atc) were represented

by the prominent peaks of the fourth component occurring once per each cardiac cycle.

They were used as a reference for segmentation of the first IMF, as explained in the next

section. The envelope of the first and fourth IMFs were obtained using low-pass filter.

Their peaks were then detected based on the sign of the first and second derivatives.

6.2.3 Segmentation and normalization

The sequence of Atc-to-Atc intervals was calculated from the detected Atc peaks of the

fourth IMF. This sequence was processed to fix misidentified Atc peaks as follows. For

each window of five consecutive Atc-Atc intervals, the middle interval which was devi-

ated from the mean of the four other intervals by more than 10%, was replaced by that

mean value. The first envelope of the first IMF was then divided into segments of Atc-

Atc intervals. Then each segment was normalized by subtracting the mean and dividing

by the standard deviation of the segment.
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Figure 6.2: Schematic illustration of the ICT estimation process without using fECG.

6.2.4 Identification of valve movements

The hybrid SVM-HMM method was proposed for identification of valve movements as

described in chapter 3. The hybrid model was trained once and then the trained model

was used for identification of valve events from the new data. In this study we were

particularly interested in Mc and Ao versus the other states. The observation sequence is

the amplitude of the peaks of the first IMF envelope, as well as the time interval between

each peak and its proceeding Atc peak (the beginning of the segment). Details of the

hybrid SVM-HMM process can be found in chapter 3. After performing hybrid SVM-

HMM, ICT was calculated from the interval between mitral closing and aorta opening.

Then beat to beat ICT values were averaged over all cardiac cycles in one minute for each

fetus. The whole process is illustrated in figure 6.2

6.2.5 Comparison

For comparison of the new method with the previous technique, fECG for all 21 fe-

tuses were used as a reference to find ICT with the method in chapter 3. The BlandAlt-

man method [17, 157] was used to investigate the agreement between previous and new

method and to calculate the variability of the estimates. Pearson’s coefficient of correla-
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Figure 6.3: (a) 5 second recording of DUS signal. (b) Reference from the envelope of
IMF 4, which is a low frequency component of the DUS signal. Dashed lines show the
segmentation reference points found from peaks. (c) Simultaneous fECG.

tion was calculated to measure the association between the ICT intervals obtained using

two methods.

6.3 Results

Regular wall movement peaks were detected from the fourth IMF and used as a refer-

ence for segmentation. Figure 6.3 shows an example of the segments found using peaks

of the envelope of IMF4 (figure 6.3(b)), which can be compared with the reference from R-

peak of fECG as in figure 6.3(c). ICT was measured for 21 fetuses using the new method

(without using fECG) and previous method (using fECG) described in chapter 3. Mean

and standard error of the averaged ICT over 1 minute for each fetus are summarized in

table 6.1. The relationship between ICT measured with two methods was almost linear
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Table 6.1: Mean and standard error (SE) of ICT averaged over all cardiac cycles (in 1
minute) for 21 fetuses using the new method (without using fECG) and previous method
(using fECG).

Method Mean (msec) SE (msec)
New method 37.3 3.6

Previous method 36.8 2.8

ICT found using fECG (msec)
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Figure 6.4: Bland-Altman analysis for comparing the average ICT from 21 fetuses mea-
sured by the new method (without using fECG) versus the previous method (using
fECG). r: Pearson correlation r-value, r2 : Pearson r-value squared, SSE: sum of squared
error, n: number of fetuses.

(r2 = 0.81) (figure 6.4). The agreement between these measurements is shown in figure

6.4 and figure 6.5, which show the average differences of changes between ICT measured

by different algorithms, the variability of the estimates, limits of agreement (±1.96 ∗ SD),

and the strength of the associations between the two measurements. The agreement be-

tween methods was high, difference was not significant and had a low variability of the

estimate. The correlation coefficient r = 0.90 shows a strong association between meth-

ods. Although for the new method fECG was not used, the mean of absolute difference

of 1.4 msec was obtained which is small compared to the large range of variability of ICT.
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Figure 6.5: Bland-Altman plot (bias and 95% limits of agreement: 1.96SD) for the average
ICT from 21 fetuses measured by the new method (without using fECG) versus the pre-
vious method (using fECG). RPC(%): reproducibility coefficient and % of mean values,
CV: coefficient of variation (SD of mean values in %).
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6.4 Discussion

ICT is a significant index which can be estimated from the timing of mitral closure and

aorta opening. Although fECG was not involved in manual measurement of ICT pro-

posed in previous studies [85,204], it was required as a reference for automated methods

as described in previous chapters. R-peaks of the extracted fECG from the abdominal

ECG provide a stable and accurate reference for segmentation of DUS signal component

into cardiac cycles. However, to this aim, abdominal ECG should be recorded simultane-

ous with DUS signal and fECG should be extracted from the mixtures; which require ex-

tra cost, equipment and processing. The new automated method without fECG provided

ICT measurement in acceptable agreement (limit of agreement (-2.7 to 3.7 msec)) with the

average ICT obtained from the previous method. However larger differences were found

for beat to beat ICA measured with and without using fECG (6.1 ± 3.8 msec). Further

studies are required for more accurate segmentation. A combination of DUS components

(IMFs) may provide a more stable reference for segmentation. Other processing methods

for correction of the false segmentation points may also improve this task.

6.5 Conclusion

Fetal ICT can be estimated noninvasively from DUS signal. Different from the previous

automated methods for identifying ICT, fECG was not used as reference for the tech-

nique proposed in this chapter. Instead, the low frequency component of DUS signal

was used for segmentation. Results showed that the measured average ICT with this

new method was in agreement with the average ICT measured by the previous method

which required fECG as reference (correlation coefficient: r = 0.9, bias = 0.5 msec, 95%

limits of agreement: -2.7 to 3.7 msec).



Chapter 7

Classification of Doppler Ultrasound
Signal Quality

1-D DUS is a commonly applied technique for fetal heart rate monitoring, but as discussed in the

previous chapters, it can also be used to identify the fetal cardiac valve motion timings. However

DUS is highly susceptible to noise and variable on a beat-to-beat basis. Therefore it is crucial to assess

the signal quality to ensure its validity for a reliable estimation of the valve movement timings. An

automated quality assessment can provide the operator with an online feedback on the quality of DUS

during data collection. This chapter investigates automated classification of the DUS signal quality

using Naive Bayes (NB) classifier.

This chapter is a slightly modified version of the article [118]:

• F. Marzbanrad, A. Khandoker, M. Endo, et al. Classification of Doppler Ultrasound Signal

Quality for the Application of Fetal Valve Motion Identification, Computing in Cardiology

Conference (CinC), 2015.

7.1 Introduction

SEVERAL automated techniques for identification of valve movements were pro-

posed in previous chapters to overcome the shortcomings of manual methods in-

cluding their time consuming process and vulnerability to inter and intra observer errors

[116, 117, 123]. However the pattern and the quality of the DUS signal were found to be

variable, even on a beat-to-beat basis [117]. The signal is highly contaminated by noise

and its extensive variability and nonstationary characteristics complicate the valve mo-

tion identification. Therefore, an automated DUS quality assessment is required for a

reliable estimation of the valve timings and also providing a real time feedback to the
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operator during data collection. The importance of DUS signal quality assessment for

its classic application in FHR monitoring, was investigated in previous studies [107,179].

This chapter focuses on the signal quality assessment for the extended application of DUS

signal in valve motion identification.

7.2 Methods

7.2.1 Data acquisition and processing

Data acquisition and processing methods were described in previous chapters. A mul-

tichannel data acquisition system was used to collect the simultaneous DUS and ECG

data. Fetal ECG was extracted using BSSR and used as a reference for segmentation of

the DUS signal into cardiac cycles. To isolate the high frequency component of the DUS

signal linked to the valves’ movement, the DUS signal was decomposed by the multireso-

lution Wavelet analysis, the same as in chapter 5 [79,117]. The signal segments were then

normalized by subtracting the mean and dividing by the standard deviation. Consider-

ing that the valve motion events mostly happen within 350 msec following the R-peak

[79, 117, 123], this section of the DUS segments was used for quality assessment.

7.2.2 Signal quality annotation

Signal quality annotation was performed in two phases, using 345 DUS segments. In the

first phase, five beats with the closest heart rate to the median of FHR were selected from

each recording for training. Total of 285 DUS segments were presented to two medical

doctors and two researchers to rate the quality independently. The scoring was based

on observing the data to identify four peaks, corresponding to Mc, Ao, Ac and Mo. Five

quality levels were defined as described in table 7.1 and given to the annotators as in-

structions on quality rating. Examples of a very good and a very bad quality signal

scored by the annotators are shown in figure 7.1. The possible ranges of Mc, Ao, Ac,

and Mo events were shaded with yellow, green, magenta and cyan colors respectively, as

guides for the annotators.
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Figure 7.1: Two examples of annotated signals as very good (a) and very bad (b). The
possible ranges of Mc, Ao, Ac, and Mo events were shaded with yellow, green, magenta
and cyan colors respectively, as guides for the annotators.
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Inter-rater agreement was tested by Fleiss kappa test [23, 52]. It calculates the degree of

Table 7.1: Description of the quality levels used for annotation

Quality Level Quality Description
very good Mc, Ao, Ac, Mo peaks are clearly

detectable with no doubt.
good Although the signal is slightly noisy, at

least 3 events can be clearly detected.
borderline It is difficult to detect the events, but

some traces are observed, or at least two
events can be detected.

bad There is mostly noise, it is impossible to
detect the events.

very bad No trace of the events, only noise.

agreement in classification against the completely random rating. Scores of 1 to 5 were

assigned to very bad to very good labels. The signals with the average score of below

2.5 and above 3.5 were labeled as unacceptable (60 signals) and acceptable (121 signals),

respectively; while others were labeled as ambiguous (104 signals). In the second phase

in order to balance the classes, 60 additional poor quality DUS segments as confirmed by

the annotators were selected from the recordings and labeled as unacceptable.

7.2.3 Signal quality indices

Twelve features were selected mostly based on the signal properties in the valve motion

ranges compared to the remaining time intervals. The plausible valve motion ranges

were defined as: Mc: (9-44), Ao: (45-90), Ac: (200-260), Mo: (265-326), all in msec follow-

ing the segment onset (preceding R-peak) [79, 117]. The features were as follows and all

normalized:

• The ratio of the power (SQI1), number of peaks (SQI2), mean peak amplitude

(SQI3) and variance (SQI4) in the valve motion range to the values in the remaining

time intervals.

• kurtosis (SQI5), skewness (SQI6), Hjorth (SQI7) parameters and sample entropy
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(SQI8: m = 1, r = 0.1, SQI9: m = 1, r = 0.2, SQI10: m = 2, r = 0.1, SQI11:

m = 2, r = 0.2) as described in previous studies [29, 177].

• Minimum ratio of the 2nd to 1st singular value (SQ12) from Singular Value De-

composition (SVD) of a matrix containing consecutive windows of the signal with

various sizes: 10, 15, 20,...,100 [89, 177].

7.2.4 Classification

An overall quality metric was obtained from the quality features SQI1,2,..,12 . A naive

Bayes (NB) classifier with kernel density estimate was used for this purpose. NB classi-

fier is a widely used supervised learning method which is fast and simple to implement

[75, 131]. It uses the training data to estimate the conditional distribution of the features

given the classes and also distribution of the classes. Then it assumes conditional inde-

pendence of the features given the classes which dramatically simplifies the estimation of

the probabilities. It estimates the posterior probability through the Bayes rule and classi-

fies a sample to the most probable class. It is important to note that in practice the features

may not be independent while NB still works properly. Since some features did not have

normal distribution, kernel density estimate was performed based on the training data

[75].

10-fold cross validation was used to evaluate the classification performance, and the ac-

curacy, sensitivity and specificity in train and test sets were calculated.

7.3 Results

Inter-rater agreement results of Fleiss kappa test showed a fair agreement with overall

κ = 0.300, C.I. (95%) of κ = [0.293− 0.307], and p < 0.0001 confirming that the observed

agreement was not accidental. Kappa values for the score 1 to 5 were: 0.224, 0.257, 0.232,

0.277, 0.507, respectively.

Sensitivity (Se), was measured as the proportion of unacceptable signals that were cor-

rectly identified as unacceptable. Specificity (Sp), was also calculated as the proportion
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of acceptable signals that were correctly classified as acceptable. Finally, Accuracy (Ac)

was measured as the proportion of correctly classified quality of the signals. Results are

summarized in table 7.2.

Table 7.2: Average classification results (mean± standard deviation) for the train and test
data, based on 10-fold cross validation.

Accuracy Sensitivity Specificity
Train 0.863±0.007 0.832±0.016 0.894±0.013
Test 0.842±0.038 0.800±0.070 0.884±0.059

7.4 Discussion and conclusion

The quality of the DUS signal is usually affected by noise and also depends on the fetus-

transducer orientation. Although the DUS quality assessment has been previously in-

vestigated, it was only targeted for improving FHR monitoring [107, 179]. Results of our

study show that the DUS quality can also be assessed in more detail, based on its relia-

bility for valve motion identification.

A real time feedback on the signal quality during data collection would improve the qual-

ity of DUS signal for a more accurate estimation of fetal cardiac intervals. Results show

that the NB classifier can be used for an accurate classification of the signal quality. NB

also requires a short computational time, can be simply implemented and is not sensitive

to irrelevant features. However further investigation of other classification techniques

are required particularly to improve the sensitivity, in order to provide a reliable feed-

back to recollect or exclude the poor quality data for further analysis. The classification

performance can also be improved by investigating better discriminative features in fu-

ture studies.

A limitation of the proposed method is the dependance of features on the predefined

range of the valve motions. Although the ranges were assumed wide enough to accom-

modate the variation of the intervals with age or heart rate, the validity of the measures

should be assessed for abnormal cases in future studies.



Chapter 8

Identification of fetal heart anomalies

In this chapter the automated valve motion identification method was applied to the fetuses with

heart anomalies to investigate the effect of anomalies on fetal cardiac intervals. Results show that the

Pre-ejection period (PEP) and Isovolumetric Contraction Time (ICT) were affected by the anomalies.

They were both shortened for three out of four anomalies and lengthened for one heart anomaly case.

Results will be a background for a further study on more heart anomaly cases to develop a reliable

marker for early diagnosis.

This chapter is a slightly modified version of the published article [124]:

• F. Marzbanrad, Y. Kimura, M. Palaniswami, et al. Application of Automated Fetal Valve Mo-

tion Identification to Investigate Fetal Heart Anomalies. IEEE EMBS Healthcare Innovation

Conference (HIC), 2014 IEEE , vol., no., pp.243-246, 2014.

8.1 Introduction

EACH year, at least 8 in 1,000 infants are born with a congenital heart and cardiovas-

cular defects, comprising about 1% of live births [1]. Even in developed countries,

perinatal mortality rates of 10/1000 births was accounted [27] mostly caused by congen-

ital malformations and perinatal hypoxia. Despite the advances in fetal surveillance for

high risk pregnancies, which reduced perinatal morbidity and mortality rate in the high

risk population, the majority of stillbirths and anomalies still occur in low risk pregnan-

cies [27]. Therefore there is a need for more effective and sensitive methods of identifying

fetal risks, as well as simple and less specialized methods applicable to the larger popu-

lation of low risk pregnancies.

As discussed in chapter 2, fetal heart rate monitoring as NST is currently used for assess-

ment of fetal wellbeing, which is not enough for a thorough assessment of fetal risks and
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has not significantly reduced the fetal mortality rate. Noninvasive and automated tech-

niques to estimate the cardiac intervals based on the DUS signal and fECG as a reference

were discussed in previous chapters. In this chapter we applied the method described in

chapter 3 to 56 normal fetuses as well as four fetuses with heart anomalies. Therefore the

application of the method for these abnormal cases and the effects of anomalies on fetal

cardiac indices were investigated with a focus on PEP and ICT intervals.

8.2 Methods

8.2.1 Data acquisition and processing

Similar to the previous chapters, simultaneous recordings of the abdominal ECG signals

and DUS signals. It was decided to study only the normal fetuses and the fetuses with

heart anomalies excluding two cases one with bradycardia and one with an abnormal

FHR. Furthermore, three cases with very low quality of DUS signal were excluded, to

avoid the influence of their quality on the comparison of the normal with the abnormal

cases. Therefore the total number of cases considered for this study were 60 cases and

included 56 normal fetuses, while fetal heart anomalies were present for four fetuses. The

gestational age of the fetuses ranging from 16 to 41 weeks, was 33± 6 weeks for normal

fetuses and 33, 36, 30 and 28 weeks for four fetuses (1 to 4) with heart anomalies. A total

of 60 recordings (each of 1 min. length) were sampled at 1 kHz with 16-bit resolution. The

detailed procedure for experimental setup and fECG extraction can be found in previous

chapters.

8.2.2 Automated estimation of cardiac intervals

DUS signal was decomposed by EMD, then the envelope of the first component i.e. IMF 1

was taken. Then it was segmented into the cardiac cycles using R-R intervals of the fECG

and normalized. The valve motions were automatically identified from the observed

peaks of the IMF, using hybrid SVM-HMM trained for 21 normal fetuses as described in

detail in chapter 3. The valve motion timings and Q waves of fECG were used to estimate
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PEP (Q-Ao) and ICT (Mc-Ao) beat by beat for all fetuses. An average of these intervals

over 1 minute was calculated for each fetus for further analysis. The statistical parameters

of the ICT and PEP intervals for normal fetuses including median, first and third quartiles

and 95% confidence interval (using t-test) of the means were calculated. Then the ICT and

PEP of fetuses with heart anomalies were compared with normal parameters.

8.3 Results

PEP and ICT were both measured beat by beat in milliseconds and averaged over 1

minute recording for 56 normal fetuses. The statistical parameters are summarized in ta-

ble 8.1. The PEP and ICT values averaged for fetuses with heart anomaly, over 1 minute

as shown in table 8.2. Comparison of the results of tables 8.1 and 8.2 shows that, ICT of

Table 8.1: Median, first and third quartiles and 95% confidence interval (CI) of the mean
ICT and PEP in milliseconds for 56 normal fetuses.

Parameter ICT (msec) PEP (msec)
Minimum 33.42 61.67

First quartile 37.38 73.44
Median 39.62 75.88

Third quartile 43.39 78.99
Maximum 47.20 89.89

95% CI (38.87 , 40.85) (74.34 , 77.14)

Table 8.2: ICT and PEP measured in milliseconds and averaged over all beats for four
fetuses with heart anomaly.

Abnormal Fetuses ICT (msec) PEP (msec)
Fetus 1 42.61 85.46
Fetus 2 30.52 72.72
Fetus 3 33.27 67.49
Fetus 4 33.01 70.32

three fetuses with heart anomaly was less than the minimum ICT of 56 normal fetuses.

For these fetuses, PEP was also shorter than the first quartile of the normal PEP. ICT of

the abnormal fetus 1 was longer than median of ICT for normal fetuses but shorter than

the third quartile. It was also larger than the upper 95% CI of the mean ICT for normal
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fetuses. For this particular fetus, PEP was longer than the third quartile of the normal

PEP and also larger than the upper 95% CI value. Figure 8.1 shows a joint plot of ICT

and PEP for normal and abnormal fetuses. It gives a better insight for comparing normal

and abnormal fetuses, considering ICT and PEP together. As demonstrated in this figure

three cases with heart anomaly had both ICT and PEP shortened, while one abnormal

fetus had comparatively long PEP and ICT.

Figure 8.1: Joint plot of PEP versus ICT measured in msec and averaged over 1 minute
for 56 normal fetuses and four fetuses with heart anomaly.

8.4 Discussion

A SVM-HMM model was developed based on normal fetuses for automated beat by

beat identification of valve motions. In this chapter it is suggested that the developed

SVM-HMM model is applicable to the fetal heart anomaly cases and can demonstrate

shortened or prolonged indices. The focus of this study was on PEP and ICT. Previ-

ous studies have shown that PEP and ICT are the most useful systolic time intervals

for clinical purposes [134]. PEP was found as an index of both myocardial contractility

and the loading conditions of the heart, which can indicate the fetal cardiac performance

[47, 127]. Shortened PEP was also found for acute hypoxemia, while prolonged PEP was
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found during sustained and severe hypoxemia [144]. The current study showed prolon-

gation and shortening of these indices deviated from the normal ranges for the fetuses

with heart anomalies. Considering PEP and ICT together provided a better insight for

discrimination of normal and abnormal cases.

Correlation of R-R intervals with R-peak to Aorta opening and mitral closing times were

also suggested to discriminate between normal and abnormal fetuses [79]. Investigation

of the changes of the electromechanical coupling indices or their combination for detect-

ing different types of fetal heart anomalies is recommended for future studies. Further

investigation based on a larger number of fetuses with different types of heart anomalies

are required to develop a model and a conclusive marker for a reliable detection of heart

anomalies. Based on a larger number of fetal anomaly cases, a Neural Network model

or a Support Vector Machine classifier can be developed to classify normal and abnormal

cases using electromechanical coupling indices. Incorporation of this classifier with the

automated method of identifying valve motions provides a fully automated tool to detect

abnormalities from simultaneous recording of DUS and fECG.

8.5 Conclusion

PEP and ICT were automatically estimated for 56 normal fetuses and four fetuses with

heart anomalies, using hybrid SVM-HMM developed for normal fetuses. Results show

that the model is able to estimate PEP and ICT for the fetuses with heart anomalies, which

were both shortened for three cases and lengthened for one case. Further studies on a

larger number of fetuses with heart anomalies can be performed to develop a conclusive

marker for automated detection of fetal heart anomalies during pregnancy.
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Fetal-Maternal Heart Rate Interactions
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Introduction to Part III

THE fetus interacts with the mother during pregnancy, while their physiological

relationship may evolve with gestational progression or be affected by pathologic

conditions. The focus of this chapter is on the relationship between maternal and fetal

heart rates and its changes with gestation. Results suggest that the assessment of the

relationship throughout gestation can provide clinical markers of the fetal development.





Chapter 9

Analysis of fetal-maternal heart rate
coupling

Although evidence of the short term relationship between maternal and fetal heart rates has been

found in previous model-based studies, knowledge about the mechanism and patterns of the coupling

during gestation is still limited. In this chapter, Transfer Entropy (TE) was used to quantify directed

interactions between maternal and fetal heart rates at various time delays and gestational ages. Exper-

imental results using maternal and fetal electrocardiograms showed significant coupling for 97% of

fetuses, by statistically validating against surrogate pairs. Analysis of TE showed a decrease in trans-

fer of information from fetus to the mother with gestational age, alongside the maturation of the fetus.

On the other hand, maternal to fetal TE was significantly greater in mid and late gestation compared

to early gestation. Delay in the information transfer from mother to fetus significantly decreased from

mid to late gestation, implying a decrease in fetal response time. These changes occur concomitant

with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational

age. The application of TE with delays revealed detailed information on the fetal-maternal heart rate

coupling strength and latency throughout gestation, which could provide novel clinical markers of

fetal development and well-being.

This chapter is a slightly modified version of the following articles [121, 125]:

• F. Marzbanrad, M. Endo, Y. Kimura, et al. Transfer Entropy Analysis of Maternal and Fetal

Heart Rate Coupling, IEEE Engineering in Medicine and Biology Conference EMBC 2015.

• F. Marzbanrad, Y. Kimura, M. Palaniswami, et al. Quantifying the Interactions between Ma-

ternal and Fetal Heart Rates by Transfer Entropy. Plos One journal, 10.12, 2015.

9.1 Introduction and literature review

119
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MONITORING of FHR has been widely used for a reliable assessment of fetal

wellbeing and development. In particular, acquisition of FHR through noninva-

sive fetal electrocardiogram (fECG), even in its current stage of development, provides an

accurate estimation of FHR and its beat-to-beat variability [74,82,166]. FHR is influenced

by not only the fetal conditions including behaviorial state and maturation, but also the

maternal psychological and physiological conditions [71, 132]. These maternal condi-

tions may affect FHR through the hormones transferred via the placenta or the changes

in the oxygen and nutrition supply for the fetus. For example, a correlation was previ-

ously found between FHR and maternal stress and anxiety level [32, 132]. It was found

to be linked to the transferred glucocorticoids and corticosteroid hormones through the

placenta or released catecholamines, causing maternal vasoconstriction and limitation of

the fetal oxygen and nutrient supply [32, 132]. Maternal relaxation was found to be as-

sociated with decreased FHR and increased variability [43]. In addition to the effect of

maternal emotion, a significant correlation between the fetal and maternal diurnal heart

rate rhythms was found with a phase lag of -2 to +2 hours, in a study by Lunshof et al.

[104]. They hypothesized that the fetal suprachiasmatic nucleus, although not completely

mature, is involved in transferring the maternal diurnal rhythm information to the fetal

heart [104].

In addition to the relationship between maternal and fetal heart rates in large time scales

discussed above, evidence of synchronization epochs between the heart rates at the beat-

to-beat level was also reported [71, 160, 189, 198]. This short time coupling was found by

Van Leeuwen et al., using phase synchronization analysis, as the phase locking of the

rhythmic maternal and fetal heartbeats [189]. It was further shown by a model based

approach, using the additive autoregressive processes with external contributing factors

[160]. Fetal-maternal heart rate synchronization was further investigated in different set-

tings, including controlled maternal respiration and maternal aerobic exercise [190, 191].

Results of those studies suggested that high maternal breathing rate may induce the syn-

chronization as it occurred significantly more often at fast maternal breathing and less at

slow respiratory rates [190]. Synchronization was found less often where mothers had ex-

ercised regularly, possibly due to an increased beat-to-beat differences, higher vagal tone
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and slower breathing rates [191]. As previously suggested, the short time fetal-maternal

heart rate coupling might be via mechanical or auditory stimuli associated with the ma-

ternal rhythms, perceived by the fetus [160, 188]. However, the certain determination of

the underlying mechanisms requires further investigation.

A factor which might contribute to the short time coupling of the maternal and fetal heart

beats is the delay between them. For example, if the acoustic stimulation is assumed to be

the reason behind the coupling, it is reasonable to consider the fetal auditory processing

time, causing the latency of the fetal response. The latency of FHR changes in response

to the Vibroacoustic Stimulation (VAS), maternal voice or displacement was reported in

previous studies [83,84,97]. Therefore in the current chapter, this time delay was investi-

gated by analyzing the maternal-fetal heart rate coupling at different lags. The variation

of the coupling strength and lag was further analyzed against gestational age, in order to

assess the influence of fetal maturation.

Fetal behaviorial state may also affects FHR, particularly after 36 weeks of gestation,

when the states can be identified by FHR analysis [151]. It may also have an influence on

the maternal-fetal heart rate couplings. The behaviorial states are characterized by the

simultaneous occurrence of specific FHR patterns, with or without eye and body move-

ments and divided into: 1F (quiet sleep), 2F (active sleep), 3F (quiet awake), 4F (active

awake) [138]. Although the states are commonly identified using long-term FHR moni-

toring and sonographic observation, they can also be classified based on the short-term

FHR variability, such as RMSSD or SDNN, as reported by Lange et al. [93]. In this study

we analyzed the effect of these parameters on the coupling for the fetuses in 32nd or later

weeks of gestation.

Different from the previous studies on the fetal-maternal heart rate coupling, in this chap-

ter an approach based on the information transfer is used. We applied Transfer Entropy

(TE) to investigate the interactions between fetal and maternal heart rates. TE is a non-

parametric measure which can determine the coupling of two variables by quantifying

the information transferred between them [171]. Using TE, we found the transfer of in-

formation between two variables on both directions, i.e. from maternal to fetal heart

rate and vice versa. Without assuming any underlying model, TE can capture any linear



122 Analysis of fetal-maternal heart rate coupling

and nonlinear link between the time series. Therefore it is more suitable than (linear)

model-based measures such as Granger Causality (GC) for analyzing the physiological

time series with nonlinear interactions [48]. TE has been used for investigating the cou-

pling of physiological variables in various applications [49, 194, 200]. Improved methods

and toolboxes for TE estimation have been recently proposed [98, 133].

9.2 Methods

9.2.1 Data

Different from the previous chapters, the study described in this chapter only required

fECG and maternal ECG. Therefore in addition to 61 cases as described previously, the

data from 4 extra cases were added which did not include synchronous DUS to be used

in the previous chapters, but did have fECG and maternal ECG and therefore were only

used in this chapter. Similar to previous chapters, maternal and abdominal ECG signals

were recorded from 65 pregnant women in Tohoku University Hospital. The pregnancies

were all healthy, single and at the gestational age between 16 to 41 weeks. The cases were

further divided into three age groups: early (16-25 weeks, 25 cases), mid (26-31 weeks, 18

cases) and late (32-41 weeks, 22 cases). The recording and extraction procedure of fECG

can be found in previous chapters. All signals were collected for 1 minute and sampled at

1 kHz with 16-bit resolution. Pregnant volunteers undergoing their routine prenatal tests

had lain on the bed for five minutes before the one minute ECG measurement started.

9.2.2 Estimation of RR Intervals

A Pan and Tompkins-like QRS detector was used with refractory periods of 250 and 150

msec for detecting the maternal and fetal QRS, respectively; as proposed in previous

studies [14,147]. Maternal and fetal RR intervals (fRR and mRR) were then preprocessed

by taking a moving window of five RR-intervals and replacing the middle sample by

the average of the other four, if deviated by more than 20%. The fRRs and mRRs were

resampled at 4 Hz, using cubic interpolation.
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9.2.3 Transfer Entropy Analysis

The transfer entropy between two time series X = {x1, x2, ..., xN} and Y = {y1, y2, ..., yN}

on X to Y direction, is calculated as:

TEX→Y = H(yi|yl
i−t)− H(yi|yl

i−t, xk
i−τ) (9.1)

= ∑
yi ,yl

i−t,x
k
i−τ

p(yi, yl
i−t, xk

i−τ)log(
p(yi|yl

i−t, xk
i−τ)

p(yi|yl
i−t)

) (9.2)

where i is a given time point, τ and t are the time lags of X and Y, respectively; k and

l are the lengths of the blocks containing the past values of X and Y, respectively. In

this study TE was calculated for two directions: fetal to maternal (F → M) and ma-

ternal to fetal (M → F) heart rates. Therefore X and Y in the equations above de-

note fetal and maternal RR intervals after preprocessing and resampling. The condi-

tional probabilities in (9.2) are conditioned on xk
i−τ = {xi−τ−k+1, xi−τ−k+2, ..., xi−τ} and

yl
i−t = {yi−t−l+1, yi−t−l+2, ..., yi−t}. The transfer entropy is a non-negative measure of the

reduction in uncertainty of yi given xk
i−τ and yl

i−t, compared to given only yl
i−t [98].

As suggested in [98], due to the small sample size and computational reasons, the lag of

the target and block lengths were all assumed to be one (k = l = t = 1). In this study 40

sample delays were considered for the source signal of TE, ranging from 250 msec to 10

sec in equal steps of 250 msec (= Tsampling). The classic approach of fixed bins was used

to estimate the probabilities in (9.2), by allocating the data points to equally-spaced bins.

Furthermore, RR-intervals were transformed by replacing them with their integer ranks

sorted from smallest (1) to largest (N ) values, to enhance the robustness of the measure

against outliers and sparse regions of the distribution [98].

The same number of bins, Q = 10, was arbitrarily selected in each dimension, as well as

Q = 6 and Q = 8 bins tested for comparison. Using fixed number of bins, the computa-

tion of TE was simplified as follows:

TEX→Y(τ) ≈
Q

∑
a=1,b=1,c=1

ma,b,c

P
log

ma,b,cmb

mb,cma,b
(9.3)
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where a, b, and c are the index of bins along the transformed yi, yi−1, and xi−τ time series,

respectively, and P is the total number of triplets of transformed yi, yi−1, and xi−τ. The

number of data points in the intersection of the one-dimensional bins are denoted by

ma,b,c, ma,b, and mb,c, indexed by their subscript, and mb is the number of data points at

the bth bin in the transformed yi−1 dimension. More details on the computation of TE can

be found in a previous study [98].

9.2.4 Surrogate Analysis

The significance of TE was statistically evaluated by surrogates using temporal shuffling

of the time series. In our experiment, TE was computed for 100 surrogates of the source

time series (fRR or mRR for F → M or M → F directions, respectively). Given the TE

from the original source was greater than the 95th percentile of the surrogate TE results, it

was assumed to be significant. Only significant TE values were used for further analysis,

e.g. mean TE was calculated over the delays at which TE was significant.

9.2.5 Maternal Respiratory Rate Estimation

Maternal respiratory rate was estimated through single lead ECG-Derived Respiration

(EDR). Kernel Principal Component Analysis (K-PCA) technique was used, which was

previously shown by Widjaja et al., to outperform PCA and R-peak amplitude methods

in the extraction of the EDR [201]. The procedure of the EDR extraction can be found in

[201] and summarized as follows. An input matrix X was formed by assembling n (no.

of R-peaks) columns, each composed of a symmetric window of length m = 121 around

each R-peak. Then K-PCA was applied to the input matrix, using Least Squares Sup-

port Vector Machines (LSSVM) toolbox LS-SVMlab v1.8 (http://www.esat.kuleuven.be/

sista/ lssvmlab/, Leuven, Belgium) [180]. Radial Basis Function (RBF) was used as a

kernel with various parameter values ranging from σ2 = 0.1σ2
0 to σ2 = 100σ2

0 , where

σ2
0 = m.mean(var(X)). The σ2 value which resulted in the largest difference between the

first and the sum of the remaining eigenvalues was selected. Using this value for kernel,

the input data was reconstructed from the resulting first eigenvector in the feature space
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via preimage rbf function of the LS-SVMlab toolbox. EDR was estimated as a row of this

reconstructed observation.

The maternal respiratory rate was estimated from the EDR signal, using an algorithm

proposed by Cysarz et al., summarized as follows [35]. EDR was resampled at 10 Hz

using cubic spline interpolation. Then a band-pass filter was applied in the range of

0.1−0.45 Hz using a least-square FIR filter. The filtered signal was standardized by di-

viding by the 75 percentile of all detected local maxima, in order to exclude the influence

of single oscillations with extreme amplitudes. The local maxima which exceeded 0.3

were further used and the average of the distances between the successive local maxima

was calculated.

9.2.6 Statistical Analysis

The mean and maximum of (significant) TE as well as the lags resulting in maximum

TE were all compared against different age groups by nonparametric statistical analysis.

Mann Whitney Wilcoxon (MWW) test was used to compare maximum transfer entropy

and corresponding delay for early, mid and late age groups. P-value of 0.05 was chosen

as the level of significance. MWW test was also used for comparison of TE for different

ranges of RMSSD and SDNN, each divided into two groups: high RMSSD ≥4 msec (6,

5 and 13 fetuses in early, mid and late gestation, respectively), low RMSSD <4 msec (19,

13 and 9 fetuses in early, mid and late gestation, respectively), high SDNN ≥12 msec

(5, 8 and 15 fetuses in early, mid and late gestation, respectively), low SDNN <12 msec

(20, 10 and 7 fetuses in early, mid and late gestation, respectively). The correlation of

mean FHR, RMSSD and SDNN with TE on both directions were also tested. In each case

linear partial correlation was evaluated while controlling for the gestational age. The

correlation of maternal respiratory rate and mean TE was analyzed through Pearson’s

correlation and MWW was also used to compare TE for various breathing ranges; i.e.

lower than 14 bpm (18 subjects), between 14 and 16 bpm (21 subjects) and higher than 16

bpm (26 subjects).
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9.3 Results

9.3.1 Results of surrogate analysis

TE was calculated for lags up to 10 seconds and on two directions. Based on the surrogate

analysis, for 63 out of 65 cases, TEM→F was significant, while not being significant for one

early and one late gestation cases. TEF→M was also not significant for that late gestation

case, as well as another case in late gestation, while being significant for the rest of the

cases. The fetuses with insignificant TEF→M had the highest mean FHR (160.649 bpm

and 166.736 bpm) among all 65 fetuses. The mean FHR for the fetuses with insignificant

TEM→F was also high compared to other cases (160.649 bpm and 154.698 bpm). The cases

with insignificant TE were excluded from further analysis.

9.3.2 Comparison between gestational age groups

Both mean of and maximum of significant TEM→F over the lags were significantly differ-

ent for three age groups according to MWW test results (table 9.1). Figure 9.1(a) shows

the boxplot of the mean TEM→F for different age groups. According to MWW results as

shown in figure 9.1(a) and table 9.1, both mean and maximum of TEM→F significantly

increased from early to mid and to late gestation, however no significant change was

observed from mid to late gestation. This was further investigated by analyzing fetal

heart rate variability as discussed in the following section. Mean and maximum of TE

on the other direction (F → M) did not change significantly with gestation. However a

decreasing trend was found in the mean TEF→M with gestational progression, as it was

negatively correlated with age (r = −0.393, p = 0.001 while controlling for the mean

fHR).

Similar results were obtained when the number of bins was changed to Q = 8; an in-

crease in TEM→F was found with gestational age (KW p = 0.025), particularly from early

to mid gestation (MWW p = 0.037), as well as a decreasing trend for TEF→M from early

to late gestation (nearly significant MWW p = 0.056). Similarly for Q = 6 bins, an in-

crease was found in mean TEM→F with gestational age (MWW p = 0.066, nearly signifi-
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Figure 9.1: Comparison of the mean TEM→F for different age groups is shown. Significant
differences according to the pairwise comparison by MWW test with p-value < 0.05 and
p-value < 0.01 are marked with (*) and (**), respectively. (a) Boxplot of mean TEM→F for
different age groups, (b)Boxplot of mean TEM→F for different age groups, excluding the
cases in late gestation group with RMSSD being smaller than 4 msec.
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Figure 9.2: Regression plots of mean TE on both directions with mean, RMSSD and
SDNN of FHR are shown. coefficient and p-values of partial correlation controlled for
gestational age are also indicated. The cases shown with zero TE had insignificant TE
according to the surrogate analysis.
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Table 9.1: Results of MannWhitneyWilcoxon test for changes of the estimated mean, max-
imum and delay of TE, as well as the maternal respiratory rate with gestational age

Early Gestation Mid Gestation Late Gestation
Mean TEM→F 0.618±0.178 0.728±0.187 0.808±0.227

(bits) (A*,B**) (A*) (B**)
Max TEM→F 0.698±0.196 0.816±0.201 0.895±0.250

(bits) (A*,B**) (A*) (B**)
Delay TEM→F 4.490±2.844 5.931±2.818 4.012±3.025

(sec) (A*) (A*,C*) (C*)
Mean TEF→M 0.673±0.170 0.687±0.160 0.626±0.156

(bits)
Max TEF→M 0.756±0.192 0.777±0.184 0.702±0.170

(bits)
Delay TEF→M 4.810±3.058 3.958±2.701 5.000±3.070

(sec)
Maternal respiratory 14.833±2.301 15.218±2.074 15.904±2.587

rate (bpm) (B*) (B*)

The mean ± Standard Error (SE) (msec) of the values for different age groups are
shown. Significant differences between pairs of age groups: early vs mid, early vs late
and mid vs late gestations are marked by (A), (B) and (C), respectively. The letters are
also marked with (*) or (**) depending on the p-value of MWW test being < 0.05 or
< 0.01, respectively.

cant for early to late gestation). Also a slight decrease in mean TEF→M with age (MWW

p = 0.081 from mid to late gestation) was observed and it was negatively correlated with

age (r = −0.244, p = 0.051 while controlling for the mean FHR).

Delays which resulted in maximum TE were also analyzed for different gestation groups,

as summarized in table 9.1. The lag associated with maximum TEM→F significantly de-

creased from mid to late gestation and increased from early to mid gestation. However

the latter is not as valued as the former, considering the small value of TEM→F at the early

gestation. No significant change in delay was found on the other direction (F → M). By

changing the number of bins from Q = 10 to Q = 6, similarly the delay decreased with

age in both directions (e.g. MWW p = 0.05 for delay of TEM→F for mid to late gestation,

and for the delay of TEF→M MWW p = 0.02 and p = 0.09 were found for early to late and

mid to late gestation, respectively). For the choice of Q = 8, the delay was also slightly

decreased with gestational age in both directions, but it was not statistically significant.
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9.3.3 Effect of short-term FHR variability

The correlation of mean TE was tested with mean, RMSSD and SDNN of FHR, all con-

trolled for the gestational age. The regression plots with all correlation coefficients are

shown in figure 9.2. Mean TEM→F was found only positively correlated with RMSSD

(r = 0.337, p = 0.006) and negatively with mean FHR (r = −0.439, p < 0.001), while it

was not significantly correlated with fetal SDNN (r = −0.082, p = 0.518). Considering

that a significant increase in mean TEM→F was found from early to mid, but not from mid

to late gestation, we tested the changes in mean TEM→F for the fetuses in late gestation

with RMSSD ≥4 msec. As shown in figure 9.1(b), for the fetuses with RMSSD ≥4 msec,

there was a further increase from mid to late gestation (MWW p=0.039), while no signif-

icant change for the fetuses with RMSSD <4. We also tested the relationship with the

maternal heart rate variability features (mean heart rate, SDNN and RMSSD) and found

no significant correlation. Finally, mean TEF→M was only correlated significantly with

mean FHR (r = −0.416, p = 0.001).

9.3.4 Effect of maternal respiration

No significant correlation was found between maternal breathing rate and mean TEM→F

or TEF→M, with or without controlling for fetal heart rate, RMSSD or age. MWW was

also used to compare TE for various breathing ranges; lower than 14 bpm, between 14

and 16 bpm and higher than 16 bpm. According to MWW results, no significant differ-

ence was found between mean TE with different breathing rate ranges, over all or specific

age groups and on any directions. Overall no relationship was found between the aver-

age maternal respiratory rate and TEM→F or TEF→M.
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9.4 Discussion

Assessing the responses of the fetuses to the stimuli in their environment, provides mark-

ers of their well-being and development. One of the common and easy-to-measure re-

sponses is the change in FHR. It was previously hypothesized that the fetus responds to

mechanical or auditory stimuli associated with the maternal rhythms, which results in

short time coupling between the fetal and maternal heart rates [160, 188]. Different from

previous model based approaches, we used an analysis of the coupling as a nonparamet-

ric measure which could detect any linear and nonlinear relationship of two variables,

based on the transferred information. Moreover using transfer entropy enables analysis

of coupling in each separate direction. The significance of the coupling was statistically

validated against surrogate pairs, and evidence of significant transfer of information was

found on both directions for 97% of fetuses.

The results of this study showed that the coupling from the mother to the fetus becomes

stronger with advancing gestation. Particularly, the transfer entropy from the mother

to the fetus significantly increases after 26 weeks of gestation compared to 16-25 weeks.

This result is in agreement with the maturation process of the fetal response to the stimuli

from the maternal rhythms, since both tactile and auditory systems become operational

after 26 weeks of gestation [84]. It was previously reported that the maturation of human

fetal response (in form of changes in FHR) to vibroacoustic stimulation starts at around

26 weeks and reaches maturity at about 32 weeks [84]. Our result is also in line with the

increasing sympathetic activity with gestational progression, alongside the development

of fetal autonomic nervous system and its function in regulation of FHR [148]. Develop-

ment of the sympathetic control during mid gestation is also concomitant to the nonlinear

heart period dynamics, which is suggested to be involved with sympathetic regulation

and also possibly the sympatho-vagal interactions [154]. The nonlinearity of the FHR

dynamics particularly in mid and late gestation was also our motivation for using TE.

With advancing gestation particularly around mid gestation, the fetus receives more in-

formation from the mother and reacts better, while the FHR shows more complexity and

nonlinear dynamics. Therefore, the transfer entropy from the mother to the fetus may

provide a marker to assess the development of fetal sensory and autonomic nervous sys-
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tems.

Although we found an increase in TEM→F from early (16-25 weeks) to mid (26-31 weeks)

gestation, no significant increase was found from mid to late (32-41) gestation. A factor

which might be involved in the coupling in late gestation, is the fetal behavioral state.

A higher FHR variability is generally observed in active periods after 28th week, and

the states can be identified by FHR analysis after 36 weeks of gestation [151]. As previ-

ously reported by Lange et al., the fetal behavioral states can be classified based on the

differences in short-term FHR variability such as RMSSD or SDNN [93]. In this study a

positive correlation was found between RMSSD and TEM→F, and there was a further in-

crease in TEM→F from mid to late gestation for the fetuses with RMSSD ≥4 msec, which

is associated with active state of the fetus [93]. However, a thorough assessment of the

fetal behavioral state can be better performed through long-term FHR monitoring and

sonographic observation, which is suggested for future studies.

The fetus also provides feedback to maternal systems throughout its own development,

which can evoke a maternal physiological response. Our results showed that the transfer

of information from fetal to maternal heart rate was negatively correlated with age. The

decrease in TEF→M with gestational progression is possibly because the fetus requires

less from the mother when most organs are developed towards delivery. The mature

fetuses have also more stable and developed ANS in the late gestation. TE on both direc-

tions was negatively correlated with mean FHR and the cases with insignificant TE had

higher FHR compared to other fetuses. Although it is not possible to comment on the

causal link between FHR and TE, but this negative correlation implies that at high FHR

it may be difficult for the fetus to maintain the link with the maternal heart rate.

In this study the coupling between maternal and fetal heart rate was observed at various

delays. These lags may reflect the fetal (e.g. auditory or tactile) processing time before re-

sponding to the stimuli from mother. Similarly, a latency was previously found for FHR

changes in response to the VAS, maternal voice or displacement [83, 84, 97]. The lags for

the short-term relationship between maternal and fetal heart rates were also considered

in a model-based analysis by Riedl et al. [160]. They found a short-term synchronization

through which, the maternal beats described the FHR fluctuations as a predecessor with
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a lag of 4 to 5 fetal beats. Considering that the fetuses in their study were at 34 to 40 weeks

of gestation, their finding is consistent with our results for the late gestation group. We

further included the delays up to 10 sec (around 20-28 fetal beats) in our analysis to allow

for detection of longer delays particularly for the fetuses in earlier gestation.

In addition, the changes of the lag corresponding to the maximum TE was analyzed for

different gestational ages. The lag for TEM→F was significantly shorter in the late gesta-

tion. This is an evidence of faster fetal sensory processing time and shorter latency of fetal

response to the stimuli from maternal rhythms, according to the maturation of sensory

systems and ANS. Previous studies observed similar results for the late gestation stage,

such as decreased latency of fetal response to maternal voice [83].

Previous studies tested the relationship between fetal and maternal heart rates in con-

trolled maternal respiration setting and suggested that the relationship may be induced

by high maternal respiratory rates [190]. They found that the synchronization occurred

significantly more often at fast maternal breathing and less at slow respiratory rates

[188, 190]. In this study we tested TE for average maternal respiratory rate, derived from

maternal ECG. No significant relationship was found between maternal respiratory rate

and TEM→F or TEM→F. Our analysis was only based on the average respiratory rate

for each mother. An accurate breath-by-breath measurement of maternal respiration is

suggested for future studies, to be considered as a confounding variable in TE analysis.

Therefore, it would be possible to evaluate the causal effect between maternal-fetal heart

rates, conditioned on the maternal respiration.

In this study transfer entropy was evaluated based on one-minute recordings, which

is the standard fetal ECG measurement protocol to minimize the inconvenience for the

participating mothers. For future studies, it is recommended to use longer recordings

to investigate the effect of sample size and study the temporal changes in information

transfer for each fetus. Furthermore, application of other methods for measuring the cou-

pling, for example to improve the quantification of coupling for small sample sizes [153],

is recommended for future investigations. Longer recordings also provide the analysis of

nonstationarity in FHR, as a factor with possible influence on TE analysis. Nonstation-

arity of FHR becomes more pronounced in the late gestation due to the fetal movement.
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An accurate evaluation of the nonstationarity in the FHR requires longer recordings, e.g.

to measure the inconsistency of baselines using acceleretion/deceleration patterns [73].

Analysis of the nonstationarity and its influence on TE measures are left for the future

studies.

9.5 Conclusion

Using transfer entropy as a nonparametric measure, significant couplings were found

between maternal and fetal heart rates on both directions for 63 of 65 fetuses. Mater-

nal to fetal TE increased from early to mid gestation, along maturation of fetal ANS and

sensory (e.g. auditory and tactile) systems. It was further increased from mid to late

gestation, except for the fetuses with low RMSSD (< 4msec) of heart rate, possibly due

to their quiet sleep state. The fetal to maternal TE was negatively correlated with gesta-

tional age, showing a decrease in the feedback from fetus to the mother towards delivery.

Furthermore, the delay at which maximum information transferred from mother to the

fetus was shorter in the late gestation, implying the short fetal processing time and la-

tency in responding to the stimuli from the mother. Results suggest that the assessment

of the coupling strength and latency throughout gestation can provide clinical markers

of healthy versus pathological fetal development.
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Contributions and further work

10.1 Summary of contributions

10.1.1 Contributions to the identification of fetal cardiac valve motion events

Although detection of valve motion events from 1-D DUS signal was performed in previ-

ous studies, all were based on manual recognition of events which is time consuming and

subject to visual, inter- and intra-observer errors. The first automated method for iden-

tification of the valve motion events from 1-D DUS was developed in this thesis. Fur-

thermore, decomposition of DUS signal to the component related to valve motion was

improved using EMD which is a data-driven algorithm suitable for decomposing non-

linear and nonstationary time series. The main basis for the proposed automated valve

motion identification method was HMM. This method provided beat by beat estimation

of valve timings, which was published and presented in 35th Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society (EMBC) in July 2013.

This method was then further improved by incorporating extra features of the DUS com-

ponent for detecting the valve movements, through MD-HMM and Hybrid SVM-HMM.

These methods were published in the proceeding of IEEE EMBC and IEEE Journal of

Biomedical and Health Informatics, respectively, in 2014.

It was further shown that different patterns of the DUS components were observed which

were variable on a beat to beat basis and throughout gestation. By clustering the DUS

components and performing hybrid SVM-HMM for each cluster separately, more accu-

rate detection of valve movements was achieved as described in chapter 5. This model-
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based technique was the basis for the second journal paper published in IEEE Journal of

Biomedical and Health Informatics, in 2014.

Simultaneous recording of fECG with Doppler has a crucial role in automated methods

for segmentation. However simultaneous recording of abdominal ECG with DUS sig-

nal and extraction of fECG complicate this technique. Therefore it was proposed to use

wall motion related component of DUS signal for segmentation, instead of fECG. Results

showed that the measured average ICT with this new method was in agreement with the

average ICT measured by the previous method which required fECG as reference. This

work was described in chapter 6 and presented in Computing in Cardiology Conference

in 2014.

Overall, the model-based method proposed in chapter 5 provided the highest precision

and recall and is recommended for accurate estimation of valve timings in clinical prac-

tice. However in the case of computational limitations, the MD-HMM-based method

proposed in chapter 4 is recommended. Finally, if simultaneous fECG is not available,

the valve timings can be identified using the DUS signal only, as proposed in chapter 6.

Considering the high susceptibility of the DUS signal to noise and interferences, it is cru-

cial to assess the signal quality to ensure its validity for a reliable estimation of the valve

movement timings. Another contribution of this thesis was to automatically assess the

quality of the DUS signal. Automated quality classifier was developed in this study and

presented in Computing in Cardiology Conference in 2015.

The changes of the estimated valve timing intervals with gestational age were also in-

vestigated, which can provide clinical markers to assess healthy versus pathological de-

velopment of fetuses. The intervals were also found to be different for the fetuses with

heart anomalies compared to the normal cases, therefore can be used for detection of

those anomalies. The comparison of valve intervals for different gestational ages and

healthy versus heart anomaly fetuses were the bases for two conference papers presented

and published in the proceeding of Computing in Cardiology, in 2013 and IEEE EMBS

Healthcare Innovation Conference (HIC), in 2014.
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10.1.2 Contributions to the identification of the coupling between maternal
and fetal heart rates

Different from the previous studies on the coupling between maternal and fetal heart

rates, in this thesis a model-free and nonparametric method based on transfer entropy

was used which provided details on the linear or nonlinear relationships. The coupling

was also quantified separately in fetal to maternal and maternal to fetal directions. Fur-

thermore delay of the information transfer was considered and analysed for various ges-

tational ages. Results of this work suggested that the assessment of the coupling strength

and latency throughout gestation can provide clinical markers of healthy versus patho-

logical fetal development. This study was the basis for a paper presented in IEEE Engi-

neering in Medicine and Biology Society Conference (EMBC) in 2015 and a journal paper

submitted to PlosOne, in 2015.

10.2 Future research

10.2.1 Future studies in the identification of fetal cardiac valve motion events

• Valve motion events were identified based on the timing and amplitude of the

peaks of the DUS component. Additional features, such as width and power spec-

tral density of the peaks can be used to improve the identification of valve events.

• This research provided an automated method for estimation of fetal cardiac valve

intervals, which were also tested for four heart anomaly cases. Further investiga-

tion based on a larger number of fetuses with certain types of heart anomalies are

required to develop a classifier for automated detection of abnormalities. Incorpo-

ration of this classifier with the automated method of detecting valve movements

provides a fully automated tool to detect abnormalities from simultaneous record-

ing of DUS and fECG.
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• Finally, quantitative comparison of the intervals estimated from 1-D DUS with M-

Mode and pulsed wave Doppler images is recommended for future studies.

10.2.2 Future studies in the investigation of the relationship between mater-
nal and fetal heart rates

• The relationship between fetal and maternal heart rates was investigated based one

minute recordings. It was suggested that fetal behavioral state may affect this re-

lationship. Longer recordings together with fetal behavioral state reliably detected

by sonography is recommended for future studies.

• Although no relationship was found between average maternal breathing rate and

the maternal-fetal coupling, an accurate breath-by-breath measurement of mater-

nal respiration is suggested for future studies, to be considered as a confounding

variable in TE analysis.

• Finally, testing the coupling for pathological fetal and maternal conditions requires

further investigation.
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