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ABSTRACT 

 
 

The direct-modulation of semiconductor lasers is the simplest and most compact 

approach to pass data onto an optical fiber; however, their intrinsic limitations under 

direct-modulation such as wavelength chirp and inherent relaxation oscillation frequency 

constraints impede their high-speed and long-distance capabilities. The injection-locking 

of semiconductor lasers improves the injected laser's operational characteristics under 

direct-modulation, attracting a large degree of interest over the past decade. These 

improvements include increasing the modulation bandwidth through the enhancement of 

the resonance frequency, suppressing nonlinear distortion, and reducing relative intensity 

noise, mode-hopping, and chirp. The nonlinear dynamics associated with optically-

injected semiconductor lasers has also attracted great interest due to potential applications 
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including: all-optical amplitude-modulation to frequency-modulation conversion, 

chaotic-communication, and photonic microwave generation. 

In this dissertation, the optical-injection of quantum-dash and quantum-dot Fabry-

Perot semiconductor lasers is investigated in the context of modeling the impact of their 

characteristically large nonlinear gain component. The impact of the large degree of gain 

compression on the differential and nonlinear carrier relaxation rates observed in 

nanostructure lasers under large operational photon densities is also investigated under 

strong optical-injection conditions.  

A novel small-signal microwave modulation response function is derived and 

shown to improve upon current models at modeling the microwave modulation response 

under optical-injection. The nonlinear dynamics observed under weak injection strengths 

are theoretically analyzed using a novel dimensionless rate equation model where 

including the impact of the nonlinear carrier relaxation rate is shown to improve the 

agreement with experimentally collected data.  

The novel tools derived to analyze the operation of the optically-injected system 

encompass the physical nature of the injected laser in a more complete manner than 

previously derived approaches. Theoretical predictions derived here show that large 

nonlinear carrier relaxation rates, along with suitably small linewidth enhancement 

parameter values of nanostructure lasers suppress the instability of the optically-injected 

system. The quantum-dash laser’s potential for implementation as a tunable photonic 

oscillator for use in radio-over-fiber applications or directly-modulated slave laser in a 

coherent optical communication system is described, along with the quantum-dot laser’s 

highly stable operation under optical-injection.   
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GLOSSARY OF TERMS 

The following parameters are associated with the free-running (solitary) laser: 

γn:  differential carrier relaxation rate in Hz 

γp:  nonlinear carrier relaxation rate in Hz 

γs:  spontaneous carrier relaxation rate in Hz 

γc:  cavity photon decay rate in Hz 

τp:  photon lifetime in seconds, s 

α:  linewidth enhancement parameter (alpha-factor, Henry-factor), unitless 

γfr: overall relaxation oscillation frequency damping rate rad/s, (γfr = γn + γp + γs) 

Ωfr: angular relaxation oscillation frequency, rad/s, (Ωfr
2 =γnγc+γpγs) 

ffr: relaxation oscillation frequency in Hz 

Γ:  optical confinement factor 

g: gain coefficient implicitly incorporating the group velocity νg, in Hz 

gth: gain at threshold implicitly incorporating the group velocity νg, in Hz 

gn,s: differential gain parameter implicitly incorporating the group velocity νg, cm3/s 

gp,s:  nonlinear gain parameter characterizing the effect of gain compression due to the 

saturation of gain by the intra-cavity photon density implicitly incorporating the 

group velocity νg, cm3/s 

gn: differential gain parameter normalized to field strength implicitly incorporating 

the group velocity νg, cm3/s 



xxi 
 

gp: nonlinear gain parameter characterizing the effect of gain compression due to the 

saturation of gain by intra-cavity photons normalized to field strength implicitly 

incorporating the group velocity νg, cm3/s 

εp: nonlinear gain compression coefficient 

τt:  parasitic RC carrier transport time in seconds, s 

γt:  inverse parasitic RC carrier transport time (γt =1/τt) in Hz 

ng:  group index of the active region 

νg:  group velocity in the active region in m/s 

 

The following parameters are associated with the optically-injected system: 

Δf: detuning frequency in GHz defined as Δf = fmaster - fslave = finj - fslave 

fmaster: frequency of the master laser 

fslave: frequency of the free-running slave laser 

Δω: angular detuning frequency defined as Δω = ωmaster - ωslave 

ωmaster: angular frequency of the master laser  

ωslave: angular frequency of the slave laser 

kc:  coupling coefficient in Hz 

RFE:  field enhancement factor defined as Ao/Afr, unitless 

Ao: steady-state field magnitude of the slave laser under optical-injection 

Afr: steady-state field magnitude of the free-running slave laser 

Ainj: steady-state field magnitude of the injected master laser 

θo: steady-state phase offset between the injected master laser field and free-running 

slave laser field 
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ηo:  maximum injection strength in Hz define as 
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γth: threshold gain shift defined as γth =2ηcos(θo) 

J: bias current density 

Jth: bias current density at threshold 
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Characterization of the Dynamics of Optically-Injected 

Nanostructure Lasers 

Chapter 1. Introduction 

 Due to their low propagation loss and immunity to electromagnetic interference, 

optical fibers have become the medium of choice over copper wire in the 

telecommunications industry. The direct modulation of semiconductor lasers is the 

simplest and most compact approach to pass data onto an optical fiber; however, 

drawbacks such as wavelength chirp and inherent relaxation oscillation frequency limits 

impede the high-speed and long-distance capabilities of such systems [1], [2]. The 

limitations of directly-modulated semiconductor lasers have narrowed their application to 

low-frequency, short-haul systems in the ~10 Gb/s range, leading to the implementation 

of external modulation architectures as the primary means of passing data onto an optical 

fiber for long-haul communications at 40 Gb/s and above [1], [2].  

 In external modulation, the optical source is operated continuously and its output 

light is modulated using an optical external modulator. Although more complicated in 

design, the zero-chirp operation and higher bandwidth capabilities (~40 Gb/s) of external 

modulators has motivated their large-scale use in fiber-optic systems [3]. Along with 

external modulation techniques, wavelength division multiplexing is commonly used to 

multiply the available transmission capacity through an optical fiber by adding new 

channels, where each channel is on a different wavelength [2]. The drawback to 
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implementing wavelength division multiplexing is the increase in transmitting and 

receiving equipment, leading to increased system cost and complexity.  

 Improvements in the capabilities of strained quantum-well lasers in the near-IR 

[4], [5], tunnel injection and the introduction of nanostructure lasers in the late 1990’s has 

increased the modulation bandwidth and materials complexity of directly-modulated 

semiconductor lasers [6]. The novelty of the nanostructure laser is its high characteristic 

temperature, its low threshold current when compared to quantum-well lasers and most 

importantly its low linewidth enhancement parameter (chirp parameter) [6]. One practical 

limitation to the 3-dB bandwidth of directly-modulated semiconductor lasers is their 

relaxation oscillation frequency, driven largely by device heating and gain compression 

[7], [8]. 

 The injection-locking of semiconductor lasers has been shown to improve the 

injected laser's operational characteristics under direct modulation, attracting a large 

degree of interest over the past decade. These improvements include increasing the 

modulation bandwidth through the enhancement of the resonance frequency, suppressing 

nonlinear distortion, and reducing relative intensity noise, mode hopping, and chirp [9]-

[13]. The nonlinear dynamics associated with optically-injected semiconductor lasers has 

also attracted great interest due to potential applications including all-optical amplitude-

modulation (AM) to frequency-modulation (FM) conversion, chaotic-communication, 

and photonic microwave generation [14]-[16].  

 The objective of this dissertation is to provide a thorough investigation of 

optically-injected nanostructure lasers. Specifically, the optical-injection of a quantum-

dash Fabry-Perot semiconductor laser emitting at 1.55-μm and a quantum-dot Fabry-
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Perot semiconductor laser emitting at 1.3-μm is detailed in the context of modeling the 

impact of their large nonlinear carrier relaxation and overall damping rates, along with 

the impact of gain compression on the differential and nonlinear carrier relaxation rates. 

The nonlinear dynamics observed under weak injection strengths and the bandwidth 

enhancement characteristics observed under strong injection are studied. The small-signal 

modulation response function and the dimensionless rate equation model derived in this 

work, which invoke non-linear gain in the small-signal response for the first time, are 

shown to improve upon the current approaches used in predicting the behavior of 

nanostructure semiconductor lasers under optical-injection.  

 The intrinsic properties of semiconductor lasers are unique based on their material 

properties and structural design. This work aims to understand the dependence of the 

dynamic behavior of the optically-injected system on free-running slave laser parameters, 

with a specific focus on the slave laser’s nonlinear carrier relaxation rate. Theoretical 

predictions derived here show that large nonlinear carrier relaxation rates, along with 

suitably small linewidth enhancement parameter values of nanostructure lasers suppress 

the instability of the coupled system. 

1.1. Overview of Optical-Injection 

Optical-injection of semiconductor lasers involves two optical sources referred to 

as the master and slave lasers as seen in Figure 1. The master laser, typically a high-

power single-mode narrow-linewidth tunable laser, is injected into the slave laser, 

thereby affecting the operation and inherent free-running characteristic parameters of the 

slave laser. An isolator is placed between master and slave lasers to eliminate reflected 

light coupling back to the master laser. Under stable injection-locking of semiconductor 
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lasers, which occurs when the strength of the injected master laser light and frequency 

difference between the master and slave fall within a certain range, the slave’s lasing 

wavelength is pulled/locked to the injected master laser’s wavelength. Stable injection-

locking provides several improvements to directly-modulated lasers [9], [10]. These 

improvements include increasing the modulation bandwidth, suppressing nonlinear 

distortion, and reducing relative intensity noise, mode hopping, and chirp [9]-[13]. A 

basic example of the spectral improvements under stable injection-locking for a multi-

mode Fabry-Perot quantum-dash slave laser is shown in Figure 2. An example of the 

modulation bandwidth enhancement for the injection-locked Fabry-Perot quantum-dash 

semiconductor laser is shown in Figure 3. The characteristics of the modulation response 

curves in Figure 3 are observed to vary as a function of the detuning frequency between 

the master and slave lasers for a fixed injection strength.  

 

 

Figure 1. Basic cartoon describing optical-injection. 
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Figure 2. Optical spectra of an injection-locked multi-mode quantum-dash Fabry-Perot 
laser. 

 

 

Figure 3.  Modulation response of the injection-locked quantum-dash laser for varied 
frequency detuning (Δf) conditions. 
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Besides the stable injection-locking regime, the optically-injected system 

demonstrates a dynamic behavior whereby the optical spectra are characterized by the 

appearance of relaxation oscillation sidebands and coherence collapse [17]-[23]. The 

optical power spectra associated with the dynamic states exhibited by a diode laser under 

optical-injection are referred to as period-one, period-doubling, four-wave mixing, and 

coherence-collapse, and are illustrated in Figure 4. The optical spectra shown in Figure 4 

are unique in nature due to the high resolution of the spectrometer used in data collection 

(maximum resolution = 1 MHz), which allowed extreme detail of the optically-injected 

quantum-dash laser’s behavior to be observed. In Figure 4 and throughout this work, the 

detuning frequency is defined as: Δf = fmaster – fslave. 

An unlocked system, where either the injected signal strength is weak and/or the 

frequency difference is too large resulting in the master laser field having no impact on 

the slave laser, is shown in Figure 4(a) [19], [23]. The period-one state, illustrated in 

Figure 4(b), is characterized by the presence of undamped relaxation oscillation 

sidebands. Figure 4(c) shows the period-doubling state which is similar to the period-one 

state, but with additional relaxation oscillation side-bands associated with a second 

periodic-oscillator at roughly half the slave laser's characteristic relaxation oscillation 

frequency [19], [23]. Stable locking is shown in Figure 4(d) and is characterized by single 

mode operation with a significant degree of side mode suppression (defined here as > 30-

dB), where the single locked-mode has a narrow linewidth, reduced chirp and noise 

compared to the slave laser's free running characteristics. The small side modes (side 

mode suppression > 40 dB) in Figure 4(d) are attributed to feedback in the experimental 

setup. The coherence-collapse state pictured in Figure 4(e) is characterized by a large 
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broadening of the coupled system’s linewidth. Four-wave-mixing is shown in Figure 4(f) 

and is a described as a pseudo-unlocked state where two additional frequencies are 

generated due to optical non-linearities in the device. Under four-wave mixing, the slave 

laser’s operating frequency is unaffected by the injected power. For a fixed injected 

master power, the coupled system will progress from the period-one state to four-wave-

mixing for increased detuning frequencies and a clear boundary is typically difficult to 

quantitatively determine. The microwave modulation response under period-one, period-

doubling, and coherence collapse are normally considered undesirable for use in high-

speed coherent optical communication systems where the slave laser is directly-

modulated.  

With the optical power spectral descriptions describing the operational states 

(stable-locking, period-one, period-doubling, coherence collapse, four-wave-mixing), 

stability maps characterizing the dynamic state as a function of the maximum injection 

strength and detuning frequency can be constructed for a given slave laser. An example is 

illustrated in Figure 5 for the quantum-dash Fabry-Perot slave laser. The relatively stable 

operation under zero frequency-detuning conditions and the large period-one oscillation 

state parameter space open the quantum-dash laser to possible applications as a tunable 

photonic oscillator or directly-modulated slave laser in a coherent optical communication 

system. These potential applications are discussed in the next section. 
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Figure 4. Behavioral states of a quantum-dash laser subject to optical-injection. The 
injection strength and detuning frequency are indicated on the individual figures. (a) 

Illustrates the unlocked case; (b) the period-one oscillation state; (c) period-doubling; (d) 
stable-locking; (e) coherence collapse; and (f) four-wave-mixing.  



9 
 

 

Figure 5. Stability map for the optically-injected quantum-dash slave laser at a bias 
current of 65 mA showing only stable and period-one operation at zero-detuning and a 

large period-one parameter space as the injection strength and/or detuning frequency are 
varied. The blue diamonds at negative detuning indicate chaotic (coherence collapse) 

operation. The trendlines have been added as a visual aid only.  

 

1.2. Applications of Optically-Injected Lasers 

Communication applications of optically-injected semiconductor lasers have 

predominantly focused on the stable locking state achieved under strong injection where 

desirable high frequency modulation characteristics have been exhibited [12], [24], [25]. 

Recently, however, the complex nonlinear dynamical states resulting from the optical-

injection of semiconductor lasers have generated increased interest for many novel 

applications [14]-[16]. Potential applications based on their rich nonlinear dynamics 
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include: chaotic communications, chaotic lidar, chaotic radar, photonic microwave 

generation, dual-frequency precision radar/lidar, all-optical AM-to-FM conversion, and 

single-sideband radio-over-fiber transmission [16]. In this section, the applications of the 

period-one operational state are discussed. 

 The period-one state is described as the condition where the slave laser is locked 

to the injected field and the coupled system oscillates at the injected frequency (finj) with 

sidebands at frequencies of finj ± fr, where fr is the resonance frequency of the optically-

injected laser as illustrated in Figure 6 [14]-[15]. The resultant electric field of the 

optically-injected slave laser oscillates without being damped towards a steady-state 

value as in a free-running or stable-locked semiconductor laser. The period-one 

resonance frequency is tunable based on the injection strength and/or detuning frequency 

between the master and slave laser, generating a microwave modulation on the laser 

output in an all-optical manner [15], [26]-[28].  
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Figure 6. Optical power spectra of the optically-injected quantum-dash laser under a bias 
of 65 mA in the period-one oscillation state. The injected field ratio and detuning 

frequency are indicated on each plot. fr is the measured resonance frequency. Δf is the 
detuning frequency. 

 

Compared with direct modulation, external modulation, mode-locking, self 

pulsation, and optical phase-lock loops, the period-one approach presents several 

advantages in microwave generation [14]-[16]. The primary advantage identified is that 

the all-optical approach of optical-injection avoids the limitations of microwave 

electronics and electrical parasitics. In this regard, the system is controlled using the DC 

injection current of the master laser to modulate its output power resulting in a tunable 

resonance frequency varying from the free-running laser’s natural relaxation oscillation 

frequency to up to six times this value [14]. Chan et al. and Hwang et al. report the 

generation of period-one microwave frequencies up to 60 GHz, making the period-one 

optical-injection system an ideal radio-over-fiber source [14], [15]. 
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Radio-over-fiber technology uses optical fibers to transmit information between 

central locations and base stations, where the data is transmitted via a microwave signal 

carrier on an optical wave taking advantage of the efficient, low-loss and electromagnetic 

interference-free signal transportation offered by optical fibers; conversely, traditional 

electrical systems using coaxial cables and metallic waveguides have extremely large 

attenuation and are complex and expensive. The advantage of radio-over-fiber is the 

location of expensive microwave components at a centralized base station, simplifying 

the data conversion at the individual base stations [29]. In conventional narrowband 

communication systems, radio-frequency signal processing functions (frequency up-

conversion, carrier modulation, and multiplexing) are performed at each base stations that 

receive transmitted data via an amplitude-modulated optical signal. The frequency 

tunability of the period-one resonance frequency based on the strength of the injected 

signal opens the possibility of all-optical AM-to-FM conversion, enabling the integration 

of the optical-injection architecture into radio-over-fiber systems.  

In the AM-to-FM conversion application, the input amplitude modulated signal is 

used to drive the master laser injecting the slave laser under a condition that results in the 

period-one oscillation state; the amplitude modulated signal injecting the slave laser will 

then be converted to a frequency modulated microwave signal. The optical-injection 

based AM-to-FM frequency modulation conversion increases bandwidth capabilities, and 

reduces signal distortion, electronic noise, and power consumption [25]. A depiction of 

the radio-over-fiber architecture using optical-injection to perform the AM-to-FM 

conversion is given in Figure 7. 
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Figure 7. Generic depiction of the radio-over-fiber architecture. The AM-to-FM 
conversion is performed at the central office and the FM modulated optical signal is 

transmitted to the base stations simplifying base station processing requirements.  

 

1.3. Nanostructure Lasers 

In this dissertation, nanostructure lasers (referring to quantum-dot and quantum-

dash lasers) under optical-injection are investigated due to their theoretically superior 

free-running lasing characteristics compared to quantum-well lasers resulting from their 

delta-function density of states. The theoretically superior properties arising from their 

three-dimensional carrier confinement include the following: low-threshold current 

densities, temperature insensitivity of the threshold current, ultra-high differential gain, 

increased cutoff frequency, and chirp free operation under direct modulation [30], [31]. 

Quantum-dot lasers are also attractive in that by varying the dot size and composition, 

emission wavelengths are achievable over wider ranges on given substrates since the 
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three dimensional structure of the dots helps to relax the strain from the lattice mismatch 

while minimizing dislocation formation [31]. The density of states for increased degrees 

of carrier confinement in bulk, quantum-well, quantum-wire, and quantum-dot 

semiconductor materials is depicted in Figure 8 [32].  

 

 

Figure 8. Cartoon of the basic structure and the associated density of states of bulk, 
quantum-well, quantum-wire, and quantum-dot semiconductor material.  

 

 Of particular interest in the modeling of the stability of an optically-injected 

semiconductor laser is its linewidth enhancement parameter [17], [21]. Previous 

theoretical and experimental work has highlighted a strong correlation between nonlinear 

operation and the linewidth enhancement parameter [21]. It is the high degree of stability 

predicted for low linewidth enhancement parameter lasers that attracts interest in 

optically-injected nanostructure lasers. The three-dimensional carrier confinement 
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exhibited by quantum-dot lasers and their delta function density of states predicts a 

symmetric gain spectrum based on the Kramers-Kronig relation. The symmetric gain 

spectrum of a quantum-dot laser theoretically yields a linewidth enhancement parameter 

of zero at the peak gain because the index of refraction will not change with carrier 

density. Experimental investigations have proven this theoretical concept, as Newell et 

al., Kondratko et al., and Fathpour et al. have reported near zero linewidth enhancement 

parameters for quantum-dot lasers at or near threshold [33], [34], and [6].  

 Along with the linewidth enhancement parameter, the impact of the relatively 

large nonlinear carrier relaxation rate of a nanostructure laser in modeling its stability is 

of strong interest. Nanostructure lasers are known to be more strongly damped than 

quantum-well and hetero-junction lasers, and this strong damping leads to a sizeable 

nonlinear carrier relaxation rate. Previous works have discussed the effect of nonlinear 

gain in suppressing the instability of the system [21]; this work aims to quantify the 

impact of the nonlinear carrier relation rate in both the small-signal microwave 

modulation response and the nonlinear dynamics observed in the coupled system.  

  This work focuses on two nanostructure laser types: a quantum-dash Fabry-Perot 

laser emitting at 1.55-μm grown on an n+-InP substrate, and a quantum-dot Fabry Perot 

laser emitting at 1.31-μm grown on an n+-GaAs substrate. Both lasers were obtained from 

Zia Laser, a company that commercialized quantum-dot products based on the “dots-in-a-

well” (DWELL) design. In the DWELL structure, the active region is similar to that of a 

quantum-well; however, the well contains an embedded layer of pyramid-shaped indium-

arsenide dots. Additional details describing the quantum-dot and quantum-dash lasers 

will be presented in Chapter 4.  
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1.4. Document Organization 

 This work provides a thorough investigation of optically-injected quantum-dash 

and quantum-dot nanostructure lasers. Chapter 2 derives a predictive model to investigate 

the small-signal microwave modulation response of an optically-injected nanostructure 

laser. The function derived is unique in that it accounts for both the nonlinear carrier 

relaxation rate parameter and the saturation of this parameter under considerably strong 

injection conditions. In Chapter 3 a normalized approach is described that theoretically 

evaluates the behavioral state as a function of the injected field ratio and/or the detuning 

frequency for varied slave laser bias cases. Chapter 4 gives a detailed device 

characterization of the nanostructure lasers under test and highlights their characteristic 

parameters that make them ideal for implementation in optically-injected architectures. 

Chapter 5 and Chapter 6 describe the experimental validation of the theory described in 

Chapter 2 and Chapter 3. Additionally, Chapter 5 and Chapter 6 present experimental 

data characterizing the steady-state microwave modulation response under varied degrees 

of detuning, with a focus on the zero-detuning and the positive frequency detuning edge 

conditions. A stability map describing the operation of the quantum-dash laser under 

optical-injection is presented in Chapter 5. Chapter 7 summarizes the work and suggests 

future topics of study related to optical-injection.  
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Chapter 2. Modulation Response of the Optically-Injected Nanostructure Laser 

 As introduced in Chapter 1, optical-injection enhances the 3-dB bandwidth and 

resonance frequency of a diode laser. The purpose of this chapter is to theoretically 

derive a predictive model to investigate the microwave modulation response of an 

optically-injected nanostructure laser. The function derived is unique in that it for the first 

time accounts for the nonlinear carrier relaxation rate parameter and the saturation of this 

parameter under considerably strong injection conditions. Pervious works have dismissed 

the necessity to consider the impact of these parameters. This work shows that when 

modeling nanostructure lasers, these parameters play a sizable role in the coupled 

system's response. 

 The dynamic parameters describing the microwave modulation response are also 

used to describe the stability limits in frequency detuning and injection strength 

parameter space. In Chapter 5 and Chapter 6, the function derived here is shown to 

increase the level of accuracy in predicting experimental results over models where the 

nonlinear carrier relaxation rate is not considered. 

2.1. Rate Equations Describing Optically-Injected Diode Lasers 

The resonance frequency and microwave modulation response of an optically-

injected diode laser is investigated by performing a small-signal analysis of the single 

mode rate equations. The rate equations describing optically-injected diode lasers are 

given in equations (1) – (3), which are based on the conventional equations describing 

diode lasers in the absence of optical-injection (free-running) with terms introduced to 

describe the impact of the injected light [35], [36]. As in the free-running rate equation 
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model, the field magnitude and phase equations given in (1) and (2) arise from the 

fundamental complex field rate equation [36].  

))(cos()(
2
1)(

2
1)( tAktAtgA

dt
tdA

injcc θγ +−Γ=  (1)

))(sin(
)(22

)( t
tA

A
kg

dt
td inj

cc θωγααθ
−Δ−−Γ=  (2)

)()()()( 2 tgAtNtJ
dt

tdN
s −−= γ  (3)

where A(t) and N(t) are the electric field magnitude and carrier density of the injected 

slave, respectively. Ainj is the magnitude of the injected field. θ(t) is the phase offset 

between the master and slave laser. Δω is the detuning frequency between the master and 

slave laser defined by Δω = ωmaster – ωslave. J is the bias current density, γs is the 

spontaneous carrier relaxation rate, γc is the cavity photon decay rate given by: γc = Γgth, 

where γc = 1/τp and τp is the photon lifetime [37]. Γ is the optical confinement factor, g is 

the gain coefficient, and gth is the gain at threshold. α is the slave laser linewidth 

enhancement parameter. The coupling coefficient, kc, is dependent on the internal cavity 

round trip time. 

The rate equations describing a diode laser under optical-injection have been 

thoroughly analyzed in various works, most recently in a manner to derive an expression 

modeling the absolute small-signal microwave frequency modulation response [38]-[40]. 

The small-signal modulation response models in Lau et al. and Naderi et al. do not 

directly account for the nonlinear carrier relaxation rate, γp, nor the gain compression 

characteristic of diode lasers, as their impact in most diode lasers is considered relatively 
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small [39], [40]; nanostructure lasers, however, have been shown to a possess a large 

damping rate driven by a large nonlinear carrier relaxation rate when compared to 

quantum-well lasers [41]-[43] as well as gain compression coefficients roughly an order 

magnitude larger than quantum-well lasers [8]. The purpose of the derivation presented 

here is to determine the small-signal modulation response where the nonlinear carrier 

relaxation rate parameter, γp, and its compression (along with the differential carrier 

relaxation rate parameter) under strong injection is considered in order to more 

effectively model optically-injected nanostructure lasers.  

Under the dynamical perturbation of a small-signal current modulation, the free-

running gain coefficient can deviate from gth due to the variations in the carrier and 

photon densities [37]. Based on this free-running dependence of the gain coefficient on a 

small-signal perturbation, it is inferred that it will also be impacted by the external 

optically-injected perturbation. The dependence of the gain coefficient on the carrier and 

photon densities is defined in (4) [37]: 

( )frinjspthnth SSSgNNggg −++−+= )()( ,  (4)

where gn (> 0) is the differential gain parameter and gp,s (< 0) is the nonlinear gain 

parameter characterizing the effect of gain compression due to the saturation of gain by 

intra-cavity photons, where S is the photon density resulting from the small-signal current 

perturbation. gth, Nth, and Sfr are the gain at threshold, carrier density and photon density 

at steady-state under free-running operation, respectively [35], [37]. Sinj is the injected 

photon density. In (4), gth, gn, and gp,s implicitly incorporate the group velocity. Next, (4) 

is adjusted to reflect the relationship between the normalized field and the photon density 

given by: A2(t) = S(t), yielding the relationship given in (5) [37]. 
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( )222 )()( frinjpthnth AAAgNNggg −++−+=  (5)

where Afr is the steady-state free-running normalized field and Ainj is the injected field 

strength. 

The rate equations are re-written in (6) – (8) to reflect the expanded gain 

coefficient definition in (5) and the time dependence is dropped for simplification 

purposes (A(t) -> A, θ(t) -> θ, N(t) -> N).  
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kAAAgNNgg
dt
d inj

ccfrinjpthnth  (7)

( ) 222222 )()( AAAAgANNgAgNJ
dt
dN

frinjpthnths −+−−−−−= γ  (8)

2.2. Steady-state solutions to rate equations: 

The steady-state solutions of (6), (7), and (8) are found in order to simplify the 

resultant small-signal, differential analysis results [35], [36]. The steady-state solutions 

also yield important relationships between parameters under stable-locking conditions 

and parameter range limits that are useful in modeling various detuning conditions that 

will be described in detail later.   

The steady-state solution of the field magnitude rate equation in (6) is the 

following expression: 

( )( ) )cos()()(
2
10 222

oinjcofrinjopothon AkAAAAgANNg θ+−++−Γ=  (9)
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No is given by ΔN + Nth, where No and Ao are the steady-state modified carrier density and 

enhanced field magnitude, respectively, under optical-injection. ΔN is the shift in carrier 

density from threshold. Rearranging (9) and defining the threshold gain shift parameter, 

γth, as 2η·cos(θo), and the injection-strength as η = kc(Ainj/Ao) yields (10) and (11), which 

will be used later in simplifying the differential analysis based small-signal modulation 

response: 

( ) thfrinjopn AAAgNg γ+−+Γ+ΔΓ= 2220   (10)
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=Δ
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The steady-state solution of the phase-offset rate equation in (7) under zero-

detuning is the following expression: 

( )( ) )sin()()(
2

0 222 θα

o

inj
cfrinjpthon A

A
kAAAgNNg −−++−Γ=

 
(12)

Replacing (ΓgnΔN + Γgp(Ao
2 + Ainj

2 – Afr
2)) from (10) with -γth yields: 

)sin()cos(0 oo θηθαη −−=   (13)

Expression (13) leads to the following phase-to-linewidth enhancement parameter 

relationship under zero-detuning conditions: 

)(tan 1 αθ −−=o  (14)

For cases away from the zero-detuning condition, (12) is modified to include the 

detuning frequency yielding the result in (15). 
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( )( ) )sin()(
2

222
ofrinjpn AAAgNg θηαω −−+Γ+ΔΓ=Δ

 (15)

Replacing [ΓgnΔN + Γgp(Ao
2 + Ainj

2 – Afr
2)] from (10) with -γth yields the 

relationship between detuning frequency and the injection strength, steady-state phase 

offset between the master and slave lasers, and linewidth enhancement parameter shown 

here: 

)sin()cos( oo θηθαηω −−=Δ  (16)

Simplifying (16) results in the commonly used expression relating the detuning 

frequency to the injection strength, steady-state phase offset between the master and slave 

laser, and linewidth enhancement parameter [9], [38], [40]: 

( ) ( ))(tansin1 12/12 αθαηω −++−=Δ o  (17)

Expression (17) is used to determine the constraints to the phase offset between 

the master and slave fields under stable locking conditions. By manipulating (17) into the 

form given in (18), it is found that a real solution for the phase can only be obtained if the 

argument of the inverse-sine function is ≤ 1, leading to the expression given in (19), 

which was originally introduced by Mogensen et al. as the locking half-width [9]. This 

locking half-width leads to the injection-locking approach for measuring the slave laser’s 

linewidth enhancement parameter under strong injection, discussed later in the work [44]. 

The locking half-width is shown to approximate the experimentally measured negative 

frequency detuning boundary. Returning to (18), the maximum and/or minimum value of 

the inverse-sine function is ±π/2, simplifying (18) to the expression given in (20) and 
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leading to a set of constraints for the steady-state phase offset that will be used later in 

applying parameter limits to the small-signal microwave modulation response function.  

oθα
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111 ααπθαπ −−− =−+≤≤−− o

 
(20) 

From the steady-state solution of the electric field rate equation given in (9), a 

second constraint on the stead-state phase offset is determined based on theory stating 

that the carrier number cannot be above Nth, the threshold value [45]. Under this 

constraint, the change in carrier density, ΔN, will be a negative value. Rearranging (9) 

yields the expression shown in (21). The negative value of ΔN and the nonlinear gain 

parameter, gp, and positive value of the change in field magnitude, ΔA2 = Ao
2 + Ainj

2 – 

Afr
2, due to optical-injection makes the left hand side of (21) a positive quantity under all 

stable-locking conditions leading to θo being constrained to values yielding in a positive 

cosine argument, as given in (22). 
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22
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The constraints on θo given in (20) and (22) can then be combined, keeping the 

most restrictive parameter limits to give the important result shown in (23). Note that the 

constraints in (23) are based on a positive linewidth enhancement parameter,α. For cases 



24 
 

where α is negative, the inverse-tangent value is negative, making the lower constraint of 

θo greater than -π/2. 

)(cot
2

1 αθπ −≤≤− o   (23)

Inserting the steady-state phase offset constraints for stable-locking in (23) into 

(17) yields the detuning boundaries originally presented by Mogensen et al. given in 

expression (24) [9]. The simplification in (24) is based on the trigonometric identities: 

tan-1(x) + cot-1(x) = π/2 and sin(-π/2 + x) = -cos(x). 

( ) ηωαη ≤Δ≤+−
2/121  (24)

An additional stability constraint is determined through the analysis of the poles of the 

small-signal microwave modulation response, discussed later in section 2.8 [11], [36].  

Next, the steady state solution of the carrier density rate equation given in (8) is 

found to be given by the following expression: 

( ) 222222 )()()(0 ofrinjpono
c

ths AAAAgANgANNJ −+−Δ−
Γ

−+Δ−=
γ

γ  
 

(25)

Substituting for ΔN as given in (11) results in: 
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Expression (26) is then expanded and solved for Ao
2, yielding expression (27): 
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Manipulating (27) and given that the steady-state free-running (η = 0) field magnitude 

density (ΔA2 = 0) is described by: 
Γ

−
=

/
2

c

ths
fr

NJ
A

γ
γ  = Γ(J - Jth)/γc results in the following 

equation [35], [40]: 
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Multiplying both sides of expression (28) by gn yields a form similar to that 

presented in previous works, however, here the result shown in expression (29) includes 

the nonlinear carrier relaxation rate component interacting with the varies intra-cavity 

field components [40]. 
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Given that Ao
2 is the enhanced slave field magnitude, a field enhancement factor 

is introduced to quantitatively define the resultant degree of enhancement. As introduced 

in [40], the field enhancement factor, RFE, is defined by RFE = Ao/Afr. 

The injection strength is then manipulated into a ratio of the injected field 

magnitude to the free-running slave field magnitude using the field enhancement factor, 

RFE, resulting in what is referred to as the maximum injection strength, ηo, defined in 

(30). 
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In order to simplify expression (29), the free-running differential carrier 

relaxation rate, γn, and nonlinear carrier relaxation rate, γp, are defined per (31) and (32), 

respectively [37].  

γn = gn,sSfr
 = gnAfr

2  (31) 

γp = -Γgp,sSfr
 = -ΓgpAfr

2  (32) 

The free-running relaxation oscillation frequency is defined here as Ωfr
2 = γcγn + γsγp [37]. 

Substituting (30) - (32) into (29) and substituting for γth results in the following 

expression: 
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Manipulating (33) results in a cubic that can be solved for the field enhancement factor, 

RFE, based on the maximum injection strength, ηo, free-running relaxation oscillation 

frequency, Ωfr, spontaneous carrier relaxation rate, γs, and the differential carrier 

relaxation rate, γn. 
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Solving for the roots of (34) yields two complex and one real solution for RFE. 

The complex and/or negative roots can be ignored, while the real, positive root is used to 

quantitatively describe the enhancement of the steady-state locked slave field. For cases 

close to the negative frequency detuning edge, where the steady-state phase offset is 
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shown to be approximately -π/2, the roots are reduced to +/- 1, indicating that at this 

detuning condition, the internal slave field will be minimally enhanced regardless of the 

injection strength. 

2.3. Differential analysis of the rate equations given in (6) - (8): 

 In order to determine the dynamic response to a small-signal current modulation, 

the time derivatives of the rate equations are examined [35]. Starting with the field 

magnitude rate equation from (6): 
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Substituting for ΔN based on (11) and 2η·cos(θo) for the threshold gain shift term, γth, and 

collecting like terms yields: 
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Differential analysis of the rate equation describing the field phase offset as given in (7) 

results in the following: 
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The differential analysis of the carrier density rate equation given in (8) yields: 
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Substituting for ΔN based on the steady-state relationship given in (11) results in: 
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2.4. Deriving the relative small-signal modulation response: 

In order to derive the small-signal microwave modulation response, the 

differential analysis results from (36), (37), and (39) are used to define a set of rate 

coefficients given in (40). In (40), the field enhancement parameter, (31) and (32) are 

used to simplify the resultant coefficient terms.  
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The rate coefficients allow for the differential rate equations to be expressed in a compact 

matrix form: 
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Using the small-signal frequency response approach described in Coldren et al. and 

setting d/dt equal to jω yields [35]: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
+

+

dJdN
d
dA

jmm
mjmm
mmjm

NNNA

NA

ANAAA

0
0

0
θ

ω
ω

ω

θθθθ

θ

 (42) 



29 
 

Cramer’s rule is used to solve for the small-signal photon density response in terms of 

modulation current given by H(ω) = ΔAo/ΔJ: 
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The denominator is given in (44). 
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Expression (44) is then simplified by defining a set of parametric elements A, B, 

and C, allowing the system determinant to be expressed in the form Det = -jω3 – ω2A + 

jωB + C, where the coefficients A, B, and C are given by:  

thsFEpFEn RRA γγγγ +++= 22  (45) 

2222
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Based on (45) - (48), the simplified small-signal field magnitude modulation response is 

given by: 
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The relative modulation response can be defined by: 
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The absolute, relative modulation response, |HR(ω)|2, is defined by multiplying (49) by its 

complex conjugate and is given by:  
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For the limit of η = 0 (free-running), the coefficients A, B, and C, and the relative 

small-signal modulation response are reduced as given in (52) – (56), where (56) is the 

equivalent free-running modulation response [35], [37]. The relaxation oscillation 

frequency and overall damping rate of the free-running system are observed to be 

equivalent to the B and A coefficients, respectively.  

Aη=0 = γn + γp + γs (52) 

Bη=0 = γnγc + γpγs (53) 

Cη=0 = 0 (54) 

Zη=0 = 0 (55) 
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Analysis of the A, B, and C coefficients in (45) - (47) shows that the damping rate 

given in A is increased by the injected field via the enhancement of γn and γp with RFE
2, as 

well as by the threshold gain shift, γth. The resonance frequency driving term, B1/2, is 

dependent on the enhanced free-running resonance frequency given by Ωfr
2 = (γnγc + 

γpγs)RFE
2, the square of the injection strength, η2, and the interaction between the 

threshold gain shift and the spontaneous carrier relaxation rate. The nonlinear carrier 

relaxation rate, γp, impacts the resonance frequency through its interaction with the Z 

coefficient, which is a function of the steady-state phase offset between the master and 

slave fields, the slave laser linewidth enhancement parameter, and the injection strength.  

With the absolute, relative modulation response function described in (51), along 

with the A, B, and C coefficients defined in (45) - (47), the modulation response of the 

optically-injected diode laser can be effectively modeled. Likewise, the function 

presented can be verified by least-square fitting experimentally collected microwave 

modulation response data.  

2.5. Resonance frequency of the coupled system: 

The resonance frequency of the coupled system is analyzed using the determinant 

of the matrix introduced in (43), Det = -jω3 – ω2A + jωB + C, which is put into a more 

common representation by replacing jω with S, yielding:  

Det = S3 + AS2 + BS + C (57) 

Under stable-locking conditions, the roots of (57) will be a pair of complex 

conjugate roots and a real, negative root [11], [52]. As with a free-running laser, the 

resonance frequency is equivalent to the absolute value of the complex root. However, 
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solving for the roots of a cubic as in (57) is not as simple as in the quadratic free-running 

case. One approximation, as discussed in Lau et al. is to assume that for modulation 

frequencies in the GHz range, the C coefficient can be neglected, reducing (57) to[45]:  

Det = S(S2 + AS + B) (58) 

Replacing S with jω in (58) results in:  

Det = jω(-ω2 + jωA + B) (59) 

The (-ω2 + jωA + B) portion matches that of the free-running diode laser as described 

in Lau et al., whereby two complex conjugate poles will be found, along with a pole at 0 

[35]. For the C = 0 case in (59), the resonance frequency is related to the B coefficient 

given: Ωr
2 = B, and the damping rate given by γ = A [35]. 

2.6. Key Detuning Cases under Stable Locking: 

Based on the small-signal microwave modulation response function derived 

above, and the phase-detuning frequency constraints described in (23) and (24), the γth 

and Z parameters can be simplified at the positive frequency detuning edge where θo = -

π/2. Likewise, based on relationship between the linewidth enhancement parameter and 

steady-state phase offset under zero-detuning given in (14), the γth and Z parameters can 

be simplified to eliminate their dependence on θo. Both the positive wavelength detuning 

boundary for stable-locking and the zero-detuning conditions play an important role in 

analyzing experimentally collected small-signal modulation response data and in 

predicting the optically-injected behavior at these two operational conditions for varied 

slave laser structures and bias conditions. The interest in the zero-detuning condition is 

motivated by its relatively flat microwave modulation response, observed both 
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theoretically and experimentally under moderate injection strength, making this detuning 

condition ideal for broad-band applications. The positive frequency detuning edge is 

attractive due to the resonance frequency’s direct proportionality to the maximum 

injection strength, giving the system the maximum resonance frequency and maximum 

possible 3-dB bandwidth. The drawback associated with the positive detuning edge is the 

large pre-resonance sag observed in the modulation response, which can be explored 

using the model described here. The simplifications to the γth and Z parameters are 

discussed in the next two sub-sections.  

 

Simplification of the A, B, and C coefficients at zero-detuning 

At the zero-detuning condition, the steady-state solution of expressions (6) and (7) 

yield the relationship between the linewidth enhancement parameter and phase given in 

(14): θo = -tan-1(α). The γth and Z parameters can be simplified using the trigonometric 

identities: sin[-tan-1(α)] = α/(1 + α2)1/2 and cos[-tan-1(α)] = 1/(1 + α2)1/2, resulting in: 

γth=2η·cos(θo) = 2η·cos(-tan-1(α)) = 2η /(1 + α2)1/2 (60) 

Z = η(αsin(θo) – cos(θo)) = η(α·sin(-tan-1(α))) – cos(-tan-1(α)))) = -η(1 +α2)1/2   (61) 

The importance of the simplification in (60) and (61) is that the steady-state phase 

offset can be determined based on the linewidth enhancement parameter of the slave 

laser, which can be measured experimentally using the injection-locking setup or various 

other methods [44], [46]-[48].  

 

Simplification of the A, B, and C coefficients at the positive detuning edge 
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At the positive frequency detuning edge of stable-locking, the steady-state phase 

offset has been shown to be approximately -π/2. The field enhancement factor, RFE, is 

approximately 1 under this detuning case. This phase offset reduces γth and Z as given in 

(62) and (63). Assuming a strong injection condition such that ηo
2 >> Ωfr

2 & γp, the A, B, 

and C coefficients given in (45) - (47) are reduced to those given in (64)– (66): 

γth=2η·cos(θo) = 0  (62) 

Z = η(α·sin(θo) – cos(θo)) = -αη (63) 

simplifying the A, B, and C coefficients to: 

Aθ = -π/2 = γn + γp + γs = γfr  (64) 

Bθ = -π/2  = Ωfr
2+ ηo

2 + αηoγp ≈ ηo
2  (65) 

Cθ = -π/2  = ηo
 2(γn  + γs) + αηo Ωfr

2 ≈ ηo
 2γfr + αηo Ωfr

2  (66) 

As it was previously shown that the resonance frequency of the coupled system is 

characterized by: Ωr
2 = B in section 2.6, we see in (65) that B is approximately equal to 

ηo
2, thereby Ωr

2 ≈ ηo
2 at the positive frequency detuning boundary of stable-locking 

where ηo
2 >> Ωfr

2. The large resonance peak experimentally observed in the small-signal 

modulation response at the positive frequency detuning boundary can then be used to 

verify the maximum injection strength value calculated based on the facet reflectivity, 

internal cavity round trip time, coupling efficiency of the master laser to the slave laser 

facet and the measured master and slave laser powers as described in the next section.  

The theoretical small-signal response for varied bias current values for the 

quantum-dash Fabry-Perot laser studied in this work is plotted in Figure 9 to exemplify 
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the strong dependence of the resonance peak on the maximum injection strength, ηo, at 

the positive frequency detuning edge. Figure 9 shows that for varied slave laser bias 

currents (and hence different free-running damping rates and linewidth enhancement 

parameter), the resonance peak remains relatively constant. The positive frequency 

detuning edge of the injection-locked system is attractive due to the resonance 

frequency’s direct proportionality to the maximum injection strength under this 

condition, giving the system a large 3-dB bandwidth and/or resonance frequency 

enhancement that is controlled mainly by the external master laser.  

In Figure 9, the maximum injection strength, ηo, is fixed at 100 GHz for each 

case, leading to a resonance peak at 100 GHz/2π = 15.91 based on Ωr = B1/2. As 

discussed in [49], the drawback of the positive frequency detuning edge is the large pre-

resonance sag which typically limits the 3-dB bandwidth as in Figure 9. Noting the cubic 

frequency dependence of (51), the extraction of a simple 3-dB equation that accounts for 

the low-frequency sag in the response is problematic. In order to simplify the analysis of 

the sag, the two competing resonant frequencies, B1/2 and (C/A)1/2, are reduced to the 

following forms using (64) - (66): B = ηo
2 and (C/A) = ηo

2 + (Ωfr
2/γfr)(α·η2) [49]. When the 

two resonances coincide with one another, a large resonance peak and pre-resonance sag 

are observed. As the (C/A)1/2 pole increases beyond the B1/2 pole due to an increase in 

(Ωfr
2/γfr) and/or the linewidth enhancement parameter α for various pumping scenarios, 

the sag decreases in severity. When the (C/A)1/2 pole is adequately increased beyond the 

pole, the sag remains above the 3-dB threshold as shown in the 80 mA case of Figure 9. 
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Figure 9. Theoretical modulation response at the positive frequency detuning edge where 
the steady-state phase offset is fixed to -π/2 using the simplified parametric terms given 

in (64) - (66).   

 

 For comparison purposes, the full model using the parametric terms given in (45)- 

(47) at the negative frequency detuning edge where the steady-state phase offset is fixed 

to -π/2 is plotted in Figure 10. The free-running parameters in both Figure 9 and Figure 

10 are equivalent. The full model in Figure 10 shows that the B parameter is enhanced by 

the Ωfr
2 and αηoγp products, leading to an increase in the resonance peak as the individual 

Ωfr, α, and γp terms increase with the bias current. Based on this finding, it is found that 
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the free-running slave laser terms should not be ignored under strong injection when 

analyzing the response at the positive detuning edge beyond a first order approximation.  

 

 

Figure 10. Theoretical modulation response at the positive detuning edge where the 
steady-state phase offset is fixed to -π/2 using the full coefficients given in (45) - (47).   

 

2.7. Calculation of the Coupling Coefficient, kc: 

The maximum injection strength,ηo, introduced in (30) describes the rate at which 

the injected master laser field adds to the slave laser’s free-running electric field. The 

value of the coupling coefficient, kc, can be determined using several methods found in 
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the literature. Chrostowski summarizes the various methods, highlighting how the various 

approaches differ in the manner the injected field adds to the slave field with regards to 

the reflectivity of the slave laser facets [50]. The generic representation given by 

Chrostowski is kc = τrt
-1εf where τrt is the internal round-trip time, and εf is the field 

transmission coefficient [50]. The internal cavity round trip time is given by: τrt = 2ngL/c, 

where c is the speed of light in vacuum, L is the length of the laser cavity, and ng is the 

group index. The field transmission coefficient, εf, translates the measured external power 

ratio to an internal ratio. In this work where the optically-injected characteristics of 

Fabry-Perot diode lasers are analyzed, εf is determined in a manner similar to that given 

in Lau et al., where the internal power ratio is determined using the ratio of co-

directionally propagating waves just inside the injected slave laser facet [39]. An 

illustration of the approach taken in [39] is given in Figure 11. In Figure 11, PFR,F and 

PFR,R are the free-running internal forward and reverse propagating wave power levels, 

respectively, and are both taken just within the injected facet. PFR,ext is the externally 

measured free-running slave laser power out of an injected slave laser facet measured 

using a wide area detector. The external and internal injected powers are given by Pinj,ext 

and Pinj,int, respectively. The relationship between the internal and external, forward and 

reverse propagating waves are given in expressions (67) – (69), where R is the Fabry-

Perot facet reflectivity. The relationship between the internal and external power ratios is 

given in (70).  

PFR,ext = PFR,R(1 – R)  (67) 

PFR,R(R) = PFR,F (68) 
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Pinj,ext(1 – R) = Pinj,int (69) 

R
RRR extint

2)1( −
=  

(70) 

where Rext is given by: Rext = Pinj,ext/PFR,ext,single-facet.  

 

 

Figure 11. Illustration of the approach taken in [39] to determine the external to internal 
injected power ratio at a single slave laser facet. The internal power ratio is taken just 

within the slave laser facet under optical-injection using the forward traveling waves. The 
internal power ratio is given by: Rint = Pinj,int/PFR,F. 

 

The drawback of using (70) in determining the external-to-internal power ratio is 

that only a portion of the slave laser’s total output (that of a single slave laser facet) is 

considered. A portion of the experimental investigations in this work was on diode lasers 

with cleaved facets, where equal power is output from the front and back facets [51]. In 

order to account for the total slave laser free-running output power, the internal power 

ratio is taken at the mid-point of the slave laser cavity, as illustrated in Figure 12. In 

Figure 12, the power ratio is then taken not as the ratio of forward propagating waves, but 

as the total power ratio. In this fashion, the total free-running slave laser power is 
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accounted for, yielding the relationship between external and internal power ratios given 

in (70), where Rext is given by: Rext = Pint,ext/PFR,ext,total under the premise that the left and 

right facet reflectivity are equal (PFR,ext,total = PFR1,ext + PFR2,ext. Given that the injected 

optical field and the forward traveling free-running slave laser field at the facet under 

injection travel in parallel, they each experience identical gain traveling in the diode 

laser’s optical waveguide. Likewise, the forward-traveling free-running slave laser field 

(after reflection off the left facet) and the reverse-traveling free-running slave laser field 

(after reflection off the right facet) will be identical at the mid-point of the optical 

cavity’s length, as illustrated in Figure 12.  

 

 

Figure 12. Illustration of the approach taken to calculate the external to internal injected 
power ratio where the output at both slave laser emitting facets is considered. The 

internal power ratio is taken at the center of the slave laser cavity, indicated by the dotted 
line. The internal power ratio is given by: Rint = Pinj,int/(PFR1,F + PFR2,R). 

 

Using the relationships described in (67) – (69) to determine the appropriate 

relationship between the external slave laser free-running power at each facet and internal 
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power strengths PFR1,F and PFR2,R, the complete representation of the external to internal 

power ratio is given in (71). 
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Given symmetric mirror reflectivities at the left and right facets, (71) simplifies 

to: 
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where Rext is given by: Pinj,external/(PFR,ext,total). Experimentally, the externally measured 

injected power accounts for the coupling efficiency between the lensed fiber and the 

slave laser facet. The coupling efficiency is based on the ratio between the slave laser 

free-running power measured using a wide area detector and the power measured out of 

the lensed fiber (in experiments, this number typically rangers from 40 – 50%). The total 

representation of the maximum injection strength is given in (73) [51]. Based on the 

measured microwave modulation response at the positive frequency detuning edge of 

stable-locking, where the maximum resonance frequency enhancement is observed, the 

frequency of the resonance peak is used to verify the maximum injection strength, ηo, 

using the approach described here. This approach was observed to be in good agreement 

with the experimentally measured data [51], discussed later in this work.  
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The significance of (73) is the correlation between both facet reflectivity and 

cavity length on the coupling coefficient, generating a means to examine changes to a 

slave laser cavity's dimensions and facet properties on the efficiency of the optical-

injection process. The resonance frequency enhancement is directly correlated to the 

maximum injection strength, ηo. In turn, ηo is inversely related to the mirror reflectivity 

and the cavity length.  

2.8. Stability Analysis of the Coupled System at Zero-Detuning: 

 The microwave modulation response can be analyzed based on the poles and 

zeros of the small-signal transfer function given in (51). Murakami et al. discusses the 

complex pole-zero plot relationship as a function of injection-ratio and detuning 

frequency, primarily under strong injection [36]. Additionally, both Simpson et al. and 

Murakami at al. detail the stability analysis of an optically-injected diode laser based on 

(57), with a focus on the case where the phase offset is 0 [11], [36]. Simpson et al. and 

Murakami at al. also focus on the relatively weak injection regime, where the coupled 

system is dominated by nonlinear dynamics [11], [36]. In this section, the poles of the 

transfer function polynomial are used to investigate the impact of the slave laser’s 

linewidth enhancement parameter and nonlinear carrier relaxation rate on the coupled 

system’s stability under zero-detuning as a function of the maximum injection strength, 

ηo.  

 One approach to determine if the coupled system operates in a stable or unstable 

manner is to examine the sign of the real part of the complex roots of (57) [36]. For cases 

where the real part of the root is negative, a stable damped oscillation exists and the 

system operates in the stable regime [36], [45]. For cases where the real part is positive, 
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the system moves toward the unstable regime, in which the system exhibits periodic 

fluctuations. Figure 13 illustrates the trend of the real part of the complex root as a 

function of the maximum injection strength, ηo, under zero-detuning. Figure 13 also 

shows the stability analysis’s dependence on the slave laser linewidth enhancement 

parameter. It is in Figure 13 that the attractiveness of optically-injected nanostructure 

lasers is exhibited, since their characteristically low linewidth enhancement parameters is 

shown to inhibit unstable operation. In Figure 13, completely stable behavior is observed 

assuming operational parameters for the quantum-dash laser biased at 70 mA for a 

linewidth enhancement parameter of ~2 or below at zero-detuning.   
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Figure 13. Progression of the real part of the complex root of the polynomial function 
found in (57) at zero-detuning emphasizing the impact of the slave laser linewidth 

enhancement parameter. Negative values are a sign of stable-locking conditions and 
positive values are a sign of undamped oscillations indicative of unstable-locking. The 
free-running laser values are for the quantum-dash laser under a bias current of 70 mA.  

 

Figure 14 shows the impact of the nonlinear carrier relaxation rate, γp, on the real 

part of the complex poles as a function of injection strength at zero-detuning. In the 

figure, it is observed that the nonlinear carrier relaxation rate parameter reduces the size 

of the unstable operation region. This will be analyzed in greater detail using a 

dimensionless, normalized rate equation model in Chapter 3. 
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Figure 14. Impact of the nonlinear carrier relaxation rate on the real part of the complex 
root of the polynomial function found in (57) at zero-detuning. The free-running laser 

parameters (γn, γp) are for the quantum-dash laser under a bias current of 70 mA. When 
the real part of the root is negative, a stable damped oscillation exists and the system 

operates in the stable regime 

 

Where Figure 13 plots the real part of the complex pole as a function of the 

maximum injection strength, ηo, at zero-detuning, a corresponding plot (Figure 15) can 

be used to determine the steady state phase offset limit to stable-locking for a given 

maximum injection strength. This analysis yields a phase offset constraint further limiting 

the stable-locking phase region given in (23), and is the mechanism for generating 

stability maps as given in Lau et al. and Murakami et al. [38], [36]. Solving for the 

steady-state phase offset limit of stable-locking can be used to determine the field 
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enhancement factor using expression (17) and the experimentally measured frequency 

detuning edge. The real part of the complex root of (57) is plotted as a function of phase 

offset in Figure 15, where the stable-boundary is observed to be -1.529 radians. The 

significance here is that the positive frequency detuning edge of stable-locking, 

which is typically approximated to be -π/2, deviates only slightly from this value 

(under strong injection conditions). Once the steady-state phase offset is determined at 

this boundary, the field enhancement factor can then be determined using (17). The field 

enhancement factor is typically approximated to be 1 at the positive frequency detuning 

edge of stable-locking [40], and the plot shown here affirms this assumption as it is found 

to be 1.05 (indicated on Figure 15(bottom)). 

The drawback to the stability analysis of examining the sign of the real part of the 

complex root in the transfer function polynomial is that it merely indicates that undamped 

oscillations occur, not the specific behavior of the unstable operation. The nature of the 

undamped, unstable operation is examined in greater detail in Chapter 3 using a newly 

derived normalized rate equation model based on the approach detailed by Erneux et al. 

and Gavrielides et al. [17], [20]. The utility of the stability analysis depicted in Figure 13 

and Figure 15 is its simplicity in evaluating a laser’s stability under optical-injection 

based on its free-running parameters.  
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Figure 15. (top) Progression of the real part of the complex root of (57) as a function of 
steady-state phase offset for a fixed maximum injection strength of 100 GHz. Negative 

values are a sign of stable-locking conditions and positive values are a sign of undamped 
oscillations indicative of unstable-locking. (bottom) The corresponding field 

enhancement factor based on the phase offset. The free-running laser parameters are 
based on the quantum-dash laser biased at 70 mA. Takeaway: the steady-state phase 

offset boundary of stable-locking is approximately -π/2. The corresponding field 
enhancement factor is ~1.  
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2.9. Pole-Zero Analysis at Zero-Detuning 

 This section analyzes the poles and zeros of the small-signal transfer function 

given in (51) at zero-detuning in order to give a complete picture of the modulation 

response's dependence on the maximum injection strength parameter, ηo. The impact of 

the nonlinear carrier relaxation rate of the nanostructure lasers is compared with the 

model where it is not included in the derivation.  

 Increasing the injection strength modifies the poles and zeros of the small-signal 

transfer function, resulting in an increased overall damping of the modulation response 

under zero-detuning conditions. The progression of the transfer function poles and zeros 

as a function of maximum injection strength, ηo, at zero-detuning is illustrated in Figure 

16. In Figure 16, it is noted that the absolute value of the complex roots indicate the 

resonance frequency of the coupled system. The field enhancement factor, RFE, which 

increases with the maximum injection strength ηo, decreases the proportionality between 

the resonance frequency of the coupled system (given by the absolute value of the 

complex roots) and the maximum injection strength ηo, leading to a sub-linear 

relationship. The relationship between the injection strength, η = ηo / RFE, and the 

resonance frequency of the coupled system is illustrated in Figure 16 by the purple and 

dark blue lines, respectively.  
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Figure 16. Absolute value of the roots/pole of the transfer function in (51) at zero-
detuning; α = 3. The field enhancement factor, RFE, which increases with the maximum 
injection strength ηo, decreases the proportionality between the resonance frequency of 

the coupled system (given by the absolute value of the complex roots) and the maximum 
injection strength ηo, leading to a sub-linear relationship. The free-running laser 

parameters are based on the quantum-dash laser biased at 70 mA.  

 

 The third, real root of the transfer function’s denominator results in a low 

frequency roll-off that is relatively constant as the maximum injection strength is 

increased. The zero increases at a faster rate than either of the transfer function’s poles. 

This relationship will cause the pole to have little impact at lower modulation frequencies 

such that it does not offset the impact of the low frequency poles under strong injection 

conditions. 
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 The impact of the slave laser linewidth enhancement parameter on the zero, as 

given in (48), is illustrated in Figure 17. The decreased zero will result in its offsetting a 

pole in the transfer function, leading to a greater damping of the modulation response. 

The decrease in the linewidth enhancement parameter, α, is also shown to decrease the 

resonance frequency of the coupled system. At zero-detuning, the steady-state phase 

offset between the master and slave is given by the relationship in (14). As α is 

decreased, θo decreases in magnitude; given that the real root of (34) yields the value of 

RFE and is dependent on the cosine of the phase offset θo, this relationship results in an 

increase in RFE which decreases the injection strength η = ηo / RFE. The overall impact of 

the linewidth enhancement parameter on the small-signal modulation response is 

illustrated in Figure 18 and Figure 19.  
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Figure 17. Absolute value of the roots/pole of the transfer function in (50) at zero-
detuning; α = 1. Compared with Figure 16, the zero increases at a much smaller rate and 
a weaker relationship exists between the maximum injection strength ηo and resonance 

frequency of the coupled system (given by the absolute value of the complex roots). The 
decreased zero will result in its offsetting a pole in the transfer function, leading to a 

greater damping of the modulation response. The free-running laser parameters are based 
on the quantum-dash laser biased at 70 mA. 
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Figure 18. Modulation response as a function of maximum injection strength at zero-
detuning, α = 3. The free-running laser parameters are based on the quantum-dash laser 

biased at 70 mA. 
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Figure 19. Modulation response as a function of maximum injection strength at zero-
detuning, α = 1. Compared with Figure 18, the response is more strongly damped. The 

free-running laser parameters are based on the quantum-dash laser biased at 70 mA. 

 

The impact of the linewidth enhancement parameter α on the modulation transfer 

function is also examined using the A, B, and C coefficients defined in (45) - (47). Figure 

20 and Figure 21 show the A, B, and C coefficients as a function of the maximum 

injection strength, ηo, for α = 3, and α = 1, respectively. The α = 1 case shows that the 

damping rate driven by the A coefficient increases at a faster rate than the resonance 

frequency approximated by the B coefficient, leading to the damped response at increased 

maximum injection strengths observed in Figure 19. Recall that for a free-running diode 

laser, the damping rate is linearly dependant on the laser output power and the resonance 
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frequency is proportional to the square root of the output power [37]. For the case of the 

optically-injected diode laser at zero-detuning, the θo-α-RFE inter-relationship modifies 

the observed behavior between maximum injection-strength (proportional to the square 

root of the injected power), damping rate, and resonance frequency.   

 

 

Figure 20. A, B, and C coefficients as a function maximum injection strength at zero-
detuning, α = 3. Notice that the resonance frequency driving term, B1/2, remains larger 

than the damping rate driving term, A. The free-running laser parameters are based on the 
quantum-dash laser biased at 70 mA (γn = 1.34 GHz, γp = 3.98 GHz, γs = 4.5 GHz, γc = 

333.3 GHz).  
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Figure 21. A, B, C and Z coefficients as a function maximum injection strength at zero-
detuning, α = 1. Notice that the resonance frequency driving term, B1/2, remains smaller 

than the damping rate driving term, A, contrasting with the results in Figure 20. The 
larger damping rate term leads to the damped response observed in Figure 19. The free-
running laser parameters are based on the quantum-dash laser biased at 70 mA (γn = 1.34 

GHz, γp = 3.98 GHz, γs = 4.5 GHz, γc = 333.3 GHz). 

 

 The impact of the nonlinear carrier relaxation rate, γp, is examined in Figure 22, 

where the A, B, and C coefficients with and without γp are plotted as function of the 

maximum injection strength. In the case where the contribution of γp is neglected, γn has 

been adjusted such that Ωfr
2 = γcγn (as opposed to Ωfr

2 = γcγn + γpγs). Figure 22 illustrates 

the relatively linear increase in both A and B coefficients to larger magnitudes when γp is 

considered. The impact of the nonlinear carrier relaxation rate, γp, on the modulation 
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transfer function is given in Figure 23, where the microwave modulation response is 

plotted for increased maximum injection strengths under zero-detuning with the nonlinear 

carrier relaxation rate excluded. As expected, Figure 23 illustrates that the nonlinear 

carrier relaxation rate increases the degree of damping exhibited in the modulation 

response. Counter-intuitively, the nonlinear carrier relaxation rate is also observed to 

increase the resonance frequency of the coupled system, observable in Figure 22 and 

Figure 23.  
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Figure 22. A, B, and C coefficients comparing their values with and without the inclusion 
of the nonlinear carrier relation rate as a function maximum injection strength at zero-

detuning; α = 3. Notice that the resonance frequency driving term, B1/2, increases with the 
inclusion of the nonlinear carrier relaxation rate γp in the simulation. Additionally, the 

damping rate term is also observed to increase with the inclusion of γp. The free-running 
laser parameters are based on the quantum-dash laser biased at 70 mA. The impact of γp 

on the C term is negligible.   
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Figure 23. Microwave modulation response plotted both with and without the 
consideration of the nonlinear carrier relation rate as a function maximum injection 

strength at zero-detuning; α = 3. Notice that simulating the response with the nonlinear 
carrier relaxation rate γp increases both the resonance frequency and damping of the 

coupled system. The free-running laser parameters are based on the quantum-dash laser 
biased at 70 mA. 

 

2.10. Impact of Gain Compression  

 The next step in modeling the optically-injected nanostructure laser is to account 

for the gain compression observed under strong injection. Among the intrinsic dynamical 

parameters (γn, γp, γc, and γs) describing free-running diode lasers, γc and γs are constants 
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independent of the laser power while γn and γp are linearly proportional to the laser power 

[37]. The nonlinear carrier relaxation rate, γp, is defined as -Γgp,sSfr in (32), where gp,s is 

the nonlinear gain parameter characterizing the effect of gain compression due to the 

saturation of gain by intra-cavity photons [37]. Likewise, the differential carrier 

relaxation rate, γn, is defined as gn,sSfr in (31), where gn,s is the differential gain parameter 

characterizing the dependence of the gain parameter on the carrier density as described in 

(4) [37]. For most quantum-well and heterostructure lasers, the impact of gain 

compression can be neglected and both gn,s and gp,s can be considered constant over large 

ranges of carrier and photon density levels [35], [37]. This is not the case, however, for 

the nanostructure lasers investigated in this work, where γn and γp are found to be 

compressed at large free-running laser output powers. This compression or roll-off as 

regards the quantum-dash device investigated in this work is illustrated in Figure 24, 

where Ωfr
2, γn, and γp are plotted as a function of total output power.  

The takeaway from Figure 24 is that γp and γn are observed to lose their linear 

proportionality to the laser output power as the output power is increased beyond ~8 mW. 

In section 2.2, the field enhancement factor RFE was introduced to quantify the 

enhancement of the steady-state field of the optically-injected slave laser (and likewise 

the enhanced steady-state photon density, So) and used to scale γp and γn under optical-

injection. This scaling with RFE assumes that the linear relationship holds regardless of 

the magnitude of the injected field. To account for the roll-off of the differential and 

nonlinear carrier relaxation rates induced by the injected photons (or injected field), the 

gain compression coefficient is introduced into the gain function in the standard way as 

discussed by Coldren at al. [35].  
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Figure 24. (top) Illustration of free-running nonlinear carrier relaxation rate and 
differential carrier relaxation rate saturation with increased laser output power. (bottom) 

Saturation of the relaxation oscillation frequency squared with increased laser output 
power. Data shown was collected on the quantum-dash Fabry Perot laser.  
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Coldren et al. describes relationship of the laser gain to carrier density using (74), 

where a coefficient describing the compression of gain at high photon densities is defined 

by εp [35]. The laser gain is then described by [35]: 
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Where go is the nominal, unsaturated gain coefficient, Ntr is the transparency current 

density, Ns is a term introduced for force the natural logarithm to be finite at N = 0, and S 

is the photon density [35]. At threshold, N = Nth, and g(Nth, 0) = gth, the threshold gain 

value. Based on (74), the gain derivative with respect to both carrier and photon density 

is given by (75) and (76). 
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Changes in carrier and photon density from both small-signal current 

perturbations and/or optical-injection on the gain are reflected by the differential 

expression in (77). The change in gain, along with carrier density and photon density, 

taken in reference to the free-running, steady-state threshold value where ΔN = No - Nth 

and ΔS = So + Sinj – Sfr yields (78). 
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Defining gn,S and gp,S using (79) and (80) where Stotal is the total photon density in 

the slave laser cavity simplifies (78) to the expression given in (81) using (79) and (80), 

as previously defined in (4). Although gn,s and Sfr (likewise gp,s and Sfr) cannot be 

individually determined using the approach used, the (1 + εpSfr) portion in the 

denominator of gn,S and gp,S can be determined. Quantifying εpSfr allows the gain 

compression term to be scaled with the injection strength, resulting in the differential and 

nonlinear carrier relaxation rates defined in (82) and (83) where gain compression and the 

scaling of Sfr due to optical-injection is included.  
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The effect of the compression on the microwave modulation response at zero-

detuning for increasing maximum injection strengths is illustrated in Figure 25. Although 

the impact of gain compression on the overall modulation response is relatively small, it 

is shown to reduce the resonance frequency enhancement, thereby limiting the potential 

3-dB bandwidth enhancement. The impact of gain compression on the A, B, and C 

parametric terms is given in Figure 26, where each parameter is reduced compared to the 
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‘uncompressed’ value. Figure 26 also shows that the impact of gain compression 

increases with the maximum injection strength.  

 

 

Figure 25. Microwave modulation response plotted both with and without the 
consideration of the gain compression coefficient shown in eqn. (74) on the differential 

and nonlinear carrier relation rate at zero-detuning; α = 3. The free-running laser 
parameters are based on the quantum-dash laser biased at 70 mA, and the gain 

compression coefficient is 0.06 mW-1. 
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Figure 26. A, B, and C parametric terms plotted both with and without the consideration 
of the gain compression effect on the differential and nonlinear carrier relation rates 

plotted as a function of maximum injection strength at zero-detuning; α = 3. The free-
running laser parameters are based on the quantum-dash laser biased at 70 mA, and the 

gain compression coefficient is 0.06 mW-1. 

 

In both Figure 25 and Figure 26, the impact of gain compression on γn and γp is 

given in (82) and (83). Essentially, the approach used here to illustrate the impact of gain 

compression on γn and γp re-normalize the gain compression to the scaled free-running 

slave power. The RFE
2 factor in (82) and (83) scales the value based on the slave field 

enhancement as described in Section 2.2. 
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2.11. Overall Modulation Response Function  

 Overall, the modulation response function derived in this chapter expands upon the 

approach analyzed by Murakami et al. and Lau et al. by including the impact of the 

nonlinear carrier relaxation rate, γp, and the gain compression coefficient’s impact on 

both the differential and nonlinear carrier relaxation rates [36], [38]. In the previous 

sections, the impact of the nonlinear carrier relaxation rate was illustrated by comparing 

the modulation response with and without its consideration (Figure 23). The impact of 

gain compression was then added to account for the usual sub-linear dependence of the 

free-running relaxation frequency with optical power (Figure 25). The normalized 

relative modulation response function in (51) is illustrated in Figure 27, where the 

physical effects of gain compression and the nonlinear carrier relaxation rate on the 

modulation response under optical-injection are exhibited through the parametric terms in 

(45) - (47). In Figure 27, the complete physical model shows more damped response 

compared to the basic model where γp and εp equal 0, while the resonance frequency 

enhancement remains largely unchanged. In Chapter 5 and Chapter 6, this model will be 

used as a predictive tool data and used to least-square-fit experimental data.  
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Figure 27. Modulation response function incorporating the physical effects of the 
nonlinear carrier relaxation rate and gain compression under optical-injection. The free-
running laser parameters are based on the quantum-dash laser biased at 70 mA, α = 3. 
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Chapter 3. Dynamic Operation of Optically-Injected Nanostructure Diode Lasers 

In the previous chapter, the microwave modulation response of an optically-

injected nanostructure laser was theoretically analyzed. Based on the dynamic parameters 

describing the modulation response under steady-state conditions, the frequency detuning 

and injection strength limits for stable-locking were derived. The drawback of the 

stability limits described in Chapter 2 is that the nature of the unstable/nonlinear 

operation cannot be described in detail. In this chapter, a dimensionless normalized 

approach to theoretically evaluate the behavioral state (i.e. stable locking, period-one, 

period-doubling, or chaos) as a function of the injected field ratio and/or the detuning 

frequency for varied slave laser bias cases is described [17], [20]. The normalized model 

reformulates the rate equations in (6) - (8) into a dimensionless form; this approach is 

largely due to the relatively small value of the photon lifetime of the semiconductor laser 

[17]. The normalized model is advantageous compared with other methods due to its 

fundamental parameter scaling approach that facilitates the comparison of one laser to 

another. The model derived here is unique in that it includes the impact of the nonlinear 

carrier relaxation rate, γp. The slave laser linewidth enhancement parameter and γp are 

shown to have a strong impact on the level of stability exhibited by the optically-injected 

laser at low injected field ratios.  

3.1. The Normalized Rate Equations 

The normalized approach presented here differs from the model previously 

published in that the impact of the nonlinear carrier relaxation rate is included. The 

expanded rate equations given Chapter 2 are reiterated below as a starting point: 
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The time-scale in (6) - (8) is normalized to the cavity decay rate such that: t = τ /γc, 

simplifying the time-step used in solving the coupled differential equations [17], [20]. 

Next, substitutions are made based on the following parameter definitions given in (84) – 

(87), yielding the normalized rate equations given in (88) – (90). 
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In the normalized model given in (88) – (90), Y is described as the 

dimensionless/normalized field magnitude, and Z is the normalized carrier density. The 

normalized model is dependent on four parameters derived from the free-running slave 

laser: P, T, ε, and α. The T-parameter is the ratio of the cavity decay rate, γc, to the 

spontaneous carrier relaxation rate, γs, such that T = (γc /γs). Both γs and γc are 

independent of slave laser output power, making T constant for a slave laser regardless of 

the bias current. P is proportional to the pumping current above threshold, and is 

calculated using P = (1/2)(γn/γs) ∝ (J – Jth)/Jth, where J is the injected current density and 

Jth is the threshold current density. The free-running relaxation rate, normalized to the 

cavity decay rate is given by Ωfr
2 = [2P(1+ε)]/T = γnγc + γpγs, and the normalized free-

running damping rate is given by γfr = [(1+2P)/T + 2Pε]= γs + γn + γp. ε accounts for the 

nonlinear carrier relaxation rate and is defined as: ε = γpγs/(γcγn). Thus, the P-, T-, and ε  

parameters are calculated for a given slave laser bias current knowing the free-running 

damping rate, and relaxation oscillation frequency, along with the constant photon 

lifetime and spontaneous carrier lifetime values. In solving the coupled, normalized 

differential equations, the normalized field magnitude Y is not at steady-state, and is thus 

represented as a dependant term in the normalized field magnitude and phase rate 

equations. The detuning parameter, ΔΩ, is normalized to the cavity decay rate such that 

ΔΩ = Δω/γc.  

Contrary to the definition for the injection strength, η, defined in Chapter 2, the 

normalized injection strength in (88) and (89) is purely derived from the injected power 
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and is defined as: ηN = (kc /γc)Yinj =
c
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3.2. Simulating the Nanostructure Laser 

To simulate the nanostructure laser's behavior under optical-injection, the coupled 

normalized differential equations in (88) - (90) are solved in the time domain, and 

qualitative changes can be observed in the normalized field magnitude solution. The 

stability of this solution is examined by introducing a small perturbation to the field 

amplitude. Using this new field amplitude as an initial condition (along with the 

unperturbed phase and normalized carrier density), the rate equations are solved and 

allowed to come to a new equilibrium-state. The stability of the system is characterized 

by the number of extrema in the new equilibrium-state. A single extrema observed is 

indicative of a stable-locking state; a large number of extrema in the equilibrium-state 

solution is indicative of an unsettled, chaotic response. For this work, the electric field 

solution is analyzed as the injection strength, ηN, is varied for a constant detuning 

frequency, as well as for a fixed injection strength as the detuning frequency is varied. 

Together, the two means of analysis: fixed injection strength/varied detuning and vice 
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versa are able to generate two dimensional stability maps as given in Simpson et al., 

Hwang et al., Wieczorek et al., and most recently Bonatto et al. [19], [21], [54], [55]. The 

extrema to the normalized photon density solution’s time response is plotted as a function 

of the maximum injection strength, ηo, or detuning frequency and are referred to as 

bifurcation diagrams as they indicate the transition between operational states as the 

maximum injection strength is varied [53]. 

Bifurcation diagrams for representative quantum-dash slave laser bias conditions 

are given in Figure 28, where the y-axis is normalized to the free-running steady-state 

field magnitude (equivalent to RFE in the stable-locking regime). The x-axis in Figure 28 

is translated from the injection-strength, ηN, to an injection strength ratio, ηo, given the 

relationship: η = ηNγcYfr
-1 = ηNγcP-1/2. The free-running normalized field magnitude, Yfr, 

is equal to the square root of the pumping term, P1/2, based on the free-running steady-

state solution of (88).  

 The P- and T-terms and linewidth enhancement parameter, α, values in Figure 28 

are representative of varied slave laser bias conditions for the quantum-dash Fabry-Perot 

slave laser. The quantum-dash devices investigated in the course of this work have been 

found to possess a linewidth enhancement parameter,α, that increases with increased bias 

currents [56]. Specifically, the quantum-dash devices have demonstrated an α-factor that 

increases from ~1 to ~14 as the bias current is increased from threshold to approximately 

twice the threshold value [56].  

 The bifurcation diagrams in Figure 28 show that as the linewidth enhancement 

parameter and P-term increase with bias current, larger injection strengths are necessary 

to achieve stable-locking; stable locking is characterized in the diagrams by a single 
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extrema value observed in the electric field solution. Additionally, the numerical 

simulations in Figure 28 show that as the linewidth enhancement parameter is increased 

from 2.2 to 6.0, more chaotic states are observed in the solution at lower injection 

strengths. Figure 28 also shows that the ‘bubble’ indicating operational states other than 

stable locking increases in size as the linewidth enhancement parameter and P-term 

increase with bias current. The quantum-dash laser is unique in allowing examination of 

dynamics over a large range of linewidth enhancement parameter values within a single 

device. In Figure 28, the maximum injection strength, ηo, associated with the stable-

locking (single-extrema) to period-one or period-doubling (multiple extreme) transition is 

referred to as the Hopf-bifurcation point. Likewise, the injection strength associated with 

the period-one (two-extreme) to stable-locking (single extrema) transition is referred to as 

the reverse-Hopf-bifurcation point. The theoretical bifurcation diagrams in Figure 28 will 

be compared with experimentally collected data in Chapter 5. The Matlab code used to 

generate the diagrams is included in Appendix AA. 
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Figure 28. Bifurcation diagrams showing theoretical solutions to the normalized rate 
equations in (88) - (90) for zero-detuning conditions. The four cases correspond to 

respective P, T, and α-factor values for 60, 70, and 80 mA slave bias conditions of the 
quantum-dash slave laser.  

 

 Next, the impact of the nonlinear carrier relaxation rate, γp, on the stability of the 

coupled system in analyzed where the free-running parameters of the quantum-dash laser 

biased at 70 mA are used as baseline values. Recall from Figure 14 in section 2.8 that the 

nonlinear carrier relaxation rate was shown to suppress the emergence of unstable 

operation based on the real part of the complex pole of the small-signal modulation 

response. In Figure 29, the impact on the size of the unstable regions at zero-detuning is 

illustrated by plotting the extrema of the normalized electric field solution as a function 
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of maximum injection strength for cases where γp is and is not included. The single 

extreme is a sign of stable optical-injection, whereas the two extrema solutions illustrated 

by the ‘bubble’ in Figure 29(right) is a sign of undamped relaxation oscillations over that 

range of maximum injection strengths, ηo. The theoretical values, and specifically the 

linewidth enhancement parameter, were chosen to coincide with the values analyzed in 

Figure 14, where the simulation results are in good agreement with one another. The 

results of each model where the nonlinear carrier relaxation rate is not included shows 

that a small window of unstable operation for maximum injection strengths from 5 GHz 

to 25 GHz will occur. 

 Although Figure 14 and Figure 29 are in strong agreement in predicting if the 

coupled system operates in a stable or unstable manner, the more basic approach used in 

Figure 14 is limited in its application. The approach used in Figure 14  to examine the 

stability of the semiconductor laser’s operation under optical-injection only confirms 

stable or unstable operation; solving the dimensionless, normalized rate equations given 

in (88) – (90), however, gives an indication regarding the nature of the unstable operation 

based on the number of extrema observed in the electric field solution of the coupled 

rate equation.  
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Figure 29. Bifurcation diagrams predicting the stability at zero-detuning where the 
nonlinear carrier relaxation rate parameter is (a) and is not considered (b) in the 

numerical simulation. 

 

 The impact of the nonlinear carrier relaxation rate in suppressing the multi-

extrema indicative of chaotic operation is illustrated also in Figure 30. In Figure 30(a), 

the coupled system is predicted to exhibit only stable and period-one operation. In Figure 

30(b), however, a small region of chaotic operation is expected at maximum injection 

strengths of approximately 10 GHz. With all parameters held constant minus the 

nonlinear carrier relaxation rate, its impact is highlighted here to have a strong influence 

on the dynamical characteristics of the coupled optically-injected system.  

 Next, Figure 31 illustrates the impact of the linewidth enhancement parameter on 

the stability of the optically-injected system. With all other parameters held constant, the 

increased linewidth enhancement parameter is shown to move the system from 

completely stable (Figure 29(a)) to one a case where undamped period-one (Figure 31(a)) 

and period-doubling (Figure 31(b)) oscillations will be generated. 
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Figure 30. Bifurcation diagrams predicting the stability at zero-detuning where the 
nonlinear carrier relaxation rate parameter is (a) and is not considered (b) in the 

normalized rate equations. 

 

 

Figure 31. Bifurcation diagrams predicting the stability at zero-detuning for different 
values of the linewidth enhancement parameter: (a) 2.5 (b) 3.8. 
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Chapter 4. Free-Running Nanostructure Characterization 

In this chapter, the free-running operation of the quantum-dot and quantum-dash 

nanostructure lasers is studied. The free-running operational parameters are critical in 

validating the theoretical models derived in Chapter 2 and Chapter 3 with the 

experimental data presented in Chapter 5 and Chapter 6.  

For testing, each nanostructure laser device is mounted on a gold-coated copper 

heat sink using indium solder. Because the bottom side of the laser device serves as the 

ground plane, a ground pad with the same thickness as the laser device is mounted 

adjacent to the laser to bring it up to the same height as the top/signal contact pad. A two-

finger RF signal/ground probe was used to contact the signal and ground pads of the 

device in order to minimize high frequency parasitics. The laser output was coupled to a 

lensed fiber mounted on a piezoelectric-controlled stage, and coupling efficiencies of 

approximately 50% were reached. Once coupled to the lensed fiber, the laser output was 

either converted to an electrical signal using a 40 GHz photodiode to measure the 

modulation response or directly to an optical spectral analyzer to observe the optical 

response. The experimental study of the free-running microwave modulation response 

(S21) of both nanostructure lasers was accomplished using an HP8722D network 

analyzer, and the response data was then used to extract the relaxation oscillation 

frequency and damping rate as a function of laser bias current. A high-resolution (10 pm / 

1.75 GHz @ 1310-nm and 1.25 GHz at 1550-nm) optical spectrum analyzer (OSA) 

(Yokogawa AQ6319) was also used to monitor the optical response of the laser devices. 

For a portion of the characterization of the quantum-dash laser, an Agilent high resolution 

spectrometer (Agilent 83453B) with a maximum resolution of 1 MHz was used in place 
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of the OSA; its operating wavelength span, however, did not cover the 1310-nm output 

wavelength of the quantum-dot Fabry-Perot device investigated in this work. An 

illustration of the experimental setup used to characterize the free-running laser 

parameters is given in Figure 32. The temperature of the copper heat sink was maintained 

using a thermo-electric cooler. In order to measure the light-current characteristics of the 

laser devices, an integrating sphere replaces the lensed fiber in Figure 32. 

 

 

Figure 32. Illustration of the experimental setup used to characterize the free-running 
laser parameters. The optical fiber feeding from the lensed fiber can be connected to 
either the optical spectrum analyzer or the photodetector; a 50/50 coupler is not used. 

Note: not to scale. 

 

The above threshold linewidth enhancement parameter was measured for each 

device using the injection-locking approach, which is based on the asymmetry of the 
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stable-locking region as the master laser is detuned from the slave laser [44]. The 

relationship of the linewidth enhancement parameter to the positive and negative 

frequency detuning boundaries of stable locking is given by (91): 
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where Δfpos and Δfneg are the positive and negative frequency detuning boundaries of 

stable locking, respectively [Liu01]. The detuning convention is described by: Δf = fmaster 

– fslave  (Δλ = λmaster - λslave). 

4.1. Description of the Quantum-dot Fabry-Perot slave laser 

The quantum-dot slave laser was grown using solid source molecular beam 

epitaxy on an n+-GaAs substrate. The dots-in-a-well active region consists of 6 layers of 

InAs quantum-dots embedded in compressively-strained In0.15Ga0.85As quantum-wells 

separated by 30-nm undoped GaAs spacers. A 45-nm layer of undoped GaAs was added 

on each side of the active region. The epitaxial structure is shown in Figure 33. The lasers 

have 3-μm wide ridge waveguides and 300 μm cavity lengths. The front and back 

cleaved facets were HR coated to have a reflectivity of 80% and 95%, respectively, to 

enable the device to lase at the ground state. The light-current characteristic is shown in 

Figure 34, from which a threshold current of 1.9 mA (Jth = 211.1 A/cm2) was found.  
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Figure 33. Epitaxial layer composition of the quantum-dots-in-a-well laser structure. 

 

 
Figure 34.  Light-current characteristics of the quantum-dot Fabry-Perot laser showing a 

measured threshold current of 1.9 mA at 20oC.  
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The optical response at a bias current of 5 mA is shown in Figure 35. The average 

group index of the gain region was calculated to be 3.706 based on an average Fabry-

Perot free-spectral-range (FSR) of 134.68 GHz (~770pm) across the 30-nm span shown 

(ng,avg = c/(2Δνavg L)) in Figure 35. The 30-nm span illustrated in Figure 35 was also used 

to calculate the group index of the gain region as a function of Fabry-Perot mode and is 

plotted in Figure 36. The group index of the active region, as a function of Fabry-Perot 

mode was calculated using: ng = λ2/(2LΔλ), where λ is the mode wavelength and Δλ is 

the FSR. The FSR was taken as the average FSR measured between the two adjacent 

modes. The jaggedness illustrated in Figure 36 is likely due to a non-uniform variation of 

the measured FSR. The facet reflectivity values, group index and internal loss (4-cm-1) of 

the device, yield a photon lifetime of 14.4 ps. 
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Figure 35. Optical spectra of the free-running quantum-dot laser observed under a bias 
current of 5mA. Top: 30-nm span. Bottom: 2-nm span. 
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Figure 36. Group index of the active region as a function of Fabry-Perot mode at a bias 
current of 5 mA. The free-spectral range (Δλ) was averaged between each two adjacent 

modes, and calculated using ng = λ2/(2LΔλ). 

 

The relaxation oscillation frequency, Ωfr, overall damping rate, γfr, and parasitic 

carrier transport time, τt, (τt = 1/γt) are determined by least-squares fitting of the free-

running modulation response for different bias currents as shown in Figure 37 using the 

standard model in (92) [31]. Figure 37 shows typical free-running modulation response of 

the quantum-dot laser under test. The highly damped nature of the device tested here is 

similar to other nanostructure lasers characterized in the literature [42], [43]. 
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Figure 37. Free-running modulation responses of the quantum-dot laser. The current 
indicated in the legend is the applied DC bias current. 

 

The slave laser damping rate plotted as a function of ffr
2 (Ωfr = 2πffr) is used to 

extrapolate the value of the spontaneous carrier relaxation rate, γs, given: γfr = Kffr
2 + γs.  

γfr plotted as a function of ffr
2 is shown in Figure 38, where γs is 7.5 GHz. The γs value is 

significantly larger compared to quantum-well lasers, where the typical value reported for 

quantum-well devices is 1-2 GHz [37]. 
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Figure 38. Free-running damping rate (γfr) as a function of the relaxation oscillation 
frequency squared (ffr

2). The dotted red line is a least-squares linear fit to the data points, 
which is extrapolated to determine the spontaneous carrier relaxation rate, γs. 

 

The impact of the non-linear gain compression coefficient on the free-running 

relaxation oscillation frequency was evaluated using the following relation: 
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where εp is the gain compression coefficient related to the total output power Pout and A is 

a fitting constant [Wong, Takahashi, Su]. A plot of the square of the measured relaxation 

oscillation frequency as a function of power is given in Figure 39, where the gain 

compression coefficient is extracted to be 0.155 mW-1. This value is more than 2X the 

value measured for a quantum-dash Fabry-Perot laser with cleaved facets (see next 
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section), where εp was measured to be 0.06 mW-1, and is approximately 10X the value 

reported for quantum-well lasers [8]. 

 

 

Figure 39. Quantum-dot laser free-running relaxation oscillation (ffr
2) as a function of the 

total output power (Pout). The dotted line is a least squares linear fit using expression (93), 
where the gain compression coefficient is found to be 0.155 mW-1. In each plot, the 

experimental values (blue asterisks) correspond to laser bias currents of 3.8, 5, 10, 15, 20, 
25, and 30 mA. 

 

The linewidth enhancement parameter measured using the injection-locking 

technique for various slave laser bias currents is shown in Table 1, where the linewidth 

enhancement parameter for each bias current is averaged over several injected master 

strengths (minimum of 3 injection strength levels). The measured linewidth enhancement 

parameter was fairly consistent as the injection ratio was increased, as indicated in Table 
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1. It has been suggested that the linewidth enhancement parameter can be manipulated to 

higher values at large injected power levels due to the semiconductor lasers’ nonlinear 

gain [59]; the measured results showed no trend with increasing injected power levels, 

suggesting that the master powers used were not high enough to induce either gain 

compression effects or to shift the threshold carrier density significantly [59]. The 

linewidth enhancement parameter was not measured at bias currents above 8 mA, as the 

available master laser power was limited to 30 mW. For bias currents above 8 mA, the 

stable-locking detuning ranges were too small to yield reliable measurements due to the 

resolution of the OSA. 

Table 1. Quantum-dot laser linewidth enhancement parameter measured using the 
injection-locking technique for varied slave laser bias currents. The linewidth 

enhancement parameter is averaged over several injection strengths. 

 

 

Below-threshold amplified spontaneous emission (ASE) measurements were 

performed to measure the material linewidth enhancement parameter, also referred to as 

the Hakki-Paoli technique [33]. The net modal gain, g, was extracted from the peak-to-

valley ratio of sub-threshold Fabry-Perot oscillations using the relationship in (94):  
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where L is the laser cavity length, x is the ratio of the peak-to-valley power levels, and r 

is the facet reflectivity given by (Rfront·Rback)1/2, and Rfront and Rback are the front and back 

facet reflectivity, respectively. The differential gain was calculated using the relationship 

Δg/ΔI, where ΔI is the current increment. The differential index was calculated using 

[33]: Δn/ΔI = -(n/λ)Δλ/Δg. The linewidth enhancement parameter is calculated using the 

differential gain and differential index results [33]: 
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Temperature effects were excluded from the Δλ/ΔI measurement by operating the 

current source (ILX LPD-3871) in pulsed mode [60]. Heating effects in the laser cavity 

resulting from increased bias currents can offset the wavelength decrease resulting from 

increased bias currents, as shown in Figure 40(b). Specifically, the quantum-dot laser was 

biased using 20 μs pulse widths while the duty cycle was operated at different levels: 1%, 

and 10% increments from 10% to 100%. The observed optical mode was then least-

squares-fit using a Gaussian function and its wavelength peak recorded for each duty 

cycle increment. For each sub-threshold bias current, the modal peak wavelength was 

plotted as a function of duty cycle, as shown in Figure 40(a). This data was then 

extrapolated to 0% duty cycle and the results for each current step (0.1 mA increments) 

were used to calculate Δλ/ΔI. The lower limit of operational pulse widths was constrained 

by the sensitivity of the optical spectrum analyzer, which was unable to resolve the 



89 
 

optical signal for 1% duty cycles and pulse widths below 20 μs. Figure 41(a) depicts the 

ASE spectra for a slave laser bias of 1.8 mA (Ith measured to be 1.9 mA), where the 

modal peaks and valleys have been extracted to calculate the net modal gain as a function 

of wavelength (Figure 41(b)). The ASE spectrum was measured for bias currents ranging 

from 1.0 mA to 2.0 mA in 0.1 mA increments. From 1311-nm to 1316-nm, the gain was 

relatively flat for each current increment, as observed in Figure 41(b). At a bias current of 

1.9 mA, the peak net modal gain was measured to be 4-cm-1. The linewidth enhancement 

parameter was calculated using expression (3) and the results are reported in Table 2. The 

modal gain reported in Table 2 was taken as the average from 1311-nm to 1316-nm. At 

1.9 mA, the linewidth enhancement parameter fictitiously drops to 0.5 as the bias current 

approaches threshold and the differential gain and Δλ/ΔI are observed to drastically 

decrease. The highest bias current that gives a reliable linewidth enhancement parameter 

using the ASE technique is 1.8 mA. The injection-locking method for determining the 

linewidth enhancement parameter is in reasonable agreement at bias currents just above 

threshold with the Hakki-Paoli method, which is a below-threshold measurement.  
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Figure 40. Quantum-dot laser: (a) Peak modal wavelength as a function of duty cycle. 
The pulse width was 20μs. (b) Optical power response for subthreshold bias currents at 
100% duty cycle. The bias currents correspond to 1.1 mA (red), 1.3 mA, 1.5 mA, 1.7 

mA, 1.9 mA, and 2.0 mA (gray). 
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Figure 41. Quantum-dot laser (a) amplified spontaneous emission spectra at 1.8 mA 
where the modal peaks and valleys have been highlighted; (b) net modal gain calculated 

using the peak-to-valley ratio measured from the ASE spectra. 

 

Table 2. Calculation of the sub-threshold linewidth enhancement parameter using the 
ASE approach for the quantum-dot laser. 
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4.2. Description of the Quantum-Dash Fabry-Perot slave laser 

The quantum-dash laser was grown on an n+-InP substrate. The active region 

consists of 5 layers of InAs quantum-dashes embedded in compressively-strained 

Al0.20Ga0.16In0.64As quantum-wells separated by 30-nm of undoped tensile-strained 

Al0.28Ga0.22In0.50As spacers. Lattice-matched Al0.30Ga0.18In0.52As waveguide layers of 

105-nm are added on each side of the active region. The p-cladding layer is step-doped 

AlInAs with a thickness of 1.5-µm to reduce free carrier loss. The n-cladding layer is 

500-nm thick AlInAs. The laser structure is capped with a 100-nm InGaAs layer. The 

epitaxial layer structure is given in Figure 42. The lasers were designed to have 4-µm 

wide ridge waveguides and 500-µm cleaved cavity lengths. From the light-current 

characteristic curve in Figure 43, the threshold current was measured to be 47 mA (Jth = 

2350 A/cm2), with a slope efficiency of 0.16 W/A (considering both laser facets). 

 

 

Figure 42. Epitaxial layer composition of the quantum-dashes-in-a-well laser structure. 
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Figure 43. Light-current characteristics of the quantum-dash Fabry-Perot laser showing a 
measured threshold current of 47 mA at 20oC; power indicated is from a single-facet. 

 

The optical spectral response at a bias current of 65 mA is shown in Figure 44. 

The average group index of the gain region was calculated to be 3.53 based on a 

measured average Fabry-Perot free-spectral-range (FSR) of 85.1 GHz (~698pm) across 

the 30-nm span shown (ng,avg = c/(2Δνavg L)) in Figure 44. The 30-nm span illustrated in 

Figure 44 was also used to calculate the group index of the gain region as a function of 

Fabry-Perot mode and is plotted in Figure 45. The group index of the active region, as a 

function of Fabry-Perot mode was calculated using: ng = λ2/(2LΔλ), where λ is the mode 

wavelength and Δλ is the FSR. The FSR was taken as the average free-spectral range 

measured between the two adjacent modes. The jaggedness illustrated in Figure 45 is 

likely due to a non-uniform variation of the measured FSR. The facet reflectivity values, 

group index and internal loss (15-cm-1) of the device lead to a calculated photon lifetime 

of ~3 ps. 
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Figure 44. Optical spectra of the free-running quantum-dash laser observed under a bias 
current of 65 mA; Top: 30-nm span; Bottom: 2-nm Span. 
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Figure 45. Group index of the active region as a function of Fabry-Perot mode at a bias 
current of 65 mA. The free-spectral range (Δλ) was averaged between each two adjacent 

modes, and calculated using ng = λ2/(2LΔλ). 

 

The relaxation oscillation frequency, Ωfr, overall damping rate, γfr, and parasitic 

carrier transport time, τt, (τt = 1/γt) are determined by least-squares fitting the free-

running modulation response for varied bias currents as shown in Figure 46 using the 

standard model in (92) (page 83) [31]. Compared with the highly damped modulation 
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response of the quantum-dot laser in Figure 37, the quantum-dash modulation response in 

Figure 46 is not as strongly damped and a resonance peak is clearly identifiable. 

 

 

Figure 46. Free-running modulation response of the quantum-dash laser. The current 
indicated in the legend is the applied DC bias current. 

 

The slave laser damping rate plotted as a function of ffr
2 (Ωfr = 2πffr) is used to 

extrapolate the value of the spontaneous carrier relaxation rate, γs, given: γfr = K·ffr
2 + γs.  

γfr plotted as a function of ffr
2 is shown in Figure 47, where γs is 4.5 GHz and K = 0.45 ns. 

As in the quantum-dot laser, the γs value is generally higher compared to quantum-well 

lasers, whereby the typical value reported for quantum-well devices is 1-2 GHz [37]. 
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Figure 47. Free-running damping rate (γfr) as a function of the relaxation oscillation 
frequency squared (ffr

2). The blue line is a least squares linear fit to the data points, which 
is then extrapolated to determine the spontaneous carrier relaxation rate, γs. 

 

The impact of non-linear gain compression on the free-running relaxation 

oscillation frequency was evaluated using the relation in (93) (page 85). A plot of the 

square of the measured relaxation oscillation frequency as a function of power is given in 

Figure 48, where the gain compression coefficient, εp, is extracted to be 0.06 mW-1. 

Although this value is less than its corresponding value for the quantum-dot laser studied, 

it remains an order of magnitude greater than typical quantum-well lasers [8].  

 



98 
 

 

Figure 48. Quantum-dot laser free-running relaxation oscillation (ffr
2) as a function of the 

total output power (Pout, both laser facets). The dotted line is a least squares linear fit 
using expression (93). 

 

The linewidth enhancement parameter’s measurement using the injection-locking 

technique for the quantum-dash laser differed from those found for the quantum-dot 

laser. Where the measured linewidth enhancement parameter for the quantum-dot laser 

was found to be relatively constant as a function of injected master laser power, the 

quantum-dash laser’s measured linewidth enhancement parameter showed a dependence 

on the injected master laser power. The linewidth enhancement parameter was observed 

to decrease as the injected power was increased, as illustrated in Table 3 showing 

measured values at bias current of 65 mA and varied injected powers. Table 4 and Table 

5 show corresponding linewidth enhancement parameter data for bias currents of 75 mA 
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and 85 mA, respectively. For fixed injection strengths, the linewidth enhancement 

parameter is observed to increase as the laser bias current is increased.   

 

Table 3. Quantum-dash laser linewidth enhancement parameter measured using the 
injection-locking technique for varied injected master laser powers at 65mA bias current.  

 

 

Table 4. Quantum-dash laser linewidth enhancement parameter measured using the 
injection-locking technique for varied injected master laser powers at 75mA bias current.  

 

 

Table 5. Quantum-dash laser linewidth enhancement parameter measured using the 
injection-locking technique for varied injected master laser powers at 85mA bias current.  

 

P master (mW) η o (GHz) α
8 124 1.0
6 107 1.2
5 98 1.7
4 87 1.9
3 76 2.2

P master (mW) η o (GHz) α
8 102 2.3
7 95 2.0
6 88 2.4
5 80 2.2
4 72 2.9

P master (mW) η o (GHz) α
9 99 2.8
8 94 3.4
6 81 3.2
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The lower current limit in measuring the linewidth enhancement parameter is 

limited by the observance of period-one oscillations under positive frequency detuning 

conditions. The measured values shown in Table 3 and Table 4 are for injected power 

levels where the coupled system transitions from stable-locking to four-wave-mixing at 

the positive frequency detuning edge and from stable-locking to unlocked operation at the 

negative frequency detuning edge. Injected power levels where period-one operation was 

observed as the master laser was positively detuned from the slave laser yielded 

unrealistic/irrational values. It is noted that in Table 3 and Table 4, the injection strength 

value, ηo, is in Grad/s.  

The upper limit is constrained by the Fabry-Perot mode spacing, measured for the 

quantum-dash laser to be approximately 85 GHz. Dividing this value in half (master will 

begin to couple to the adjacent mode past the mode spacing mid-point), stable-locking 

observed at a detuning of +42.5 GHz results in continuous stable-locking as further 

detuning causes the master laser to lock to the next Fabry-Perot mode. This detuning of 

~42.5 GHz equates to an injection strength of ~2·42.5·π =267 GHz. The observance of 

continuous stable-locking under strong injection is further enhanced by the asymmetry of 

the stable-locking region as given in (24), where the detuning range is given by -η(1 + 

α2)1/2 ≤ Δω ≤ η. An illustration of the continuously locked case is illustrated in Figure 49. 

An example takeaway from Figure 49 is that for an injection strength of 125 GHz, if the 

linewidth enhancement parameter is > 3.11, then continuous locking will be observed 

between adjacent Fabry-Perot modes of the quantum-dash slave laser.  
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Figure 49. Illustration of the upper injection strength limit experienced when measuring 
the linewidth enhancement parameter with the injection-locking technique in the 

quantum-dash Fabry-Perot laser.  
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Chapter 5. Optically-Injected Quantum-Dash Lasers: Experimental Findings 

This chapter investigates the behavior of the optically-injected quantum-dash 

Fabry-Perot laser as the injected field strength is increased from near-zero to levels 

resulting in stable locking. First, the microwave domain modulation response of the 

injection-locked quantum-dash laser is analyzed using the small-signal modulation 

response derived in Chapter 2. The newly derived modulation response, where the 

nonlinear carrier relaxation rate and compression of the differential and nonlinear carrier 

relaxation rates are incorporated, is used to least-squares-fit data collected on the 

injection-locked system with a focus on the zero-detuning and positive frequency 

detuning boundary conditions. The extracted values are then compared with theoretically 

expected values under the given detuning conditions. The correlation between the 

frequency of the resonance peak of the modulation response at the positive frequency 

detuning edge and a pole in the modulation response function under this detuning 

condition is illustrated in order to validate the maximum injection strength, ηo, 

calculation introduced in (73). The newly derived modulation response function is shown 

to accurately simulate the injection-locked behaviors and predict operating conditions 

ideal for high-performance optical communication links.   

Second, the free-running characterization in section 4.2 is used to theoretically 

simulate the dynamic response (stable locking, period-one, period-doubling, or chaos) in 

the context of the normalized, dimensionless single-mode rate equations described in 

Chapter 3. This theoretical examination is verified with experimental results obtained 

using a high resolution spectrometer (1 MHz), yielding a unique data set showing 

extreme detail of the coupled system’s optical power spectra. Experimentally, stability 
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maps where the dynamic state is characterized as a function of injection strength and 

detuning frequency are generated for varied slave laser bias conditions. The experimental 

setup used to characterize the quantum-dash laser at 1550-nm under optical-injection is 

given in Figure 50.  

 

 

Figure 50. Experimental setup used to characterize the optically-injected quantum-dash 
laser. 

 

5.1. Microwave modulation response of the injection-locked quantum-dash laser 

at the positive detuning edge of stable locking 

In this section, the microwave modulation response is examined at the positive 

frequency detuning edge of stable-locking using the microwave modulation response 

derived in Chapter 2. The transfer function is reiterated here for clarity and to add in a 

parasitic carrier transport rate, γt, as shown in (96). Expressions (97) – (102) show the 

terms used, where η = ηo/RFE. Based on the free-running characterization of the quantum-

dash laser presented in section 4.2, the number of unknowns in (96) – (102) is reduced 
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from 10 (γn, γp, γc, γs, γt, εp, ηo, RFE, α, θo) to 3 (ηo, RFE, θo). In (96), γt is the inverse 

parasitic carrier transport time and is determined by least-squares fitting the free-running 

modulation response. The free-running slave parameters γn, γp, γc, and γs are carrier 

forward from the free-running characterization and considered constant in the response 

function; γn and γp are scaled using RFE and compressed via εp based on the injected 

power, as expressed in (103) and (104). The field enhancement factor, RFE, is ideally 

calculated by solving for the real root of (34) based on the free-running relaxation rates, 

maximum injection-strength ηo, and phase-offset between the master and slave. This 

relationship between RFE and the coupled system’s operating parameters essentially 

reduces the number of fitting parameters to 2 (ηo and θo).  
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Section 2.6 discussed the importance of the positive frequency detuning edge of 

stable-locking, where the steady-state phase offset has been shown to be approximately   

-π/2 and the field enhancement factor, RFE, is approximately 1 reducing γth and Z as given 

in (62) and (63). In Figure 51 the modulation response is shown for three cases at the 

positive frequency detuning edge of stable-locking, where further detuning resulted in the 

side mode suppression ratio falling below 30 dB as the injected power was held constant. 

Constraining the fitting function such that there are only 2 freely varying fitting 

parameters (ηo and θo) yields the fitting results shown in Figure 51, where the fit only 

weakly agrees with the experimentally observed resonance peak. These poor fitting 

results are a result of the highly constrained nature of the fitting model. The extracted 

parameters (ηo and θo) and the free-running values carried forward are given in Table 6. 

The takeaway from Figure 51 and Table 6 is that to adequately fit the experimental 

response curves, the parameters in the fitting function will need to be more loosely 

constrained. The error in ηo in the far right column of Table 6 indicates the deviation 

between the value calculated based on (102) using the externally measured power levels 

and the value extracted by least-squares-fitting.  
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Figure 51. Modulation response at the positive frequency detuning edge of stable locking. 
Markers indicate the experimental data; solid lines are the least-squares-fitting results 

with the expressions given in (96) - (104) where only ηo and θo are allowed to freely vary 
as fitting parameters. RFE is calculated by solving for the real root of (34) based on the 

free-running relaxation rates, least-squares-fit value of the injection-strength ηo and 
phase-offset between the master and slave. α is constrained based on the free-running 

measured value. 

 

Table 6. Extracted operating parameters obtained by least-squares-fitting the 
experimental data in Figure 51 with the expressions given in (96) - (104). The columns in 

yellow were freely varying fitting parameters; gray columns were held constant; green 
columns were tightly constrained within 5% of there free-running value. 

 

I slave 
(mA)

P inj 

(mW)

Slave 
Power 
(mW) 

Calculated max 
Injection 

Strength, η o 

(GHz)

γn 
(GHz)

γp 
(GHz)

η ο 

(GHz)
θ ο α R FE γt  (GHz)

error in 
η o   (%)

60 6 2.23 94.3 0.926 2.7 104 ‐1.52 1.50 1.07 76.92 10.29

70 4.5 3.98 66.0 1.34 3.98 58.2 ‐1.49 3.50 1.06 90.91 11.82
70 7 3.98 82.4 1.34 3.98 75.1 ‐1.53 3.50 1.04 90.91 8.86

γ c   = 333.3 GHz,  γ s   = 4.5 GHz, εp= 0.06
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Next, the least-squares-fitting constraints are loosened such that the real root of 

(34) was not used to determine the value of the field enhancement factor and the 

linewidth enhancement parameter was allowed to vary in a greater degree; the resultant 

fitting results are shown in Figure 52. Table 7 shows the extracted parameter values for 

the least-squares-fit curves in Figure 52, along with the maximum injection strength, ηo, 

calculated based on the externally measured slave power, injected master power, and 

coupling efficiency from the lensed fiber to the slave facet. The error in ηo in the 2nd from 

far right column of Table 7 indicates the deviation between the value calculated based on 

(102) using the externally measured power levels and the value extracted by least-

squares-fitting. 

The fitting results in Figure 52 and Table 7 show that the newly derived 

modulation response function can adequately model the experimental data. While (34) 

was not used in the fitting function (cubic equation used to determine the steady-state 

phase offset), it was used to calculate the field enhancement using the extracted 

parameters (value given in the right column of Table 7). The calculated field 

enhancement factor is generally close to the extracted value; however, using (34) in the 

fitting function to determine the field enhancement factor impedes the quality of the fit as 

the function becomes overly constrained.  

The maximum injection strength, steady-state phase offset and field enhancement 

factor are each extracted to be in strong agreement with predicted theoretical values. The 

linewidth enhancement parameter is found to be larger than expected for all three cases, 

especially for the 60 mA case where it was measured to be in the range of 1.5 per Table 3 

in section 4.2. This deviation from the expected value obtained by measuring the 
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asymmetry of the stable-locking regime leads one to conclude that the linewidth 

enhancement parameter varies as a function of the detuning frequency; this conclusion is 

based on suggestions in Nguyen et al. that the linewidth enhancement parameter is 

dependent on the injected power [59] and the trend reported in [40]. It is also noted that 

the gain compression coefficient was extracted to be either negligible or much smaller 

than the value obtained from characterizing the free-running laser; this finding indicates 

that the injected photon density may not result in gain compression in the same manner as 

the free-running inter-cavity photons.  

   

 

Figure 52. Modulation response at the positive frequency detuning edge of stable locking 
for 3 different injected powers. Markers indicate the experimental data; solid lines are the 

least-squares-fitting results with the expressions given in (96) - (104).  
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Table 7. Extracted operating parameters obtained by least-squares-fitting the 
experimental data in Figure 52 with the expressions given in (96) - (104). The columns in 

yellow were freely varying fitting parameters; gray columns were held constant. 

 

 

 Based on the extracted parameter values in Table 7, the B-term in (98) is 

calculated and compared with the resonance peak of the modulation response. 

Additionally, the absolute value of the complex root of (96) is calculated and compared 

to the measured resonance frequency; the results are in Table 8. The calculated resonance 

frequency values compare well with the measured value. The takeaway is that the B-term 

yields a strong approximation of the resonance frequency of the coupled system. 

 

Table 8. Resonance peak of the positive detuning modulation response functions 
calculated using the B-term and from the absolute value of the polynomial transfer 

function’s roots based on the extracted parameters in Table 7.  

 

 

 Next, the impact of the nonlinear carrier relaxation rate is excluded and the least-

squares-fitting is repeated. Ignoring the contribution of the nonlinear carrier relaxation 

rate, the least-squares-fitting results of the data shown in Figure 52 are given in Table 9. 

I slave 
(mA)

P inj 

(mW)

Slave 
Power 
(mW) 

Calculated max 
Injection 

Strength, η o 

(GHz)

γn 
(GHz)

γp 
(GHz)

η ο 

(GHz)
θ ο α R FE

ε p   

(mw -1 )
γt  (GHz)

error in 
η o   (%)

R FE 

BASED 
ON (34)

60 6 2.23 94.3 0.926 2.704 98 ‐1.57 3.82 1.05 0.000 71.43 3.92 1.04
70 4.5 3.98 66.0 1.34 3.98 62 ‐1.44 3.94 1.15 0.000 100.00 6.06 1.11
70 7 3.98 82.4 1.34 3.98 81 ‐1.5 3.67 1.10 0.008 100.00 1.70 1.06

γ c   = 333.3 GHz,  γ s   = 4.5 GHz

I sl  (mA) P inj  (mW)
Measured  

Resonance Peak
B 1/2/(2π ) 
(GHz)

Absolute  Value  of the  
Polynomial Root

60 6 16 16.4 15.7
70 4.5 10.7 10.5 10.7
70 7 13.2 13.1 12.7
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The least-square-fit results give an equally tight modeling of the experimental data as 

those given in Figure 52 where the nonlinear carrier relaxation rate is considered. The 

results indicate the drawback of the multi-parameter fitting function, as essentially an 

infinite number of possible solutions exist. The extracted parameters for the cases with 

and without the inclusion of the nonlinear carrier relaxation rate point out that at this 

detuning condition (positive frequency detuning edge), the function is dominated 

primarily by the maximum injection strength. All additional parameters have only a 

minor impact on the coupled system’s small-signal modulation response.  

 

Table 9.  Extracted operating parameters close to the positive frequency detuning edge 
where the nonlinear carrier relaxation rate is not included. 

 

 

The takeaway from comparing Table 8 and Table 9 is that the nonlinear carrier 

relaxation rate and gain compression have a minimal impact on modeling the modulation 

response at the positive frequency detuning edge where the steady-state phase offset 

approaches -π/2 and RFE approaches 1. The approximate A, B, and C parameters at the 

positive frequency detuning edge of stable locking are given here (θo = -π/2, RFE = 1):  

0)cos(2 == oth θηγ  (105)

I slave 
(mA)

P inj 

(mW)

Slave 
Power 
(mW) 

Calculated max 
Injection 

Strength, η o 

(GHz)

γn 
(GHz)

η ο 

(GHz)
θ ο α R FE γt  (GHz)

error in 
η o   (%)

60 6 2.23 94.3 0.926 97.9 ‐1.561 3.49 1.00 76.92 3.82
70 4.5 3.98 66.0 1.34 66.44 ‐1.34 1.56 1.12 76.92 0.67
70 7 3.98 82.4 1.34 85 ‐1.449 2.20 1.06 100.00 3.16

γ c   = 333.3 GHz,  γ s   = 4.5 GHz, εp= 0, γ p  = 0 GHz
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( ) αηθθαη −=−= )cos()sin( ooZ  (106)

Simplifying the A, B, and C coefficients to the following as given in section 2.6:  

Aθ = -π/2 = γn + γp + γs = γfr  (107)

Bθ = -π/2  = Ωfr
2+ ηo

2 + αηoγp (108)

Cθ = -π/2  = ηo
 2(γn  + γs) + αηo Ωfr

2  (109)

Therefore we see that the nonlinear carrier relaxation will have no impact on the 

C-term, and at strong injection strengths, will have a marginalized impact on the B-term. 

The takeaway found here is that the resonance peak of the modulation response at the 

positive frequency detuning edge of stable locking is strongly dependant on the 

maximum injection strength as given in (102). The experimentally measured resonance 

peak can therefore be used to validate the approach used to calculate the maximum 

injection strength based on the facet reflectivity, internal cavity round-trip time, and 

externally measured master and slave powers. The results show the importance of 

accounting for the total slave laser output power in determining the maximum injection 

strength ηo, versus the approach in [39] where only the slave output power at the injected 

facet is taken into account. In the next section, the modulation response under zero-

detuning is analyzed using the full model derived in Chapter 2. 

Using the verified small-signal modulation response transfer function, 

semiconductor laser design properties yielding a 1 THz resonance frequency can be 

theoretically determined. For this design case, a detuning at the positive frequency 

detuning edge is chosen due its maximum degree of resonance frequency enhancement 

for a given injection strength. First, it is assumed that the following laser parameters (γn, 



112 
 

γp, γc, γs, α) remain constant and are equivalent to the quantum-dash laser values under a 

bias current of 70 mA reported in this work. It is also assumed that the RC parasitic 

damping rate does not limit operation at high frequencies (γt). The key design parameter 

is taken to be the cavity length of the laser in order to modify the internal cavity round 

trip time, given its impact on the injection strength calculation as given in (102). As the 

laser cavity length is decreased, it is assumed that the device continues to lase for fixed 

cleaved facet reflectivity values.  

totalFR

externalinj

g
o P

P

R
R

Ln
c

,

,)1(
2

−
=η  (102)

 Given the direct correlation between the B-term (in radian frequency) and the 

resonance peak at the positive frequency detuning condition, the maximum injection 

strength, ηo, necessary to yield a 1 THz resonance peak is 6280 GHz. To reach this large 

value, the cavity length is decreased to enhance the c/2ngL term in (102), while the 

injected power is increased. Assuming no heating effects at the laser facet and a 50% 

coupling efficiency between the injected power and the slave laser facet, an injected 

power of 87.5 mW is necessary for a cavity length of 25-μm. This cavity length and 

injected power condition is simulated in Figure 53. In Figure 53, cases where the inverse 

parasitic carrier transport time (γt) is and is not considered are included. The figure shows 

that when γt is considered, an enhanced resonance frequency is achievable; however, the 

modulation efficiency will be highly degraded. The dashed lines adjacent to each solid 

line illustrate the modification to the small-signal response when gain compression is 

considered (εp is taken to be equal to the free-running extracted value of 0.06 mw-1). The 

enhanced resonance frequency is essentially unchanged due to gain compression, as the 
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B-term is dominated by the maximum injection strength, ηo, at the positive frequency 

detuning edge and therefore the compression of γn and γp under strong injection has a 

negligible impact.  

 

 

Figure 53. Theoretically simulated small-signal modulation response at the positive 
frequency detuning edge for a short cavity device (25 μm) under strong injection (Pinj = 

87.5 mW) to show a 1 THz resonance frequency. Cases where the inverse parasitic 
carrier transport time (γt) is and is not considered are included. The dashed lines illustrate 

the impact of gain compression on the response.  
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5.2. Microwave modulation response of the injection-locked quantum-dash laser 

under zero-detuning and stable locking 

The interest in the zero-detuning condition is motivated due to several reasons. 

First, it simplifies both theoretical predictions and experimental efforts. Second, its 

microwave modulation response has been observed experimentally and theoretically to be 

relatively flat in comparison to positive frequency detuning conditions, making this 

detuning condition ideal for broad-band applications. Lastly, the zero-detuning condition 

will simplify the implementation of the optical-injection architecture into photonic 

systems, as the master and slave may be packaged together with a common frequency 

locker to maintain the detuning condition. From the modeling perspective, the 

attractiveness of zero-detuning was highlighted in section 2.6, where the steady-state 

phase to linewidth enhancement parameter relationship was given by: θo = -tan-1(α), 

reducing the Z and γth terms as given here: 

2/12 )1(
2
α
ηγ

+
=th  (110)

2/12 )1( αη +−=Z  (111)

The modulation response function described in (96) - (104), along with the 

simplifications given in (110) and (111), is used to model experimental modulation 

response curves collected under the zero-detuned condition as a function of the slave 

laser bias and injection strength. The modulation response curves under zero-detuning, 

shifted to a DC modulation efficiency of 0-dB, for 65 mA, 70 mA, 75 mA, 80 mA, and 

85 mA slave bias conditions are given in Figure 54 to Figure 58, respectively.  
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Figure 54. Normalized microwave modulation response under zero-detuning for 
increased injection strengths; slave bias is 65 mA. 

 

 

Figure 55. Normalized microwave modulation response under zero-detuning for 
increased injection strengths; slave bias is 70 mA. 
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Figure 56. Normalized microwave modulation response under zero-detuning for 
increased injection strengths; slave bias is 75 mA. 

 

 

Figure 57. Normalized microwave modulation response under zero-detuning for 
increased injection strengths; slave bias is 80 mA. 
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Figure 58. Normalized microwave modulation response under zero-detuning for 
increased injection strengths; slave bias is 85 mA. 

 

As in section 5.1, the least-square-fitting of the experimental zero-detuning 

modulation curves with the function derived in Chapter 2 holds the free-running slave 

parameters (γn, γp, γc, and γs) constant. The nonlinear carrier and differential carrier 

relaxation rates (γp, γn) are scaled using RFE and compressed based on the injected power 

using εp per expression (103) and (104).  

Least-squares-fitting results are illustrated for the injection-locked modulation 

response curves for a slave laser bias of 70 mA in Figure 59, with the extracted 

parameters listed in Table 10. In the curve-fitting function, the maximum injection 

strength was restricted to be within 10% of the value calculated using (102) based on the 

measured injected power. The extracted linewidth enhancement parameter averages 2.9 

and is reasonable for the quantum-dash laser at a bias current of 70 mA. What is not 
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observed in the extracted parameters is a systematic decrease in the linewidth 

enhancement parameter with increased injection strengths, as suggested in [59] and 

experimentally reported in section 4.2. The Matlab code used to perform the least-

squares-fitting is found in Appendix A.  

 

 
Figure 59. Least-square-fit microwave modulation response under zero-detuning for 

increased injection strengths; slave bias is 70 mA. Markers indicate experimental data; 
solid lines are the least-squares-fit results. 
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Table 10. Extracted parameters (yellow) from the curve fit illustrated in Figure 59 for a 
quantum-dash bias current of 70 mA. 

 

 

Additional least-square-fitting results are reported in Table 11 – Table 14 for the 

65 mA, 75 mA, 80 mA, and 85 mA slave bias cases, respectively. In each case, the 

starting value for the linewidth enhancement parameter was based on the measured 

values reported in section 4.2. The first takeaway from the extracted parameters for the 

varied slave laser bias conditions is that the linewidth enhancement parameter remains 

relatively constant at ~3 over the entire range of slave laser bias currents. This finding 

contrasts with the highly variable nature of the linewidth enhancement parameter 

reported by Grillot et al., where the feedback sensitivity of a quantum-dash laser with the 

same design as the device investigated in this work was examined [56] (likewise, 

reference [40] examines the same laser device; the author of this work is a co-author of 

both). It is noted that although identical in design, the operating characteristics of the 

quantum-dash laser used in [56] and [40] were slightly different; most notably, the output 

P inj 

(mW)

Slave  
Power 
(mW) 

Calculated 
Injection 
Strength, 
η o  (GHz)

γn 
(GHz)

γp 
(GHz)

η ο 

(GHz)
α R FE

ε p   

(mw -1 )
γt  (GHz)

error in η o 

(%)

2 3.98 55.0 1.34 3.98 56.9 3.00 1.42 0.001 83.33 3.44
4 3.98 77.8 1.34 3.98 81.5 3.10 1.49 0.001 83.33 4.76
6 3.98 95.3 1.34 3.98 99.8 3.10 1.64 0.001 83.33 4.75
8 3.98 110.0 1.34 3.98 115 3.10 1.73 0.001 83.33 4.53
10 3.98 123.0 1.34 3.98 129 3.10 1.84 0.001 83.33 4.88
12 3.98 134.7 1.34 3.98 141 3.00 1.91 0.001 83.33 4.64
14 3.98 145.5 1.34 3.98 153 2.90 1.93 0.001 83.33 5.15
16 3.98 155.6 1.34 3.98 163 2.90 1.94 0.001 83.33 4.76
18 3.98 165.0 1.34 3.98 173 2.90 1.96 0.002 76.92 4.83

I sl   = 70 mA, θ o  = ‐tan
‐1 (α ), γc = 333.3 GHz,  γs  = 4.5 GHz
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power and slope efficiency (0.2 mW/mA versus 0.16 mW/mA) were slightly higher for 

the device in [56] and [40].  

In [56] and [40], it was reported that the quantum-dash Fabry-Perot laser’s 

linewidth enhancement parameter was approximately 3.2 at 70 mA bias current and 8.0 at 

a bias current of 85 mA. Given that the linewidth enhancement factor is dependent on the 

output power (equally the inter-cavity photon density) as discussed in [8] and [62], the 

quantum-dash device investigated in this work exhibiting slightly lower output power 

levels will have lower linewidth enhancement parameter values at identical bias currents 

compared with [40] and [56]. Secondly, the linewidth enhancement parameter 

measurement is known to have a high degree of experimental error, as discussed by 

Melnik et al. in [47].  

The second takeaway is in regards to gain compression: it was found that only 

under the high bias current condition (85 mA) that the gain compression approaches the 

value determined by characterizing the free-running operation of the quantum-dash as 

reported in section 4.2 (page 98), where εp was found to be 0.06 mW-1. This finding is 

visually explained using Figure 48 (page 98) where the gain compression coefficient is 

determined, showing that gain compression does not have a prominent impact until the 

total output power reaches 4 mW, a power level that corresponds to a bias current above 

~95 mA. Based on this finding, it is not surprising to see that gain compression does not 

affect the modulation response as indicated in Table 11 – Table 14.     

 



121 
 

Table 11. Extracted parameters (yellow) from the curve fit for the injection-locked 
quantum-dash laser’s modulation response at zero-detuning and 65 mA bias current. 

 

 

Table 12. Extracted parameters (yellow) from the curve fit for the injection-locked 
quantum-dash laser’s modulation response at zero-detuning and 75 mA bias current. 

 

P inj 

(mW)

Slave  
Power 
(mW) 

Calculated 
Injection 
Strength, 
η o  (GHz)

γn 
(GHz)

γp 
(GHz)

η ο 

(GHz)
α R FE

ε p   

(mw -1 )
γt  (GHz)

error in η o 

(%)

1.34 3.140 49.5 1.12 3.38 49.4 3.00 1.32 0.001 90.91 0.12
2 3.140 60.4 1.12 3.38 60.4 3.00 1.38 0.001 90.91 0.04
2.8 3.140 71.5 1.12 3.38 71.5 3.00 1.42 0.001 100.00 0.00
5 3.140 95.5 1.12 3.38 95.5 3.30 1.54 0.001 100.00 0.04
5.4 3.140 99.3 1.12 3.38 99.2 3.30 1.57 0.001 100.00 0.09
8.15 3.140 122.0 1.12 3.38 122 3.10 1.64 0.001 100.00 0.02
11 3.140 141.7 1.12 3.38 142 3.30 1.67 0.001 100.00 0.20
13.5 3.140 157.0 1.12 3.38 157 3.20 1.74 0.001 100.00 0.01

I sl   = 65 mA, θ o  = ‐tan
‐1 (α ), γc = 333.3 GHz,  γs  = 4.5 GHz

P inj 

(mW)

Slave  
Power 
(mW) 

Calculated 
Injection 
Strength, 
η o  (GHz)

γn 
(GHz)

γp 
(GHz)

η ο 

(GHz)
α R FE

ε p   

(mw -1 )
γt  (GHz)

error in η o 

(%)

3.1 4.8 62.4 1.53 4.55 62.6 3.30 1.25 0.001 100.00 0.38
4.5 4.8 75.1 1.53 4.55 77.4 3.30 1.35 0.001 100.00 3.01
6 4.8 86.8 1.53 4.55 88.8 3.30 1.45 0.001 100.00 2.35
9 4.8 106.3 1.53 4.55 107 3.40 1.55 0.001 100.00 0.70
12 4.8 122.7 1.53 4.55 126 3.30 1.65 0.001 100.00 2.69
15 4.8 137.2 1.53 4.55 138 3.10 1.75 0.001 100.00 0.60
17 4.8 146.0 1.53 4.55 157 3.00 1.85 0.001 100.00 7.51

I sl   = 75 mA, θ o  = ‐tan
‐1 (α ), γc = 333.3 GHz,  γs  = 4.5 GHz
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Table 13. Extracted parameters (yellow) from the curve fit for the injection-locked 
quantum-dash laser’s modulation response at zero-detuning and 80 mA bias current. 

 

 

Table 14. Extracted parameters (yellow) from the curve fit for the injection-locked 
quantum-dash laser’s modulation response at zero-detuning and 85 mA bias current. 

 

 

 Next, a linewidth enhancement parameter focused sensitivity analysis of the 

microwave modulation response curves under zero-detuning at the 85 mA slave bias 

condition is performed; the response curves are least-squares fit while the linewidth 

P inj 

(mW)

Slave  
Power 
(mW) 

Calculated 
Injection 
Strength, 
η o  (GHz)

γn 
(GHz)

γp 
(GHz)

η ο 

(GHz)
α R FE

ε p   

(mw -1 )
γt  (GHz)

error in η o 

(%)

2.5 5.6 51.8 1.75 5.16 54.3 3.40 1.19 0.001 100.00 4.83
5 5.6 73.3 1.75 5.16 76.8 3.10 1.49 0.001 90.91 4.77
7.5 5.6 89.8 1.75 5.16 94.1 3.10 1.66 0.001 83.33 4.79
9 5.6 98.3 1.75 5.16 103 3.10 1.68 0.003 83.33 4.78
10 5.6 106.7 1.75 5.16 109 3.20 1.66 0.008 76.92 2.16
12.5 5.6 115.9 1.75 5.16 121 3.10 1.76 0.005 71.43 4.40
15 5.6 126.9 1.75 5.16 133 3.00 1.80 0.002 76.92 4.81
17.5 5.6 137.1 1.75 5.16 144 2.90 1.85 0.001 71.43 5.03
19 5.6 142.9 1.75 5.16 150 2.90 1.90 0.002 55.56 4.97

I sl   = 80 mA, θ o  = ‐tan
‐1 (α ), γc = 333.3 GHz,  γs  = 4.5 GHz

P inj 

(mW)

Slave  
Power 
(mW) 

Calculated 
Injection 
Strength, 
η o  (GHz)

γn 
(GHz)

γp 
(GHz)

η ο 

(GHz)
α R FE

ε p   

(mw -1 )
γt  (GHz)

error in η o 

(%)

3 6.2 54.0 1.90 5.55 56.6 3.30 1.30 0.022 83.33 4.81
4.5 6.2 66.3 1.90 5.55 69.3 3.20 1.44 0.025 83.33 4.52
6 6.2 76.6 1.90 5.55 80 3.10 1.55 0.016 83.33 4.44
9 6.2 93.8 1.90 5.55 98 3.10 1.63 0.021 76.92 4.48
11 6.2 103.7 1.90 5.55 108 3.20 1.68 0.026 50.00 4.15
13 6.2 112.7 1.90 5.55 118 3.20 1.71 0.019 50.00 4.70
16 6.2 125.0 1.90 5.55 131 3.20 1.72 0.020 50.00 4.80

I sl   = 85 mA, θ o  = ‐tan
‐1 (α ), γc = 333.3 GHz,  γs  = 4.5 GHz
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enhancement parameter is constrained to larger values (5 < α < 8). Figure 60 shows the 

fitting results, where the linewidth enhancement parameter restricted to larger values 

inhibits the fitting process and yields weaker results (compared to the extracted results 

reported in Table 14. The fitting approach allowed the maximum injection strength to 

vary ±15% from the value calculated using expression (102), as tighter constraints led to 

less adequate fitting results. For the low injection strength cases (ηo < 76.5 GHz, Pinj  < 6 

mW) , the extracted parameters showed that the linewidth enhancement parameter 

trended to the smallest value within the allowed range (5 < α < 8), as given in Table 15. 

Under higher injection strengths, the least-squares-fitting resulted in larger linewidth 

enhancement parameter values; however, repeating fitting results showed that at high 

injection strengths, the function becomes less dependent on the α-parameter value. For 

visual simplification, only four injection strength cases were included in Figure 60. The 

fitting results in Table 15 also show that the gain compression coefficient fit tightly to the 

predicted free-running value. This was in contrast to the values extracted for a freely 

varying linewidth enhancement parameter in the fitting constraints, where the gain 

compression coefficient was observed to have a negligible impact on the fitting results. 

 A similar approach to the 65 mA slave laser bias case resulted in less adequate 

fitting results for cases when the linewidth enhancement parameter was restricted based 

on the values in Table 3: 1 < α < 2.2. In this case, however, the gain compression 

coefficient trended toward values less than 0.01 as correspondingly reported in Table 11. 
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Figure 60. Least-square-fit modulation response under zero-detuning for increased 
injection strengths; slave bias is 85 mA. The linewidth enhancement parameter is 

restricted to: 5 < α < 8. Markers indicate experimental data; the fitting results are given 
by the solid and dashed lines. 

 

Table 15. Extracted parameters (yellow) from the curve fit for the injection-locked 
quantum-dash laser’s modulation response at zero-detuning and 85 mA bias current. 

 

P inj 

(mW)

Slave  
Power 
(mW) 

Calculated 
Injection 
Strength, 
η o  (GHz)

γn 
(GHz)

γp 
(GHz)

η ο 

(GHz)
α R FE

ε p   

(mw -1 )
γt  (GHz)

error in η o 

(%)

3 6.2 54.0 1.90 5.55 47.4 5.00 1.05 0.063 90.91 12.22
4.5 6.2 66.3 1.90 5.55 56.1 5.00 1.09 0.063 50.00 15.38
6 6.2 76.6 1.90 5.55 70.6 5.00 1.32 0.063 100.00 7.83
9 6.2 93.8 1.90 5.55 79.3 5.80 1.32 0.056 83.33 15.46
11 6.2 103.7 1.90 5.55 87.7 6.00 1.39 0.063 50.00 15.43
13 6.2 112.7 1.90 5.55 95.3 6.80 1.41 0.063 50.00 15.44
16 6.2 125.0 1.90 5.55 106 7.90 1.52 0.063 50.00 15.20

I sl   = 85 mA, θ o  = ‐tan
‐1 (α ), γc = 333.3 GHz,  γs  = 4.5 GHz
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Curve-fitting the experimental data with the modulation response function where 

the nonlinear carrier relaxation rate is excluded (γp = 0 GHz) yields similar fitting results 

due to the multi fitting-parameter nature of the response function. Without the nonlinear 

carrier relaxation rate, the fitting results give a small increase in the extracted linewidth 

enhancement parameter and a small decrease in the extracted field enhancement factor.  

The overall takeaway from this section is that regardless of the slave laser bias 

conditions, the linewidth enhancement parameter extracted by least-squares-fitting the 

modulation response curves remains relatively constant at ~3. Additionally, the drawback 

of the multi-parameter function in modeling strong injection-locking conditions is 

apparent with the nonlinear carrier relaxation rate providing only a slight improvement in 

the modeling capabilities. Essentially, removing the nonlinear carrier relaxation rate from 

the fitting function results in other parameters (ηo,α, and/or RFE) varying slightly to 

compensate for its contribution. In the next two sections, the impact of the nonlinear 

carrier relaxation rate is analyzed for a weakly injected system. Under relatively weak 

injection, the nonlinear carrier relaxation rate is observed to have a more significant 

impact on the characteristics of the coupled system. 
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5.3. Stability map of the optically-injected quantum-dash laser 

In this section, stability maps characterizing the dynamic state (stable-locking, 

period-one, period-doubling, coherence collapse, and four-wave-mixing) as a function of 

maximum injection strength and detuning frequency are given for varied slave laser bias 

conditions. The data set is unique in that it was obtained using a high resolution 

spectrometer (1 MHz) giving extreme detail of the coupled system’s optical power 

spectra.  

Stability maps for the 65 mA and 85 mA cases are displayed in Figure 61 and 

Figure 62, respectively. Overall, the stability maps illustrate that the quantum-dash laser 

has potential for implementation as a tunable photonic oscillator due to the maps’ large 

regions of period-one parameter space. Additionally, the experimental results 

demonstrate that only small parameter space regions of period doubling and coherence 

collapse are observed. In contrast to the 85 mA stability map, the 65 mA case shows only 

period-one and stable locking under zero-detuning conditions. The notion of only period-

one and stable locking under zero-detuning invokes interest in a packaged system where 

the period-one state is used to generate a microwave frequency for implementation as a 

tunable photonic oscillator. Under such a system, a frequency locker can be implemented 

to hold the detuning frequency at zero and the unstable nature of the period-doubling 

domain can be avoided by operating the injected slave laser under the proper bias 

conditions.   
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Figure 61. Stability map for the optically-injected quantum-dash slave laser at a bias 
current of 65 mA. The blue diamonds at negative detuning indicate chaotic (coherence 

collapse) operation. The trendlines have been added as a visual aid only.  
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Figure 62. Stability map for the optically-injected quantum-dash slave laser at a bias 
current of 85 mA. The blue diamonds at negative detuning indicate chaotic (coherence 

collapse) operation. The trendlines have been added as a visual aid only.  

 

 Optical spectra illustrating the detuning series for a fixed maximum injection 

strength, ηo, of 14.2 GHz where the quantum-dash laser is biased at 65 mA are shown in 

Figure 63 and Figure 64. The figures depict the progression from an unlocked state at a 

large negative frequency detuning to four-wave-mixing at a large positive detuning 

frequency. Specifically, an unlocked state is observed at a detuning of -5.87 GHz (Figure 

64); coherence collapse at -4.83 GHz (Figure 64); stable locking at -1.28 GHz (Figure 

64); period-one oscillations at 0 GHz (Figure 63); the onset of period-doubling 
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oscillations at 2.2 GHz (Figure 63) and strengthened period-doubling oscillations at 2.9 

GHz and 3.85 GHz (Figure 63); the suppression of the period doubling oscillations at 6.4 

GHz (Figure 63); and four-wave-mixing at 9.17 GHz where the slave laser operates at its 

free-running frequency (Figure 63).  

 

 

Figure 63. Positive frequency detuning series for a maximum injection strength of 14.2 
GHz and a slave laser bias of 65 mA. 
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Figure 64. Negative frequency detuning series for a maximum injection strength of 14.2 
GHz and a slave laser bias of 65 mA. 

 

While the 65 mA and 85 mA stability maps are similar in nature, they differ in the 

injection strength needed to transition from period-one operation to stable injection-

locking. This trend corresponds to expression (17) in reference [20] which states that the 

coupled system reaches the reverse-Hopf-bifurcation point and exhibits stable-locking for 

increased injected powers at a maximum injection strength, ηo, given by (112) for zero-

detuning conditions.  

2/12
2/1
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P  (112) 

The expression illustrates that the threshold maximum injection strength to reach 

continued stable locking is directly proportional to the free-running relaxation oscillation 

frequency of the slave laser and proportional to the square root of the linewidth 

enhancement parameter in the limit of large α. The limitation of (112) is that it was 
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derived under various approximations, particularly the case where the nonlinear carrier 

relaxation rate was neglected. 

 Simulations of the quantum-dash laser at zero-detuning using the dimensionless 

rate equation model described in Chapter 3 for the 65 mA and 85 mA cases are given in 

Figure 65 and Figure 66, respectively. The theoretical results are in reasonable 

quantitative agreement with the experimental stability maps, where only regions of 

stable-locking and period-one oscillations are predicted at 65 mA, and a small window of 

period-doubling below ηo = 15 GHz followed by period-one oscillations and stable-

locking are predicted at 85 mA.  

 

 

Figure 65. Theoretical simulation of the quantum-dash laser’s dynamic response at 65 
mA and zero-detuning.  
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Figure 66. Theoretical simulation of the quantum-dash laser’s dynamic response at 85 
mA and zero-detuning. 

 

 The large period-one parameter space allows larger degrees of tunability to be 

reached, ideal for an optically-injected laser implemented as a tunable photonic oscillator. 

The tunability of the period-one resonance frequency, as measured by the spectral 

sidebands, for varied ηratio and Δf values is illustrated in Figure 67. Specifically, Figure 67 

shows that for the quantum-dash laser at a bias current of 65 mA under period-one 

operation, the resonance frequency (fr) can be tuned from 4.02 GHz to 19.99 GHz, where 

the slave laser’s free-running relaxation oscillation frequency is measured to be 3.1 GHz.   
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Figure 67. Optical spectra of the optically-injected quantum-dash slave biased at 65mA.  

 

5.4. Approximation of the period-one resonance frequency at zero-detuning 

In this section, the numerical approximation of the quantum-dash laser’s period-

one resonance frequency under zero-detuning conditions is discussed in reference to the 

stable solution to the microwave modulation response described in Chapter 2. As 

presented in Chapter 4, the quantum-dash nanostructure laser was shown to have 

relatively large nonlinear and spontaneous carrier relaxation rates when compared to 

quantum-well lasers. These increased rates are shown to enhance the coupled system’s 

resonance frequency through interaction with the threshold gain shift induced in the slave 

laser, the linewidth enhancement parameter, and the phase offset. The novelty of this 

approach is that a stable solution is used to describe the period-one state, which is heavily 
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influenced by the nonlinear dynamics of the slave laser and not assumed to fall under 

steady-state approximations.  This approach is shown to give strong agreement between 

measured and predicted period-one resonance frequencies.  

Using expression (46) (page 29) and assuming that relatively weak injection 

strengths do not modify the slave laser’s optical field from its free-running value (RFE = 

1) yields a resonance frequency of the coupled system given by (113). The function used 

to calculate the resonance frequency is applicable to all detuning conditions, given that 

the phase offset between the master and slave fields is known. The data presented in this 

section focuses on the zero-detuning conditions due to the phase-to-linewidth 

enhancement parameter relationship given by (14), which simplifies (113). Additionally, 

the zero-detuning case is especially attractive because both the master and slave lasers 

can be packaged with a reference wavelength locker to ensure frequency stability.  

)
2

sin(222 th
oopthsofrr

γ
θαηγγγη −−++Ω=Ω  (113) 

where Ωr is the period-one resonance frequency and Ωfr is the free-running relaxation 

oscillation frequency. This work uses (113) to calculate the period-one resonance 

frequency, whereas two commonly used approximations are given by (114) and (115) [9], 

[17]. 

222
ofrr η+Ω=Ω  (114) 

sthofrr γγη ++Ω=Ω 222  (115) 

The key difference between (114) and (115) is the last term that accounts for the 

interaction between γth and γs. (113) accounts for the large nonlinear gain of the quantum-
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dash laser through the nonlinear carrier relaxation rate γp, and its interaction with the 

slave laser linewidth enhancement parameter α, ηo, and phase offset between the master 

and slave θo.  

 Optical spectra of the injected slave laser in the period-one state and zero-

detuning are shown in Figure 68, where the slave laser is biased at 70 mA. The resonance 

frequency in Figure 68 is measured by the spectral sidebands. Expression (113) is used to 

calculate the enhanced resonance frequency observed in Figure 68, and a strong 

agreement between experimental and the calculated value are reported (Figure 69). Using 

the free-running characterization results in Chapter 4, and by least-squares fitting the 

microwave modulation response at zero-detuning and the injection strength 

corresponding to the Hopf bifurcation, the linewidth enhancement parameter is found to 

be 3.2. This 3.2 value is in agreement with the values given in Table 10 (page 119) 

obtained by least-squares-fitting modulation response curves under strong injection 

conditions.  
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Figure 68. Optical spectra of the optically injected quantum-dash slave laser under a bias 
of 70 mA and zero-detuning showing the increase in resonance frequency with injection 

strength. fr is the measured resonance frequency value. The spectra shown in blue are 
within the period-one operational region. The oscillations below -40 dBm are a result of 

residual feedback in the experimental setup.  
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Figure 69. Measured and calculated period-one resonance frequency as a function of the 
injection strength for the quantum-dash slave laser at a bias current of 70 mA and zero-

detuning. The resonance frequency was measured using the spectral sidebands as 
depicted in Figure 68. 

 

The accuracy of (113) in predicting the period-one resonance frequency is 

illustrated in Figure 69, where the measured resonance frequency under zero-detuning is 

plotted with the values calculated using (114) and (115) as well. For the 70 mA slave bias 

case, the parameter values were Ωfr = 21.6 GHz, γr = 9.8 GHz, γs = 4.5 GHz, and α = 3.2. 

γn and γp were calculated to be 1.34 GHz and 3.98 GHz, respectively. Using (113), the 

average error between experimental and calculated period-one resonance frequency is 

(113)
(115)
(114)
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3.0%, whereas the average error using the approximation in (114) was 12.5%. Using 

(115), which accounts for the threshold gain shift but neglects the nonlinear component, 

the average error is 10.1%. Although (113) is only exact at the reverse-Hopf-bifurcation 

point where the system operates under steady-state conditions, these results show that the 

resonance frequency of the undamped period-one oscillations trends with the solution 

derived under steady-state conditions and is a good approximation below the reverse 

Hopf bifurcation point.  

Data sets corresponding to Figure 69 for other slave laser bias currents showed 

similar accuracy. For these other bias cases, γn and γp were adjusted based on the 

measured Ωfr and γfr for the specific bias current under test. The corresponding linewidth 

enhancement parameter was extracted from the modulation response at the injection 

strengths corresponding to the reverse bifurcation point.  
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Chapter 6. Optically-Injected Quantum-Dot Lasers: Experimental Findings 

In this chapter, the experimental findings covering the optically-injected quantum-

dot laser are described and analyzed. First, the free-running characterization in section 

4.1 is used to theoretically simulate the dynamic response (stable locking, period-one, 

period-doubling, or chaos) in the context of the normalized, dimensionless single-mode 

rate equations described in Chapter 3. This theoretical examination is compared with the 

collected experimental results. Specifically, the dynamic response is theoretically and 

experimentally examined under zero-detuned injection conditions for external injected 

power ratios ranging from 9 GHz to 75 GHz and slave current bias levels of 1.3X, 2X, 

and 2.6X threshold. The experimentally collected small-signal modulation response is 

theoretically examined at weak injection strengths using the modulation response transfer 

function derived in Chapter 2. Although experimentally limited by the resolution of the 

optical spectrum analyzer, the quantum-dot laser is observed to exhibit highly stable 

operation under optical-injection.  

6.1. Optical spectral response under optical-injection at zero-detuning 

The optical-injection experimental setup is illustrated in Figure 70. The master 

laser was a temperature-tunable 30 mW Fujitsu DFB quantum well laser at 1310-nm 

(model FLD3F7CZ) that had a polarization-maintaining (PM) fiber-coupled output. The 

high-resolution (10 pm / 1.75 GHz) optical spectrum analyzer (OSA) (Yokogawa 

AQ6319) and HP8722D vector network analyzer used in characterizing the free-running 

parameters were employed in the same fashion as previously to monitor the optical power 

spectra and small-signal S21 modulation response, respectively. A 3-port optical circulator 
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based on 1310-nm single mode PM fiber was used to connect the master and slave lasers 

and the test equipment with proper isolation. Experimentally, this fidelity of this work 

was limited by the resolution of the optical spectrum analyzer, as the 1.75 GHz resolution 

at ~1310-nm hampered the ability to observe weakly undamped relaxation oscillations at 

frequencies < 1.75 GHz from the locked mode.  

 

 

Figure 70. Experimental setup used to optically-inject the quantum-dot laser.  

 

 Using the free-running relaxation oscillation frequency and damping rate, photon 

decay rate, and spontaneous carrier relaxation rate, the optically-injected quantum-dot 

laser is simulated using the dimensionless rate equations derived in Chapter 3. Recall that 

in Chapter 3, sample bifurcation diagrams simulating the quantum-dash laser showed rich 
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nonlinear behavior under various bias conditions. The simulation results for the quantum-

dot laser, shown in Figure 71, predict a highly stable response as the laser is subjected to 

increasing levels of injected power. The takeaway from Figure 71 is that under zero-

detuning for both the 3.8 mA (2X threshold current) and 5 mA (2.6X threshold current), 

only stable-locking operation is expected due to the low linewidth enhancement 

parameter and significant nonlinear carrier relaxation rate. Although the stable behavior 

the quantum-dot laser has been previously described for optical feedback by O’Brien et 

al., the experimental results have not been compared in detail to numerical models that 

explicitly call out the dependence on non-linear gain for the optical feedback case [42].    

 

 

Figure 71. Bifurcation diagrams simulating the response under zero-detuning. The two 
cases correspond to respective P, T, and α-factor values for 3.8 mA(2X Ith), and 5 mA 
(2.6X Ith) bias conditions and illustrate the stability of the quantum-dot slave laser’s 

operational behavior. 

 

This high degree of stability in Figure 71 owes primarily to the small linewidth 

enhancement parameter value measured for the device. The stability is also impacted by 
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the large nonlinear carrier relaxation rate, γp, of the quantum-dot laser under test. 

Specifically, for the 3.8 mA case: γp = 2.75 GHz, γn = 1.65 GHz; for the 5 mA case: γp = 

4.14 GHz, γn = 2.23 GHz.  

The simulations in Chapter 3 showed that the nonlinear carrier relaxation rate 

suppressed periodic pulsations in the equilibrium condition. This ε parameter accounting 

for the impact of the nonlinear carrier relaxation rate in the dimensionless model, defined 

as ε = γpγs/(γcγn), is relatively larger for the quantum-dot laser versus the quantum-dash 

laser. Essentially, the characteristic relaxation rates of the quantum-dot laser enhance the 

impact of the typically ignored nonlinear carrier relaxation rate. For comparison 

purposes, ε ~ 0.04 for the quantum-dash laser exhibits rich nonlinear dynamics (for larger 

linewidth enhancement parameters), while ε ~ 0.2 for the quantum-dot laser exhibits a 

high degree of stability (for smaller linewidth enhancement parameters) as simulated in 

Figure 71. While the stability of the laser under optical-injection is driven strongly by the 

linewidth enhancement parameter, its dependence on the nonlinear parameter described 

by ε strongly contributes to the stability of the quantum-dot device investigated here. The 

dependence on ε with respect to the device’s stability is highlighted in the bifurcation 

diagrams in Figure 72, where the quantum-dot device is simulated at a bias current of 5 

mA for a fictitious linewidth enhancement parameter of 4 and cases where the nonlinear 

carrier relaxation rate is and is not considered. The simulation where the nonlinear carrier 

relaxation rate is not considered (and hence ε = 0) predicts that a two-extrema solution 

indicative of period-one pulsations will occur for injection strengths ranging from 4 GHz 

to 68 GHz. As we shall see, this behavior is not observed experimentally. 
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Figure 72. Bifurcation diagram for a linewidth enhancement parameter of 5 and 
relaxation rates based on a 5 mA bias current for the quantum-dot laser. (a) includes and 

(b) ignores the nonlinear carrier relaxation rate in the rate equations.  

 

The second unique feature noted in simulating the quantum-dot laser is the 

extremely small T-term of 9.2. The T-term is given by γc/γs and is a fixed value for a 

given slave laser (i.e. not dependant on bias current); for this particular quantum-dot laser 

with HR-coated facets and a 300-µm cavity length, γc is relatively small and γs is 

relatively large compared to the quantum-dash laser. For comparison purposes, the T-

term for the quantum-dash is ~74, and simulations found in the literature for quantum-

well lasers using the dimensionless rate equation approach implemented here (where the 

impact of the nonlinear component is neglected) have a T-term of ~155 [17]. 

Experimentally, the quantum-dot laser was injected with strengths ranging from 9 

GHz to 50 GHz at a bias current of 2.6X the threshold value (5 mA). The optical spectra 

for the 2.6X threshold bias current case at the onset of stable-locking are shown in Figure 

73, where the maximum injection strength is calculated to be 14.8 GHz. Due to the 

single-mode nature of the dimensionless rate equation model derived in Chapter 3, a 
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discrepancy at low maximum injection strengths for the multi-mode slave under study is 

observed. The spectra in Figure 73(c) (30-nm span) shows only moderately suppressed 

Fabry-Perot modes away from the injected mode, where the side mode suppression ratio 

(SMSR) is measured to be 7 dB. In the 0.5-nm span shown in Figure 73(a), the small 

side-mode at ~1311.8-nm is believed to be a suppressed relaxation oscillation, where the 

SMSR is measured to be 44.8-dB.  
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Figure 73. Experimental optical spectra for the quantum-dot laser under weak optical-
injection at zero-detuning and a bias current of 5 mA. The maximum injection strength is 

14.8 GHz for all three cases. The 0.5-nm span in (a) shows no observable undamped 
relaxation oscillations. The 4-nm span in (b) shows that the adjacent Fabry-Perot modes 
are not suppressed beyond 30 dB, the criteria for stable-locking. The 30-nm span in (c) 

shows that the Fabry Perot modes at ~1305-nm are minimally suppressed (7 dB). 
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The spectra in Figure 74 correspond to the experimentally observed onset of 

stable-locking, where the maximum injection strength is 17.4 GHz. The 0.5-nm span in 

Figure 74(a) shows no evidence of undamped relaxation oscillations, concluding that 

period-one operation is suppressed under zero-detuning conditions. As the maximum 

injection strength was increased up to 50 GHz, the Fabry-Perot side modes were more 

strongly suppressed. Experimental optical spectra collected at a slave laser bias current of 

3.8 mA (2X Ith) showed similar results to those in Figure 73 and Figure 74 for the 5 mA 

slave bias current case (2.6X Ith). For the 3.8 mA bias current under external power ratios 

varied from 11 GHz to 90 GHz, unlocked behavior was observed at low maximum 

injection strengths followed by stable-locking as the injected power was increased; 

optical power spectra showing characteristics of undamped relaxation oscillations were 

not observed for the full range of external power ratios. 
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Figure 74.  Experimental optical spectra for the quantum-dot laser under optical-injection 
at the onset of stable-locking at zero-detuning. The adjacent Fabry-Perot modes are 

suppressed beyond 30 dB, the criteria for stable locking; however, the 30-nm span shows 
that the distant Fabry-Perot modes are suppressed below the 30 dB threshold for stable-

locking. The maximum injection strength is 17.4 GHz for all three cases. The wavelength 
spans are: (a) 0.5-nm; (b) 4-nm; and (c) 30-nm. 
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Although derived for the case where the nonlinear carrier relaxation rate is 

ignored, Erneux et al. and Gavrielides et al. introduce stability boundaries in terms of the 

T- and P- parameters and linewidth enhancement parameter [17], [20]. The analytical 

derivations of the expressions for steady-state locking (reverse-Hopf-bifurcation point) 

and Hopf-bifurcation boundaries are taken assuming a large T-parameter on the order of 

100 – 1000. The applicability of the stability boundaries given by Erneux et al. is 

observed to be only an approximation for the slave laser analyzed in this work, as the T-

parameter is calculated to be below 100 [17]. Expression (17) in Gavrielides et al. shows 

that the coupled system reaches the reverse-Hopf-bifurcation point and exhibits stable-

locking for increased injected powers at an injection strength given by (116) [20].  
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From (116), the influence of the onset of stable-locking conditions is seen to be 

strongly dependent on the linewidth enhancement parameter, and conditions where the 

linewidth enhancement parameter is less than two will lead to sufficiently small threshold 

injection strengths for stable-locking making operation below this point difficult to 

observe experimentally. Gavrielides et al. also introduces an expression for a Hopf 

bifurcation line (ref. [20], expression (19)) describing the onset of unstable optical-

injection (period-one, chaotic pulsations), which when zero-detuning is considered, 

reduces to (117).  
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For cases of a sufficiently large γfr compared to Ωfr, and small linewidth enhancement 

parameter, the ηHopf-Bifurcation value is greater than ηstable, resulting in the stable operation 

described by the single extrema electric field solution as simulated in illustrated in Figure 

71. This particular case where ηstable < ηHopf-Bifurcation at zero-detuning is observed for the 

3.8 mA case, where α = 1.6, Ωfr = 2πffr = 11.6 GHz and γfr = 11.9 GHz. At a slave bias of 

5 mA, this case (ηstable < ηHopf-Bifurcation) is not met. The 5 mA forward and reverse 

bifurcation points equate to:  ηHopf-Bifurcation = 10.4 GHz and ηstable = 16.7 GHz, indicating 

that for a small range of injection strengths periodic pulsations will occur. The 

discrepancy between this conclusion and the bifurcation diagram in Figure 71 is believed 

to arise from the omission of the nonlinear parameter in (116) and (117), and from the 

initial approximations used in Gavrielides et al. to derive the expressions [20]. The 

significance of this particular approximation (ηstable < ηHopf-Bifurcation) is an indicator that 

the highly damped nature of quantum-dot lasers are ideal for suppressing periodic 

pulsations leading to instabilities.  

Next, the stability analysis illustrated in Figure 13, Chapter 2 based on the real 

part of the complex root of the polynomial function found in (57) at zero-detuning is 

implemented to theoretically investigate the quantum-dot laser’s stability under optical-

injection. The quantum-dot’s stability is illustrated in Figure 75, where the impact of the 

slave laser linewidth enhancement parameter is emphasized. Negative values are a sign of 

stable-locking conditions and positive values are a sign of undamped oscillations 

indicative of unstable-locking. The conclusion from Figure 75 is that based on the free-

running relaxation rates at 5 mA, only stable locking is predicted for linewidth 

enhancement parameters below 5 given the relatively large non-linear carrier relaxation 
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rate of the quantum-dot laser. The impact of the nonlinear carrier relaxation rate on 

modeling the stability of the optically-injected quantum-dot laser is illustrated in Figure 

76. Both linewidth enhancement parameter cases in Figure 76 where the nonlinear carrier 

relaxation rate parameter is ignored predict that unstable operation will occur for a range 

of injection strengths. Stated in another way, the large nonlinear carrier relaxation rate of 

the quantum-dot laser suppresses unstable operation for fictitiously simulated increased 

linewidth enhancement parameter values. These results correspond to those based on the 

dimensionless rate equations illustrated in Figure 72. 
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Figure 75. Quantum-dot stability analysis based on the real part of the complex roots of 
the polynomial function in (57) at zero-detuning emphasizing the impact of the slave 
laser linewidth enhancement parameter. Negative values are a sign of stable-locking 

conditions and positive values are a sign of undamped oscillations indicative of unstable-
locking. The free-running quantum-dot laser values are for a bias current of 5 mA. 
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Figure 76. Impact of the nonlinear carrier relaxation rate on the predicted stability of the 
quantum-dot laser based on the real part of the complex roots of the polynomial function 

in (57) at zero-detuning.  

 

6.2. Small-signal microwave modulation response 

In this section, the experimentally collected small-signal modulation response is 

theoretically examined at weak injection strengths using the modulation response transfer 

function derived in Chapter 2. Figure 77 shows the normalized microwave modulation 

response where the slave laser is biased at 5 mA for injected master laser powers of 1.4 

mW, 0.8 mW, and 0.5 mW under zero-detuning conditions. Figure 78 shows the 



153 
 

corresponding data without normalization and the associated least-square-fitting results 

for the modulation response curves using the transfer function in (118). Expression (118) 

is the equivalent of (51) with the second term in the denominator of (118) accounting for 

the parasitic RC and carrier transport effects; γt is the parasitic transport time.  
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In Figure 78, the modulation efficiency is observed to decrease as the injected 

power is increased. The number of fitting parameters in the transfer function is reduced 

using the following: the phase-to-linewidth enhancement parameter constraint at zero-

detuning given in (14); the phase-to-field enhancement factor relationship given in (34); 

and by holding the free-running relaxation rates given by γc, γs, γn, and γp constant (they 

are scaled under optical-injection using RFE).  
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Figure 77. Normalized small-signal modulation response at zero-detuning. 

 

The parameter values extracted by least-square-fitting the experimental data are 

shown in Table 16. The response curve for the 1.4 mW injected case could not be 

effectively least-square-fit with the zero-detuning phase-to-linewidth enhancement 

parameter constraint given in (14), and thus it was removed for this case. The fitting 

results for this curve show that the linewidth enhancement parameter dips extremely low. 

The linewidth enhancement parameter is found to decrease with increased injected 

powers based on the fitting results, a trend that was not observed in the linewidth 

enhancement parameter measurements based on the asymmetry of the stable-locking 

region. This result indicates that optical-injection can be used to manipulate the linewidth 



155 
 

enhancement parameter of the quantum-dot laser, a behavior that was not observed in the 

optically-injected quantum-dash laser.  

 

Figure 78. Small-signal modulation response at zero-detuning showing the least-square 
fitting results. 

 

Table 16. Least-square-fitting results for the response curves in Figure 78. 

 

 

P master  (mW)
Calculated 

η o  (GHz)

Least‐Square‐Fit  

η o  (GHz)
α θ (rad) γ t  (GHz)

0.5 15.5 9.6 2 ‐invTan(θ ) 15
0.8 20 13 1.33 ‐invTan(θ ) 58
1.4 26 20.8 0.167 ‐1.34 1000
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A takeaway from the curve fitting results is the inaccuracy of the maximum 

injection strength, ηo, fitting the response curve versus the value calculated based on the 

internal cavity round trip time, facet reflectivity, and external power ratio. This 

discrepancy is attributed to inaccuracy in the measured coupling efficiency from the 

lensed fiber to the slave laser facet and/or inaccuracy in the facet reflectivity value. The 

emitting facet of the slave was HR-coated to have a reflectivity of 0.8. A small deviation 

in this value causes a relatively large variation in calculated injection strength. The high 

reflectivity of the injected slave facet is also noted to decrease the injected power 

efficiency according to (73). 
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Chapter 7. Conclusions and Future Work 

7.1. Summary 

In this work, the complete operation of optically-injected nanostructure lasers was 

investigated with emphasis on the contribution of their characteristically large nonlinear 

gain component. Explicitly accounting for the nonlinear gain of nanostructure lasers 

through the nonlinear carrier relaxation rate and nonlinear gain compression coefficient is 

found to enhance the capability of modeling optically-injected quantum-dash and 

quantum-dot Fabry-Perot devices.  

First, a predictive model describing the small-signal microwave modulation 

response of the optically-injected nanostructure laser was derived and used to extract the 

operating parameters from experimentally collected modulation response curves for 

varied degrees of injection strength and frequency detuning levels. Under zero-detuning 

conditions, 3-dB bandwidth improvements greater than 3X were observed for the 

quantum-dash laser. Next, the novel small-signal modulation response function was used 

to least-squares-fit experimental data sets collected for varied quantum-dash slave laser 

bias conditions; the results showed that the quantum-dash laser’s linewidth enhancement 

parameter varied less as a function of bias current conditions under zero-detuning than 

measured using the injection-locking technique discussed in section 4.2. The results also 

showed that the linewidth enhancement parameter varied minimally as the injection 

strength was increased; this finding was contrary to the linewidth enhancement parameter 

values reported in section 4.2 measured using the injection-locking technique, where α 

was observed to decrease as the injected power was increased. These finding are 
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concluded to arise from the injection-locking measurement technique’s lack of 

dependence on the detuning frequency and thus the linewidth enhancement parameter’s 

dependence on the detuning frequency. 

Second, a dimensionless/normalized approach to theoretically evaluate the 

operational state (i.e. stable locking, period-one, period-doubling, or chaos) of an 

optically-injected nanostructure laser as a function of the injection strength and/or the 

detuning frequency for varied slave laser bias cases was described. The normalized 

model reformulated the rate equations describing optically-injected lasers into a 

dimensionless form that was advantageous compared with other methods due to its 

fundamental parameter scaling approach that facilitated the comparison of one laser to 

another. The model derived here is unique in that it includes the impact of the nonlinear 

carrier relaxation rate. The slave laser linewidth enhancement parameter and the 

nonlinear carrier relaxation rate are observed to have a strong impact on the level of 

stability exhibited by the optically-injected laser at low injected field ratios.  

The operational stability map of the quantum-dash laser under optical-injection 

was observed to have a suitably large period-one parameter space; this behavior was 

concluded to be due to the relatively large nonlinear and spontaneous carrier relaxation 

rates and relatively small linewidth enhancement parameter. The resonance frequency of 

the optically-injected quantum-dash system in the period-one operational state was able 

to be enhanced over a wide range from 4 to 20 GHz. Additionally, the resonance 

frequency enhancement was well-approximated using the steady-state solution to the full 

rate equations derived with the novel small-signal modulation response function 

presented in this work. Overall, the large tunability of the undamped period-one 
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resonance suggests that the optically-injected quantum-dash slave laser operating at 

1550-nm is applicable for photonic applications such as radio-over-fiber. 

 Lastly, it was found that the quantum-dot laser was highly stable under optical-

injection. Contrary to the optically-injected quantum-dash laser, the optically-injected 

quantum-dot laser showed no signs of undamped relaxation oscillations as the injection 

strength and/or detuning frequency were varied; this highly stable finding indicated that 

the optically-injected quantum-dot laser is well-suited for implementation in wideband 

transmitters. One discrepancy between the theoretical predictions and experimental 

observations for the quantum-dot laser is the failure of the theoretical model to predict the 

unlocked operation in reference to adjacent Fabry-Perot modes at low injection strengths; 

this result shows the weakness of the single mode rate equations in modeling the 

complete operational space of a multi-mode slave laser. 

7.2. Suggestions for Future Work 

Previous works found in the literature have suspected that the slave laser 

linewidth enhancement parameter varies as a function of injection strength and/or 

detuning frequency [59]. This relationship cannot be determined using the injection-

locking technique described in this work and thus it is suggested that FM/AM response 

ratio technique and/or time-resolved chirp measurements should be employed to fully 

understand the dependence of the linewidth enhancement parameter on the injection 

strength and detuning [7], [46]. Such an understanding would improve the applicability of 

the predictive tools derived in this work, as the linewidth enhancement parameter is 

theoretically predicted to have a strong impact on both the small-signal microwave 
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modulation response of an injection-locked laser and the nonlinear dynamics observed 

under weak injection strengths.   

Next, noise measurements of the AM-to-FM conversion microwave signal would 

assist in determining the period-one oscillation state’s capabilities as a tunable photonic 

oscillator. Bit error rate tests with the injection-locked quantum-dash and quantum-dot 

lasers would highlight the nanostructure lasers’ potential for implementation in wideband 

transmitters. 

Additionally, the injection-locked modulation response suffers a degraded 

modulation efficiency. The two-section gain-lever laser has been reported to improve 

modulation efficiency over the free-running single section laser [62]. These two findings 

open the possibility for an optically-injected two-section gain lever laser, where the bias 

characteristics of the gain lever device can be manipulated to yield an ideal slave laser to 

be optically-injected. 

Lastly, this work combined with the optical-injection research over the past two 

decades shows that the optical-injection architecture is poised to transition from theory 

and lab-bench setups to packaged, engineered products for the market. The short-term 

step may be a dual butterfly packaged system with an optical-isolator in between the 

master and slave, reducing the size of the bench top footprint of the test setup and making 

headway towards a marketable design. The desired end result for the optical-injection 

architecture is a single-chip monolithic type design where the master and slave laser are 

butt-coupled to one another.  
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Appendix A. Relevant Matlab Code 

The following is used to call the small-signal modulation response and observe the 

impact of varied injection strengths and/or slave laser parameters: 
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The following is the small-signal response function: 
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The following is used to least-squares-fit experimental data with the small-signal 

modulation response function on the previous page: 
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Code for Figure 13 and Figure 14: 
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Code for Figure 15: 
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Code used to generate the bifurcation diagrams in Chapter 3: 

This code was modified from an earlier version outlined by Nate Terry at AFRL/RYDP 
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