
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2009-05-26

Towards a Framework For Resource Allocation in
Networks
Maththondage Chamara Sisirawansha Ranasingha
University of Miami, m.ranasingha@umiami.edu

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Ranasingha, Maththondage Chamara Sisirawansha, "Towards a Framework For Resource Allocation in Networks" (2009). Open Access
Dissertations. 252.
https://scholarlyrepository.miami.edu/oa_dissertations/252

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F252&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F252&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F252&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F252&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/252?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F252&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

TOWARDS A FRAMEWORK FOR RESOURCE ALLOCATION IN NETWORKS

By

Maththondage Chamara S. Ranasingha

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida

June 2009

c©2009
Maththondage Chamara S. Ranasingha

All Rights Reserved

UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

TOWARDS A FRAMEWORK FOR RESOURCE ALLOCATION IN NETWORKS

Maththondage Chamara S. Ranasingha

Approved:

Kamal Premaratne, Ph.D.
Professor of Electrical and Com-
puter Engineering

Terri A. Scandura, Ph.D.
Dean of the Graduate School

Manohar N. Murthi, Ph.D.
Associate Professor of Electrical and
Computer Engineering

James W. Modestino, Ph.D.
Professor of Electrical and Computer
Engineering

Xiaodong Cai, Ph.D.
Assistant Professor of Electrical
and Computer Engineering

Subramanian Ramakrishnan, Ph.D.
Associate Professor of Mathematics

RANASINGHA, MATHTHONDAGE
CHAMARA S.

(Ph.D., Electrical and Computer
Engineering)

Towards a Framework For Resource
Allocation in Networks

(June 2009)

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Kamal
Premaratne.
No. of pages in text. (157)

Network resources (such as bandwidth on a link) are not unlimited, and must be

shared by all networked applications in some manner of fairness. This calls for the

development and implementation of effective strategies that enable optimal utiliza-

tion of these scarce network resources among the various applications that share the

network. Although several rate controllers have been proposed in the literature to ad-

dress the issue of optimal rate allocation, they do not appear to capture other factors

that are of critical concern. For example, consider a battlefield data fusion applica-

tion where a fusion center desires to allocate more bandwidth to incoming flows that

are perceived to be more accurate and important. For these applications, network

users should consider transmission rates of other users in the process of rate alloca-

tion. Hence, a rate controller should consider application specific rate coordination

directives given by the underlying application.

The work reported herein addresses this issue of how a rate controller may establish

and maintain the desired application specific rate coordination directives. We iden-

tify three major challenges in meeting this objective. First, the application specific

performance measures must be formulated as rate coordination directives. Second,

it is necessary to incorporate these rate coordination directives into a rate controller.

Of course, the resulting rate controller must co-exist with ordinary rate controllers,

such as TCP Reno, in a shared network. Finally, a mechanism for identifying those

flows that require the rate allocation directives must be put in place.

The first challenge is addressed by means of a utility function which allows the

performance of the underlying application to be maximized. The second challenge

is addressed by utilizing the Network Utility Maximization (NUM) framework. The

standard utility function (i.e. utility function of the standard rate controller) is

augmented by inserting the application specific utility function as an additive term.

Then the rate allocation problem is formulated as a constrained optimization problem,

where the objective is to maximize the aggregate utility of the network. The gradient

projection algorithm is used to solve the optimization problem. The resulting solution

is formulated and implemented as a window update function. To address the final

challenge we resort to a machine learning algorithm. We demonstrate how data

features estimated utilizing only a fraction of the flow can be used as evidential input

to a series of Bayesian Networks (BNs). We account for the uncertainty introduced by

partial flow data through the Dempster-Shafer (DS) evidential reasoning framework.

v

Chamara
Text Box

To my parents

iii

Acknowledgements

I extend my sincere gratitude and appreciation to my dissertation advisor and

chairman of the committee, Professor Kamal Premaratne, and my co-advisor Pro-

fessor Manohar N. Murthi for their guidance, support, suggestions and words of en-

couragement throughout the period this research was being conducted. I am also

thankful to Professors James W. Modestino, Xiaodong Cai of the Department of

Electrical and Computer Engineering, and Professor Subramanian Ramakrishnan of

the Department of Mathematics, for accepting the appointment to the dissertation

committee and for their suggestions and support.

The financial assistance I received through U.S. National Science Foundation

(NSF) Grants CNS-0519933 and CCF-0347229 is gratefully acknowledged. The fi-

nancial assistance I received from the Department of Electrical and Computer Engi-

neering is also acknowledged.

I would like to thank my many friends and colleagues at University of Miami with

whom I have had the pleasure of working over the years. Finally, I would like to

extend my utmost gratitude to my parents and my wife Gayani for their support,

encouragement and love, which made this work possible.

Maththondage Chamara S. Ranasingha

University of Miami

June 2009

iv

Table of Contents

LIST OF FIGURES viii

LIST OF TABLES xi

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Rate Allocation Approach . 5

1.3 Flow Classification Approach . 7

2 TCP RATE CONTROLLERS AND THE NETWORK UTILITY

MAXIMIZATION (NUM) FRAMEWORK 9

2.1 Marking/Loss Based TCP Controllers 11

2.2 Delay Based TCP controllers . 16

2.3 NUM Framework . 18

2.4 NUM Interpretation of Available TCP Algorithms 22

3 AVAILABLE APPROACHES FOR FLOW CLASSIFICATION 24

3.1 Full Flow Information Based Approaches 26

3.2 Partial Flow Information Based Approaches 28

v

4 RATE ALLOCATION IN AN APPLICATION WITH A SINGLE

OBJECTIVE: MULTI-SENSOR TARGET TRACKING 30

4.1 KF Based Target Tracking . 31

4.2 Utility of Target Tracking . 35

4.3 Simulations . 49

5 RATE ALLOCATION IN AN APPLICATION WITH MULTIPLE

OBJECTIVES: MULTI-SENSOR TARGET TRACKING AND CLAS-

SIFICATION 68

5.1 Target Classification Utility Function 69

5.2 Multiple Objective Utility and Iterative Rate Update Function 76

5.3 Experiments . 78

6 BELIEF THEORETIC APPROACH FOR FLOW CLASSIFICA-

TION 83

6.1 DS Theory: A Primer . 84

6.2 Proposed Approach . 87

6.3 Experiments . 99

6.4 Soft Decision for Classification of Minority

Classes . 115

7 RATE ALLOCATION AMONG SET OF FLOWS 125

7.1 A New Utility Function . 127

7.2 Iterative Rate Update Function . 130

7.3 Simulations . 131

8 CONCLUSION AND FUTURE WORK 139

vi

APPENDIX A PROOF OF CHAPTER 4 CLAIM 3 146

APPENDIX B PROOF OF CHAPTER 4 LEMMA 1 148

APPENDIX C DERIVATION OF CHAPTER 5 EQUATION 5.8 149

BIBLIOGRAPHY 150

vii

List of Figures

4.1 Test area: sensor arrangement and tracks. 50

4.2 Network topology for target tracking application. 52

4.3 Reconstructed tracks for MFR. 58

4.4 Reconstructed tracks for SFR. 58

4.5 Reconstructed tracks for MFV. 59

4.6 Reconstructed tracks for SFV. 59

4.7 Average percentage of gain of ordinary data transfer flows. 60

4.8 Tracks of the mobile agent. 62

4.9 Tracking performance of MF for different bandwidths. 65

4.10 Tracking performance of SF for different bandwidths. 65

5.1 Reconstructed tracks for MFR: Multi-Sensor Target Tracking and Clas-

sification . 79

5.2 Reconstructed tracks for SFR: Multi-Sensor Target Tracking and Clas-

sification . 80

5.3 Reconstructed tracks for MFV: Multi-Sensor Target Tracking and Clas-

sification . 80

5.4 Reconstructed tracks for SFV: Multi-Sensor Target Tracking and Clas-

sification . 81

viii

6.1 Flow Chart of the Proposed Approach. 88

6.2 Topology of the BN. 93

6.3 Classification Accuracies for Different PKmax Values. 101

6.4 Classifier Performance - Auckland-VI: Classification Accuracy. 105

6.5 Classifier Performance - Auckland-VI: Average Required Number of

Packets. 105

6.6 Classifier Performance - Leipzig II: Classification Accuracy. 106

6.7 Classifier Performance - Leipzig II: Average Required Number of Packets.106

6.8 Classifier Performance with Random Data Sets - Auckland-VI: Classi-

fication Accuracy. 107

6.9 Classifier Performance with Random Data Sets - Auckland-VI: Average

Required Number of Packets. 107

6.10 Classifier Performance with Random Data Sets - Leipzig II: Classifica-

tion Accuracy. 108

6.11 Classifier Performance with Random Data Sets - Leipzig II: Average

Required Number of Packets. 108

6.12 Classification Accuracies for Näıve Bayes with Gaussian Estimation -

Auckland-VI. 111

6.13 Classification Accuracies for Näıve Bayes with Gaussian Estimation -

Leipzig-II. 112

6.14 Classification Accuracies for Näıve Bayes with Discretized Feature Val-

ues - Auckland-VI. 112

6.15 Classification Accuracies for Näıve Bayes with Discretized Feature Val-

ues - Leipzig-II. 113

6.16 Classification Accuracies for k-Means Clustering - Auckland-VI. . . . 113

ix

6.17 Classification Accuracies for k-Means Clustering - Leipzig-II. 114

6.18 Distribution of decisions among Singletons, Doubletons and Tripletons. 122

6.19 Percentage of incorrectly classified flows. 123

6.20 Percentage of incorrectly classified flows - Random Data Sets. 124

7.1 A scenario with 2 sink nodes with their corresponding CGs. 126

7.2 Simulation Set-up. 132

7.3 Experiment #1: NC(1) values for TCP Vegas and the new protocol. . 134

7.4 Experiment #1: NC(2) values for TCP Vegas and the new protocol. . 134

7.5 Experiment #2: Set-up. 135

7.6 Experiment #2: Performance comparison. 137

7.7 Experiment #2: NC(1) values for TCP Vegas and the new protocol. . 138

7.8 Experiment #2: NC(2) values for TCP Vegas and the new protocol. . 138

x

List of Tables

4.1 Target Tracking Rate Control Algorithms: Summary 49

4.2 MSE Values for Estimated Tracks . 57

4.3 Average Percentage Gain of Ordinary Data Transfer Flows 61

4.4 Average Percentage Improvement of the Catching Times 62

4.5 UDP Experiment: MSE Values for Estimated Tracks 63

4.6 Quantized Experiment: MSE Values for Estimated Tracks 66

4.7 Measurement Approximation Experiment: MSE Values for Estimated

Tracks . 67

5.1 Experiment Parameters: Multi-Sensor Target Tracking and Classification 78

5.2 Target Tracking MSE values: Multi-Sensor Target Tracking and Clas-

sification . 79

5.3 Target Classification K-L Divergence values: Multi-Sensor Target Track-

ing and Classification . 82

5.4 Target Classification Accuracies: Multi-Sensor Target Tracking and

Classification . 82

6.1 Set of Features Selected . 90

6.2 Flow Class Distributions of the Data Sets 100

xi

6.3 Classification Performance for RANDOMLY Selected Parameters -

Auckland-VI . 102

6.4 Classification Performance for RANDOMLY Selected Parameters -

Leipzig-II . 103

6.5 Decision Criteria . 120

7.1 Experiment #2: Characteristics of the CGs 136

xii

CHAPTER 1

Introduction

The ascendancy of packet networks has led to the development of many novel

networked applications. For example, applications such as telesurgery and distributed

data fusion of sensor data all rely upon the packet delivery capabilities of the network.

Due mainly to the dependence on the packet delivery capabilities of the network,

Quality of Service (QoS) of these networked applications are mainly dependent on

the availability of network resources. Clearly, network resources (such as bandwidth

on a link) are not unlimited, and must be shared by all networked applications in

some manner of fairness [MW00]. Although an application in general would prefer to

have a high bit-rate allocated to it, the fact that network links are being shared by

multiple applications implies that this goal cannot be achieved. Indeed, since each

link is shared among several different sets of users (depending on their particular

routes), the sum of the bit-rates of each source application using a link must not

exceed its capacity.

1.1 Motivation

Each user has to settle on a bit-rate while simultaneously satisfying the capac-

ity constraints of the shared links. This rate at which each user settles on, or the

1

2

allocated bandwidth to a particular user, cannot be an arbitrary value. One must

allocate the available bandwidth to the network users in an optimal way to maximize

the service quality of the network users. To achieve this objective, the underlying ap-

plications of the network users need to be considered. Some applications may impose

certain bandwidth allocation directives in order to maximize the service quality; other

applications may impose some coordination among users in the process of bandwidth

allocation.

Multi-sensor target tracking application is a clear example of such an application

with bandwidth allocation requirements [RMPF09]. In this scenario, individual sen-

sors must send the measurements over a packet network to a decision center where

data fusion takes place in order to construct the track of the target. This packet

network can be a network shared by several other applications including regular TCP

flows. Individual sensors have different degrees of importance, usually determined

by the distance between the target and the sensor and the sensor sensitivity. There-

fore, at different times, the decision center will require more information from certain

sensors than others.

The importance of the optimal bandwidth allocation in multi-sensor target track-

ing becomes even more apparent if the decision center desires to classify the target

based on the sensor measurements as well. In this situation, both the tracking and

classification performances need to be considered simultaneously in the process of

bandwidth allocation. Another example is a battlefield data fusion scenario where a

fusion center fuses information from possibly multiple sources to gather information

about the battlefield. In this scenario, the fusion center desires to allocate its limited

bandwidth to sources that are perceived to be more critical to the mission or are

considered to provide more accurate information [HL01]. Such a scenario warrants a

3

mechanism that enables each ‘sink’ node to request a set of relevant nodes to transmit

data according to certain bit-rate coordination requirements that are determined by

the fusion task and other factors (e.g., delay and reliability of received information

and its relevance to the mission objectives [ZPB02,RMP06]).

1.1.1 Rate Allocation

The ‘traditional’ packet network rate and congestion control algorithms, such as

TCP Vegas and TCP Reno, do not take those directives which are given by the

underlying application into account in the process of bandwidth allocation. These

rate control algorithms take into account the utility of the network users by means

of the individual bit-rates allocated to the network users; bit-rates of the other users

are not considered in the process of rate allocation. In situations where the utility of

the network users is not fully dependent on the individual bit-rates, a rate allocation

algorithm that can consider application oriented directives in the process of rate

allocation is warranted.

However, the rate allocation algorithm has to satisfy several requirements for it

to be deployed in available shared networks. First, the rate allocation algorithm

should be able to be implemented as a window flow control algorithm. This is vital

in order to coexist with the available TCP variants. Second, the rate allocation

algorithm should not assume that the routers can provide any additional feedback

other than simple packet marking. Further, it should not assume special selective

packet discarding capabilities. This requirement is important for the rate allocation

algorithm to be deployed in available shared networks. The other perhaps the most

important requirement is that the rate allocation algorithm should not penalize the

regular TCP flows that utilize regular TCP Reno or TCP Vegas schemes. This

4

requirement is important to facilitate coexistence of the rate allocation algorithm

with available TCP variants.

Several challenges have to be addressed in order to implement a rate allocation

algorithm which can incorporate application specific rate allocation directives and

satisfy these requirements. The first challenge is how to measure the QoS of appli-

cations in terms of transmission bit-rates. The next challenge is how to incorporate

these QoS measures into a rate controller. Moreover, it is important to note that

there may be several types of applications sharing the same network. Usually, these

applications have different bandwidth allocation directives. For example, a target

tracking application would have different rate allocation directives than a data fusion

application. However, both the target racking and the data fusion applications need

to share the same network. Then, the question of how to identify the flows corre-

sponding to each application becomes critical because one must be able to identify

the rate allocation directives associated with each flow. Once the flow is identified

and the rate allocation directives are selected, then the appropriate rate allocation

algorithm can be applied to satisfy the rate allocation directives. This of course calls

for an effective strategy for flow classification.

1.1.2 Flow Classification

One obvious approach for flow classification is the inspection of the contents of

the packets. However, flow classification via the inspection of the contents of the

packets can be difficult to implement in real time. Moreover, this approach brings

privacy issues and difficulties associated with encrypted data. Although port based

classification is one alternative [Log, MKK+01], they are inefficient in the current

5

Internet setup mainly due to applications such as P2P [MHLB04, EMA06, NA06,

PTK06,AMG07] which are known to use arbitrary port numbers.

The objective of this proposed work is to address these issues posed by the rate

allocation requirements. Two main sections can be identified in this work. The first

section is how to derive an efficient rate allocation algorithm in the form of a window

update function that can utilize and coexist with the existing network infrastructure.

The second section is the development of an accurate flow classification framework in

order to facilitate the rate allocation directives.

1.2 Rate Allocation Approach

Network resource allocation methods (particularly rate/congestion control algo-

rithms) are best explained by the Network Utility Maximization (NUM) approach

pioneered by Kelly [KMT98, LL99, LPW02, Low03]. In the NUM view, each data

emitting source node (which is sending data to a receiver over a packet network) is

considered to possess a utility function which measures its QoS. This utility function

is a concave function of the bit-rate of the source node only. For example, the function

Us(fs) = αs log (fs) in which fs is the bit-rate of source s, and αs is a constant, is a

popular candidate that often used. Each source node wants to maximize its utility,

which is equivalent to maximizing its bit-rate fs. However, the sum of the individual

bit-rates of all flows sharing a particular link cannot exceed the link capacity. Given

a fixed routing infrastructure, the NUM problem is then stated as follows: Find a set

of source bit-rates for all users in a network such that the sum of all the users’ utility

functions is maximized subject to the link capacity constraints. This is a convex opti-

mization problem that has a unique solution. In networking, this problem is solved in

6

a decentralized, distributed manner using iterative methods that do not require com-

munication amongst the data emitting sources [KMT98,LL99,LPW02,Low03]. The

NUM framework has been used to design and analyze new networking rate/congestion

control algorithms and active queue management (AQM) methods, and to explain the

existing Internet standard TCP Reno [Low03]. Different rate control algorithms can

be derived by selecting different utility functions [BP95,CWL04].

Most available approaches use utility functions that are functions of transmission

bit-rates of individual sources only. However, it is impossible to incorporate applica-

tion specific rate allocation directives if the utility function is solely a function of the

transmission bit-rate of the source node, since coordination among different sources

may be vital in application specific rate allocation. It is actually possible to define

an utility function which is a function of transmission bit-rates of several sources in

order to incorporate application specific rate allocation directives.

The work described in this dissertation demonstrates how the utility function in

the NUM framework can be adopted to accommodate flow coordination directives

dictated by the data sink node/task manager that is attempting to maximize an

application specific QoS. In particular, we demonstrate how a standard flow control

utility function can be augmented by an additive function that reflects the bandwidth

coordination of flows. Through the proper choice of this additive term, the result-

ing rate resource allocation problem can be made to remain a convex optimization

and it can be solved in a distributed manner using the gradient projection algorithm

which is commonly used in network rate/congestion control. This approach leads to

a bit-rate control algorithm in which all source nodes in the shared network update

their bit-rates periodically. The ordinary source nodes in the shared network adjust

their bit-rates as before, based on feedback from ACK packets. The data sources that

7

are participating in the proposed algorithm similarly update their bit-rates periodi-

cally. However, these sources adjust their rates using a combination of ordinary ACK

packet feedback, and additional feedback from the data sink node which is directing

the rate coordination. This approach of rate allocation can be extended to various

applications. In our work, rate control algorithms for applications with rate ratio

requirements and multi-sensor target tracking applications have been derived.

1.3 Flow Classification Approach

Machine learning techniques have been proposed to perform classification of flows

by studying packet header information. Both unsupervised [MHLB04,RSSD04,KPF05,

ZNA05,BTA+06,EMA06,PTK06] and supervised [MZ05,LM06,NA06,AMG07] ma-

chine learning techniques have been proposed. These techniques include hidden

Markov models (HMMs) [OSST04, WMM04], nearest neighbor methods [RSSD04],

Bayesian methods [MZ05], Bayesian neural networks (BNNs) [AMG07] and BNs

[Pea88,WZA06].

All these algorithms use full flow data in the process of traffic classification. How-

ever, rate allocation requires one to implement an on-line flow classification algorithm.

The approach we propose in this work is based on a BN model of traffic flows. We

employ a strategy where a window of packets, with the size of the window being

gradually increased, enables online classification with a minimal number of packets.

We propose to utilize a series of BNs, each corresponding to a different size of the

window. This strategy of having a ‘growing’ window of increasing size necessitates

the classification probabilities to be updated after each window update. This con-

stitutes a major and vital difference between the proposed approach and existing

8

algorithms where classification probabilities are typically not continuously updated

with the traffic flow progression.

We develop and utilize a DS belief theoretic method as the classification proba-

bility update mechanism. A DS theoretic update mechanism is employed to update

the classification probabilities after each iteration of the window size increase. This

scheme continues until the flow is classified. The advantage of DS theory is its ability

to conveniently represent a wide variety of data imperfections [BP99]. DS theory

provides an excellent framework for modeling imperfect data and as such, it has been

extensively used in various applications in the past (e.g., see [BP99,DS04,HPS07]).

The rest of this dissertation is organized as follows. In Chapter 2, we review the

available TCP rate controllers and the NUM framework. In Chapter 3, we review the

available approaches for flow classification. A rate allocation algorithm to improve

the QoS in multi-sensor target tracking is discussed in Chapter 4. A rate allocation al-

gorithm to improve the performance of a target classification algorithm together with

the target tracking is discussed in Chapter 5. Our flow classification algorithm is dis-

cussed in Chapter 6. A rate allocation algorithm to maintain rate ratio requirements

is discussed in Chapter 7. Finally, Chapter 8 concludes the document.

CHAPTER 2

TCP Rate Controllers and the Network
Utility Maximization (NUM) Framework

TCP rate controllers are used to control the transmission rates of sources in the

current Internet. Several versions of TCP rate controllers have been proposed in the

literature. The main objective of these rate controllers is to minimize the congestion

of the network. TCP rate controllers decrease the transmission rate in an event of

congestion in the network and increase the transmission rate if there is no congestion.

TCP rate controllers have window-based congestion control mechanisms [Bro00].

The transmission rate of the sender of the TCP flow is restricted by a quantity called

the congestion window size. The window size is the maximum amount of data that

the sender can send without receiving any ACK [RFC99]; it is also the maximum

number of packets that may remain in the network loop formed between the sender

and the receiver. Since it takes one round trip time (RTT) to receive the ACK after a

packet is sent, the window size is also the maximum amount of data that the sender

can send within one RTT. Hence, the congestion window size is primarily the deter-

mining factor of the transmission rate of the sender. The TCP congestion control

mechanism uses two main phases to control the outstanding data to be injected into

the network; the slow start phase and the congestion avoidance phase.

9

10

• Slow Start Phase: When a new connection is established, the TCP conges-

tion control mechanism goes through the slow start phase. In this phase, the

congestion window initially has one packet so that the sender can send only one

packet before it gets any ACK. Thereafter, the sender increases its congestion

window by one for each positive ACK it receives. So, in the initial state, the

sender injects one packet into the connection and waits for the ACK. With

the reception of the ACK, it increases the congestion window by one packet,

allowing it to inject two packets. With the reception of ACKs from these two

packets, it increases the congestion window to four, allowing the injection of

four packets [RFC97]. The slow start phase continues until the congestion win-

dow reaches its threshold value (referred to as the slow start threshold) or until

any packet loss is detected via a time out or duplicate ACKs. The TCP sender

switches from the slow start phase to the congestion avoidance phase as the

congestion window size passes the slow start threshold. The slow start phase

resets with the reception of packet losses [Bro00,RFC99,RFC97].

• Congestion Avoidance Phase: After the sender’s congestion window size

exceeds the slow start threshold value, the TCP congestion control mechanism

enters the congestion avoidance algorithm. The congestion avoidance phase does

not aggressively increase the congestion window size or the transmission rate.

Different TCP rate controllers use different algorithms to change the congestion

window size while the flow is in the congestion avoidance phase. For a greater

fraction of the connection time, TCP stays in the congestion avoidance phase.

Hence, it is valid to assume that congestion avoidance is the dominant phase in

the TCP congestion control mechanism [Bro00].

11

The basic challenge all these rate control algorithms must overcome is how to reli-

ably identify network congestion when it truly occurs. Two main approaches are used

for this purpose: (1) consider packet losses as an indication of congestion, (2) consider

queuing delay, which is the delay caused by packets been queued at routers along the

network path, as an indication of congestion. The rationale behind the first approach

is that the intermediate nodes such as routers and switches would have to drop pack-

ets as the congestion of the network increases because they cannot dequeue packets

at the rate that they can enqueue packets. The rationale behind the second approach

is that network congestion would result in queues of the intermediate nodes to grow.

Because of these two strategies of congestion identification, most available TCP rate

controllers can be divided into two main categories: marking/loss based controllers

and delay based controllers. However, controllers that combine both loss based con-

gestion identification and delay based congestion identification have recently been

proposed [CFM+09].

2.1 Marking/Loss Based TCP Controllers

TCP controllers that utilize marked or lost packets as network congestion indica-

tors are very popular mainly due to the fact that the rate controller of the current

Internet, TCP Reno, falls into this category. A brief review of the marking/loss based

controllers including TCP Reno is given in this section.

2.1.1 TCP Reno

This is the most popular congestion control algorithm in the current Internet. The

sender must reduce its congestion window size with the reception of a packet loss.

12

Similarly, a reception of an ACK means the system is experiencing reduced congestion

and the sender needs to increase its congestion window size. The TCP sender detects

packet losses using ACK timers or by the reception of duplicate ACKs. The congestion

avoidance phase of TCP Reno increases the congestion window at most by one packet

in one RTT. In the TCP Reno version, congestion control continues in the congestion

avoidance phase after the reception of isolated losses (those which occur in between

several positive ACKs) but reduces the congestion window size by one half of the

original size (size at the time that the sender receives a packet loss). If several losses

occur during a single RTT, TCP Reno will enter the slow start phase [Bro00]. Hence,

the congestion window size changes, in the congestion avoidance phase, are called

additive increase and multiplicative decrease (AIMD). Note that the AIMD method

of TCP Reno can be formulated as follows.

On ACK reception:

cwnd+ a→ cwnd (2.1)

On packet lost:

cwnd− b ∗ cwnd→ cwnd (2.2)

Here cwnd is the congestion window size and a and b are real parameters. Further

note that, for TCP Reno, a = 1 and b = 0.5.

TCP Reno with Packet Marking

The main drawback associated with TCP Reno is its inability to avoid packet

losses, since acknowledgment occurs after the packets are lost [FJ93, FB00, GK01,

LM01,KBKL03] . To avoid packet losses, information regarding impending congestion

in the router has to be transmitted to the sender, so that the sender can adjust its

transmission rate beforehand to avoid the packet losses.

13

Explicit Congestion Notification (ECN) is the mechanism used to provide the

feedback from the router to the sender about impending congestion [BCKC02]. To

do this, the routers set (mark) the ECN bit of the packet header in order to notify the

sender about impending congestion. In this mechanism, the router must be capable

of observing its queue size and other available information and predicting impending

congestion. Moreover, it should be capable of identifying those packets to be marked

in order to propagate the severity of impending congestion. The AQM scheme is the

tool used in the router for the congestion prediction and marking packet identification.

First, it calculates the marking probability to reflect the severity of the impending

congestion and then marks the packets with the determined probability. The sender

is then able to adjust its transmission rate depending on the number of marked

packets, in order to restrain possible congestion. This approach is significant because

of its ability to mitigate the unnecessary packet losses [LM01,KBKL03]. The AQM

scheme should be sophisticated enough to predict the congestion with reasonable

accuracy. Several AQM schemes have been proposed to calculate the packet marking

probability in the router. Among them, the Random Early Detection (RED) is the

most popular. This method uses an average queue size as the parameter to calculate

the packet marking probability [FJ93].

TCP Reno must now react to the reception of marked packets in order to reduce

the transmission rate since the marked packets are an indication of impending con-

gestion. This objective is achieved by treating marked packets similar to lost packets

in TCP Reno. Hence, the same rate controller is used with the marked packets as

well.

14

2.1.2 High-Speed TCP (HSTCP)

This is again a marking/loss based controller. This controller has been designed to

be deployed in high speed situations where the congestion window needs to be a large

number [Flo03]. TCP Reno has a disadvantage that it takes a long time to achieve

large congestion windows and HSTCP tries to solve that problem. Let cwndlow and

cwndhigh be real parameters. Then the HSTCP algorithm sets a and b values for

AIMD as follows. If cwnd ≤ cwndlow, then

a = 1, and b = 0.5, (2.3)

which is similar to TCP Reno. However, this selection is not appropriate for networks

with high bandwidth delay product, since it can take extremely long time to achieve

large congestion window sizes. So it is necessary to select a and b as functions of the

current congestion window size cwnd if cwnd > cwndlow. The rationale behind the

derivation of expressions for a and b is that the steady-state response of TCP Reno,

which is 1.2√
p

if p is the dropping probability, should be changed to 0.12
p0.835 . To achieve

this objective, following expressions are proposed:

b = (0.1 − 0.5) ∗ log cwnd− log cwndlow

log cwndhigh − log cwndlow

+ 0.5, (2.4)

and

a = 2 ∗ cwnd2 ∗ 0.078

cwnd1.2
∗ b

2 − b
. (2.5)

2.1.3 Binary Increase Congestion (BIC) TCP

This marking/loss based controller is specifically designed to address the issue of

high delay high bandwidth networks. In such an environment, TCP Reno can take

15

an unacceptably long time to achieve its equilibrium. This controller consists of two

main parts [XHR04].

1. Binary Search Increase

This algorithm maintains two quantities; cwndmax and cwndmin. Initially,

cwnd→ cwndmin, (2.6)

where cwnd is the current window size. When a packet loss is detected cwndmax,

cwndmin and cwnd are updated as follows.

cwnd→ cwndmax, b× cwnd→ cwnd, cwnd→ cwndmin. (2.7)

Here b is a constant with default value of 0.2. Then performs the binary search

by jumping to the mid-point
cwndmin + cwndmax

2
. If packet losses are not

detected then cwndmin is updated as

cwnd→ cwndmin. (2.8)

Then increase the window size to
cwndmin + cwndmax

2
.

2. Additive Increase

If
cwndmin + cwndmax

2
− cwnd > Smax, where Smax is a parameter, then the

algorithm switches to additive increase instead of changing directly to the target

window.

2.1.4 Scalable TCP (STCP)

Here, the TCP Reno window update function is slightly modified in order to get

an algorithm which is suitable for high-speed wide area networks. The scalable TCP

16

(SCTP) algorithm is as follows [Kel03].

On ACK reception:

cwnd+ 0.01 → cwnd (2.9)

On packet lost:

0.875 ∗ cwnd→ cwnd (2.10)

Here cwnd is the size of the congestion window.

2.2 Delay Based TCP controllers

The total queuing delay experienced by the source is considered as the congestion

notification in delay based TCP controllers. The strategy the source utilizes to mea-

sure the total queuing delay it experiences is an important factor that has a significant

impact on the performance of a delay based TCP controller. The most common ap-

proach a source utilizes is to treat the difference between the current RTT and the

minimum observed RTT as the total queuing delay. The underlying assumption in

this approach is that the minimum observed RTT is the propagation delay.

2.2.1 TCP Vegas

In TCP Vegas it is proposed to react to the congestion before the packet losses are

materializes. The congestion avoidance strategy of TCP Vegas can be summarized

as follows [BP95].

• Step1: Estimate the quantity BaseRTT by taking the minimum observed RTT.

• Step2: Calculate the expected throughput Expected by

Expected =
WindowSize

BaseRTT
, (2.11)

17

where WindowSize is the current congestion window size.

• Step3: Calculate the actual throughput Actual by

Actual =
WindowSize

CurrentRTT
. (2.12)

• Step4: The new window size is calculated as follows.

WindowSize =

WindowSize + 1 if Expected − Actual < αs;

WindowSize− 1 if Expected − Actual > βs;

WindowSize otherwise,

(2.13)

where {αs, βs}, 0 < αs ≤ βs are parameters. When the actual throughput gets closer

to the expected throughput (i.e., Expected − Actual < αs), the connection is likely

to under utilize the link. Hence it is necessary to increase the congestion window.

On the other hand if the actual throughput getting farther away from the expected

throughput (i.e., Expected − Actual > βs) then the congestions are possible and

the congestion window needs to be decreased. Furthermore, it is vital to keep the

congestion window unchanged if αs ≤ Expected−Actual ≤ βs in order to reduce the

fluctuations.

2.2.2 Enhanced TCP Vegas

Even though TCP Vegas achieves high link utilization compared to TCP Reno,

it cannot prevent link under utilization in the presence of backward link conges-

tion [CCC03]. Enhanced TCP Vegas attempts to address this very issue. A TCP

time stamp mechanism is proposed to overcome the problems posed by backward

congestion. With the time stamp mechanism, a few minor modifications have been

proposed to the standard TCP Vegas algorithm. The actual throughput is estimated

18

as

Actual =
WindowSize

CurrentRTT −QDb

, (2.14)

where QDb is the backward queuing delay. In the standard TCP Vegas, the propaga-

tion delay BaseRTT is estimated by taking the minimum observed RTT. However,

in the enhanced TCP Vegas, the propagation delay is estimated as the summation

of the minimum observed delay in the forward direction and the minimum observed

delay in the backward direction.

2.2.3 Fast TCP

Fast TCP is another delay based TCP controller. It is designed to facilitate faster

convergence to the equilibrium than TCP Vegas. In Fast TCP, it is required to

maintain a quantity AvgRTT as follows:

AvgRTT = (1 − β) ∗ AvgRTT + β ∗ CurrentRTT, (2.15)

where β = min{3/WindowSize, 1/8}. Once theAvgRTT is calculated, theWindowSize

can be calculated using [CWL04]

WindowSize = min
{

2WindowSize,

(1 − γ)WindowSize+ γ

(

BaseRTT

AvgRTT
∗WindowSize+ α

)}

, (2.16)

where γ ∈ (0, 1].

2.3 NUM Framework

The NUM framework was originally proposed and utilized to model the available

TCP controllers [KMT98,LL99,LPW02,Low03]. However, because of the flexibility

19

of the NUM framework, many researchers have since used it to develop more sophis-

ticated rate controllers. In the view of NUM framework, every source in the network

measures its performance by means of an utility function. This utility function is

a concave function of the transmission rate, and the objective of each source is to

maximize its individual utility. The global objective of the network is to maximize

the aggregate utility of all the sources in the network. However, summation of trans-

mission rates for a link cannot exceed its link capacity. Hence, the global objective

of the network can be formulated as a constrained optimization problem. Individual

source rates can be calculated by solving the given optimization problem. Let us now

discuss the detail of the NUM framework.

To proceed, let us define the following notations:

L index set of links in the network

S index set of sources in the network

Ls index set of links utilized by the source s

C = (cℓ, ℓ ∈ L) capacities of the links in the network

R routing matrix where entry Rℓs = 1 if ℓ ∈ Ls, 0 otherwise

fs(t) transmission rate of the source s at the time instance t

pℓ(t) congestion measure of the link ℓ at the time instance t

qs(t) aggregate congestion measure experienced by the source s

yℓ(t) aggregate transmission rate of the link ℓ

Now, we can model a network by L, S and R. Note that yℓ(t) =
∑

sRℓsfs(t)

and qs(t) =
∑

ℓRℓspℓ(t). Moreover, denote in the vector form f(t) = (fs(t), s ∈ S),

q(t) = (qs(t), s ∈ S), y(t) = (yℓ(t), ℓ ∈ L) and p(t) = (pℓ(t), ℓ ∈ L). Now we can

write the above identities in the matrix form as

y(t) = Rx(t) and q(t) = RTp(t). (2.17)

Now note that for every rate controller, the source updates the transmission rate

20

based on the current transmission rate fs(t) and the current congestion measure qs(t).

So we can write

fs(t+ 1) = Fs(fs(t), qs(t)), (2.18)

for some function Fs(•). At equilibrium, since fs(t+ 1) = fs(t) = fS, we have

fs = Fs(fs, qs). (2.19)

If Fs is continuously differentiable and
∂ Fs

∂ qs
6= 0, ∀fs > 0 and qs > 0, there

exists a unique continuously differentiable function us such that

qs = us(fs) > 0. (2.20)

Then we can define the utility function Us(fs) for the source s as

Us(fs) =

∫

us(fs) dfs, fs ≥ 0. (2.21)

Furthermore, it can be shown that Us(fs) is a concave function of fs. Given the

function Fs, the network objective can be formulated as the following constrained

optimization:

max
f≥0

∑

s

Us(fs) subject to
∑

s

Rℓsfs ≤ Cℓ, ∀ℓ, (2.22)

where the constraint states that the summation of the transmission rate of all the

flows going through a particular link should not exceed the capacity of that particular

link.

Now let us concentrate on how to derive a rate control algorithm if the utility

functions Us are given for all the sources. In order to find the optimal set of trans-

mission rates, we need to solve the constrained optimization given in (2.22). It is

necessary to have Us as a concave function of fs in order to have an unique solution.

21

First we define the Lagrangian L(f ,p)

L(f ,p) =
∑

s

Us(f) +
∑

ℓ

pℓ

(

Cℓ −
∑

s

Rℓsfs

)

=
∑

s

(

Us(f) − fs

∑

ℓ

Rℓspℓ

)

+
∑

ℓ

Cℓpℓ.

Let (f∗,p∗) be the optimal equilibrium (f ,p). Then we have

f∗ = argmax
f≥0

L(f ,p∗). (2.23)

Hence we can further state that

∂L(f∗,p∗)

∂fs

= 0 ∀s ∈ S. (2.24)

Hence at the equilibrium

U ′
s(f

∗
s) = q∗s =

∑

ℓ

Rℓsp
∗
ℓ . (2.25)

Now the problem is how to achieve this equilibrium. As shown in [Ber99], the gradi-

ent projection algorithm enables one to achieve the optimum (f∗,p∗) in an iterative

manner by updating the transmission rates of individual sources in a distributed man-

ner. In a networked setting, this allows for the distributed iterative solution of the

optimization problem without explicit communication among the different sources.

To examine how the gradient projection algorithm could be used to achieve a

practical rate-control equation, consider

f(t+ 1) =
[

f(t) + µ(t)
[

f(t) − f(t)
]]+

, (2.26)

where [f]+ = f if f ≥ 0 and 0 otherwise, and

f(t) = f(t) + s(t)∇L(f(t),p(t)). (2.27)

The quantities µ(t) and s(t) must be selected with due regard to system stability. A

constant step size (i.e., µ(t) = 1 and s(t) = s, where s is a constant) is suitable in

22

terms of stability. The modified algorithm then becomes

f(t+ 1) = [f(t) + s∆L(f(t),p(t))]+ . (2.28)

Based on (2.28), consider the rate update function for the transmission rate of

source s:

fs(t+ 1) =

[

fs(t) + s
∂

∂fs
L(f ,p)

]+

fs(t+ 1) = [fs(t) + s (U ′
s(fs(t)) − qs(t))]

+
.

2.4 NUM Interpretation of Available TCP Algo-

rithms

The available TCP rate controllers can be interpreted using the above mentioned

NUM framework. The main task here is the derivation of the corresponding utility

function.

2.4.1 TCP Reno

In TCP Reno the window size is increased by 1 packet per every RTT if there

is no congestion. On the other hand, the window size is decreased by half when a

packet drop is detected. Hence, in each period t, the window is increased by 1/ws(t)

with probability 1−qs(t) and decreased to ws(t)/2 with probability qs(t). Here, ws(t)

is the window size of the source s, and qs(t) is the marking or dropping probability

experienced by the source s. Then we can calculate the average change in window

size in period t as

1

ws(t)
(1 − qs(t))fs(t) −

ws(t)

2
qs(t)fs(t),

and write the Fs function in (2.18) for TCP Reno as

Fs(fs(t), qs(t)) = fs(t) +
1

ws(t)
(1 − qs(t))fs(t) −

ws(t)

2
qs(t)fs(t). (2.29)

23

Since ws(t)/RTTs we can write

qs =
2

2 + f 2
sRTT

2
s

= us(fs). (2.30)

Finally the utility function can be derived as,

Us(fs) =

∫

us(fs)dfs =

√
2

RTTs
arctan

(

fsRTTs√
2

)

. (2.31)

2.4.2 TCP Vegas

The window update function for TCP Vegas can be summarized as follows.

ws(t+ 1) =

ws(t) + 1 if
ws(t)

ds

− ws(t)

RTTs

< αs;

ws(t) − 1 if
ws(t)

ds
− ws(t)

RTTs
> βs;

ws(t) otherwise,

(2.32)

where ds is the propagation delay of the source s. If qs is the queuing delay of the

source s, then RTTs = ds + qs. For the purpose of this discussion let βs = αs. Now,

at the equilibrium,

ws(t)

ds
− ws(t)

RTTs
= αs. (2.33)

The we can write

qs =
αsdS

fs

= us(fs). (2.34)

Finally the utility function can be derived as,

Us(fs) =

∫

us(fs)dfs = αsdS log fs. (2.35)

CHAPTER 3

Available Approaches for Flow
Classification

Of all the approaches available for classification of network flows, perhaps the most

accurate approach is the packet content inspection. Unfortunately, inspection of the

content of the packets can be extremely computationally intensive and hence difficult

to implement in real time. Moreover, this approach brings privacy issues to the fore.

In addition, such methods must also overcome difficulties associated with encrypted

data. Because of these difficulties, alternative approaches have been proposed and

utilized in the research literature.

Port based methods are perhaps the most well established and well researched

approaches of flow classification [Log,MKK+01]. This approach is based on the fact

that different applications are associated with different IP port numbers. The classifier

can simply look at the IP header and perform the classification task based on the

port number. Although port based methods had been employed quite successfully in

the past, it is considered to be unreliable in the current Internet setup due mainly

to their inability to identify applications that utilize arbitrary port numbers, e.g.,

P2P [MHLB04, EMA06, NA06, PTK06, AMG07]. Furthermore, certain applications

are known to intentionally mislead classification by using port numbers that are more

commonly associated with other applications.

24

25

Traffic flow classification methods that are inspired by machine learning tech-

niques have recently attracted the attention of researchers. Such machine learning ap-

proaches typically perform classification of Internet traffic by studying packet header

information. These approaches can be classified as either unsupervised [MHLB04,

RSSD04,KPF05,ZNA05,BTA+06,EMA06,PTK06] or supervised [MZ05,LM06,NA06,

AMG07]. Unsupervised approaches attempt to classify flows into classes possessing

the same characteristics without any regard to the application associated with the

flow. On the other hand, supervised approaches attempt to associate an application

class for a given flow.

Flow classification algorithms can also be classified according to the duration

of flow required to make a classification decision. This criterion categorizes flow

classification algorithms as full flow information based approaches and partial flow

information based approaches. Most of the available classification algorithms fall into

the category of full flow information based approaches because they use full flow

data in the process of traffic classification. These full flow feature values (e.g., flow

duration, number of packets, number of packets in the forward/backward directions,

etc.) can be computed or estimated only at the flow termination. Such a strategy

can be very useful for management and planning purposes. Real time bandwidth

allocation however require partial flow information based approaches so that flow

classification in real time can be carried out. There are only a few approaches that

have been proposed to conduct flow classification based only on a small fraction of

the flow.

26

3.1 Full Flow Information Based Approaches

Various machine learning tools have been proposed for flow classification utilizing

full flow information.

3.1.1 Hidden Markov Models (HMMs)

Oveissian, et al. [OSST04] and Wright, et al. [WMM04] use HMMs for Internet

traffic classification. Oveissian, et al. [OSST04] demonstrate that a two state HMM

can be used for this purpose. Further, it is observed that a two state HHM is suffi-

ciently well able to discern among different flows even though it may not be possible

to describe a flow accurately. Wright, et al. [WMM04] use the HMM approach to

identify the underlying protocol of the flows. A Markov model with four states, IN-

SERT, SERVER MATCH, CLIENT MATCH and DELETE, is used for this purpose.

Both Oveissian, et al [OSST04] and Wright, et al [WMM04] use the well known EM

algorithm [DLR77] for the estimation of model parameters.

3.1.2 QoS Mapping Approaches

There are few flow classification algorithms designed specifically for QoS map-

ping, e.g. [MHLB04]. The distinctive feature of the QoS mapping flow classification

technique is that the classification process uses a smaller number of classes. The objec-

tive of this approach is to classify traffic into a smaller number of classes with similar

properties without attempting to identify the underlying application. Roughan, et

al. [RSSD04] also propose an approach for classification of flows into different classes

with similar properties. This approach is designed in a way such that the classifica-

tion is good enough for the purpose of QoS mapping. Two classification algorithms,

27

the nearest neighbor (NN) method and the linear discriminant analysis, are utilized

to map different flows into different QoS classes. This approach works well with a

smaller number of classes.

3.1.3 Bayesian Methods

Moore and Zuev [MZ05] examine Bayesian methods for Internet traffic classifica-

tion. The basis for this approach is that the conditional probability of the class Cj

given the feature y can be written as

P (Cj|y) =
P (Cj)p(y|Cj)
∑

i P (Ci)p(y|Ci)
, (3.1)

where P (Cj) is the prior probability of the class j and P (y|Cj) is the likelihood

conditional probability of the feature y. The classification is done by selecting the

class with the highest likelihood P (Cj|y) value. The quantities P (Cj) and P (y|Cj)

are estimated in the training process. There are two methods proposed to estimate

P (y|Cj). In the first method, P (y|Cj) is approximated by a normal distribution and

the parameters of the normal distribution (i.e., mean and variance) are estimated

in the training process. The second method is the kernel estimation. In the kernel

estimation , we use

P (y|Cj) =
1

nCj
h

∑

xi:C(xi)=Cj

1√
2π

exp

(

−(y − xi)
2

2h2

)

, (3.2)

where nCj
is the number of instances of the class Cj and C(xi) is the class of xi. The

complexity of the kernel estimation is much higher even though higher accuracies can

be achieved.

28

3.1.4 Bayesian Neural Networks (BNNs)

Auld, et al. [AMG07] propose a BNN for classification of Internet traffic flows.

BNN is a neural network which has probabilistic outputs. It is shown that a reasonable

accuracy can be achieved with a BNN with only one hidden layer. The input layer’s

number of nodes is equal to the number of features. The output layer’s number of

nodes is equal to the number of classes. A soft max filter is used in the output layer

to convert the outputs into probabilities. Each node in the output layer generates

the corresponding class probability. The classification is done by selecting the output

node with the highest probability. All nodes in the network use hyperbolic tangent

activation functions. The conjugate gradient algorithm is used for training. This

approach requires the use of a substantially larger number of features.

3.2 Partial Flow Information Based Approaches

There appear to be mainly two approaches in the literature that address the

challenges associated with real time flow classification. The first approach performs

classification based on the first few packets of the flow. For example, Bernaille, et

al. [BTA+06,BTS06] propose a method where features extracted from only the first

five packets of the flow are utilized. After feature extraction, an unsupervised machine

learning algorithm is used for the classification. This approach seems to perform with

lower accuracies with the unknown traffic flows even though classification accuracies

are good for known applications. Erman, et al. [EMA+07] utilized a semi-supervised

method to perform traffic classification and demonstrated that their approach can be

extended to online classification by selecting only the first few packets for the classifi-

cation. The second approach that has been proposed for real time traffic classification

29

is the use of features from multiple sub-flows for classification purposes. For example,

the method in Nguyen and Armitage [NA06] uses 25 packets at the beginning and

25 packets at the middle of each flow for classification purposes. The performance of

this approach may depend on the locations of the sub-flows. Moreover, short flows

may create difficulties.

CHAPTER 4

Rate Allocation in an Application with a
Single Objective: Multi-Sensor Target
Tracking

Multi-sensor target tracking is one of the most important applications that require

the imposition of transmission rate allocation directives. Intuitively, one expects that,

as the target moves, the sensors closer to the target with more relevant estimates

should transmit their data to a decision center/sink node at a higher rate than those

sensors with less relevant data. Accordingly, the bandwidth resources of the network

must be allocated and distributed in a manner that ensures the sensors with the more

reliable measurements receive a higher proportion of the available bandwidth.

Many aspects of the challenges posed by the multi-sensor target tracking appli-

cations operating over a shared network are discussed in the literature. For exam-

ple, [OS07] discusses a distributed Kalman filter (KF) approach where central fusion is

not used. The work in [SSF+04] derives the optimal KF algorithm to handle packet

loss. The work in [SC06] demonstrates how distributed target tracking algorithms

can be adapted to handle packet losses and delays by performing local estimates that

are transmitted to a sink node (or decision center). The work in [ONV06] proposes

a framework for target tracking using quantized data transmitted over noisy chan-

nel. The work in [RGR06] and [ZMVM06] present algorithms for bandwidth efficient

30

31

target tracking, based on KF and particle filtering frameworks, respectively. An effi-

cient sensor scheduling algorithm for target tracking is proposed in [SM08]. A sensor

selection approach for target tracking is in [ZNV08].

However, the problem of optimal allocation of the available bandwidth among

different sensors in multi-sensor target tracking appears not to have been studied in

the literature [RMPF08,RMPF09]. Our objective is to develop a new rate/congestion

control algorithms that can take into account the QoS requirements of the multi-

sensor target tracking application. Moreover, this particular rate control algorithm

should be able to be deployed in the current Internet without changing the available

infrastructure.

Our work focuses on KF based multi-sensor target tracking applications [AG92,

Sah96,BP99,CYMBKC00,GH01,GGB+02,FF99]. In particular, we examine the case

in which multiple sensors transmit their readings over a shared packet network to a

decision center/sink node that fuses the data and calculates the target track [HD06].

First, we suitably define a target tracking utility function that measures the QoS of

the target tracking application. Then the standard rate/congestion control utility

function is augmented with the target tracking utility function, leading to a modified

rate/congestion control convex optimization problem. The modified optimization

problem is solved using the gradient projection algorithm.

4.1 KF Based Target Tracking

KF is one of the most common and studied approaches for target tracking [Sah96,

BP99,CYMBKC00,GH01,GGB+02,FF99]. We start with a description of the basic

model for the KF based target tracking by first considering a single sensor model.

32

Let us denote the target’s position (measured using the sensors), velocity (estimated

using the KF), and acceleration at the k-th time instant in the x and y directions

via (x(k), vx(k), ax(k)) and (y(k), vy(k), ay(k)), respectively. Let ∆ = t(k + 1)− t(k),

where t(k) is the time in seconds of the occurrence of event k. Here, ∆ is the period

of the KF update and it is kept as a constant (i.e., independent of k).

4.1.1 Plant Equation

With the KF state vector taken as

X(k) =

[

x(k) vx(k) y(k) vy(k)

]T

, (4.1)

and the target acceleration (ax(k), ay(k)) treated as the plant noise [Wat98,KBS03,

DL04], the equations of motion of the target can be described via

X(k + 1) = ΦX(k) + ΓW (k), (4.2)

where

Φ=

1 ∆ 0 0

0 1 0 0

0 0 1 ∆

0 0 0 1

; Γ(k)=

∆2

2
0

∆ 0

0 ∆2

2

0 ∆

; W (k)=

ax(k)

ay(k)

. (4.3)

Here, the plant noise vector W (k) at t(k) is taken to be a white noise process with

zero mean and covariance matrix Q(k), i.e., W (k) ∼ (0, Q(k)).

4.1.2 Measurement Equation

We take the measurement equation of the KF to be

Z(k) = HX(k) + V (k), (4.4)

33

where

H =

1 0 0 0

0 0 1 0

; V (k) =

dx(k)

dy(k)

. (4.5)

Here, the measurement noise vector V (k) at t(k) is taken to be V (k) ∼ (0, R(k)).

Two components contribute to measurement noise: the first component is the error

introduced by the proximity of the sensor (sensor proximity error) to the target;

the second component is the error introduced by finite bit-rate approximation of the

measurements which cannot be transmitted with an infinite bit-rate.

4.1.3 KF Update Equations

The KF equations that yield the target position and velocity estimates are the

following [Wat98,KBS03,DL04]:

X̂(k + 1|k + 1) = Φ X̂(k|k) +K(k + 1)
[

Z(k + 1) −H Φ X̂(k|k)
]

, (4.6)

where

K(k + 1) = P (k + 1|k)HT
[

H P (k + 1|k)HT + R(k + 1)
]−1

; (4.7)

P (k + 1|k + 1) = [I −K(k + 1)H]P (k + 1|k); (4.8)

P (k + 1|k) = ΦP (k|k) ΦT + ΓQ(k) ΓT . (4.9)

4.1.4 Extension to Multi-Sensor Target Tracking Environ-

ments

As mentioned earlier, KF principles can be used to construct a target track using

data from more than one sensor. Two approaches, measurement fusion (MF) and

state-vector fusion (SF), are often used to perform the multi-sensor target tracking

[GH01]. Let us consider a multi-sensor target tracking scenario with N sensors.

34

MF Method

MF uses a single KF to fuse all the sensor measurements and thereby obtain

the fused track of the target. Within MF, two main methods MF1 and MF2 are

utilized [GH01].

MF1 Method In this method, measurements from all the sensors are stacked before

being fed into the KF. This is achieved by augmenting the measurement vector Z(k)

as

Z(k) =

[

Z1(k) · · · ZN(k)

]T

, (4.10)

where Zi(k) is the measurement vector for the i-th sensor. Accordingly, a 2N × 4

sized measurement model matrix is obtained as

H =

[

H1 · · · HN

]T

, (4.11)

where Hi is the measurement model matrix for the i-th sensor. The corresponding

2N × 2N sized measurement error covariance matrix is

R(k) = diag {R1(k), · · · , RN (k)}, (4.12)

where Ri(k) is the measurement error covariance matrix for the i-th sensor.

MF2 Method In this method, measurements are initially fused before being fed

into a single KF, i.e.,

Z(k) =

[

N
∑

i=1

Ri(k)
−1

]−1 N
∑

i=1

Ri(k)
−1Zk(k). (4.13)

The measurement error covariance matrix R(k) is given as

R(k) =

[

N
∑

i=1

Ri(k)
−1

]−1

. (4.14)

35

In our target tracking application, the measurement model matrices for all the N

sensors are identical, i.e., Hi ≡ H, ∀i = 1, . . . , N . When this is the case, MF1 and

MF2 are functionally identical [GH01]. Therefore, from now on, we will concentrate

on MF2 method only.

SF Method

SF uses an individual KF for each sensor and then fuses the estimates from this

bank of KFs to get the fused estimate of the track. The basic convex combination of

estimates can be used to generate the fused estimate of the target track [CYMBKC00].

Let the state estimate of the i-th sensor be X̂i(k|k) and the error covariance matrix

of the i-th sensor be Pi(k|k). Then the fused estimate X̂(k|k) is given as

X̂(k|k) = P (k|k)
N
∑

i=1

Pi(k|k)−1X̂i(k|k), (4.15)

where P (k|k) is the fused error covariance matrix given by

P (k|k) =

[

N
∑

i=1

Pi(k|k)−1

]−1

. (4.16)

4.2 Utility of Target Tracking

The objective of this work is to find an optimal set of sensor transmission rates

in order to maximize the target tracking performance in a shared network. In the

process of finding the optimal set of transmission rates, the first step should be to

find a quantity by which the target tracking performance can be measured. This

quantity to be maximized is the utility of the target tracking application. In KF

based estimation, one typically minimizes the trace of the error covariance matrix

in order to maximize estimation accuracy. Hence, it is reasonable to measure the

36

performance of the target tracking application by the negative of the trace of the

filtered error covariance matrix at time instance k + 1, i.e., −Tr[P (k + 1|k + 1)]. To

simplify the analysis, and to emphasize the location estimates, we define the utility as

the trace of the components of P (k+ 1|k + 1) that correspond to location estimates.

Recalling that the first and third entries of X(k) in (4.1) correspond to location, we

define the utility S(k + 1) as

S(k + 1) ≡ −P (k + 1|k + 1)1,1 − P (k + 1|k + 1)3,3. (4.17)

Here, [•]i,i denotes the i-th diagonal entry of the matrix [•].

We may maximize the QoS of the multi-sensor target tracking application by

maximizing the utility S(k+1). To proceed, we need to derive a closed form expression

for S(k + 1) as a function of the measurement errors of the multiple sensors. It is

clear that different methods of multi-sensor fusion may have different expressions for

S(k + 1). Hence, the two fusion methods, MF and SF are considered separately. In

what follows, we make the following assumptions:

• Q(k) ≡ Qi(k) = q I2, ∀i = 1, . . . , N, ∀k, where q > 0 is a positive scalar and I2

is the 2×2 identity matrix. So, the plant noise covariances are identical and diagonal

(indicating independent noise components) in all the sensors.

• Ri(k) = ri(k) I2, where ri(k) > 0 is a positive scalar. With MF2 method of

fusion, the measurement error covariance matrix in (4.14) then becomes

R(k) = r(k) I2, where
1

r(k)
=

N
∑

i=1

1

ri(k)
. (4.18)

We will also need the following

Definition 1 A 4×4 matrix P that takes the form P =

Φ ∅

∅ Φ

, where Φ is a 2×2

symmetric matrix, is said to have a Φ-block diagonal form.

37

4.2.1 MF Method

Claim 1 Suppose the initial error covariance matrix P (0|0) is Φ(0)-block diagonal

with arbitrary Φ(0). Then, with MF, the following are true:

(i) The error covariance matrix P (k|k) is ΦMF (k)-block diagonal with

ΦMF (k) =

pMF

1 (k) pMF

2 (k)

pMF

2 (k) pMF

4 (k)

.

(ii) The utility S(k + 1) can be expressed as

SMF (k + 1) =
−2 aMF (k)

aMF (k)/r(k + 1) + 1
.

The entries of ΦMF (k) and SMF (k + 1) above appear in the proof.

Proof: By induction. The claim is trivially true for k = 0 since P (0|0) is Φ(0)-

block diagonal. Suppose the claim is true for k.

(i) Given that P (k|k) is ΦMF (k)-block diagonal with entries given by item (i) of

Claim 1, substitute P (k|k) into (4.9) to show that P (k+1|k) is BMF (k)-block diagonal

with

BMF (k) =

aMF (k) bMF (k)

bMF (k) cMF (k)

,

where

aMF (k) = pMF

1 (k) + 2 pMF

2 (k) ∆ + pMF

4 (k) ∆2 +
q

4
∆4;

bMF (k) = pMF

2 (k) + pMF

4 (k) ∆ +
q

2
∆3;

cMF (k) = pMF

4 (k) + q∆2. (4.19)

From (4.14), we note that R(k+ 1) = diag{r(k+ 1), r(k+ 1)}. Substitute P (k+ 1|k)

and R(k+1) into (4.8) to show that P (k+1|k+1) is ΦMF (k+1)-block diagonal with

ΦMF (k + 1) =

pMF

1 (k + 1) pMF

2 (k + 1)

pMF

2 (k + 1) pMF

4 (k + 1)

, (4.20)

38

where

pMF

1 (k + 1) =
aMF (k)

aMF (k)/r(k + 1) + 1
;

pMF

2 (k + 1) =
bMF (k)

aMF (k)/r(k + 1) + 1
;

pMF

4 (k + 1) =
cMF (k)[aMF (k)/r(k + 1) + 1] − bMF (k)2/r(k + 1)

aMF (k)/r(k + 1) + 1
. (4.21)

(ii) Use (4.17) to prove this.

4.2.2 SF Method

Claim 2 Suppose the initial error covariance matrix Pi(0|0) for the i-th sensor is

Φi(0)-block diagonal with arbitrary Φi(0). Then, with SF, the following are true:

(i) The error covariance matrix Pi(k|k) of the KF associated with the i-th sensor

is ΦSF

i (k)-block diagonal with

ΦSF

i (k) =

pSF

1i (k) pSF

2i (k)

pSF

2i (k) pSF

4i (k)

.

(ii) The fused error covariance matrix P (k|k) is ΦSF (k)-block diagonal with

ΦSF (k) =

pSF

1 (k) pSF

2 (k)

pSF

2 (k) pSF

4 (k)

.

(iii) The utility S(k + 1) can be expressed as

SSF (k + 1) =
−2 ρ1(k)

ρ1(k)/r(k + 1) + ρ1(k) ρ4(k) − ρ2(k)2
.

The entries of ΦSF

i (k), ΦSF (k) and SSF (k + 1) above appear in the proof.

Proof: By induction. The claim is trivially true for k = 0 since Pi(0|0) is Φi(0)-

block diagonal. Suppose the claim is true for k.

39

(i) Given that Pi(k|k) is ΦSF

i (k)-block diagonal with entries given by item (i) of

Claim 2, substitute Pi(k|k) into (4.9) to show that Pi(k+1|k) is BSF

i (k)-block diagonal

with

BSF

i (k) =

aSF

i (k) bSF

i (k)

bSF

i (k) cSF

i (k)

,

where

aSF

i (k) = pSF

1i (k) + 2 pSF

2i (k) ∆ + pSF

4i (k) ∆2
i +

q

4
∆4;

bSF

i (k) = pSF

2i (k) + pSF

4i (k) ∆ +
q

2
∆3;

cSF

i (k) = pSF

4i (k) + q∆2. (4.22)

We note that Ri(k + 1) = diag{ri(k + 1), ri(k + 1)}. Substitute Pi(k + 1|k) and

Ri(k + 1) into (4.8) to show that Pi(k + 1|k + 1) is ΦSF

i (k + 1)-block diagonal with

ΦSF

i (k + 1) =

pSF

1i (k + 1) pSF

2i (k + 1)

pSF

2i (k + 1) pSF

4i (k + 1)

, (4.23)

where

pSF

1i (k + 1) =
aSF

i (k)

aSF

i (k)/ri(k + 1) + 1
;

pSF

2i (k + 1) =
bSF

i (k)

aSF

i (k)/ri(k + 1) + 1
;

pSF

4i (k + 1) =
cSF

i (k)[aSF

i (k)/ri(k + 1) + 1] − bSF

i (k)2/ri(k + 1)

aSF

i (k)/ri(k + 1) + 1
. (4.24)

(ii) First, use (4.23) to show that P−1
i (k + 1|k + 1) is Φ

SF

i -block diagonal with

Φ
SF

i =

cSF
i (k)

aSF
i (k)cSF

i (k)−bSF
2

i

+ 1
ri(k+1)

−bSF
i

aSF
i (k)cSF

i (k)−bSF
2

i

−bSF
i

aSF
i (k)cSF

i (k)−bSF
2

i

aSF
i

aSF
i (k)cSF

i (k)−bSF
2

i

.

Substitute in (4.16) to show that P (k + 1|k + 1) is ΦSF (k + 1)-block diagonal with

ΦSF (k + 1) =

pSF

1 (k + 1) pSF

2 (k + 1)

pSF

2 (k + 1) pSF

4 (k + 1)

, (4.25)

40

where

pSF

1 (k + 1) =
ρ1(k)

ρ1(k)/r(k + 1) + [ρ1(k) ρ4(k) − ρ2(k)2]
;

pSF

2 (k + 1) =
ρ2(k)

ρ1(k)/r(k + 1) + [ρ1(k) ρ4(k) − ρ2(k)2]
;

pSF

4 (k + 1) =
1/r(k + 1) + ρ4(k)

ρ1(k)/r(k + 1) + [ρ1(k) ρ4(k) − ρ2(k)2]
,

and

ρ1(k) =
N
∑

i=1

aSF

i (k)

δi(k)
; ρ2(k) =

N
∑

i=1

bSF

i (k)

δi(k)
;

ρ4(k) =

N
∑

i=1

cSF

i (k)

δi(k)
; δi(k) = aSF

i (k) cSF

i (k) − bSF

i (k)2.

(iii) Use (4.17) to prove this.

Claims 1 and 2 provide closed form expressions for the utility functions SMF (k+1)

and SSF (k+1), respectively. In fact, these expressions for the utilities can be expressed

in a unified manner as follows:

S(k + 1) =
−2

1/r(k + 1) + A(k)
, (4.26)

where

A(k) =

1/aMF (k), for MF;

[ρ1(k) ρ4(k) − ρ2(k)
2]/ρ1(k), for SF.

(4.27)

Next, we have

Claim 3 For all k > 0, the following are true:

(i) For MF, if P (0|0) = I, then aMF (k) cMF (k) − bMF (k)2 > 0 and pℓ ≥ 0, ℓ =

1, 2, 4.

(ii) For SF, if Pi(0|0) = I, ∀i, then ρ1(k) ρ4(k) − ρ2(k)
2 > 0 and pSF

ℓi (k) ≥ 0, ℓ =

1, 2, 4.

41

Proof: See Appendix A.

So, for both MF and SF, Claim 3 identifies conditions that guarantee positivity

of A(k), ∀k > 0.

4.2.3 Properties of Utility

To find the set of optimal transmission rates that maximize the utility S(k+1) in

a shared network, one must capitalize upon the relationship between S(k+1) and the

sensor transmission rates. This relationship should be formulated through the sensor

measurement error covariance ri(k + 1) values since S(k + 1) is a function of the

ri(k+1) values which in turn depend on the sensor transmission rates. Consequently,

the next step is to formulate this relationship by modeling the ri(k + 1) values in

terms of the sensor transmission rates.

As mentioned earlier, the measurement error covariance term ri(k + 1) consists

of two main components: the first component is due to the sensor proximity error;

and the second component is due to the finite bit-rate error. Let us assume that fi

and γi(k + 1) correspond to the transmission bit-rate and the sensor proximity error

covariance of the i-th sensor, respectively. The model of ri(k+1) should be motivated

by several issues:

• As fi → ∞, we need ri(k + 1) → γi(k + 1): This is important because, if the

sensor has infinite transmission rate, then the measurement error covariance consists

of only the proximity error covariance.

• As fi → 0, we need ri(k + 1) → ∞: If the sensor transmission rate is zero,

then nothing is transmitted. Hence the measurement error covariance should become

infinite.

42

• ri(k + 1) should be a decreasing function of fi: This is because the accuracy of

the reading should increase as more data is transmitted.

• S(k+1) should be a concave function of f (the vector of all the sensor bit-rates):

This requirement is necessary to ensure a global maximum for the utility.

Based on these requirements, we use the following model for the measurement

error covariance for sensor i:

ri(k + 1) = γi(k + 1) +
d

fi

, ∀i = 1, . . . , N, (4.28)

where d > 0 is a constant. The second term d/fi in (4.28) represents the component

of the measurement error covariance consisting of the finite bit-rate approximation of

the sensor measurement. One may of course choose alternate functions corresponding

to this component (e.g., the rate distortion function of a Gaussian random variable);

however, as Lemma 1 below establishes, (4.28) guarantees the concavity of S(k + 1).

Lemma 1 Given the measurement error covariance in (4.28), the utility S(k + 1)

(for both SF and MF) is concave with respect to (w.r.t.) f .

Proof: See Appendix B.

Having the utility S(k+1) as a concave function of the sensor transmission rates f

enables us to determine the set of optimal sensor transmission rates f∗ that maximizes

S(k + 1):

f∗ = arg max
f≥0

S(k + 1). (4.29)

Suppose, at time k, the target tracking fusion center must select the bit-rates to

maximize the target tracking utility for the next iteration, i.e., S(k + 1). Note that

S(k + 1) is a function of ri(k + 1) which we have modeled via (4.28) as a function

of γi(k + 1) and fi, for all i. Since γi(k + 1) is not known at time k, we assume

43

γi(k + 1) ≈ γi(k) to obtain the following estimates for r̂i(k + 1) and Ŝ(k + 1):

1

r̂(k + 1)
=

N
∑

i=1

1

r̂i(k + 1)
, with r̂i(k + 1) = γi(k) +

d

fi

;

Ŝ(k + 1) =
−2

1/r̂(k + 1) + A(k)
, (4.30)

where A(k) is as in (4.27).

To see how Ŝ(k + 1) affects the sensor bit-rate allocations, consider a situation

where N sensors transmit their packetized data over a single dedicated link. The

aggregate transmission rate being constrained by the link capacity C, the sensor bit-

rates must then satisfy
∑N

i=1 fi ≤ C. Let us examine where Ŝ(k + 1) achieves its

maximum:

• When γi(k) = γ(k), ∀i = 1, . . . , N : When all γi(k) values are identical, all the

sensors have identical proximity error covariances and hence they are equally

important. Hence, the sensor rates fi are identical.

• When γi(k) ∈ (0,∞), ∀i = 1, . . . , N : A sensor with a lower γi(k) possesses a

higher accuracy, and consequently the sensor will receive a higher fi value.

• When γi(k) = 0 for some sensors: A γi(k) = 0 indicates perfect measurements,

and non-zero fi values will be allocated to only these sensors.

• When γi(k) is infinite for some sensors: An infinite γi(k) indicates completely

corrupted and, hence, useless measurement, and corresponding sensors will be

allocated zero fi values.

4.2.4 Incorporation of Target Tracking Requirements

Given the NUM framework for the analysis and design of rate controllers, how

does one include target tracking QoS requirements into this framework? One standard

44

approach is to modify the utility function of the sources to accommodate those re-

quirements. However, as we mentioned earlier, care must be taken to ensure that the

re-formulated problem and its solution does not entail the re-design of networks. That

is, we assume no minimum bit-rate guarantees, and no special or additional active

queue management feedback from routers, and also assume that the rate/congestion

control is end-to-end. Therefore, to accommodate the target tracking QoS utility, we

work within Kelly’s original framework and propose to augment the standard bit-rate

utility function with an additive term reflecting target tracking QoS.

First, let us note that there are basically two types of sources/users on the net-

work: (1) target tracking users who are running the target tracking application; and

(2) ordinary users who are running ordinary data transfer applications. Now consider

the following new utility function that all network users use:

Uj(f) = Vj(fj) +KjŜ(k + 1), ∀j, (4.31)

where Kj ≥ 0 is a real parameter. Observe the following regarding (4.31). The first

term Vj(fj) is a concave function of the source data rate fj . This term addresses rate

maximization, and is from the standard (original) utility function. The second term

addresses the target tracking QoS requirements since Ŝ(k+1) is the quantity we should

maximize to maximize the target tracking QoS (see Section 4.2). The parameter Kj

determines the emphasis placed upon target tracking QoS over the standard utility

regarding rate maximization; Kj = 0 whenever source j is an ordinary source (i.e., not

a target tracking sensor source). Therefore, for ordinary sources the utility function

reduces to the original rate maximization utility function.

Therefore, for the target tracking users, the utility function in (4.31) reflects the

twin goals of raw data rate maximization, and the attainment of the target tracking

QoS requirements. Moreover, for ordinary sources, (4.31) reduces to the standard

45

data transfer utility function. Now recall that Lemma 1 establishes the concavity of

Ŝ(k + 1) w.r.t. f . Moreover, we assume that Vj(fj) is a typical rate maximization

utility and consequently is concave. Therefore, since Kj ≥ 0, the new utility (4.31)

is also guaranteed to be concave, is a requirement in the NUM framework. We may

now express the network flow utility maximization problem as

max
f≥0

∑

j

Uj(f) subject to
∑

j

Rjℓfj ≤ Cℓ, ∀ℓ ∈ L, (4.32)

where L is a set that indexes all the links in the network. Since Uj(f) is a concave

function of f , the sum
∑

j Uj(f) is also a concave function, leading to a convex op-

timization problem. To solve this optimization problem, we take the primal-dual

approach [Ber99,LPW02,Low03], and consider the Lagrangian

L(f ,p) =
∑

j

Uj(f) +
∑

ℓ

pℓ

(

Cℓ −
∑

j

Rjℓfj

)

=
∑

j

(

Uj(f) − fj

∑

ℓ

Rjℓpℓ

)

+
∑

ℓ

Cℓpℓ. (4.33)

Here, p is a column vector of Lagrange multipliers. In the NUM framework, p is

construed as containing the link ‘prices’ pℓ, ℓ ∈ L, i.e., pℓ is the price per unit band-

width that link ℓ charges to any source using link ℓ [KMT98,Ber99, LL99,LPW02].

Recall that Rjℓ = 1 if source j uses link ℓ and it is 0 otherwise. The sum
∑

ℓRjℓpℓ

is the sum of all the prices that source j incurs by using its particular links in the

network (recall that the routing is assumed to be fixed). Then
∑

ℓRjℓpℓ is the total

price charged by the network to source j for transmitting with rate fj.

So, the original constrained optimization problem has been converted into a La-

grangian dual problem with a duality gap of zero [KMT98,Ber99,LL99,LPW02]. The

solution to this Lagrangian dual problem is achieved by maximizing the Lagrangian:

f∗ = arg max
f≥0

L(f ,p∗), (4.34)

46

where p∗ is the column vector of optimal Lagrange multipliers. To achieve this, we

compute the partial derivatives of the Lagrangian L(f ,p) w.r.t. fm:

∂

∂fm

L(f ,p) =
∂

∂fm

(

∑

j

Uj(f)

)

−
∑

ℓ

Rmℓpℓ. (4.35)

4.2.5 TCP Reno Compatible Rate Control

Noting that TCP Reno is perhaps the most widely used TCP protocol in the

current internet [KR04], we first develop the proposed algorithm in a way that it is

compatible with flows that implement TCP Reno. With this in mind, we start by

assuming that V (fj) is the TCP Reno utility function. Note that we can use the

utility functions of any other rate control TCP variant, as long as it is a concave

function. Now V (fj) for TCP Reno can be written as [Low03]

V (fj) =

√
2

RTTj
arctan

(

fjRTTj√
2

)

, (4.36)

where RTTj is the RTT of source j. To proceed, let us take Kj ≡ K for all target

tracking sources and recall that Kj = 0 for all ordinary sources. Then, (7.5) reduces

to

∂

∂fm

L(f ,p) =
2

2 + f 2
mRTT

2
m

− qm + ξm(f). (4.37)

Here, Im = 1 if source m is a target tracking source and 0 otherwise, and

qm =
∑

ℓ∈L

Rmℓpℓ;

ξm(f) = ImNK
∂Ŝ(k + 1)

∂fm

= −2ImNK
∂r̂m(k + 1)/∂fm

[(1/r̂(k + 1) + Am(k)) r̂m(k + 1)]2
. (4.38)

Here,

r̂m(k + 1) = γm(k) +
d

fm
;

∂

∂fm
r̂m(k + 1) = − d

f 2
m

, (4.39)

47

where qm is the total price incurred by source m for using the network. For TCP

Reno, qm is the marking/loss probability observed by source m.

Transmission Rate Update

The convex optimization problem in (4.32) can be solved and the optimum (7.4)

can be achieved via the gradient projection approach [Ber99]. As shown in [Ber99],

the gradient projection algorithm enables one to achieve the optimum (f∗,p∗) in an

iterative manner by updating the transmission rates of individual sources in a dis-

tributed manner. This iterative update has a period (i.e., the RTT) which is not equal

to the period of the KF update. The transmission rate update iterations are indexed

by t. In a networked setting, this allows for the distributed iterative solution of the

optimization problem without explicit communication among the different sources.

The gradient projection can be used to get the following rate update function.

fm(t+ 1) =
[

fm(t) + s
(2

2 + fm(t)2RTTm(t)2
− qm(t) − ξm(f(t))

)]+

. (4.40)

Note that, to calculate ξm(f), the fi and γi(k) values for all the sensors are required.

In the multi-sensor target tracking application, only the sink node, where the KF

based algorithms are used to calculate the target track, would have access to this

information. Hence, ξm(f) is the scalar feedback information sent by the sink node to

the sensor source m. Note that, ξm(f) = 0 whenever K = 0, i.e., additional feedback

is unnecessary for the ordinary sources. Furthermore, in TCP Reno, the total price qm

is the overall marking or dropping probability observed by source m. This qm value

can be calculated by counting the number of received and marked packet over a fixed

period of time. Therefore, a target tracking source updates its rate to fm(t+1) using

its current rate fm(t), the current marking probability qm, and the rate coordination

feedback ξm(f(t)) from the sink node as in (4.40). None of the sources need to know

48

the rates of any other source. The sink node needs to keep track of the individual

rates of the sources in the sensor group, and provide per-flow feedback to each source.

Window Flow Controller Update

To express the rate update in (4.40) as a window update function, note that

fm(t) = wm(t)/RTTm(t), where fm(t) and wj(t) are the transmission rate and window

size of source m, respectively (one can easily convert this window size from bits to

packets as in standard window flow control). Then, (4.40) yields the ideal window

update function as

wm(t+1) = RTTm(t+1)

[

wm(t)

RTTm(t)
+ s

(

2

2 + wm(t)2
− qm(t) − ξm(f(t))

)]+

. (4.41)

However, since RTTm(t + 1) is not available at the time of the window update, for

implementation purposes, we use the approximation RTTm(t+ 1) ≈ RTTm(t) which

yields

wm(t+ 1) =
[

wm(t) + sRTTm(t)
(2

2 + wm(t)2
− qm(t) − ξm(f(t))

)]+

. (4.42)

4.2.6 TCP Vegas Compatible Rate Control

The above rate control algorithm can be easily modified to work with flows that

implement TCP Vegas. For TCP Vegas, the utility function is V (fj) = α log (fj)

[LPW02]. When the gradient projection algorithm is used to solve the corresponding

problem, we obtain the rate update function as

fm(t+ 1) =
[

fm(t) + s
(α

fm(t)
− qm(t) − ξm(f(t))

)]+

. (4.43)

The corresponding window flow controller update is

wm(t+ 1) =
[

wm(t) + sRTTm(t)
(αRTTm(t)

wm(t)
− qm(t) − ξm(f(t))

)]+

. (4.44)

49

The total price qm(t) in this window update function is the total queueing delay

experienced by packets sent by source m. This quantity is estimated at the source as

the difference between the current RTT and the minimum observed RTT [LPW02,

BP95]. The scalar feedback of this version is same as the feedback in the TCP Reno

version.

Table 4.1 summarizes the above TCP Reno and TCP Vegas compatible target

tracking rate control algorithms and the functions of the network and various nodes

and flows w.r.t. the target tracking flows; the ordinary flows use TCP Reno or Vegas

(as the case may be).

Table 4.1: Target Tracking Rate Control Algorithms: Summary

TCP Reno Version TCP Vegas Version

Network Update marking probability Update queuing delay

Sink Node Periodically (KF update is
higher) calculate aSF

i (k), bSF

i (k)
and cSF

i (k) for SF, and aMF (k),
bMF (k) and cMF (k) for MF.

Periodically (KF update is
higher) calculate aSF

i (k), bSF

i (k)
and cSF

i (k) for SF, and aMF (k),
bMF (k) and cMF (k) for MF.

Calculate ξm(f) as each packet
is received and send it with the
ACK packet.

Calculate ξm(f) as each packet
is received and send it with the
ACK packet.

Source Update rate using (4.40) or win-
dow using (4.42) as each ACK is
received.

Update rate using (4.43) or win-
dow using (4.44) for every RTT.

4.3 Simulations

In this section, we illustrate the application and performance of the rate coordi-

nation protocol in a multi-sensor target tracking application.

50

4.3.1 Environment

The simulated test area of size 4000×4000 ft2 has 16 equally spaced sensors sending

readings to a single sink node that acts as the decision center. The experiment we

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

4000

Track of the Target

Sensors

Figure 4.1: Test area: sensor arrangement and tracks.

conducted involved a moving target with pre-determined path in the test area. This

path is shown in Fig. 4.1. Some comments regarding the sensor layout and the target

path that we utilize for this set of experiments are in order:

• An equally spaced sensor layout ensures that the simulated area receives uni-

form coverage from the sensors. Although a more realistic scenario may have

sensor nodes that are more unevenly spaced, this uniform spacing that we uti-

lize provides valuable insight into the performance of our proposed algorithm.

As the target moves in the pre-determined path, we can guarantee that the

significance of sensors changes over time because of the equally spaced sensor

51

layout. These changes in the sensor significance necessitate an effective rate

allocation algorithm.

• The pre-determined target path is composed of a summation of several sinusoids

thus incorporating both slow and rapid changes of the direction of travel. Such

slow and rapid changes are more reflective of a target movement. The need for

effective rate allocation becomes more apparent when the target moves more

rapidly.

4.3.2 Sensors

The Sensors are assumed to (a) measure the x and y positions of the target;

(b) produce readings of a constant size in bytes; (c) possess the capability to transmit

readings at a variable rate depending on the allocated bandwidth (if 2 readings per

second can be transmitted with the allocated bandwidth of f , then 4 readings per

second can be transmitted with the allocated bandwidth of 2f ; and (d) feature read-

ings whose accuracy, and hence γi(k), are proportional to the square of the distance

between the target and the particular sensor. The layout of the sensors in the test

area is shown in Fig. 4.1.

4.3.3 Network

The sensor readings are transmitted to the sink node via a network with the

topology shown in Fig. 4.2. This topology is selected such that it is possible to

examine the effect of the rate allocation algorithm on ordinary data transfer flows.

This topology has ordinary data transfer flows with varying number of hops in order

to simulate the effect of target tracking flows on ordinary data transfer flows and

52

vice versa. Target tracking flows are selected such that the number of hops are not

identical in order to simulate a more realistic network setting. In a multi-sensor target

tracking application, it is usual to have a link shared by all target tracking flows. We

have simulated this scenario by selecting the topology in a way that all the 16 flows

share a common link.

12

n - n Number of Ordinary TCP Traffic

4

16

80

C

C

Sensor 1

12 4

12 4

C

Sensor 2

12 4

C

Sensor 3

Sensor 4

12 4

16

C

C

Sensor 5

12 4

12 4

C

Sensor 6

12 4

C

Sensor 7

Sensor 8

12 4

16

C

C

Sensor 9

12 4

12 4

C

Sensor 10

12 4

C

Sensor 11

Sensor 12

124

C

C

Sensor 13

124

124

C

Sensor 14

124

C

Sensor 15

Sensor 16

5

Sink

5

Figure 4.2: Network topology for target tracking application.

The flow from the sensor #n to the sink is identified as flow #n. Flows #1-

12 go via 5 intermediate routers while flows #13-16 go via 4 intermediate routers.

Each link is congested with ordinary data transfer traffic (either TCP Reno or TCP

53

Vegas depending on the simulation case). In Fig. 4.2, the ‘cloud’ next to each router

identifies the exact number of incoming and outgoing ordinary data transfer traffic

flows at that router. Ordinary data transfer flows start and stop transmission at

random times.

4.3.4 Sink Node/Decision Center

The sink employs a KF-based algorithm to estimate the track of the target, relying

upon either MF or SF to combine the readings from different sensors. The KF-based

algorithms utilize an update period of ∆ = 0.01s. In the absence of any new sensor

readings, the KF-based methods utilize the common Zero Order Hold assumption. In

addition, the sink node sends the per-flow feedback ξj(f) to source j with every ACK

packet sent to source j.

4.3.5 Rate Allocation

The sensors send fixed size readings at a higher (or lower) rate if they have a

higher (or lower) bandwidth allocated. In fact, the reading transmission frequency is

directly related to the allocated bit-rate since the reading size is a constant. In the

proposed new algorithm, this bit-rate allocation is determined by the window update

functions given in (4.42) and (4.44).

4.3.6 Simulation Setups

Four simulation setups were considered in the simulation. All simulations were

carried out in the ns-2 network simulation environment [ns2].

54

MFR: MF with TCP Reno

In this simulation setup, the sink node/decision center uses the MF method for

combining the sensor measurements. The ordinary data transfer flows always use the

Internet standard TCP Reno. All of the routers in the network employ RED AQM.

The target tracking sensors transmit their measurements using either ordinary TCP

Reno, or the new method given by (4.42). Two scenarios were considered:

• Using TCP Reno (MFR Reno): All flows (both sensor and ordinary flows) run

the standard Internet protocol TCP Reno. This provides a target tracking

performance baseline for MF that a standard network protocol can provide.

• Using the proposed protocol (MFR New): The target tracking flows run the new

protocol with K = 400 and s = 1; the ordinary data transfer flows still employ

TCP Reno. The sensors update their window sizes (and hence their transmission

rates) every RTT (roughly every 200ms). The time-varying aMF (k) quantity in

the utility function is updated at a slower rate at the sink node/decision center in

its calculation of the per-flow scalar feedback ξm(f) provided to each sensor. At

the sensors, the marking probability is reconstructed by calculating the number

of marked packets over a one second period of time.

SFR: SF with TCP Reno

These simulations parallel the MFR Reno, and MFR New cases in 4.3.6, except

that now the sink node/decision center utilizes the SF method for computing the

target track.

• SFR Reno: A baseline for SF in which all flows utilize the standard TCP Reno.

55

• SFR New: The target tracking flows run the new protocol except K = 800

is used. The utility terms aSF

i (k) bSF

i (k) cSF

i (k) ∀i are updated at a slower rate

than the window update.

MFV: MF with TCP Vegas

This simulation is similar to the MFR case in that MF is used by the sink

node/decision center to combine the sensor data and compute the target track. How-

ever, the ordinary data transfer flows utilize TCP Vegas instead of TCP Reno. Two

scenarios were considered:

• Using TCP Vegas (MFV Vegas): All flows (both sensor and ordinary data

transfer) run the data transfer protocol TCP Vegas. This gives a baseline

performance for MF utilizing TCP Vegas.

• Using the proposed protocol (MFV New): The target tracking flows run the

new protocol given by (4.44) with K = 400 and s = 25; the ordinary data

transfer flows still employ TCP Vegas.

SFV: SF with TCP Vegas

This simulation parallels the ones done in 4.3.6, except that SF is used by the

decision center/sink node to combine the sensor data. Two scenarios are considered.

• Using TCP Vegas (SFV Vegas): All flows (both sensor and ordinary data trans-

fer) run TCP Vegas. This gives a baseline performance for SF utilizing TCP

Vegas.

56

• Using the new protocol (SFV New):Now the target tracking flows run the new

protocol given by (4.44) with K = 800 and s = 25; the ordinary data transfer

flows still employ TCP Vegas.

4.3.7 Results

For the MFR case, the reconstructed tracks for both the baseline MFR Reno, and

the new protocol MFR New, together with the actual target track are given in Fig. 4.3.

This figure only shows a (500× 400) ft2 section of the test area for the target. These

results represent the performance within other parts of the test area adequately well.

In this figure, one can see that when the MF-based target tracking application relies

upon the standard TCP Reno for dictating the sensor transmission rates (the MFR

Reno case), the target tracking performance suffers. In contrast, when the sensors

use the new protocol (MFR New), the target tracking application is able to achieve

a much more accurate track. This is due to the fact that the new protocol augments

the standard TCP Reno utility with a target tracking QoS term that allows for the

more relevant sensors to get additional bit-rate. The corresponding simulation results

for the SFR, MFV and SFV cases are given in Figs. 4.4, 4.5 and 4.6, respectively.

In the figures, one can see that the target tracking performance provided by the

new protocols (the MFR New, SFR New, MFV New and SFV New cases) is superior

to the target tracking performance provided by standard “off-the-shelf” TCP pro-

tocols (the MFR Reno, SFR Reno, MFV Vegas and SFV Vegas cases). When we

consider reconstructed tracks provided by ordinary data transfer protocols, we note

that the sink node/decision center fails to estimate sharp changes in the path since

it does not have enough information. On the other hand, the proposed protocols are

57

capable of providing bit-rates that allow the sink node/decision center to estimate

these sharp changes in a much better manner.

In order to do a numerical evaluation, the Mean Square Error (MSE) values for the

estimated tracks are calculated. These calculated MSE values for all four simulation

setups are given in Table 4.2. Note that the MSE values are given for different

K values and it is clear from the results that the MSE decreases as the K value

increases. This is appropriate since increasing K value means putting more emphasis

on the target tracking QoS maximization, and hence the accuracy of the estimated

track increases.

Table 4.2: MSE Values for Estimated Tracks

MFR New SFR New MFV New SFV New

K MSE K MSE K MSE K MSE

25 65.60 50 77.89 25 60.52 50 70.10

50 60.72 100 67.88 50 57.79 100 68.23

100 49.63 200 61.36 100 55.28 200 67.41

200 44.14 400 51.30 200 49.57 400 62.24

400 38.67 800 44.86 400 43.66 800 56.14

MFR Reno SFR Reno MFV Vegas SFV Vegas

K MSE K MSE K MSE K MSE

0 72.28 0 78.86 0 88.76 0 88.19

58

1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750
1100

1150

1200

1250

1300

1350

1400

1450

1500

MFR New

MFR Reno

Actual track

Figure 4.3: Reconstructed tracks for MFR.

1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750
1100

1150

1200

1250

1300

1350

1400

1450

1500

SFR New

SFR Reno

Actual Track

Figure 4.4: Reconstructed tracks for SFR.

59

1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750
1100

1150

1200

1250

1300

1350

1400

1450

1500

MFV New

MFV Vegas

Actual track

Figure 4.5: Reconstructed tracks for MFV.

1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750
1100

1150

1200

1250

1300

1350

1400

1450

1500

SFV New

SFV Vegas

Actual Track

Figure 4.6: Reconstructed tracks for SFV.

60

4.3.8 Impact on Ordinary Data Transfer Flows

How does the proposed protocol impact the ordinary data transfer flows that are

not members of the target tracking application? To study this, we compared the

baseline bit-rates that sources utilizing standard TCP mechanisms get in MFR Reno,

SFR Reno, MFV Vegas, and SFV Vegas cases, with the new bit-rates they get in

MFR New, SFR New, MFV New, and SFV New cases, respectively. Fig. 4.7 provides

the average percentage gain that the ordinary data transfer sources achieve over their

baseline rates when the new protocol is used by the target tracking sources.

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

15

20

25

MFR New

SVFR New

MFV New

SVFV New

Figure 4.7: Average percentage of gain of ordinary data transfer flows.

These results show that, for the MFR New and SFR New cases, the ordinary TCP

Reno sources actually gain in terms of bit-rate, on average, over their nominal baseline

rates. For the Vegas case, the average gain is slightly negative. The average gains for

all four simulation setups with different K values are given in Table 4.3. In general,

61

the new protocol, on average, does not adversely affect the standard TCP Reno flows,

while the TCP Vegas flows are only slightly adversely affected. By balancing the rate

maximization utility with the target tracking utility, the new protocol is able to gain

better target tracking performance without causing the rest of the network to suffer

from congestion collapse.

Table 4.3: Average Percentage Gain of Ordinary Data Transfer Flows

MFR New SFR New MFV New SFV New

K Gain K Gain K Gain K Gain

25 12.3 50 12.9 25 -0.6 50 -0.7

50 11.9 100 12.8 50 -0.7 100 -0.3

100 10.8 200 11.6 100 -0.8 200 -1.1

200 8.6 400 10.8 200 -0.8 400 -1.2

400 7.4 800 8.4 400 -0.9 800 -1.4

4.3.9 Target Catching Experiment

We conducted a target catching experiment where the sink periodically sends the

estimates of the target’s position and velocity to a mobile agent. The objective of the

mobile agent is to catch the target in a minimum possible time. We assume that the

mobile agent has a constant speed and is capable of sudden changes in its direction of

movement. When the mobile agent gets a new estimate of the position and velocity

of the target, based on its own position and velocity, it calculates its new direction

in order to catch the target. When the mobile agent is within 5 ft of the target, then

the target is considered to be ‘caught’.

The agent starts its pursuit at time 300 s. We have conducted fifteen experiments

for each simulation setup by randomly selecting the initial position and the velocity of

the mobile agent. The initial position is selected in a way that it is always inside the

62

4000× 4000 ft2 simulated area. Moreover, the velocity of the mobile agent is selected

in a way that it is always higher than the average speed of the target (20 ft/s) in

order to make sure that the mobile agent can catch the target. In order to compare

the performance of the proposed approach with the standard rate controllers, we have

calculated the percentage improvement in the catching times with the introduction

of the new protocol. The average percentage improvement of the catching times for

the experiments for all four cases are given in Table 4.4. It is clear from the results

that the average catching time is reduced with the introduction of the new protocol

for all four simulation setups. Results for the MFR case with the initial position of

(2000, 1600) and the velocity of 35m/s appear in Fig. 4.8. It is clear form the figure

that the agent catches the target much earlier with MFR New than with MFR Reno.

Table 4.4: Average Percentage Improvement of the Catching Times

MFR SFR MFV SFV

39.58 63.63 49.25 60.57

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000
1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Actual Track

Track of the agent with MFR Reno

Catch

Track of the agent with MFR New

Catch

Figure 4.8: Tracks of the mobile agent.

63

4.3.10 User Datagram Protocol (UDP) Rate Controller

Another set of experiments were conducted using a UDP based rate controller for

the proposed protocol. This rate controller is not a window based rate controller as

in the above experiments. In this experiment sensor transmission rates were directly

calculated using (4.40). TCP Reno was used for regular data transfer flows. A same

network topology as explained in the above experiment was used in this experiment.

Two experiment setups, one with MF and another one with SF were used. For

MF and SF, same parameters as explained in the above experiment were used. For

comparison, simulations were conducted by selecting TCP Friendly Rate Controller

(TFRC) as the rate controller for sensors. Here, TFRC does not utilize feedback from

the sink node. Simulation results in terms for MSE are given in Table 4.5. It is clear

from the results that performance of both MF and SF have increased with the new

rate controller over TFRC.

Table 4.5: UDP Experiment: MSE Values for Estimated Tracks

MF SF

New 44.62 47.75

TFRC 75.20 79.15

4.3.11 Effects of available bandwidth on the tracking perfor-

mance

We have conducted an experiment to evaluate the effects of available bandwidth

on the tracking performance. In this experiment, we changed the bandwidths of

congested links and calculated MSE corresponding to different bandwidths. The

strategy we adopted to change the bandwidth is that we multiplied bandwidths of all

congested links by a constant multiplication factor. Corresponding MSE values for

64

different multiplication factors for MF are given in Fig. 4.9. Same results for SF are

given in Fig. 4.10.

It is clear from the results that the tracking performance for both MF and SF

increase as the bandwidth increases up to some point and stays steady after that.

The reason for this behavior is that the estimation error due to the transmission

delay becomes prominent after some point and the performance cannot be increased

by just increasing the bandwidth.

4.3.12 Effects of quantized measurements

In the above experiments we have assumed that readings are constant in byte size.

Moreover, the frequency of transmission is changed based on the available bandwidth.

Another obvious possibility is that the readings are transmitted at a constant rate with

varying sizes in bytes. In this approach it is necessary to quantize the measurements

based on the available bandwidth before transmission.

In this experiment, sensors are taken to be capable of producing readings of varying

quantized levels at a fixed frequency. The quantized level is based on the available

bandwidth. We used a linear quantizer with 12 bits. This gives 24 bits (3 bytes)

to represent a single location (12 bits for the x coordinate and 12 bits for the y

coordinate). With a 12 bit quantizer, possible number of levels are 212 = 4096. In

this experiment, the same network topology that was used in the original experiment

was used. Two simulation setups, MFR and SFR, were used for the experiment. The

performance of the simulation was measured by means of MSE values. Calculated

MSE vales for the two simulation setups were given in Table 4.6. It is clear from the

results that the performance of both MF and SF improved with the introduction of

the new protocol.

65

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

100

200

300

400

500

600

700

800

900

1000

Bandwidth Ratio

M
S

E

Figure 4.9: Tracking performance of MF for different bandwidths.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

1200

Bandwidth Ratio

M
S

E

Figure 4.10: Tracking performance of SF for different bandwidths.

66

Table 4.6: Quantized Experiment: MSE Values for Estimated Tracks

MFR SFR

New 78.30 69.22

Reno 125.46 113.03

4.3.13 Effects of measurement approximation

In the above experiments, we used a zero-order hold in the case when new mea-

surements are not arrived for Kalman update. In this approach, for each sensor, the

previously arrived measurement is used for Kalman updates until a new measurement

is arrived. Once a new measurement is arrived, the previous measurement is replaced

with the newly arrived measurement.

However, one natural extension to the above approach is to use a measurement

approximation strategy to approximate the measurement by utilizing the previously

arrived measurements in the case when new measurements are not arrived for Kalman

update. In this experiment we utilized the linear prediction to approximate the mea-

surements. Here, two most recent measurements are used for the linear prediction.

For this experiment, MSE values of the estimated tracks for both the proposed pro-

tocol and TCP Reno are given in Table 4.7. It is clear form the results that the

proposed protocol has better performance than TCP Reno. However, it is noticeable

that the performances are lowered from the zero-order hold approximation for both

the new protocol and TCP Reno. Reason for this performance degradation is that

the measurements are not exactly accurate since proximity errors are there in the

measurements. Hence, the linearly approximated measurements utilizing the most

67

recent two measurements can be even worst than the zero-order hold approximated

measurements.

Table 4.7: Measurement Approximation Experiment: MSE Values for Estimated
Tracks

MFR SFR

New 67.40 77.96

Reno 85.61 90.01

CHAPTER 5

Rate Allocation in an Application with
Multiple Objectives: Multi-Sensor Target
Tracking and Classification

Can the resource allocation framework developed in the previous chapter be uti-

lized in scenarios that require one to simultaneously satisfy multiple objectives? In

this chapter we explore this issue and conclude that it is indeed possible to extend

the same resource allocation framework for this purpose. We justify this claim for one

specific application: simultaneous tracking and classification of targets. We believe

that this constitutes a sufficiently generic application so that the principles and the

results that we develop in this chapter can form the basis on which other application

scenarios can be addressed.

While the principle objective of target tracking is to accurately estimate the path

of a target utilizing the measurements from multiple sensors, the main objective of

target classification is to accurately determine the class to which each target belongs

to. This task requires the selection and use of appropriate utility functions that

capture the QoS measures of both the objectives of target tracking and classification.

Of course, the utility function that we employed in the previous chapter can still be

used for the target tracking objective; the target classification objective however calls

for the selection of a new utility function.

68

69

5.1 Target Classification Utility Function

We now develop a new utility function for the target classification objective so

that target classification performance can be maximized by maximizing the utility

function.

To proceed, let us first explain the classification environment. We assume that

classification is based on a real-valued attribute vector X = {χ1, χ2, . . . , χN} of length

N . Furthermore, Näıve Bayes approach as explained in Section 3.1.3 is used for classi-

fication. The N attributes are measured by N sensors and, as before, the readings are

transmitted to the sink node through a shared network. Note that measurement inac-

curacies will be unavoidable due to the unavailability of an infinite bandwidth along

each link. The parameters of various conditional probability distributions and prior

probabilities are assumed to be stored at the sink node; the conditional probabilities

are calculated based on the received attribute measurements.

Let us assume that the classifier is to classify the targets into Θ number of classes

{C1, C2, . . . , CΘ}. To proceed, we introduce the following quantities:

Pr(Ci) = Prior probability of the class i;

Pr(χk|Ci) = Conditional probability of the k-th attribute χk given the class Ci.

The unavailability of an infinite bandwidth along each link introduces an error into

the conditional probability Pr(χk|Ci). Let us assume that this error is ǫik. Later in

Section 5.1.2, we will develop a model for this error.

We proceed by introducing the quantity Υ as

Υ =

Θ
∑

j=1

Q′(j)

Θ
∑

j=1

Q(j)

Θ
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q(i)
Θ
∑

j=1

Q(j)

− Q′(i)
Θ
∑

j=1

Q′(j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (5.1)

70

where

Q(i) = Pr(Ci)

N
∏

k=1

Pr(χk|Ci) and Q′(i) = Pr(Ci)

N
∏

k=1

[Pr(χk|Ci) + ǫik]. (5.2)

Note the following:

• Υ is a measure of the difference between the estimated probability distributions

and their corresponding true distributions.

• Υ → 0 as ǫik → 0, ∀i, k.

Therefore, it is clear that classification performance can be maximized by minimizing

the quantity Υ. In Section 5.1.1, we in fact establish the relationship between this

quantity Υ and the Kullback-Leibler (K-L) divergence between the estimated and the

actual probability distributions.

Next, we make the following assumption, the consequences of which we will discuss

later.

Assumption 1 The errors in the conditional probability estimates are small com-

pared to their actual conditional probability values. In particular, we assume that

|ǫik/Pr(χk|Ci)| < ǫ, ∀i, k, for some small real number ǫ << 1.

With Assumption 1 in place, by ignoring second-order terms related to ǫik, we can

write

Q′(i)
Θ
∑

j=1

Q′(j)

− Q(i)
Θ
∑

j=1

Q(j)

≈ Υ′(i), (5.3)

71

where

Υ′(i) =
Pr(Ci)

Θ
∑

j=1

Q(j)

Θ
∑

j=1

Q′(j)

Θ
∑

j=1

Pr(Cj)

N
∏

k=1

Pr(χk|Ci)

N
∏

k=1

Pr(χk|Cj) +
N
∑

l=1

N
∏

m=1

Pr(χm|Cj)

Pr(χl|Cj)
ǫjl

−
N
∏

k=1

Pr(χk|Cj)

N
∏

k=1

Pr(χk|Ci) +

N
∑

l=1

N
∏

m=1

Pr(χm|Ci)

Pr(χl|Ci)
ǫil

. (5.4)

So we may write

Υ ≈ Υ′ ≡

Θ
∑

j=1

Q′(j)

Θ
∑

j=1

Q(j)

Θ
∑

i=1

|Υ′(i)|. (5.5)

Henceforth, we will take Assumption 1 to hold true. Therefore, instead of Υ, we

will continue to use Υ′. Note that Υ′ can be expressed as

Υ′(i) =
1

∑Θ
j=1Q(j)

∑Θ
j=1Q

′(j)

N
∑

l=1

Pr(Ci)

N
∏

k=1

Pr(χk|Ci)

Θ
∑

j=1

Pr(Cj)
N
∏

k=1

Pr(χk|Cj)

Pr(χl|Cj)
ǫjl

−
Θ
∑

j=1

Pr(Cj)
N
∏

k=1

Pr(χk|Cj)
N
∑

l=1

Pr(Ci)

N
∏

k=1

Pr(χk|Ci)

Pr(χl|Ci)
ǫil

. (5.6)

By considering that conditional and prior probability values are necessarily positive

while ǫik can take either positive or negative values, we may now establish the follow-

72

ing upper bound on the absolute value of Υ′(i):

|Υ′(i)| ≤ 1
∑Θ

j=1Q(j)
∑Θ

j=1Q
′(j)

N
∑

l=1

Pr(Ci)

N
∏

k=1

Pr(χk|Ci)

Θ
∑

j=1

Pr(Cj)
N
∏

k=1

Pr(χk|Cj)

Pr(χl|Cj)
|ǫjl|

+
Θ
∑

j=1

Pr(Cj)
N
∏

k=1

Pr(χk|Cj)
N
∑

l=1

Pr(Ci)

N
∏

k=1

Pr(χk|Ci)

Pr(χl|Ci)
|ǫil|

. (5.7)

Simple, yet somewhat lengthy, manipulations (see Appendix C) then yield

Θ
∑

i=1

|Υ′(i)| ≤

N
∑

l=1

Θ
∑

j=1

Bjl |ǫjl|

Θ
∑

j=1

Q′(j)

, where Bjl = 2

Pr(Cj)
N
∏

k=1

Pr(χk|Cj)

Pr(χl|Cj)
. (5.8)

Now substitute (5.8) into (5.5) to get

Υ′ ≤

N
∑

l=1

Θ
∑

j=1

Bjl |ǫjl|

Θ
∑

j=1

Q(j)

. (5.9)

It is the negative of this upper bound of Υ′ that we propose to use as our target

classification utility function. Accordingly, we consider the following classification

utility function:

SC = −

N
∑

l=1

Θ
∑

j=1

Bjl |ǫjl|

Θ
∑

j=1

Q(j)

. (5.10)

73

5.1.1 Relationship Between Υ and Kullback-Leibler (K-L)
Divergence

A justification for selecting the quantity Υ in (5.1) for developing a utility function

for the target classification objective is that Υ can be thought of as a measure of the

estimated and actual probability distributions. Indeed, in this section, we demon-

strate this fact by establishing the relationship between Υ and the K-L divergence of

the estimated and actual probability distributions. The K-L divergence is a widely

used measure of the divergence between two probability distributions.

To proceed, note that, we may define the K-L divergence as

KLD =

Θ
∑

i=1

Q(i)
Θ
∑

j=1

Q(j)

log

Q(i)

Θ
∑

j=1

Q′(j)

Q′(i)
Θ
∑

j=1

Q(j)

. (5.11)

By replacing the log[•] term of (5.11) with the first two terms of the Taylor series

expansion of the log[•] function about unity, we get the following approximation of

KLD:

KLD′ =
Θ
∑

i=1

Q(i)
Θ
∑

j=1

Q(j)

Q(i)
Θ
∑

j=1

Q′(j)

Q′(i)
Θ
∑

j=1

Q(j)

− 1

(5.12)

=

Θ
∑

i=1

Q(i)

Q′(i)

Θ
∑

j=1

Q′(j)

Θ
∑

j=1

Q(j)

Q(i)
Θ
∑

j=1

Q(j)

− Q′(i)
Θ
∑

j=1

Q′(j)

. (5.13)

Therefore, we may bound the absolute value of KLD′ as

|KLD′| ≤
Θ
∑

i=1

Q(i)

Q′(i)

Θ
∑

j=1

Q′(j)

Θ
∑

j=1

Q(j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q(i)
Θ
∑

j=1

Q(j)

− Q′(i)
Θ
∑

j=1

Q′(j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (5.14)

74

With Assumption 1 in place, we then have

Q(i)

Q′(i)
=

N
∏

k=1

Pr(χk|Ci)

N
∏

k=1

[Pr(χk|Ci) + ǫik]

=

N
∏

k=1

Pr(χk|Ci)

[Pr(χk|Ci) + ǫik]

≤
N
∏

k=1

1

1 − ǫ
=

(

1

1 − ǫ

)N

. (5.15)

Substitute (5.15) into (5.14) to get an upper bound for KLD′:

|KLD′| ≤
(

1

1 − ǫ

)N

Θ
∑

j=1

Q′(j)

Θ
∑

j=1

Q(j)

Θ
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q(i)
Θ
∑

j=1

Q(j)

− Q′(i)
Θ
∑

j=1

Q′(j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

1

1 − ǫ

)N

Υ. (5.16)

5.1.2 Conditional Probability Error Model

Recall that an N number of sensors are being used to measure an N number of

attributes {χ1, χ2, . . . , χN}. The attribute measurements are then sent to a common

sink node via a shared network. The common sink node uses stored conditional

probability distributions to compute the conditional probability values corresponding

to the received attribute measurements. Since the sensors do not have the ability to

use an infinite bandwidth to send the information, the measurements being received

at the sink node will not be ideal and will be associated with an error.

To proceed, consider the sensor k and the corresponding attribute measurement

χk. Let fk be the transmission bit-rate of the sensor k. Let us assume that the error

introduced into the measurement χk due to the non-availability of infinite bandwidth

is tk. In other words, the sink node is forced to utilize the attribute value χk + tk to

75

calculate the conditional probability values and perform the classification task. Now,

observe the following regarding the measurement error tk:

• As fk → ∞, we need |tk| → 0: That is, if an infinite transmission rate is

available to the sensor, then the measurement error should be zero.

• As fk → 0, we need |tk| → ∞: This is the opposite to the above, i.e., if the

sensor transmission rate is zero, then no information is being transmitted and

accordingly, the measurement error should become infinite.

• |tk| should be a decreasing function of fk: This is because the accuracy of the

reading should increase as more data are transmitted.

• SC should be a concave function of f (the vector of all the sensor bit-rates):

This requirement is imposed to ensure a global maximum for the utility.

Based on these observations, we propose and use the following model for the

measurement error tk:

|tk| =
dc

fk

, ∀k = 1, . . . , N, (5.17)

where dc > 0 is a constant.

Next, we note the following: the error ǫik of the conditional probability Pr(χk|Ci)

is directly due to the measurement error tk. Assuming that tk is the only source of

the error ǫik, we use the following approximation of ǫik:

|ǫik| ≈ |tk|∆ik =
dc

fk

∆ik, (5.18)

where ∆ik =

∣

∣

∣

∣

d

dχk

Pr(χk|Ci)

∣

∣

∣

∣

. If the conditional probability Pr(χk|Ci) is normally

distributed, we would have

∆ik =

∣

∣

∣

∣

(χk − µik)

σ3
ik

√
2π

exp

(

−(χk − µik)
2

2σ2
ik

)

,

∣

∣

∣

∣

(5.19)

where µik and σik are the mean and the standard deviation of the distribution.

76

As mentioned earlier, it is important that the utility function be a concave function

of f (the vector of all the sensor bit-rates). It turns out that the above model for the

error renders a concave utility function SC

Lemma 2 Given that the absolute value of the conditional probability error |ǫik| can

be described as in (5.18), the classification utility SC is concave w.r.t. f .

Proof: Note that |ǫik| as given in (5.18) is convex w.r.t. f . Hence, −|ǫik| is a

Concave function of f . Further, note that SC is a linear combination of the −|ǫik|

values. Hence, SC is concave w.r.t. f because Bjl ≥ 0, ∀j, l, and Q(j) ≥ 0, ∀j.

5.1.3 Consequences of Assumption 1

Now we are in a position to further study the consequences of Assumption 1. We

first express Assumption 1 as

(dc/fk) ∆ik

Pr(χk|Ci)
< ǫ =⇒ fk >

dc ∆ik

ǫ Pr(χk|Ci)
. (5.20)

For this to be true for all the classes we need

fk > max
i

dc ∆ik

ǫ Pr(χk|Ci)
. (5.21)

So, it is clear from (5.21) that a minimum rate requirement should be imposed so

that Assumption 1 holds true.

5.2 Multiple Objective Utility and Iterative Rate

Update Function

To simultaneously satisfy both the target tracking and classification objectives.

we now modify the target tracking utility function in (4.31) by adding the target

classification utility as an additive term. The modified utility function then becomes

Uj(f) = Vj(fj) +KŜ(k + 1) +KcSC , ∀j, (5.22)

77

where K and Kc are two real parameters. The parameter K determines the emphasis

placed on the target tracking performance improvement; the parameterKc determines

the emphasis placed on the target classification performance improvement.

Following much the same approach as was used earlier, we can now obtain the

following:

5.2.1 TCP Reno Compatible Controller

• Rate update function:

fm(t+ 1) =

[

fm(t) + s

(

2

2 + fm(t)2RTTm(t)2
− qm(t) − ζm(f(t))

)]+

, (5.23)

where

ζm(f(t)) = ξm(f(t)) +KcIm
dc

fm(t)2

Θ
∑

j=1

Q(j)

Θ
∑

j=1

Bjm∆jm. (5.24)

• Window update function:

wm(t+ 1) =

[

wm(t) + sRTTm(t)

(

2

2 + wm(t)2
− qm(t) − ζm(f(t))

)]+

. (5.25)

5.2.2 TCP Vegas Compatible Controller

• Rate update function:

fm(t+ 1) =

[

fm(t) + s

(

α

fm(t)
− qm(t) − ζm(f(t))

)]+

. (5.26)

• Window update function:

wm(t+ 1) =

[

wm(t) + sRTTm(t)

(

αRTTm(t)

wm(t)
− qm(t) − ζm(f(t))

)]+

. (5.27)

78

5.3 Experiments

The same simulation environment and the network used in Section 4.3 is employed

in this experiment. The target moves along the same path. Now however each sensor

measures and sends an attribute to be used for the classification task together with

the position information. The i-th sensor measures and sends the attribute χi. These

attribute values change over the time. As explained in Section 4.3, the frequency

at which measurements are transmitted depends on the allocated transmission rate.

The sink node uses either MF or SF for target tracking. Moreover, the sink node

uses Näıve Bayes method to classify the target into one out of ten equi-probable

classes. The same four simulation setups MFR, SFR, MFV and SFV with the same

parameter values except for K and Kc, as explained in Section 4.3.6 are employed in

this experiment. Values used for parameters K and Kc are given in Table 5.1.

Table 5.1: Experiment Parameters: Multi-Sensor Target Tracking and Classification

MFR SFR MFV SFV

K 100 200 100 200

Kc 20 20 20 20

For the MFR case, the reconstructed tracks for both the baseline MFR Reno,

and the new protocol MFR New, together with the actual target track, are given

in Fig. 5.1. Dark dots in the figure indicate locations where the target is wrongly

classified. This figure only shows a (600 × 350) ft2 section of the test area for the

target. These results are representative of the performance within other parts of the

test area. In Fig. 5.1, one can see that when the sensors use the new protocol, the

target tracking application is able to achieve a much more accurate track. Moreover,

one can see that the wrongly classified locations are lowered for the new protocol.

79

The corresponding simulation results for the SFR, MFV and SFV cases are given in

Figs. 5.2, 5.3 and 5.4, respectively.

As in Section 4.3 we have numerically evaluated the target tracking performance

by calculating the MSE values for the estimated tracks. The calculated MSE values

are given in Table 5.2. It is clear from the results that for all four simulation setups,

the MSE values have decreased with the new protocol.

Table 5.2: Target Tracking MSE values: Multi-Sensor Target Tracking and Classifi-
cation

MFR SFR MFV SFV

New 45.02 52.03 45.23 49.15

Reno/Vegas 70.39 75.78 82.58 85.48

700 800 900 1000 1100 1200 1300
1000

1050

1100

1150

1200

1250

1300

1350

MFR New

MFR Reno

Actual Track

Wrongly Classified

Figure 5.1: Reconstructed tracks for MFR: Multi-Sensor Target Tracking and Clas-
sification

80

700 800 900 1000 1100 1200 1300
1000

1050

1100

1150

1200

1250

1300

1350

SFR New

SFR Reno

Actual Track

Wrongly Classified

Figure 5.2: Reconstructed tracks for SFR: Multi-Sensor Target Tracking and Classi-
fication

700 800 900 1000 1100 1200 1300
1000

1050

1100

1150

1200

1250

1300

1350

MFV New

MFV Vegas

Actual Track

Wrongly Classified

Figure 5.3: Reconstructed tracks for MFV: Multi-Sensor Target Tracking and Clas-
sification

81

700 800 900 1000 1100 1200 1300
1000

1050

1100

1150

1200

1250

1300

1350

SFV New

SFV Vegas

Actual Track

Wrongly Classified

Figure 5.4: Reconstructed tracks for SFV: Multi-Sensor Target Tracking and Classi-
fication

We utilized two measures to numerically evaluate the target classification perfor-

mance.

1. K-L Divergence between the original and the estimated probability distribu-

tions: The original probability distribution is the class probability distribution

calculated using the actual attribute values. The estimated probability distri-

bution is the class probability distribution calculated using the attribute values

available at the sink node.

2. The percentage of locations that the original and the estimated classification

decisions agree with other: The original classification decision is derived using

the actual attribute values. The estimated classification decision is derived using

the attribute values available at the sink node.

82

The calculated average K-L Divergence values are given in Table 5.3. It is clear

from the results that the average K-L Divergence values have decreased with the new

protocol. The decisions agreeing percentages are given in Table 5.4. It is clear from

the results that, with the new protocol, percentages are increased.

Table 5.3: Target Classification K-L Divergence values: Multi-Sensor Target Tracking
and Classification

MFR SFR MFV SFV

New 0.21 0.22 0.28 0.21

Reno/Vegas 0.62 0.62 0.51 0.51

Table 5.4: Target Classification Accuracies: Multi-Sensor Target Tracking and Clas-
sification

MFR SFR MFV SFV

New 90.86 90.27 89.76 93.12

Reno/Vegas 82.10 82.10 87.21 87.21

CHAPTER 6

Belief Theoretic Approach for Flow
Classification

In this chapter, we propose a BN model based traffic classification algorithm.

Classification is carried out using a window of increasing size of packets to enable

online classification. In order to represent different sizes of the window, we propose

to utilize a series of BNs. Partial flow information cannot provide the full information

that one requires for classification. As the size of the window of packets is increased,

or in other words, as more information about the flow becomes available, uncertainties

associated with information gathered from partial flow will diminish. However, one

must accurately capture these uncertainties in order to perform a more accurate

classification with partial flow information.

DS theory is capable of representing uncertainties in a more intuitive way. For

example, when a single value cannot be discerned for a particular variable, DS theory

can be utilized to consider a composite instead of a single value. Hence, one can use

DS theory to model sources of evidence, particularly uncertain sources of evidence in

a more realistic and informative way than probabilistic models. So, with DS theoretic

techniques, one can arrive at a decision with the full understanding of the associated

underlying uncertainties. DS belief theoretic methods are more robust to modeling

errors [Sme99]. DS theory provides techniques to combine several sources of evidence

83

84

in a more productive manner. Furthermore, probabilistic models can be easily trans-

formed into DS theory models. Similarly, transition from DS theory to probability

can also be done easily. Moreover, when there is no any uncertainties, DS models con-

verge to a Bayesian model. So, one can consider DS theoretic models as extensions of

Bayesian models. Machine learning algorithms can be improved by augmenting with

DS notions since DS theory facilitates one to extract useful knowledge from imper-

fect data. Moreover, DS theory facilitates one to utilize techniques such as evidence

filtering (EF) for detection of faint patterns in ‘clutter’ [DBP06a,DBP06b,DBP07].

A DS belief theory based approach is ideal for our proposed approach because of its

ability to represent a wide variety of data imperfections while requiring little more

information than voting and set intersection techniques [BP99]. Hence, we propose

to utilize DS theory in our flow classification algorithm.

6.1 DS Theory: A Primer

To better understand the proposed algorithm, one must familiar with the prelim-

inaries of DS theory. Hence, we introduce preliminaries of DS theory in this section.

Suppose the flows are to be classified into a finite set of mutually exclusive and exhaus-

tive classes {1, 2, . . . , num cls}. In DS theory, we capture these classes as propositions

belonging to the frame of discernment (FoD) Θ = {1, 2, . . . , num cls}. It signifies

the ‘scope of expertise’ about the problem domain. Note that |Θ|, the cardinality

of Θ, is the number of distinct flow classes num cls. A proposition n ∈ Θ, referred

to as a singleton, represents the lowest level of discernible information. Elements in

2Θ, the power set of Θ, form all propositions of interest in a DS theoretic model. A

proposition that is not a singleton is referred to as a composite. A composite propo-

85

sition denotes lack of sufficient evidence to resolve among its constituent singletons,

e.g., the inability to resolve between the two singletons 1 and 2 are captured via the

composite (1, 2).

The set B \ C denotes all singletons in B ⊆ Θ that are not included in C ⊆ Θ,

viz., B \ C = {k ∈ Θ : k ∈ B, k 6∈ C}; C denotes Θ \ C. The null proposition is

denoted via ∅.

Definition 2 The mapping m : 2Θ 7→ [0, 1] is a basic mass assignment for the FoD

Θ if (i) m(∅) = 0; and (ii)
∑

C⊆Θ

m(C) = 1.

The mass of a proposition is free to move into its individual singletons. This is

how DS theory models ignorance. Complete ignorance, or complete lack of evidence

to discern among any of the classes, can be conveniently captured via the vacuous

mass structure:

m(C) =

1, if C = Θ;

0, otherwise.

(6.1)

A proposition that possesses a nonzero mass is referred to as a focal element; the

set of focal elements is the core F . The triple {Θ, F,m(•)} is referred to as the body

of evidence (BoE).

Definition 3 Given a BoE {Θ, F,m(•)} and C ⊆ Θ, (i) Bel : 2Θ 7→ [0, 1] where

Bel(C) =
∑

B⊆C

m(B) is the belief of C; and (ii) Pl : 2Θ 7→ [0, 1] where Pl(C) =

1 − Bel(C) is the plausibility of C.

So, while m(C) measures the support assigned to proposition C only, Bel(C) takes

into account the supports for all proper subsets of C as well. Thus Bel(C) represents

the total support that can move into C without any ambiguity. Pl(C) represents the

86

extent to which one finds C plausible. When the core has singletons only, all of these

notions reduce to probability.

A probability distribution Pr(•) is said to be compatible with the underlying mass

structure m(•) if Bel(C) ≤ Pr(C) ≤ Pl(C), ∀C ⊆ Θ. An example of such a prob-

ability distribution is the pignistic probability distribution BetP(•) defined for each

singleton θ(i) ∈ Θ as [Sme99]

BetP(θ(i)) =
∑

θ(i)∈A⊆Θ

m(A)

|A| . (6.2)

The Dempster’s Combination Rule (DCR) enables one to ‘pool’ the evidence of

two ‘independent’ BoEs to form a single BoE.

Definition 4 Consider two BoEs {Θ,Fi, mi}, i = 1, 2, that span the same FoD Θ.

Then, provided that the conflict defined as K ≡
∑

C∈F1, D∈F2

C∩D=∅

m1(C)m2(D) 6= 1, the

DCR yields the mass assignment m(•) : 2Θ 7→ [0, 1] where

m(A) =

∑

C∈F1, D∈F2
C∩D=A

m1(C)m2(D)

1 −K
, ∀A ⊆ Θ.

This combination operation is denoted as m(•) = (m1 ⊕m2)(•).

The operation ⊕ is both associative and commutative thus enabling the combina-

tion of multiple BoEs with ease [Sha76].

Intrusion detection which is a special case of the flow classification problem where

only two classes—normal traffic and attacks—are used, is an application domain

where DS theory has been effectively utilized [CV05,HLG06,HL08]. Intrusion detec-

tion systems are instrumental in network security since they can help one to detect

abnormal network behavior.

87

Chen and Venkataramanan [CV05] focus on intrusion detection in mobile ad hoc

networks. The authors have pointed out that the detection accuracy of any particular

node is not perfect. However, the accuracy can be improved by combining sources

of evidence from several nodes. The combination of evidence is carried out using DS

theoretic methods. Hu, et al. [HLG06] use the DS theory of evidence combination

to identify intrusions in IP networks. The idea is to combine evidence from a fewer

number of sensors to improve the accuracy. He and Leung [HL08] exploit changes in

the pattern of normal traffic when an intrusion occurs to detect the intrusion. They

use constant false alarm rate (CFAR) to detect anomalies. Again, DS theory is used

to combine evidence generated from different detectors. So, these previous works

essentially exploit the ease with which evidence can be combined with DS theoretic

techniques. Our proposed use of DS theory is different because we utilize DS theory

to model uncertainties inherent in partial flow information and to combine inferences

derived with partial flows.

6.2 Proposed Approach

Details of our proposed flow classification algorithm is explained in this section.

The proposed flow classification algorithm is based on a sequence of BNs. We use

(PKmax−1) number of BNs identified as BN2, . . . , BNPKmax
, in our implementation;

here PKmax is an integer parameter. The model BNn, ∀n = 2, . . . , PKmax, is

trained using the first n packets of each flow.

In the classification stage, classification probabilities are calculated using BNn

if the number of packets received is n. The strategy we employ for classification is

summarized in the flowchart in Fig. 6.1. The process in this flowchart is continued

88

until the end of the flow or PKmax number of packets are received. If either of these

conditions—end of the flow or PKmax-th packet is detected—then the flow is classified

with the class with the highest belief. Consequently, the approach never uses more

than PKmax number of packets in classifying a flow.

Wait for the arrival of the

next packet

Calculate the classification

probabilities

Combine the calculated

classification probabilities

with the previously

calculated inferences

End of the flow or

PK
max

-th packet is

detected

Classify as the highest

belief class

Required confidence

can be guranteed

YES

YES

NO

NO

Figure 6.1: Flow Chart of the Proposed Approach.

6.2.1 Feature Selection

Feature selection is one of the most important steps in the classification process.

Tow major requirements dictate the feature selection:

• One should be able to either directly measure or estimate each feature ade-

quately well prior to flow termination.

89

• One must also be able to update the selected features as the flow progresses

because of the availability of more information.

The first requirement excludes features such as flow duration, total number of packets

per flow, total number of packets in the forward/backward direction, etc. With these

requirements in mind, we have selected several appropriate features from the features

proposed in [AMG07,BTA+06,MZ05,WZA06]. The set of features that were identified

as appropriate for BNn appears in Table 6.1.

6.2.2 Bayesian Network (BN)

As mentioned earlier, we used a sequence of BNs in the proposed algorithm. A

BN is a graphical representation of probabilistic dependencies of a set of variables.

This model consists of a set of nodes and links connecting those nodes. Nodes of the

model represent variables and the links represent conditional probabilities defining

the relationships between variables [Pea88]. One prominent advantage of the BN

over the conventional näıve Bayes method is its ability to take dependencies among

features into account.

90

Table 6.1: Set of Features Selected

Feature Symbol

Packet size: – size of packet n pkt size n

– size of first packet (only if n = 2) pkt size 1

– size of forward packets 1, . . . , n pkt size f 1, . . . , n

– size of backward packets 1, . . . , n pkt size b 1, . . . , n

Average Packet size: – average mean pkt size

– average in forward direction mean pkt size f

– average in backward direction mean pkt size b

Minimum packet size: – minimum min pkt size

– in forward direction min pkt size f

– in backward direction min pkt size b

Maximum packet size: – maximum max pkt size

– in forward direction max pkt size f

– in backward direction max pkt size b

Inter-arrival Time: – inter-arrival time n− 1 int arr n− 1

– forward inter-arrival time 1, . . . , n− 1 int arr f 1, . . . , n− 1

– backward inter-arrival time 1, . . . , n− 1 int arr b 1, . . . , n− 1

Average Inter-arrival – average mean int arr

Time: – average in forward direction mean int arr f

– average in backward direction mean int arr b

Minimum Inter-arrival – minimum min int arr

Time: – in forward direction min int arr f

– in backward direction min int arr b

Maximum Inter-arrival – maximum max int arr

Time: – in forward direction max int arr f

– in backward direction max int arr b

Magnitude of Fourier – components 1, . . . , n pkt size ft 1, . . . , n

Transform of – forward direction components 1, . . . , n pkt size ft f 1, . . . , n

Packet Sizes: – backward direction components 1, . . . , n pkt size ft b 1, . . . , n

Magnitude of Fourier – components 1, . . . , n− 1 int arr ft 1, . . . , n− 1

Transform of – forward direction components 1, . . . , n− 1 int arr ft f 1, . . . , n

Inter-arrival Times: – backward direction components 1, . . . , n− 1 int arr ft b 1, . . . , n− 1

Standard Deviations: – packet size pkt size sd

– forward size pkt size sd f

– backward size pkt size sd b

– inter-arrival time int arr sd

– forward inter-arrival time int arr sd f

– backward inter-arrival time int arr sd b

Last Packet: – is this the last packet last pkt

91

Nodes of a BN used for Internet traffic classification represent features; links of the

BN represent relationships between features. The conditional probabilities that relate

two features are given via conditional probability tables (CPTs). So, each feature has

a CPT that defines the relationship between the feature and its parent features. The

topology of the BN is determined basically using domain knowledge. The topology

of the BN we used in this work is given in Fig. 6.2. We have considered the following

relationships in deriving this topology.

• Relationship of the overall mean packet size with mean packet size in the forward

direction, mean packet size in the backward direction, standard deviation of

packet sizes and individual packet sizes.

• Relationship of the overall mean inter-arrival time with the mean inter-arrival

time in the forward direction, mean inter-arrival time in the backward direction,

standard deviation of inter-arrival times and individual inter-arrival times.

• Relationship of the mean packet size in the forward direction with individual

packet sizes in the forward direction and standard deviation of packet sizes in

the forward direction.

• Relationship of the mean packet size in the backward direction with individual

packet sizes in the backward direction and standard deviation of packet sizes in

the backward direction.

• Relationship of the mean inter-arrival time in the forward direction with in-

dividual inter-arrival times in the forward direction and standard deviation of

inter-arrival times in the forward direction.

92

• Relationship of the mean inter-arrival time in the backward direction with in-

dividual inter-arrival times in the backward direction and standard deviation of

inter-arrival times in the backward direction.

• Relationship of overall maximum packet size with maximum packet size in the

forward direction and maximum packet size in the backward direction.

• Relationship of overall minimum packet size with minimum packet size in the

forward direction and minimum packet size in the backward direction.

• Relationship of overall maximum inter-arrival time with maximum inter-arrival

time in the forward direction and maximum inter-arrival time in the backward

direction.

• Relationship of overall minimum inter-arrival time with minimum inter-arrival

time in the forward direction and minimum inter-arrival time in the backward

direction.

In the topology given in Fig. 6.2, class is the root node. The variable class can

take the values 1, . . . , N, where N is the number of classes in the classification. The

variable class = m means the flow belongs to class m. In the above topology, we

made the reasonable assumption that all features are dependent on class.

The training process of BNs involves the estimation of the CPTs resident at each

BN node and the estimation of the prior probabilities of the root node class. The

maximum likelihood estimation (MLE) method is used for this purpose [Bun96].

Flows with at least n number of packets are used for the training of BNn. Note that,

the root node class is inherently discrete valued; if the number of traffic flow classes

is num cls, class may assume num cls number of possible values. On the other

93

classLast Packet

mean_pkt_size

max_pkt_size

min_pkt_size

Fourier

transform of

packet sizes

mean_pkt_size_b

mean_pkt_size_f

max_pkt_size_f

max_pkt_size_b

min_pkt_size_f

min_pkt_size_b

pkt_size_1...P
max

pkt_size_f_1...Pmax

pkt_size_b_1...Pmax

pkt_size_sd

pkt_size_sd_f

pkt_size_sd_b

mean_int_arr

mean_int_arr_b

mean_int_arr_f

int_arr_f_1...Pmax

int_arr_b_1...P
max

int_arr_sd_f

int_arr_sd_bint_arr_sd

pkt_size_1...P
max

min_int_arr

max_int_arr_f

max_int_arr_b

min_int_arr_f

min_int_arr_b

max_int_arr

Fourier

transform of

inter-arrival

times

Figure 6.2: Topology of the BN.

hand, all other remaining features except last pkt, which has two possible values, are

continuous valued. Hence, it is necessary to discretize those feature values in order

to utilize MLE. All of these features are discretized into dis num number of discrete

levels.

Uniform discretization is not appropriate in the current application since the fea-

ture values are unlikely to be uniformly distributed. Hence, we adopt a frequency

based discretization where the range of values of each feature is discretized into

94

dis num number of levels such that each level has approximately the same number

of instances [WF99,ZSP+04].

6.2.3 Flow Classification

To explain the proposed flow classification algorithm, we use the integer valued

subscript n to identify the window size. For example, the feature value vector imme-

diately after the reception of the n-th packet is Wn. Suppose that the flow is not yet

classified with the given confidence level at the end of n− 1 packets. Then, with the

arrival of the next packet, the operation of the proposed flow classification algorithm

can be summarized via the following steps.

Step 1: Calculate Wn

In this step, the feature value vector Wn for the first n packets of a flow is calcu-

lated.

Step 2: BN Evidence Propagation

In this step, we use the calculated Wn and the usual BN evidence propagation

mechanism [Pea88] to obtain the following posterior classification probabilities using

BNn:

P (m)
n ≡ P (class = m|Wn), m = 1, . . . , num cls. (6.3)

Let us consider a simple example in order to explain the methodology used in

the calculation of P
(m)
n , ∀m = 1, . . . , num cls. Let us assume that num cls = 2,

dis num = 2 and consider only mean pkt size and mean pkt size f in the process of

classification. Let us consider a flow with mean pkt size = 1 and mean pkt size f =

95

2. Now the classification probability P
(m)
n for the class m can be calculated as

P (m)
n =

JP
(m)
n

JP
(1)
n + JP

(2)
n

, (6.4)

where

JP (m)
n = P (class = m) × P (mean pkt size = 1|class = m)×

P (mean pkt size f = 2|mean pkt size = 1, class = m).

Corresponding conditional probabilities are stored in the CPTs of BNn.

Step 3: Evidence Update

In this step, we update the previously calculated classification inferences with

the newly calculated classification probabilities. To formulate the update mechanism

within the DS theoretic framework, consider the FoD Θ = {1, 2, . . . , num cls}, where

each singleton denotes a flow class. Recognizing that some portion of the calculated

classification probability should be reduced and used to represent uncertainties, we

employ the following mass structure on Θ for C ⊂ Θ:

Mn(C) =

γn P
(m)
n , for C = {m} ∈ Θ;

num cls
∑

k=1

(1 − γn)P
(k)
n , for C = Θ;

0, otherwise.

(6.5)

Here, γn ∈ [0, 1] is a pre-defined constant that enables one to conveniently capture

the uncertainty associated with the computed classification probability values for the

first n packets. We have shown in the simulation that the γn values should be selected

appropriately in order to maximize the classification performances. Furthermore, we

have implemented a scheme to select the appropriate γn values (see Section 6.2.4).

96

Notice that Mn(Θ) denotes complete ambiguity and is a recognition of the lack of

sufficient evidence to decide on any class label for the flow. We also note that the

BoE associated with the above mass assignment is {Θ, Fn,Mn(•)}, where the core

Fn is allowed to have elements from {1, 2, . . . , num cls,Θ}, only. Hence, this is a

Dirichlet mass assignment [JE07].

The BoE {Θ, Fn,Mn(•)} captures the evidence one gathers from n packets. This

evidence must now be combined with the BoE {Θ,Fn−1,Mn−1(•)} that has already

been constructed from previous packets. We use DCR for this purpose and recursively

generate the mass structure

Mn(•) = (Mn−1 ⊕Mn)(•), with M1(C) =

1, for C = Θ;

0, otherwise.

(6.6)

Note that the recursion is initiated with the vacuous mass structure M1(•).

Since the core may consist of only the singletons and complete ambiguity, the

focal elements that the DCR generates also possess the same feature. Hence, we will

use F ≡ Fn = Fn, ∀n.

Step 4: Classification Decision

Once the classification inferences are updated, we can make the classification

decision. The classification decision takes the following form:

class =

arg maxmBeln(m) if maxmBeln(m) ≥ ψn;

or n = PKmax;

Repeat from Step 1, otherwise.

(6.7)

The parameter ψn is a pre-defined threshold value that can be interpreted as the

confidence one may place on the decision when n number of packets are used. If the

97

classification cannot be concluded with the required confidence, then the classifier

goes to Step 1 and continues all the steps until classification is done with the given

confidence, or until n = PKmax.

6.2.4 Parameter Estimation

As mentioned in Section 6.2.3, γn, ∀n = 2, . . . , PKmax, in (6.5) and ψn, ∀n =

2, . . . , PKmax, in (6.7) are parameters of the proposed flow classification algorithm.

Let us define the vectors Γ = [γ2, . . . , γPKmax
] and Ψ = [ψ2, . . . , ψPKmax

]. Moreover,

define the vector f = [Γ Ψ]. It is noticeable from the simulation results that the

performance of the classification algorithm directly depends on the selection of these

parameters in f . One can identify the classification accuracy and the required number

of packets to perform the classification as two main performance measures. Hence, it

is vital to select f in a way such that the classification accuracy is maximized while

the required number of packets is minimized. However, it is obvious that these two

objectives cannot be achieved simultaneously. In other words, classification accuracy

can be maximized by increasing the required number of packets and the required

number of packets can be decreased by sacrificing classification accuracy. To proceed,

let us define the accuracy A as follows:

A =
of correctly classified flows

of total flows
× 100%. (6.8)

The quantity A is used in the Internet traffic classification literature [AMG07,BTA+06,

MZ05,WZA06] to measure the performance of classification algorithms. Let us define

N as the average number of packets required for the classification.

First we have to define an objective function L which defines the overall per-

formance that must be maximized. Obviously, the value of L should depend on

98

f . Moreover, the objective function should be calculated based on A and N . One

possibility for the objective function can be written as

L(f) = A− wN, (6.9)

where w is a positive real number. The value of w determines the amount of emphasis

placed upon the minimization of the required number of packets for the classification.

As shown in [Ber99], the gradient projection algorithm enables one to achieve the

optimum f∗ in an iterative manner. In order to have a unique optimal, L(f) should be

a concave function of the parameter vector f . However, in this application, concavity

is not guaranteed and consequently gradient projection will not necessary lead to the

globally optimal f∗.

The off-line parameter update iterations are indexed by t. To see how the gradient

projection algorithm is used to update the set of parameters, consider the parameter

update

f(t+ 1) =
[

f(t) + µ(t)
[

f(t) − f(t)
]]+

, with

f(t) = f(t) + s(t)∇L(f(t)), (6.10)

where [f]+ = f if f ≥ 0 and 0 otherwise. The quantities µ(t) and s(t) must be

selected appropriately. A constant step size (i.e., µ(t) = 1 and s(t) = s, where s is a

constant) is a suitable selection. The modified algorithm then becomes

f(t+ 1) = [f(t) + s∇L(f(t))]+ . (6.11)

As noted above, the partial derivatives ∇L(f(t) need to be calculated in order

to implement the gradient projection algorithm. These partial derivatives are not

readily available and need to be estimated. At each off-line parameter estimation

iteration, the partial derivatives are calculated by randomly selecting samples from

the training data set.

99

6.3 Experiments

We conducted experiments to ascertain the feasibility of the proposed approach

to online traffic classification. These experiments are discussed in this section.

6.3.1 Data Sets

Trace files from publicly available NLANR traces [NLA] were used for the exper-

iments. Two data sets, Auckland-VI and Leipzig-II, were used for algorithm ver-

ification purposes. All flows in the data set were divided into 11 classes so that

num cls = 11. It was impossible to determine the true application of the flows since

these publicly available trace files do not provide application layer data. Hence, port-

based classification is utilized to establish the “ground truth” true type of the flow. Al-

though this process may lead to a few incorrect labels, we believe that it can be consid-

ered sufficiently accurate for verification of the proposed algorithm [EMA06,WZA06].

The flow class distribution for each data set appears in Table 6.2.

Training and Testing Environments

Subsets from the two data sets were selected as follows for training and testing.

• Auckland-VI: Twelve hours of data (from 2001-06-10 12:00 to 2001-06-11

00:00) were selected for training. Twelve hours in the next day (from 2001-

06-11 12:00 to 2001-06-12 00:00) were selected for testing.

• Leipzig-II: Two and half hours of data (from 2003-02-21 15:00 to 2003-02-21

17:30) were selected for training. Two and half hours in the next day (from

2003-02-22 15:00 to 2003-02-22 17:30) were selected for testing.

The parameter dis num = 20 is used for the experiments.

100

Table 6.2: Flow Class Distributions of the Data Sets

Class Flow Type % of Flows Avg Length

Auckland-VI Leipzig-II Auckland-VI Leipzig-II

1 HTTP 75.75 45.70 25.11 33.37

2 SMTP 1.84 0.46 63.94 24.61

3 DNS 5.23 3.26 14.33 6.86

4 HALF-LIFE 2.46 1.65 7.09 189.46

5 POP3 0.33 0.67 30.00 31.63

6 FTP 0.12 0.18 180.48 101.93

7 IRC 0.56 0.08 3.29 2.94

8 NAPSTER 0.76 0.03 47.11 14012.89

9 AOL 0.16 0.11 13.00 45.91

10 All other TCP 12.38 28.97 69.01 47.98

11 All other UDP 0.42 18.89 287.89 23.17

Overall 100.00 100.00 29.58 42.62

6.3.2 Selection of a Value for the Parameter PKmax

The integer value PKmax is a parameter used in the proposed approach. It is

the maximum number of packets that can be used for the classification. First, it is

required to select an appropriate value for this parameter. We conducted our first

set of experiments to find an appropriate value for this parameter. For this set of

experiments, we set γn = 0.5, ∀n and ψn = 1, ∀n. Here, γn = 0.5 means we

assign half of the calculated classification probabilities to represent the uncertainty.

Moreover, ψn = 1 means we continue until the end of the flow or the PKmax-th packet

is received since the belief cannot exceed one. Then we conducted experiments for

different values of PKmax and calculated the overall classification accuracies. Re-

sults of these experiments are given in Fig. 6.3. It is clear from the results that

the accuracy increases with the value of PKmax. Furthermore, note that further im-

provement in accuracy cannot be achieved after PKmax = 8 for the Auckland-VI data

101

set and PKmax = 6 for the Leipzig-II data set. In order to make sure that further

improvement cannot be achieved for both the data sets, we set the value of PKmax

to 10.

2 3 4 5 6 7 8 9 10
70

75

80

85

90

95

PK
max

 Value

O
v
e

ra
ll

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

Figure 6.3: Classification Accuracies for Different PKmax Values.

6.3.3 Results With Random Parameters

In the next set of experiments, the parameters of the flow classification algorithm

(γn, ∀n = 2, . . . , 10, and ψn, ∀n = 2, . . . , 10) are selected randomly. The classifi-

cation results for ten sets of randomly selected parameters for the Auckland-VI data

set are given in Table 6.3. Similar results for the Leipzig-II data set are given in Table

6.4. It is clear from the results from tests on both data sets that both classification

accuracy and the required number of packets to make a classification decision depend

102

on the selection of the parameters. Hence, it is clear from the results of this set of

experiments that a trained set of parameters need to be used in order to achieve the

best classification performances.

Table 6.3: Classification Performance for RANDOMLY Selected Parameters -
Auckland-VI

RandomSet 1 2 3 4 5 6 7 8 9 10

γ2 0.10 0.50 0.50 0.20 0.60 0.40 0.50 0.20 0.60 0.80

γ3 0.10 0.70 0.20 0.90 0.50 0.60 0.00 0.60 0.10 0.50

γ4 0.20 0.90 0.00 0.30 0.60 0.40 0.10 0.70 0.90 0.20

γ5 0.20 0.50 0.20 0.50 0.50 0.80 0.40 0.10 0.80 0.70

γ6 0.90 0.00 0.70 0.70 0.70 0.70 0.70 0.30 0.20 0.10

γ7 0.20 0.30 0.90 0.10 0.40 0.20 0.30 0.30 0.20 0.20

γ8 0.10 0.10 0.80 0.20 0.30 0.10 0.10 0.10 0.90 0.70

γ9 0.50 0.50 0.10 0.60 0.20 0.80 0.10 0.80 0.90 0.70

γ10 0.80 0.70 0.50 0.90 0.00 0.80 0.60 0.30 0.90 0.80

ψ2 0.40 0.50 0.00 0.70 0.80 0.30 0.90 0.30 0.40 0.40

ψ3 0.50 0.10 0.40 0.00 0.40 0.60 0.60 0.90 0.60 0.80

ψ4 0.80 0.80 0.30 0.70 0.30 0.50 0.60 0.00 0.50 0.10

ψ5 0.20 0.90 0.10 0.40 0.50 0.20 0.10 0.80 0.70 0.10

ψ6 0.20 0.70 0.10 0.90 0.60 0.40 0.40 0.90 0.90 0.80

ψ7 0.60 0.40 0.60 0.50 0.00 0.20 0.10 0.60 0.80 0.80

ψ8 0.80 0.60 0.60 0.30 0.20 0.10 0.20 0.20 0.90 0.90

ψ9 0.40 0.60 0.70 0.30 0.30 0.80 0.20 0.30 0.20 0.90

ψ10 0.10 0.90 0.60 0.00 0.10 0.50 0.60 0.80 0.50 0.20

Accuracy 88.49 70.53 71.46 69.09 80.13 82.03 84.37 82.59 78.61 72.91

of Pkts 4.85 2.95 2.00 2.95 3.12 2.59 4.82 3.89 2.34 2.14

103

Table 6.4: Classification Performance for RANDOMLY Selected Parameters -
Leipzig-II

RandomSet 1 2 3 4 5 6 7 8 9 10

γ2 0.60 0.20 0.10 0.60 0.10 0.00 0.00 0.50 0.10 0.00

γ3 0.50 0.50 0.60 0.90 0.70 0.80 0.30 0.50 0.40 0.40

γ4 0.30 0.50 0.60 0.00 0.60 0.50 0.30 0.20 0.70 0.80

γ5 0.30 0.80 0.70 0.60 0.90 0.80 0.70 0.90 0.60 0.80

γ6 0.30 0.20 0.00 0.60 0.40 0.50 0.60 0.80 0.20 0.20

γ7 0.90 0.50 0.60 0.50 0.30 0.10 0.90 0.10 0.80 0.90

γ8 0.30 0.20 0.70 0.90 0.00 0.30 0.40 0.30 0.20 0.40

γ9 0.00 0.20 0.50 0.00 0.10 0.80 0.50 0.20 0.50 0.80

γ10 0.00 0.80 0.30 0.60 0.90 0.70 0.90 0.50 0.20 0.40

ψ2 0.40 0.20 0.20 0.70 0.70 0.30 0.70 0.80 0.90 0.10

ψ3 0.10 0.50 0.20 0.10 0.90 0.10 0.90 0.90 0.20 0.40

ψ4 0.70 0.20 0.10 0.50 0.10 0.50 0.40 0.20 0.40 0.00

ψ5 0.60 0.90 0.70 0.00 0.40 0.00 0.60 0.30 0.90 0.70

ψ6 0.20 0.70 0.00 0.50 0.30 0.90 0.80 0.50 0.20 0.90

ψ7 0.20 0.60 0.50 0.40 0.30 0.30 0.60 0.30 0.50 0.40

ψ8 0.90 0.70 0.30 0.90 0.00 0.30 0.90 0.80 0.00 0.00

ψ9 0.80 0.30 0.20 0.00 0.70 0.40 0.10 0.50 0.10 0.10

ψ10 0.80 0.70 0.60 0.80 0.80 0.50 0.40 0.60 0.00 0.70

Accuracy 83.62 90.59 80.84 82.36 88.57 57.59 71.59 86.76 81.37 70.71

of Pkts 2.10 2.98 2.75 2.75 3.49 2.75 3.70 3.49 2.76 3.49

104

6.3.4 Results With Trained Parameters

In this set of experiments, the parameter estimation approach given in Section

6.2.4 is utilized to find the trained set of parameters. Note that the possible values

for classification accuracy (0-100) and the required number of packets (1-10) are of

the same order. So, the objective function given in (6.9) is used with w = 1. In

the parameter estimation, 50 iterations are used. After the parameter estimation

iterations, the resulting trained parameters are used in the classification algorithm.

Classification results with the trained set of parameters for the Auckland-VI data

set in terms of classification accuracy are given in Fig. 6.4 and in terms of required

number of packets are given in Fig. 6.5. The corresponding results for the Leipzig-II

data set are given in Fig. 6.6 and Fig. 6.7. It is clear from the results that for the

Auckland-VI data set, it is possible to achieve over 91% classification accuracy by

utilizing, on average, less than 6 packets for the classification. For the Leipzig-II data

set, it is possible to achieve over 93% classification accuracy by utilizing, on average,

less than 4 packets for the classification.

Next, we generated random training and testing data sets to conduct experiments.

In the process of random data set generation, we divided all the flows into two sets

randomly, one for training and one for testing. We have repeated this process five

times for the Auckland-VI data set and five times for the Leipzig-II data set. Then

we ran experiments with the randomly generated data sets. Average results for five

randomly generated Auckland-VI data sets in terms of classification accuracy are

given in Fig. 6.8 and in terms of required number of packets are given in Fig. 6.9.

The corresponding results for the Leipzig-II data set are given in Fig. 6.10 and Fig.

6.11. These results also have the same pattern as in the results given in Fig. 6.4, Fig.

6.5, Fig. 6.6 and Fig. 6.7.

105

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Class

A
c
c
u

ra
c
y

93.49

85.73

96.49
98.55

92.21

51.03

94.04 92.48
89.96

70.05 71.43

Overall 91.41

Figure 6.4: Classifier Performance - Auckland-VI: Classification Accuracy.

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

Class

N
u

m
b

e
r

o
f

p
a

c
k
e

ts

5.366

6.168

2.67

4.215

6.434 6.424

2.734

5.069

3.536

5.306

3.398

Overall 5.26

Figure 6.5: Classifier Performance - Auckland-VI: Average Required Number of Pack-
ets.

106

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Class

A
c
c
u

ra
c
y

92.65

52.04

98.19 97.78

89.04

41.76

81.93

12.2

86.39

93.04
96.54Overall 93.62

Figure 6.6: Classifier Performance - Leipzig II: Classification Accuracy.

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

Class

N
u

m
b

e
r

o
f

p
a

c
k
e

ts

3.977
3.842

2.939
3.241

3.998
3.776

2.225

3.646

3.06

3.597

2.719

Overall 3.49

Figure 6.7: Classifier Performance - Leipzig II: Average Required Number of Packets.

107

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Class

A
c
c
u

ra
c
y

93.43

84.09

95.28 96.97

88.48

47.13

93.7 92.25 90.55

73.18

59.43

Overall 91.58

Figure 6.8: Classifier Performance with Random Data Sets - Auckland-VI: Classifi-
cation Accuracy.

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

Class

N
u

m
b

e
r

o
f

p
a

c
k
e

ts

5.281

6.157

2.657

4.137

6.561
6.35

2.791

5.111

3.671

5.318

3.429

Overall 5.17

Figure 6.9: Classifier Performance with Random Data Sets - Auckland-VI: Average
Required Number of Packets.

108

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Class

A
c
c
u

ra
c
y

93.86

52.39

98.15 97.34

80.14

49.9

83.34

19.1

86.33
91.26

96.16
Overall 93.23

Figure 6.10: Classifier Performance with Random Data Sets - Leipzig II: Classification
Accuracy.

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

Class

N
u

m
b

e
r

o
f

p
a

c
k
e

ts

3.983
3.813

3.03

3.379

3.998 3.918

2.266

3.809

3.166

3.719

2.757

Overall 3.60

Figure 6.11: Classifier Performance with Random Data Sets - Leipzig II: Average
Required Number of Packets.

109

6.3.5 Performance Comparison With Available Approaches

Classification accuracies for the considered data sets were compared with a few

well-established classification algorithms. The objective of these experiments is to

demonstrate the advantages of the proposed approach over the available approaches.

It is difficult to compare the performance of the proposed approach with other ap-

proaches since the other approaches use the full flow information or information from

a fixed number of packets. In order to perform a fair comparison, we have considered

cases in which the other classification methods can only use the first m number of

packets in the classification. Moreover, we have tested these other available clas-

sification approaches with different settings of m (m = 2, . . . , 10). Three available

classification approaches were tested for performance comparison.

1. Näıve Bayes Method with Gaussian Estimation:

As discussed in 3.1.3 Näıve Bayes [MZ05] is often proposed to perform Internet

traffic classification. In the experiment, conditional probability distributions

were estimated with Gaussian distributions. Parameters of the distribution

(mean and the standard deviation) are estimated in the training phase [MZ05].

This approach was originally proposed for full flow information based classifica-

tion. However, in order to perform a fair comparison, we have calculated feature

values for näıve Bayes using only the first m number of packets of the flow. Sev-

eral experiments were conducted by selecting m = 2, . . . , 10. The classification

accuracies for näıve Bayes with Gaussian estimation for the Auckland-VI data

set are given in Fig. 6.12. The corresponding results for the Leipzig-II data set

are given in Fig. 6.13. It is clear from the results that our proposed algorithm

has higher accuracies than the naive Bayes with Gaussian estimation for both

110

data sets while requiring only around five packets on average for Auckland-VI

and around four packets on average for Leipzig II.

2. Näıve Bayes Method with Discretized Feature Values:

It is clear from the results of [WZA06] that the classification accuracies can be

improved by dicretizing the feature values. In this experiment, the näıve Bayes

method is utilized with discretized feature values. The same discretized levels as

used in the proposed algorithm are used in the experiment. The MLE Method

is used for the conditional probability distribution estimation. Again, several

experiments were conducted for m = 2, . . . , 10. The classification accuracies for

näıve Bayes with discretized feature values for the Auckland-VI data set are

given in Fig. 6.14. The corresponding results for the Leipzig-II data set are

given in Fig. 6.15. It is clear from the results that our proposed algorithm has

higher accuracies for both data sets.

3. k-Means Clustering:

Clustering algorithms have been used for partial flow based classification by

several authors [BTA+06,BTS06, EMA+07]. We have compared the proposed

approach with k-means clustering. Again, several experiments were conducted

for different m values. In the training phase, training flows were clustered into

400 clusters [EMA+07]. In the testing phase, for a new flow, the minimum

distance cluster is determined by calculating the distance to the centroids of

each cluster. Then the highest probable class within the minimum distance

cluster is selected as the class of the new flow. The classification accuracies for

k-means clustering for the Auckland-VI data set are given in Fig. 6.16. The

corresponding results for the Leipzig-II data set are given in Fig. 6.17. The

111

overall accuracies of the k-means clustering algorithm are comparable with those

of the proposed algorithm. However, it is clear in the results that the k-means

clustering algorithm has very low classification accuracies for minor classes.

Higher overall classification accuracies are mainly due to the high classification

accuracies of major classes. When we consider classification accuracies for all

of the classes, it is clear from the results that the proposed approach has better

accuracies than k-means clustering.

4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Auckland−VI

Number of packets used

A
c
c
u

ra
c
y

Class1

Class2

Class3

Class4

Class5

Class6

Class7

Class8

Class9

Class10

Class11

Overall

Figure 6.12: Classification Accuracies for Näıve Bayes with Gaussian Estimation -
Auckland-VI.

112

4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Leipzig−II

Number of packets used

A
c
c
u

ra
c
y

Class1

Class2

Class3

Class4

Class5

Class6

Class7

Class8

Class9

Class10

Class11

Overall

Figure 6.13: Classification Accuracies for Näıve Bayes with Gaussian Estimation -
Leipzig-II.

4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Auckland−VI

Number of packets used

A
c
c
u

ra
c
y

Class1

Class2

Class3

Class4

Class5

Class6

Class7

Class8

Class9

Class10

Class11

Overall

Figure 6.14: Classification Accuracies for Näıve Bayes with Discretized Feature Values
- Auckland-VI.

113

4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Leipzig−II

Number of packets used

A
c
c
u

ra
c
y

Class1

Class2

Class3

Class4

Class5

Class6

Class7

Class8

Class9

Class10

Class11

Overall

Figure 6.15: Classification Accuracies for Näıve Bayes with Discretized Feature Values
- Leipzig-II.

4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Auckland−VI

Number of packets used

A
c
c
u

ra
c
y

Class1

Class2

Class3

Class4

Class5

Class6

Class7

Class8

Class9

Class10

Class11

Overall

Figure 6.16: Classification Accuracies for k-Means Clustering - Auckland-VI.

114

4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Leipzig−II

Number of packets used

A
c
c
u

ra
c
y

Class1

Class2

Class3

Class4

Class5

Class6

Class7

Class8

Class9

Class10

Class11

Overall

Figure 6.17: Classification Accuracies for k-Means Clustering - Leipzig-II.

115

6.4 Soft Decision for Classification of Minority

Classes

It is clear from the results of the above section that some classes, particularly mi-

nority classes, have lower classification accuracies. Poor classification performance

corresponding to minority classes is a stubbornly persistent problem associated with

existing flow classification algorithms [AMG07,MZ05]. On the other hand, identifica-

tion of minority classes with a reasonable prediction accuracy is of critical importance

because potentially harmful and/or destructive flows do typically belong to minority

classes. In this section, we exploit DS theory’s capabilities to propose a soft decision

strategy to improve the classification accuracies of minority classes. In soft decision,

the classification decision is not necessarily a single class (singleton). Instead the

decision can be a set of classes (composite proposition). If the classification decision

is a set of classes, it indicates that the flow can belong to any class in the given set.

For example, if the classification decision is (1, 2), then the actual class to which the

flow belongs to can be either 1 or 2. In DS theory, leaving the classification decision

as the composite proposition (1, 2) is indicative of the lack of sufficient evidence to

discern between the two singletons 1 and 2.

In the previous approach, we assigned non-zero masses only to singletons, which

is a single class, and to the whole set, which is the complete ambiguity. However, now

we propose to assign non-zero masses to singletons, doubletons, which is a set of two

classes, tripletons, which is a set of three classes, and to the whole set. The rationale

behind the assignment of non-zero masses to composite propositions is that there

may be situations where the available information is insufficient to make a singleton

decision. In those situations we will be able to make a decision in favor of a composite

proposition by assigning non-zero masses to composite propositions.

116

6.4.1 Modified Flow Classification

By comparing results from Fig. 6.4 and Fig. 6.6, one can see that lower accuracies

for minority classes are more observable in the results of the Leipzig-II data set. So

we will focus our discussion to the Leipzig-II data set. However we hasten to add

that, one can apply the analytical results of this section to the other data sets as well.

By analyzing the results in the Leipzig-II data set, we observe that classes 2, 6 and 8

(which constitute the minority classes) have lower classification accuracies compared

to the other classes. Furthermore, we observed that most of the wrongly classified

flows of the minority classes are classified into one of three majority classes, namely,

HTTP (class 1), All other TCP (class 10) and All other UDP (class 11). By keeping

the above observations in mind, we propose a new classification strategy, which can

be summarized in the following steps:

Step 1: Calculate Wn

This step is identical to Step 1 of the previous strategy (see Section 6.2.3).

Step 2: BN Evidence Propagation

This step is similar to Step 2 of the previous approach where P
(m)
n , ∀m =

1, . . . , num cls, values are calculated.

117

Step 3: Evidence Update

The following mass assignment is adopted in this approach.

Mn(C) =

Kn,1 γn P
(m)
n , for C = {m} ∈ Θ;

Kn,2 (1 − γn) (P (m1)
n + P (m2)

n) for C = {m1, m2};

m1 ∈ Θmin;m2 ∈ Θmaj ;

Kn,3 (1 − γn) (P (m1)
n + P (m2)

n + P (m3)
n) for C = {m1, m2, m3};

m1, m2 ∈ Θmin;m3 ∈ Θmaj ;

Kn,4

num cls
∑

k=1

(1 − γn)P (k)
n , for C = Θ;

0, otherwise.

(6.12)

Here, Θmin is the set of minor classes and Θmaj is the set of majority classes. The

normalizing parameters Kn,1, Kn,2, Kn,3 and Kn,4 should be selected in a way that

the above mass assignment is valid, in other words, summation over all of the masses

should be one. Note the following regarding (6.12). Masses are assigned as follows:

• Single classes (e.g., (1)): This assignment represents the confidence one can

place on a singleton proposition. This should be proportional to the calculated

classification probability in order to better represent the confidence.

• Sets of two classes consisting of classes from both the minority and majority

(e.g., (1, 2) where 1 is a majority class while 2 is a minority class): This as-

signment represents the confidence one can place on a doubleton proposition.

In other words, this assignment represents the confidence one can place on two

classes even though sufficient information is not available to discern between two

118

classes. In this work, we are trying to model the unavailability of information

to discern between minority and majority classes. Hence, in this assignment

we should assign non-zero masses only to the doubletons with both minority

and majority classes. Moreover, note that the assigned mass of a doubleton

should consist of proportions of calculated classification probabilities of the two

individual classes. Hence, we propose to assign a masses to doubletons in a way

that the mass is proportional to the sum total of the individual classification

probabilities of the classes within the doubleton.

• Sets of three classes consisting of classes from both the minority and majority

(e.g., (1, 2, 6) where 1 is a majority class while 2 and 6 are minority classes): This

assignment represents the confidence one can place on a tripleton proposition. In

other words, this assignment represents the confidence one can place on three

classes even though sufficient information is not available to discern between

three classes. Again, as we are trying to model the unavailability of sufficient

information to discern between minority and majority classes, we assign non-

zero masses only to the tripletons which are mixtures of both minority and

majority classes. Furthermore, we have ignored tripletons with more than one

majority class in it. For the same reason as explained in the above item, we

propose to assign a masses to tripletons in a way that the mass is proportional

to the sum total of the individual classification probabilities of the classes within

the tripleton.

• Complete ambiguity Θ: This assignment represents the lack of information to

assign masses to any proposition.

119

Note that the BoE associated with the above mass assignment is {Θ, Fn,Mn(•)}

which captures the evidence one gathers from n packets, where the core Fn is allowed

to have doubletons and tripletons as well. In this approach also we once again use

DCR to combine this evidence with the previously constructed BoE {Θ,Fn−1,Mn−1(•)}.

Now the classification decision is achieved based on the BoE {Θ,Fn,Mn(•)}.

Step 4: Classification Decision

The classification decision can be either a singleton or a composite proposition.

In order to proceed let us define following terms:

MS1 = arg max
C:|C|=1

mn(C)

MV1 = max
C:|C|=1

mn(C)

MS2 = arg max
C:|C|=2

mn(C)

MV2 = max
C:|C|=2

mn(C)

MS3 = arg max
C:|C|=3

mn(C)

MV3 = max
C:|C|=3

mn(C)

Here, mn(C) is the mass of the set C based on BoE {Θ, Fn,Mn(•)}. The strategy

that we employed to make the classification decision is given in Table 6.5.

120

Table 6.5: Decision Criteria

if (n = PKmax or n = length of the flow) then
if max(MV1,MV2,MV3) = MV1 then

if MS1 ∈ Θmaj then
if MV2 < δ1 and MV2 < δ1 then

Decision = MS1

else
if MV2 > δ2MV3 then

Decision = MS2

else
Decision = MS3

end if
end if

else
Decision = MS1

end if
else

if MV2 > δ2MV3 then
Decision = MS2

else
Decision = MS3

end if
end if

else
if max(MV1,MV2,MV3) = MV1 then

if MS1 ∈ Θmaj then
if MV2 < δ1 and MV2 < δ1 and MV1 > ψn then

Decision = MS1

else
Repeat form Step 1

end if
else

if MV1 > ψn then
Decision = MS1

else
Repeat form Step 1

end if
end if

else
Repeat form Step 1

end if
end if

121

In this approach, if the flow does not reach the PKmax packets maximum or the

end of the flow, the algorithm makes a decision only if the maximum mass is assigned

to a singleton. Rationale behind this is that, if we do not have sufficient information

to make a singleton decision, we should wait for more packets to be received. Even

though the maximum mass is assigned to a singleton, all composite propositions need

to have significantly lower masses in order to classify a flow into a majority class. This

is important to have a higher confidence on singleton decisions. On the other hand,

if the flow reaches the PKmax packets maximum or the end of the flow, the algorithm

must make a decision. This decision can be either a singleton or a composite. At

this point also, in order to make a singleton decision, the maximum mass assigned

proposition must be a singleton. Furthermore, in order to classify a flow as being from

a majority class, all composite propositions must have significantly lower masses. This

is important to minimize minority classes from being classified classify as a majority

class. In order to make a doubleton decision, all tripletons must have significantly

lower masses than the doubletons. Again this is important to improve the confidence

of the doubleton decisions.

6.4.2 Results

Simulations were conducted with the Leipzig-II data set in order to evaluate the

performance of the modified flow classification approach. The same set-up of training

and testing as discussed in Section 6.3.1 is used for this simulation. The parameter

PKmax is set to 10 in these simulations as well.

Since, it is possible to have composite propositions as the classification decision, it

is important to analyze the distribution of decisions among singletons, doubletons and

tripletons. This distribution is given in Fig. 6.18. In the figure, heights of black bars

122

correspond to the percentage of flows classified as singletons. Furthermore, heights

of gray bars correspond to the percentage of flows classified as doubletons. Similarly,

heights of white bars correspond to the percentage of flows classified as tripletons. In

this figure, and all other figures in this section, minority classes are identified with a

circle. Note that minority classes (classes 2, 6, and 8) have significantly higher gray

and white bars. Hence, it is clear from the results that the minority classes have

a higher percentage of flows classified as composite propositions. Moreover, note

that classes 10 and 11 also have significantly higher gray and white bars. Hence, it

is clear that a higher percentage of flows in classes 10 and 11 are also classified as

composite propositions. Higher composite proposition percentages are expected for

classes 10 and 11 since these two classes correspond to All other TCP and All other

UDP respectively.

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

Class

P
e

rc
e

n
ta

g
e

% of Singleton % of Doubleton % of Tripleton

Figure 6.18: Distribution of decisions among Singletons, Doubletons and Tripletons.

123

Next, it is important to evaluate the classification performance. In this experiment

it is inappropriate to calculate the classification accuracy, since the classification deci-

sion is not always a singleton. So, we calculate the percentage of incorrectly classified

flows in order to evaluate the performance. If the decision of the classification does

not contain the actual class, then we categorize it as an incorrectly classified flow.

The percentage of incorrectly classified flows for individual classes and the overall in-

correctly classified percentage are given in Fig. 6.19. It is clear from the results that

the percentage of incorrectly classified flows is very low. Hence, it is clear that the

modified approach has improved the performance, particularly for minority classes.

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Class

P
e
rc

e
n
ta

g
e
 o

f
in

c
o
rr

e
c
tl
y
 c

la
s
s
if
ie

d
 f
lo

w
s

8.116

20.56

2.125
4.303

17.43

42.39

28.89

44.51

14.23

8.452

3.226

Overall 7.16

Figure 6.19: Percentage of incorrectly classified flows.

124

Our next experiment is based on randomly generated training and testing data

sets. Here, we have randomly divided the Leipzig-II data set into two, one for training

and one for testing. This process is repeated five times in order to generate five

randomly generated data set pairs. Average results for randomly generated data sets

are given in Fig. 6.20. These results also exhibit the same pattern as the results given

in Fig. 6.19.

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Class

P
e

rc
e

n
ta

g
e

 o
f

in
c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 f

lo
w

s

6.551

19.71

2.019 2.1

20.7

49.51

23.38

46.14

17.77

10.16

4.553

Overall 7.50

Figure 6.20: Percentage of incorrectly classified flows - Random Data Sets.

CHAPTER 7

Rate Allocation Among Set of Flows

A novel traffic classification algorithm is proposed in Chapter 6. Once the flows

are adequately well classified, a rate allocation algorithm as explained in Chapters 4

and 5 can be utilized to optimally allocate the resources among flows of a particular

class. In other words, rate allocation algorithms as explained in Chapters 4 and 5

can be utilized for intra-class resource allocation. Now, we should develop a method-

ology to allocate resources among a set of flows corresponding to different classes. In

other words, we should develop a resource allocation algorithm to perform inter-class

resource allocation.

We believe that one way to allocate the available bandwidth to the set of flows

is by enforcing a rate ratio between different flows depending on the importance of

those flows. For example, if we can classify flows into three classes (class1, class2,

class3), then we can utilize the rate allocation algorithm to allocate rates in the ratios

of, say, class1 : class2 : class3 = 1 : 2 : 1. In this chapter, we focus on how to utilize

the rate allocation algorithm to maintain the rate ratio requirements between set of

flows. First, a new utility function needs to be defined in order to take the rate ratio

requirements into consideration. Then, a rate controller can be derived in the form

of a window update function to maximize the aggregate utility of the network.

125

126

In the process of rata ratio allocation, it is desirable to consider a set of sources.

This set of sources is named as a coordination group(CG). Each CG must consist

of one ‘sink’ node and more than one sources participating in the rate coordination.

These member sources of the CG are referred to as coordinated flows. When we

consider a CG the ‘sink’ node decides the desirable rate ratio and it should send

feedback to each member of the CG in order to adopt there transmission rates in a

way that the required rate ratio is maintained. To further understand the situation,

consider the shared network given in the Fig. 7.1. This network has two CGs CG#1

and CG#2. The group CG#1 has five members while CG#2 has only four. Further

note that two members are common to both the CGs.

Figure 7.1: A scenario with 2 sink nodes with their corresponding CGs.

Now the objective is to find a rate control algorithm by which the transmission

rate ratio between members of the group must be maintained. This same mechanism

must be effective in establishing and maintaining the requested bit-rate ratios among

127

the nodes within this CG while ensuring that these coordinated flows can co-exist

in a shared network with many different applications having potentially competing

requirements. Traditional network congestion control methods such as TCP Reno

and TCP Vegas are not designed to handle such requirements.

7.1 A New Utility Function

The first step towards the solution is to define a utility function by which the

quality of the rate ratio maintenance can be measure. Note that it is important to

have the utility function as a concave function of the transmission rates in order to

directly use the results of NUM framework. To address the possibility of one source

being a member of more than one CG (irrespective of whether they correspond to the

same sink node or not), consider the following utility function for source j:

Uj(f) = Vj(fj) −
∑

i∈G

K(i)[D
(i)
j (f)]2, ∀j ∈ T, where D

(i)
j (f) = fj − γ

(i)
j

∑

k∈G(i)

fk.

(7.1)

The notation we adapt is the following: the sets T, C and U (with |T| = |C|+|U|) index

the total, coordinated and uncoordinated sources in the entire network; f denotes the

column vector containing the current source rates fj , j ∈ T; G is a set that indexes

all the distinct CGs (of all the sink nodes); the set G(i) indexes the member sources

belonging to CG #i, i ∈ G; α > 0, K(i) > 0, γ
(i)
j ∈ [0, 1] are all real parameters; and

∑

k∈G(i) γ
(i)
k = 1, i ∈ G. For example, in Fig. 7.1, we have the following: |G| = 2 (#

of CGs); |G(1)| = 5 (# of members in CG #1); |G(2)| = 4 (# of members in CG #2);

and 2 flows are members of both CGs.

Now observe the following regarding (7.1). The first term Vj(fj) is a concave

function of the source data rate fj and it addresses rate maximization, and is from the

128

standard (original) utility function. The second term addresses rate ratio coordination

within each CG; the term D
(i)
j (f) indicates the difference between the rate of source

fj and its allocated ratio; the parameter K(i) determines the emphasis placed upon

rate ratio maintenance over the standard utility maximization within G(i) (K(i) =

0 whenever source j is either uncoordinated or does not belong to CG #i); the

parameter γ
(i)
j determines the proportion of rate allocated to source j ∈ G(i) (e.g., for

CG #2 in Fig. 7.1, {γ(2)
1 , γ

(2)
2 , γ

(2)
3 , γ

(2)
4 } = {0.1, 0.1, 0.2, 0.6} describes a rate allocation

in the ratio of 1:1:2:6 to its member sources). Note that D
(i)
j (j) = 0, ∀j ∈ G(i), when

all rates achieve the ratio given by γ
(i)
j values. When the specified rate ratios are

not achieved, |D(i)
j (f)| > 0, ∀j ∈ G(i), meaning that the utility of the coordinated

sources is reduced. Therefore, in (7.1), the utility function reflects the twin goals of

raw data rate maximization, and the attainment of the specified rate ratios defined

by the γ
(i)
j values. Moreover, for uncoordinated sources, the utility function reduces

to the standard data transfer utility function. We express the network flow utility

maximization problem as

max
f≥0

∑

j∈T

Uj(f) subject to
∑

j∈Sℓ

fj ≤ Cℓ, ∀ℓ ∈ L, (7.2)

where L is a set that indexes all the links in the network; Sℓ and Cℓ are the set of

flows and capacity along the link ℓ ∈ L. Since Uj(f) is a concave function of f , this

optimization problem can be solved via the primal-dual approach with the duality

gap zero [Ber99,LPW02,Low03]. So, consider the Lagrangian

L(f ,p) =
∑

j∈T

Uj(f) +
∑

ℓ∈L

pℓ

(

Cℓ −
∑

j∈Sℓ

fj

)

=
∑

j∈T

Uj(f) +
∑

ℓ∈L

pℓ

(

Cℓ −
∑

j∈T

Rℓjfj

)

=
∑

j∈T

(

Uj(f) − fj

∑

ℓ∈L

Rℓjpℓ

)

+
∑

ℓ∈L

Cℓpℓ. (7.3)

129

Here, p is a column vector containing the link ‘prices’ pℓ, ℓ ∈ L; Rℓj = 1 if source

j ∈ T uses link ℓ ∈ L and it is 0 otherwise. Note that
∑

ℓ∈L
Rℓmpℓ is the total price

of all the links used by flow m ∈ T.

Utility maximization is achieved by maximizing this Lagrangian and the corre-

sponding source rate vector is

f∗ = arg max
f≥0

L(f ,p∗). (7.4)

One must find the partial derivatives of the Lagrangian in order to solve the opti-

mization problem. Consider the partial derivative of L(f ,p) w.r.t. fm, m ∈ T:

∂

∂fm
L(f ,p) =

∂

∂fm

(

∑

j∈T

Uj(f)

)

−
∑

ℓ∈L

Rℓmpℓ. (7.5)

Here,

∑

ℓ∈L

Rℓmpℓ = qm;

∂

∂fm

(

∑

j∈T

Uj(f)

)

=
∂

∂fm

∑

j∈T\m
Uj(f)

+
∂

∂fm

Um(f). (7.6)

To proceed, we need to specify V (fj) within Uj(f). We let V (fj) = α log (fj),

which is the utility function of TCP Vegas [LPW02]. Note that we can use the utility

functions of any other rate control TCP variants, as long as the chosen function is

concave.

Now consider the last two terms on the right-hand side of (7.6):

∂

∂fm
Um(f) =

α

fm
−
∑

i∈G

2K(i)D(i)
m (f) (1 − γ(i)

m) I(i)
m , (7.7)

where I
(i)
m = 1 if m ∈ G(i) and 0 otherwise. We also have

∂

∂fm

∑

j∈T\m
Uj(f)

=
∑

j∈T\m

∑

i∈G

2K(i)γ
(i)
j D

(i)
j (f) I

(i)
j I(i)

m . (7.8)

130

Using (7.5-7.8), we get

∂

∂fm
L(f ,p) =

α

fm
− qm −

∑

i∈G

2K(i)

D(i)
m (f) −

∑

k∈G(i)

γ
(i)
k D

(i)
k (f)

 I(i)
m

. (7.9)

To proceed, we express (7.9) as

∂

∂fm

L(f ,p) =
α

fm

− qm − ξm(f), (7.10)

where

ξm(f) =
∑

i∈G

ξ(i)
m (f) I(i)

m , ξ(i)
m (f) = 2K(i)

D(i)
m (f) −

∑

k∈G(i)

γ
(i)
k D

(i)
k (f)

 , (7.11)

For uncoordinated flows (i.e., k /∈ G(i), ∀i), this reduces to α/fm − qm yielding an

equilibrium rate that is of the same form as that obtained with TCP Vegas.

7.2 Iterative Rate Update Function

The gradient projection can be used to get the following rate update function.

fm(t+ 1) =

[

fm(t) + s

(

α

fm(t)
− qm(t) − ξm(f(t))

)]+

. (7.12)

Note that to calculate ξm(f), the fi values for all the sources are required. Only

the sink node has all the fi values. Hence, ξm(f) is the scalar feedback information

sent by the sink node to the source m. Further note that, ξm(x) = 0 whenever K(i) =

0, ∀i, i.e., additional feedback is unnecessary for the ordinary sources. Therefore,

a coordinated source updates its rate to fm(t + 1) using its current rate fm(t), the

current queuing delay qm, and the rate coordination feedback ξm(f(t)) from the sink

node as in (7.12). None of the sources need to know the rates of any other source. The

sink node needs to keep track of the individual rates of the sources in the coordinated

group, and provide per-flow feedback to each source.

131

Recall the transmission rate of source m ∈ T given by

fm(t) =
wm(t)

RTTm(t)
, (7.13)

We can modify the rate control equation (7.12) to an ideal window update function.

wm(t+ 1) = RTTm(t+ 1)

[

wm(t)

RTTm(t)
+ s

(

αRTTm(t)

wm(t)
− qm(t) − Fm(f(t))

)]+

.

(7.14)

For implementation purposes, we use the approximation RTTm(t + 1) ≈ RTTm(t)

which yields

wm(t+ 1) =

[

wm(t) + sRTTm(t)

(

αRTTm(t)

wm(t)
− qm(t) − ξm(f(t))

)]+

. (7.15)

Here, the current transmission rate fm(t) is estimated at the source; the queuing

delay qm(t) is also estimated at the source as the difference between the current RTT

and the minimum observed RTT. The quantity ξm(f) is calculated at the sink node

for each coordinated flow and sent to the source as feedback information.

7.3 Simulations

Simulations based on the ns-2 environment were conducted in order to attest

the performance of the proposed rate ratio allocation scheme. The simulations were

designed in a way that the performance of the proposed algorithm can be compared

with the performance of the standard rate control algorithms, particularly TCP Vegas.

Two experiments were conducted.

7.3.1 Experiment #1

In the simulation set-up, a common sink node attempts to coordinate 2 CGs to

achieve equal rate allocation. It has 7 coordinated flows: 5 are members of CG #1

132

while 4 are members of CG #2, i.e., 2 flows belong to both the groups. The simulation

set-up is shown in Fig. 7.2. Note that, 2 coordinated sources share one path while the

Sink

- Coordinated Sources

- TCP-Vegas Traffic

Figure 7.2: Simulation Set-up.

other 5 use five different paths. All six paths also carry TCP Vegas flows. Coordina-

tion is required to achieve equal rate allocation among members within each CG since

different paths have different capacities. Two different scenarios were considered:

• Scenario 1

All flows run TCP Vegas.

• Scenario 2

Coordinated flows run the new protocol; others employ TCP Vegas. For this

scenario, we used the following parameters:

{K(i)
j , s, α, γ

(i)
j } =

{0.01, 1.0, 2.0, 0.2}, for CG #1;

{0.01, 1.0, 2.0, 0.25}, for CG #2.

Note that the CG #1 has γ
(i)
j values set to 0.2. This assignment of γ

(i)
j values

indicate the equal rate allocation requirement among members of the CG #1 since it

133

has only five members. Similarly, γ
(i)
j values of 0.25 in the CG #2 represents equal

rate allocation since it has only four members.

Now it is required to measure the performance of the rate ratio allocation. Hence,

the performance of the new algorithm is measured via the rate ratio non-conformity

factor NC(i) which we define for the ith group as

NC(i) =

√

1

|G(i)|
∑

k∈G

[D
(i)
k]2. (7.16)

Note that a lower NC(i) value indicates that the actual rate ratio allocations are

closer to the desired rate ratios. The NC(1) values for the simulation set-up appear

in Fig. 7.3. The NC(2) values for the simulation set-up appear in Fig. 7.4.

Observe that both NC(1) and NC(2) values are lowered with the introduction of

the new protocol. That means the allocated rate ratios are closer to the desired rate

ratios for both CG #1 and CG #2 with the new protocol. Hence, the performance in

each CG has improved under the new protocol. The average improvements are 69%

and 74% for CG #1 and CG #2, respectively.

134

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20

Time (Sec)

N
o

n
−

C
o

n
fo

rm
it
y
 F

a
c
to

r

Non−Conformity Factor for the Group 1

Vegas

New Protocol

Figure 7.3: Experiment #1: NC(1) values for TCP Vegas and the new protocol.

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20

Time (Sec)

N
o

n
−

C
o

n
fo

rm
it
y
 F

a
c
to

r

Non−Conformity Factor for the Group 2

Vegas

New Protocol

Figure 7.4: Experiment #1: NC(2) values for TCP Vegas and the new protocol.

135

7.3.2 Experiment #2

Four sensors — 01 color, 01 gray level and 02 ultrasound sensors — are used to

gather data of an image. These data are sent to a sink node where the image is to be

reconstructed. The color sensor reads the color components as COLOR = {R,G,B};

the gray level sensor reads the gray scale intensity as GRAY = {I}; the 2 ultrasound

sensors read the corresponding location as POSITION = {X, Y }. The sensor bundle

moves in a zigzag path to get these readings.

The sensors use 4 different paths to send the collected data to the sink. All 4

paths also contain ordinary FTP flows (see Fig. 7.5). Each position reading, color

Sink

X

Y

R,G,B

I

N
e
tw

o
rk

 4

N
e
tw

o
rk

 3

N
e
tw

o
rk

 2

N
e
tw

o
rk

 1

Coordinated

group 1

Coordinated

group 2

Figure 7.5: Experiment #2: Set-up.

component and gray level is assumed to occupy the same number of bits.

The sink uses two CGs to reconstruct a color and gray level image — CG #1 for

136

the color image and CG #2 for the gray level image. The characteristics of each CG

appear in Table 7.1. Note that, 2 flows are in common to both CGs.

Table 7.1: Experiment #2: Characteristics of the CGs

CG Member Flows Rate Ratios γ Values

#1 {X, Y, COLOR} {1, 1, 3} {1/5, 1/5, 3/5}
#2 {X, Y,GRAY } {1, 1, 1} {1/3, 1/3, 1/3}

For constructing the color image, one value each from {X, Y,R,G,B} are grouped

together to reconstruct the location and image color that corresponds to that group

of readings; similarly, for constructing the gray scale image, one value each from

{X, Y, I} are grouped together. The quality of both the reconstructed images depends

on the number of such groups created for the image.

The image reconstructed after the sink node receives all the data generated from

the sensor bundle when it scans the full image area is termed a scan. Fig. 7.6 shows

the reconstructed images after {1, 2, 3, 4} scans. The NC(1) values for the simulation

set-up appear in Fig. 7.7. The NC(2) values for the simulation set-up appear in

Fig. 7.8. It is clear from the results that non-conformity factor is reduced for both

CGs.

137

Original Image

Using The New Protocol Using Vegas

S
c
a

n
 1

S

c
a
n

 4

S
c
a

n
 3

S

c
a

n
 2

Color Black & WhiteColor Black & White

Figure 7.6: Experiment #2: Performance comparison.

138

0 50 100 150 200
0

2

4

6

8

10

12

Time (Sec)

N
o

n
−

C
o

n
fo

rm
it
y
 F

a
c
to

r

Non−Conformity Factor for the Group 1

Vegas

New Protocol

Figure 7.7: Experiment #2: NC(1) values for TCP Vegas and the new protocol.

0 50 100 150 200
0

2

4

6

8

10

12

Time (Sec)

N
o

n
−

C
o

n
fo

rm
it
y
 F

a
c
to

r

Non−Conformity Factor for the Group 2

Vegas

New protocol

Figure 7.8: Experiment #2: NC(2) values for TCP Vegas and the new protocol.

CHAPTER 8

Conclusion and Future Work

In this work we have proposed a framework for network resource allocation. We

have studied how the NUM framework can be adopted to implement rate alloca-

tion directives in networks. First we have studied the problem of rate control of

multi-sensor target tracking algorithms operating over a network shared by other ap-

plications. This work has attempted to bridge the gap between target tracking QoS

objectives and network rate allocation. The notion of network utility was defined for

the multi-sensor target tracking application, and derived for both the MF and SF

methods. The modification of a standard data rate utility function to accommodate

the target tracking utility has allowed for the construction of a network resource al-

location problem encompassing all data emitting sources in the network. By solving

this convex optimization problem using the gradient projection method, we obtained

an iterative, distributed solution in the form of a rate control algorithm of the data

sources which do not need to communicate with each other. As we have seen, this

new rate control algorithm provided better target tracking performance than a more

conventional rate control algorithm, while the ordinary data transfer flows are allowed

to continue utilizing standard rate/congestion control methods such as TCP Reno.

Next, we have studied how to allocate resources in a way that multiple objectives

can be achieved simultaneously. In this part, we have considered a situation where

139

140

a sink node is attempting to both track and classify a target. We have shown that

the two objectives—target tracking and target classification—have two different rate

allocation requirements. We have derived a utility function in a way that the target

classification performance can be maximized. Furthermore, we have shown the rela-

tionship between the derived utility function and the K-L divergence of the actual

and the estimated classification probability distributions. Then, the target classi-

fication utility function is incorporated into the previously derived target tracking

utility function as an additive term. A modified constrained optimization problem is

formulated and the solution is implemented as an iterative rate update function.

We have noted that a shared network can have flows corresponding to various

applications with various rate allocation requirements. Hence, it is important to

accurately identify flows in order to implement the corresponding rate allocation

requirements. This necessitates an online traffic classification algorithm, which is ca-

pable of classifying a flow well before the termination of the flow. In this work, a

novel online traffic classification algorithm is proposed for this purpose. The main

objective of the proposed algorithm is to make a classification decision about the flow

well before the flow termination. The use of partial flow information together with a

growing window of packets to enable online classification is one of the most important

and innovative aspects proposed in this work. Utilization of a set of BNs to calculate

class probabilities and utilization of DS theoretic notions to capture uncertainties in

partial flows and to update classification probabilities are other novel notions pro-

posed in this work. Two approaches are proposed to make a classification decision.

The first approach is capable of classifying flows into singletons, while the second

approach enables one to classify flows into composite propositions as well. The sec-

ond classification approach facilitates better classification performance for minority

141

classes. The performance of the proposed approach is evaluated by simulations. Two

publicly available data sets were used for the simulations. It is clear from the sim-

ulation results that the proposed approach is capable of classifying flows accurately

by utilizing only a few packets. Moreover, the proposed algorithm appear to provide

better classification performance than the available well-established flow classification

algorithms.

Once we have accurately identified the flows, we can utilize an intra-class rate

allocation algorithm as explained in this work. However, we should consider how

to implement the inter-class rate allocation. In other words, how can we allocate

the available resources among different applications? We believe one option we have

available to address this problem is to allocate the available resources based on a pre-

determined ratio. We have proposed a utility function in a way that the rate ratio

maintenance can be achieved. Then we incorporated the new utility function as an

additive term to the standard utility function in order to obtain a new constrained

optimization problem. The solution to the optimization problem is implemented as an

iterative rate update function. We have shown in our simulations that the rate ratio

maintenance can be achieved by implementing the proposed rate update function.

Note that the target tracking algorithms used in this work is based on a set of

identical sensors. As mentioned in Section 4.1, MF1 and MF2 methods of multi-sensor

target tracking are functionally identical because of the fact that identical sensors are

used. It is important to consider a situation when sensors are non-identical. In such

a situation, MF1 and MF2 methods of multi-sensor target tracking need to be con-

sidered separately in order to derive utility functions. Hence, three utility functions

one for SF and two for MF, need to be derived. In the derivation of these utility

functions, the measurement model matrix cannot be considered as fixed, instead it

142

should be considered as a variable. Once the utility functions are derived, an itera-

tive rate update function can be derived by following the same steps as explained in

Section 4.2.

The proposed rate allocation algorithm can be extended to other applications as

well. Battlefield data fusion is one possible application where the proposed algorithm

can be used to allocate resources. One can derive a utility function in a way that data

fusion performance is maximized. With the utility function selected to be a concave

function of transmission rates, the same approach as used in the proposed work can

be utilized to derive an iterative rate update function.

Throughout this work, we assume a fixed network infrastructure. Hence, as it

stands, this work is only applicable to wired networks. To extend this work to wireless

networks, one can easily start with one of the utility functions proposed in this work

and solve the NUM problem for wireless networks in order to obtain a distributed rate

control algorithm. This is a possible and important future extension for the proposed

rate allocation approach.

All of the utility functions derived in this work are functions of transmission rates.

So it is clear that only the transmission rates are considered in the process of obtain-

ing the optimal rate controller. However, factors other than transmission rate may

need to be taken into account to measure the service quality of an application. For

example, service quality of applications such as multimedia streaming can be heavily

dependent on the delay and the latency. So, for such applications one must incorpo-

rate delay and latency as service quality measures. Utility functions that incorporate

these additional measures must be developed if the proposed rate allocation algorithm

is to be extended to accommodate a wider variety of applications.

143

After deriving an iterative rate update function for the wireless networks, the

next step should be to consider non-stationary sensors in the target tracking. In

such a situation, the sensor locations available at the sink node are not accurate as

we assumed in the proposed work. Then several additional challenges need to be

addressed. The first challenge is how to model the error covariances of the sensor

measurements as the exact location of the sensors are unknown. The next challenge

is how to predict the next location and the measurement error covariance of a sensor

in the next time instance as the location of the sensor can be changed.

In Chapter 5, we have derived an iterative rate update function to facilitate tar-

get classification together with target tracking. In this approach we considered only

the näıve Bayes method of classification. This is not the only classification approach

available. In particular, näıve Bayes may not be the best classification algorithm for

some scenarios. For example, one can consider a BN based target classification. How-

ever, other classification algorithm may have different rate allocation requirements.

This nictitates different rate update functions based on the classification algorithm.

Hence, it is required to derive utility functions for other classification approaches

and follow the same steps as explained in the proposed work to obtain corresponding

iterative rate update functions.

Note that all rate allocation schemes proposed in this work are based on a feed-

back form the sink node. In other words, the proposed rate allocation algorithms

are not completely decentralized. However, it is even more useful if one can derive a

completely decentralized rate allocation algorithm where the feedback from the sink

node is not an input to the rate update function. If such a rate allocation algorithm

can be implemented, then the sink node does not need to keep track of all the sources

144

in order to generate the appropriate feedback. It is clear that the corporation among

participating sources is very important to implement a rate allocation algorithm to

satisfy rate allocation requirements given by the underlying application. Now the

challenge becomes how to implement the corporation among different sources in or-

der to implement the rate allocation requirements. One possible approach to address

this issue is by allowing minimal message exchanges between sources. However, it

is vital to minimize the message exchanges between sources. Hence, one must uti-

lize an approach to implement the rate allocation requirement while minimizing the

communication among sources.

In the flow classification approach, one can utilize different mass assignment

schemes. It may be possible to obtain better performances by selecting a differ-

ent mass assignment scheme. Moreover, note that we have used the DCR to combine

masses as the size of the growing window of packets is changed. One can utilize other

combination and updating mechanisms for this purpose. Such schemes may yield

better performance. Furthermore, it is possible to utilize a feature reduction algo-

rithm in order to select the most appropriate set of features out of the proposed set

of features. This may yield better performance for the flow classification algorithm

while reducing the complexity.

We have shown in this work that DS theory can be effectively utilize to improve

the performance of Internet flow classification. We demonstrated the applicability of

DS theory in a BN model based traffic classification. However, one can utilize DS

theory in other classification schemes as well. For example, a DS theoretic approach

can be used to make the classification decision in k-means clustering, after the mini-

mum distance cluster is determined. Moreover, we can utilize other well-established

145

classification algorithms to calculate the classification probabilities after the arrival of

the n-th packet and use a DS theoretic uncertainty modeling and evidence updating

mechanism to obtain the combined inferences.

Rate ratio, as proposed in this work is not the only possible way to implement

inter-class resource allocation. In fact, rate ratio may not be the best way to deal

with this challenge. In deriving a better approach to deal with inter-class resource

allocation, one must consider some other factors as well. For example, there may be

unresponsive flows in a way that they do not adopt their transmission rates as the

sink node desires. Hence, identification of unresponsive flows is very important to

implement a robust inter-class resource allocation algorithm. Moreover, there may

be situations where minimum transmission rates need to be satisfied for some classes

of flows. Hence, minimum rate enforcement capability should also be incorporated in

the inter-class rate allocation algorithm.

APPENDIX A

Proof of Chapter 4 Claim 3

(i) Note that

aMF (k) cMF (k) − bMF (k)2 =

[

pMF

1 (k) pMF

4 (k) − pMF

2 (k)2
]

+ q∆2pMF

1 (k) + 2 q∆3pMF

2 (k) +
q

4
∆4pMF

4 (k).

Now it is enough to show that

pMF

1 (k) pMF

4 (k) − pMF

2 (k)2 > 0; and pMF

ℓ (k) ≥ 0, ℓ = 1, 2, 4, ∀k. (A.1)

The proof is by induction. Note that (A.1) is valid for k = 0 since pMF

1 (0) =

pMF

4 (0) = 1 and pMF

2 (0) = 0. Now suppose (A.1) is valid for k. Use (4.20) to show

that

pMF

1 (k + 1) pMF

4 (k + 1) − pMF

2 (k + 1)2 =
aMF (k) cMF (k) − bMF (k)2

aMF (k)/r(k + 1) + 1
> 0,

and pMF

ℓ (k + 1) ≥ 0, ℓ = 1, 2, 4. Hence, by induction, (A.1) is true for all k > 0.

(ii) Simple, yet somewhat lengthy, manipulations yield

ρ1(k) ρ4(k) − ρ2(k)
2 =

2

σN,N

+ 2
N−1
∑

i=1

[

1

σi,i

+ 2
N
∑

j=i+1

σi,j

σi,iσj,j

]

,

where

σi,j = aSF

i (k) cSF

j (k) + aSF

j (k) cSF

i (k) − 2 bSF

i (k) bSF

j (k).

146

147

Now it is enough to prove that, for all i, j, k,

σi,j > 0; pSF

1i (k) ≥ 0, pSF

2i (k) ≥ 0, pSF

4i (k) ≥ 0. (A.2)

Consider σi,j :

aSF

i (k) cSF

j (k) + aSF

j (k) cSF

i (k) − 2 bSF

i (k) bSF

j (k)

=
(

pSF

1i (k) pSF

4j (k) + pSF

1j (k) pSF

4i (k) − 2 pSF

2i (k) pSF

2j (k)
)

+ q∆2
(

pSF

1i (k) + pSF

1j (k)
)

+ q∆3
(

pSF

2i (k) + pSF

2j (k)
)

+
q

4
∆4
(

pSF

4i (k) + pSF

4j (k)
)

.

So, it is enough to prove that

pSF

1i (k) pSF

4j (k) + pSF

1j (k) pSF

4i (k) − 2 pSF

2i (k) pSF

2j (k) > 0; and

pSF

1i (k) ≥ 0, pSF

2i (k) ≥ 0, pSF

4i (k) ≥ 0, ∀i, j, k. (A.3)

The proof is by induction. Note that (A.3) is valid for k = 0 since pSF

1i (0) =

pSF

1j (0) = pSF

4i (0) = pSF

4j (0) = 1 and pSF

2i (0) = pSF

2j (0) = 0, ∀i, j. Suppose (A.3) is valid

for k. Use (4.23) to show that

pSF

1i (k + 1) pSF

4j (k + 1) + pSF

1j (k + 1) pSF

4i (k + 1)

− 2 pSF

2i (k + 1) pSF

2j (k + 1)

=

[

aSF

i (k)
σj,j

2 rj(k + 1)
+ aSF

j (k)
σi,i

2 ri(k + 1)
+ σi,j

]

÷
[(

1 +
aSF

i (k)

ri(k + 1)

)(

1 +
aSF

j (k)

rj(k + 1)

)]

> 0,

and

pSF

1i (k + 1) ≥ 0, pSF

2i (k + 1) ≥ 0, pSF

4i (k + 1) ≥ 0,

for all i. Hence, by induction, (A.2) for all k > 0.

APPENDIX B

Proof of Chapter 4 Lemma 1

First, we note that the function

h(y) ≡ −2

y + A(k)

is a concave non-decreasing scalar function of y > 0 because

d2h(y)

d2y
=

−4

(y + A(k))3
and A(k) > 0.

In addition, 1/r(k + 1) is concave w.r.t. f because

∂2

∂fj∂fi

(

1

r(k + 1)

)

=

−2 d γi(k + 1)

(ri(k + 1) fi)3
, for j = i;

0, for j 6= i,

and −2 d γi(k + 1)/(ri(k + 1) fi)
3 ≤ 0.

Therefore, S(k+1) = h(y)|y=1/r(k+1) is also a concave function of f as claimed.

148

APPENDIX C

Derivation of Chapter 5 Equation 5.8

To proceed let us note 5.2 and define the following.

Q =

Θ
∑

j=1

Q(j) and Q′ =

Θ
∑

j=1

Q′(j). (C.1)

Now one can rewrite 5.7 as

|Υ′(i)| ≤ 1

QQ′

[

N
∑

l=1

Q(i)

Θ
∑

j=1

Q(j)

Pr(χl|Cj)
|ǫjl| +

Θ
∑

j=1

Q(j)

N
∑

l=1

Q(i)

Pr(χl|Ci)
|ǫil|
]

. (C.2)

Now let us consider the following summation.

Θ
∑

i=1

|Υ′(i)| ≤ 1

QQ′

Θ
∑

i=1

Q(i)

[

N
∑

l=1

Θ
∑

j=1

Q(j)

Pr(χl|Cj)
|ǫjl|
]

+
1

QQ′

Θ
∑

j=1

Q(j)

[

N
∑

l=1

Θ
∑

i=1

Q(i)

Pr(χl|Ci)
|ǫil|
]

(C.3)

≤ 1

QQ′Q

[

2

N
∑

l=1

Θ
∑

j=1

Q(j)

Pr(χl|Cj)
|ǫjl|
]

≤ 1

Q′

[

2
N
∑

l=1

Θ
∑

j=1

Q(j)

Pr(χl|Cj)
|ǫjl|
]

≤

N
∑

l=1

Θ
∑

j=1

Bjl |ǫjl|

Θ
∑

j=1

Q′(j)

. (C.4)

149

Bibliography

[AG92] M. A. Abidi and R. C. Gonzalez, Data Fusion in Robotics and Machine
Intelligence, Academic Press, San Diego, CA, 1992.

[AMG07] T. Auld, A. W. Moore, and S. F. Gull, Bayesian neural networks for
Internet traffic classification, IEEE Transactions on Neural Networks
18 (2007), no. 1, 223–239.

[BCKC02] Y.-S. Choi B.-C. Kim and Y.-Z. Cho, An enhanced marking strat-
egy for explicit congestion notification in the internet, IEEE Inter-
national Conference on Communications 2002 (ICC2002) (New York
City, USA), April 2002, pp. 2330–2334.

[Ber99] D. P. Bertsekas, Nonlinear Programming, second ed., Athena Scien-
tific, Belmont, MA, 1999.

[BP95] L. S. Brakmo and L. L. Peterson, TCP Vegas: End to end congestion
avoidance on a global Internet, IEEE Journal on Selected Areas in
Communications 13 (1995), no. 8, 1465–1480.

[BP99] S. Blackman and R. Popoli, Design and Analyis of Modern Tracking
Systems, Artech House, Norwood, MA, 1999.

[Bro00] P. Brown, Resource sharing of TCP connections with different round
trip times, IEEE INFOCOM 2000 (Tel-Aviv, Israel), March 2000,
pp. 1734–1741.

[BTA+06] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian,
Traffic classification on the fly, ACM SIGCOMM Computer Commu-
nication Review 36 (2006), no. 2, 23–26.

[BTS06] L. Bernaille, R. Teixeira, and K. Salamatian, Early application identi-
fication, Proc. International Conference On Emerging Networking Ex-
periments And Technologies 2006 (Lisboa, Portugal), December 2006,
pp. 2521–2524.

[Bun96] W. Buntine, Guide to the literature on learning probabilistic networks
from data, IEEE Transactions on Knowledge and Data Engineering 8
(1996), no. 2, 195–210.

150

151

[CCC03] Y.-C. Chan, C.-T. Chan, and Y.-C. Chen, An enhanced congestion
avoidance mechanism for TCP Vegas, IEEE Communications Letters
7 (2003), no. 7, 343–345.

[CFM+09] M. Chen, X. Fan, M. N. Murthi, T.D. Wickramarathna, and K. Pre-
maratne, Normalized queuing delay: Congestion control jointly uti-
lizing delay and marking, IEEE/ACM Transactions on Networking
(2009), To appear.

[CV05] T. M. Chen and V. Venkataramanan, Dempster-Shafer theory for in-
trusion detection in ad hoc networks, IEEE Internet Computing 9
(2005), no. 6, 35–41.

[CWL04] J. Cheng, D. X. Wei, and S. H. Low, FAST TCP: Motivation, archi-
tecture, algorithms, performance, Proc. IEEE INFOCOM’04 (Hong
Kong), vol. 4, March 2004, pp. 2490–2501.

[CYMBKC00] C. Chee-Yee, S. Mori, W. H. Barker, and C. Kuo-Chu, Architectures
and algorithms for track association and fusion, IEEE Aerospace and
Electronic Systems Magazine 5 (2000), no. 1, 5–13.

[DBP06a] D. A. Dewasurendra, P. H. Bauer, and K. Premaratne, Distributed
evidence filtering in networked embedded systems, Networked Embed-
ded Sensing and Control (P. J. Antsaklis and P. Tabuada, eds.), Lec-
ture Notes in Control and Information Sciences, vol. 331, Springer,
Berlin/Heidelberg, Germany, 2006, pp. 183–198.

[DBP06b] , Distributed evidence filtering: The recursive case, Proc. IEEE
International Symposium on Circuits and Systems (ISCAS’06) (Kos,
Greece), May 2006, pp. 4731–4734.

[DBP07] , Evidence filtering, IEEE Transactions on Signal Processing
55 (2007), no. 12, 5796–5805.

[DL04] F.-B. Duh and C.-T. Lin, Tracking a maneuvering target using neural
fuzzy network, IEEE Transaction on Systems, Man and Cybernetics,
Part B: Cybernetics 34 (2004), no. 1, 16–33.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood
from incomplete data via the EM algorithm, Journal of the Royal Sta-
tistical Society, Series B (Methodological) 39 (1977), no. 1, 1–38.

[DS04] F. Delmotte and P. Smets, Target identification based on the trans-
ferable belief model interpretation of Dempster-Shafer model, IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans 34 (2004), no. 4, 457–471.

152

[EMA06] J. Erman, A. Mahanti, and M. Arlitt, Internet traffic identification
using machine learning, IEEE Global Telecommunications Conference
(GLOBECOM’06) (San Francisco, CA), November 2006, pp. 1–6.

[EMA+07] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, Of-
fline/realtime traffic classification using semi-supervised learning, Per-
formance Evaluation 64 (2007), no. 9-12, 1194–1213.

[FB00] V. Firoiu and M. Borden, A study of active queue management for
congestion control, IEEE INFOCOM 2000 (Tel Aviv, Israel), March
2000, pp. 1435–1444.

[FF99] L. Frenkel and M. Feder, Recursive expectation-maximization (EM)
algorithms for time-varying parameters with applications to multiple
target tracking, IEEE Transactions on Signal Processing 47 (1999),
no. 2, 306–320.

[FJ93] S. Floyd and V. Jacobson, Random early detection gateways for con-
gestion avoidance, IEEE/ACM Transactions on Networking 1 (1993),
no. 4, 397–413.

[Flo03] S. Floyd, Highspeed TCP for large congestion windows, Tech. Rep.
RFC 3649 Experimental, IETF,, December 2003.

[GGB+02] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jans-
son, R. Karlsson, and P.-J. Nordlund, Particle filters for positioning,
navigation, and tracking, IEEE Transactions on Signal Processing 5
(2002), no. 1, 425–437.

[GH01] Q. Gan and C. J. Harris, Comparison of two measurement fusion meth-
ods for Kalman-filter-based multisensor data fusion, IEEE Transac-
tions on Aerospace and Electronic Systems 37 (2001), no. 1, 273–279.

[GK01] R. Gibbens and P. Key, Distributed control and resource marking using
best-effort routers, IEEE Network 15 (2001), no. 3, 54–59.

[HD06] M. Huang and S. Dey, Dynamic quantizer design for hidden Markov
state estimation via multiple sensors with fusion center feedback, IEEE
Transactions on Signal Processing 54 (2006), no. 8, 2887–2896.

[HL01] D. L. Hall and J. Llinas (eds.), Handbook of Multisensor Data Fusion,
CRC Press, Boca Raton, FL, 2001.

[HL08] D. He and H. Leung, Network intrusion detection using CFAR abrupt-
change detectors, IEEE Transactions on Instrumentation and Mea-
surement 57 (2008), no. 3, 490–497.

153

[HLG06] W. Hu, J. Li, and Q. Gao, Intrusion detection engine based on
Dempster-Shafer’s theory of evidence, Proc. 2006 International Con-
ference on Communications, Circuits and Systems (Guilin, China),
2006.

[HPS07] K. K. R. G. K. Hewawasam, K. Premaratne, and M.-L. Shyu, Rule
mining and classification in a situation assessment application: A be-
lief theoretic approach for handling data imperfections, IEEE Transac-
tion on Systems, Man and Cybernetics, Part B: Cybernetics 37 (2007),
no. 6, 1446–1459.

[JE07] A. Josang and Z. Elouedi, Intperpreting belief functions as dirich-
let distributions, Proc. 9th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty (Hammamet,
Tunisia), October 2007, pp. 393–404.

[KBKL03] A. Tang K. B. Kim and S. H. Low, A stabilizing AQM based on virtual
queue dynamics in supporting TCP with arbitrary delays, 42nd IEEE
Conference on Decision and Control 2003 Proceedings (Hawaii, USA),
December 2003, pp. 3665–3670.

[KBS03] T. Kirubarajan and Y. Bar-Shalom, Kalman filter versus IMM esti-
mator: When do we need the latter?, IEEE Transactions on Aerospace
and Electronic Systems 39 (2003), no. 4, 1452–1457.

[Kel03] T. Kelly, Scalable TCP: Improving performance in highspeed wide area
networks, Computer Communication Review 32 (2003), no. 2.

[KMT98] F. P. Kelly, A. Maulloo, and D. Tan, Rate control in communication
networks: shadow prices, proportional fairness and stability, Journal
of the Operational Research Society 49 (1998), 237–252.

[KPF05] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, BLINC: mul-
tilevel traffic classification in the dark, Proc. Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM’05) (Philadelphia, PA), August 2005,
pp. 229–240.

[KR04] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach Featuring the Internet, Addison-Wesley, Menlo Park, CA,
2004.

[LL99] S. H. Low and D. E. Lapsley, Optimization flow control—I: basic al-
gorithm and convergence, IEEE/ACM Transactions on Networking 7
(1999), no. 6.

154

[LM01] I. K. Leung and J. K. Muppala, Packet marking strategies for explicit
congestion notification (ECN), IEEE International Conference on Per-
formance, Computing, and Communications 2001 (Phoenix, Arizona,
USA), April 2001, pp. 17–23.

[LM06] W. Li and A. W Moore, Learning for accurate classification of real-
time traffic, Proc. Conference on Future Networking Technologies
(CoNEXT’06) (Lisboa, Portugal), December 2006.

[Log] C. Logg, Characterization of the traffic between SLAC and
the Internet, http://www.slac.stanford.edu/comp/net/slac-
netflow/html/SLAC-netflow.html.

[Low03] S. H. Low, A duality model of TCP and queue management algorithms,
IEEE/ACM Transactions on Networking 11 (2003), no. 4, 525–536.

[LPW02] S. H. Low, L. L. Peterson, and L. Wang, Understanding TCP Vegas:
a duality model, Journal of the ACM 49 (2002), no. 2, 207–235.

[MHLB04] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, Flow clustering
using machine learning techniques, Proc. International Workshop on
Passive and Active Measurement (PAM’04) (C. Barakat and I. Pratt,
eds.), Lecture Notes in Computer Science, vol. 3015, Springer-Verlag,
Berlin, Germany, 2004, pp. 205–214.

[MKK+01] D. Moore, K. Keys, R. Koga, E. Lagache, and K. C. Claffy, The
CoralReef software suite as a tool for system and network adminis-
trators, Proc. USENIX Conference on System Administration (San
Diego, CA), December 2001, pp. 133–144.

[MW00] J. Mo and J. Walrand, Fair end-to-end window-based congestion con-
trol, IEEE/ACM Transactions on Networking 8 (2000), no. 5, 556–567.

[MZ05] A. W. Moore and D. Zuev, Internet traffic classification using
Bayesian analysis techniques, Proc. ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Sys-
tems (Baniff, Alberta, Canada), June 2005, pp. 50–60.

[NA06] T. T. T. Nguyen and G. Armitage, Training on multiple sub-flows to
optimise the use of machine learning classifiers in real-world IP net-
works, Proc. IEEE Conference on Local Computer Networks (LCN’06)
(Tampa, FL), November 2006, pp. 369–376.

[NLA] NLANR PMA: Special Traces Archive, National Laboratory for Ap-
plied Network Research, Measurement and Network Analysis Group
(NLANR/MNAG), San Diego Supercomputer Center (SDSC), Uni-
versity of California (San Diego, CA), http://pma.nlanr.net/Special/.

155

[ns2] The Network Simulator—ns-2, Information Sciences Institute, Viterbi
School of Engineering, University of Southern California (Los Angeles,
CA), http://www.isi.edu/nsnam/ns.

[ONV06] O. Ozdemir, R. Niu, and P. K. Varshney, Channel aware particle fil-
tering for tracking in sensor networks, Proc. of the Thirty-Ninth An-
nual Asilomar Conference on Signals, Systems, and Computers (Pacific
Grove, CA), October 2006, pp. 290–294.

[OS07] R. Olfati-Saber, Distributed Kalman filtering for sensor networks,
Proc. IEEE Conference on Decision and Control (CDC’07) (New Or-
leans, LA), December 2007, pp. 5492–5498.

[OSST04] A. Oveissian, K. Salamatian, A. Soule, and N. Taft, Fast flow classi-
fication over Internet, Proc. Conference on Communication Networks
and Services Research (CNSR’04) (Fredericton, N.B., Canada), May
2004, pp. 235–242.

[Pea88] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, San Francisco, CA, 1988.

[PTK06] J. Park, H.-R. Tyan, and C.-C. J. Kuo, GA-based Internet traffic clas-
sification technique for QoS provisioning, Proc. IEEE International
Conference on Intelligent Information Hiding and Multimedia Signal
Processing (IIH-MSP’06) (Pasadena, CA), December 2006, pp. 251–
254.

[RFC97] RFC, RFC 2001: TCP slow start, congestion avoidance, fast retrans-
mit, and fast recovery algorithms, Tech. report, January 1997.

[RFC99] , RFC 2581: TCP congestion control, Tech. report, April 1999.

[RGR06] A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis, SOI-KF: Dis-
tributed Kalman filtering with low-cost communications using the sign
of innovations, IEEE Transaction of Signal Processing 54 (2006),
no. 12, 4782–4795.

[RMP06] M. C. Ranasingha, M. N. Murthi, and K. Premaratne, A congestion
control method to support coordinated bandwidth allocation, Proc. Con-
ference on Information Sciences and Systems (CISS’06) (Princeton,
NJ), March 2006, pp. 597–602.

[RMPF08] M. C. Ranasingha, M. N. Murthi, K. Premaratne, and X. Fan, Trans-
mission rate allocation in multi-sensor target tracking, Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’08) (Las Vegas, NV), March 2008.

156

[RMPF09] , Transmission rate allocation in multisensor target tracking
over a shared network, IEEE Transactions on Systems, Man and Cy-
bernetics, Part B: Cybernetics 39 (2009), no. 2, 348–362.

[RSSD04] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, Class-of-service
mapping for QoS: a statistical signature-based approach to IP traffic
classification, Proc. ACM SIGCOMM Conference on Internet Mea-
surement (Taormina, Sicily, Italy), October 2004, pp. 135–148.

[Sah96] R. K. Saha, Track-to-track fusion with dissimilar sensors, IEEE Trans-
actions on Aerospace and Electronic Systems 32 (1996), no. 3, 1021–
1029.

[SC06] V. Saligrama and D. Castanon, Reliable tracking with intermittent
communications, Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP’06) (Toulouse, France), vol. 5,
May 2006, pp. V–V.

[Sha76] G. Shafer, A Mathematical Theory of Evidence, Princeton University
Press, Princeton, NJ, 1976.

[SM08] H. Shah and D. Morrell, Non-myopic sensor scheduling for a dis-
tributed sensor network, Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing 2008 (ICASSP 2008) (Las
Vegas, NV), March 2008, pp. 2541–2544.

[Sme99] P. Smets, Practical uses of belief functions, Proc. Conference on Uncer-
tainty in Artificial Intelligence (UAI’99) (K. B. Laskey and H. Prade,
eds.), Morgan Kaufmann, San Francisco, CA, 1999, pp. 612–621.

[SSF+04] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan,
and S. S. Sastry, Kalman filtering with intermittent observations, IEEE
Transactions on Automatic Control 49 (2004), no. 9, 1453–1464.

[Wat98] G. A. Watson, Multisensor ESA resource management, Proc. IEEE
Aerospace Conference, vol. 5, March 1998, pp. 13–27.

[WF99] I. H. Witten and E. Frank, Data mining: Practical machine learning
tools and techniques with java implementations, Morgan Kaufmann,
San Francisco, CA, 1999.

[WMM04] C. Wright, F. Monrose, and G. Masson, HMM profiles for network
traffic classification, Proc. ACM Workshop on Visualization and Data
Mining for Computer Security (Washington, DC), October 2004,
pp. 9–15.

157

[WZA06] N. Williams, S. Zander, and G. Armitage, A preliminary performance
comparison of five machine learning algorithms for practical IP traffic
flow classification, ACM SIGCOMM Computer Communication Re-
view 36 (2006), no. 5, 5–16.

[XHR04] L. Xu, K. Harfoush, and I. Rhee, Binary increase congestion control
for fast, long distance networks, Proc. IEEE INFOCOM’04) (Hong
Kong), 2004.

[ZMVM06] L. Zuo, K. Mehrotra, P. K. Varshney, and C. K. Mohan, Bandwidth-
efficient target tracking in distributed sensor networks using par-
ticle filters, Proc. International Conference on Information Fusion
(ICIF’06) (Florence, Italy), July 2006, pp. 1–4.

[ZNA05] S. Zander, T. Nguyen, and G. Armitage, Automated traffic classi-
fication and application identification using machine learning, Proc.
IEEE Conference on Local Computer Networks (LCN’05) (Sydney,
Australia), November 2005, pp. 250–257.

[ZNV08] L. Zuo, R. Niu, and P. K. Varshney, A sensor selection approach for
target tracking in sensor networks with quantized measurements, Proc.
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing 2008 (ICASSP 2008) (Las Vegas, NV), March 2008, pp. 2521–
2524.

[ZPB02] J. Zhang, K. Premaratne, and P. H. Bauer, Local resource management
of distributed sensor networks via static output feedback control, Proc.
IEEE International Symposium on Circuits and Systems (ISCAS’02)
(Scottsdale, AZ), vol. III, May 2002, pp. 25–28.

[ZSP+04] J. Zhang, S. P. Subasingha, K. Premaratne, M.-L. Shyu, M. Kubat,
and K. K. R. G. K. Hewawasam, A novel belief theoretic associa-
tion rule mining based classifier for handling class label ambiguities,
Foundations in Data Mining (FDM) Workshop, IEEE International
Conference on Data Mining (ICDM’04) (Brighton, UK), November
2004.

