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ABSTRACT 

Graph problems models many of real life applications, where the quantity of the nodes 

often changes with time. In such graphs, the evaluation of shortest tour is important as various 

guiding and navigation systems use this information. Nodes of a graph, in many applications, 

often change over time, and evaluation of shortest tour is essential whenever a new node is added 

or deleted. We, propose an algorithm that deals with such situations. We have used the Ant 

System with a different meta-heuristics, to find the shortest tour in a graph. We have analyzed 

the performance of our proposed algorithm with other algorithms by using the problem instances 

given in TSPLIB.  The proposed modification to the Ant System heuristics will also work for 

directed and non-fully connected graphs. We show the use of meta-heuristics that make our 

algorithm free from stagnation, that is, we prevent the ants from taking up the same tour 

repeatedly which helps to continuously search for better results.  Our approach further adopts a 

method, that is, a modification to Gallant’s Technique, to choose the appropriate convergence 

within the reasonable computation time. 
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Chapter 1 

Introduction 

 

The travelling salesman problem (TSP) is one of the most widely studied problems in the 

area of operations research and theoretical computer science. In this thesis we will consider 

solutions to this problem that make use of ant colony heuristics. TSP is a problem where a 

salesman, starting from his hometown, has to find the shortest tour that will take him through a 

given set of cities and then back home, such that each city is visited exactly once. Formally, the 

TSP can be represented by a complete undirected weighted graph    G = (V, E) with V  being the 

set of vertices representing the cities, and E  being the set of edges, and we need to find the 

shortest tour connecting all nodes. In other words, the goal in the TSP is to find a minimum 

length Hamiltonian circuit of the graph, where a Hamiltonian circuit is a closed path visiting 

each node of G exactly once [27]. 

 

There are various real-life applications of the TSP problem. The TSP naturally arises as a 

problem in many transportation and logistics applications, for example the problem of planning 

and organizing school bus routes to pick up the children in a school district. The TSP can also be 

modeled into the problem of DNA sequencing, where cities represent DNA fragments and we 

need to measure similarity between DNA fragments. Another application is the problem of 

placement of electronic components when designing a microchip.  
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This problem also has importance in theory of computational complexity, since TSP is a 

member of the class of NP-Hard problems. This problem can be solved by either using an exact 

algorithm or using heuristic algorithms. An exact algorithm is an algorithm that tries to find an 

optimal solution for a problem. Heuristic algorithms, on the other hand, are algorithms that use 

educated guesses and intuitive judgments to find a general way of finding good solutions that 

may not be optimal. For all known exact algorithms for the TSP, as the problem size increases 

the number of steps necessary to solve the problem increase exponentially. So for solving the 

TSP problem we will choose heuristic-based approach as they can provide reasonably good 

solutions in polynomial time.   

 

There are various heuristic-based algorithms that provide good solutions for the TSP 

problem. These methods include genetic algorithms, simulated annealing and Tabu search. We 

use ant-based heuristics, as they can run continuously and adapt to changes in real-time.  An 

individual ant can behave as salesman who is independently trying to solve the problem. 

 

  Another advantage of ant-based heuristics is that they can be applied to dynamic 

problems. A dynamic problem is defined as a problem in which the input data is continually 

changing [26]. The dynamic problem in the graphs are those which either deal with the addition 

and removal of nodes at any instance of time or those where edge-weights change between the 

pair of nodes [7] [12] [17]. The dynamics that we consider are situations where nodes can be 

added or removed. There are various graph problems, where data changes with time and there is 

immediate need for a shortest path such as in robotic path planning, 3D applications, and various 

routing and guiding systems [4] [8] [10] [25].  
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So, in this thesis, we try to improve the performance of the existing Ant heuristics and solve 

TSP in directed or undirected dynamically changing graphs.   

1.1 Background 

 

We have used the Ant system [16], which is a class of meta-heuristics that emulates real 

ants. The real ants start to wander randomly from their nest, and upon finding a food source they 

return to their colony while laying down pheromone trails. The remaining ants on finding such a 

path are not likely to wander randomly, but instead follow the trail, returning and reinforcing it if 

they find more food. However, the pheromone trail starts to evaporate due to environmental 

conditions such as the sun, rain, wind, etc, thus reducing its attractive strength. The more time it 

takes for an ant to travel down the path and back again, the more time the pheromones have to 

evaporate.  

 

Thus on a shorter path, by comparison, ants march over frequently and faster, and thus 

the pheromone density remains high as it is laid on the path. Pheromone evaporation also has the 

advantage of avoiding the convergence to a locally optimal food site. If there were no 

evaporation at all, the paths chosen by the first ants would likely be more attractive to the 

following ones. In that case, the exploration of the solution space would be constrained. Thus, 

when one ant finds a good path from the colony to a food source, other ants are more likely to 

follow that path. 

 

 

http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Pheromone
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Figure1: Example of artificial ants [16] 

 

A) The initial graph with distances. 

B) At time t=0 there is no pheromone on the graph edges; so ants choose to turn right or left  

     with equal probability. 

C) At time t=1 there is more pheromone on the shorter graph edges; so ants choose those edges    

     with higher probability. 

 

This behavior of the real ants is modeled by the ant-based heuristics using artificial ants. A 

more detailed explanation is provided in Chapter 2. 

 

   Artificial ants have the following properties: 

 Artificial ants have some memory 

 Artificial ants have vision  

 Artificial ants live in a discrete time environment 

These capabilities of an artificial ant will help us to solve the TSP problem. 
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1.2 Problem Statement 

This thesis focuses on solving the travelling salesman problem. In particular, it 

comes up with a meta-heuristics that will enable it to search continuously through the 

search domain to find a single-source shortest tour in a dynamically changing 

environment. 

1.3    Approach 

    To obtain a near-optimal solution, the procedure for laying pheromone and the function 

for controlling evaporation of pheromones should be based upon solution quality [16] [18]. So in 

our meta-heuristics we have proposed a new procedure for pheromone updating and pheromone 

evaporation.  

 

Our pheromone evaporation procedure has close similarities with the rank-based ant 

system approach [3]. The n solutions found in a single cycle are prioritized according to their 

length, and the pheromone is evaporated inversely, where n is the number of nodes. We 

experimented with other changes in the ant system which eventually helped us to solve 

dynamically changing problems [16]. These modifications include changes in the control 

parameters, pheromone-updating procedure and in the pheromone evaporation procedure. 

 

Our proposed method uses the elitist strategy [3] [5] [16].  We also use the lower-bound 

property of the max-min ant system [20] [21] [22].  In the elitist strategy a small amount of 

pheromone is laid on the first few shortest tours found, thus forcing the algorithm to make a 

biased selection towards these tours in the later iterations. The elitist strategy and the lower 
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bound property both helped to improve the quality of solutions. The changes adopted in these 

functions are described in sections 3.2 and 3.3.  

 

           Convergence is a desirable property in optimization and search algorithms. Convergence 

is a situation where the possible solutions unify to approach towards a definite value or a fixed or 

equilibrium state [17]. In ACO (Ant Colony Optimization) convergence is easy to achieve 

because of the desired stagnation condition of artificial ants [11]. If we force the new ants to 

follow the initially found shortest path, and if other ants originating from other nodes try to 

follow this path, they can easily move on this path. However, as each ant will select a path based 

on the distance they have traversed until now, the result is we get different solutions. Therefore 

to determine the termination condition in our proposed algorithm we apply the pocket algorithm 

[9]. We will treat the pocket content as the pheromone levels which will lead to an identical 

solution for a longer period of time and the misclassification as the shortest path length. This 

procedure will help us in selecting the desired convergence in a relatively fewer number of 

iterations. 

 

The Ant System meta-heuristic, when used for undirected graphs, causes the ants to 

follow any path involving the nodes that have not been traversed and use the probability function 

in order to complete a tour [14] [16]. In the case of a directed graph, there are fixed paths for the 

movement. When the ant moves on the graph, the computation effort increases as the number of 

possible rated solutions decreases. So it is a more complex task to get the optimal solution in 

directed graphs compared to undirected graphs [28]. 

 
 



 

7 

 

As an ant starts its movement in a directed graph, there is a possibility that it can move to 

any of the paths. The movement depends on two factors: pheromone level and edge length [16]. 

But there is a possibility that an ant can get trapped on a node where further movement is 

impossible. We call this a valid blocked path. To overcome these blocked paths, the Ant system 

takes a large number of cycles. Further, if the alternate solutions found are similar, then the 

number of cycles increases. So in our proposed method, we calculate the valid length of the valid 

edges in this path by calculating the summation of all the valid edges in this path. We also 

calculate the number of irregulaties associated with this path, i.e., the total number of nodes for 

which a valid path could not be found. 

 

For a dynamically changing environment, often the reset method and the population-

based approach are used to compute the tour [12]. In the reset method, whenever a new node is 

added or removed, the current pheromone values present on each edge of the graph are reset to 

the initial value of pheromone. In other words, whenever a new node is added or removed, this 

graph is treated as a new graph and ant heuristics are re-applied to this graph from the beginning. 

So we compare how our meta-heuristics perform against the reset method.   

 

In the next chapter we will consider the previous approaches and related background 

work done on the problem. In Chapter 3 we present our algorithm, and Chapter 4 describes the 

results. Finally Chapter 5 concludes this thesis and outlines future research possibilities. 

 

 



8 

 

Chapter 2 

Related Background  

  

The two popular heuristic-based algorithms for finding solutions of TSP are 

Simulated annealing and Tabu search [14]. Simulated annealing is a generic probabilistic 

meta-heuristic for the global optimization problem of applied mathematics, namely 

locating a good approximation to a global optimum of a given function in a large search 

space [29]. In the simulated annealing method, each point of the search space is 

comparable to some physical system, and the fitness function to be minimized is 

comparable to the internal energy of the system in that state. The goal is to bring the 

system, from an initial state, to a state with the minimum possible energy [29].   

 

Greedy algorithms can also be used to find solutions for the TSP, but they may 

not always yield a global optimal solution [23]. Thus we propose a meta-heuristics which 

not only has the advantages of the greedy heuristics, but also involves ant system 

ideologies, in order to find a good solution.  

 

Another approach that is being used is expansion-based algorithms; they work on 

surface modeling. A surface model can consist of millions of uncommon polygons. For 

the surface modeling, naïve algorithms are used. A naïve algorithm works by initially 

randomly analyzing a polygon. Then a selection for the next polygon surface is made 

such that it shares its boundaries and satisfies a fitness function, defined by the algorithm. 

A naïve algorithm tries to skip a few parts of the surface model without considering them 

http://en.wikipedia.org/wiki/Physical_system
http://en.wikipedia.org/wiki/Internal_energy
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further [15]. This naïve algorithm uses a two-step procedure: Initially it computes a local 

path and then later tries to select a search region based upon the initial value.  

 

In many cases, the naïve approach fails to find a healthy solution because the 

search domain has been reduced. Further, the search is also biased towards the solutions 

that are found during the initial local search. The algorithm tries to compute a local path 

based upon some global optimal criteria. If this solution belongs to a set of non-healthy 

solutions, then the algorithm can be unnecessarily pushed to a large search region [15]. 

 

So without searching the complete domain, it will be impossible to judge which 

region has the optimal path. Therefore, it is desired for an algorithm to consider all the 

regions irrespective of which one is better and that algorithm should continuously search 

for solutions. By reducing the search domain, we may increase the performance of our 

system, but the optimal solution is not guaranteed [15]. Thus even if a healthy solution is 

found, a desired algorithm should never stop the search for solutions because there is 

always a chance for better solutions.  

 

So our methodology involves the use of a number of heuristics, described in later 

sections, which will help us to find alternative solutions. These alternative paths may or 

may not be better than the existing best shortest path. But with the help of these 

heuristics, we are able to justify which regions in the search space cannot have optimal or 

good solutions and thus searching in those regions will not provide us with good 

solutions.    
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 We now describe the Simple Ant Heuristics. Given a fully connected graph G= (V, E), 

with Euclidean distances, where V  is the number of vertices and E is the edges between 

the vertices. Let bi(t) (i=1, ..., n) be the number of ants in city i at time t, and let n  be the 

total number of ants. Each ant is a simple agent with the following characteristics: 

 

 It chooses the town to go to with a probability that is a function of the town 

distance called the “visibility” and the amount of trail present on the connecting 

edge. 

 To force the ant to make legal tours, that is transitions to already visited cities are 

disallowed until a tour is completed. 

 When it completes a tour, it lays a substance called a trail on each edge (i,j) that it 

has visited.  

 

Each ant at time t chooses the next city, where it will be at time t+1. Therefore, we 

call an iteration of the algorithm, the m moves carried out by the m ants in the interval     

(t, t+1). Then after every m iterations of the algorithm (which we call a cycle) each ant 

has completed a tour.  At the end of each cycle we have m ants that found m tours. So at 

this point the trail intensity is updated by laying pheromone on the edges traversed by an 

ant and by evaporating the pheromone. Formally, the ant Heuristics algorithm is stated as 

follows [16]:  
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Formal Algorithm  

 

Initilize() 

1. Set t:=0    {t is the time counter} 

2. Set C:=0    {C is the cycles counter} 

3. For every edge (i,j)  

4.       Set an initial value τij(t) for trail intensity and Δτij =0 

5. Place the m ants on the n nodes 

 

Make_Ant_tour() 

6. Set s:=1    {s is the tabu list index} 

7. For k:=1 to m do  {This step initializes the Tabu List}  

8.    Place the starting town of the k-th ant in tabuk(s) 

9. Repeat until tabu list is full {this step will be repeated (n-1) times} 

10. Set s:=s+1 

11. For k:=1 to m do 

12.      Choose the town j to move to, with probability pij
k
(t) given by equation (4) 

                                          {the k-th ant is now on town i=tabuk(s-1) at time t} 

13.      Move the k-th ant to the town j 

14.   Insert town j in tabuk(s) 

 

 Compute_Path_Legth(tabuK) 

15.  For k:=1 to m do 

16.       Compute the length Lk of the tour described by tabuk 

17.         Update the shortest tour found 

Evaluate_Pheremone_to_be_laid() 

18. For every edge (i,j) 

19.       For k:=1 to m do 

20.               Δτi,j
k
 =  1/Lk if (i,j)  tour described in tabuk       

21.        Δτij:= Δτij + Δτij
k

  

Update_pheremone() 

22. For every edge (i,j) compute τij(t+n) according to equation τij(t+n)=ρ∙(τij)+ Δτij 

 

Check_termination_condition() 

23. Set t:=t+n 

24. Set C:=C+1 

25. For every edge (i,j)  

26. set Δτij:=0 

27. If (C < Cmax) and (not stagnation behavior) then 

28.       Empty all tabu lists 

29.       Go to step 6 

30. Else      
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31.       Print shortest tour 

32. Stop 

The algorithm starts by placing a single ant on each node. Each ant will use the 

probability function to evaluate the next node to visit. Once a decision is made the ants 

will travel to the next node, laying the pheromone on the travelled edge. This process is 

repeated while all the ants have not completed a legal tour. Once all ants have completed 

a legal tour, pheromone on all the edges is updated, and later pheromone is allowed to 

evaporate. These are the steps involved in a single cycle. The algorithm is allowed to run 

for a user-defined number of cycles, or until the stagnation is achieved.  

 

Stagnation is a situation where all the ants start to follow the same tour. We believe 

stagnation is not desirable, as better solutions to the problem may exist in the search 

space, and once stagnation is achieved ants will not be able to search the search space. So 

our algorithm avoids stagnation and continuously searches the search space. 

 

The complexity of the ant-cycle algorithm is O(Cn
2
m) after C cycles, where n is the 

number of cities and m is the number of ants. In fact, step 1 is O(n
2
+m), step 2 is O(m), 

step 3 is O(n
2
m), step 4 is O(n

2
m), step 5 is O(n

2
), step 6 is O(nm) [16]. Since there is 

linear relation between the number of towns and the best number of ants, the complexity 

of the algorithm is O(Cn
3
) [16]. 
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Chapter 3 

Methodology 

3.1 Initialization and Ant memory 

     We start with initializing the ant memory. We model our artificial ants to have some 

memory. This is represented by using a two-dimensional data structure in computer memory of 

size NxN, where N is the number of nodes in the graph. A row indicates the path followed by an 

ant. The algorithm proceeds by placing an ant on each node of the graph, which we will term as 

the “home node.” This is done by putting the address of each respective home node in the first 

column of every row in the ant memory. 

     We only place a single ant on each node as we want the number of ants present in the 

graph searching for a solution to be linear in the number of nodes. If there are a large number of 

ants present in the graph, then each route will have a considerably large amount of pheromone 

deposited on it due to the ant movement. The sufficient amount of pheromone will also be 

deposited on solutions with a large length. Thus a significant amount of time will be needed to 

evaporate the pheromone on the longer edges. If we have a smaller number of ants as compared 

to the number of nodes in the graph, then a very small amount of pheromone will be laid on the 

edges. The resulting high rate of pheromone evaporation could cause pheromone levels on some 

of the shorter edges to drop to zero. Hence it may take a long time to increase the amount of 

pheromone present on these edges.    
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As the ants are placed onto each node, we will initialize all the edges in the graph with a 

constant, very small amount of pheromone. This small amount of pheromone will act like a 

limiting factor. If the pheromone on an edge falls below this limit, we can discard the edge from 

being used in the next few iterations. Another importance of this value is that during the very 

first iteration, when probability is computed, this provides some relative influence of pheromone 

to probability function, without which the algorithm will start to behave as a greedy heuristic. 

           As the ants start to move from one edge to another, we must keep a record of the route 

they have covered and the amount of pheromone they have laid on the edges. So we make use of 

two other data structures that are similar to ant memory. After calculating the probability of 

whatever edge has to be selected, the ant that moves on it and lays a relative amount of 

pheromone on it, based on the length of the edge and also based on the length of the tour that it 

has covered. As the ant moves from one node to another, we record the amount of pheromone it 

lays on the node and the total tour length it has travelled. Based on this record, the edge is 

subjected to a varying rate of pheromone evaporation. The rate of pheromone evaporation is so 

varied that the routes with large tour lengths are subjected to a higher extent of pheromone 

evaporation, and shorter and better tour lengths are subject to lesser pheromone evaporation. 

This is done to ensure that pheromone is deposited on the edge based on the length of the tour. If 

an edge of small length is part of a big tour, then this shorter edge should receive more 

pheromone compared to longer edges of the same tour.  If a large edge is part of a short tour, 

then a considerably large amount of pheromone is deposited on that edge.  
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We consider         iterations as a single cycle, where N is the number of nodes in 

the graph. A cycle is complete when each ant has traversed all the nodes exactly once. After the 

completion of the cycle, the ant memory matrix will be full. All the tour lengths are computed 

and the shortest of them is stored separately. Once a single cycle is completed, we assume that 

these ants are dead, and new ants are placed on the nodes for the next cycle.  

3.2  Probability Function and Control Parameters: 

We have used the probability function as given in the equation and its purpose is to find 

the best node for the ant to move further. Thus probability of the k
th

 ant moving from node i  to 

node  j is: 

                               
      

    
     

 
      

 

                  
    

 
           

 
     (3.1) 

Where, 

ηij is the Visibility, the quantity 1/dij 

 

τij is the pheromone present on the edgeij. 

 

Ni
k
 specifies the nodes that anti has not traversed. 

 

Ni
h
 specifies the nodes that anti has traversed 

 

 

 

      We have also used the concept of control parameters with some modifications in their 

values. As the control parameters, α and β are used to manage the relative influence of the 

visibility factor and pheromone. If the value of α is zero, then the heuristic adopts a greedy 

nature and if α is greater than one, then the heuristic tends to encourage a speedy development of 
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inferior solutions. β is used to control the effect of pheromone on the probability. If β is equal to 

zero, then the heuristic considers the amplification of pheromone information. 

Our experiments revealed that if we sequentially increase both the values of α and β, the 

algorithm tends to generate good solutions that have a minimum percentage deviation from the 

optimal value. As discussed in ant system, to find the shortest path we get the inferior solutions 

for α ≥ 1 [18]. Through experimental results we found that for α = 1, we get inferior solutions. 

Thus, based on the results from the experiments, shown in Figure 4.1, in our meta-heuristics we 

will be using α = 0.5 and the β = 6.   

3.3 Pheromone Evaluation:  

In the beginning of our proposed heuristics, we have suggested the method for 

pheromone biasing along with pheromone updating and excessive pheromone removal method. 

After the completion of the first cycle as discussed in the Ant Memory section, we enforce an 

additional amount of pheromone on the edges of the shortest path, which was generated in the 

first cycle. 

This is done by a procedure similar to elitist strategy [4] [16]: 

                                                             (3.2) 

Where, 

N is the number of nodes 

PathLengthn is the length of shortest path generated in the first cycle. 
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This addition of pheromone will cause these edges to occur in the next few cycles, and 

when a shorter path is found, considerable amounts of pheromone will be evaporated on this path 

that we will discuss later under Rem_Excessive_Pheromone module.   

After applying equation 3.1, we further analyze the methods of pheromone deposits and 

evaporations in the Ant System and suggest the following changes in the subsequent sections. 

        The quantity of pheromone laid by an ant should be based on the quality of solution 

yielded, or else we have to face an array of premature solutions. Thus we evolved a new 

approach for updating the pheromone. Let the initial pheromone level present on the edges be 

ITij.  

The pheromone is deposited by 

                  
  

                                 (3.3) 

Where                              

                            

          
  

 

    
     if edgeij belongs to Pk                       (3.4) 

Where, 

 

Pk is the path covered by antk 

 

leg
k
 is the length of the path Pk  

 

η  is quantity of trail laid down by ants.  

 

ΔTij amount of pheromone to be added. 

 

 

We have also proposed the new approach for the pheromone evaporation which is treated 

separately, rather than including it with the pheromone updating method. After the completion of  
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a cycle, we prioritize the paths found in the ant memory. The priority of path Pk is denoted Ωn 

k=1 based on its length. The smaller the value of Ωk, the higher the priority. If all the paths 

yielded in a cycle are greater than the existing best path found, then we will degrade their priority 

by one. And if all the yielded paths are identical to GBSP, then we ensure that only pheromone 

deposition takes places without any evaporation.   

Now for each antk, and for every edgeij belonging in Pk, pheromone is evaporated by: 

Evapo_Pheromone_Path (Pk, Ωk)   

 ΔTij = Tij                                   

   For a: = 0 to Ωk  

            ΔTij = µ ΔTij 

   Tij = ITij + ΔTij    
 

 

Where, 

 

Tij is the trail present on the edgeij, which is present in the Pk  and µ =0.5, is rate of pheromone 

evaporation. 

The result of this multi-staged pheromone evaporation yields an extremely small value of 

the pheromone on edges belonging to longer tours. But still we do not allow the pheromone 

levels to drop below the ITij. This helps in preventing the edge from being branched off from the 

next coming iterations. Once a smaller tour than the current existing shortest tour is found, then 

an additional layer of pheromone is deposited on these edgeij, as shown in equation 3.5.  

Add_Excessive_Pheromone (New found Shortest Tour)  

                                 Tij = Ψ + Tij                        (3.5)                                      
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Where, Tij is the trail present on the edgeij which belongs to the new found shortest tour Ψ=0.3, 

is the excessive pheromone added. This Ψ=0.3 is a fixed value found using experiments. 

 

           Now we also remove this excessive pheromone „Ψ ‟, added on the edgeij from the previous 

best shortest tour. This pheromone accumulation process is only conducted when a new shortest 

tour is found. For this we use:  

Rem_Excessive_Pheromone (Old Shorter tour) 

ΔTij = Tij                                   

   For a: = 0 to n  

            ΔTij = Ψ ΔTij 

   Tij = ΔTij 
 

We found that our algorithm is making inclined decisions toward the initially found 

paths, or a decision toward any set of solutions found. But the removal of excessive pheromone 

by different stages of evaporation, from the edgeij of the shortest tour found, will prevent new 

ants from making a biased decision toward this tour. If solutions tend to lean toward the set of 

found solutions, then these solutions must also be present in the shortest tour.  When pheromone 

is evaporated, these edges will have a greatly reduced amount of pheromone. Thus, this 

algorithm will not make any inclined decisions.  

Also the removal of excessive pheromone from the edgeij will cause the pheromone level 

to eventually drop below the initial level ITij. This in turn will prevent the ants from following 

this tour and eventually yield new solutions.   
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3.4 Stagnation and Pocket Algorithm 

Stagnation was termed as a situation where all the ants will follow the same tour. The 

stagnation occurs when a strong amount of pheromone is laid on a considerably good solution 

and, after each iteration, the amount of pheromone is so enforced on the path. Then the ants tend 

to make the decision based on the probability function in favor of this tour. Thus the ants keep on 

selecting this tour. This is the point where the ant system converges to a solution. But a relatively 

best tour does not imply that this is always the globally best tour or nullify the fact that a better 

tour may exist.  Thus an algorithm must continue to perform such operations that will enable it to 

find an alternative solution. The alternative solution found may or may not be better than the 

existing good solution found.   

Thus we implement the above described methodology. During the execution of the above 

procedures, we don‟t allow the pheromone to fall below the initial value pheromone on any edge. 

But when a better tour than the existing found tour is established then we allow the pheromone 

on those edges to fall below the initial value, knowing that a better solution exists. This is where 

branching is performed. Once the pheromone is dropped below the initial value, there is a very 

little probability that this edge will be selected in the next coming iterations, as all other edges 

will have a considerably large amount of pheromone compared to it. 

   But as the algorithm proceeds, the quantity of pheromone on the smaller edges of the 

tours starts to increase in size, and the ants do tend to select these edges due to the relative 

importance of  β in the probability function. Thus eventually the amount of pheromone on these 

edges rises above the initial value and thus alternative solutions can be found.  
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 Our algorithm will terminate when one of the following three conditions is satisfied: 

A). The number of cycles exceeds beyond the maximum number of cycles i.e. Cmax. This value is             

generally inputted by the user. 

B). The total number of times the algorithm provides us with a set of constant good solutions, 

represented by the PocketValue, exceeds some user-defined constant. We decide to terminate the 

algorithm when we get the same solution for some fixed number of iterations. This again is a 

user-defined constant. 

C). The total number of continuous reoccurrences of the same solution exceeds some user-

defined constant value. Whenever we find a continuous set of constant values, we will store them 

in memory as a single packet. When such a packet is equal to a user-inputted number, we can 

terminate the algorithm. Each packet found can be of variable size but must be greater than one.   
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Formal Algorithm 

      Initialize() 

1. C =0,                                         {Counter for number of cycles} 

2. T = user defined value for termination  

3. For every edgeij , set Pheremone Trail to ITij                 {Initial pheromone trail value} 

4. Place a new ant on each node, i.e., on the first column of each row in „ntrav‟. 

 

      Make_Ant_tour() 

5. Until the „ntrav‟ is full                                  {Until each ant has completed a tour} 

6.       Chose the town j to move antk to, i.e.,  select the next node that          

       yielded the maximum probability. 

7.        Move antk to node j 

8.         Put this node j in the subsequent column ntrav for antk                       {i.e., column k} 

 

     Evaluate_CBSP(ntrav) 

9.  For k:=1 to n 

10.         Compute the length the tour length traversed by the antk 

11.   Find out CBSP                                                                 {Find the shortest path in ntrav} 

12.   If (C=0 ) then GBSP = CBSP 

 

     Evaluate_priority_for_each_path(ntrav) 

13.    Compute the priority Ωk of each pathk based on its length.  

                                                                                         {Smaller path has higher priority} 

14.    If (GBSP > CBSP) then 

15.         For every path pathk, we decrease the priority of the path by one 

     Evaluate_Pheremone_to_be_laid() 

16.    For every edgeij evaluate the amount of pheromone deposited on the edge      

                {shown in equation 3.3 and equation 3.4} 

17.    Evaporate pheromone on every edgeij, by  Evapo_Phremone (pathk, Ωk)   

                       {shown in section 3.3} 

 

     Pheremone_update_on_new_GBSP() 

18.    If (CBSP < GBSP) then Remove excessive pheromone from the edgesij of   

     GBSP, by Rem_Excessive_Pheromone (GBSP)                        {shown in section 3.3}  

19.          Add_Excessive_Pheromone (CBSP)               {shown in section 3.3} 

20.          GBSP = CBSP     

21.    If (CBSP < GBSP) then  

22.          Update Pocket Contents, Store the path CBSP, Store Pheromone instance 
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      Evaluate_Pockets()                                                  {Checks the pocket size, no of pockets} 

23.     If (CBSP = GBSP) then 

24.         Current_ren_length = Current_ren_length +1 

25.     If (Current_ren_length > Best_run_length)  then 

26.          Store Pheromone instance 

27.          Best_run_length = Current_ren_length                       {Determining Pocket Size} 

28.    If ((PREVIOUS_CBSP! = GBSP) and  (CBSP = GBCP)) then 

29.          PocketValue = PocketValue  + 1                      {Determining number of pockets} 

30.    PREVIOUS_CBSP = CBSP 

 

     Termination_check() 

31.    C = C +1;  

32.    If (C > Cmax) or (PocketValue > PocketValuemax) or  

    (Best_run_length > PocketSizemax) then 

33.            Print GBSP 

34.    Else Goto Step 4 

35.    Stop 

 

3.5 Dynamic Graphs: 

The above-mentioned procedures work well for dynamically changing graphs. In 

dynamic graphs, nodes can be randomly added or removed. Whenever a new node is added, all 

other nodes are directly linked to this node through their Euclidean distance and the initial value 

of pheromone on these edges. When a node is removed, the pheromone levels of the node and of 

all the edges connecting to it will be set to zero.  

Each time a new node is added, the number of columns in the ant memory will be altered. 

Thus to make a complete legal tour, the ants will have to take the new added node into account 

and then would have to select this node. This would now alter the tour length and amount of 

pheromone laid on each edge. Thus when the pheromone evaporation is done, varying amounts 

of pheromone will be evaporated on these edges. So now the ants will tend to increase the 
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amount of pheromone on the shorter tours. These new tours formed may have a tour length lesser 

or greater than the initially found shorter tours. This actually depends on coordinates of where 

the new node is added. A similar action will be performed when a node is removed.  It takes a 

longer time to find a new shorter tour when a node is removed because the ants would have 

already laid a considerable amount of pheromone on those edges. Trying to reduce the intensity 

of pheromone on those edges and finding a new tour takes more time compared to when a new 

node is added. 
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Chapter 4 

 

Results 

 

 
 

The main goal of this thesis is to show how both the control parameters and the dynamic 

changing behavior of the graph affect convergence. This thesis uses the problems from the 

TSPLIB for analysis [1]. TSPLIB is a library of sample instances for the TSP and related 

problems from various sources and types of graphs, such as fully connected graphs or directed 

graphs.  

 

TSPLIB defines a number of problems like Berlin 52, where ‘Berlin’ is the name of the 

graph that represents 52 locations in Berlin. The edge weight type is ECU_2D [31], which is 

represented as a fully connected, two dimensional graph with Euclidean distances between each 

location. Another problem used was bays29; edge weight type is GEO meaning edge weights are 

geographical distances. The locations of nodes are given in latitudes and longitudes. Atta48 was 

also one of the graphs used.  It is a graph with Pseudo-Euclidean distances, where distances are 

represented by the number of hops required to communicate. Another graph used was the 

Dsj1000, a 1000 node graph. The edge weight type in this graph is CEIL_2D [31], which means 

the Euclidean distances in two dimensions are rounded up.   

 

We also performed experiments with a 36 node graph with Manhattan distances. 

Manhattan distance is the distance between two points measured along axes at right angles. The 

results for which are shown in Figure 4.1. Figure 4.1a shows the Manhattan graph with unit 

distances and Figure 4.1b shows the solution yielded by the algorithm shown in blue lines. 
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TABLE 4.1: The shortest path yielded for the underlying problems 

 

 

 

Problem 

Name 

 

Edge 

Weight 

Type 

 

Number 

of 

Nodes 

First 

Occurrence 

of Solution 

(on Cycle 

number) 

 

Convergences 

(After number 

of cycles) 

 

 

Path 

Length 

 

Path 

Atta48 Pseudo-

Euclidean 

48 21 272 10628 8,1,9,38,31,44,18,7,28,36,6,37,19, 

27,43,17,30,20,12,15,33,46,40,3,2, 

16,41,34,14,25,13,23,11,47,21,39, 

32,48,5,29,2,4,26,10,42,24,45,35,8 

bays29 GEO 29 174 246 2705 9,17,24,13,7,28,8,26,19,1,18,6,27,21 

1000,12,4,10,11,23,5,16,3,14,22,2,2

5,20,15 

Berlin52 ECU_2D 52 15 306 7542 46,5,15,24,48,37,44,35,36,39,40,38,

6,4,25, 12,28,27,26,47,14,13,52,11, 

51,33,43,10,9,8,41,19,45,32,49,1, 

22,31,18,3,17,21,23,20,50,16,29,30,

42,7,2,46 

Eli51 ECU_2D 51 411 798 442 40,13,41,19,42,44,15,45,33,10,39, 

30,34,50,9,49,5,38,11,32,1,22,2,21, 

20,3,35,36,28,31,8,26,7,23,6,14,25, 

18, 4,17,37,12,47,46,51, 

27,48,24,43,40 

St70 ECU_2D 70 91 1264 675 30,20,14,3,32,7,2,4,18,42,6,41,43, 

17,9,40,61,39,45,25,46,27,68,44,8, 

28,26,49,55,19,24,15,57,22,63,66, 

59,69,31,13,29,70,35,38,23,1,36,16,

47,37,58,50,10,5,53,52,60,12,21,34,

33,54,62,48,67, 11,56,51,65,64,30 

Swiss42 ECU_2D 42 57 358 1284 33,1,2,7,5,4,3,28,29,31,30,9,10,24, 

42,11,26,12,13,19,27,6,14,20,15,27,

16,38,8,18,32,37,36,34,21,35,39,23,

40,22,41,25,33 

ulysses16 ECU_2D 16 20 167 6859 11,9,10,7,6,5,15,14,13,12,16,1,8,4,2,

3,11 

ulysses22 ECU_2D 22 63 216 7013 3,2,17,4,18,22,8,1,16,12,16,14,15,5,

6,7,19, 21,20,10,9, 11,3 
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                                   Figure 4.1a                                             Figure 4.1 b 

Figure 4.1: Shows the solution to a 36 node Manhattan graph. 

 

The problems defined in the Table 4.1 are standard problems taken from the TSPLIB. 

TSPLIB is a library of sample instances for the TSP (and related problems) from various sources 

and of various types. TSP is defined as: given a set of n nodes and distances for each pair of 

nodes, find a roundtrip of minimal total length visiting each node exactly once. The distance 

from node i to node j is the same as from node j to node i. We also made sure that there is one ant 

on every node. The optimal solutions for the above stated problems are given in Table 4.2 [1].   
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TABLE 4.2: The optimal solution yielded for the underlying problems 

 

Problem Name Optimal Solution 

Atta48 10628 

Berlin52 7542 

Eli51 426 

St70 675 

Swiss42 1273 

ulysses16 6859 

ulysses22 7013 

 

A comparison of Table 4.1 and Table 4.2 shows that we found optimal solutions for 

problems like Atta 48, Berlin 52, Swiss 42, Ulysses 16 and Ulysses 22 in less than 500 cycles.  

 

We also compared our algorithm with Simulated annealing [33] and Tabu search [34]. The 

algorithms were executed on Berlin 52. The results are shown in Table 4.3 

 

 

TABLE 4.3: A comparison of our Ant based approach to Simulated annealing and Tabu  

                            search on Berlin 52. 

 

Algorithm  First Occurrence of Solution 

(on Cycle number) 

Shortest Path Length found 

Ant based algorithm 15 7542 

Tabu search 236 8667 

Simulated annealing 157 7452 
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We also performed our experiments to evaluate a range of the control parameters α and β. 

When the test was performed on Ulysses 16, we get the path length 6859 and convergence in less 

than 500 cycles, especially for the pair values of:  

 

 

1. (α =0.4, =6) 

2. (α =0.5, =6) 

3. (α =0.6, =6) 

 

The result of path lengths found for various combination values of α and β are shown in 

Figure 4.2.  

α and β are the control parameters, where α controls the relative influence of the pheromone 

laid and β controls the relative influence of the length of the path covered. Therefore the 

transition probability function is a trade-off between visibility and pheromone intensity present 

on the path at time t. If α is set to zero, the closest cities are more likely to be selected. This 

corresponds to a classic greedy algorithm (with multiple starting points, since ants are initially 

randomly distributed over the cities). If β is set to zero, only pheromone amplification is at work, 

i.e., only pheromone is used, without any heuristic bias. This generally leads to rather poor 

results and, in particular, for values of α > 1, it leads to a rapid emergence of a stagnation 

situation. That is, a situation in which all the ants follow the same path and construct the same 

tour. 
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Figure 4.2: Shows the relative effect of various values of α and β on the best solution for the 

problem ‘Ulysses 22’. 

 

We performed a comparison of our algorithm and the Simple ACO on the problem 

named Oliver 30.  This is because most of the solutions stated in for Simple ACO are shown 

with respect to Oliver 30 [16]. Oliver 30 is a problem from TSPLIB for which the optimal 

solution is 423 [1].  

 

The following graph shows and compares the shortest path found by the Simple ACO and 

by our approach. The first occurrence of the best solution path was found on the 34th cycle by 



31 

 

our approach, shown in Figure 4.4, while it took Simple ACO roughly 300 cycles, shown in 

Figure 4.3 [16].   

 

 

Figure 4.3: Shows the best path found by Simple ACO per cycle. 

 

Figure 4.4: Shows the best path found by our algorithm per cycle 
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We observe such changes because we laid the pheromone on the edge based on the 

quality of the solution. That is if we have a longer path, then a smaller amount of pheromone will 

be deposited. When we have a shorter path, more pheromone will be deposited on this path. 

Another important point to note is that a shorter edge in a longer path will receive more 

pheromone compared to a longer edge in a longer path, which will receive less pheromone. This 

procedure is described by equation 3.4.   

Also, the average node branching of the graphs in our approach does not fall as rapidly as 

of the Simple ACO. Figure 4.4 shows that the average branching factor falls below 15 in the first 

100 cycles and falls below 10 in less than 250 cycles [16]. This means the algorithm is rapidly 

discarding the possible solutions without any scope of re-considering them for a possible 

solution, as they have a branching factor of 0.1. So, once the pheromone level has fallen below 

0.1, that edge is branched off. On the other hand, in our approach we do not let the pheromone 

level on any edge fall below the initial level of pheromone ITij. We only let the pheromone level 

fall below the ITij when we find a path that is better than the existing path by removing excess 

pheromone on the previously found best path by the procedure defined in section 3.3. But still, 

these edges in the previously found best path can be reconsidered by any ant, if the ant reaches 

these edges and has to traverse them in order to complete the tour. So even if we branch off a 

node, we make sure to reconsider the edge if an ant wants to complete a legal tour using this 

edge. Figure 4.6 shows that in our approach, the average branching factor does not decrease 

rapidly. Thus, we ensure that our domain of solutions does not decrease rapidly and we still have 

a lot of solutions to consider before arriving on a final solution path. 
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Figure 4.5: Shows the average branching of node per cycle for simple ACO. 

 

 

              Figure 4.6: Shows the average branching of node per cycle for our algorithm. 

 

Another feature of this algorithm is that the standard deviation of the all the tours found 

during a single cycle never becomes constant or approaches to zero. This is credited to the fact 

that the ant lays pheromone and makes a decision on the amount of pheromone to lay on the edge 

by taking into consideration the overall distance it had travelled until now, and the total number 

of nodes still left in order to complete a legal tour. This is done in order to ensure that the 
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pheromone is laid based on the quality of the solution. Figure 4.7 – Figure 4.13 show the 

standard deviation of tours per cycle. 

 

 

Figure 4.7: Shows the Standard Deviation for Atta 48 per cycle 

 

 

 

Figure 4.8: Shows the Standard Deviation for Berlin 52 per cycle 
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Figure 4.9: Shows the Standard Deviation for Eli 51 per cycle 

 

 

 

 

 

Figure 4.10: Shows the Standard Deviation for st 70 per cycle 
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Figure 4.11: Shows the Standard Deviation for Ulysses 16 per cycle 

 

 

 

Figure 4.12: Shows the Standard Deviation for Ulysses 22 per cycle 
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We can observe that when the standard deviation becomes zero, then all the ants will 

follow the same path. This is the situation of stagnation. And when the standard deviation 

becomes constant, we can say that in each cycle the same tours are formed again and again. But 

from the graphs in Figure 4.7 to Figure 4.12, we can conclude that our approach is free from 

stagnation, and a continuous search for a better solution is carried out in each cycle of the 

algorithm. 

Another feature we tried to incorporate in our approach is a method to handle 

dynamically changing graphs. For Ulysses 22, we added and removed nodes from a graph over 

time. We compare our method to the reset method which is described as applying the Simple 

ACO algorithm to the new graph formed by adding or removing nodes [16]. When a new node is 

added, a fully connected graph is formed by connecting all nodes to this new node, and all these 

edges are initialized with the initial value of pheromone ITij. And when a node is removed, then 

all edges which connect this node to the rest of the nodes are removed, and the pheromone values 

are removed from the NTRAV matrix. Table 4.4 shows a comparison between our approach and 

reset methods when nodes are added, and Table 4.5 shows a comparison between our approach 

and reset method when nodes are removed. The algorithm runs for 500 cycles before a node is 

added or removed. 
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TABLE 4.4: A comparison between our method and the reset method for the evaluation of 

shortest path on ‘ulyssess22’ for the addition of nodes. 
 

No. 

of 

Node

s 

Coordinates 

of the Nodes 

added 

Our Proposed Method Reset Method 

Path 

Length 

Path Path 

Length 

Path 

22 INITIAL 7013 3, 2, 17, 4, 18, 22, 8, 1, 

16, 12, 16, 14, 15, 5, 6, 

7, 19, 21, 20, 10, 9, 11 

7013 3, 2, 17, 4, 18, 22, 8, 1, 

16, 12, 16, 14, 15, 5, 6, 

7, 19, 21, 20, 10, 9, 11 

23 (500.500) 7959 11, 9, 6, 7, 12, 13, 14, 

15, 1, 8, 16, 22, 18, 4, 

17, 2, 3, 10, 19, 21, 20, 

5, 1 

8846 3, 2, 17, 4, 18, 22, 8, 1, 

16, 12, 13, 14, 15, 6, 7, 

19, 21, 20, 10,  9, 5, 11, 

23 

24 (1200,3000) 11226 11, 5, 9, 10, 19, 20, 21, 

12, 13, 14, 7, 6, 15, 16, 

1, 8, 22, 4, 18, 17, 2, 3, 

24,23 

11512 3, 2, 17, 4, 18, 22, 8, 1, 

16, 21, 20, 19, 10, 7, 6, 

12, 13, 14, 15,  5, 9, 11, 

23, 24 

25 (4500,900) 11991 3, 2, 17, 4, 18, 22, 1, 8, 

16, 12, 13, 14, 7, 6, 5, 

15, 20, 21, 19, 10, 9, 25, 

11, 23, 24 

11923 11, 6, 7, 12, 13, 14, 15, 

5, 9, 25, 10, 19, 20, 21, 

16, 1, 8, 22, 4, 18, 17, 2, 

3, 24, 23 

26 (3200,1750) 11898 11, 25, 9, 10, 19, 20, 21, 

7, 6, 5, 15, 14, 13, 12, 

16, 1, 8, 22, 4, 18, 17, 2, 

3, 26, 24, 23 

12994 11,5,6,7,21,20,19,10,9,2

5,13, 

12,14,15,8,1,16,17,18, 

4,22,3,2,26,24,23 

27 (2350,1970) 12476 11, 5, 6, 7, 13, 12, 14,  

15, 21, 20, 19, 10, 9, 25, 

16, 1, 8, 22, 4, 18, 17, 2, 

3, 26, 24, 23 

12648 11,5,15,13,12,14,7,6,20, 

21,19,10,9,25,16,1,8,22, 

4,18,2,3,17,26,27,24, 23 

28 (1560,2300) 12488 11, 5, 15, 13, 12, 14, 7, 

6,  20, 21, 19, 10, 9, 25, 

16,  1, 8, 22, 4, 18, 17, 

2, 3, 26, 27, 24, 23 

12540 11, 5, 15, 13, 12, 14, 7, 

6, 20, 21, 19, 10, 9, 25, 

16, 1, 8, 22 , 17, 3, 24, 

18, 26, 27, 28, 24, 23 

29 (970,2800) 12907 11, 5, 6, 7, 12, 13, 14, 

15,  21, 20, 19, 10, 9, 

25, 1, 8, 16, 22, 4, 18, 

17, 2, 3, 26, 27, 29, 24, 

28, 23 

13042 11, 5, 15, 13, 12, 14, 7, 

6, 20, 21, 19, 10, 9, 25, 

16, 1,8, 22, 4, 18, 17, 3, 

2, 26, 27, 28, 29, 24, 23 

30 (1800,2650) 13117 3, 2, 17, 4, 18, 22, 1, 8,  

16, 13, 12, 14, 7, 6, 19,  

20, 21, 10, 9, 25, 11, 5, 

15,  26, 27, 29, 24, 28, 

23 

13172 11, 5, 15, 14, 13, 12, 7, 

6, 20, 21, 19, 10, 9, 25, 

16, 1, 8, 4, 18, 22, 17, 3, 

2, 26, 27, 30, 28, 24, 29, 

23 

31 (2700,1450) 13485 23, 27 ,29, 24, 28, 26, 

30,  56, 7, 12, 13, 14, 

15, 1,  8, 16, 22, 4, 18, 

17, 2, 3, 19, 20, 21, 10, 

9, 25, 11 

13753 11, 5, 15, 14, 13, 12, 7, 

6, 19, 21, 20, 10, 9, 25, 

1, 8, 22, 4, 18, 17, 3, 2, 

16, 26, 31, 27, 30, 28, 

24, 29, 23 
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TABLE 4.5: A comparison between our method and the reset method for the evaluation of the 

shortest path on ‘ulyssess22’ for the random deletion of nodes. (Continuing with the same 

pheromone level yielded in table 4.3) 

 

 

 

Total 

number of 

nodes 

(initially 31) 

 

Particular 

Node 

Removed 

 

Our Proposed Method 

 

Reset Method 

Path 

Length 

Path Path 

Length 

Path 

31 None 13485 23,27,29,24,28,26,30,  

56,7,12,13,14,15,1,  

8,16,22,4,18,17,2, 3,  

19,20,21,10, 9,25,11 

13753 11,5,15,14,13,12,7,6,19, 

21,20,10,9,25,1,8,22,4, 

18,17,3,2,16,26,31,27,30, 

28,24, 29,23 

30 18 13166 11,5,15,14,13,12,7,6,

18, 

19,20,10,9,24,16,1,8,

21, 

17,2,3,4,25,30,26,27,

29, 23,28,22 

13822 11,5,6,7,12,13,14,15,20,1

9,18,10,9,24,1,8,21,4,17,

2,3,16,25, 30,26,27,29, 

23,28,22 

29 9 13237 3,2,16,4,20,1,8,15,12,

11, 

13,7,6,17,18,19,9,23,

10,5,14,24,29,25,26,2

8,22, 27,21 

13599 21,26,28,22,27,25,29,24,

1,8, 

20,4,16,2,3,15,12,11,13,7

,6,14,5,9, 17,18,19, 23,10 

28 25 13547 10,5,6,7,11,12,13,14,

1,8,20,4,16,2,3,15,18,

19,17,9,23,24,28,25,2

7,22,26, 21 

14577 10,5,6,7,17,18,19,9,23,12

,11,13,14,1,8,20,4,16,2,3,

15,24,28, 25,27,22,26, 21 

27 12 13559 10,5,6,7,11,12,13,1,8,

19,4,15,2,3,14,17,18,

16,9,22,23,27,24,26,2

1,25,20 

14003 10,6,7,16,17,18,9,22,11,1

2,13,5,23,1,8,19,4,15,2,3,

14,27,24, 26,21,25,20 

26 15 13420 19,20,24,23,25,26,22,

1,8,18,4,2,3,14,11,12,

7,6,13,5,9,15,16,17,2

1,10 

13252 19,20,24,23,25,26,22,1,8,

18,4,2,3, 

14,11,12,7,6,13,5,16,17,1

5,9,21,10 

25 5 12932 18,19,23,24,22,25,21,

12,11, 

10,6,5,8,14,15,16,1,7,

17,4,2,3,13,20,9 

13075 18,19,23,22,24,25,21,1,7,

13,17,4,2,3,6,5,10,11,12,

16,15,14,8,20,9 

24 21 12381 3,2,4,17,1,7,13,10,11,

12,5,6, 

16,15,14,8,20,9,24,21

,23,19,22,18 

12381 3,2,4,17,1,7,13,10,11,12,

5,6,16,15, 

14,8,20,9,24,21,23,19,22, 

18 

23 13 12495 3,2,4,16,7,1,11,10,6,5

,12,14, 

15,13,8,19,9,23,20,22

,18,21, 17 

12566 3,2,4,16,1,7,11,10,6,5,12,

13,14,15, 

8,19,9,23,20,22,18,21,17 
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Stagnation could not occur in the experiments because of the large number of varying 

solutions generated per cycle. So in order to put a stopping criterion to our approach, we used the 

method called the Pocket Algorithm [7]. As shown in Table 4.6, we apply this approach to 

another graph that initially has 6 nodes, and the graph is made to change dynamically. For 10 

nodes, with use of the reset method, we get the convergence after 28 cycles (Simple ACO has 

stagnation). After using our proposed method, we get the minimum shortest path after 9 cycles, 

and for 9 further cycles, it remains constant.  But after the 18
th

 cycle, we get inferior solutions for 

the next 9 cycles and then get the same minimum shortest path constantly for the next 22 cycles. 

So we have two options for the convergence: either we can take the convergence, after 9(inferior 

solutions)+9=18 cycles (better than 28 cycles), or we take the convergence after, 18+10(inferior 

solutions) +22=50 cycles (costlier than 28 cycles) as shown in table 4.6. So by choosing the prior 

semi-stable pocket the solution becomes computationally inexpensive. 

 

The complexity of the ant-cycle algorithm is O(C.n
3
) after C cycles. In fact step 1 is O(n

2
+n), 

step 2 is O(n), step 3 is O(n
3
), step 4 is O(n

3
), step 5 is O(n

2
), step 6 is O(n

2
). The step 7 will take 

O(n
2
) and step 8 and beyond will take O(n). Here n is the number of nodes and C is the number 

of cycles the algorithm runs for. 
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TABLE 4.6: Various convergences found in a dynamically changing graph problem  

 

 

Present 

Number of 

Nodes 

 

Path 

Length 

 

Number of cycles 

used without 

using modified 

Gallants method 

(C = 50 cycles) 

 

Path Length after each cycles using our method 

 

Note: The underlined numbers represent pockets 

6 939 

 

1 1051,939,939,939,939,939,939,939,939,939,939,939,939,939, 

939,939,939,939,939,939,939,939,939,939,939,939,939,939, 

,939,939,939,939,939,939,939,939,939,939,939,939,939,939, 

939,939,939, 939,939,939,939,939 

7 1144 4 1408,1345,1322,1195,1144,1144,1144,1144,1144,1144,1144, 

1144,1144,1144,1144,1144,1144,1144,1144,1144,1144,1144, 

1144,1144,1144,1144,1144,1144,1144,1144,1144,1144,1144, 

1144,1144,1144,1144,1144,1144,1144,1144,1144,1144,1144, 

1144,1144,1144,1144,1144,1144 

8 1245 7 1313,1313,1254,1364,1489,1337,1394,1245,1245,1245,1245, 

1245,1245,1245,1245,1245,1245,1245,1245,1245,1245,1245, 

1245,1245,1245,1245,1245,1245,1245,1245,1245,1245,1245, 

1245,1245,1245,1245,1245,1245,1245,1245,1245,1245,1245, 

1245,1245,1245,1245,1245,1245 

9 1530 12 1673,1616,1616,1641,1603,1571,1596,1616,1530,1603,1586, 

1571,1530,1530,1530,1530,1530,1530,1530,1530,1530,1530, 

1530,1530,1530,1530,1530,1530,1530,1530,1530,1530,1530, 

1530,1530,1530,1530,1530,1530,1530,1530,1530,1530,1530, 

1530,1530,1530,1530,1530,1530 

10 1334 28 1353,1353,1403,1447,1404,1334,1442,1404,1352,1334,1334, 

1334,1334,1334,1334,1334,1334,1334,1404,1353,1353,1334, 

1352,1444,1404,1353,1353,1404,1334,1334,1334,1334,1334, 

1334,1334,1334,1353,1334,1334,1334,1334,1334,1334,1334, 

1334,1334,1334,1334,1334,1334 

11 1946 33 1955,1955,2154,2333,2142,1955,1955,1955,1955,1955,1970, 

1955,1955,1955,1946,1977,1946,1946,1946,1946,1946,1970, 

1955,2007,1970,1977,1955,1985,1970,1955,1970,1970,1955, 

1946,1946,1946,1946,1946,1946,1946,1946,1946,1946,1946, 

1946,1946,1946,1946,1946,1946 

12 2181 >C 2181,2181,2276,2181,2181,2181,2181,2181,2181,2181,2170, 

2347,2226,2170,2170,2170,2170,2170,2122,2219,2209,2170, 

2139,2187,2150,2192,2170,2253,2122,2122,2122,2122,2122, 

2220,2172,2170,2139,2170,2192,2218,2198,2234,2198,2191, 

2170,2257,2347,2181,2122,2122 

13 2145 >C 2145,2145,2293,2412,2505,2173,2113,2298,2209,2284,2177, 

2229,2182,2170,2226,2103,2213,2234,2109,2094,2179,2129, 

2103,2094,2094,2094,2094,2094,2094,2094,2094,2094,2094, 

2094,2170,2103,2146,2103,2129,2243,2123,2129,2239,2203, 

2203,2213,2146,2123,2217,2151 
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Chapter 5 

Conclusion and Future Work 

 

Shortest path algorithms are extensively used in many real life applications. Shortest path 

algorithms are applied to automatically find directions between physical locations, such as 

driving directions. They are also used to find the optimal sequence of choices in a 

nondeterministic abstract machine to establish lower bounds on the time needed to reach a given 

state [30]. For example, if vertices represent the states of a puzzle like a Rubik's Cube and each 

directed edge corresponds to a single move or turn, shortest path algorithms can be used to find a 

solution that uses the minimum possible number of moves [30]. In a networking or 

telecommunications mindset, this shortest path problem is sometimes called the min-delay path 

problem and the objective is to minimize routing distances between two communicating systems. 

 

Modifications to our methodology can be made in order to treat non-fully connected 

graphs. A non-fully connected graph can be visualized as a fully connected graph with edge 

weights of infinite weight. If a vertex is independent, that is, the vertex is not connected to 

another vertex in the graph; we can connect these two vertices with an edge having an infinitely 

large edge weight.  This way we can connect all the vertices to each other to make it a fully 

connected graph. When we apply the algorithm, the ants may traverse these edges to complete a 

legal tour, but as the amount of pheromone we lay on the path is inversely proportional to edge 

length, the pheromone laid on it will be zero. As visibility is defined in the probability selection 

of the path, the ants would take up the paths that do not have infinite weight.  
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       So after a cycle, we will have n tours, whenever we get a solution of infinite weight it 

would mean that an ant was not able to find a legal tour. In addition if all the ants come up with 

infinitely large tours, then there exists no legal tour in that graph. However, more analysis is 

required to conclude whether or not a legal tour exists in a graph or not.   

 

Our methodology is inspired by the Ant System in order to find the shortest tour. The 

algorithm mainly works for fully connected undirected graphs in a dynamically changing 

environment. From this algorithm we received promising results for the addition of nodes and 

marginally better results for the removal of nodes (see Table 4.5). The performance of the 

method is unaffected by the quantity of nodes added or removed in a single instance. So when 

ever and new node is added, a fully connected graph is made. The ants have to traverse through 

this node in order to complete a legal tour. So the ants make use of the probability function and 

deposit pheromone based on the total tour length they have covered. So in a dynamically 

changing graph whenever a new node is added, ants have to travel through this new node, in 

order to form a legal tour, and thus a new shortest tour traversing through this node can be found 

easily.  

 

On the other hand, when a node is removed from the graph, all the edges connecting this 

node to other nodes are also removed. But the ants are still forced to use the pheromone level 

values, unknowing to the fact that a node is removed. So the probability function will force these 

ants to traverse on the edges with higher values of pheromone, in order to complete a legal tour. 
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So now each ant will travel a different distance compared to what they used to do in the previous 

cycle, as they will now modify the pheromone levels based on the path they found.  

 

So whenever the node is removed, the algorithm tries to normalize the pheromone values 

in the graph, and then proceeds further to find a new shortest path. Thus we believe this 

normalization of pheromone values is what causes the algorithm to perform slowly when 

compared to its performance to the reset method and also when compared to its performance, 

when a new node is added.  

 

This method gives worse solutions for the control parameter α≥1 as compared to α>1 

used in the Ant System [14]. We performed experiments on these control parameters, as α 

controls the probability of the selection of node based on the pheromone levels of that vertex and 

β controls the probability for the weight of the edge that has to be traversed into order to reach 

the next node. So both factors play an important role for making the selection of the next node to 

traverse, but a proper balance of these parameters is required. We ran our algorithm for various 

values of α and β. From the analysis we conclude that the best results in our methodology are 

achieved with α as 0.5 β as 6. 

 

Convergence is obtained after a large number of cycles or in non-regular intervals of the 

cycles, with the same path lengths of different frequencies. Our method works effectively in such 

situations. It finds the appropriate solution in a fewer number of cycles once the semi-stable 

convergence is achieved (path length remains constant with respect to time). This modification in 
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pocket algorithm helped to achieve the termination condition faster rather than actually waiting 

for the method to converge on a solution.  

 

More modifications in the ACO can be adopted to treat graphs with negative weights or 

another approach can be to partition a large graph into smaller sub graphs and apply our 

methodology invaluably and later combine their solutions. The scope also lies to use these ant 

heuristic algorithms with other algorithms present in the class of swarm intelligence to solve 

even more complex problems.   
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