
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2010-05-06

Stochastic Modeling and Simulation of Gene
Networks
Zhouyi Xu
University of Miami, z.xu@umiami.edu

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Xu, Zhouyi, "Stochastic Modeling and Simulation of Gene Networks" (2010). Open Access Dissertations. 645.
https://scholarlyrepository.miami.edu/oa_dissertations/645

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/645?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F645&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

STOCHASTIC MODELING AND SIMULATION OF GENE NETWORKS

By

Zhouyi Xu

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida

May 2010

c©2010
Zhouyi Xu

All Rights Reserved

UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

STOCHASTIC MODELING AND SIMULATION OF GENE NETWORKS

Zhouyi Xu

Approved:

Xiaodong Cai, Ph.D.
Assistant Professor of Electrical
and Computer Engineering

Terri A. Scandura, Ph.D.
Dean of the Graduate School

Kamal Premaratne, Ph.D.
Professor of Electrical and Computer
Engineering

James W. Modestino, Ph.D.
Professor of Electrical and Computer
Engineering

Dimitris Papamichail, Ph.D.
Assistant Professor of Computer
Science

Akmal Younis, Ph.D.
Associate Professor of Electrical and
Computer Engineering

XU, ZHOUYI (Ph.D., Electrical and Computer
Engineering)

Stochastic Modeling and Simulation of Gene Networks (May 2010)

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Xiaodong Cai.
No. of pages in text. (168)

Recent research in experimental and computational biology has revealed the ne-

cessity of using stochastic modeling and simulation to investigate the functionality

and dynamics of gene networks. However, there is no sophisticated stochastic mod-

eling techniques and efficient stochastic simulation algorithms (SSA) for analyzing

and simulating gene networks. Therefore, the objective of this research is to design

highly efficient and accurate SSAs, to develop stochastic models for certain real gene

networks and to apply stochastic simulation to investigate such gene networks.

To achieve this objective, we developed several novel efficient and accurate SSAs.

We also proposed two stochastic models for the circadian system of Drosophila and

simulated the dynamics of the system.

The K-leap method constrains the total number of reactions in one leap to a

properly chosen number thereby improving simulation accuracy. Since the exact SSA

is a special case of the K-leap method when K=1, the K-leap method can naturally

change from the exact SSA to an approximate leap method during simulation if

necessary. The hybrid τ/K-leap and the modified K-leap methods are particularly

suitable for simulating gene networks where certain reactant molecular species have

a small number of molecules.

Although the existing τ -leap methods can significantly speed up stochastic sim-

ulation of certain gene networks, the mean of the number of firings of each reaction

channel is not equal to the true mean. Therefore, all existing τ -leap methods pro-

duce biased results, which limit simulation accuracy and speed. Our unbiased τ -leap

methods remove the bias in simulation results that exist in all current leap SSAs and

therefore significantly improve simulation accuracy without sacrificing speed.

In order to efficiently estimate the probability of rare events in gene networks, we

applied the importance sampling technique to the next reaction method (NRM) of

the SSA and developed a weighted NRM (wNRM). We further developed a system-

atic method for selecting the values of importance sampling parameters. Applying

our parameter selection method to the wSSA and the wNRM, we get an improved

wSSA (iwSSA) and an improved wNRM (iwNRM), which can provide substantial

improvement over the wSSA in terms of simulation efficiency and accuracy.

We also develop a detailed and a reduced stochastic model for circadian rhythm in

Drosophila and employ our SSA to simulate circadian oscillations. Our simulations

showed that both models could produce sustained oscillations and that the oscillation

is robust to noise in the sense that there is very little variability in oscillation period

although there are significant random fluctuations in oscillation peeks. Moreover, al-

though average time delays are essential to simulation of oscillation, random changes

in time delays within certain range around fixed average time delay cause little vari-

ability in the oscillation period. Our simulation results also showed that both models

are robust to parameter variations and that oscillation can be entrained by light/dark

circles.

To my beloved mother, wife, sister, and deceased father

for their endless love, understanding, support and encouragement

iii

Acknowledgements

I want to express my sincerest gratitude to Professor Xiaodong Cai, who intro-

duced me into the field of stochastic modeling and simulation of gene networks. His

continuous encouragement and inspiration always helped me break through the dif-

ficulties I encountered in my research. I am also thankful to my other committee

members, Dr. James W. Modestino, Dr. Kamal Premaratne, Dr. Akmal Younis and

Dr. Dimitris Papamichail, for their insightful comments which improved my thesis.

More than everyone else, I am indebted to my mother and sister for their enthu-

siastic encouragement and unlimited supports throughout all the stages of my life. I

want to thank my wife, Ruxin, for her understanding, support and encouragement

during my studies.

I would like to extend my thanks to the faculty and staff members of the Electrical

and Computer Engineering Department at the University of Miami for their help

with my education and for their efforts to make various resources available to me.

Especially, I want to thank Dr. Mohamed Abdel-Mottaleb for his advice and support

during my studies.

In addition, I would like to thank my laboratory members, especially, Dr. Feng

Niu, Dr. Kasun Wickramaratna, Dr. Baoyuan Wang, Dian Fan, Ji Wen, Yu Zhang,

Zongxing Xie, Bing Chen, Kefei Lu, Jing Liu, Jindan Zhou, Shaminda Subasingha

and all my other friends for their help and collaboration during my Ph.D studies.

Zhouyi Xu

University of Miami

May 2010

iv

Table of Contents

LIST OF FIGURES viii

LIST OF TABLES xiv

1 INTRODUCTION 1

1.1 Background . 1

1.2 Motivation and Objectives . 3

1.3 Contributions . 7

1.4 Dissertation Outline . 8

2 STOCHASTIC SIMULATION ALGORITHMS 11

2.1 System Description . 11

2.2 Chemical Master Equation . 13

2.3 Exact Stochastic Simulation Algorithm 14

2.4 Tau-leap Methods . 18

2.5 Accuracy Measurement of Stochastic Simulation 25

3 THE K-LEAP METHOD FOR ACCELERATING STOCHASTIC

SIMULATION 27

3.1 Motivation . 27

v

3.2 K-leap Method . 28

3.3 K-leap Simulation Algorithm . 34

3.4 Implementation Issues . 35

3.5 Numerical Examples . 39

3.6 Concluding Remarks . 48

4 MODIFIED K-LEAP METHODS FOR ACCELERATED STOCHAS-

TIC SIMULATION OF GENE NETWORKS 51

4.1 Motivation . 51

4.2 The Hybrid τ/K-leap Method and Modified K-leap Method 53

4.3 Numerical Examples . 59

4.4 Conclusion . 67

5 UNBIASED TAU-LEAP METHOD FOR STOCHASTIC SIMU-

LATION OF CHEMICALLY REACTING SYSTEMS 69

5.1 Motivating Examples . 70

5.2 The Unbiased τ -leap Methods . 73

5.3 Implementation Issues for Solving ODEs 78

5.4 Numerical Examples . 79

5.5 Concluding Remarks . 83

6 IMPROVING THE WEIGHTED STOCHASTIC SIMULATION

ALGORITHM 92

6.1 Motivation . 92

6.2 Weighted Stochastic Simulation Algorithms 94

6.3 Weighted Next Reaction Method for Stochastic Simulation 96

vi

6.4 Parameter Selection for wSSA and wNRM 99

6.5 Numerical Examples . 110

6.6 Conclusion . 117

7 STOCHASTIC SIMULATION OF DELAY-INDUCED CIRCADIAN

RHYTHMS IN DROSOPHILA 119

7.1 Motivation . 119

7.2 Methods . 121

7.3 Results . 131

7.4 Discussion . 146

8 SUMMARY AND FUTURE WORK 150

8.1 Summary . 150

8.2 Future Work . 152

APPENDIX A DERIVATION OF EQUATION (3.1) AND (3.2) 155

APPENDIX B DERIVATION OF EQUATION (4.1) 157

BIBLIOGRAPHY 159

vii

List of Figures

1.1 A model of the expression of a single gene. 3

1.2 The trajectory of mRNA and protein using the ODE-based determin-

istic model method and SSA stochastic modeling method within time

interval of [0 1200] for gene expression model of Figure 1.1. 10

3.1 Histogram distance of X1(t) at t = 2 versus CPU time for two-channel

reactions (3.16) with c1 = 1, c2 = 10−4, X1(0) = 3000, X2(0) = 3000,

and X3(0) = 104. The τ -leap method uses (6) of Gillespie [39] to

determine τ ; Cao modified τ -leap method uses (33) of Cao et al. [54]

to calculate τ ; and K-leap method 1, 2, and 3, employ (3.7), (3.13),

and (3.15), respectively, to calculate K. The histogram is obtained

after 5 × 104 simulation runs. The CPU time is the total time (in

seconds) of 5× 104 runs. 41

viii

3.2 Histogram distance of X1(t) at t = 10 versus CPU time for decaying-

dimerizing reactions (3.18) with rate constants (3.19) and the initial

condition (3.20). The τ -leap method uses (6) of Gillespie [39] to de-

termine τ ; Cao Modified τ -leap method uses (33) of Cao et al. [54] to

calculate τ ; and K-leap method 1, 2, and 3, employ (3.7), (3.13), and

(3.15), respectively, to calculate K. The histogram is obtained after

5× 104 simulation runs. The CPU time is the total time (in seconds)

of 5× 104 runs. 45

3.3 Histogram distance of the molecular number of the product at t = 601

versus CPU time for the example of LacZ/LacY. The histogram is

obtained after 104 simulation runs. The CPU time is the total time (in

seconds) of 104 runs. 49

4.1 Histogram distance of modified K-leap, hybrid τ/K-leap and modified

τ -leap method of X4(t) at t = 2 versus CPU time for the reacting

system given in (4.4) with rate constants in (4.5) and initial state in

(4.6). The histogram is obtained after 5× 104 simulation runs and the

CPU time is the total time (in seconds) of 5× 104 runs. 62

4.2 Histogram distance K-leap and modified K-leap method of X4(t) at

t = 2 versus CPU time for the reacting system given in (4.4) with rate

constants in (4.5) and initial state in (4.6). The histogram is obtained

after 5 × 104 simulation runs and the CPU time is the total time (in

seconds) of 5× 104 runs. 63

ix

4.3 Histogram distance of K-leap, modified K-leap and modified τ -leap

method of LacZ(t) at t = 1001 versus CPU time for the LacZ/LacY

expression system. The histogram is obtained after 104 simulation runs

and the CPU time is the total time (in seconds) of 104 runs. 66

5.1 The estimated PDF of X1(2) from 2× 104 simulation runs for reaction

(5.1) with c1 = 0.5 and X1(0) = 61500. 85

5.2 The estimated PDF of X1(2) from 2× 104 simulation runs for reaction

(5.4) with c1 = 0.0001 and X1(0) = 61500. 86

5.3 The estimated PDF of X1(2) from 2× 104 simulation runs for reaction

(5.5) with c1 = 0.00008, X1(0) = 61500 and X2(0) = 54000. 87

5.4 The estimated PDF of X1(10) from 5 × 104 simulation runs for the

decay-dimerizing reactions (3.18) with rate constant (3.19) and initial

condition (3.20). The leap methods use ǫ = 0.03 to calculate τ 88

5.5 The estimated PDF of X2(10) from 5 × 104 simulation runs for the

decay-dimerizing reactions (3.18) with rate constant (3.19) and initial

condition (3.20). The leap methods use ǫ = 0.03 to calculate τ 88

5.6 Histogram distance of X1(10) versus CPU time for the decaying-dimerizing

reactions (3.18) with rate constants (3.19) and the initial condition

(3.20). The histogram is obtained after 5 × 104 simulation runs and

the CPU time is the total time (in seconds) of 5× 104 runs. 89

5.7 Histogram distance of X2(10) versus CPU time for the decaying-dimerizing

reactions (3.18) with rate constants (3.19) and the initial condition

(3.20). The histogram is obtained after 5 × 104 simulation runs and

the CPU time is the total time (in seconds) of 5× 104 runs. 89

x

5.8 The estimated PDF of Grb at t = 8 in the EGF receptor signaling

pathway. The PDF is estimated from the results of 104 simulation

runs. Leap methods use ǫ = 0.01 to calculate τ 90

5.9 Histogram distance of Grb at t = 8 versus CPU time in the EGF

receptor signaling pathway. The histogram is obtained from the results

of 104 simulation runs and the CPU time is the total time (in seconds)

of 104 runs. 91

6.1 The standard deviation (STD) versus number of simulation runs for

single species production-degradation model (6.26) with c1 = 1, c2 =

0.025, X1(0) = 1 and X2(0) = 40 with θ = 65, 70, 75 and 80. 113

6.2 Variance σ2 obtained from 107 runs of the iwSSA and the rwSSA for the

system in (6.27) with c1 = 0.1, c2 = 0.1, c3 = 8, c4 = 0.1, X1(0) = 40,

X2(0) = 40 and X3(0) = 1. iwSSA para 1 represents the iwSSA

without fine-tuning the probability of reactions in G3 group; iwSSA

para 2 and 3 represent the iwSSA with fine-tuning the probability of

reactions in G3 group using two sets of parameters: α = 0.85, β = 0.8

and α = 0.80, β = 0.75. Since the variance of the iwSSA does not

depend on δ used in the rwSSA, it appears as a horizontal line. . . . 118

7.1 Schematic of the detailed model for circadian oscillators in Drosophila. 122

7.2 One trajectory of dclock and per mRNA, free dCLOCK, total dCLOCK,

dCLOCK.PER complex and total PER for the detailed stochastic

model in constant darkness. 131

xi

7.3 The histogram of periods and peaks of free dCLOCK and total PER

for the detailed stochastic model in constant darkness. 132

7.4 One trajectory of dclock and per mRNA, free dCLOCK, total dCLOCK,

dCLOCK.PER complex and total PER for the reduced stochastic model

in constant darkness. 134

7.5 The histogram of periods and peaks of free dCLOCK and total PER

for the reduced stochastic model under constant darkness. 135

7.6 Relative change of the mean values of periods and peaks of free dCLOCK

(left) and total PER (right) after the value of one parameter increases

or decreases by 20% of the standard value while other parameters are

fixed. The relative change of the period is defined as (T1-T0)/T0, where

T0 is the mean of the period for the standard value of the parameter

and T1 is for the new value of the parameter. The relative change of

the peaks is defined similarly. 138

7.7 CVs of periods and peaks of free dCLOCK (left) and total PER (right)

after the value of one parameter increases or decreases by 20% of the

standard value while other parameters are fixed. CVs of periods and

peaks of free dCLOCK and total PER for the standard parameter set

are also shown as � for reduced model and △ for detailed model. . . 140

7.8 One trajectory of dclock and per mRNA, free dCLOCK and total

dCLOCK protein for the detailed stochastic model with light response

under L/D cycle. 142

7.9 One trajectory of total PER protein for the detailed stochastic model

with light response under L/D cycle. 143

xii

7.10 One trajectory of total PER protein for the reduced stochastic model

with light response under L/D cycle. 144

7.11 One trajectory of free dCLOCK and total PER protein for the detailed

stochastic model with c8 = 144 h−1, 72 h−1 and 7.2 h−1. 145

xiii

List of Tables

3.1 Average number of steps of one simulation run, CPU time of 5 × 104

runs (in seconds), and histogram distance of X1(2) for the example of

two-channel reactions . 42

3.2 Average number of steps of one simulation run, CPU time of 5 × 104

runs (in seconds), and histogram distance (HD) of X1(10) for the ex-

ample of decaying-dimerizing reactions 44

3.3 A full list of reaction channels and deterministic reaction rates of

LacZ/LacY gene expression and protein activity 47

3.4 CPU time (in seconds) of 104 simulation runs and speedup over Gille-

spie’s exact SSA of the K-leap method for the example of LacZ/LacY.

The speedup is defined as the CPU time of the K-leap method divided

by the CPU time of the exact SSA. 48

4.1 Average number of steps of one simulation run, CPU time of 5 × 104

runs (in seconds), and histogram distance of X4(2) for the reacting

system given in (4.4) . 64

4.2 Average number of steps of one simulation run, CPU time of 104 runs

(in seconds) and histogram distance of LacZ for the LacZ/LacY Model 67

xiv

5.1 Expected number of reactions occurring during one leap for three ele-

mentary reactions . 71

5.2 Mean of X1(2) in three elementary reactions 80

5.3 Mean of the number of molecules for several species in the EGF recep-

tor signal pathway . 90

6.1 Estimated probability of rare event and sample variance as well as

CPU time with 107 runs of iwNRM, iwSSA and rwSSA methods for

the example of single species production-degradation model 112

6.2 Estimated probability of the rare event P̂ (ER) and the sample variance

σ2 as well as the CPU TIME (in seconds) with 107 runs of iwNRM,

iwSSA and rwSSA for the system given in (6.27). 115

7.1 Detailed stochastic model for the Drosophila circadian oscillator. . . 123

7.2 Molecular species . 124

7.3 Reduced stochastic model for the Drosophila circadian oscillator. . . 128

7.4 Statistics of oscillations for the detailed stochastic model 133

7.5 Statistics of oscillations for the reduced stochastic model 135

xv

CHAPTER 1

Introduction

1.1 Background

Genes in living cells regulate various cellular biochemical processes mainly through

proteins that they express. It appears that genes and their products including RNA

and proteins, as well as other molecular substances, interact with each other, which

composed of complicated gene networks [1]. Despite growing knowledge about the

molecular components of the cell, the dynamics of gene networks are not well under-

stood.

Along with experimental investigation, appropriate computational models and

tools for gene network can substantially help researchers to uncover the mechanism

underlying gene regulation and understand gene functionality [2]. To explore the

dynamics of gene networks, several computational approaches with different levels

of modeling detail have been developed [3–5]. A Boolean network provides a coarse

model, able to predict certain dynamic behavior of a biochemical system or gene net-

work [6,7]. At a more detailed level, chemically reacting systems or more specifically

gene networks are viewed as deterministic systems, whose dynamics are entirely pre-

dictable given sufficient knowledge of the state of the system. The time evolution of

the system is described by a set of coupled, ordinary differential equations (ODEs).

1

2

These equations characterize the system dynamics as a continuous and deterministic

process. However, the ODE-based models have at least two problems. First, the

number of molecules of each species in a gene network is an integer, but the ODE-

based model treat it as a real number that can take any nonnegative values. When

the number of molecules is large, this may be an acceptable approximation. How-

ever, in many biological systems, such as gene networks, certain molecular species

have a very small number of molecules. For example, a gene typically has only two

DNA molecules. In such cases, it is apparent that ODE-based model gives a very

poor approximation to the system states. Second, it turns out that stochasticity ex-

ists in many biological systems [8–10]. In particular, stochasticity in gene expression

stems from fluctuations in transcription and translation. More specifically, in gene

expression, a series of events involve a small number of molecules of DNA, RNA and

proteins. As each of these molecular events is subject to significant thermal fluc-

tuations, the amount of mRNA and protein expressed from a gene expression is a

stochastic process, which is called noise by biologists [11]. Such a process can result

in very different rates of synthesis of a specific protein in genetically identical cells in

the same environment [12–14].

Although stochastic gene expression was discovered decades ago [15–18], only re-

cently it received much attention since advances in technology for single-cell analysis

have provided an impetus for novel investigations, which sequentially result in new

insights [2,19–24]. It has been convincingly demonstrated that stochasticity is signif-

icant in gene expression and corresponding gene networks [25]. Understanding how

stochasticity contributes to cellular process is important to the understanding of how

cells work. Gene expression noise can explain many biological phenomena, such as in

intrinsic property of randomness of intracellular networks [26–28], phenotypic vari-

3

ations in cells or organisms with the same genes and in the same environment [20].

However, there are many questions related to gene expression noise that remain unan-

swered [19].

While biological investigations of expression noise of a single gene or in a simple

gene network have revealed some of the mechanisms by which cells control and exploit

noise, a computational approach to modeling and simulating relatively large gene

networks will elucidate many unanswered questions.

1.2 Motivation and Objectives

Figure 1.1: A model of the expression of a single gene.

We here use a simple example to illustrate the need of stochastic modeling in

analyzing gene networks. Figure 1.1 depicts a model of the expression of a single

gene [21], which elucidate several main steps in gene expression. In order to initiate

transcription, an RNA polymerase needs to bind to the promoter of a gene. In

eucaryotes, an RNA polymerase requires a large set of proteins called transcription

factors to position itself correctly at the promoter, and open the two strands of DNA

[29, 30]. As DNA in eucaryotes is packed into nucleosomes and higher order forms

of chromatin structure, chromatin-modifying enzymes are also required to remodel

chromatin so that an RNA polymerase can access the promoter. Consequently, the

promoter is either in a repressed state in which an RNA polymerase cannot effectively

4

bind to the promoter, or in an active state in which an RNA polymerase can bind

to the promoter and efficiently initiate transcription. As activities of transcription

factors and chromatin-modifying enzymes are subject to thermal fluctuations, the

promoter randomly switches between these two states. A procaryotic gene, such

as the lacZ gene in bacteria E. coli, can be controlled by an activator or/and a

repressor [29]. As a result, a procaryotic gene can also randomly stay in either an

inactive or active state. The parameters kon and koff in Figure 1.1 are deterministic

rate constants used in conventional deterministic kinetics modeling the initiation of

transcription. As we will discuss in Section 2, the transition probability between two

states is related to these deterministic rate constants. As shown in Figure 1.1, the

gene is transcribed with a probability sA per unit time, when the promoter is active,

and with a much lower rate sR per unit time, when the promoter is repressed. Due

to the randomness present in the initiation of transcription and transcription process

itself, the number of mRNA molecules transcribed from the gene is random.

Since mRNA does not need to be processed or transported in prokaryotes, ri-

bosomes can bind to the mRNA as soon as it is accessible behind the transcribing

RNA polymerase and start translation. On the other hand, in eukaryotes, mRNA

molecules are processed and transported from nucleus into cytoplasm so as to be

translated there. Meanwhile, the mRNA can be bound and degraded by a multi-

enzyme complex called degradosome. Therefore, an mRNA molecule is randomly

translated to protein peptides by ribosomes, or, is degraded by degradosomes with

certain probability that determines the rate constants sP and dM as shown in Figure

1.1. Finally, a functional protein can be targeted by a small polypeptide called ubiq-

uitin, and be degraded by the proteasome. It is apparent that the amount of protein

expressed from a gene is a random number, since the number of mRNA molecules is

5

random as we discussed earlier, and the degradation and translation of the mRNA, as

well as the degradation of protein itself, are random events. The model in Figure 1.1

is a simplified stochastic model for gene expression. More sophisticated models can be

developed to characterize the gene expression in real cells, taking into account many

additional factors, such as sequential assembly of the core transcription apparatus,

pulsatile mRNA production due to reinitiation [14], and the scanning mechanism of

ribosomes including leaky scanning and reinitiation in initiation of translation [31].

The gene expression example in Figure 1.1 can be modeled as the following reaction

channels:

R
con→ A,

A
coff→ R,

A
sA→ A + M,

R
sR→ R + M,

M
sP→M + P,

M
dM→ ∅,

P
dP→ ∅,

(1.1)

where R, A, M, P and ∅ represent the gene’s repressed promoter, the gene’s active

promoter, mRNA, protein and degraded molecules, respectively. Probability rate

constants con and coff determine the probability that the promoter is in the acti-

vated or repressed state; sA and sR are the transcriptional rates of active promoter

and repressed promoter; sP is the translational rate of mRNA; dM and dP are the

degradation rate of mRNA and protein.

We simulated the gene expression process depicted in Figure 1.1 and modeled in

(1.1). In our simulation, we assumed that two copies of the genes were initially in the

6

repressed state, and thus the molecular number of R is 2 and the molecular number

of all other species is zero. Similar to [21], we used the following probability rate

constants: con = coff = 0.7 per minute; sA = 5 per minute; sR = 0.5 per minute;

sP = 0.2 per minute; dM = 0.1 per minute and dP = 0.05 per minute.

After running the simulation using ODE-based deterministic modeling method

and SSA stochastic modeling method, we got the trajectory of mRNA and protein

within time interval [0 1200], which is shown in Figure 1.2. It is seen that both

mRNA and protein molecular numbers in one simulation run have large fluctuation,

which demonstrated the stochasticity inside the gene networks. As reported in many

experiments [12–14,19–22], gene expression exhibits stochastic fluctuations similar to

the stochastic trajectories depicted in Figure 1.2.

As stochasticity in gene expression has been clearly demonstrated in experiments,

it is apparent that this stochasticity should be taken into consideration by precise

modeling and simulation of a gene network. Stochastic kinetics can describe the time

evolution of a biochemically reacting system as an overtly discrete, stochastic process,

evolving in real continuous time. It tries to do this in a way that accurately reflects

how chemical reactions physically occur at the molecular level and illustrate the

stochastic behavior of coupled reactions [32,33]. It was also shown to have a rigorous

physical base [34]. Therefore, stochastic kinetics can be employed to characterize

and simulate the dynamics of chemical reactions in gene expression. Since stochastic

modeling of gene network from both biological and computational perspectives is still

at its infancy, development of efficient stochastic simulation algorithms has been an

intensive research topic.

Recently, several gene networks have been simulated [35–37] using Gillespie’s exact

SSA [32,33]. However, Gillespie’s SSA requires large computational power and quickly

7

becomes unmanageable when the reaction system becomes relatively large. Several

approximate SSAs, including Poisson τ -leap method [38,39], modified τ -leap method

[40], the binomial and multinomial τ -leap methods [41–43] and the midpoint Poisson

[38] and binomial τ -leap [41], have been developed. Although these approximate

SSAs improve simulation speed, at the price of sacrificing simulation accuracy, more

efficient and accurate SSAs are needed for simulating large gene networks.

Therefore, the objective of this research is to develop highly efficient and accurate

SSAs to accelerate stochastic simulation and improve simulation accuracy, and to

apply stochastic simulation to simulate several real gene networks including the gene

network of circadian clock in Drosophila.

1.3 Contributions

The major contributions of this dissertation are listed in the following:

• Developed a novel algorithm of K-leap method to accelerate stochastic simula-

tion speed and improve simulation accuracy.

• Introduced a hybrid τ/K-leap method and a modified K-leap method to speed

up simulation without losing accuracy when dealing with systems with small

and large number of reactant molecules.

• Developed innovative unbiased Poisson and Binomial τ -leap methods to re-

move the bias in all existing τ -leap methods, including Poisson τ -leap, binomial,

multinomial and modified τ -leap methods, thereby significantly improving sim-

ulation accuracy.

8

• Designed a weighted next reaction method (wNRM) for estimating the proba-

bility of rare events in chemical reaction systems, which is more efficient than

the weighted SSA [44,45].

• Developed an improved weighted SSA (iwSSA) and an improved weighted next

reaction method (iwNRM), which offer substantial improvement over the wSSA

for estimating the probability of rare event in gene networks.

• Proposed a detailed and reduced stochastic model for the circadian rhythm of

gene networks in Drosophila and applied exact stochastic simulation algorithm

(SSA) with delays to simulate the model.

1.4 Dissertation Outline

The rest of this proposal is organized as follows. In Chapter 2, we briefly review

the existing SSAs including the exact SSA [32,33], the Poisson τ -leap method [38,39],

the modified τ -leap method [40], the binomial τ -leap method [41, 42] and the mid-

point Poisson [38] and binomial τ -leap [41]. In Chapter 3, we develop our K-leap

SSA and demonstrate that our K-leap SSA outperforms existing leap methods. In

Chapter 4, we develop a hybrid τ/K-leap method and a modified K-leap method

for the gene network systems with small number of reactant molecules. In Chap-

ter 5, we first show that all existing τ -leap methods produce biased results, which

results in large simulation errors. We then develop unbiased Poisson, binomial and

Poisson/Gaussian/Binomial τ -leap methods. We further show that our unbiased τ -

leap methods significantly improve simulation accuracy without sacrificing speed. In

9

Chapter 6, we propose the wNRM algorithm to accelerate the simulation speed for

estimating the probability of rare events in gene networks. We further introduce a

systematic parameter selection method for the wSSA and the wNRM and develop the

iwSSA and the iwNRM to improve the accuracy of the estimation of the probability

of the rare event. In Chapter 7 we propose two stochastic models with delays for

circadian rhythms in Drosophila and simulate the system dynamics. Finally, the

summary and possible future work are presented in Chapter 8.

10

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

110

Time (min)

N
u

m
b

e
r

o
f

m
R

N
A

 M
o

le
c
u

le
s

Deterministic method

Stochastic method

(a) trajectory of mRNA

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

Time (min)

N
u

m
b

e
r

o
f

P
ro

te
in

 M
o

le
c
u

le
s

Deterministic method

Stochastic method

(b) trajectory of protein

Figure 1.2: The trajectory of mRNA and protein using the ODE-based deterministic
model method and SSA stochastic modeling method within time interval of [0 1200]
for gene expression model of Figure 1.1.

CHAPTER 2

Stochastic Simulation Algorithms

In this chapter, we model a gene network as a chemically reacting system and

then review several existing SSAs for simulating the dynamics of the system.

2.1 System Description

Suppose that gene expression and other activities in a gene network involve N ≥ 1

molecular species {S1, · · · , SN} that chemically interact through M ≥ 1 reaction

channels {R1, · · · , RM}. We describe the dynamic state of this chemical system by

the state vector X(t) = [X1(t), · · · , XN(t)]T , where Xn(t), n = 1, · · · , N , is the

number of Sn molecules at time t, and [·]T denotes the transpose of the vector in the

bracket. We assume the system is confined to a constant volume Ω and is in thermal

(but not chemical) equilibrium at some constant temperature. Given the system at

state X(t0) = x0 at initial time t0, our goal is to obtain the system information of the

state vector X(t).

Following Gillespie [33, 38, 39, 46], we define the dynamics of reaction Rm by a

state-change vector νm = [ν1m, · · · , νNm]T , where νnm gives the changes in the Sn

molecular population produced by one Rm reaction, and a propensity function am(x)

together with the fundamental premise of stochastic chemical kinetics:

11

12

am(x)dt
△
= the probability, given X(t) = x, that one reaction Rm

will occur in the next infinitesimal time interval [t, t + dt).

(2.1)

It is instructive to consider the following simple example involving N = 6 molec-

ular species and M = 3 reactions:

R1 : S1 + S1→S2, R2 : S3 + S4→S5 + S6, R3 : S6→S1. (2.2)

In this example, we have ν1 = [−2, +1, 0, 0, 0, 0]T , ν2 = [0, 0,−1,−1, +1, +1]T ,

and ν3 = [+1, 0, 0, 0, 0,−1]T ,

In the example of gene expression in Figure 1.1, the system involves N = 4

molecular species and M = 7 reactions. If we label S1 = R, S2=A, S3 = M and

S4 = P , the system can be described as:

R1 : S1→S2, R2 : S2→S1, R3 : S1→S3,

R4 : S2→S3, R5 : S3→S4, R6 : S3→∅, R7 : S4→∅.
(2.3)

Then we have ν1 = [−1, +1, 0, 0]T , ν2 = [+1,−1, 0, 0]T , ν3 = [−1, 0, +1, 0]T , ν4 =

[0,−1, +1, 0]T , ν5 = [0, 0,−1, +1]T , ν6 = [0, 0,−1, 0]T , and ν7 = [0, 0, 0,−1]T .

If we define the probability rate constant cm as the probability that a randomly

selected combination of Rm reactant molecules reacts in a unit time period and let

hm(x) be the number of distinct combinations of Rm reactant molecules in the system

at time t, then the propensity function is given by am(x) = cmhm(x) [33]. Gillespie

showed that for the bimolecular reaction Rm of the form S1+S2 → product(s), we have

am(x) = cmx1x2. For the bimolecular reaction Rm of the form S1 + S1 →product(s),

we have am(x) = cmx1(x1−1)/2. For a monomolecular reaction Rm: S1 → product(s),

we have am(x) = cmx1.

13

As argued in [34, 47], we typically only need to consider elementary reactions in-

cluding bimolecular and monomolecular reactions, such as those in example (2.2),

since trimolecular reactions in a fluid are usually the combined result of two bimolec-

ular reactions and one monomolecular reaction. The probability rate constant cm

can be calculated from the conventional deterministic reaction rate km [32]. For

monomolecular reactions, we have cm = km, and for bimolecular reactions, we have

cm = km/Ω, when two reactants are from different molecular species as in R2 of ex-

ample (2.2), and cm ≈ 2km/Ω, when two reactants are the same as in R1 of example

(2.2), where Ω is the volume of the system.

2.2 Chemical Master Equation

The traditional way of investigating the stochastic time evolution of a chemically

reacting system is to set up and solve the chemical master equation (CME) for the

system. As the probability of a reaction occurs in the infinitesimal time interval

[t, t + dt) is only dependent upon the state X(t) at time t, it is clear that X(t) is a

Markov process with discrete states, or a jump Markov process. The time evolution of

the state probability mass function (PMF) P (x, t) of this Markov process is governed

by the CME [33]:

∂P (x, t)

∂t
=

M∑

m=1

[
am(x− νm)P (x− νm, t)− am(x)P (x, t)

]
. (2.4)

The CME essentially says that the rate of change in P (x, t) is equal to the prob-

ability of entering the state x minus the probability of leaving the state x in unit

time. A rigorous derivation of the CME is given in [33,48], based on the fundamental

premise (2.1). Even though the CME exactly describes the evolution of P (x, t) with

time, unfortunately, we can solve the CME to obtain P (x, t) only in rare case.

14

2.3 Exact Stochastic Simulation Algorithm

Since it is difficult to solve the CME in general, Gillespie developed an SSA to

simulate the Markov process X(t). Based on the fundamental premise (2.1), Gillespie

developed an exact SSA to simulate the occurrence of every reaction when the time

evolves [33]. Therefore, the realizations of X(t) generated from Gillespie’s SSA ad-

here to a probability model identical to that obtained by the CME. For this reason,

Gillespie’s simulation algorithm is called the exact SSA.

There are three different but statistically equivalent methods for exact SSA: Gille-

spie’s direct method (DM) [33], Gillespie’s first reaction method (FRM) [32], and the

next reaction method (NRM) of Gibson and Bruck [49].

2.3.1 The Direct Method

To elucidate the system state information for a chemical system in a given state,

we need to know when will the next reaction occur and which reaction will occur.

Gillespie’s DM SSA answers these two questions. Specifically, the SSA simulates the

occurrence of the following event:

E : no reaction occurs in the time interval [t, t + τ], and a reaction Rµ

occurs in the infinitesimal time interval (t + τ, t + τ + dτ).

(2.5)

It has been shown by Gillespie [32,33] that τ and µ are two independent random

variables, and have the following probability density functions (PDF), respectively,

p(τ) = a0(x) exp(−a0(x)τ), τ > 0, (2.6)

and

p(µ) = aµ(x)/a0(x), µ = 1, · · · , M, (2.7)

15

where a0(x) =
∑M

m=1 am(x). It is easy to generate τ and µ from two independent

uniform random variables according to (2.6) and (2.7), respectively. Therefore, Gille-

spie’s exact SSA generates a realization of τ and µ in each step of the simulation, and

then updates the system state as X(t + τ) = x + νµ.

The SSA based on the DM can be summarized as follows:

Algorithm 1 (Exact SSA – Direct Method [33])

1. Initialization (set the initial number of molecules, set t← 0).

2. Calculate the propensity function, am(x), m = 1, · · · , M .

3. Generate τ and µ according to their pdf’s in (2.6) and (2.7).

4. Set t← t + τ , and update the state vector X(t)← X(t) + νµ.

5. Go to step 2, or else stop.

2.3.2 The First Reaction Method

Another way of exact SSA is the first reaction method (FRM). Let us consider M

independent events:

Em : no reaction Rm occurs in the time interval [t, t + τm], and an Rm

occurs in the infinitesimal time interval (t + τm, t + τm + dτm), m = 1, · · · , M.

(2.8)

Notice that in the event Em in (2.8), it is possible that a reaction other than Rm occurs

in the time interval [t, t+τm], while in the event E in (2.5), no reaction occurs in [t, t+

τ]. The pdf of τm can be easily found to be an exponential distribution with parameter

am(x), i.e., p(τm) = am(x) exp(−am(x)τm), τm > 0. If we independently generate τm,

m = 1, · · · , M , and take τ = min{τ1, · · · , τM} and µ = arg minm{τ1, · · · , τM}, we

16

essentially generate the event E in (2.5). Therefore, the FRM is equivalent to the

DM. Compared with the DM, the FRM is not efficient, because it needs to generate

more random variables, especially when number of reaction channels, M , is very

large. However, Gibson and Bruck transformed the FRM into an equivalent and

more efficient NRM for large N and large M [49].

2.3.3 The Next Reaction Method

The NRM is essentially a heavily revised version of the FRM and improves the

efficiency of the FRM by exploiting the following two observations: i) each am(x) is

only affected by a few reactions and can be efficiently calculated in each step, and ii)

τm, m = 1, · · · , M , generated in a step can be reused in the next step. The NRM

saves the putative next firing times of all reaction channels in an indexed binary tree

priority queue, which is constructed so that the firing time of each parent node is

always earlier than the firing times of its daughter nodes. The time and index of the

next occurring reaction are therefore always available at the top node of the queue. A

data structure called dependency graph is defined to tell precisely which am(x) should

be updated after a reaction occurs. The detailed description of the NRM can be found

in [49]. After incorporating these two mechanisms into the NRM, it is argued in [49]

that the FRM is more efficient than the DM, for loosely coupled chemical reaction

systems where the firing of one reaction channel does not affect many other reactions.

However, a detailed analysis of CPU cost of both NRM and DM in [50] shows

that maintaining and updating the data structure of the indexed priority queue in

the NRM may require significantly large cost for some practical systems.

17

2.3.4 Improvement Strategies of Exact SSA

Several improvements have been developed for exact SSA. Lok and Brent [51]

proposed a stochastic simulation software package, named Moleculizer, that uses a

slightly simplified version of the NRM, but with a unique technique, where reaction

channels and species are introduced only when they are need and removed when they

are not needed.

Cao et al. [50] proposed an optimized direct method (ODM) to improve the effi-

ciency of the DM. The ODM incorporates the dependency graph used in the NRM

into the DM to reduce the cost of calculating the propensity functions, am(x). It also

properly reorders the index of reaction channels to reduce the cost of generating the

reaction index µ. With these two optimization steps, the ODM is much more efficient

than the original DM. It is argued in [50] that in practical systems that almost always

have the multiscale nature, the ODM is preferable to the NRM. McCollum et al. [52]

also introduced an improvement on the DM, which they called the sorting direct

method (SDM). Similar to the ODM, SDM seeks to index the reaction cheannels in

order of decreasing values of their propensity functions so as to optimize the search

of the reaction index µ.

Li and Petzold [53] have recently developed the logarithmic direct method, to

improve the direct method. Specifically, storing the partial sums of the propensity

functions during the computation of a0(x), the value of µ can be obtained rapidly by

conducting a binary search over those partial sums.

Improvements to the SSA are certainly beneficial, but any algorithm that sim-

ulates every reaction event one at a time will have a expected time between two

consecutive reactions to be E[τ] = 1/a0(x). Since a0(x) is at least linear and more

commonly quadratic in the reactant population, a0(x) can be very large, and E[τ]

18

correspondingly very small. Therefore, the exact SSA will inevitably be too slow for

many practical applications.

2.4 Tau-leap Methods

Although the exact SSA produces realizations of X(t) with correct statistics, it

requires huge computation, when the system population and/or the number of reac-

tion channels are relatively large. To reduce computation burden, several approxi-

mate methods have been developed to significantly speed up simulation by giving up

some of the exactness of the SSA. The basic idea behind these approximate meth-

ods is that instead of simulating a single reaction per step, a number of reactions

can occur in each simulation step. As one step leaps over many reactions, these

approximate methods are known as leap methods including the τ -leap method and

mid-point τ -leap method [38, 39], the modified τ -leap method [40] and the binomial

τ -leap method [41, 42]. Since the exact SSA is based on the fundamental premise

(2.1), one would expect that a leap method can provide an excellent approximation

to the exact SSA, if the propensity functions am(x) remain approximately constant

in each leap.

2.4.1 The Poisson τ-leap Method

The τ -leap method proposed by Gillespie [38,39] attempts to accelerate stochastic

simulation by allowing each reaction channel to fire more than one times during a

time interval of duration τ . The deterministic value τ is also referred to as the step

size of a leap and is selected to satisfy the following leap condition: [38, 39]

19

C1 The change in the state during [t, t + τ] is so slight that no propensity function

will suffer an appreciable change in its value, i.e., am(X(t′)) ≈ am(x), ∀t′ ∈ [t, t+ τ],

∀m ∈ [1, M].

Let Km(x, τ), for any τ > 0, be the number of Rm reactions that occur in the

time interval [t, t + τ]. If the leap condition C1 is satisfied, it can be shown that

each Km(x, τ) is an independent Poisson random variable with mean am(x)τ [38,

39]. Therefore, Gillespie’s τ -leap method generates a realization of Km(x, τ), m =

1, · · · , M , according to the Poisson distribution, and then update the state after a

leap as follows:

X(t + τ) = x +
M∑

m=1

νmKm(x, τ). (2.9)

The question now is how to select the value of τ to satisfy the leap condition.

Letting ∆am(τ ;x)
△
= am

(
X(t+τ)

)
−am(x), Gillespie imposed the following constraint

to satisfy the leap condition C1: [38]

|∆am(τ ;x)| ≤ ǫa0(x), ∀m = 1, · · · , M, (2.10)

where ǫ is a prespecified error control parameter satisfying 0 < ǫ≪ 1. Since ∆am(τ ;x)

is a random variable, it is difficult to find a τ directly satisfying (2.10). Gillespie pro-

posed to use the first-order Taylor expansion of ∆am(τ ;x) to approximate ∆am(τ ;x),

and then calculate τ by bounding the absolute mean and standard deviation of this

approximate ∆am(τ ;x) by ǫa0(x) [38, 39], which leads to the following formula for

determining τ : [38, 39]

τ = min
m∈[1,M]

{
ǫa0(x)

|ηm(x)| ,
ǫ2a2

0(x)

σ2
m(x)

}
. (2.11)

where

ηm(x)
△
=

M∑

m′=1

fmm′(x)am′(x), m = 1, · · · , M, (2.12)

20

σ2
m(x)

△
=

M∑

m′=1

f 2
mm′(x)am′(x), m = 1, · · · , M, (2.13)

and

fmm′(x)
△
=

[
∂am(x)

∂x

]T

νm′, m, m′ = 1, · · · , M. (2.14)

After calculating τ from (2.11), We can generate Km, a realization of Km(x, τ),

m = 1, · · · , M , according to the Poisson distribution, and update the state after a

leap as follows:

X(t + τ) = X(t) + νK, (2.15)

where ν = [ν1, · · · , νM] and K = [K1, · · · , KM]T

We summarize the Poisson τ -leap algorithm in the following:

Algorithm 2 (Poisson τ-Leap)

1. Initialization (set the initial number of molecules, set t← 0).

2. Calculate the propensity function, am(x), m = 1, · · · , M .

3. Calculate τ from (2.11).

4. Generate Km, m = 1, · · · , M , according to the Poisson distribution with mean

am(x)τ .

5. Set t← t + τ , and update the state vector X(t)← X(t) + νK.

6. Go to step 2 until reaching the end time tend.

A more efficient method of selecting τ was developed by Cao et al. [54]. Instead of

using (2.10) to satisfy the leap condition C1, the authors of [54] propose to bound the

relative change in all the propensity function by the same amount ε: |∆am(τ ;x)| ≤

21

εam(x), ∀m = 1, · · · , M . They further show that these inequalities are approx-

imately equivalent to the following set of inequalities: |∆Xn(τ)| ≤ max{εnxn, 1},

n = 1, · · · , N , where εn can be found from ε as discussed in [54]. Then, they choose

the step size τ to satisfy the above inequalities appreciably as follows:

τ = min
m∈[1,M]

{
max{ǫxn/gn, 1}
|µm(x)| ,

max{ǫxn/gn, 1}2a2
0(x)

σ2
m(x)

}
, (2.16)

where gn is a constant defined in [54] for a specific type of reaction and

µn(x)
△
=

M∑

m=1

νnm(x)am(x), n = 1, · · · , N,

σ2
n(x)

△
=

M∑

m=1

ν2
nm(x)am(x), n = 1, · · · , N.

(2.17)

2.4.2 The Modified τ-leap Method

As realizations of a Poisson random variable can be any nonnegative integer,

we always run the risk that some reaction channels fire so many times during one

leap that the leap condition is violated by overly large population changes. In the

extreme case, more molecules of some reactants will be consumed than those are

actually available. When this occurs, the numbers of molecules of those reactants

become negative, which is clearly undesirable. Cao et al. developed a modified τ -leap

method [40] to avoid the problem of negative population.

In order to avoid negative number of molecules, the maximum number of times

that reaction channel m can fire during a leap is given by

km,max = min
n∈[1,N], νnm<0

⌊
xn

|νnm|

⌋
, (2.18)

where ⌊x⌋ denotes the greatest integer that is less than or equal to x. Cao et al.

classify the reaction channels into two categories: critical and noncritical reaction

channels. If km,max is less than or equal to some critical value nc, then Rm is critical;

22

otherwise, it is noncritical. Typical value for nc is chosen to be between 2 and 20 [40].

Let us denote Rc and Rnc as the set of indices of the critical and noncritical reaction

channels, respectively, and the number of critical and noncritical reactions as Mc

and Mnc, respectively. A tentative step size τ ′ is calculated from (2.11) with the

reaction index m running over Rnc. Another tentative step size τ ′′ is generated from

an exponential distribution with parameter 1/ac
0(x), where ac

0(x) =
∑

m∈Rc
am(x).

Then the actual step size is chosen as τ = min{τ ′, τ ′′}. For noncritical reactions, we

generate Km, m ∈ Rnc, from a Poisson random variable as in the τ -leap method.

For critical reactions, if τ ′′ > τ ′, then Km = 0 for all m ∈ Rc; otherwise, a µ ∈ Rc

is generated using the exact SSA and then we set Kµ = 1 and Km = 0 for m ∈ Rc

and m 6= µ. Finally, the state after a leap is updated using (2.15). Essentially, the

modified τ -leap method applies the τ -leap method to the noncritical reactions and

the exact SSA to the critical reactions and chooses the step size τ as the minimum of

the step sizes calculated from the τ -leap method and generated from the exact SSA.

2.4.3 The Binomial and Multinomial τ-leap Methods

Tian and Burrage [41], and independently Chatterjee et al. [42], proposed the bi-

nomial τ -leap method to deal with the problem of negative population. The binomial

τ -leap method approximates the Poisson random variable Km, m = 1, · · · , M , used

in the Poisson τ -leap method by a binomial random variable, B(km,max, pm), with

parameters km,max and pm = [am(x)τ]/km,max. If every molecular species is a reactant

of only one reaction channel, the problem of negative population can be avoid by

choosing km,max as of (2.18). However, a molecular species may be the reactant of

several reaction channels. Since several reaction channels consume the molecules of

23

the same species, using km,max in (2.18) as one parameter of the binomial random

variable will still have the risk of causing negative number of molecules.

Chatterjee et al. [42] propose to handle this problem by generating a realization km

of the binomial random variable B(km,max, pm) for each reaction channel that involves

the same molecule species in succession, decreasing the common reactant population

on the right hand side of (2.18) appropriately after km is chosen [42]. However, there

is a bias in this strategy that makes its outcome dependent on the arbitrary order in

which the reactions are considered: earlier considered reaction channels tend to fire

more often than later considered reaction channels. Chatterjee et al. attempts to

correct this bias by randomly changing the order in which reaction channels fire from

one leap to the next.

Tian and Burrage proposed a different approach [41]. If two reaction channels Rj

and Rm both consume one molecule of a common reactant species, Tian and Burrage

first generate a sample kjm from a binomial random variable B
(
kjm,max, pjm

)
, where

pjm = [(aj(x) + am(x))τ]/kjm,max and kjm,max = min{kj,max, km,max} with kj,max and

km,max calculated from (2.18). Then, they generate a sample kj from a binomial

random variable B
(
kjm, aj(x)/[aj(x) + am(x)]

)
for Rj , and let km = kjm − kj for

Rm. However, Tian and Burrage did not address the situations where there are more

than two coupled reaction channels, such as the following case: R1 : S1 + S2 → S5,

R2 : S2 + S3 → S6, and R3 : S3 + S4 → S7.

Basically, Chatterjee et al. employ the binomial random variable B(km,max, pm) to

approximate the Poisson random variable Km, while Tian and Burrage use binomial

random variables B
(
kjm,max, pjm

)
and B

(
kjm, aj(x)/[aj(x) + am(x)]

)
to approximate

Poisson random variables Kj +Km and Kj, respectively. It is well known that a Pois-

son random variable can be well approximated by a binomial random variable B(n, p)

24

only when n≫ 1 and p≪ 1 [55]. If the condition n≫ 1 and p ≪ 1 is not satisfied,

then the binomial τ -leap method may introduce considerable simulation inaccuracies

in addition to that caused by changes in propensity functions. Specifically, when pm

and pjm, calculated from the formulas discussed previously, are greater than one, we

have to reduce τ so that pm ≤ 1 and pjm ≤ 1. Chatterjee et al. propose to choose τ

such that pm = 1, while Tian and Burrage do not specify how to choose τ , when the

above situation occurs. Since we do not want to increase simulation time too much,

we typically reduce τ to a value so that pjm ≤ 1 and close to 1.

Recently, Pettigrew and Resat proposed the multinomial τ -leap method [43],

where Km, m = 1, · · · , M , are generated from multinomial random variables with

mean am(x)τ . Since the marginal distribution of multinomial random variables fol-

lows a binomial distribution, the multinomial τ -leap method essentially also generates

Km, m = 1, · · · , M from binomial distributions, but it was shown by Pettigrew and

Resat that the multinomial τ -leap method can generate Km, m = 1, · · · , M more

efficiently.

2.4.4 The Midpoint Poisson and Binomial τ-leap Methods

As we discussed earlier, the Poisson, binomial and multinomial τ -leap methods

generate Km, m = 1, · · · , M , with mean am(x)τ , where am(x) is calculated from

the system state at t, x. Since the propensity functions change during the time

interval [t, t + τ], it may be better to use the state at the midpoint of [t, t + τ], x′, to

calculate am(x′), m = 1, · · · , M , and then generate Km, m = 1, · · · , M with mean

am(x′)τ . Towards this end, Gillespie proposed an estimated midpoint Poisson τ -leap

method. [38] Gillespie first estimated the expected state change in the time interval

[t, t + τ] as ∆x =
∑M

m=1 am(x)τνm, and then estimated the state at the midpoint as

25

x′ = x + ⌈∆x/2⌉, where ⌈x⌉ denotes the smallest integer greater than x. Gillespie’s

midpoint Poisson τ -leap method therefore has the same steps as Algorithm 2, but the

mean used to generate Km in step 4 is replaced by am(x′)τ .

Tian and Burrage also proposed a midpoint binomial τ -leap method. [41] They

used the same method as in the midpoint Poisson τ -leap method to calculate x′, and

then modify the binomial τ -leap method by changing one of the parameters of the

binomial random variable B(km,max, pm) to pm = am(x′)τ/km,max.

2.5 Accuracy Measurement of Stochastic Simula-

tion

As we discussed earlier, exact SSA simulates every reaction occurring when the

system evolves with time. Therefore, exact SSA simulates the stochastic dynamics

of the system accurately. Approximate SSA methods aim to improve simulation

speed with acceptable accuracy. Since the system state X(t) that is simulated is

a random process, a natural question arises: how can we measure the accuracy of

various approximate SSAs? In this thesis, we use the density distance proposed by

Cao and Petzold [56] as a figure of merit for simulation accuracy.

The density distance for two random variable X and Y is defined as follows:

D(X, Y) =

∫
|pX(s)− pY (s)| ds, (2.19)

where pX and pY are probability density functions (PDF) of X and Y. If X and Y are

two discrete random variables, the density distance is defined as:

D(X, Y) =
∑

z

|P (X = z)− P (Y = z)| (2.20)

where P (X) and P (Y) are the PMF of X and Y, respectively.

To compare the accuracy of different approximate SSAs, we run simulations for

a specific system using exact SSA and approximate SSAs. The histogram of the

26

interested variables are obtained from simulation results. Using histogram as an

approximation of the PDF in (2.19) or PMF in (2.20), we can calculate the density

distance between the results of exact SSA and those approximate SSAs. The density

distance calculated in this way is also referred to as histogram distance (HD).

CHAPTER 3

The K-Leap Method for Accelerating
Stochastic Simulation

3.1 Motivation

The exact SSA can simulate the time evolution of a chemical reaction system with

exact statistical properties stipulated by the CME, but it requires huge computation.

Therefore, in many practical systems, approximate SSAs are widely used. As we dis-

cussed earlier, the Poisson τ -leap method [38,39] use Poisson random variable, whose

realization can be any nonnegative integer so that there always certain probability

that the leap condition is violated and extremely, negative number of molecules oc-

curred. The binomial τ -leap method [41,42] attempts to improve simulation accuracy

by avoiding negative numbers of molecules. However, the number of firings of each

reaction channel during a leap still can be large enough to violate the leap condition.

Keep in mind that when negative number of molecules occurs, the leap condition has

been severely violated. Hence, a better way of improving simulation accuracy and

avoiding negative number of molecules is to design a leap method that can enforce

the leap condition at the beginning.

This motivates us to develop a new leap method, called K-leap method [57],

where we constrain the total number of reactions occurred during a leap to be a

27

28

constant K, calculated from the leap condition. As the number of times that each

reaction fires during a leap is bounded by K, the leap condition can be better satisfied,

thereby improving simulation accuracy. We will show that given the above constraint,

the time τ leaped over during a step follows a Gamma distribution, while the joint

distribution of the numbers of reactions occurred during a leap for each channel follows

a multinomial distribution. We will also developed several methods of determining K

according to the leap condition. Since the exact SSA is a special case of our K-leap

method when K=1, our K-leap method can naturally change from the exact SSA

to an approximate leaping method during simulation, whenever the leap condition

allows to do so.

3.2 K-leap Method

Recall that the exact SSA simulates the occurrence of a single reaction in each

step, and the time between two steps is a random variable. However, in the τ -leap

method, the time τ leaped over in a step is a deterministic number preselected to

satisfy the leap condition; once τ is selected, the number of reactions occurred during

a leap is a random variable that can take very large values. The dilemma of the τ -leap

method is: how can a preselected τ , without knowing at least an upper bound on the

number of reactions that will occur in the next leap, well satisfy the leap condition?

After all, it is the number of reactions occurred during a leap, not the time leaped

over, that affects the propensity functions.

Our K-leap method [58] avoid this dilemma by mimicking the exact SSA: simulate

the occurrence of K ≥ 1 reactions during each leap, where K is a deterministic

number chosen to satisfy the leap condition. After K is chosen, the time, τ , that

29

is leaped over in each step, is a random variable. Mathematically, we impose the

constraint
∑M

m=1 Km(x, τ) = K on total number reactions occurred during each leap.

For notational brevity, we will denote Km(x, τ) as Km in the remaining of the thesis.

Although K is a deterministic number, Km, m = 1, · · · , M are random variables

taking integer values in [0, K].

In order to simulate τ and Km, m = 1, · · · , M , we first need to find the joint

PDF of τ and Km, m = 1, · · · , M , given the constraint
∑M

m=1 Km = K. Denot-

ing this conditional PDF as p(K1, · · · , KM , τ |∑M
m=1 Km = K), we show in the Ap-

pendix A that τ is independent of K1, · · · , KM under the above constraint, that is

p(K1, · · · , KM , τ |∑M
m=1 Km = K) = p(τ |∑M

m=1 Km = K)p(K1, · · · , KM |
∑M

m=1 Km =

K), where p(τ |∑M
m=1 Km = K) is the conditional PDF of τ , and p(K1, · · · , KM |

∑M
m=1 Km =

K) is the joint conditional PDF of Km, m = 1, · · · , M , given
∑M

m=1 Km = K. More-

over, we prove in the Appendix A that p(τ |∑M
m=1 Km = K) is a Gamma PDF given

by

p
(
τ |

M∑

m=1

Km = K
)

=
a0(x) exp(−a0(x)τ)(a0(x)τ)K−1

(K − 1)!
, τ > 0, (3.1)

while p(K1, · · · , KM |
∑M

m=1 Km = K) is a multinomial PDF given by

p
(
K1, · · · , KM |

M∑

m=1

Km = K
)

=
K!

∏M
m=1 Km!

M∏

m=1

θKm

m , Km ≥ 0,
M∑

m=1

Km = K (3.2)

where θm = am(x)/a0(x), m = 1, · · · , M .

To implement the K-leap method in simulating a practical chemical reaction sys-

tem, we need some way of quickly determining the value of K so that the leap condi-

tion C1 can be well satisfied. We next propose three methods of calculating the value

of K.

30

3.2.1 K-selection Method I

The most straightforward way is to employ the same approach used by Gillespie

and Petzold to selecting τ in the τ -leap method [39]. Since Km, m = 1, · · · , M

follow a multinomial distribution given in (3.2), the mean and variance of Km are

E[Km] = Kθm and var[Km] = Kθm(1 − θm), respectively, and the covariance of Km

and Km′ is cov[Km, Km′] = −Kθmθm′ , m 6= m′. Let us define θ
△
=[θ1, · · · , θM]T ,

and K
△
=[K1, · · · , KM]T , then we have E[K] = Kθ. If we define a matrix C with

[C]mm′ = −θmθm′ , for m 6= m′, and [C]mm = θm(1 − θm), where [C]mm′ denotes the

entry on the mth row and the m′th column of C, the covariance matrix of K is given

by cov[K] = KC.

The first order Taylor expansion of ∆am(K;x) can be found as [38]

∆am(K;x) ≈
M∑

m′=1

fmm′(x)Km′ , (3.3)

where

fmm′(x)
△
=

[
∂am(x)

∂x

]T

νm′, m, m′ = 1, · · · , M. (3.4)

Letting fm = [fm1, · · · , fmM]T , m = 1, · · · , M , and

ηm(x)
△
= fT

mθ, m = 1, · · · , M,

σ2
m(x)

△
= fT

mCfm, m = 1, · · · , M,

(3.5)

we obtain from (3.3) the following:

E[∆am(K;x)] ≈ ηm(x)K,

var[∆am(K;x)] ≈ σ2
m(x)K.

(3.6)

If we impose the requirements |E[∆am(K;x)]| < ǫa0(x) and
√

var[∆am(K;x)] <

ǫa0(x) as in the τ -selection method of Gillespie and Petzold [39], using (3.6), and

31

considering that the minimum value of K is 1, we obtain the value of K hat approx-

imately satisfies the leap condition (2.10):

K = max

{
min

m∈[1,M]

{
ǫa0(x)

|ηm(x)| ,
ǫ2a2

0(x)

σ2
m(x)

}
, 1

}
. (3.7)

Note that (3.7) is in a form similar to the formula for determining τ in the τ -leap

method [39], but ηm(x) and σ2
m(x) in (3.5) are calculated differently.

Cao et al. has proposed a more efficient method of determining τ for the τ -leap

method [54]. Based on the approach of Cao et al., we next develop two efficient

methods of calculating K for our K-leap method.

3.2.2 K-selection Method II

Although (2.10) limits the changes in the propensity functions during a leap as

required by the leap condition, it does not satisfy the leap condition very well for those

propensity functions that are relatively small compared to a0(x). This is because

(2.10) will allow a large relative change in those small propensity functions, which

could result in simulation inaccuracies. To better satisfy the leap condition C1, we

bound the relative change in all the propensity function by the same among ǫ [54]:

|∆am(τ ;x)| ≤ ǫam(x), ∀m = 1, · · · , M. (3.8)

Let us define

∆Xn
△
=Xn(t + τ)− xn =

M∑

m=1

Kmνnm. (3.9)

Instead of directly working on (3.8) to calculate K, we find K that satisfy the following

condition [54]:

|∆Xn| ≤ max{ǫnxn, 1}, n = 1, · · · , N, (3.10)

where ǫn can be found from ǫ to satisfy or approximately satisfy the condition in

(3.8) as follows [54]. For a monomolecular reaction Rm involving molecular specie

32

Sn, the propensity function is am(x) = cmxn, and the relative change in am(x) is

given by ∆am(x)/am(x) = ∆xn/xn. Therefore, we can choose ǫn = ǫ so that (3.10)

is equivalent to (3.8).

For a bimolecular reaction Rm with two different reactants Sn1
and Sn2

, we

have am(x) = cmxn1
xn2

. We can reasonably approximate ∆am(x) by ∆am(x) ≈

cm∆xn1
xn2

+ cmxn1
∆xn2

, where the typically small term cm∆xn1
∆xn2

has been dis-

carded. Thus, the relative change in am(x) is given by ∆am(x)/am(x) ≈ ∆xn1
/xn1

+

∆xn1
/xn1

, and we can select ǫn1
= ǫn2

= ǫ/2 to approximately satisfy (3.8). Simi-

larly, for a bimolecular reaction Rm with a single molecular specie Sn, we can choose

ǫn = ǫ/[2 + 1/(xn − 1)]. Although formulas for selecting ǫn for trimolecular reactions

are also derived by Cao et al. [54], we typically only need to consider elementary reac-

tions including bimolecular and monomolecular reactions, as argued by Gillespie [47].

When one molecular specie Sn is the reactant of several reaction channels, ǫn takes

the smallest value calculated from these reaction channels.

If we define ν̃n
△
=[νn1, · · · , νnM]T , n = 1, · · · , N , the mean and variance of ∆Xn

can be found from (3.9) as

E[∆Xn] = ν̃T
nθK,

var[∆Xn] = ν̃T
nCν̃nK.

(3.11)

We can regard the condition in (3.10) to be “substantially satisfied”, if both the

absolute mean and the standard derivation of ∆Xn are bounded by the right hand

side of (3.10) [54]:

|E[∆Xn]| ≤ max{ǫnxn, 1}, n = 1, · · · , N,

√
var[∆Xn] ≤ max{ǫnxn, 1}, n = 1, · · · , N.

(3.12)

33

Substituting (3.11) into (3.12) and noticing that the minimum value of K is one,

we obtain

K = max

{
min

n∈[1,N]

{
max{ǫnxn, 1}
|ν̃T

nθ| ,
max{ǫnxn, 1}2

ν̃T
nCν̃n

,

}
, 1

}
. (3.13)

Note that calculating ηm(x) and σ2
m(x), m = 1, · · · , M , in (3.5), that is used in

the K-selection formula (3.7), requires fmm′(x) which is calculated from (3.4), while

the K-selection formula (3.13) does not need fmm′(x). Therefore, the K-selection

based on (3.13) is more efficient, especially when M is comparable to or larger than

N .

We obtain K in (3.13) by mimicking the τ -selection method proposed by Cao et

al. [54]: bounding the absolute mean and the standard derivation of ∆Xn. In the

τ -leap method, since Km, m = 1, · · · , M are Poisson random variable and can take

any nonnegative values, ∆Xn, n = 1, · · · , N , are unbounded. Hence it is reasonable

to obtain τ to “substantially” satisfy (3.10) by bounding the absolute mean and the

standard derivation of ∆Xn. However, in our K-leap method, we have 0 ≤ Km ≤ K,

m = 1, · · · , M , i.e. random variables Km, m = 1, · · · , M are bounded, which implies

that we can choose K to satisfy (3.10) strictly. This leads to a more accurate and

efficient method of determining the value of K as follows.

34

3.2.3 K-selection Method III

Since ∆Xn =
∑M

m=1 νnmKm, taking into account the constraint
∑M

m=1 Km = K,

we have

|∆Xn| ≤ K max
m∈[1,M]

{|νnm|}. (3.14)

Letting the right hand side of (3.14) be less than or equal to the right hand side of

(3.10), we can satisfy the leap condition (3.10), which yields the following formula for

selecting K:

K = max

{
min

n∈[1,N]

{
max{ǫnxn, 1}

maxm∈[1,M]{|νnm|}

}
, 1

}
. (3.15)

It is clear that (3.15) requires less computation than (3.13). Moreover, our K-

leap method using K calculated from (3.15) can strictly satisfy the leap condition

(3.10). Of course, ǫn in (3.15) is approximately obtained from ǫ for reactions with

an order greater than 1, thus, satisfying (3.10) only approximately satisfies (3.8).

Nevertheless, our K-leap method, that uses anyone of (3.7), (3.13), and (3.15) to

select K, can satisfy the leap condition C1 by properly choosing ǫ, since the total

number of reactions occurred during one leap is a deterministic number K, and the

times that each reaction channel fires are upper bounded by K. In contrast, the τ -leap

method always has certain probability that the leap condition cannot be satisfied.

3.3 K-leap Simulation Algorithm

When K = 1, our K-leap method becomes the exact SSA. Hence, our K-leap

method can adaptively change from the exact SSA to an approximate leap method,

whenever the leap condition allows to do so. The SSA based on our K-leap method

is summarized in the following algorithm:

35

Algorithm 3 (K-Leap SSA)

1. Initialization (set the initial number of molecules, set t← 0).

2. Calculate the propensity function, am(x), m = 1, · · · , M .

3. Calculate K from (3.7), (3.13), or (3.15).

4. If K = 1, execute an exact SSA step, and go to step 6.

5. If K > 1, generate τ according to the Gamma PDF (3.1), and generate Km,

m = 1, · · · , M , according to the multinomial PDF (3.2).

6. Set t← t + τ , and update the state vector X(t)← X(t) +
∑M

m=1 νmkm.

7. Go to step 2.

Algorithm 3 gives the outline of the K-leap simulation method. Several specific

implementation issues, including the method of generating multinomial random vari-

ables and issues related to negative numbers of molecules, will be discussed in the

ensuing section.

3.4 Implementation Issues

3.4.1 Efficient Generation of Multinomial Random Variables

The multinomial random variables Km, m = 1, · · · , M , can be generated from

M − 1 binomial random variables as follows [59]. A realization of K1, k1, is first

generated from a binomial random variable B(K, θ1), then, a realization of Km, km,

m = 2, · · · , M − 1, is generated from B(K −∑m−1
j=1 kj, θm/

∑M
j=m θj), and finally,

36

kM = K −∑M−1
j=1 kj. To efficiently generate a binomial random variable B(n, p), we

can employ the direct method [60] for small np, say np < 10, and use rejection method

[61] for large np. Computational complexity of the direct method is proportional to

np, while that of the rejection method for np > 10 is greater than that of the direct

method for np = 10. To save computation, we have two strategies. One tactic

is to order θ1, · · · , θM in descending order, and generate Km sequentially starting

from the Km with the largest θm. In some cases, the mean of the Km with small

propensity function is close to 0. After we generate those km with large θm, the

remaining total number of firings is to be 0. Then we don’t need to generate the

remaining km. Thus, the average number of binomial random variable generators

used to generate Km will likely be less than the number of reaction channels in the

system. This further reduces the computation in random number generation. In some

cases, the reaction channels are easily been partitioned into two sets Ra and Rb so

that
∑

j∈Ra
θj ≪

∑
j∈Rb

θj . The θm in each set changes quickly but those channels

didn’t change to the other set. Since θm changes quickly, it requires us to reorder

them frequently, which consumes time. Then we can implement another tactic using

these two groups without sorting them every step during simulation. We can first

generate a number ka from B(K,
∑

j∈Ra
θj), then generate Km ∈ Ra as multinomial

random variables with parameters ka, θm/
∑

j∈Ra
θj , and similarly generate Km ∈ Rb

as multinomial random variables with parameters K−ka, θm/
∑

j∈Rb
θj . The value of

ka will most likely be a very small, close or equal to zero. Thus, the average number

of binomial random variable generators used to generate Km ∈ Ra, Ma, will likely be

less than the number of reaction channels in Ra, |Ra|, i.e., Ma < |Ra|. This further

37

reduces the computation in random number generation. In contrast, the binomial

τ -leap method [41,42] requires M independent binomial random variable generators,

and thus, it does not have the structure of multinomial random variables that can be

explored to reduce computation.

3.4.2 Negative Numbers of Molecules

The third method of choosing K in (3.15) can avoid negative number of molecules

for any 0 < ǫ < 1, since K is chosen to satisfy condition (3.14), which implies that

we have ∆Xn ≤ ǫnxn. If the step size K determined using the first or the second

method given in (3.7) or (3.13) is relatively large, there may be certain probability

that negative numbers of molecules occur. However, we can simply reduce K to

a proper value to avoid this problem. On the contrary, Gillespie’s τ -leap method

theoretically cannot avoid negative numbers of molecules by reducing the step size τ ,

since the realizations of a Poisson random variable are unbounded.

The step size K calculated from (3.15) is typically smaller than that determined

from (3.7) or (3.13), which may slow simulation. Also, it may be inefficient to avoid

negative numbers of molecules simply by reducing K, if (3.7) or (3.13) is used to

determine K. This motivates us to develop a more efficient method without reducing

K to deal with the problem of negative numbers of molecules, which we refer to as

the partition method, as depicted in the following.

We partition the reaction channels into Ms sets: R1, · · · ,RMs
, where reaction

channels in the same set can have some common reactants, but the channels in dif-

ferent sets does not share any reactants. Let KRj
be the total number of firings of all

38

channels in Rj during a leap. Clearly, KR1
, · · · , KRMs

are multinomial random vari-

ables with parameters K, θR1
, · · · , θRMs

, where θRj
=

∑
m∈Rj

θm. In each step, we use

(3.7) or (3.13) to determine K, and generate realizations of KR1
, · · · , KRMs

according

to the multinomial distribution. To avoid negative numbers of molecules, we choose

a number kmax,Rj
= minm∈Rj

minνnm<0{⌊xn/|νnm|⌋} as an upper bound on KRj
. For

example, if R1 has the following three coupled reaction channels: S1 + S1 → S10,

S1 + S2 → S11, and S2 + S3 → S12, we have kmax,R1
= min{⌊x1/2⌋, x2, x3}. If a

realization of KRj
, say kRj

, is greater than kmax,Rj
, we set kRj

= kmax,Rj
. Then,

for each set Rj , we generate kRj ,1, · · · , kRj ,MRj
, where MRj

is the total number of

reaction channels in Rj , for the number of firings of each channel in Rj , according

to a multinomial distribution with parameters kRj
, θm/

∑
µ∈Rj

θµ, m ∈ Rj . Since K

determined by (3.7) or (3.13) is typically larger than that determined by (3.15), this

method is more efficient than the K-leap method with K calculated from (3.15).

In summary, taking into account the issue of negative numbers of molecules, we

have three methods to run simulation: (i) use (3.7) or (3.13) to choose K and the

partition method to avoid negative numbers of molecules, (ii) use (3.7) or (3.13) to

choose K and the method by reducing K to avoid negative numbers of molecules,

and (iii) use (3.15) to choose K. These three methods provide different tradeoffs

between the simulation accuracy and time. Generally, for a given ǫ, method (i) offers

the shortest simulation time but worst accuracy, method (iii) offers the longest sim-

ulation time but best accuracy, and method (ii) offers simulation time and accuracy

in between those of methods (i) and (iii).

39

3.5 Numerical Examples

To demonstrate the accuracy and efficiency of our K-leap method, we now simulate

three chemical reaction systems. Since selection of the step size is very important

in leap methods, we will consider several different methods of selecting step size:

K-selection according to (3.7), (3.13) and (3.15) for our K-leap method, and the

τ -selection procedures given in (6) of Gillespie [39] and in (33) of Cao et al. [54]

for the τ -leap method. To assess the accuracies of different simulation methods, we

first obtain the histograms of the populations of each molecular species at the end

of simulation from a series of repeated exact SSA runs. We then simulate the same

chemical reaction system over the same time interval by the same number of runs,

using the K- and τ -leap methods. As discussed in Sec. 2.5, the histogram distances

(HD) between the results of the exact SSA and those of a leap method is employed

to measure the simulation accuracy.

An important issue for the efficiency of stochastic simulations is generation of

random numbers. In the τ -leap method, we use the Poisson random number generator

in Press et al [62]. In our K-leap method, we employ the Gamma random number

generator in Press et al. [62], and use M − 1 binomial random number generators to

generate M multinomial random numbers. In generating a binomial random variable

B(n, p), we employ the BTPE algorithm [61] for np > 10, and the BG algorithm [60]

for np ≤ 10. All simulations are run in Matlab on a PC with a 2.99 GHz CPU and

1G-byte memory running Windows XP.

40

3.5.1 A System with Two Independent Reaction Channels

This simple example has two reaction channels:

S1
c1→ ∅, S2 + S3

c2→ S4. (3.16)

These two reactions channels are independent, but we need to consider both reaction

channels when selecting a step size in a leap SSA. If the initial number of S1 molecules

at t = 0 is X1(0) = x̃1, the pdf of X1(t) can be obtained from the CME as [33]

p(X1(t) = x) =
x

x!(x̃1 − x)!
[e−c1x]t[1− e−ct]x̃1−x, x = 0, · · · , x̃1. (3.17)

Hence, we can compare the histogram of X1(t) generated from a leap SSA with the

pdf of X1(t) in (3.17). In our simulation, we set X1(0) = 3000, X2(0) = 3000, and

X3(0) = 104, choose c1 = 1, c2 = 10−4. We run simulation 5 × 104 times, and each

time starts from t = 0 and ends at t = 2. We then calculate the histogram of X1(2)

and the distance between the histogram and the pdf of X1(2) using the histogram

distance formula [56].

Figure 3.1 depicts the histogram distance versus CPU time. It is seen that our K-

leap method outperforms both Gillespie’s original τ -leap method [39] and the modified

τ -leap method of Cao et al., [54] since our K-leap method produces smaller histogram

distance for a given CPU time, or, our K-leap method takes less CPU time for a give

histogram distance. In our K-leap method, K-selection method 3 using (3.15) offers

better performance than K-selection method 1 using (3.7) and method 2 using (3.13),

while method 2 outperforms method 1, as expected.

To understand how our K-leap method improves performance, we list the average

number of steps, CPU time, and the histogram distance for these leap methods in

Table 3.1. We compare the performance of Gillespie τ -leap method and our K−leap

41

400 600 800 1000 1200 1400 1600 1800
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

CPU Time

H
is

to
g
ra

m
 D

is
ta

n
c
e

Gillespie τ−leap

Cao Modified τ−leap

K−leap, method1
K− leap, method 2
K−leap method3

Figure 3.1: Histogram distance of X1(t) at t = 2 versus CPU time for two-channel
reactions (3.16) with c1 = 1, c2 = 10−4, X1(0) = 3000, X2(0) = 3000, and X3(0) =
104. The τ -leap method uses (6) of Gillespie [39] to determine τ ; Cao modified τ -leap
method uses (33) of Cao et al. [54] to calculate τ ; and K-leap method 1, 2, and
3, employ (3.7), (3.13), and (3.15), respectively, to calculate K. The histogram is
obtained after 5× 104 simulation runs. The CPU time is the total time (in seconds)
of 5× 104 runs.

method 1 in Table 3.1 (a), since these two methods use the similar approach to select

the step size. For a given ǫ, it is seen that these two methods requires almost the

same number of steps, and yield almost the same histogram distance, but our K-leap

method needs less time. We then compare the performance of the τ -leap method of

Cao et al. and our K−leap method 2 in Table 3.1 (b), since these two methods use the

similar approach to select the step size. Similar observation to that from Table 3.1 (a)

is seen from 3.1 (b): compared to Cao modified τ -leap method, our K-leap method

takes less time to provide almost the same histogram distance. These observations

suggest that for a given ǫ, our K-leap method does not significantly reduce histogram

distance, but reduces simulation time. It is worth to emphasize that although our

42

Table 3.1: Average number of steps of one simulation run, CPU time of 5 × 104

runs (in seconds), and histogram distance of X1(2) for the example of two-channel
reactions

(a) Gillespie τ -leap (G-τ leap) and K-leap method 1 (K-leap I)

ǫ = 0.03 ǫ = 0.0175 ǫ = 0.0058
Steps Time HD Steps Time HD Steps Time HD

G-τ leap 38.3 389.9 0.866 65.2 649.7 0.526 195.6 2087.6 0.179
K-leap I 38.4 320.8 0.868 65.7 550.6 0.519 200.6 1809.1 0.169

∗The CPU time for the exact SSA is 4438.9 second.

(b) Cao modified τ -leap (C-τ leap) and K-leap method 2 (K-leap II)

ǫ = 0.1 ǫ = 0.06 ǫ = 0.02
Steps Time HD Steps Time HD Steps Time HD

C-τ leap 40.0 387.8 0.823 67.0 634.3 0.512 200.0 2034.6 0.165
K-leap, II 40.7 314.0 0.823 68.0 530.1 0.513 206.1 1741.9 0.162

(c) K-leap method 3 (K-leap III)

ǫ = 0.1 ǫ = 0.06 ǫ = 0.02
Steps Time HD Steps Time HD Steps Time HD

K-leap, III 41.3 285.4 0.806 68.74 480.8 0.501 209 1585.8 0.163

K-leap method does not significantly reduces the histogram distance, it can avoid

the small probability event where the number that a reaction channel fires in a leap

is very large. In contrast, the τ -leap cannot avoid such small probability event, since

the number of firings of a channel is a Poisson random variable. Therefore, our K-

leap method increases simulation accuracy by avoiding such small probability event,

which is not observable from the histogram distance. Comparing Table 3.1 (c) with

(a) and (b), we see that our K-leap method 3 can further reduce simulation time

while provide similar histogram distance.

The reduction of simulation time in our K-leap method 1 and 2 is primarily due

to the random variable generators, while the reduction of simulation time in our

K-leap method 3 is due to not only the binomial random variable generator, but

also the simplicity of calculating K using (3.15). In our K-leap method, we use a

43

Gamma random variable generator and M − 1 binomial random variable generator,

while in the τ -leap method, M Poisson random variables are required. The binomial

random variable generator we used is more efficient than the Poisson random variable

generator, while the Gamma random variable generator offers similar speed to that

of the Poisson random variable generator. We used the most efficient and accurate

binomial and Poisson random variable generators that we are aware of. Investigation

of efficient random variable generators is an important issue in stochastic simulation,

but it is beyond the scope of this thesis.

Comparing Table 3.1 (a), (b), and (c), column by column, we can see the effect

of the parameter ǫ has on the simulation time and accuracy. Since (3.8) satisfies the

leap condition C1 better than (2.10), the modified τ -leap method and our K-leap

method 2 and 3 that employ (3.8) to select the step size can use a relatively large ǫ,

while still offer comparable performance to that of the τ -leap method and our K-leap

method 1 that use (2.10) to select the step size.

3.5.2 Decaying-Dimerizing Reactions

This example is originally used by Gillespie [38, 39] to test the τ -leap method. It

includes the following four reactions:

S1
c1→ ∅, S1 + S1

c2→ S2,

S1 + S1
c3← S2, S2

c4→ S3.

(3.18)

In these reactions, a monomer S1 reversibly dimerizes to an unstable form S2, which

can convert to a stable form S3. We simulate these reactions using the same values

of rate constant and initial conditions as Gillespie [39]:

c1 = 1, c2 = 0.002, c3 = 0.5, c4 = 0.04, (3.19)

44

Table 3.2: Average number of steps of one simulation run, CPU time of 5× 104 runs
(in seconds), and histogram distance (HD) of X1(10) for the example of decaying-
dimerizing reactions

(a) Gillespie τ -leap (G-τ leap) and K-leap method 1 (K-leap I)

ǫ = 0.04 ǫ = 0.024 ǫ = 0.012
Steps Time HD Steps Time HD Steps Time HD

G-τ leap 67.1 1170.4 0.557 120.7 2081 0.303 383.46 6722.8 0.082
K-leap I 67.1 972.4 0.551 120.7 1750.4 0.288 396.4 6125.6 0.074

∗ The CPU time for the exact SSA is 327,271 second.

(b) Cao τ -leap (C-τ leap) and K-leap method 2 (K-leap II)

ǫ = 0.1 ǫ = 0.06 ǫ = 0.03
Steps Time HD Steps Time HD Steps Time HD

C-τ leap 68.1 1168.2 0.516 123.9 2119.4 0.259 399.3 6956.9 0.0752
K-leap II 68.1 942.2 0.516 123.9 1725.5 0.263 399.5 5948.8 0.0722

(c) K-leap method 3 (K-leap III)

ǫ = 0.8 ǫ = 0.6 ǫ = 0.4
Steps Time HD Steps Time HD Steps Time HD

K-leap III 417.7 5877.5 0.089 556.88 8000.1 0.066 835.3 12510 0.044

and

X1(0) = 4150, X2(0) = 39565, X3(0) = 3445. (3.20)

We run simulation 5 × 104 times, and each time starts at t = 0 and ends at t = 10.

We then calculate the histogram distance between the results of a leap method and

those of the exact SSA.

Figure 3.2 depicts the histogram distance of X1(10) versus CPU time. It is seen

that our K-leap method 1 outperforms the Gillespie’s original τ -leap method, [39]

while our K-leap method 2 outperforms both the Gillespie τ -leap method and the

Cao τ -leap method of Cao et al [54]. These observations are also shown in Table 3.2

(a) and (b), where the average number of steps, CPU time, and the histogram distance

for these leap methods are listed. As shown in Table 3.2 (c), although our K-leap

45

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

CPU Time

H
is

to
g

ra
m

 D
is

ta
n

c
e

Gillespie τ−leap

Cao Modified τ−leap

K−leap, method 1
K−leap, method 2
K−leap, method 3

Figure 3.2: Histogram distance of X1(t) at t = 10 versus CPU time for decaying-
dimerizing reactions (3.18) with rate constants (3.19) and the initial condition (3.20).
The τ -leap method uses (6) of Gillespie [39] to determine τ ; Cao Modified τ -leap
method uses (33) of Cao et al. [54] to calculate τ ; and K-leap method 1, 2, and
3, employ (3.7), (3.13), and (3.15), respectively, to calculate K. The histogram is
obtained after 5× 104 simulation runs. The CPU time is the total time (in seconds)
of 5× 104 runs.

method 3 uses a relatively large ǫ, it produces a small histogram distance as offered

by other leap methods with a much smaller ǫ. For this reason, we only show the small

histogram distance for our K-leap method 3 in Figure 3.2. It seems strange that using

an ǫ as large as 0.8, our K-leap method 3 still produces a small histogram distance. A

careful look at (3.15) and reactions (3.18) reveals that K is determined by bounding

the worst case change in a2(x): K is selected so that the change in a2(x) caused by K

firings of the second reaction channel is upper bounded by ǫa2(x). However, the event

that the second reaction channel fires K times while other channels do not fire is a

small probability event. Particularly, a3(x) is comparable to a2(x); hence, it is more

often that reaction channels 2 and 3 fire comparable times in a leap, and the reduction

46

of X2(t) caused by firings of the second reaction channel will be compensated for by

the increase of X2(t) caused by firings of the third reaction channel. Essentially,

although using (3.15) can strictly satisfy condition (3.10), it is too conservative for

the situation where the number of a molecular species can be increased and decreased

by several reaction channels with comparable probability. As a result, we can select

a relatively large ǫ, while achieving relatively accurate simulation results.

3.5.3 Expression of LacZ/LacY Genes and Activities of the
Proteins

The example of this system is the lactose operon model, which depicts the ex-

pression of LacZ and LacY genes and activity of LacZ and LacY proteins in E.coli,

described in detail by Kierzek [37,63,64]. This model has 22 reaction channels, listed

in Table 3.3. We run simulation using the exact SSA, starting at t = 0 with initial

condition given by Kierzek, and ending at t = 600. We then use the result of exact

SSA as the initial condition, and run simulation 104 times using exact SSA, our K-

leap method and the binomial τ -leap methods of Chatterjee et al. [42], and of Tian

and Burrage [41]. Each run starts at t = 600 and ends at t = 601. As depicted by

Tian and Burrage [41], in each step, the number of RNAP molecules is generated

from a Gaussian random variable with mean 35 and standard deviation 3.5, while the

number of Ribosome molecules is generated from a Gaussian random variable with

mean 350 and standard deviation 35. In our K-leap method, we used the method

discussed in Section 3.4.2 to avoid negative numbers of molecules. We also partition

the reaction channels into two set: Ra contains reaction channels 16, 17, 20, 21, 22,

while Rb contains the remaining channels, since
∑

m∈Rb
θm ≪

∑
m∈Ra

θm, and then

use the method in Section 3.4.1 to reduce computation.

47

Table 3.3: A full list of reaction channels and deterministic reaction rates of
LacZ/LacY gene expression and protein activity

Reaction channel Reaction rate
R1 PLac + RNAP →PLacRNAP 0.17
R2 PLacRNAP →PLac + RNAP 10
R3 PLacRNAP →TrLacZ1 1
R4 TrLacZ1 →RbsLacZ+PLac+TrLacZ2 1
R5 TrLacZ2→TrLacY1 0.015
R6 TrLacY1→RbsLacY+TrLacY2 1
R7 TrLacY2→RNAP 0.36
R8 Ribosome+RbsLacZ→RbsRibosomeLacZ 0.17
R9 Ribosome+RbsLacY→RbsRibosomeLacY 0.17
R10 RbsRibosomeLacZ →Ribosome+RbsLacZ 0.45
R11 RbsRibosomeLacY →Ribosome+RbsLacY 0.45
R12 RbsRibosomeLacZ→TrRbsLacZ+RbsLacZ 0.4
R13 RbsRibosomeLacY →TrRbsLacY+RbsLacY 0.4
R14 TrRbsLacZ→LacZ 0.015
R15 TrRbsLacY→LacY 0.036
R16 LacZ→∅ 6.42× 10−5

R17 LacY→∅ 6.42× 10−5

R18 RbsLacZ→∅ 0.3
R19 RbsLacY→∅ 0.3
R20 LacZ+lactose→LacZlactose 9.52× 10−5

R21 LacZlactose→ product+ LacZ 431
R22 LacY→lactose+LacY 14

The histogram distance of the molecular number of the species product at t = 601

is depicted in Figure 3.3. It is seen that our K-leap method outperforms the binomial

τ -leap methods. For other species, such as RbsLacY and TrRbsLacY, we observed,

from our simulation results that are not shown here, that our K-leap method and the

binomial τ -leap methods offer similar performance at t = 601. The reason why the

performance difference of different leap methods only reflects in product is explained

as follows. Since the propensity functions of reaction channel R20, R21 and R22 are two

order of magnitude higher than the propensity functions of other reaction channels,

these three channels fire much more frequently than other channels, which implies

48

Table 3.4: CPU time (in seconds) of 104 simulation runs and speedup over Gillespie’s
exact SSA of the K-leap method for the example of LacZ/LacY. The speedup is
defined as the CPU time of the K-leap method divided by the CPU time of the exact
SSA.

Method CPU time Speedup
K-leap (ǫ = 0.01) 13704.0 20.1
K-leap (ǫ = 0.0125) 8908.2 30.9
K-leap (ǫ = 0.015) 6243.9 44.0
K-leap (ǫ = 0.0175) 4658.5 59.0
K-leap (ǫ = 0.02) 3660.3 75.1
Exact SSA 2.75× 105 1

that the numbers of reactions occurred during a leap for these three channels are

much larger than the numbers of reactions of other channels. Therefore, different

leap methods offer similar performance for the species involved in channels other

than R20, R21 and R22. For the species involved in R20, R21 and R22, only product

appears at one side of the reaction, and other species appear at both sides of these

reactions. Therefore, it is the product that can reveal the performance difference of

different leap methods.

The comparison between the simulation time of the K-leap method and Gillespie’s

exact SSA is shown in Table 3.4. Comparing to the exact SSA, the K-leap method

reduces the simulation time by about 20 times when ǫ = 0.01, and about 75 times

when ǫ = 0.02, while it produces an histogram distance of 0.062 when ǫ = 0.01, and

0.174 when ǫ = 0.02. Therefore, the K-leap method significantly improves simulation

efficiency, while providing relatively accurate results in this example.

3.6 Concluding Remarks

Leap methods are promising for accelerating stochastic simulation, while providing

acceptable simulation accuracy. The τ -leap method proposed by Gillespie [38, 39]

49

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CPU Time

H
is

to
g

ra
m

 D
is

ta
n

c
e

ε=0.01
ε=0.0125

ε=0.015

ε=0.0175

ε=0.02
K−leap

Tian Binomial τ−leap

Chatt Binomial τ−leap

Figure 3.3: Histogram distance of the molecular number of the product at t = 601
versus CPU time for the example of LacZ/LacY. The histogram is obtained after 104

simulation runs. The CPU time is the total time (in seconds) of 104 runs.

has received much attention and been improved in many aspects [40–42, 54, 65]. In

the τ -leap method, the number of firings of each reaction channel during a leap

is a Poisson random variable, whose value is unbounded, although the probability

that it takes very large value can be small. This runs the risk of violating the leap

condition, thereby causing large simulation inaccuracy. In this chapter, we developed

an alternative leap method, K-leap method, in which we constrain the total number of

reactions in during leap to be a predetermined number K. As the number of firings

of each reaction channel during a leap is bounded, our K-leap method can better

satisfy the leap condition, thereby improving simulation accuracy. Moreover, since

our K-leap method becomes the exact SSA when K = 1, it can naturally fold back

to the exact SSA, if leaping is inappropriate due to the sensitivity of the propensity

functions to population changes.

50

Our K-leap method is different from the kα-leap method proposed by Gillespie

[38]. In the kα-leap method, only the number of times that a reaction channel α fires

during a leap is constrained to be a constant kα, while the other channels can fire an

unbounded number of times, Therefore, the kα-leap method has the same problem

of the τ -leap method. In contrast, our K-leap method is designed to avoid the

unbounded number of firings of each reaction channel, which can improve simulation

accuracy.

Further improvement on our K-leap method is possible. For example, the estimated-

midpoint leap [38] and implicit leap method [65], that are employed to improve the

accuracy of the τ -leap method, can also be used to improve our K-leap method. One

issue that remains unexplored in our K-leap method is the effect of the constraint

that we impose on the number of reactions occurred during each leap. While this

constraint can enforce the leap condition, it also limits the granularity of the total

number of reactions occurred during certain time period. Although the number of

reactions occurred for each channel during a leap is a random variable which can take

any integer values from 0 to K, constraining the total number of reactions to be a

constant K may cause certain states of the reaction system to be unreachable. The

impact of such a constraint on simulation accuracy may be worth further investiga-

tion.

CHAPTER 4

Modified K-Leap Methods for Accelerated
Stochastic Simulation of Gene Networks

4.1 Motivation

While Gillespie’s exact SSA allows one to simulate the occurrence of every reacting

event in a gene network or a more general chemically reacting system [33], it requires

huge computation to produce a realization of the system’s evolution, when the total

molecular population of the system is relatively large. Recently, significant effort has

been made to speed up stochastic simulation. Particularly, the leap method allows

each reaction channel to fire more than once during each simulation step or leap,

thereby accelerating simulation. In the τ -leap method [38, 39], the number of times

that a reaction channel fires in a time interval of duration τ is approximated by a

Poisson random variable. The deterministic number τ is determined according to the

leap condition, which says that the state change in any leap should be small enough

that no propensity function will experience a macroscopically significant change in its

value. However, as the realization of a Poisson random variable can be any nonnega-

tive integer, there always is a certain probability that the leap condition is violated,

which will cause large simulation inaccuracy. In the extreme case, the τ -leap method

can produce negative numbers of molecules [40–42]. The binomial τ -leap method

51

52

attempt to avoid negative numbers of molecules by approximating Poisson random

variables with binomial random variables [41, 42]. The modified τ -leap method can

avoid negative numbers of molecules and is particularly efficient for simulating sys-

tems where certain molecular species have small number of molecules while the other

species have large number of molecules [40].

Recently, we developed a K-leap method for stochastic simulation of genetic net-

works or chemically reacting systems [57, 58]. Unlike the τ -leap method where the

time τ that is leaped over in a step is calculated from the leap condition, the K-leap

method constrains the total number of reactions occurred during a leap to be deter-

ministic number K that is calculated from the leap condition. Since the number of

times that each channel fires during a leap is upper bounded by K, the leap condition

can be better satisfied, thereby improving simulation accuracy. Moreover, the K-leap

method can exploit the fact that some reaction channels may not fire during a leap

to improve simulation speed.

In this chapter, we explore the ideas behind the modified τ -leap method [40] and

the K-leap [58] to improve simulation efficiency. In the modified τ -leap method, all

reaction channels are partitioned into two sets: critical reactions where the number

of reactant molecules is small and noncritical reactions where the number of reactant

molecules is relatively large. Then, the exact SSA is applied to the critical reactions

and the τ -leap method is applied to the noncritical reactions. Since the exact SSA is

a special case of the K-leap method when K = 1, if we replace the exact SSA with

the K-leap method in the modified τ -leap method, we can improve simulation speed.

This leads to a hybrid of K- and τ -leap methods that we will present in this chapter.

We also develop a modified K-leap method where the K-leap method is applied to

both the critical and noncritical reactions with different values of K. Using numerical

53

examples, we will demonstrate that compared to the modified τ -leap method and the

K-leap method, the hybrid leap method and the modified K-leap method offer better

performance in terms of simulation speed and accuracy.

The remaining part of this chapter is organized as follows: In Section 4.2 we

develop the hybrid leap method and the modified K-leap method. In Section 4.3 nu-

merical examples are used to demonstrate the performance of the new leap methods,

and conclusions are drawn in Section 4.4.

4.2 The Hybrid τ/K-leap Method and Modified

K-leap Method

Let us consider the modified τ -leap method. Although the molecular number

of each individual species involved in critical reactions is small, the total molecular

number of all species involved in the critical reactions can be relatively large, which

implies that the propensity ac
0(x) can be relatively large. Since the expected value of

τ ′′ is E[τ ′′] = 1/ac
0(x), τ ′′ can be relatively small with large probability. Therefore,

the step size of a leap, τ , is often limited by τ ′′, because τ ′ can be large relative to

τ ′′ with large probability. This implies that simulation speed of the modified τ -leap

method is often limited by simulating the occurrence of critical reactions.

If we denote the total number of critical reactions that occur during a leap as

Kc, we have Kc = 1 if τ ′′ ≤ τ ′ and Kc = 0 if τ ′′ > τ ′ in the modified τ -leap

method. If we allow Kc to be a positive integer that is greater than one but still

small relative to minm∈Rc
{km,max} with a large probability, we would expect that

simulation speed can be significantly improved while making a minor sacrifices in

simulation accuracy. Essentially, although the modified τ -leap method can avoid

negative number of molecules for those species involved in critical reactions, it may

be overly restrictive to apply the exact SSA to critical reactions, thereby slowing

54

simulation. If we combine the ideas behind the modified τ -leap method and the K-

leap method, we can choose Kc more flexibly and improve simulation speed. This

leads to the two new leap methods that we will present next.

4.2.1 The Hybrid τ/K-leap Method

We partition the reactions into critical reactions and noncritical reactions using the

criterion defined in the modified τ -leap method. We then employ the K-leap method

instead of the exact SSA that is used in the modified τ -leap method to simulate

the occurrence of critical reactions, while using the τ -leap method to simulate the

occurrence of noncritical reactions. Because two different types of leap methods are

used in this new simulation method, we refer to this leap method as the hybrid

τ/K-leap method.

As in the modified τ -leap method, we calculate a tentative step size τ ′ using (2.11)

or (2.16) with the reaction index running over Rnc for noncritical reactions. We then

choose a small number Kc for the total number of critical reactions that occur during

a leap. While Kc can be any integers between one and minm∈Rc
{km,max}, we typically

choose Kc to be between one and five. The K-leap method then generates another

tentative step size τ ′′ from the Gamma PDF with a0(x) replaced by ac
0(x) and K

replaced by Kc. Then the actual step size is chosen as τ = min{τ ′, τ ′′}.

For noncritical reactions, we generate Km, m ∈ Rnc from a Poisson random vari-

able with mean am(x)τ . Let us use {Km, m ∈ Rc} to represent the set of all Km’s, m ∈

Rc. For critical reactions, if τ ′′ ≤ τ ′, then we generate {Km, m ∈ Rc} from the multi-

nomial PDF (3.2) with K replaced by Kc and θm calculated as θm = am(x)/ac
0(x),

m ∈ Rc. It is a little bit more involved to generate {Km, m ∈ Rc} when τ ′′ > τ ′. In

the modified τ -leap method, τ ′′ > τ ′ implies that no critical reaction occurs during a

55

leap, and thus, we have Km = 0, for all m ∈ Rc. However, in our hybrid τ/K-leap

method, since Kc ≥ 1, τ ′′ > τ ′ does not imply that no critical reaction occurs during

a leap, but the total number of critical reactions occurring during a leap is less than

Kc.

In order to generate {Km, m ∈ Rc} when τ ′′ > τ ′, we need to first obtain the

joint distribution of {Km, m ∈ Rc} given τ and
∑

m∈Rc
Km < Kc which is denoted as

p({Km, m ∈ Rc}|
∑

m∈Rc
Km < Kc, τ). Defining a random variable K ′

c =
∑

m∈Rc
Km,

we prove in the Appendix B that p(Km, m ∈ Rc|
∑

m∈Rc
Km < Kc, τ) is given as

follows

p({Km, m ∈ Rc}|
∑

m∈Rc

Km < Kc, τ)

=p(K ′
c|K ′

c < Kc, τ)p(Km, m ∈ Rc|
∑

m∈Rc

Km = K ′
c, τ),

(4.1)

where p({Km, m ∈ Rc}|
∑

m∈Rc
Km = K ′

c, τ) is a multinomial PDF with parameters

K ′
c and θm = am(x)/ac

0(x), m ∈ Rc, and p(K ′
c|K ′

c < Kc, τ) is given by

p(K ′
c|K ′

c < Kc, τ) =

[ac
0(x)τ]K

′

c

K ′

c!
PKc−1

j=0
[ac

0(x)τ]j/j!
, K ′

c = 0, · · · , Kc − 1

0, otherwise.

(4.2)

Based on p({Km, m ∈ Rc}|
∑

m∈Rc
Km < Kc, τ) given in (4.1), we can generate

Km, m ∈ Rc as follows. We first generate K ′
c using the PDF p(K ′

c|K ′
c < Kc, τ)

in (4.2) and then generate {Km, m ∈ Rc} from the multinomial PDF p({Km, m ∈

Rc}|
∑

m∈Rc
Km = K ′

c, τ). From the derivations of p({Km, m ∈ Rc}|
∑

m∈Rc
Km <

Kc, τ) in the Appendix B, we know that p(K ′
c|K ′

c < Kc, τ) is a truncated Poisson

PDF. Therefore, it is not difficult to generate K ′
c.

Finally, after generating τ , Km, m = 1, · · · , M , we can update the state vector

using (2.15) and update the time as t = t + τ . The hybrid τ/K-leap method is

summarized in the following algorithm:

56

Algorithm 4 (The Hybrid τ/K-Leap Method)

1. Initialization (set the initial number of molecules and initial time t, set nc and

Kc)

2. Calculate the propensity function, am(x),m = 1, · · · , M and their sum a0(x) =

∑M
m=1 am(x).

3. Partition all reactions into critical reactions and noncritical reactions: If a

reaction Rm has am(x) > 0 and km,max ≤ nc, where km,max is defined in the

(2.18), then it is a critical reaction; otherwise, it is a noncritical reaction.

4. Calculate a tentative step size τ ′ using (2.11) or (2.16) with the index running

over only the noncritical reactions.

5. Compute ac
0(x), the sum of the propensity functions of the critical reactions.

Generate τ ′′ according to the Gamma PDF with parameters Kc and ac
0(x).

6. Set τ = min(τ ′, τ ′′). For all noncritical reactions, generate Km, m ∈ Rnc,

according to the Poisson random variable with mean am(x)τ . For all critical

reactions, if τ ′ < τ ′′, generate Km, m ∈ Rc, according to the PDFs in (4.1) and

(4.2); otherwise, generate Km, m ∈ Rc, according to the multinomial PDF in

(3.2) with parameters Kc and θm = am(x)/a0
c(x), m ∈ Rc.

7. Update t← t + τ and update the state vector x← x +
∑M

m=1 νmKm.

8. Record (t,x) if desired. Go to step 2, or else stop.

4.2.2 The Modified K-Leap Method

Considering several nice features of the K-leap method that we describe in Section

3.2, we would expect that simulation speed and accuracy could be improved, if we

57

employ the K-leap method instead of the τ -leap method to simulate the occurrence

of noncritical reactions. This leads to the modified K-leap method that we depict in

the following. Again, we partition the reactions into critical reactions and noncritical

reactions using the criterion defined in the modified τ -leap method. We then apply

the K-leap method to both critical and noncritical reactions but constrain the total

number of critical and noncritical reactions occurring during a leap to two different

numbers, Kc and Knc, respectively.

For noncritical reactions, we first calculate Knc using (3.7) or (3.13) or (3.15) with

the index running over noncritical reactions. We then generate a tentative time step

τ ′ from the Gamma PDF with parameters Knc and anc
0 (x). For critical reactions, we

first select a small value for Kc as we describe in the hybrid τ/K-leap method, and

then generate a tentative time step τ ′′ from the Gamma PDF with parameters Kc

and ac
0(x). The actual time that is leaped over is chosen as τ = min{τ ′, τ ′′}.

Let us use {Km, m ∈ Rnc} to represent the set of all Km’s, m ∈ Rnc. If τ ′ < τ ′′,

for noncritical reactions, we generate {Km, m ∈ Rnc} according to the multinomial

PDF (3.2) with parameters Knc and θm = am(x)/anc
0 (x), m ∈ Rnc where anc

0 (x) =

∑
m∈Rnc

am(x); for critical reactions, we generate {Km, m ∈ Rc} according to the

PDFs in (4.1) and (4.2) using the method described in Section 4.2.1. If τ ′ = τ ′′, we

generate {Km, m ∈ Rnc} according to the multinomial PDF (3.2) with parameters

Knc and θm = am(x)/anc
0 (x), m ∈ Rnc, and generate {Km, m ∈ Rc} according to

the multinomial PDF (3.2) with parameters Kc and θm = am(x)/ac
0(x), m ∈ Rc. If

τ ′ > τ ′′, for critical reactions, we generate {Km, m ∈ Rc} according to the multinomial

PDF (3.2) with parameters Kc and θm = am(x)/ac
0(x), m ∈ Rc; for noncritical

reactions, we need to generate {Km, m ∈ Rnc} according to their joint conditional

PDF p({Km, m ∈ Rnc}|
∑

m∈Rnc
Km < Knc, τ). Similar to the derivation of (4.1), we

58

can obtain p({Km, m ∈ Rnc}|
∑

m∈Rnc
Km < Knc, τ) as

p({Km, m ∈ Rnc}|
∑

m∈Rnc

Km < Knc, τ)

= p(K ′
nc|K ′

nc < Knc, τ)p({Km, m ∈ Rnc}|
∑

m∈Rnc

Km = K ′
nc, τ),

(4.3)

where K ′
nc is defined as K ′

nc

△
=

∑
m∈Rnc

Km, p(K ′
nc|K ′

nc < Knc, τ) can be obtained from

(4.2) by replacing K ′
c with K ′

nc, Kc with Knc and ac
0(x) with anc

0 (x), and p({Km, m ∈

Rnc}|
∑

m∈Rnc
Km = K ′

nc, τ) is a multinomial PDF with parameters K ′
nc and θm =

am(x)/anc
0 (x), m ∈ Rnc. Similar to the generation of {Km, m ∈ Rc} from (4.1)

and (4.2), we can first generate K ′
nc from p(K ′

nc|K ′
nc < Knc, τ) and then generate

{Km, m ∈ Rnc} from the multinomial PDF p({Km, m ∈ Rnc}|
∑

m∈Rnc
Km = K ′

nc, τ).

Finally, after generating τ , Km, m = 1, · · · , M , we can update the state vector

using (2.15) and update the time as t = t + τ . The modified K-leap method is

summarized in the following algorithm:

Algorithm 5 (The Modified K-Leap Method)

1. Initialization (set the initial number of molecules and initial time t, set nc and

Kc)

2. Calculate the propensity function, am(x),m = 1, · · · , M and their sum a0(x) =

∑M
m=1 am(x).

3. Partition all reactions into critical reactions and noncritical reactions: If a

reaction Rm has am(x) > 0 and km,max ≤ nc, where km,max is defined in the

(2.18), then it is a critical reaction; otherwise, it is a noncritical reaction.

4. Calculate Knc using (3.7) or (3.13) or (3.15) with the index running over non-

critical reactions. Generate a tentative time step τ ′ from the Gamma PDF with

parameters Knc and anc
0 (x).

59

5. Generate another tentative time step τ ′′ according to the Gamma PDF with

parameters Kc and ac
0(x).

6. Set τ = min(τ ′, τ ′′). If τ ′ < τ ′′, generate {Km, m ∈ Rnc} according to the

multinomial PDF (3.2) with parameters Knc and θm = am(x)/anc
0 (x), m ∈

Rnc, and generate {Km, m ∈ Rc} according to the PDFs (4.1) and (4.2). If

τ ′ = τ ′′, generate {Km, m ∈ Rnc} according to the multinomial PDF (3.2) with

parameters Knc and θm = am(x)/anc
0 (x), m ∈ Rnc, and generate {Km, m ∈

Rc} according to the multinomial PDF (3.2) with parameters Kc and θm =

am(x)/ac
0(x), m ∈ Rc. If τ ′ > τ ′′, generate {Km, m ∈ Rnc} according to the

PDF (4.3), and generate {Km, m ∈ Rc} according to the multinomial PDF

(3.2) with parameters Kc and θm = am(x)/ac
0(x), m ∈ Rc.

7. Update t← t + τ and update the state vector x← x +
∑M

m=1 νmKm.

8. Record (t,x) if desired. Go to step 2, or else stop.

The readers can also find some practical implementation methods in [58] for the

K-leap method that include an efficient method for generating multinomial random

variables and a method for handling negative number of molecules.

4.3 Numerical Examples

In order to demonstrate the performance of our new leap methods, we simulated

expression of LacZ/LacY genes based on a model in [37, 41] and a chemical reaction

system. To assess the accuracies of different simulation methods, we first obtain the

histograms of the populations of each molecular species at the end of simulation from

a series of repeated exact SSA runs. We then simulate the same chemical reaction

60

system over the same time interval by the same number of runs, using the modified

τ -leap, hybrid τ/K-leap and modified K-leap methods, and obtain the histograms

of the simulation results. Finally, we employ the histogram distances between the

results of the exact SSA and those of a leap method, as used in [54], to measure the

simulation accuracy: a small histogram distance implies high simulation accuracy.

In modified τ -leap and hybrid τ/K-leap methods, we used (2.16) to calculate τ for

noncritical reactions. In modified K-leap method, we used (3.13) to calculate Knc.

An important issue for the efficiency of stochastic simulations is the generation

of random numbers. We use the Poisson random number generator and the Gamma

random number generator in [62]. We employ M − 1 binomial random number gen-

erators to generate M multinomial random numbers [58]. In generating a binomial

random variable B(n, p), we use the BTPE algorithm of [61] for np > 10, and the BG

algorithm of [60] for np ≤ 10. To generate a random variable that follows a truncated

Poisson distribution in (4.2), we modify the Poisson random number generator in [62]

as follows. The rejection method is used by the Poisson random number generator

in [62]. We further reject any number that is greater than Kc, so that the random

variable generated follows the distribution in (4.2). All simulations are run in Matlab

on a PC with a 3.20 GHz CPU and 2G-byte memory running Windows XP.

4.3.1 A System with Several Critical Reaction Channels

As we discussed earlier, if we can choose Kc > 1, it is expected that we can

significantly improve simulation speed. To verify this, we simulated the following

61

reacting system that consists of 12 reaction channels:

S1
c1→ S2 + S3, S2

c2→ S1, S3
c3→ ∅, S4

c4→ ∅, S4 + S5
c5→ S6,

S5 + S5
c6→ S7, S5

c7→ ∅, S6 + S6
c8→ S10, S6

c9→ ∅,

S7 + S8
c10→ S9 + S10, S9 + S11

c11→ S12 + S13, S12 + S13
c12→ S9 + S11.

(4.4)

In our simulations, the probability rate constants are chosen to be:

c1 = 10, c2 = 10, c3 = 1× 10−6, c4 = 1× 10−6, c5 = 1.5× 10−6,

c6 = 1× 10−8, c7 = 1× 10−6, c8 = 3.42× 10−8, c9 = 1× 10−6,

c10 = 1× 10−6, c11 = 1.28× 10−7, c12 = 3.2× 10−7.

(4.5)

and the initial state is set to be

X1(0) = 10, X2(0) = 10, X3(0) = 5× 103, X4(0) = 2× 104, X5(0) = 5× 104,

X6(0) = 8× 102, X7(0) = 6× 104, X8(0) = 5× 104, X9(0) = 1× 103,

X10(0) = 1× 103, X11(0) = 1.5× 103, X12(0) = 1.2× 103, X13(0) = 1.4× 103.

(4.6)

We set the parameter nc=20. From the initial state given in (4.6) and nc, we find

that there are two critical channels R1 and R2. We run simulation 5× 104 times, and

each time starts at t = 0 and ends at t = 2. We then calculate the histogram distance

between the results of a leap method and those of the exact SSA.

Figure 4.1 depicts the histogram distance of X4(2) versus CPU time for different

leap methods. For the modified τ -leap method, we plot the simulation results for

several different values of the parameter ǫ. It is seen that when ǫ > 0.002, we

cannot reduce simulation time by increasing ǫ. Essentially, although we can increase

the step size of the τ -leap method, τ ′, by increasing ǫ, when ǫ > 0.002, the actual

step size τ is limited by the step size τ ′′ generated from the exact SSA, because

τ = min(τ ′, τ ′′). This confirms our claim about the modified τ -leap method in Section

62

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

CPU Time

H
is

to
g

ra
m

 D
is

ta
n

c
e

ε=0.0005
ε=0.001

ε=0.002,0.01

Kc=1

Kc=2
Kc=3

Kc=4

Kc=5

Kc=6

Modified τ−leap

Hybrid leap, ε=0.01

Modified K−leap, ε=0.01

Figure 4.1: Histogram distance of modified K-leap, hybrid τ/K-leap and modified
τ -leap method of X4(t) at t = 2 versus CPU time for the reacting system given in
(4.4) with rate constants in (4.5) and initial state in (4.6). The histogram is obtained
after 5×104 simulation runs and the CPU time is the total time (in seconds) of 5×104

runs.

4.2 that motivates us to develop our two new leap methods. It is seen from Fig.

4.1 that when Kc = 2, the modified K-leap method only needs almost half of the

simulation time of the modified τ -leap method, while providing almost the same

histogram distance. The hybrid τ/K-leap method requires a little more simulation

time than the modified K-leap method, but the simulation time is still much less

than that of the modified τ -leap method, while providing almost the same histogram

distance. We can further increase simulation speed of the modified K-leap method

and the hybrid τ/K-leap method by increasing Kc. When Kc = 6, the simulation

time of the modified K-leap method and hybrid τ/K-leap method is less than 1/5 of

the simulation time of the modified τ -leap method, while the histogram distance of

the modified K-leap method and the hybrid τ/K-leap method is slightly larger than

63

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.02

0.04

0.06

0.08

0.1

0.12

CPU Time

H
is

to
g

ra
m

 D
is

ta
n

c
e

ε=0.002

ε=0.003
ε=0.004

ε=0.005

ε=0.006

ε=0.007

Kc=1
Kc=2

Kc=3

Kc=4

K−leap method

Modified K−leap, ε=0.002

Figure 4.2: Histogram distance K-leap and modified K-leap method of X4(t) at t = 2
versus CPU time for the reacting system given in (4.4) with rate constants in (4.5)
and initial state in (4.6). The histogram is obtained after 5×104 simulation runs and
the CPU time is the total time (in seconds) of 5× 104 runs.

that of the modified τ -leap method. These observations demonstrate that compared

to the modified τ -leap method, the modified K-leap method and the hybrid τ/K-

leap method can reduce simulation time without sacrificing simulation accuracy and

that they also provide more flexibility of trading off simulation accuracy for speed by

changing the value of Kc.

Figure 4.2 depicts the histogram distance of X4(2) versus CPU time for the K-

leap and modified K-leap methods. The K-leap method uses (3.13) to calculate

K and the partition method in Section IV.B of [58] to avoid negative numbers of

molecules. It is seen that the modified K-leap outperforms the K-leap method when

ǫ = 0.002 in this particular example. Table 4.1 lists the average number of steps,

CPU time and histogram distance error for different leap methods. If we compare

the second column of Table 4.1(a), (b) and (c), four leap methods yield almost the

64

Table 4.1: Average number of steps of one simulation run, CPU time of 5× 104 runs
(in seconds), and histogram distance of X4(2) for the reacting system given in (4.4)

(a) Hybrid τ/K-leap and modified K-leap method with ǫ = 0.01

Kc = 1 Kc = 2 Kc = 4
Steps Time HD Steps Time HD Steps Time HD

Hybrid leap 401.05 5796.5 0.029 200.78 3614.7 0.035 100.77 1933.4 0.051
MK-leap 400.85 5630.3 0.026 200.86 3187.4 0.035 100.79 1716.4 0.047

(b) modified τ -leap
ǫ = 0.0005 ǫ = 0.001 ǫ = 0.01

Steps Time HD Steps Time HD Steps Time HD

Mτ -leap 523.93 7344.7 0.024 424.44 6030.5 0.028 401.04 5776.8 0.028

(c) K-leap method
ǫ = 0.002 ǫ = 0.003 ǫ = 0.005

Steps Time HD Steps Time HD Steps Time HD

K-leap 571.52 6354.1 0.025 249.18 3176.2 0.033 90.145 1447.1 0.048

same histogram distance, but the modified K-leap and the hybrid τ/K-leap method

need the smallest number of steps, while the modified τ -leap method needs the largest

number of steps. Therefore, the modified K-leap and the hybrid τ/K-leap method

consume considerable less CPU time than the modified τ -leap method. If we compare

the different columns of Table 4.1(a), we see that for a fixed ǫ, we can increase

simulation speed by increasing Kc while slightly sacrificing simulation accuracy.

4.3.2 Expression of LacZ/LacY Genes and Activities of the

Proteins

This example was first simulated by Kierzek [37] and 22 reactions are described in

detail in 3.5.3 and also in [37, 41, 63, 64]. It characterizes the expression of the LacZ

and LacY genes in bacterial organisms and the corresponding protein production and

degradation over generation cycle time span.

65

As in [40], we run simulation using the exact SSA, starting at t = 0 with initial

condition given by Kierzek [37], and ending at t = 1000. We then use the result of

exact SSA as the initial condition, and run simulation 104 times using the modified

τ -leap method of [40] and our modified K-leap method. Each run starts at t = 1000

and ends at t = 1001. In the modified τ - and K-leap methods, we use nc = 20

and thus {Ri}9i=1, R18 and R19 are critical reactions. Because the molecule number

of some critical species is either zero or one, we choose Kc = 1 to avoid negative

number of molecules. In each step, the number of RNAP molecules is generated

from a Gaussian random variable with mean 35 and standard deviation 3.5, while

the number of Ribosome molecules is generated from a Gaussian random variable

with mean 350 and standard deviation 35, as depicted in [41]. We then calculate the

histogram distance between the results of a leap method and those of the exact SSA.

Figure 4.3 depicts the histogram distance of LacZ at t = 1001 versus CPU time

for the modified K-leap method, modified τ -leap method and K-leap method. Since

Kc = 1, the hybrid leap method is the same as the modified τ -leap method in this

example. It is seen that the modified K-leap method outperforms the other two leap

methods, since the modified K-leap method requires considerably less CPU time than

other two methods, while providing the same simulation accuracy. Table 4.2 lists the

number of steps, CPU time and the histogram distance for these leap methods. If we

compare three leap methods at a given ǫ, we see that the modified K-leap method

needs almost the same number of steps as the modified τ -leap method and a slightly

larger number of steps than the K-leap method, while it offers the fastest speed. The

reason for this observation is as follows. First, we have Kc = 1 for the modified K-leap

method, and thus the modified K-leap method needs almost the same number of steps

66

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.05

0.1

0.15

0.2

0.25

0.3

CPU Time

H
is

to
g

ra
m

 D
is

ta
n

c
e

ε is [0.03,0.04,0.05,0.06] from right to left for all leap methods

K−leap method

Modified τ−leap method

Modified K−leap method

Figure 4.3: Histogram distance of K-leap, modified K-leap and modified τ -leap
method of LacZ(t) at t = 1001 versus CPU time for the LacZ/LacY expression
system. The histogram is obtained after 104 simulation runs and the CPU time is
the total time (in seconds) of 104 runs.

as the modified τ -leap method. However, the K-leap method does not impose such

restriction, and thus it requires less number of steps. Let us denote the numbers of

non-critical and critical channels as Mnc and Mc, respectively. Since some non-critical

channels have a very small propensity function, these channels do not fire during a

leap with a high probability. Exploiting this property, the modified K-leap method

needs to generate Mk < Mnc random variables for the number of reactions of Mnc

noncritical channels with a high probability. On the other hand, the modified τ -leap

method always needs to generate Mnc Poisson random variables. For this reason, the

modified K-leap method is faster than the modified τ -leap method. Recall that when

τ ′′ > τ ′, the modified K-leap method does not need to generate any random variable

for critical reactions. Since ac
0(x) is very small relative to anc

0 (x), the probability

for τ ′′ > τ ′ is high. On the other hand, although the K-leap method employs the

67

Table 4.2: Average number of steps of one simulation run, CPU time of 104 runs (in
seconds) and histogram distance of LacZ for the LacZ/LacY Model

ǫ = 0.03 ǫ = 0.04 ǫ = 0.06
Steps Time HD Steps Time HD Steps Time HD

K-leap 1875.3 7288.9 0.060 1064.1 4077.2 0.103 517.15 2057.1 0.302
MK-leap 1923.8 6410.8 0.055 1112.9 3852.4 0.085 566.30 1986.5 0.197
Mτ -leap 1921.7 7957.4 0.048 1112.2 4661.8 0.086 566.32 2433.9 0.217

efficient method of generating multinomial random variable in Section IV.A of [58],

it still needs to generate slightly more random variables than the modified K-leap

method. Therefore, the modified K-leap method is faster than the K-leap method in

this example.

4.4 Conclusion

Compared to Gillespie’s exact stochastic simulation algorithm, Gillespie’s τ -leap

method can significantly increase simulation speed while making small sacrifice in

simulation accuracy in many cases. However, in the reacting systems where certain

molecular species have a small number of molecules, the τ -leap method can yield neg-

ative number of molecules, thereby causing large simulation inaccuracy. The modified

τ -leap method attempts to avoid the negative number of molecules by partitioning

all the reaction channels into two sets of reactions: critical and noncritical reactions,

and then applying the exact SSA to the critical reactions and the τ -leap method to

the noncritical reactions. Another leap method named K-leap method can bound the

total number of reactions that occur during a leap according to the leap condition,

thereby improving simulation accuracy.

In this chapter, we have explored the ideas behind the modified τ -leap method

and the K-leap method and developed two new leaps method named the hybrid leap

68

method and the modified K-leap method. In the hybrid leap method, we apply the

K-leap method to the critical reactions and the τ -leap method to the noncritical re-

actions. In the modified K-leap method, we applied the K-leap method to critical

and noncritical reaction separately with different total numbers of reactions for each

set of reactions. Our numerical results have demonstrated that compared to the mod-

ified τ -leap method, our two new leap methods can significantly increase simulation

speed while providing almost the same simulation accuracy. Our two new leap meth-

ods also offer more flexibility for trading off simulation accuracy for speed. We also

demonstrated that the modified K-leap provides slightly better performance than the

hybrid leap method in terms of simulation speed and accuracy.

CHAPTER 5

Unbiased Tau-leap Method for Stochastic
Simulation of Chemically Reacting
Systems

As we discussed earlier, approximate SSAs allow a number of reactions to occur

in each simulation step. Therefore, there are always certain changes in propensity

functions in all existing leap methods. To reduce the simulation errors caused by such

changes in propensity functions, Gillespie proposed a midpoint τ -leap method, where

the mean of the Poisson random variables is calculated from the propensity functions

at an estimated midpoint during a leap [38]. The midpoint τ -leap approach was also

applied to the binomial τ -leap method [41]. However, the midpoint Poisson τ -leap

and binomial τ -leap are still not accurate since these values are estimated.

Due to the changes in propensity functions during a leap, the mean of Km used

in all the τ -leap methods mentioned earlier is not equal to the true mean, as we will

demonstrate in section 5.1 and 5.2. Hence, all existing τ -leap methods produce bias

in simulation results. Although such bias can be small when the leap step size is

small, it limits simulation speed and accuracy, because the step size can be otherwise

increased if such bias is absent. This motivates us to develop several unbiased τ -leap

methods that will be presented in this chapter. Specifically, we first analyze the true

mean of Km based on the chemical master equation (CME). After getting the true

69

70

mean, we modify the Poisson and binomial τ -leap methods so that the simulation

results are unbiased. Moreover, we also analyze the variance of Km and develop

an unbiased Poisson/Gaussian/Binomial τ -leap method to remove bias and correct

errors in the variance of Km.

5.1 Motivating Examples

In the Poisson, binomial, and multinomial τ -leap methods discussed earlier, the

mean of Km generated during a leap from t to t+τ is am(x)τ , where am(x) is calculated

from the system state at time t: X(t) = x. Clearly, am(x)τ is not equal to the true

mean of Km, because there always are certain changes in propensity functions in the

time interval [t, t + τ]. Therefore, the numbers of reactions generated during each

leap by these τ -leap methods are biased. The midpoint τ -leap method uses the state

at an estimated midpoint to calculate the propensity functions, which are then used

to determine the mean of Km, m = 1, · · · , M . This can reduce but not completely

eliminate the bias. To see the bias caused by the (midpoint) τ -leap methods, let us

consider the following three simple reacting systems.

We first consider a reacting system that consists of a single monomolecular reaction

channel:

S1
c1→ ∅. (5.1)

Let us consider the time interval [0, τ], denote X1(0) = x1 and define µ1(τ) = E[K1],

where E[·] denotes the expected value of the random variable in the brackets. It is

easy to show that µ1(τ) obeys the following ordinary differential equation (ODE):

dµ1(τ)

dτ
= −c1µ1(τ) + c1x1, (5.2)

71

Table 5.1: Expected number of reactions occurring during one leap for three elemen-
tary reactions

S1 → ∅ S1 + S1 S1 + S2

→ S2 → S3

ǫ = 0.01 Poisson-τ 615.00 153.75 287.53
Poisson mid-τ 611.93 152.98 286.09
True Mean 611.94 153.12 286.31

ǫ = 0.05 Poisson-τ 3075.00 768.74 1437.66
Poisson mid-τ 2998.15 749.64 1401.99
True Mean 2999.39 750.15 1402.70

ǫ = 0.10 Poisson-τ 6150.00 1537.49 2875.32
Poisson mid-τ 5842.50 1461.60 2733.41
True Mean 5852.50 1464.50 2738.31

∗The leap step size τ is calculated from (2.11) for a given ǫ.
∗The true mean is calculated from (5.3) for S1 → ∅ and obtained from 1× 105

simulation runs using Gillespie’s exact SSA for S1 + S1 → S2 and S1 + S2 → S3.

whose solution is given by

µ1(τ) = x1(1− e−c1τ). (5.3)

The τ -leap method and the midpoint τ -leap method generate K1 using a mean of

c1x1τ and c1⌈x1 − c1x1τ/2⌉τ , respectively, which is clearly different from the true

mean of K1 given in (5.3). In Table 5.1, we compare the mean of K1 used in the

(midpoint) τ -leap method with the true mean, when x1 = 61500 and c1 = 0.5. The

leap step size τ is calculated from (2.11) for a given ǫ. It is seen that the bias can be

considerably large, particularly when ǫ, or equivalently τ , is relatively large.

We next consider the reacting system consisting of a single bimolecular reaction

with one reactant species:

S1 + S1
c1→ S2. (5.4)

The ODE of µ1(τ) in this example involves the second moment of K1, and thus, we

cannot find µ1(τ) in closed-form. However, we can run a large number of simulations

using Gillespie’s exact SSA and then obtain a very accurate estimate of µ1(τ). The τ -

72

leap method and the midpoint τ -leap method generate K1 using a mean of c1x1(x1−

1)τ/2 and c1x̃1(x̃1 − 1)τ , where x̃1 = ⌈x1 − c1x1(x1 − 1)τ/2⌉, respectively. In Table

5.1, we compare the mean of K1 used in the (midpoint) τ -leap method with the

mean estimated from exact stochastic simulations, when x1 = 61500 and c1 = 0.0001.

Again, it is seen that the bias can be considerably large.

The third example is the bimolecular reaction with two different reactant species:

S1 + S2
c1→ S3. (5.5)

Again, µ1(τ) cannot be obtained in closed-form but, can be accurately estimated

from simulations using Gillespie’s exact SSA. The τ -leap method and the midpoint

τ -leap method generate K1 using a mean of c1x1x2τ and c1x̃1x̃2τ , where x̃1 = ⌈x1 −

c1x1x2τ/2⌉ and x̃2 = ⌈x2 − c1x1x2τ/2⌉, respectively. In Table 5.1, we compare the

mean of K1 used in the (midpoint) τ -leap method with the mean estimated from

exact stochastic simulations, when x1 = 61500, x2 = 54000 and c1 = 0.0001. Again,

it is seen that the bias can be considerably large, when ǫ is relatively large.

Note that Table 5.1 gives the bias of the (midpoint) τ -leap method in one leap. To

simulate the evolution of a reacting system during a given period of time, we typically

need many leaps. The total bias can be larger than that in a single leap. If such bias

can be removed, one will expect that simulation accuracy can be improved for a given

ǫ, or, simulation speed can be increased by increasing ǫ without sacrificing simulation

accuracy. This motivates us to develop unbiased τ -leap methods that we will present

in the following.

73

5.2 The Unbiased τ-leap Methods

As the existing τ -leap methods has severe biased during the simulation, we pro-

posed our new unbiased τ -leap methods [66], including unbiased Poisson τ -leap, un-

biased binomial τ -leap and unbiased Poisson/Gaussian/Binomial τ -leap methods.

5.2.1 The Unbiased Poisson τ-leap Method

To develop an unbiased τ -leap method, we need to find the mean of K1, · · · , KM in

each leap, and then generate K1, · · · , KM from their probability distributions with the

true mean. The mean of K1, · · · , KM can be derived from the CME of the probability

mass function (PMF) of K, P (K; τ), which is given by [67, 68]

∂P (K; τ)

∂τ
=

M∑

m=1

{
am(K− em)P (K− em; τ)

−am(K)P (K; τ)
}

;

(5.6)

with initial condition P(0;0)=1, where em is the mth column of the M ×M identity

matrix, and

am(K)
△
= cmhm(X(t) + νK). (5.7)

Let us define µ(τ)
△
=E[K]. Multiplying both sides of (5.6) by K and then summing

them over all possible values of K, we get

dµ(τ)

dτ
=

M∑

m=1

∑

K

emam(K)P (K; τ)

=E[a(K)],

(5.8)

where a(K)
△
=[a1(K), · · · , aM(K)]T . If am(K), m = 1, · · · , M are linear functions of

K, which is true if all reactions are of the zeroth and/or first order, then E[a(K)]

can be written as a linear function of µ(τ). In this case, we obtain a first order linear

74

ODE for µ(τ), which is ready to be solved analytically or using an efficient numerical

method. However, it is often that am(K), m = 1, · · · , M are nonlinear functions of K

due to higher order reactions involved. In this case, E[a(K)] involves not only µ(τ)

but also the second and possibly higher order moments of K, and thus, it is difficult

to obtain µ(τ) by solving (5.8). To overcome this problem, we approximate a(K) by

its first order Taylor expansion, which can be found from (5.7) as follows:

a(K) ≈ a(0) + FK, (5.9)

where F is an M×M matrix whose entry on the mth row and m′th column is [F]m,m′ =

fmm′ given in (3.4) and a(0) = [a1(0), · · · , aM(0)]T containing the propensity functions

at time t. Substituting (5.9) into (5.8), we can approximate (5.8) by the following

first order linear ODE:

dµ(τ)

dτ
= Fµ(τ) + a(0). (5.10)

The initial condition of the ODE is µ(0) = 0. It is easy to solve the ODE (5.10)

analytically or using an efficient numerical method to get µ(τ).

After we obtain µ(τ), we can generate K1, · · · , KM using their distributions with

a mean equal to µ(τ). Applying this idea to the Poisson τ -leap method, we keep

steps 1, 2, 3, 5 and 6 in Algorithm 2 unchanged, but modify step 4 as follows: find

µ(τ) by solving ODE (5.10) and then generate Km, 1 · · · , KM , according to the

Poisson distribution with mean µ(τ). We refer to our new τ -leap method as unbiased

Poisson τ -leap method. Strictly speaking, our unbiased Poisson τ -leap method does

not completely eliminate the bias, because the ODE (5.10), that is used to obtain

µ(τ), is an approximation of (5.8), and if a numerical method is employed to solve

(5.10), it can also produce small errors. However, it is expected that for a τ determined

by the leap condition, the approximation error introduced by (5.10) is small, although

75

a further investigation on the approximation error may be needed. Moreover, very

accurate and efficient numerical methods for solving (5.10) are available, as we will

discuss in section 5.3. Our numerical examples in section 5.4 will demonstrate that our

unbiased τ -leap method can make the bias negligible, while the (midpoint) Poisson

τ -leap method causes significantly large bias.

5.2.2 The Unbiased Binomial τ-leap Method

As we discussed in section 2.4.3, the mean of Km, m = 1, · · · , M , used in the bino-

mial τ -leap method is the same as that used in the Poisson τ -leap method. Therefore,

the binomial τ -leap method also is biased. As we pointed out in section 2.4.4, the

midpoint binomial τ -leap method generates Km, m = 1, · · · , M , using a mean iden-

tical to that used in the midpoint Poisson τ -leap method, which implies that the

midpoint binomial τ -leap method is also biased.

Applying the same idea of the unbiased Poisson τ -leap method, we can also remove

the bias in the binomial τ -leap method. Specifically, we can get the mean of Km,

m = 1, · · · , M , µm(τ), from (5.10), and then generate Km, m = 1, · · · , M , from a

binomial random variable B(km,max, pm), where km,max is obtained in the same way as

in [41] and [42] and pm = µm(τ)/km,max. Since the binomial τ -leap method of Tian

and Burrage [41] cannot handle the cases where more than two reaction channels

share certain reactants, we now modify the binomial τ -leap method of Chatterjee

et al. [42] to obtain the unbiased binomial τ -leap method. More specifically, the

unbiased binomial τ -leap algorithm keeps the steps 1, 2, 3, 5 and 6 in Algorithm 2,

but changes step 4 as follows: find the mean of Km, m = 1, · · · , M , µm(τ), from

(5.10), set x̃n = Xn(t), and for m = 1 to M reaction channels, do the following:

76

(a) Find km,max = minνim<0, i∈[1,N]⌊x̃i/|νim|⌋, where ⌊x⌋ denotes the largest integer

less than x.

(b) calculate p = µm(τ)/km,max and generate Km from the binomial distribution

with parameter km,max and p.

(c) Set x̃n = x̃n + νnmKm for n = 1, · · · , N , if νnm < 0.

5.2.3 The Unbiased Poisson/Gaussian/Binomial τ-leap Method

The variance of a Poisson random variable is equal to the mean. Although the

unbiased Poisson τ -leap method can remove the bias, it may not be able to remove the

errors in variance, if the variance of Km is significantly different from the mean, which

is possibly the case when changes in propensity functions are relatively large. In the

binomial τ -leap method, once the mean of Km and km,max are given, the variance of

Km is determined. Therefore, the variance of Km in the binomial τ -leap method may

also be significantly different from the true variance. If we can remove the errors in

both the mean and variance of Km, m = 1, · · · , M , we can further improve simulation

accuracy. Towards this end, we need to find the variance of Km, m = 1, · · · , M .

Let us define the covariance matrix of K as C(τ)
△
=E[(K − µ(τ))(K − µ(τ))T].

Multiplying both sides of (5.6) by (K− µ(τ))(K− µ(τ))T and then summing them

over all possible values of K, we obtain

dC(τ)

dτ
=

∑

k

M∑

m=1

{(em(K− µ(τ))T + (K− µ(τ))eT
m

+emeT
m)am(K)P (K t)}

= E[a(K)(K− µ(τ))T] + E[(K− µ(τ))a(K)T]

+ E[diag(a(K))],

(5.11)

77

where diag(x) represents a diagonal matrix whose ith diagonal entry is the ith entry

of vector x. If am(K), m = 1, · · · , M are linear functions of K, then we can simplify

(5.11) to a first order linear ODE which is ready to be solved. However, as we

mentioned earlier, it is often that am(K), m = 1, · · · , M are nonlinear functions

of K due to higher order reactions involved. In this case, the right hand side of

(5.11) involves not only C(τ) but also the third and possibly higher order moments

of K, and thus, it is difficult to obtain C(τ) by solving (5.11). To overcome this

problem, we again approximate a(K) by its first order Taylor expansion. Using this

approximation, we can approximate (5.11) by

dC(τ)

dτ
= FC(τ) + C(τ)FT + diag

(
Fµ(τ) + a(0)

)
. (5.12)

Using (5.10), we can further simplify (5.12) to

dC(τ)

dτ
= FC(τ) + C(τ)FT + diag

(dµ(τ)

dτ

)
, (5.13)

where the initial conditions are C(0) = 0 and µ(0) = 0.

The matrix ODE (5.13) consists of M2 scalar ODEs. It may require relatively large

computation to solve (5.13). To reduce computation burden, we assume that Km,

m = 1, · · · , M , are independent, which implies that [C(τ)]mm′ = 0 if m 6= m′. Note

that in the Poisson τ -leap method, [38, 39] it was assumed that Km, m = 1, · · · , M ,

are independent. Under the independent assumption, we can reduce (5.13) to the

following M ODEs:

d[C(τ)]mm

dτ
= 2fmm[C(τ)]mm +

dµm(t)

dτ
, m = 1, · · · , M. (5.14)

We can solve (5.14) and (5.10) jointly to get µm(τ) and [C(τ)]mm, m = 1, · · · , M .

Depending on the values of µm(τ) and [C(τ)]mm, m = 1, · · · , M , we can gen-

erate Km from a truncated Gaussian distribution with mean µm(τ) and variance

78

[C(τ)]mm, a Poisson distribution or a binomial distribution with properly chosen

parameters. In fact, if µm(τ) ≥ 10, a Poisson distribution can be well approx-

imated by a Gaussian distribution [69]. And, it is more efficient to generate a

Gaussian random variable than a Poisson random variable. When µm(τ) < 10,

we can generate Km from a binomial distribution, if [C(τ)]mm is significantly dif-

ferent from µm(τ), say |[C(τ)]mm − µm(τ)|/µm(τ) > 0.1. This leads to our unbiased

Poisson/Gaussian/Binomial τ -leap method, which is described as follows: we keep

steps 1, 2, 3, 5 and 6 in Algorithm 2 unchanged, but modify step 4 as follows:

Find µm(τ) and [C(τ)]mm, m = 1, · · · , M by solving ODEs in (5.14) and (5.10).

When µm(τ) ≥ 10, we first generate a Gaussian random variable, G, with mean

µm(τ) and variance [C(τ)]mm. If G < 0, we regenerate G until it is nonnegative; we

then round G to the nearest integer, GI , and let Km = GI . When µm(τ) < 10, if

|[C(τ)]mm − µm(τ)|/µm(τ) < 0.1, we generate Km from a Poisson distribution; oth-

erwise, we first solve equations kmpm = µm(τ) and kmpm(1− pm) = [C(τ)]mm to find

km and pm. And then, after rounding km to the nearest integer, if km ≤ km,max, we

generate Km from a binomial random variable B(km, pm); otherwise, we generate Km

from a binomial random variable B(km,max, µm(τ)/km,max).

5.3 Implementation Issues for Solving ODEs

To implement the unbiased τ -leap methods, we need to solve the ODE (5.10)

and (5.14). Since these ODEs are first order linear ODEs, their solutions can be

found in closed form. Note that both F and a(0) in (5.10) and (5.14) are dependent

on the initial state X(t). For relatively small reacting system, we can express the

solution of these ODEs as a function of X(t) and then calculate µ(τ) and [C]mm,

79

m = 1, · · · , M in each leap using the specific value of X(t). Since we do not need

to directly solve (5.10) and (5.14) in each leap, the computation required to obtain

µ(τ) and [C]mm, m = 1, · · · , M , is very small in this case. However, for relatively

large systems, we may not be able to write the solution of (5.10) and (5.14) as a

function of X(t). In this case, we need to directly solve (5.10) and (5.14) in each

leap using a specific initial condition. Since we need to do eigen-decomposition on

F to obtain the analytical solution to (5.10) and (5.14), relatively large computation

is needed to obtain µ(τ) and [C]mm, m = 1, · · · , M , analytically. However, we can

employ an efficient numerical method, such as Runge-Kutta method and Bulirsch-

Stoer Method [62], to solve (5.10) and (5.14). Since the leap step size τ is typically not

large, such numerical methods can obtain an accurate solution with a small amount

of computation.

5.4 Numerical Examples

In order to demonstrate the accuracy and efficiency of our unbiased τ -leap meth-

ods, we simulated several chemical reaction systems. To assess the accuracies of

different simulation methods, we first obtain the histograms of the populations of

each molecular species at the end of simulation from a series of repeated exact SSA

runs. We then simulate the same chemical reaction system over the same time in-

terval by the same number of runs, using different leap methods. We then plot the

estimated PDF of exact SSA and leap methods so that we can see the performance

of each method. As in section 2.5, we also employ the histogram distances between

the results of the exact SSA and those of a leap method to measure the simulation

accuracy. In all leap methods, we use equation (2.11) and a specific ǫ to calculate τ .

80

An important issue for the efficiency of stochastic simulations is the generation

of random numbers. As we mentioned earlier, we used the Poisson random number

generator in [62] in our simulations. In generating a binomial random variable B(n, p),

we employed the BTPE algorithm [61] for np > 10, and the BG algorithm [60] for

np ≤ 10. We used the fourth-order Runge-Kutta method [62] to solve the ODE (5.10)

and (5.14). All simulations are run in Matlab on a PC with a 3.20 GHz CPU and

2G-byte memory running Windows XP.

5.4.1 Three Elementary Reactions

In section 5.1, we used three elementary reactions to illustrate the bias of existing

τ -leap methods. We now present the simulation results for these three reactions using

the same parameters and initial conditions described in section 5.1. We ran simulation

2× 104 times and each time starts at t = 0 and end at t = 2.

Table 5.2: Mean of X1(2) in three elementary reactions

S1 → ∅ S1 + S1 S1 + S2

→ ∅ → ∅
Exact SSA 22624 4622.4 10196

ǫ = 0.01 Poisson-τ 22512 4602.5 10180
Poisson mid-τ 22627 4624.4 10197
Unbiased Poisson- τ 22624 4624.0 10196

ǫ = 0.03 Poisson-τ 22283 4560.2 10146
Poisson mid-τ 22629 4624.8 10197
Unbiased Poisson-τ 22624 4624.0 10196

ǫ = 0.10 Poisson-τ 21444 4495.8 10031
Poisson mid-τ 22665 4632.6 10201
Unbiased Poisson-τ 22624 4624.5 10196

Figures 5.1, 5.2 and 5.3 depict the estimated PDF of X1(2) for three reactions,

respectively. It is seen that the Poisson τ -leap method yields significant bias. The

estimated PDF from the midpoint Poisson τ -leap method matches that from the

exact SSA when ǫ = 0.03, but exhibits considerable bias when ǫ = 0.1. In contrast,

81

the estimated PDF from our unbiased Poisson τ -leap method matches that from the

exact SSA for both ǫ = 0.03 and ǫ = 0.1. The same observation can be seen from

Table 5.2, where the mean of X1(2) calculated from the simulation results of different

simulation methods is listed.

5.4.2 Decaying-Dimerizing Reactions

This example was originally used by Gillespie [38, 39] to test the Poisson τ -leap

method. As we have used this example to test the K-leap method, it includes three

molecular species, with four reactions (3.18), rate constant (3.19) and initial condi-

tions (3.20). We run simulation 5×104 times, and each time starts at t = 0 and ends

at t = 10.

Figure 5.4 and 5.5 depict the estimated PDF of X1(10) and X2(10) from the

simulation results of the exact SSA, Poisson, midpoint Poisson and unbiased Pois-

son/Gaussian/Binomial τ -leap methods. We used ǫ = 0.03 to determine the leap

step size in all three τ -leap methods. For X1(10), all three τ -leap methods do not

exhibit clear bias, but our unbiased Poisson/Gaussian/Binomial τ -leap method offers

a variance closest to the true variance. For X2(10), the Poisson τ -leap method suffers

significant bias; the midpoint τ -leap method yields very small but noticeable bias,

whereas our unbiased Poisson/Gaussian/Binomial τ -leap method does not produce

noticeable bias.

Figure 5.6 and 5.7 depict the histogram distances of the Poisson, midpoint Pois-

son, unbiased Poisson and unbiased Poisson/Gaussian/Binomial τ -leap methods. It

is seen that our unbiased Poisson/Gaussian/Binomial τ -leap method has the best

performance, since it offers the smallest histogram distance for a given simulation

time, or equivalently, it needs the shortest simulation time for a given histogram dis-

82

tance. It is interesting to note that the histogram distances of the midpoint Poisson

and unbiased Poisson τ -leap methods for X1(10) are worse than that of the Poisson

τ -leap method. This is due to the fact that all three τ -leap methods do not produce

noticeable bias, but the variance of the Poisson τ -leap method is better than the mid-

point Poisson and unbiased Poisson τ -leap methods, as partly shown in Figure 5.4.

Since our unbiased Poisson/Gaussian/Binomial τ -leap method can reduce errors in

both mean and variance, it is not surprising to see that it offers the best performance.

5.4.3 Epidermal Growth Factor Receptor Signaling Pathway

Each cell in a multicellular organism has been programmed during development to

respond to a specific set of extracellular signals. Such extracellular signals are trans-

duced into the cell through cell signaling pathways. Signalling pathways through the

receptor tyrosine kinase (RTK) family of receptors regulates a wide range of biological

phenomena, including cell proliferation and differentiation, and the epidermal growth

factor receptor (EGFR) is an important member of the RTK family. A number of

computational models have been employed to investigate the dynamical behavior of

the EGFR pathway.

Here we simulate the EGFR signaling pathway using a computational model de-

scribed in [43], [70] and [71]. This model consists of 23 molecular species and 47

reaction channels, which are listed in Table I of [43]. In our simulations, we used

all rate constants and the initial condition listed in the table I of [43], except that

the initial concentration of the epidermal growth factor (EGF) was chosen to be 1

nM. From the initial concentration of EGF, the initial population of EGF can be

found as 1.152× 106. The initial populations of other species are the same as those

83

in [43]. We ran simulations 104 times, and each time starts at t = 0 and ends at t = 8

using exact SSA, the binomial τ -leap method of Chatterjee et al. [42], the midpoint

binomial τ -leap method and our unbiased binomial τ -leap method.

Table 5.3 lists the mean of the number of molecules for several species at t =

8. It is seen that our unbiased binomial τ -leap method produces almost the same

mean as the exact SSA, while the binomial τ -leap method and the midpoint binomial

τ -leap method produce considerable bias. For other species that are not listed in

Table 5.3, all three leap methods yield almost the same mean as the exact SSA.

Figure 5.8 depicts the PDF of the number of Grb molecules at t = 8 estimated

from the results of 104 simulation runs. It is observed that the PDF obtained from

our unbiased binomial τ -leap method matches that obtained from the exact SSA,

while the PDFs obtained from the (midpoint) binomial τ -leap method exhibits bias.

Figure 5.9 depicts the histogram distance of Grb versus CPU time. It is seen that our

unbiased binomial τ -leap method yields much smaller histogram distance than the

(midpoint) binomial τ -leap method, while requiring almost the same CPU time for

a given ǫ. For other species, our unbiased binomial τ -leap method offers smaller or

almost the same histogram distance as the (midpoint) binomial τ -leap method (these

results are not shown here).

5.5 Concluding Remarks

The τ -leap method speeds up simulation by allowing a number of reactions to

occur during a time interval. This inevitably causes the propensity functions to

change during a leap. Without knowing the exact mean of the number of times that

each channel fires during a leap, the τ -leap method uses the propensity functions at

84

the beginning of the leap to estimate the mean, while the midpoint τ -leap method

uses the propensity functions at an estimated midpoint to calculate the mean, and

then uses this estimated mean in generating the number of reactions occurring during

a leap for each reaction channel. In this chapter, we have demonstrated that the mean

used in the (midpoint) τ -leap method is not equal to the true mean. Therefore, the

(midpoint) τ -leap method produces biased simulation results, which can cause large

simulation errors and limit simulation speed.

To remove the bias in simulation results, we have analyzed the mean of the number

of times that each channel fires during a leap based on the chemical master equation.

Using the mean obtained from the analysis, we developed unbiased τ -leap methods

that can almost completely remove the bias in simulation results. Moreover, we

have also derived the variance of the number of times that each channel fires during

a leap again based the chemical master equation, which was further exploited to

devise an unbiased Poisson/Gaussian/Binomial τ -leap method. Since the unbiased

Poisson/Gaussian/Binomial τ -leap method eliminates almost all the bias and reduces

the errors in the variance, it can significantly improve simulation accuracy.

85

2.18 2.2 2.22 2.24 2.26 2.28 2.3 2.32

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

X1(2)

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Exact SSA

Unbiased Poisson

Poisson

Midpoint Poisson

(a) ǫ = 0.03

2.16 2.18 2.2 2.22 2.24 2.26 2.28 2.3 2.32

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

X1(2)

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Exact SSA

Unbiased Poisson

Poisson

Midpoint Poisson

(b) ǫ = 0.1

Figure 5.1: The estimated PDF of X1(2) from 2 × 104 simulation runs for reaction
(5.1) with c1 = 0.5 and X1(0) = 61500.

86

4200 4300 4400 4500 4600 4700 4800
0

1

2

3

4

5

6

7

8
x 10

−3

X1(2)

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

Exact SSA

Unbiased Poisson

Poisson

Midpoint Poisson

(a) ǫ = 0.03

4200 4300 4400 4500 4600 4700 4800
0

1

2

3

4

5

6

7

8
x 10

−3

X1(2)

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

Exact SSA

Unbiased Poisson

Poisson

Midpoint Poisson

(b) ǫ = 0.1

Figure 5.2: The estimated PDF of X1(2) from 2 × 104 simulation runs for reaction
(5.4) with c1 = 0.0001 and X1(0) = 61500.

87

0.99 0.995 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035

x 10
4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

X1(2)

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Exact SSA

Unbiased Poisson

Poisson

Midpoint Poisson

(a) ǫ = 0.03

0.99 0.995 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035

x 10
4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

X1(2)

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Exact SSA

Unbiased Poisson

Poisson

Midpoint Poisson

(b) ǫ = 0.1

Figure 5.3: The estimated PDF of X1(2) from 2 × 104 simulation runs for reaction
(5.5) with c1 = 0.00008, X1(0) = 61500 and X2(0) = 54000.

88

2000 2200 2400 2600 2800 3000 3200
0

1

2

3

4

5

6

7

8
x 10

−3

X1(10)

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

Exact SSA

Unbiased P/G/B

Poisson

Midpoint Poisson

Figure 5.4: The estimated PDF of X1(10) from 5×104 simulation runs for the decay-
dimerizing reactions (3.18) with rate constant (3.19) and initial condition (3.20). The
leap methods use ǫ = 0.03 to calculate τ .

1.36 1.38 1.4 1.42 1.44 1.46

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

X2(10)

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

Exact SSA

Unbiased P/G/B

Poisson

Midpoint Poisson

Figure 5.5: The estimated PDF of X2(10) from 5×104 simulation runs for the decay-
dimerizing reactions (3.18) with rate constant (3.19) and initial condition (3.20). The
leap methods use ǫ = 0.03 to calculate τ .

89

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU Time

H
is

to
g

ra
m

 D
is

ta
n

c
e

Poisson

Midpoint Poisson

Unbiased Poisson

Unbiaased P/G/B

Figure 5.6: Histogram distance of X1(10) versus CPU time for the decaying-
dimerizing reactions (3.18) with rate constants (3.19) and the initial condition (3.20).
The histogram is obtained after 5×104 simulation runs and the CPU time is the total
time (in seconds) of 5× 104 runs.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CPU Time

H
is

to
g

ra
m

 D
is

ta
n

c
e

Poisson

Midpoint Poisson

Unbiased Poisson

Unbiaased P/G/B

Figure 5.7: Histogram distance of X2(10) versus CPU time for the decaying-
dimerizing reactions (3.18) with rate constants (3.19) and the initial condition (3.20).
The histogram is obtained after 5×104 simulation runs and the CPU time is the total
time (in seconds) of 5× 104 runs.

90

Table 5.3: Mean of the number of molecules for several species in the EGF receptor
signal pathway

Species
Exact

SSA

Unbiased
bino-
mial
τ -leap

Binomial
τ -leap

Binomial
mid-τ
leap

Grb
26007 26006 25986 25985

Sh-G
61516 61517 61537 61537

Shc
5810.8 5810.7 5818.2 5817.5

Ra
12595 12595 12601 12599
∗Leap methods use ǫ = 0.01.

2.54 2.56 2.58 2.6 2.62 2.64 2.66

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Number of Molecules

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Exact SSA

Unbiased bino−τ leap

Chatt bino−τ leap

Chatt midpoint bino−τ

Figure 5.8: The estimated PDF of Grb at t = 8 in the EGF receptor signaling
pathway. The PDF is estimated from the results of 104 simulation runs. Leap methods
use ǫ = 0.01 to calculate τ .

91

800 900 1000 1100 1200 1300 1400 1500 1600 1700
0

0.05

0.1

0.15

0.2

0.25

CPU Time

H
is

to
g

ra
m

 D
is

ta
n

c
e

Unbiased bino−τ leap

Chatt bino−τ leap

Chatt midpoint bino−τ leap

Figure 5.9: Histogram distance of Grb at t = 8 versus CPU time in the EGF receptor
signaling pathway. The histogram is obtained from the results of 104 simulation runs
and the CPU time is the total time (in seconds) of 104 runs.

CHAPTER 6

Improving the Weighted Stochastic
Simulation Algorithm

6.1 Motivation

Although Gillespie’s exact stochastic simulation algorithm (SSA) [32] can be used

to simulate the stochastic dynamics of such systems, it often requires prohibitive

computation to estimate the probability of a rare event which occurs in the system

with an extremely small probability within a specified limited time. As some rare

events in the cells of living organisms can have devastating effects, [72, 73] it is very

important that computational simulation and analysis of systems with critical rare

events can efficiently capture such rare events.

The weighted SSA (wSSA) recently developed by Kuwahara and Mura [44] based

on the importance sampling technique enables one to efficiently estimate the proba-

bility of a rare event. However, the wSSA does not provide any method for select-

ing optimal values for importance sampling parameters. More recently, Gillespie et

al. [45] analyzed the accuracy of the results yielded from the wSSA and proposed

a refined wSSA (rwSSA) that employed a try-and-test method for selecting optimal

values for importance sampling parameters. It was shown that the rwSSA could fur-

ther improve the performance of wSSA. However, the try-and-test method requires

92

93

some initial guessing for the sets of values from which the parameters can take. If

the guessed values do not include the optimal value, then one cannot get appropriate

values for the parameters. Moreover, if the number of parameters is greater than

one, a very large set of values need to be guessed and tested, which may increase the

likelihood of missing the optimal values and also increase computational overhead.

In this chapter, we first apply the importance sampling technique to the next

reaction method (NRM) of the SSA [49] and develop a weighted NRM (wNRM) to

improve the simulation efficiency, since the NRM only requires to generate one random

variable per step while the SSA requires two random variables per step. We then

develop a systematic method for selecting optimal values for importance sampling

parameters, that can be incorporated into the wSSA or the wNRM resulting in an

improved wSSA (iwSSA) or an improved wNRM (iwNRM). Our method does not

need initial guessing and thus can guarantee near optimal values for the parameters.

Our numerical results demonstrate that the variance of the estimated probability

of the rare event provided by our iwSSA or iwNRM can be more than one order

magnitude lower than that provided by the wSSA or the rwSSA for a given number

of simulation runs. Moreover, our wSSA and wNRM require less simulation time than

the rwSSA for the same number of simulations runs.

The remaining part of this chapter is organized as follows. In Section 6.2, we first

describe the system setup and then briefly review Gillespie’s exact SSA, [32], [33] the

wSSA [44] and the rwSSA. [45] In Section 6.3, we develop the wNRM. In Section 6.4,

we develop a systematic method for selecting optimal values for importance sampling

methods and describe the iwSSA and iwNRM. In Section 6.5, we give some numerical

examples that illustrate the benefits our iwSSA and the iwNRM. Finally in Section

6.6, we draw several conclusions.

94

6.2 Weighted Stochastic Simulation Algorithms

In order to capture a rare event which occurs with an extremely low probability

in a given time period, Gillespie’s SSA may require huge computation. Recently,

a weighted SSA (wSSA) [44] and a refined wSSA (rwSSA) [45] were developed to

estimate the probability of a rare event with a substantial reduction of computation.

Following Kuwahara and Mura, [44] and Gillespie et al. [45], we define the rare event

ER that we want to capture in simulation as follows:

ER is an event that starting at time 0 in state x0, the system will first reach

any state in a specific set Ω at some time ≤ T, and the probability of

ER is very small, i.e., P (ER)≪ 1

(6.1)

If we employ Gillespie’s exact SSA to estimate P (ER), we would have to make a

large number n of simulation runs, with each starting at time 0 in state x0 and

terminating either when some state x ∈ Ω is first reached or when the system time

reaches T . If k is the number of those n runs that terminate for the first reason,

then P (ER) is estimated as P̂ (ER) = k/n. Since P (ER)≪ 1, n should be very large

to get a reasonably accurate estimate of P (ER). The wSSA and the rwSSA employ

the importance sampling technique to reduce the number of runs needed to estimate

P (ER).

Specifically, wSSA generates τ from its PDF (2.6) in the same way as used in

Gillespie’s exact SSA, but generates the reaction index µ from the following PMF:

qµ = bµ(x)/b0(x), µ = 1, · · · , M, (6.2)

where bµ(x) = γµaµ(x), µ = 1, . . . , M , b0(x) =
∑M

µ=1 bµ(x) and γµ, µ = 1, · · · , M

are positive constants that need to be chosen carefully before simulations are run.

95

Suppose a trajectory J generated in a simulation run contains h reactions, then the

wSSA changes the probability of the trajectory from PJ =
∏h−1

i=0 aµi
(xi)/a0(xi) to

QJ =
∏h−1

i=0 bµi
(xi)/b0(xi). By choosing appropriate γµ, µ = 1, · · · , M , one can in-

crease the probability of the trajectories that lead to the rare event. If k trajectories

out of n simulation runs lead to the rare event, then the importance sampling tech-

nique tells us that an unbiased estimate of P (ER) is given by

P̂ (ER) =
1

n

k∑

j=1

P j
J

Qj
J

=
1

n

k∑

j=1

∏h−1
i=0 aj

µi
(xi)/a

j
0(xi)∏h−1

i=0 bj
µi(xi)/b

j
0(xi)

=
1

n

k∑

j=1

h−1∏

i=0

wj
i ,

(6.3)

where j and i are indices of the trajectories and reactions in a trajectory, respectively,

bj
µi

(xi) = γµa
j
µi

(xi), and

wj
i =

pj
µi

qj
µi

=
aj

µi
(xi)/a

j
0(xi)

bj
µi(xi)/b

j
0(xi)

, (6.4)

which can be obtained in each simulation step.

Kuwahara and Mura [44] did not provide any method for choosing γµ, although

their numerical results with some pre-specified γµ for several reaction systems demon-

strated that the wSSA could reduce computation substantially. Gillespie et al. [45]

analyzed the variance of P̂ (ER) obtained from the wSSA and proposed the rwSSA

that used a try-and-test method for choosing γµ. In the try-and-test method, sev-

eral sets of values are pre-specified for γµ, µ = 1, · · · , M . A relatively small number

of simulation runs are made for each set of the values to obtain an estimate of the

variance of P̂ (ER), and then the set of values that yielded the smallest variance is

chosen. Although the try-and-test method provides a way of choosing γµ, it requires

some guessing to get several sets of pre-specified values for all γµ and also some com-

96

putational overhead to estimate the variance of P̂ (ER) for each set of values. To

avoid these problems, we will develop a more systematic method for choosing γµ,

µ = 1, · · · , M in Section 6.4, after we develop a wNRM to improve simulation speed

in the next section.

6.3 Weighted Next Reaction Method for Stochas-

tic Simulation

Both the wSSA and the rwSSA are based on the direct method of Gillespie’s exact

SSA, which needs to generate two random variables in each simulation step. However,

the next reaction method (NRM) of Gibson and Bruck [49] requires only one random

variable in each simulation step, which reduces computation. In this section, we apply

the importance sampling technique to the NRM and develop the wNRM to reduce

computation.

The key to making the wSSA more efficient than Gillespie’s SSA is to change the

probability of each reaction appropriately but without changing the distribution of the

time τ between any two consecutive reactions. Since the NRM determines the reaction

occurring in a simulation step by choosing the reaction that requires the smallest

waiting time, it seems difficult to change the probability of each reaction without

changing the distribution of τ . However, we notice that the PDF of τ in (2.6) only

depends on a0(x) not individual aµ(x). Hence, we can change the probability of each

reaction by changing the corresponding propensity function but without changing

the distribution of τ so long as we keep the sum of the propensity functions equal to

a0(x). To this end, we define

dm(x) =
bm(x)a0(x)

b0(x)
, m = 1, · · · , M, (6.5)

97

where bm(x) = γmam(x) is defined in the same way as in the wSSA. It is easy to

verify that d0(x) =
∑M

m=1 dm(x) = a0(x). If we generate τm from an exponential

distribution p(τm) = dm(x) exp(−dm(x)τm), τm > 0, as the waiting time of reaction

channel m, and choose µ = argm min{τm, m = 1, · · · , M} as the index of the channel

that fires, then it can be easily shown that the PDF of τ = min{τm, m = 1, · · · , M}

follows the exponential distribution in (2.6) and that the probability of reaction µ is

qµ = dµ(x)/d0(x) = bµ(x)/b0(x). If we repeat this procedure in each simulation step,

we would have modified the first reaction method (FRM) [33] and got a weighted FRM

(wFRM). Clearly, the wFRM is not efficient since it generates M random variables

in each step. However, following Gibson and Bruck, [49] we can convert the wFRM

into a more efficient wNRM by reusing τms.

Specifically, suppose that the µth reaction channel fires in the current step. After

updating the state vector and propensity functions, we calculate new dm(x), m =

1, · · · , M , which we denote as dnew
m (x). Then, we generate a random variable τµ from

an exponential distribution with parameter dnew
µ (x). For other channels with an index

m 6= µ, we update τm as follows: τm ← dm(x)/dnew
m (x)(τm−τ). Gibson and Bruck [49]

have shown that the new τm, m = 1, · · · , M , are independent exponential random

variables with parameters dnew
m (x), m = 1, · · · , M , respectively. Therefore, in the

next step, we can again choose µ = argm min{τm, m = 1, · · · , M} as the index of the

channel that fires, and set τ = min{τm, m = 1, · · · , M}. Essentially, our wNRM runs

simulation in the same way as the NRM except that the wNRM generates τm using

a parameter dm(x) instead of am(x). To estimate the probability of the rare event

P̂ (ER), we calculate a weight wµ = pµ

qµ
= aµ(x)/a0(x)

dµ(x)/d0(x)
= aµ(x)/dµ(x) in each step and

get P̂ (ER) using (6.3).

98

Therefore, based on the analysis above, the wNRM is summarized in the following

algorithm:

Algorithm 6 (wNRM)

1. k1 ← 0, k2 ← 0, set values for all γm.

2. for i=1 to n, do

3. t← 0, x← x0, w ← 1.

4. evaluate all am(x) and bm(x); calculate all dm(x).

5. for each m, generate a unit interval uniform random variable rm; τm =

ln(1/rm)/dm(x).

6. while t ≤ T , do

7. if x ∈ Ω, then

8. k1 ← k1 + w, k2 ← k2 + w2

9. break out the while loop

10. end if

11. µ = argm min{τm, m = 1, · · · , M}, τ = min{τm, m = 1, · · · , M}.

12. w ← w × aµ(x)/dµ(x).

13. x← x + νµ, t← t + τ .

14. evaluate all am(x) and bm(x); calculate all dnew
m (x);

15. for all m 6= µ, τm ← dm(x)/dnew
m (x)(τm − τ)

99

16. generate a unit interval uniform random variable rµ; τµ ← ln(1/rµ)/d
new
µ (x).

17. dm(x)← dnew
m (x).

18. end while

19. end for

20. σ2 = k2 − k2
1

21. calculate P̂ (ER) = k1/n, with a 68% uncertainty of ±σ/
√

n.

As in the wSSA, Algorithm 6 does not provide a method for choosing parameters

γm, m = 1, · · · , M . Although we could incorporate the try-and-test method in rwSSA

into Algorithm 6, we will develop a more systematic method for choosing parameters

in the next section. This parameter selection method will be applicable to both

the wSSA and the wNRM and will significantly improve the performance of both

algorithms as will be demonstrated in Section 6.5.

6.4 Parameter Selection for wSSA and wNRM

Let us denote the set of all possible state trajectories in the time interval [0 T]

as J and the set of trajectories that first reach any state in Ω during [0 T] as JE.

Let the probability of a trajectory J be PJ . Then we have P (ER) =
∑

J∈JE
PJ =

∑
J∈J PJ1(J ∈ JE), where the indicator function 1(J ∈ JE) = 1 if J ∈ JE or 0

if J /∈ JE. Importance sampling used in the wSSA and the wNRM arises from the

factor that we can write P (ER) as

P (ER) =
∑

J∈J

PJ1(J ∈ JE)

QJ

QJ , (6.6)

100

where QJ is the probability used in simulation to generate trajectory J , which is

different from the true probability PJ if the system evolves naturally. If we make

n simulation runs with altered trajectory probabilities, (6.6) implies that we can

estimate P (ER) as P̂ (ER) = 1
n

∑
J∈J

PJ1(J∈JE)
QJ

which is essentially (6.3). The variance

of P̂ (ER) depends on QJs. Appropriate QJs yield small variance, thereby improving

the accuracy of the estimate or equivalently reducing the number of runs for a given

variance. The “rule of thumb” for choosing good QJs is that QJ should be roughly

proportional to PJ1(J ∈ JE). We next rely on this rule to develop a method of

choosing parameters for the wSSA and the wNRM.

However, at least two difficulties arise if we consider (6.6). First, the number

of all possible trajectories is very large and we do not know the trajectories that

lead to the rare event and their probabilities. Second, since we can only adjust the

probability of each reaction in each step, it is not clear how this adjustment can

affect the probability of a trajectory. To overcome these difficulties, we next get an

approximate expression for P (ER) based on which we apply importance sampling.

The number of reactions KT occurring in the time interval [0 T] is typically large,

since the average time between two consecutive reactions is 1/a0(x) which is typically

much smaller than T . The standard deviation of KT is typically much smaller than

KT . Therefore, we can approximate KT by its mean value KT . Now, let us denote

the rare event occurs at the Kth reaction with K ≤ KT as EK and its probability as

PK . Then we have

P (ER) ≈
KT∑

K=1

PK . (6.7)

Since EK with K < KT occurs at t < T and the mean first passage time of the rare

event is much larger than T , [45] it is reasonable to expect that PKT
> PK for all

101

K < KT . Therefore, based on the ’rule of thumb’ described earlier, it is reasonable

to maximize the probability of EKT
in simulations with importance sampling.

Before proceeding with our derivations, we need to specify Ω. Let us denote the

state when the rare event occurs at t as Xe(t). In the rest of the chapter, we assume

that Ω contains one single state defined as Xe
i (t) = Xi(0) + η, where η is a constant

and i ∈ {1, 2, · · · , N}. Let us denote the number of the mth reaction occurring in

the trajectory leading to the rare event as Km. Then we have

η =
M∑

m=1

νimKm. (6.8)

We divide all reactions into three groups: G1 group consists of reactions with νimη > 0,

G2 group consists of reactions with νimη < 0, and G3 group consists of reactions with

νim = 0. Note that the reactions in G1 (G2) group increase (decrease) the probability

of the rare event and that the reactions in G3 group do not affect Xi(t) directly.

We typically only need to consider elementary reactions including bimolecular

and monomolecular reactions. [47] Hence the possible values for all νim are 0,±1,±2.

For the simplicity of derivations, we now only consider the case where νim = 0,±1,

i.e., we assume that the system dose not have any bimolecular reactions with two

identical reactant molecules or dimerization reactions. We will later generalize our

method to the system with dimerization reactions. Let us define KG1
=

∑
m∈G1

Km

and KG2
=

∑
m∈G2

Km, then (6.8) becomes

η = KG1
−KG2

. (6.9)

We next consider systems with only G1 and G2 reaction groups and then consider

more general systems with all three reaction groups.

102

6.4.1 Systems with G1 and G2 reaction groups

Let us consider event EKT
and let QKT

be the probability of EKT
used in sim-

ulation which is different from its true probability PKT
when the system evolves

naturally. As we discussed earlier, our goal is to use the maximum value of QKT
.

The last reaction in EKT
should be a reaction from G1 group. Otherwise, the rare

event has already occurred before the KT th reaction occurs. Suppose that in simu-

lation the total probability of the occurrence of reactions in G1 group is a constant

QG1
and similarly the total probability of the occurrence of reactions in G2 group is

QG2
= 1−QG1

. Since we have

KG1
+ KG2

= KE , (6.10)

KG1
and KG2

follow a binomial distribution and we have

QKK
=

(KT − 1)!

(KG1
− 1)!KG2

!
Q

KG1

G1
(1−QG1

)KG2 . (6.11)

From (6.9) and (6.10), we get KG1
= (KT +η)/2 and KG2

= (KT−η)/2. Substituting

KG1
and KG2

into (6.11), we can find QG1
and QG2

that maximize QKK
as follows:

QG1
=

(KT + η)

2KT

QG2
=

(KT − η)

2KT

.

(6.12)

To ensure that reactions in G1 (G2) group occur with probability QG1
(QG1

), at

each step of simulation, we adjust the probability of each reaction as follows

qm =

QG1
am(x)

aG1
(x)

, m ∈ G1

QG2
am(x)

aG2
(x)

, m ∈ G2,

(6.13)

where aG1
(x) =

∑
m∈G1

am(x) and aG2
(x) =

∑
m∈G2

am(x). It is easy to verify that

∑
m∈G1

qm = QG1
and

∑
m∈G2

qm = QG2
. As we discussed earlier, the weight for

estimating the probability of the rare event is wµ = pµ/qµ if the µth reaction channel

fires.

103

6.4.2 Systems with G1, G2 and G3 reaction groups

Again, we consider event EKT
. Let us define KG3

=
∑

m∈G3
Km. Then we have

KG1
+ KG2

+ KG3
= KT . (6.14)

Similar to QG1
and QG2

, we denote the total probability of the occurrence of reactions

in G3 group as QG3
. Clearly, KG1

, KG2
and KG3

follow a multinomial distribution

and we have

QKT
=

KT∑

KG2
=0

(KT − 1)!

(KG1
− 1)!KG2

!KG3
!
Q

KG1

G1
Q

KG2

G2
Q

KG3

G3
. (6.15)

From (6.9) and (6.14), we get KG1
= KG2

+ η and KG3
= KE − η − 2KG2

. Since

KG3
≥ 0, we have KG2

≤ (KE − η)/2. Then we can write (6.15) as

QKT
=

(KT−η)/2∑

KG2
=0

(KT − 1)!

(KG2
+ η − 1)!KG2

!(KT − η − 2KG2
)!

Q
KG2

+η

G1
Q

KG2

G2
Q

KT −η−2KG2

G3
.

(6.16)

Since there are (KT − η)/2+1 terms in the summation in (6.16), it is difficult to find

QG1
, QG2

and QG3
that maximize QKT

.

Let KG1
, KG2

and KG3
be the average number of reactions from G1, G2 and

G3 that occur in the time interval [0 T] when the system evolves naturally. Since

we have KG1
+ KG2

+ KG3
= KT , we define PG1

= KG1
/KT , PG2

= KG2
/KT and

PG3
= KG3

/KT . Then we can approximate PKT
using the right hand side of (6.16)

but with QGi
, i = 1, 2, 3, replaced by PGi

, i = 1, 2, 3, respectively, i.e.,

PKT
≈

(KT−η)/2∑

KG2
=0

(KT − 1)!

(KG2
+ η − 1)!KG2

!(KT − η − 2KG2
)!

P
KG2

+η

G1
P

KG2

G2
P

KT −η−2KG2

G3
.

(6.17)

Suppose that the (Kmax + 1)th term in the summation in (6.17) is the largest, then

based on the “rule of thumb” we described earlier, we can maximize the (Kmax +1)th

term in the summation in (6.16) instead of QKT
to find QG1

, QG2
and QG3

.

104

It is not difficult to find the (Kmax + 1)th term in the summation in (6.17). Let

us denote the (KG2
+ 1)th term in the summation in (6.17) as f(KG2

). We can

exhaustively search over all f(KG2
), KG2

= 0, · · · , (KT − η)/2 to find Kmax. How-

ever, this may require relatively large computation because the factorials involved in

f(KG2
). We can reduce computation by searching over g(KG2

) = f(KG2
+1)/f(KG2

),

KG2
= 1, · · · , (KT − η)/2− 1, which are given by

g(KG2
) =

(KT − η − 2KG2
)(KT − η − 2KG2

− 1)PG1
PG2

(KG2
+ η)(KG2

+ 1)P 2
G3

. (6.18)

Specifically, we calculate all g(KG2
) from (6.18). If g(KG2

) > 1 but g(KG2
+ 1) < 1,

then f(KG2
) is a local maximum. After obtaining all local maximums, we can find

the global maximum f(Kmax) from the local maximums.

Let us define K̃G2
= Kmax, K̃G1

= K̃G2
+ η and K̃G3

= KT − η − 2K̃G2
. Then we

can find QG1
, QG2

and QG3
that maximize the (K̃G2

+ 1)th term in the summation

in (6.16) as follows

QG1
=

K̃G1

KT

=
K̃G2

+ η

KT

QG2
=

K̃G2

KT

QG3
=

K̃G3

KT

=
KT − η − 2K̃G2

KT

.

(6.19)

Substituting QG1
and QG2

in (6.19) into (6.13), we get the probability qm, m ∈ G1

or G2 that is used to generate the mth reaction in each step of simulation. For G3

group, we get the probability of each reaction as follows

qm =
QG3

am(x)

aG3
(x)

, m ∈ G3, (6.20)

where aG3
(x) =

∑
m∈G3

am(x).

While we can use qm in (6.20) to generate reactions in G3 group, we next develop

a method for fine-tuning qm, m ∈ G3, which can further reduce the variance of

105

P̂ (ER). We divide G3 group into three subgroups: G31, G32 and G33. Occurrence of

reactions in G31 group increases probability of occurrence of reactions in QG1
group

or reduces the probability of the occurrence of the reactions in QG2
group, which in

turn increases the probability of the rare event. Occurrence of reactions in G32 group

reduces probability of occurrence of reactions in QG1
group or increases the probability

of the occurrence of reactions in QG2
group, which reduces the probability of the

rare event. Occurrence of reactions in G33 group does not change the probability of

occurrence of reactions in QG1
and QG2

groups, which does not change the probability

of the rare event.

Let KG31
, KG32

and KG33
be the average number of reactions from G31, G32 and

G33 that occur in the time interval [0 T] when the system evolve naturally. we define

PG31
= KG31

/KT , PG32
= KG32

/KT and PG33
= KG33

/KT . Our goal is to make Q31

to be greater than PG31
and Q32 to be less than PG32

to increase the probability of

the rare event. To this end, we propose the following formula to determine Q31, Q32

and Q33:

QG31
= PG31

+ QG3
α− PG3

β

QG32
= PG32

+ QG3
(1− α)− PG3

(1− β)

QG33
= PG33

(6.21)

where α, β ∈ (0 1) are two pre-specified constants. It is not difficult to verify from

(6.21) that QG31
+QG32

+QG33
= QG3

. To ensure that QG31
≥ PG31

and QG32
≤ PG32

,

we choose α and β satisfying 0 ≤ β < 1,
PG3

QG3

β ≤ α < 1 if QG3
≥ PG3

, or satisfying

0 ≤ β < 1, max
{

0, 1− PG3

QG3

(1− β)
}
≤ α < 1 if QG3

< PG3
. Finally, we obtain qm for

m ∈ G3 as follows

106

qm =

QG31
am(x)

aG31
(x)

, m ∈ G31

QG32
am(x)

aG32
(x)

, m ∈ G32

QG33
am(x)

aG33
(x)

, m ∈ G33,

(6.22)

where aG3i
(x) =

∑
m∈G3i

am(x), i = 1, 2, 3.

6.4.3 Systems with dimerization reactions

So far we assumed that the system did not have any dimerization reactions, i.e.

the system consisted of reactions with |νim| = 0 or 1. We now generalize our methods

developed earlier to the system with dimerization reactions. If there are dimerization

reactions in G1 and G2 groups, we further divide G1 group into G11 and G12 subgroups

and G2 group into G21 and G22 subgroups. The G11 group contains reactions with

νimsign(η) = 1, where sign(η) = 1 when η > 0 and sign(η) = −1 when η < 0. The

G12 group contains reactions with νimsign(η) = 2. The G21 group contains reactions

with νimsign(η) = −1, while the G12 group contains reactions with νimsign(η) = −2.

Let us define KG11
=

∑
m∈G11

Km; KG12
=

∑
m∈G12

Km; KG21
=

∑
m∈G21

Km;

KG22
=

∑
m∈G22

Km. Clearly, we have KG1
= KG11

+ KG12
and KG2

= KG21
+ KG22

.

Then (6.8) becomes

KG11
+ 2KG12

−KG21
− 2KG22

= η. (6.23)

Let us consider systems with G1 and G2 groups but without G3 group. Although we

still have KG1
+ KG2

= KT or equivalently KG11
+ KG12

+ KG21
+ KG22

= KT , we

cannot obtain four unknowns KG11
, KG12

, KG21
and KG22

from only two equations.

Suppose that KG11
, KG12

, KG21
and KG22

are average number of reactions from

G11, G12, G21 and G22 groups that occur in the time interval [0 T] if the system

evolves naturally. We notice from (6.13) that we do not change the ratio of the

107

probabilities of two reactions in the same group, i.e., qm1
/qm2

= pm1
/pm2

if m1 and

m2 are in the same group. Therefore, we would expect that KG12
/KG11

= KG12
/KG11

and KG22
/KG21

= KG22
/KG21

. Using these two relationships, we can write (6.23) as

λ1KG1
− λ2KG2

= η (6.24)

where λ1 =
(KG11

+2KG12
)

(KG11
+KG12

)
and λ2 =

(KG21
+2KG22

)

(KG21
+KG22

)
.

From (6.10) and (6.24), we obtain KG1
= (λ1KT + η)/(λ1 + λ2) and KG2

=

(λ2KT − η)/(λ1 + λ2). Substituting KG1
and KG2

into (6.11) and maximizing QKK
,

we obtain

QG1
=

λ1KT + η

(λ1 + λ2)KT

QG2
=

λ2KT − η

(λ1 + λ2)KT

.

(6.25)

We then substitute QG1
and QG2

into (6.13) to get qm.

Now let us consider the systems with G1, G2 and G3 reactions. From (6.24) we

have KG1
= (λ2KG2

+ η)/λ1, and from (6.14) and (6.24) we obtain KG3
= KT −

[(λ1 + λ2)KG2
+ η]/λ1. Since KG3

≥ 0, we have KG2
≤ (λ1KT − η)/(λ1 + λ2).

Following the derivations in Section 6.4.2, we can get qm for any reaction. More

specifically, substituting KG1
, KG3

and the upper limit of KG2
into (6.15), we obtain

QKT
. We can also get PKT

similar to (6.17) by replacing QGi
in QKT

with PGi
. Then

we determine the maximum term in the summation of PGi
and denote the value of

KG2
corresponding to the maximum term as Kmax. We find QG1

, QG2
and QG3

by

maximizing the (Kmax + 1)th term in the summation in QKT
. Finally, we substitute

QG1
and QG2

into (6.13) to get qm, m ∈ G1 or G2. For the reactions in G3 group, we

can either substitute QG3
into (6.20) to obtain qm, or if we want to fine-tune qm, we

use (6.21) and (6.22) to get qm.

108

6.4.4 The iwSSA Algorithm

The key to determining probability of each reaction qm is to find the total proba-

bility of each group, QG1
, QG2

, QG3
, QG31

, QG32
and QG33

. This requires the average

number of reactions of each group occurring during the interval [0 T], KT , K11, K12,

K21, K22, K31, K32, K33, if the system evolves naturally. If the system is relatively

simple, we may get these numbers analytically. If we cannot obtain them analytically,

we can estimate them by running Gillespie’s exact SSA. Since the number of runs

needed to estimates these numbers is much smaller than the number of runs needed to

estimate the probability of the rare event, the computational overhead is negligible.

We now incorporate our probability selection method into the wSSA and summa-

rize the improved wSSA in the following algorithm.

Algorithm 7 (iwSSA)

1. run Gillespie’s exact SSA 103-104 times to get estimates of KT , K11, K12, K21,

K22, K31, K32, K33.

2. calculate QG1
, QG2

, QG3
, QG31

, QG32
and QG33

.

3. k1 ← 0, k2 ← 0.

4. for i=1 to n, do

5. t← 0, x← x0, w ← 1.

6. while t ≤ T , do

7. if x ∈ Ω, then

8. k1 ← k1 + w, k2 ← k2 + w2

109

9. break out the while loop

10. end if

11. evaluate all am(x); calculate a0(x).

12. generate two unit-interval uniform random variables r1 and r2.

13. τ ← ln(1/r)1)/a0(x)

14. calculate all qm from (6.13), (6.20) or (6.22).

15. µ← smallest integer satisfying
∑µ

m=1 qm > r2q0.

16. w ← w×
(
aµ(x)/a0(x)

)
/
(
qµ(x)/q0(x)

)
.

17. x← x + νµ, t← t + τ .

18. end while

19. end for

20. σ2 = k2 − k2
1

21. estimate P̂ (ER) = k1/n, with a 68% uncertainty of ±σ/
√

n.

Comparing with the rwSSA, [45] our iwSSA does not need to make some guessing

about the parameters for adjusting the probability of each reactions qm, but directly

calculate qm using a systematically developed method. This has two main advantages.

First, our iwSSA will always adjust qm appropriately to reduce the variance of P̂ (ER),

whereas the rwSSA may not adjust qm as well as our iwSSA, especially if the initial

guessed values are far away from the optimal values. Second, as we mentioned earlier,

the computational overhead of our iwSSA is negligible, whereas rwSSA requires non-

negligible computational overhead for determining parameters. Indeed, as we will

110

show in Section 6.5, the variance of P̂ (ER) provided by our iwSSA can be more than

one order of magnitude lower than that provide by the rwSSA for given number of

n. Moreover, our iwSSA is faster than the rwSSA, since the iwSSA requires less

computational overhead to adjust qm.

We can also incorporate our probability selection method into wNRM to develop

an improved wNRM. To this end, we replace the first line of Algorithm 6 with the first

three lines of Algorithm 7, change the fourth line of Algorithm 6 to the following:

evaluate all am(x), find all qm from (6.13), (6.20) or (6.22), and calculate dm(x)

as dm(x) = qma0(x). Finally, we change the fourteenth line of Algorithm 6 to the

following: evaluate all am(x) and qm; calculate all dnew
m (x).

6.5 Numerical Examples

In this section we present simulation results for several chemical reaction systems

to demonstrate the accuracy and efficiency of our iwSSA and iwNRM. All simulations

were run in Matlab on a PC with an Intel dual Core 2.67 GHz CPU and 3G-byte

memory running Windows XP.

6.5.1 Single species production-degradation model

This simple system was originally used by Kuwahara and Mura [44] and then

Gillespie et al. [45] to test the wSSA and the rwSSA. It includes the following two

chemical reactions:

R1 : S1
c1→ S1 + S2, R2 : S2

c2→ ∅. (6.26)

In reaction R1 species S1 synthesizes species S2 with a probability rate constant c1,

while in reaction R2 species S2 is degraded with a probability rate constant c2. We

111

used the same initial state and probability rate constants as used in Refs. [44] and [45]:

X1(0) = 1, X2(0) = 40, c1 = 1 and c2 = 0.025.

It is observed that the system is at equilibrium, since a1(x0) = c1 × X1(0) =

c2 × X2(0) = a2(x0). It can be shown [44] that X2(t) is a Poisson random variable

with mean equal to 40. Refs. [44] and [45] sought to estimate P (ER)=Pt≤100(X2 →

θ|x0), the probability of X2(t) = θ for t ≤ 100 and several values of θ between 65

and 80. Since θ is about four to six standard deviations above the mean value 40,

Pt≤100(X2 → θ|x0) is very small.

Kuwahara and Mura [44] employed the wSSA to estimate P (ER) and used b1(x) =

δa1(x) and b2(x) = 1/δa2(x) with δ = 1.2 for four different values of θ: 65, 70, 75 and

80. Gillespie et al. [45] applied the rwSSA to estimate P (ER) and used the same way

to determine b1(x) and b2(x) but found that δ = 1.2 is near optimal for θ = 65 and

that δ = 1.3 is near optimal for θ = 80. We repeated the simulation of Gillespie et

al. [45] for θ = 65, 70, 75 and 80 with δ = 1.2, 1.25, 1.25 and 1.3, respectively. We then

applied our iwSSA and iwNRM to estimate P (ER) for θ = 65, 70, 75 and 80. This

system has only two types of reaction: R1 is a G1 reaction and R2 is a G2 reaction.

Since the system is at equilibrium with a0(x0) = 2, KT with T = 100 is estimated to

be 200. Using (6.12), we get q1 = QG1
= (KT + θ)/2/KT and q2 = 1− q1.

Table 6.1 gives the estimated probability P̂ (ER) and its sample variance σ2 for

the iwNRM, the iwSSA and the rwSSA, obtained from 107 simulation runs with

θ = 65, 70, 75 and 80. It is seen that P̂ (ER) is almost identical for all three methods.

However, our iwNRM and iwSSA provide variance almost two order of magnitude

lower than the rwSSA for θ = 80, or less than or almost one order of magnitude lower

than the rwSSA for θ = 75, 70 and 65. Moreover, our iwNRM and iwSSA need about

60% and 70% CPU time of the rwSSA, respectively. Note that the CPU time for the

112

Table 6.1: Estimated probability of rare event and sample variance as well as CPU
time with 107 runs of iwNRM, iwSSA and rwSSA methods for the example of single
species production-degradation model

(a) θ = 65

P̂ (ER) σ2 TIME
iwNRM 2.29× 10−3 5.09× 10−6 14472
iwSSA 2.29× 10−3 5.10× 10−6 16737
rwSSA 2.29× 10−3 3.39× 10−5 24340

(b) θ = 70

P̂ (ER) σ2 TIME
iwNRM 1.68× 10−4 3.40× 10−8 16140
iwSSA 1.68× 10−4 3.40× 10−8 18555
rwSSA 1.68× 10−4 4.29× 10−7 25492

(c) θ = 75

P̂ (ER) σ2 TIME
iwNRM 8.42× 10−6 1.10× 10−10 15640
iwSSA 8.42× 10−6 1.10× 10−10 18582
rwSSA 8.43× 10−6 3.58× 10−9 26314

(d) θ = 80

P̂ (ER) σ2 TIME
iwNRM 2.99× 10−7 1.82× 10−13 16260
iwSSA 2.99× 10−7 1.82× 10−13 18960
rwSSA 2.99× 10−7 1.29× 10−11 26987

rwSSA in Table 6.1 does not include the time needed for searching for the optimal

value of δ for each θ. The less CPU time used by the iwNRM is expected since it

only requires to generate one random variable in each step, whereas the iwSSA and

rwSSA needs to generate two random variables. It is also reasonable that the iwSSA

requires less CPU time than rwSSA, because the iwSSA needs less computation to

calculate the probability of each reaction in each step. Figure 6.1 compares the

standard deviation (σ/
√

n) of P̂ (ER) for the iwSSA and the rwSSA with different

113

10
4

10
5

10
6

10
7

10
−7

10
−6

10
−5

10
−4

10
−3

n (simulation runs)

S
T

D

(a): θ=65

rwSSA

iwSSA

10
4

10
5

10
6

10
7

10
−8

10
−7

10
−6

10
−5

10
−4

n (simulation runs)

S
T

D

(b): θ=70

rwSSA

iwSSA

10
4

10
5

10
6

10
7

10
−9

10
−8

10
−7

10
−6

10
−5

n (simulation runs)

S
T

D

(c): θ=75

rwSSA

iwSSA

10
4

10
5

10
6

10
7

10
−10

10
−9

10
−8

10
−7

10
−6

n (simulation runs)

S
T

D

(d): θ=80

rwSSA

iwSSA

Figure 6.1: The standard deviation (STD) versus number of simulation runs for single
species production-degradation model (6.26) with c1 = 1, c2 = 0.025, X1(0) = 1 and
X2(0) = 40 with θ = 65, 70, 75 and 80.

number of runs, n. Since the iwNRM provides almost the same standard deviation

as the iwSSA, we do not plot it in the figure. It is seen that our iwSSA consistently

yields much smaller standard deviation than rwSSA for all values of n.

6.5.2 A reaction system with G1, G2 and G3 reactions

The previous system only contains a G1 reaction and a G2 reaction. We also used

the following system with G1, G2 and G3 reactions to test our iwNRM and iwSSA:

R1 : S1
c1→ S2, R2 : S2

c2→ ∅, R3 : S3
c3→ S1 + S3, R4 : S1

c4→ ∅. (6.27)

In this system, a monomer S1 converts to S2 with a probability rate constant c1 while

S2 is degraded with a probability rate constant c2. Meanwhile, another species S3

synthesizes S1 with a probability rate constant c3 and S1 degrades with a probability

114

rate constant c4. In our simulations, we used the following values for the probability

rate constants and the initial state:

c1 = 0.1, c2 = 0.1, c3 = 8, c4 = 0.1, (6.28)

and

X1(0) = 40, X2(0) = 40, X3(0) = 1. (6.29)

This system is at equilibrium and the mean value of X2(t) is 40. We are interested

in P (ER) = Pt≤10(X2 → θ|x(0)), the probability of X2(t) = θ for t ≤ 10. We chose

θ = 65 and 68 in our simulations. To apply our iwSSA and iwNRM to estimate

P (ER), we divide the system into three groups. A G1 group contains reaction R1;

a G2 group includes reaction R2; a G3 group consists of reactions R3 and R4. More

precisely, the G3 group is further divided into a G31 group which contains reaction

R3 and a G32 group which contains reaction R4. Since the system is at equilibrium

and we have a0(x0) = 20, a1(x0) = 4, a2(x0) = 4, a3(x0) = 8 and a4(x0) = 4, we

get KT = 200, K1 = 40, K2 = 40, K3 = 80 and K4 = 40. Therefore, we get the

following probabilities: PG1
= 0.2, PG2

= 0.2 and PG3
= 0.6.

If θ = 65, we have η = 25. Using (6.18), we obtained K̃G2
= 29, and then got

K̃G1
= 54 and K̃G3

= 117. Substituting K̃G1
, K̃G2

and K̃G3
into (6.19), we got

QG1
= 0.27, QG2

= 0.145 and QG3
= 0.585. We then chose α = 0.85 and β = 0.80,

and calculated QG31
and QG32

from (6.21) as QG31
= 0.4173 and QG32

= 0.1678.

Similarly, if θ = 68, we got K̃G1
= 54, K̃G2

= 26 and K̃G3
= 120, which resulted

in QG1
= 0.27 and QG2

= 0.13. Again, selecting α = 0.85 and β = 0.80, we got

QG31
= 0.430 and QG32

= 0.170. To test if our iwNRM and iwSSA are sensitive to

parameters α and β, we also used another set of parameters α = 0.80 and β = 0.75.

115

Table 6.2: Estimated probability of the rare event P̂ (ER) and the sample variance σ2

as well as the CPU TIME (in seconds) with 107 runs of iwNRM, iwSSA and rwSSA
for the system given in (6.27). (a) θ = 65

P̂ (ER) σ2 TIME
iwNRM without G3 fine-tuning 1.14× 10−4 2.77× 10−7 13381
iwSSA without G3 fine-tuning 1.14× 10−4 2.74× 10−7 17484
iwNRM with α = 0.85, β = 0.80 1.14× 10−4 1.27× 10−7 13504
iwSSA with α = 0.85, β = 0.80 1.14× 10−4 1.28× 10−7 16649
iwNRM with α = 0.80, β = 0.75 1.14× 10−4 1.29× 10−7 13540
iwSSA with α = 0.80, β = 0.75 1.14× 10−4 1.29× 10−7 17243
rwSSA 1.14× 10−3 1.54× 10−6 24499

(b) θ = 68

P̂ (ER) σ2 TIME
iwNRM without G3 fine-tuning 1.49× 10−5 1.14× 10−8 14087
iwSSA without G3 fine-tuning 1.49× 10−5 1.09× 10−8 17285
iwNRM with α = 0.85, β = 0.80 1.49× 10−5 3.28× 10−9 13920
iwSSA with α = 0.85, β = 0.80 1.49× 10−5 3.29× 10−9 17862
iwNRM with α = 0.80, β = 0.75 1.49× 10−5 3.32× 10−9 14018
iwSSA with α = 0.80, β = 0.75 1.49× 10−5 3.30× 10−9 17858
rwSSA 1.49× 10−5 7.93× 10−8 24739

∗The probability of the rare event estimated from 1011 runs of exact SSA method is
1.14× 10−4 for θ = 65 and 1.49× 10−5 for θ = 68.

116

In order to compare the performance of our iwNRM and iwSSA with that of

the rwSSA, we also ran simulations with the rwSSA. In the rwSSA, we chose the

following parameters γ1 = δ, γ2 = 1/δ and γm = 1, m = 3, 4 to adjust propensity

functions. Since the optimal value of α is unknown, we ran the rwSSA for δ = 1.2,

1.25, 1.3, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75 and 1.80 to determine the

best δ. Figure 6.2 shows the variance of P̂ (ER) obtained from the simulations with

the rwSSA and our iwSSA. Since the iwNRM yielded almost the same variance as

our iwSSA, we only plotted the variance obtained from the iwSSA. It is seen that our

iwSSA provides variance more than one order of magnitude lower than that provided

by rwSSA with the best δ. Is is also observed that our iwSSA is not very sensitive to

the parameters α and β, since the variance obtained with two different sets of values

for α and β is almost the same.

Table 6.2 lists P̂ (ER) and its variance obtained from n = 107 runs of the rwSSA,

the iwNRM and the iwSSA. We first ran the iwNRM and the iwSSA without fine-

tuning the probability of reactions in G3 group and calculated qm using (6.20). We

then ran iwNRM and iwSSA with fine-tuning the probability of reactions in G3 group

and used two sets of parameters (α = 0.85, β = 0.80; α = 0.80, β = 0.75) and (6.21)

to calculate qm for the reactions in G3 group. We also made 1011 runs of the exact SSA

to estimate P̂ (ER). It is seen that the iwNRM, the iwSSA and the rwSSA all yield

the same P̂ (ER) as the exact SSA. However, the iwNRM and iwSSA with fine-tuning

the probabilities of G3 reactions offer variance more than one order of magnitude

lower than that provided by the rwSSA. Without fine-tuning the probabilities of G3

reactions, the iwNRM and the iwSSA provided a little bit larger variance but still

almost one order of magnitude lower than that provided by the rwSSA. Table 6.2

also shows that the iwNRM and the iwSSA needed only 60%-70% CPU time needed

117

by the rwSSA. Again, the CPU time of the rwSSA in Table 6.2 does not include the

time needed for searching for the optimal value of δ for each θ. If we include this

time, the CPU time of the rwSSA will be almost doubled.

6.6 Conclusion

The wSSA and the rwSSA are innovative variation of Gillespie’s standard SSA.

They provide an efficient way of estimating the probability of a rare event that occurs

in chemical reaction systems with an extremely low probability in a given time period.

In this chapter we developed two methods for improving the performance of the

wSSA and the rwSSA. In the first method, we applied the importance sampling

technique used in the wSSA to the next reaction method of the SSA and developed

the wNRM which is more efficient than the wSSA and the rwSSA. In the second

method, we introduced a systematic method for selecting the values of importance

sampling parameters, which is lack in the wSSA and the rwSSA. Incorporating this

parameter selection method into the wNRM and the wSSA, we obtained an improved

version of wNRM and wSSA: iwNRM and iwSSA. The numerical examples showed

that comparing with the rwSSA, our iwNRM and iwSSA could substantially reduce

the variance of the estimated probability of the rare event and speed up simulation

for a given number of simulation runs.

118

1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

−7

10
−6

10
−5

10
−4

δ

σ
2

rwSSA

iwSSA para1

iwSSA para2

iwSSA para3

(a) θ = 65

1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

−9

10
−8

10
−7

10
−6

δ

σ
2

rwSSA

iwSSA para1

iwSSA para2

iwSSA para3

(b) θ = 68

Figure 6.2: Variance σ2 obtained from 107 runs of the iwSSA and the rwSSA for the
system in (6.27) with c1 = 0.1, c2 = 0.1, c3 = 8, c4 = 0.1, X1(0) = 40, X2(0) = 40 and
X3(0) = 1. iwSSA para 1 represents the iwSSA without fine-tuning the probability of
reactions in G3 group; iwSSA para 2 and 3 represent the iwSSA with fine-tuning the
probability of reactions in G3 group using two sets of parameters: α = 0.85, β = 0.8
and α = 0.80, β = 0.75. Since the variance of the iwSSA does not depend on δ used
in the rwSSA, it appears as a horizontal line.

CHAPTER 7

Stochastic Simulation of Delay-Induced
Circadian Rhythms in Drosophila

7.1 Motivation

Almost all living organisms, including animals, plants, fungi and cyanobacte-

ria, exhibit daily periodic oscillations in their biochemical or physiological behavior,

which are known as circadian rhythms [74–80]. The mechanism of circadian oscil-

lation has been an extensive research topic in the last three decades. It has been

found that circadian rhythms in fact are determined by oscillatory expression of cer-

tain genes [81, 82]. Specifically, circadian clocks consist of a network of interlocked

transcriptional-translational feedback loops formed by a number of genes [75]. In

Drosophila, transcription of per and tim genes is activated by a heterodimer consist-

ing of two transcriptional activators dCLOCK and CYCLE [83–86]. The PER protein

in turn binds to the dCLOCK-CYCLE heterodimer, which inhibits the DNA binding

activity of the dimer, thereby repressing the transcription of per and tim [84–87].

While this forms a negative feedback loop, there is also a positive feedback loop, in

which PER and TIM activate dCLOCK synthesis by binding dCLOCK and relieving

dCLOCK’s repression of dclock transcription [88, 89].

119

120

Several mathematical models have been proposed for circadian rhythms in Drosophila

[85,87,90–95]. The models of Smolen et al. [85,87] introduce time delays in the expres-

sion of dclock and per genes, while other models do not have such delays. Numerical

simulations using ordinary differential equations (ODE) show that all these models

can produce circadian oscillations. In particular, times delays were found to be es-

sential for simulation of circadian oscillations with the model of Smolen et al. [85,87].

Since there is significant stochasticity in gene expression arising from fluctuations

in transcription and translation [19–21], it is desirable to simulate circadian oscilla-

tions in the presence of noise. Toward this end, several stochastic models were pro-

posed [77, 96–99], and Gillespie’s stochastic simulation algorithm (SSA) [32, 33] were

employed to simulate circadian oscillations. All these stochastic models [77, 96–99]

do not include time delays. In order to reflect the noise in gene expression, Smolen

et al. used two approximate stochastic simulation methods to simulate circadian os-

cillation based on their models with delays [85, 87]. However, their models lumped

transcription and translation into one single process and did not model the process

that dCLOCK binds to or dissociates with dclock and per genes to activate or in-

hibit transcription. Since transcription is a major source of intrinsic noise [20, 21],

the approximate stochastic simulation of Smolen et al. may underestimate the effect

of noise. Li and Lang [100] used similar approximate stochastic simulation methods

to simulate reduced model of Smolen et al. [87], but with an emphasis on the noise-

sustained oscillation in the region of parameter values where the deterministic model

predicted no oscillation. Currently, no exact stochastic simulation has been done for

circadian rhythm models with random delays, partially due to the fact that Gillespie’s

SSA cannot handle delays in certain reactions.

121

Recently, we developed an exact SSA algorithm for systems of chemical reactions

with delays [101]. The goal of this chapter is to apply this exact SSA to simulate

circadian oscillations in Drosophila using a model with time delays and to investigate

the effects of noise and random time delays on circadian oscillations. We first develop

two stochastic models with random delays for circadian oscillations in Drosophila

based on the two deterministic models of Smolen et al. [85, 87]. Using our exact

SSA, we then simulate free-running circadian oscillation under constant darkness.

Our simulations demonstrate that both models can produce sustained oscillations.

The variability in oscillation period is very small although the variability in oscil-

lation peaks is considerably large. In particular, although time delays are essential

to oscillation, random fluctuations in time delays do not cause significant changes in

oscillation period as long as the average delays are fixed. Our simulations also showed

that circadian oscillations of both models are robust to parameter variations. The

entrainment by light was also simulated for both models, yielding results consistent

with experimental observations. To see the effect of transcription noise, we also run

simulations with different values for the rate that dCLOCK binds or unbinds to per

and dclock genes.

7.2 Methods

7.2.1 The detailed model of circadian oscillation with time
delays

Model Description

We develop a stochastic model for the Drosophila circadian oscillator based on the

deterministic model of Smolen et al. [85], which is depicted in Figure 7.1. In Smolen’s

model, transcription of dclock gene is repressed by dCLOCK protein after a time delay

122

Figure 7.1: Schematic of the detailed model for circadian oscillators in Drosophila.

of τ1 [84,86]. dCLOCK activates the synthesis of PER protein with a time delay of τ2.

PER is then phosphorylated [102], and unphosphorylated and phosphorylated PER

can bind to dCLOCK thereby relieving dCLOCK’s repression of dclock transcription.

It was reported that PER undergos multiple and sequential phosphorylation [34], but

exact times of phosphorylation are unknown. Following Smolen et al [85], we assumed

that PER can be phosphorylated up to 10 times. Although the TIM gene also plays

an important role in circadian rhythm, Smolen et al. [85] used a single “lumped”

variable, PER, to represent both PER and TIM, since the time courses of PER and

TIM proteins are similar in shape and largely overlap. Smolen et al. [85] characterized

the circadian oscillator in Drosophila using 23 ordinary differential equations (ODE).

We first convert these 23 ODEs into 46 chemical reactions. Smolen et al. [85] lumped

transcription and translation of dclock and per into one single step. They did not

model the process that dCLOCK binds to and dissociates with dclock gene and per

gene. Since this binding and unbinding processes, transcription and translation are

major sources of intrinsic noise [8–10, 14], we model these processes explicitly. Our

stochastic model, containing 29 molecular species in Table 7.1, is featured with 54

123

reactions in Table 7.2 which include 44 reactions converted from Smolen’s ODE and

10 new reactions.

Table 7.1: Detailed stochastic model for the Drosophila circadian oscillator.

Rid Reaction Rate (h−1)
1 dclockg →dclockg + dclockm c1 = 17
2 dclockm →∅ c2 = 0.64
3 dclockm →dclockm c3 = 16

+ dCLOCK (delay τ1)
4 dCLOCK →∅ c4 = Vdc/(Kdc + [CLKtot])

∗

5 dclockg+dCLOCK→dclockg.dCLOCK c5 = 0.144
6 dclockg.dCLOCK→dclockg + dCLOCK c6 = 72
7 dCLOCK+perg→perg.dCLOCK c7 = 0.144
8 perg.dCLOCK→dCLOCK+perg c8 = 72
9 perg.dCLOCK→perg.dCLOCK+perm c9 = 20
10 perm →∅ c10 = 0.35
11 perm →perm + PER0 (delay τ2) c11 = 30.625
12∼21 PERi→PERi+1,i = 0, · · · , 9 c12 ∼ c21 = Vph/(Kph + [TOTunph])∗

22 PER10→∅ c22 = Vdp/(Kdp + [PER10])
∗

23∼33 dCLOCK+PERi→dCLOCK.PERi c23∼c33 = 0.06
34∼43 dCLOCK.PERi→dCLOCK.PERi+1, c34 ∼ c43 = c12

i = 0, · · · , 9
44∼53 dCLOCK.PERi→∅, i = 0, · · · , 9 c44 ∼ c53 = c4

54 dCLOCK.PER10→∅ c54 = c4

+Vdp/(Kdp + [dCLOCK.PER10])
∗

∗ See text for detailed descriptions.

Reaction 1 ∼ 4 represent transcription of dclock gene, degradation of dclock

mRNA, translation of dclock mRNA and degradation of dCLOCK protein, respec-

tively. Reaction 5 models the process that dCLOCK protein binds to dclock gene and

reaction 6 represents dissociation of dCLOCK with dclock. Reaction 7 and 8 specify

the event that dCLOCK binds to and dissociates with per gene. Reaction 9, 10 and

11 represent transcription of per gene after it is activated by dCLOCK, degradation

of per mRNA and translation of per mRNA, respectively. Reaction 12 ∼ 21 repre-

sent the phosphorylation of PER and reaction 22 represents the degradation of PER.

Reaction 23 ∼ 33 represent the association of dCLOCK with PER at different levels

124

Table 7.2: Molecular species

Species Description
dclockg dclock gene
dclockm dclock mRNA
dCLOCK dCLOCK protein
dclock.dCLOCK dclock gene bounded by dCLOCK protein
perg per gene
per.dCLOCK per gene bounded by dCLOCK protein
perm per mRNA
PERi,i = 0, · · · , 10 PER protein with i phosphorylations
dCLOCK.PERi,i = 0, · · · , 10 Complex of dCLOCK and PER

with i phosphorylations

of phosphorylation. Reaction 34 ∼ 43 describe the phosphorylation of dCLOCK and

PERi (i = 0, · · · , 9) heterodimer. Reaction 44 ∼ 54 represent the degradation of

dCLOCK and PERi(i = 0, · · · , 9) heterodimer.

Parameter Estimation

Each reaction is associated with a reaction probability rate constant, c, which

determines the probability that a specific reaction occurs in an infinitesimal time

interval. The probability rate constant c of a specific reaction can be calculated from

conventional rate constant k as follows: c = k for a monomolecular reaction, c = k/Ω

for a bimolecular reaction with two different reactants and c = 2k/Ω for a bimolecular

reaction with one reactant [46], where Ω = AV , and A = 6.022×1023 is the Avogadro

constant and V is the system volume. We assume that a lateral neuron in Drosophila

is a sphere of a radius around 6µm [87, 103], which results in a volume V = 8.3 ×

10−13 L. As many other existing models [85, 87, 104], we do not separate nuclear and

cytoplasmic compartments. We retain most parameter values from Smolen’s et al . [85]

including c4 and c12, · · · , c54. The remaining 10 parameters, c1, c2, c3 and c5, · · · , c11,

125

are determined in our simulation. In the following, we describe 54 reactions and how

each probability rate constant was determined.

We assume that there are two copies of dclock genes and thus the initial value for

the number of molecules of dclockg in Table 1 is 2. Since no experimental reports

are available for transcription rate c1, we choose c1 = 17 h−1, which is close to the

value used in a previous computational model [104]. The degradation rate of dclock

mRNA c2 is calculated as ln(2)/T1/2, where T1/2 is the half-life of dclock mRNA.

Hardin et al. [105] shows that mRNA of periodic genes in Drosophila has short

half-life, varying from order of minutes to tens of minutes. Lin et al. [106] shows

that Drosophila mRNAs vary considerably in half-life from tens of minutes to more

than 10 hours. Here we assume that the average half-life of dclock mRNA is 65

minutes, which is 1.08 h and thus c2 is 0.64 h−1. The synthesis rate of dCLOCK

protein was chosen to be vsc = 1.7 nM h−1 in the model of Smolen et al. [85], which

equivalently is 1.7 × 10−9 × Ω = 850 molecules per hour. In our model, the average

dCLOCK synthesis rate is c1c3/c2×2 molecules per hour since we assume the number

of molecules of dclockg in Table 1 is 2. Letting c1c3/c2 × 2 = 850, we get c3 = 16

h−1. Since transcription rate has a significant impact on the noise [20, 21], we tested

the sensitivity of simulation results to c1. Increasing or decreasing c1 two times while

fixing the ratio of c1c3/c2 only causes negligible change in the mean and standard

error (SE) of period and peaks (data not shown). The rate c4 is calculated as c4 =

Vdc/(Kdc + [CLKtot]) [85], where Vdc = 7.0 nM h−1, Kdc = 10 nM and [CLKtot] is the

concentration of total dCLOCK given by

[CLKtot]
△
=

10∑

i=0

[dCLOCK.PERi] + [dCLOCK] + [dclkg.dCLOCK] + [per.dCLOCK].

(7.1)

Here [·] represents the concentration of the species in the bracket. A time delay τ1

126

is included in reaction 3 accounting for time needed for transcription, translation

and other potential mechanism for activating the transcription of dclock. Smolen et

al. chose τ1 to be a deterministic number equal to 5 h [85]. Taking into account

uncertainty in this delay, we choose τ1 as a random variable uniformly distributed in

the interval [4h, 6h].

In reaction 5, dCLOCK binds to the E-box of dclock [84, 86], but there is no

experimental report on the values of c5 and the dissociation rate c6. However, the

dissociation rate of myogenin protein with the E-box of E12 gene was reported to

be 0.0205 s−1 [107]. Therefore, we choose c6 = 0.02 s−1=72 h−1. The equilibrium

constant k6/k5 of reaction 5 and 6 is equal to the Michaelis constant K2 in Ref. 12

that describes the regulation of dCLOCK synthesis by dCLOCK and was chosen to be

1 nM [85]. Using this equilibrium constant, we calculate c5 to be 0.144 h−1. Reaction

7 and 8 specify the event that dCLOCK binds to and dissociates with per gene. The

equilibrium constant k8/k7 of reaction 7 and 8 is equal to the Michaelis constant K1

in Ref. 12, which was 1 nM. This Michaelis constant reflects the regulation of PER

synthesis by dCLOCK. After choosing c8 = c6, c7 is calculated from the equilibrium

constant k8/k7 as c7 = k7/k8/Ω× c8 = 0.144 h −1.

The transcription rate of per gene c9 is chosen to be 20 h−1, and the degradation

rate of per mRNA c10 is calculated as c10 = 0.35 h−1 from the half-life of per mRNA

which was estimated to be 2 h [105,106]. Also, we assume that there are two copies of

per gene, and thus, the initial value for the number of molecules of perg in Table 1 is

2. The synthesis rate of PER protein was chosen to be vsp = 7 nM h−1 in the model

of Smolen et al. [85], which equivalently is 7× 10−9 × Ω = 3500 molecules per hour.

In our model, the average PER synthesis rate is c9c11/c10 × 2 molecules per hour.

127

Letting c9c11/c10 × 2 = 3500, we got c11 = 30.625 h−1. Similar to c1, we also tested

the sensitivity of simulation results to c9. Increasing or decreasing c9 two times while

fixing the ratio of c9c11/c10 only causes negligible change in the mean and standard

error (SE) of period and peaks (data not shown).

A delay τ2 is introduced in reaction 11. This time delay accounts for the time

needed for the transcription and translation of per gene. Smolen et al. [85] chose τ2

to be 8 hours. However, the total time needed for transcription and translation maybe

less than 8 hours [108] and also there may be some fluctuations in τ2. Therefore, we

chosen τ2 as a random variable with mean 6 h, uniformly distributed in [4.8h, 7.2h].

Reaction 12 ∼ 21 represent the phosphorylation of PER, whose probability rate

constants are all equal to Vph/(Kph +[TOTunph]) [85], where Vph = 32 nM h−1, Kph =

8 nM and [TOTunph] is the concentration of all forms of PER with less than 10

phosphorylations given by

[TOTunph]
△
=

9∑

i=0

([PERi] + [dCLOCK.PERi]). (7.2)

Reaction 22 represents the degradation of PER and c22 is equal to Vdp/(Kdp +

[PER10]), where Vdp = 22 nM h−1 and Kdp = 3 nM [85].

Reaction 23 ∼ 33 represent the association of dCLOCK with PER at different lev-

els of phosphorylation. The deterministic rate for all these reactions are 30 nM−1h−1

and thus the probability rate constants are ci = 0.06 h−1, i = 23, · · · , 33. Reac-

tion 34 ∼ 43 describe the phosphorylation of dCLOCK and PERi (i = 0, · · · , 9)

heterodimer and we have ci = c12, i = 34, · · · , 43 . Reaction 44 ∼ 54 repre-

sent the degradation of dCLOCK and PERi(i = 0, · · · , 9) heterodimer. We have

ci = c4, i = 44, · · · , 53 and c54 = c4 + Vdp/(Kdp + [dCLOCK.PER10]), where Vdp

and Kdp are given earlier.

128

7.2.2 The reduced model of circadian oscillation with time
delays

Model Description

Smolen et al. [87] also simplified their detailed model described earlier by removing

the phosphorylation of PER. This reduced model was characterized by 2 ODEs. We

first convert these 2 ODEs into 4 chemical reactions. Again, we explicitly model the

binding and unbinding of dCLOCK to dclock and per genes, as well as the transcrip-

tion and translation of dclock and per genes. Our reduced stochastic model consists of

9 molecular species and 14 reactions specified in Table 7.3. Comparing with reactions

in Table 7.1 and 7.3, we see that reduced model is obtained by removing reactions

related to phosphorylation of PER and phosphorylated PER. Similarly to the detailed

model, we retained most parameter values from Smolen et al [87], including c4 and

c12. The parameters not presented in Smolen’s reduced model are determined and

explained in the following subsection.

Table 7.3: Reduced stochastic model for the Drosophila circadian oscillator.

Rid Reaction Rate (h−1)
1 dclockg →dclockg + dclockm c1 = 10
2 dclockm →∅ c2 = 0.64
3 dclockm →dclockm + dCLOCK (delay τ1) c3 = 4
4 dCLOCK →∅ c4 = 0.5
5 dclockg+dCLOCK→dclockg.dCLOCK c5 = 1.44
6 dclockg.dCLOCK→dclockg + dCLOCK c6 = 72
7 dCLOCK+perg→perg.dCLOCK c7 = 0.48
8 perg.dCLOCK→dCLOCK+perg c8 = 72
9 perg.dCLOCK→perg.dCLOCK+perm c9 = 10
10 perm →∅ c10 = 0.35
11 perm →perm + PER (delay τ2) c11 = 4.375
12 PER→∅ c12 = 0.5
13 dCLOCK+ PER →dCLOCK.PER c13 = 0.06
14 dCLOCK.PER→∅ c14 = 1

129

Parameter Estimation

The rate c1 is chosen to be 10 h−1 which is slightly lower than that in the detailed

model. This is because the synthesis rate of dCLOCK protein in the reduced model

of Smolen et al. [87] was vsc = 0.25 nM h−1, which is smaller than vsc in the detailed

model. The rate c2 = 0.64 h−1 is the same as that in the detailed model. Letting

c1c3/c2 equal to vsc, we calculate c3 = 4 h−1. The rate c4 is the same as that in the

reduced model of Smolen et al. [87], equal to 0.5 h−1.

The unbinding rate of dCLOCK to dclock gene, c6, is chosen identical to that in the

detailed model. The equilibrium constant k6/k5, which is equal to the Michaelis con-

stant K2 in Ref. 14 that describes the regulation of dCLOCK synthesis by dCLOCK,

was chosen to be 0.1 nM [87]. Using this equilibrium constant, we calculate c5 to be

1.44 h−1. Similarly, c8 is the same as that in the detailed model. The equilibrium

constant k8/k7, which is equal to the Michaelis constant K1 in Ref. 14 that describes

the regulation of PER synthesis by the transcriptional activators dCLOCK, is chosen

to be 0.3 nM [87]. Then we calculate c7 to be 0.48 h−1.

The transcription rate of per gene c9 is chosen to be 10 h−1, which is lower than

that in the detailed model, because the synthesis rate of PER protein in the reduced

model of Smolen et al. [87] was vsp = 0.5 nM h−1 which is smaller than that in the

detailed model. The degradation rate of per mRNA is again c10 = 0.35 h−1. Letting

c9c11/c10 equal to vsp, we calculate c11 as c11 = 4.375 h−1. The degradation rate of

PER c12 is the same as that in the reduced model of Smolen et al. [87], equal to 0.5

h−1. The degradation rate of dCLOCK and PER complex is c13 = 0.06 h−1, identical

to that in the detailed model and we have c14 = c4 + c12.

Time delays τ1 and τ2 are chosen as follows. As the effective delay contributed by

PER phosphorylation is incorporated into τ1 and τ2, τ1 and τ2 should be longer than

130

those in the detailed model. Therefore we chose τ1 and τ2 uniformly distributed in

the time interval [5h 9h] and [7h 11h], respectively.

7.2.3 Stochastic simulation

Gillespie’s SSA [33] is often employed to simulate the stochastic dynamics of ge-

netic networks [21, 35]. However, Gillespie’s SSA cannot deal with delays in certain

reactions. Recently, we developed an exact SSA for systems of chemical reactions

with delays [101], which can handle both deterministic and random delays. We use

this exact SSA to simulate the dynamics of the systems described in Table 7.1 and

7.3.

7.2.4 Data analysis

Customized Matlab Software (Mathworks Inc.) was written to analyze data gen-

erated from stochastic simulations, e.g., to calculate the mean and SE of protein

levels, to identify the peaks of dCLOCK and PER during oscillation, and to calcu-

late the peak amplitudes. Oscillation periods were calculated using the short-time

Fourier transform (STFT) method [109]. Specifically, Fourier transform was applied

to protein levels of dCLOCK and PER within a time window of 70 hours, after the

mean level was subtracted. The largest peak at a non-zero frequency was identified

as the oscillation frequency within the time window and the period of the oscillation

is the inverse of the oscillation frequency. Note that the maximum period that can

be identified by the STFT is 35 hours since a time window of 70 hours was used.

131

7.3 Results

7.3.1 Simulation of oscillation in the presence of noise

0

50

100

150

0

500

1000

1500

2000

2500

M
o
le

c
u
le

 N
u
m

b
e
r

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140 160 180 200
0

5000

10000

15000

Time (h)

total PER

total dCLOCK

complex of dCLOCK.PER

free dCLOCK

dclock mRNA

per mRNA

Figure 7.2: One trajectory of dclock and per mRNA, free dCLOCK, total dCLOCK,
dCLOCK.PER complex and total PER for the detailed stochastic model in constant
darkness.

We first ran simulations using the detailed model. Figure 7.2 depicts one trajectory

of the number of molecules of dclock and per mRNA, free dCLOCK protein, the

total number of molecules of dCLOCK that includes dCLOCK, dclock.dCLOCK,

per.dCLOCK and dCLOCK.PERi, i = 0, · · · , 10, in Table 7.2, the total number of

molecules of dCLOCK.PER which includes dCLOCK.PERi, i = 0, · · · , 10, in Table

7.2, and the total number of PER protein that includes PERi and dCLOCK.PERi, i =

0, · · · , 10, in Table 7.2. We here simulated free-running rhythms in constant darkness.

Figure 7.2 clearly shows oscillations of the levels of mRNA and protein despite some

random fluctuations. It is seen that per and dclock oscillations are almost in antiphase

132

18 20 22 24 26 28 30
0

5

10

15

20

25

(A) Period (h)
F

re
q

u
e

n
c
y
 (

%
)

600 800 1000 1200 1400 1600 1800 2000 2200
0

5

10

(B) Peak level of free dCLOCK

F
re

q
u

e
n

c
y
 (

%
)

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
4

0

5

10

(C) Peak level of total PER

F
re

q
u

e
n

c
y
 (

%
)

Figure 7.3: The histogram of periods and peaks of free dCLOCK and total PER for
the detailed stochastic model in constant darkness.

with each other, which is consistent with the experiment observations [108,110,111].

It appears that there are more fluctuations in mRNA levels than the corresponding

protein levels. This is due to the fact that the number of mRNA molecules is much

lower than those of proteins. Even though the shape of free dCLOCK and total PER

looks smooth, the peaks of free dCLOCK and total PER vary significantly, due to the

transcription and translation noise. In the third panel of Figure 2, dCLOCK.PER

complex shows two peaks in one circadian cycle, because peaks of dCLOCK.PER are

determined by peaks of both free dCLOCK and PER. Whether such dynamics reflect

the level of dCLOCK.PER in real systems is still unknown experimentally [85].

We also simulated 100 runs to get the statistics of oscillation. Figure 7.3A depicts

the histogram of oscillation periods. It is seen that most periods are within the range

between 23 and 25 hours. Figure 7.3B and C show the histogram of the number of

molecules of free dCLOCK and total PER at oscillation peaks, respectively. As listed

133

Table 7.4: Statistics of oscillations for the detailed stochastic model

Mean SE CV
Period (h) 23.93 0.78 3.26%
Peak value of Total PER 10149 1530.1 15.08%
Peak value of free dCLOCK 1377.1 184.62 13.41%
Peak value of total dCLOCK 1437.1 156.24 10.87%
Peak-to-through Amplitude of total dCLOCK 1016.5 191.51 18.84%

in Table 7.4, the mean of the period is 23.93 hours, which is very close to 24 hours,

and the SE of the period is 0.78 hours. The coefficient of variation (CV, SE divided

by mean) is therefore 3.26%, which is very low. Since CV is a normalized measure of

dispersion of a probability distribution, a small CV for period implies that the periods

lie in a small interval around its mean value with a large probability. Table 7.4 also

contains the mean, SE and CV of the peak levels of free dCLOCK, total PER and

total dCLOCK, as well as the peak-to-through amplitude of total dCLOCK. Since the

through amplitude of free dCLOCK and PER is zero, their peak-to-through amplitude

is equal to their peak levels. It is seen that the CVs of the peak levels of free dCLOCK,

total PER and total dCLOCK are 13.41%, 15.08%, 10.87%, respectively, and that the

CV of the peak-to-through amplitude of total dCLOCK is 18.84%. Taken together,

we see that the oscillation period is very robust in the presence of intrinsic noise,

although there are significant fluctuations in oscillation peaks.

We now discuss simulation results from the reduced model. Figure 7.4 shows one

trajectory of dclock and per mRNA, free dCLOCK, total dCLOCK, dCLOCK.PER

and total PER. Again, consistent with the experiment observations, per and dclock os-

cillate in antiphase. Compared with the trajectories produced by the detailed model,

the trajectories here appear to have more random fluctuations, which is due to the

fact that the number of molecules of each species in the reduced model is much

134

0

20

40
dclock mRNA

per mRNA

0

100

200

300

M
o
le

c
u
le

 N
u
m

b
e
r

free dCLOCK

0

100

200

300
total dCLOCK

complex of dCLOCK.PER

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

Time (h)

total PER

Figure 7.4: One trajectory of dclock and per mRNA, free dCLOCK, total dCLOCK,
dCLOCK.PER complex and total PER for the reduced stochastic model in constant
darkness.

smaller than those of the detailed model. The histograms of periods and peaks of

free dCLOCK and total PER peak obtained from 100 simulation runs are depicted in

Figure 7.5. Table 7.5 lists the mean, SE and CV of the period, peaks of total PER,

free dCLOCK, and total dCLOCK, as well as the peak-to-through amplitude of total

dCLOCK. It is seen that the CV of period is almost the same as that of the detailed

model, but the CVs of peaks and peak-to-through amplitude are slightly larger than

those of the detailed model. Therefore, both the detailed and reduced models can

produce robust oscillation period in the presence of intrinsic noise despite significant

fluctuations in oscillation peaks. Note that levels of dCLOCK and PER are very

different in two models. Therefore, our simulation results for two models demon-

strate that oscillation is robust across a wide range of molecular levels or under quite

different levels of intrinsic noise.

135

18 20 22 24 26 28 30
0

5

10

15

20

(A) Period (h)
F

re
q
u
e
n
c
y
 (

%
)

50 100 150 200 250 300 350
0

5

10

(B) Peak level of free dCLOCK

F
re

q
u
e
n
c
y
 (

%
)

50 100 150 200 250 300 350
0

5

10

(C) Peak level of total PER

F
re

q
u
e
n
c
y
 (

%
)

Figure 7.5: The histogram of periods and peaks of free dCLOCK and total PER for
the reduced stochastic model under constant darkness.

We investigate the effect of the random time delays with fixed average time delays.

Since both detailed and reduced models produced similar results, we here only present

results for detailed model. Note that time delays τ1 and τ2 in our simulations are

random variables uniformly distributed in [τmin, τmax], where the standard value of

τmin = 0.8τmean and standard value of τmax = 1.2τmean, with τmean denoting the

average time delay. To test the sensitivity of the range of random delays, we run

Table 7.5: Statistics of oscillations for the reduced stochastic model

Mean SE CV
Period (h) 23.60 0.80 3.39%
Peak value of Total PER 196.47 40.49 20.61%
Peak value of free dCLOCK 183.09 35.49 19.38%
Peak value of total dCLOCK 201.51 31.05 15.41%
Peak-to-through Amplitude of total dCLOCK 172.47 36.10 20.93%

136

more simulations using different τmin and τmax but with a fixed τmean. Specifically,

when we fix τmean to be 5 h and 6 h for τ1 and τ2, respectively, if τ1 and τ2 are

uniformly distributed in [0.7τmean, 1.3τmean], the mean period is 23.89 h and the SE is

0.76 h; if τ1 and τ2 are uniformly distributed in [0.6τmean, 1.4τmean], the mean period

is 23.81 h and the SE is 0.79 h. In both cases, the mean period and SE are very close

to the results from standard value of τ1 and τ2. Therefore, our simulations show that

the random changes in the delays do not cause significant variations in the oscillation

period as long as the average delays are fixed.

Smolen et al. [85, 87] also investigated the effects of noise using stochastic sim-

ulation. There are three major differences between our stochastic simulation and

that of Smolen et al.: 1) we employed exact SSA, whereas they used approximate

SSAs, 2) two delays critical to circadian oscillation are random in our simulation but

deterministic in the simulation of Smolen et al., and 3) we explicitly simulated the

transcription process and the binding/unbinding events between dCOLCK and per

and dclock promoters, whereas Smolen et al. lumped transcription and translation

of dclock and per into a one-step process.

To convert concentration into number of molecules, we used the volume of typical

lateral neuron cells, whereas Smolen et al. determined a scale factor by trial. For

the detailed model, this resulted in different scale factors and protein levels in our

simulation as shown in Figure 2 are approximate 10 times of those in the simulation

of Smolen et al. as depicted in Figure 3 of Ref. 12. To make fair comparison, we ran

simulations using the same scale factor as Smolen et al. [85]. Our simulation results

showed that the mean peak values of PER, free dCLOCK and total dCLOCK are

1205, 176 and 183, respectively, which are comparable to the results of Smolen et

al. [85]. The mean period in our simulation is 24 h and the CV of periods is 3.33%.

137

These results are also comparable to the results of Smolen et al.: a mean period of

23.5 h and a CV of 5%. The CVs of the peaks of PER, free dCLOCK and dCLOCK in

our simulation are 15.47%, 15.20% and 12.26%, respectively, which are greater than

the CV of PER (9%) in the simulation of Smolen et al. [85]. For the reduced model,

it turns out that protein levels in our simulation are similar to those in the simulation

of Smolen et al. [87]. The CV of periods in our simulation (3.39%) is slightly smaller

than that obtained in simulation of Smolen et al. (4.78%). Since no result about the

CV of peak protein levels was reported by Smolen et al., we cannot compare the CV

of peak protein levels.

In summary, although the noise in our models may be stronger than that in the

models of Smolen et al. due to the random delays, transcription process, and random

activation and repression of the promoters of per and dclock, the CV of periods in our

simulation is slightly smaller than that in the simulation of Smolen et al. [87]. This

result indicates that approximate simulation may have yielded non-negligible errors.

It is difficult to evaluate the effect of such possible errors in the approximate method

of Smolen et al. [87], but our simulation method is exact and can correctly capture

the stochastic dynamics of the circadian rhythm. It seems that strong noise in our

model is reflected in the peak protein levels because the CVs of peak protein levels in

our detailed model are larger than those in the detailed model of Smolen et al. [85].

7.3.2 Robustness test in the presence of noise

In living cells, biochemical parameters often vary significantly from cell to cell

due to stochastic effects, even if the cells are genetically identical [112]. But circadian

oscillations with close period are still withstood in Drosophila or mammals. There-

fore, a model of circadian rhythm should be robust in the sense that small parameter

138

variations should not lead to large period variations. For the deterministic models,

Smolen et al. [85, 87] have shown that circadian rhythm is robust when a parameter

changes its value by 15% ∼ 20%. Here, we test if circadian rhythm is robust with

respect to parameter changes in the presence of intrinsic noise. To test robustness,

each parameter is decreased or increased by 20% from the standard value, with all

other parameters fixed at the standard values, and then the mean and SE of oscilla-

tion periods and peaks are determined from simulation results. Since τ1 and τ2 are

random variables, we decrease or increase their mean values by 20%.

−0.1 −0.05 0 0.05 0.1 0.15

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(A) Period

fr
e

e
 d

C
L

O
C

K
 P

e
a

k
s

−0.1 −0.05 0 0.05 0.1 0.15

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(B) Period

to
ta

l
P

E
R

 P
e

a
k
s

Reduced Model

Detailed Model

Reduced Model

Detailed Model

Figure 7.6: Relative change of the mean values of periods and peaks of free dCLOCK
(left) and total PER (right) after the value of one parameter increases or decreases
by 20% of the standard value while other parameters are fixed. The relative change
of the period is defined as (T1-T0)/T0, where T0 is the mean of the period for the
standard value of the parameter and T1 is for the new value of the parameter. The
relative change of the peaks is defined similarly.

We first tested the robustness of oscillations for the detailed model. There are 17

different probability rate constants and 2 time delays. Therefore, 39 set of simulations

139

including the set with standard parameter values were run. Figure 7.6 plots the

relative change of the mean values of periods and peaks between the results obtained

using standard parameters and those obtained using a changed parameter. It is seen

that most changes in the period are in the interval [-0.05, 0.05] and that the changes

in peaks are relatively large. Figure 7.7 plots the CV of the period and peaks for all

parameter sets. It is seen that CV of the periods are very small, in the interval [0.02,

0.05]. When we changed each individual parameter by 20% of its standard value, the

mean of the period was never changed more than 11%. The period is most sensitive

to τ2, the time delay needed for per translation. When the mean value of τ2 was

decreased (increased) by 20% of its standard value, the mean period was decreased

(increased) by 10.66% (10.78%) and the CV of the period was 3.23% (3.32%), which

is almost the same as the CV for the standard parameters. The peak of the free

dCLOCK is most sensitive to c3, the probability rate constant of translation of dclock

mRNA to dCLOCK protein. Decreasing (increasing) c3 by 20% decreased (increased)

the mean peak of free dCLOCK by 23.54% (25.44%), and the corresponding CV was

13.04% (14.14%). The peak of the total PER is most sensitive to c11, the probability

constant rate of translation of per mRNA to PER protein. Decreasing (increasing)

c11 by 20% decreased (increased) the mean peak of total PER by 28.12% (25.45%),

and the corresponding CV was 15.37% (14.28%). Therefore, the system appears to

have small variation in the period but relatively large variation in the peaks when a

parameter changes. This is very reasonable from the biological point of view since

circadian rhythm is endogenous, which requires very small variation in the period

even when some parameters are changed due to the change of external cues. The

140

relatively large variation in the peaks is due to the stochastic fluctuation of gene

transcription and translation.

0.02 0.03 0.04 0.05
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

(A) CV of Period

C
V

 o
f

fr
e

e
 d

C
L

O
C

K

0.02 0.03 0.04 0.05
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

(B) CV of Period

C
V

 o
f

to
ta

l
P

E
R

Reduced Model

Detailed Model

Reduced Model

Detailed Model

Figure 7.7: CVs of periods and peaks of free dCLOCK (left) and total PER (right)
after the value of one parameter increases or decreases by 20% of the standard value
while other parameters are fixed. CVs of periods and peaks of free dCLOCK and
total PER for the standard parameter set are also shown as � for reduced model and
△ for detailed model.

We also tested the robustness of oscillation for the reduced model. The reduced

model has 14 probability rate constants and 2 time delays. Therefore, 33 sets of

simulations were run including the set with standard parameter values. Figure 7.6

plots relative change of the mean value of the period and peaks for the parameter sets

with one changed parameter comparing with the standard parameter set and Figure

7.7 plots the CV of the period and peaks for all parameter sets. It is seen that the

change is small in period but relatively large in peaks when a parameter changes. It is

also seen that CV of the periods are very small for both models, in the interval [0.02,

0.05]. Therefore, the system is very robust to the parameter variation in oscillation

141

period. Note that the CV of the peaks of the reduced model is larger than that of

the detailed model. This is due to the fact that the reduced model has lower number

of molecules in the system so that there is larger internal noise.

As in the detailed model, the period, the peak of the free dCLOCK and the peak

of the total PER in the reduced model are most sensitive to τ2, c3 and c11, respec-

tively. Specifically, decreasing (increasing) the mean value of τ2 by 20% decreased

(increased) the mean period by 8.01% (8.81%) and the corresponding CV was 3.42%

(3.36%). Decreasing (increasing) c3 by 20% decreased (increased) the mean peak of

free dCLOCK by 19.76% (22.69%) and the corresponding CV was 20.60% (17.85%).

Decreasing (increasing) c11 by 20% decreased (increased) the mean peak of total PER

by 21.31% (23.36%) and the corresponding CV was 21.49% (20.10%). Comparing the

results of two models, it appears that both models have small changes in the mean

period and relatively large changes in the mean peaks and that the reduced model

has slightly larger CVs.

7.3.3 Light entrainment of oscillation in the presence of noise

Models of circadian rhythms must be able to maintain synchrony with environmen-

tal cycles to drive behavioral, physiological and metabolic outputs at appropriate time

of day [80]. Circadian rhythms can be entrained by external cues, such as daily envi-

ronmental cycles of light, temperature, etc. But light is generally considered as the

strongest and most pervasive factor. Therefore, the responses of the rhythm are often

simulated by light pulses or light/dark (L/D) cycles [85,91,113–115]. We first consider

the detailed model. In Drosophila, light induces to enhance the degradation of phos-

phorylated TIM [85,116,117]. Since there is no separate variable for TIM in our model,

the degradation of phosphorylated PER was induced to simulate the effect of light,

142

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

n
u

m
b

e
r

o
f

m
R

N
A

 m
o

le
c
u

le
s

dclock mRNA

per mRNA

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

Time (h)

n
u

m
b

e
r

o
f

p
ro

te
in

 m
o

le
c
u

le
s

free dCLOCK

total dCLOCK

Figure 7.8: One trajectory of dclock and per mRNA, free dCLOCK and total
dCLOCK protein for the detailed stochastic model with light response under L/D
cycle.

as done by Smolen et al [85]. Here the phosphorylated PER includes all unbounded

and bounded PERs (PER1 ∼ PER10 and dCLOCK.PER1 ∼ dCLOCK.PER10). The

dCLOCK is released after the PER complex with dCLOCK is degraded by light and

the degradation rate of all phosphorylated PER is 0.9 h−1 [85]. In addition, to keep

the oscillation period, the maximum degradation rate of dCLOCK, Vdc, was reduced

to 1.5 nM h−1 [85] and the probability rate constants c4 and ci, i = 44, · · · , 54 in our

stochastic model were reduced correspondingly.

Figures 7.8 and 7.9 plot one trajectory of dclock mRNA, per mRNA, free dCLOCK,

total dCLOCK and total PER, which demonstrates the entrainment of simulated cir-

cadian oscillations under the L/D cycle. The L/D cycle uses 12 hours light first

and then 12 hours dark every 24 hours. It is seen that the peak of free dCLOCK

is enhanced under new condition. Figure 7.9 also shows that the shape of the time

143

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

4

Time (h)

m
o

le
c
u

le
 n

u
m

b
e

r
o

f
to

ta
l
P

E
R

Figure 7.9: One trajectory of total PER protein for the detailed stochastic model
with light response under L/D cycle.

trajectory of total PER under L/D circle differs significantly from that of the con-

stant darkness as shown in Figure 7.2. The number of molecules of total PER drops

off much more quickly when switching from dark to light than that in Figure 7.2,

which is consistent with the experimental results [86, 88] and Smolen’s simulation

results [85]. Moreover, the mean and CV of oscillation period obtained from 100 runs

of simulation under the L/D cycle are 24.03 h and 3.0%, respectively. The mean and

CV of peak values of free dCLOCK are 4329.5 and 18.30%, respectively. The mean

and CV of peak value of total PER are 17785 and 13.47%, respectively. Therefore,

the model not only runs well under the L/D cycle, but also shows stable period but

with considerable fluctuations in oscillation peaks.

L/D cycle was also applied to the reduced model to test the light entrainment.

Since the light exposure was simulated by enhancing PER degradation [87], the prob-

144

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Time (h)

to
ta

l
P

E
R

Figure 7.10: One trajectory of total PER protein for the reduced stochastic model
with light response under L/D cycle.

ability rate constants for the degradation of unbounded PER and bounded PER, c12

and c14, both are increased by 4.5 h−1 [87]. Figure 7.10 shows one trajectory of total

PER under L/D circle. Observations similar to those for the detailed model were

seen: the number of molecules of total PER falls more quickly between dark-to-light

switch than that under constant darkness; the oscillation appears to have a stable

period but significant fluctuations in peak values of total PER as well as the peaks

of free and total dCLOCK proteins (data not shown).

7.3.4 Impact of transcription activation rate

As we mentioned earlier, the rate that dCLOCK binds to per and dclock genes is

unknown but was estimated in our simulation. The rate that dCLOCK dissociates

with per and dclock genes is chosen to be equal to the experimentally reported dis-

145

0

500

1000

1500

2000

fr
e
e
 d

C
L
O

C
K

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time (h)

to
ta

l
P

E
R

c8=144

c8=72

c8=7.2

c8=144

c8=72

c8=7.2

Figure 7.11: One trajectory of free dCLOCK and total PER protein for the detailed
stochastic model with c8 = 144 h−1, 72 h−1 and 7.2 h−1.

sociation rate of myogenin protein with the E-box of E12 gene. In a deterministic

model, these rates generally do not affect oscillation as long as their ratio is fixed.

However, these rates may have significant effects on transcription noise even when

their ratio is fixed [20,21,118]. In the following, we change the value of c8 while keep

the ratio c8/c7 fixed to see whether the oscillation period changes. Since both detailed

model and reduced models yield similar results, we only give results for the detailed

model.

The standard value of c8, chosen from experimental result, was 72 h−1 as described

earlier and we ran simulations using two other values for c8: 144 h−1 and 7.2 h−1. We

found that if we further increase c8 beyond 144 h−1, it would not affect simulation

results. Therefore, we only compare the simulation results under these three values.

Figure 7.11 shows one trajectory of free dCLOCK and total PER under three different

values of c8. It is seen that the period of oscillations for the higher unbinding rate is

146

slightly smaller than that for the lower unbinding rate. The mean values of the period

obtained from 100 runs of simulation for c8 = 144, 72, 7.2 h−1 were 23.84, 23.93 and

24.21 h, respectively, and the correspondingly CVs are 2.89%, 3.26%, 3.30%. The

mean peaks of free dCLOCK, total dCLOCK and total PER for three values of c8, as

well as the corresponding CVs, are almost the same since the ratio of c8/c7 is fixed.

Therefore, under the three values tested, the rates that dCLOCK binds/unbinds to

per and dclock genes do not have significant effect on oscillations as long as their ratio

is fixed. However, if we further decrease the binding/unbinding rates by a factor of 100

and 1000, the mean of oscillation period changes to 26.70 h and 37.40 h, respectively.

Note that this is consistent with the results of Forger and Peskin [118], as well as

Gonze et al. [96], where oscillation period is changed significantly [118] or oscillations

become irregular [96], when the binding and unbinding rates are decreased by at

least two orders of magnitude. Since the rate change by a factor of 10 is significant,

the oscillation period is relatively robust to the binding/unbinding rate within a

reasonable range around the experimental reported rate.

7.4 Discussion

We have presented a detailed and a reduced stochastic model for delay-induced

circadian rhythm in Drosophila based on the deterministic models of Smolen et al.

[85, 87], and employed our recently developed exact stochastic simulation algorithm

[101] to simulate the circadian rhythm. This work is unique since no exact stochastic

simulation has been carried out for circadian rhythms based on a model with random

time delays. As discussed in [101], several SSAs have been developed for reaction

systems with delays [119, 120]. However, the algorithm in [119] and two algorithms

147

in [120] are not exact. Ref. 33 also proved that another heuristic algorithm in [120]

is exact but requires more computation than the exact SSA in [101]. Since both

algorithms are exact, they should produce the same statistical results. Another SSA

for systems with delays was proposed in [121], but an approach similar to that in [119]

was used, and thus, it is not exact either. Smolen et al. [85,87], as well as Li and Lang

[100], also simulated delay-induced circadian oscillation, but they used approximate

stochastic simulation methods.

Our simulation results demonstrated that the intrinsic noise cause large fluctu-

ations in oscillation peaks but very small fluctuations in oscillation period. This

observation is seen in all simulations under different conditions, such as constant

darkness and L/D cycles. Deterministic simulation cannot reveal this phenomena,

since both period and peaks are constant. Our stochastic simulations also showed

that circadian oscillation is robust in the presence of noise in the sense that noise has

little effect on oscillation period although it can change oscillation peaks significantly.

We also showed that random delays within certain range do not cause significant

variations in the oscillation period as long as the average delays are fixed. To best

of our knowledge, these two results have not been observed in previous stochastic

simulation of circadian rhythms. These two observations imply that circadian oscil-

lation is robust in the presence of noise and random delays and that the randomness

inherent to the oscillation circuit may not have much biological impact on the organ-

ism. As discussed in [112], when a protein regulates its targets, it often operates on

a Hill curve. Once the level of the regulating protein is higher or lower than certain

value, the protein operates at the top or bottom of the curve and the fluctuation of

its level to certain extend does not affect much the regulating effect on its targets.

148

Therefore, the relatively large variations in the peak values of PER and dCLOCK

proteins observed in our simulation may not have a strong biological impact.

Similar to previous deterministic simulations and approximate stochastic simula-

tions [85,87], our stochastic simulation show that both detailed and reduced stochastic

models can provide sustained oscillations under darkness and L/D cycles. Our results

also show right phase of all the components in the system, correct phase and anti-

phase relationship of mRNAs and proteins, and also the appropriate lags between

mRNAs and proteins. Our stochastic simulation further demonstrated that circadian

rhythm is robust to parameter variations in the presence of noise. Increasing or de-

creasing each parameter by 20% of its standard value changes the mean period by less

than 11% and causes negligible changes in the CV of oscillation periods. The model

is not sensitive to the time delay during the dclock mRNA translation, but it is most

sensitive to the average time delay during per mRNA translation, which shows that

time delay is essential to circadian oscillation in the two models. However, random

fluctuations in these two time delays have little effect on the oscillation period as long

as the average delays are fixed. We also found that the binding and unbinding rates

of dCLOCK to dclock and per genes within a reasonable range have little impact on

the circadian oscillation. Increasing or decreasing the binding and unbinding rates by

10 times relative to an experimentally reported rate while keeping their ratio fixed

does not cause significant changes in the period and peaks of oscillation.

We have compared our exact simulations with approximate simulations of Smolen

et al. [85, 87] in Section 7.3.1. Another work by Li and Lang [100] also employed

approximate SSAs to simulate the reduced model of Smolen et al. [87]. Like Smolen

et al. [85, 87], Li and Lang [100] used deterministic delays, whereas we employed

random delays which are more appropriate to reflect the delays in transcription,

149

translation and other chemical process. Li and Lang emphasized on the noise induced

oscillation and showed that noise can sustain oscillation in the parameter region where

no oscillation is predicted by the deterministic model, whereas we here focused on the

robustness of oscillation in the presence of intrinsic noise and the effect of random

delays. We showed that the oscillation is robust in the presence of noise since there

is very little variability in oscillation period in spite of large random variability in

peaks, and that random changes in delays within a large interval around the fixed

average delay cause little variability in the oscillation period.

CHAPTER 8

Summary and Future Work

8.1 Summary

In this thesis, we first reviewed existing stochastic simulation algorithms including

the exact SSA and several approximate SSAs, and then developed several novel SSAs

including the K-leap method, the hybrid τ/K-leap method, the modified K-leap

method, the unbiased τ -leap method, the iwNRM and the iwSSA, to increase simu-

lation speed and reduce simulation errors. We also proposed two stochastic models

for the circadian rhythm of Drosophila and simulated the dynamics of the circadian

system.

The K-leap method constrained the total number of reactions occurring during

each leap step, therefore, it can better satisfy the leap condition and improve sim-

ulation accuracy. Moreover, since our K-leap method becomes the exact SSA when

K = 1, it can naturally fold back to the exact SSA, if leaping is inappropriate due to

the sensitivity of the propensity functions to population changes. In certain biochem-

ical systems and gene networks there often have some reactions involving in a small

number of molecules and other reactions involving in a large number of molecules.

To efficiently deal with such cases, we developed a hybrid τ/K-leap method and

150

151

a modified K-leap method to accelerate simulation speed without losing simulation

accuracy.

We analyzed the bias of the results yielded from all existing τ -leap methods.

To remove such bias, we developed several unbiased τ -leap methods including un-

biased Poisson τ -leap method, unbiased binomial τ -leap mehtod and unbiased Pois-

son/Gaussian/Binomial τ -leap method. These unbiased leap methods incorporate

a semi-analytical method for calculating the mean and variance of the number of

reactions occuring in a specific time period into simualtion. Therefore, they can

significantly improve simulation accuracy.

One difficult problem in stochastic simulation of chemical reacting system is to

estimate the probability of rare events that occur with an extremely low probability

within a specific time period. To deal with rare events, we applied the importance

sampling technique to the next reaction method of the SSA and developed the wNRM

which is more efficient than the wSSA and the rwSSA. We also introduced a system-

atic method for selecting importance sampling parameters. Incorporated this method

into the wSSA and the wNRM, we got the iwSSA and he iwNRM. Simulation results

showed that comparing with the rwSSA, our iwNRM and iwSSA could substantially

reduce the variance of the estimated probability of the rare event and speed up sim-

ulation for a given number of simulation runs.

As an application of stochastic simulation, we developed two stochastic models for

circadian clock in Drosophila and then used stochastic simulation to investigate the

dynamic of the circadian rhythm. Our simulation results showed that in the presence

of intrinsic noise, the period of circadian oscillation is highly robust although the

oscillation peaks undergo significant random fluctuations. Moreover although average

time delays are essential to simulation of oscillation, random changes in time delays

152

within certain range around fixed average time delay cause little variability in the

oscillation period. We also found that circadian oscillation is robust to the changes

in model parameters, and that oscillation can be entrained by light/dark circles.

8.2 Future Work

Although we have made a good progress in the development of efficient stochastic

simulation algorithms and in the application of these algorithms in modeling and

simulating gene networks, there are several research topics that worth further inves-

tigation, as listed in the following.

8.2.1 Unbiased K-Leap Method for Stochastic Simulation of

Chemically Reacting Systems

In Chapter 3, we have developed the K-leap method that constrains the total

number of reactions occuring during each leap step so that it can better satisfy the

leap condition and improve simulation accuracy. In Chapter 5, we have proposed an

unbiased τ -leap method, which significantly improves accuracy of the τ -leap. Since

current K-leap method is also biased, if the true mean of K1, · · · , KM in each leap

based on CME can be found, then we can also develop an unbiased K-leap method

to further improve the performance of the K-leap method.

We expect that we can derive an ODE for the mean value of K1, · · · , KM under

the constraint
∑M

m=1 Km = K, using an approach similar to that used in deriving

(5.10). Once we get these mean values by solving the ODE, we can use them in the

K-leap method to remove the bias. We expect that the unbiased K-leap method can

outperform the K-leap method and the unbiased τ -leap method.

153

8.2.2 Error Control and CME-based Leap Method

Several issues related to leap method worth further investigation. The first issue

is error control in leap methods. The parameter, ǫ, in the leap condition is critical

to the control of simulation errors and speed. However, the quantitative relationship

between ǫ and simulation errors needs to be elucidated. If we can quantify such

relationship, we will be able to develop better leap methods. The second issue is

to explore the CME to improve simulation speed and accuracy. Existing stochastic

simulation algorithms were developed based on the fundamental premise of stochastic

kinetics, but not the CME. Since the CME precisely describes the time evolution of

the system, it is expected that we can develop better SSAs if information from the

CME can be explored. Therefore, perhaps we can combine the analytical form of

CME and numerical simulation into a unified framework. If this is successful, we

expect to develop extremely efficient and accurate SSAs.

8.2.3 Circadian Rhythm and Computational Modeling

Circadian rhythms are based on a molecular mechanism regulated at the tran-

scriptional, translational and post-translational levels [122]. In Chapter 7, we have

developed two stochastic models and apply stochastic simulation with delays to inves-

tigated the circadian rhythms in Drosophila. Our stochastic models were developed

from Smolen’s deterministic models [85, 87], which used a single ”lumped” variable,

PER, to represent both PER and TIM proteins, since the time courses of PER and

TIM proteins are similar in shape and largely overlap. As the TIM gene also plays

an important role in circadian rhythm, a stochastic model that includes both PER

and TIM may worth further study.

154

Stochastic modeling not only has become a powerful and useful tool in investi-

gating the regulatory mechanism of circadian rhythm, but also can provide testable

predictions or reveal unexpected results. We have only considered the circadian sys-

tem of Drosophila, the circadian rhythm of other living organisms also worth inves-

tigation using the stochastic modeling and simulation techniques developed in this

thesis.

APPENDIX A

Derivation of Equation (3.1) and (3.2)

We can write the joint PDF p(K1, · · · , KM , τ |∑M
m=1 Km = K) as

p(K1, · · · , KM , τ |
M∑

m=1

Km = K) = p(τ |
M∑

m=1

Km = K)p(K1, · · · , KM |τ,
M∑

m=1

Km = K).

(A.1)

Since K reactions occur in the interval [t, t + τ], and occurrence of each reaction is

an independent event, we have τ =
∑K

k=1 τk, where τk, k = 1, · · · , K, are the time

between two consecutive occurrences of a reaction, and are independent random vari-

able following an exponential PDF with parameter a0(x). As proved by Gillespie [38],

the sum of K independent, and identically distributed exponential random variables

is a Gamma random variable. Hence, we obtain the PDF p(τ |∑M
m=1 Km = K) in

(3.1).

We can express p(K1, · · · , KM |τ,
∑M

m=1 Km = K) in (A.1) as

p(K1, · · · , KM |τ,
M∑

m=1

Km = K) =p(K1|τ,
M∑

m=1

Km = K)

×
M∏

m=2

p(Km|K1, · · · , Km−1, τ,

M∑

j=1

Kj = K).

(A.2)

We can write p(K1|τ,
∑M

m=1 Km = K) in (A.2) as

p(K1|τ,
M∑

m=1

Km = K) =
p(K1,

∑M
m=1 Km = K|τ)

p(
∑M

m=1 Km = K|τ)

=
p(K1|τ)p(

∑M
m=1 Km = K|τ, K1)

p(
∑M

m=1 Km = K|τ)

(A.3)

155

156

Let us define ãm
△
=

∑M
j=m aj(x). Notice that ã1 = a0(x). The PDF p(K1|τ) is a

Poisson PDF with mean a1(x)τ , and p(
∑M

j=m Kj|τ) is a Poisson PDF with mean

ãmτ . Therefore, Eq. (A.3) becomes

p(K1 = k1|τ,
M∑

m=1

Km = K) =

a
k1
1 ã

K−k1
2

k1!(K−k1)!
K!
ãK
1

, k1 = 0, · · · , K

0 otherwise.

(A.4)

Given Kj = kj, j = 1, · · · , m, let us define K̃m
△
= K −∑m−1

j=1 kj . Similar to (A.3), we

have

p(Km|K1, · · · , Km−1, τ,
M∑

j=1

Kj = K) = p(Km|τ,
M∑

j=m

Kj = K̃m)

=
p(Km|τ)p(

∑M
j=m Kj = K̃m|τ, Km)

p(
∑M

j=m Kj = K̃m|τ)
,

(A.5)

for m ≥ 2. When m = M , it is clear from (A.5) that we have

p(KM = kM |K1, · · · , KM−1, τ,

M∑

j=1

Kj = K) =

1, kM = K̃M

0 otherwise

(A.6)

When 2 ≤ m < M , similar to deriving (A.4), we can obtain the following from (A.5)

p(Km = km|K1, · · · , Km−1, τ,

M∑

j=1

Kj = K) =

akm
m ãK̃m−km

m+1

km!(K̃m−km)!
K̃m!

ãK̃m
m

, km = 0, · · · , K̃m

0 otherwise

(A.7)

Substituting (A.4), (A.6), and (A.7) into (A.2), we obtain p(K1, · · · , KM |τ,
∑M

m=1 Km =

K) as given at the right hand side of (3.2). Since p(K1, · · · , KM |τ,
∑M

m=1 Km = K)

does not depend on τ , we write it as p(K1, · · · , KM |
∑M

m=1 Km = K) in (3.2). Notice

that p(τ |∑M
m=1 Km = K) is independent of Km, m = 1, · · · , M . Therefore, given the

constraint
∑M

m=1 Km = K, τ is independent of Km, m = 1, · · · , M .

APPENDIX B

Derivation of Equation (4.1)

We define a random variable K ′
c =

∑
m∈Rc

Km, then p({Km, m ∈ Rc}|
∑

m∈Rc
Km <

Kc, τ) can be written as

p({Km, m ∈ Rc}|
∑

m∈Rc

Km < Kc, τ) = p({Km, m ∈ Rc}|K ′
c < Kc, τ). (B.1)

Due to the definition of K ′
c, K ′

c is dependent on {Km, m ∈ Rc}, and thus we can

express (B.1) as

p({Km, m ∈ Rc}|
∑

m∈Rc

Km < Kc, τ) = p({Km, m ∈ Rc}, K ′
c|K ′

c < Kc, τ), (B.2)

which can be further written as

p({Km, m ∈ Rc}|
∑

m∈Rc

Km < Kc, τ) = p(K ′
c|K ′

c < Kc, τ)p({Km, m ∈ Rc}|K ′
c, K

′
c < Kc, τ).

(B.3)

Given K ′
c, the condition K ′

c < Kc is redundant, because if we generate K ′
c according

to the PDF p(K ′
c|K ′

c < Kc, τ), we always have K ′
c < Kc. Considering this fact and

the definition of K ′
c, we can write the second term at the right hand side of (B.3) as

p({Km, m ∈ Rc}|K ′
c, K

′
c < Kc, τ) = p({Km, m ∈ Rc}|

∑

m∈Rc

Km = K ′
c, τ). (B.4)

Combining (B.3) and (B.4), we obtain p({Km, m ∈ Rc}|
∑

m∈Rc
Km < Kc, τ) given

in (4.1).

157

158

Notice that the PDF p(K ′
c|τ) follows a Poisson distribution. Therefore, p(K ′

c|K ′
c <

Kf , τ) is a truncated Poisson distribution, and it is given as follows:

p
(
K ′

c|K ′
c < Kc, τ

)
=

p(K ′

c|τ)
p(K ′

c<Kc|τ)
, K ′

c = 0, · · · , Kc − 1

0, otherwise,

=

exp[−ac
0(x)τ](ac

0(x)τ)K′

c/K ′

c!
PKc−1

j=0
(exp(−ac

0(x)τ)(ac
0(x)τ)j/j!)

, K ′
c = 0, · · · , Kc − 1

0, otherwise,

(B.5)

which can be simplified to (4.2).

Bibliography

[1] Zupan, B., Demsar, J., Bratko, I., Juvan, P., Halter, J. A., Kuspa, A., and
Shaulsky, G., “GenePath: a system for automated construction of genetic net-
works from mutant data,” Bioinformatics , Vol. 19, 2003, pp. 383.

[2] Cai, X. and Wang, X., “Stochastic modeling and simulation of gene networks,”
IEEE Signal Processing Magazine, Vol. 24, 2007, pp. 27–36.

[3] Smolen, P., Baxter, D. A., and Byrne, J. H., “Modeling transcriptional control
in gene networks-methods, recent results, and future directions,” Bull. Math.
Biol., Vol. 62, 2000, pp. 247–292.

[4] Hasty, J., McMillen, D., Isaacs, F., and Collins, J. J., “Computational studies
of gene regulatory networks: in numero molecular biology,” Nat. Rev. Genet.,
Vol. 2, 2001, pp. 268–279.

[5] de Jong, H., “Modeling and simulation of genetic regulatory systems: a litera-
ture review,” J. Comput. Biol., Vol. 9, 2002, pp. 67–103.

[6] Kauffman, S. A., “Metabolic stability and epigenesis in randomly constructed
genetic nets,” J. Theor. Biol., Vol. 22, 1969, pp. 437–467.

[7] Shmulevich, I., Dougherty, E. R., and Zhang, W., “From boolean to probabilis-
tic boolean networks as models of genetic regulatory networks,” Proc. IEEE ,
Vol. 90, 2002, pp. 1778–1792.

[8] McAdams, H. H. and Arkin, A., “It’s a noisy business! Genetic regulation at
the nanomolar scale,” Trends in Genetics, Vol. 15, 1999, pp. 65–69.

[9] Elowitz, M. B. and Leibler, S., “A synthetic oscillatory network of transcrip-
tional regulators,” Nature, Vol. 403, 2000, pp. 335–338.

[10] Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J., and Eisen, M. B., “Noise
minimization in eukaryotic gene expression,” PLoS Biol., Vol. 2, 2004, pp. e137.

[11] Fedoroff, N. and Fontana, W., “Genetic networks: Small numbers of big
molecules,” Science, Vol. 297, 2002, pp. 1129–1131.

159

160

[12] Ozbudak, E. M., Thattai, M., Kurtsser, I., Grossman, A. D., and van Oude-
naarden, A., “Regulation of noise in the expression of a single genes,” Nat.
Genet., Vol. 31, 2002, pp. 69–73.

[13] Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S., “Stochastic gene
expression in a single cell,” Science, Vol. 297, 2002, pp. 1183–1186.

[14] Blake, W. J., Kaern, M., Cantor, C. R., and Collins, J. J., “Noise in eukaryotic
gene expression,” Nature, Vol. 422, 2003, pp. 633–637.

[15] Novick, A. and Weiner, M., “Enzyme induction as an all-or-none phenomenon,”
Proc. Nat. Academy Science, Vol. 43, 1957, pp. 553–566.

[16] Rigney, D. R. and Schieve, W. C., “Stochastic model of linear, continuous pro-
tein synthesis in bacterial populations,” J. Theor. Biol., Vol. 69, 1977, pp. 761–
766.

[17] Berg, O. G., “A model for the statistical fluctuations of protein numbers in a
microbial population,” J. Theor. Biol., Vol. 71, 1978, pp. 587–603.

[18] Ko, M. S., “A stochastic model for gene induction,” J. Theor. Biol., Vol. 153,
1991, pp. 181–194.

[19] Rao, C. V., Wolf, D. M., and Arkin, A. P., “Control, exploitation and tolerance
of intracellular noise,” Nature, Vol. 420, 2002, pp. 231–237.

[20] Raser, J. M. and O’Shea, E. K., “Noise in gene expression: origins, conse-
quences, and control,” Science, Vol. 309, 2005, pp. 2010–2013.

[21] Kærn, M., Elston, T. C., Blake, W. J., and Collins, J. J., “Stochasticity in
gene expression: from theories to phenotypes,” Nature Review Genetics, Vol. 6,
2005, pp. 451–464.

[22] Cai, L., Friedman, N., and Xie, X. S., “Stochastic protein expression in individ-
ual cells at the single molecule level,” Nature, Vol. 440, Mar. 2006, pp. 358–362.

[23] Goutsias, J. and Kim, S., “Stochastic Transcriptional Regulatory Systems with
Time Delays: A Mean-Field Approximation,” Journal of Computational Biol-
ogy , Vol. 13, No. 5, 2006, pp. 1049–1076.

[24] Goutsias, J., “A Hidden Markov Model for Transcriptional Regulation in Single
Cells,” IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics , Vol. 3, No. 1, 2006, pp. 57–71.

[25] Shahrezaei, V. and Swain, P. S., “The stochastic nature of biological networks,”
Curr. Opin. Biotechnol., Vol. 19, 2008, pp. 369–374.

[26] Barkai, N. and Leibler, S., “Robustness in simple biochemical networks,” Na-
ture, Vol. 387, 1997, pp. 913–917.

161

[27] Barkai, N. and Leibler, S., “Circadian clocks limited by noise,” Nature, Vol. 403,
1999, pp. 267–268.

[28] van Dassow, G., Meir, E., Munro, E. M., and Odell, G. M., “The segment
polarity network is a robust developmental module,” Nature, Vol. 406, 2000,
pp. 188–192.

[29] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P.,
Molecular Biology of the Cell , Garland Science, London, 4th ed., 2002.

[30] Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts,
K., and Walter, P., Essential Cell Biology , Garland Science, London, 2nd ed.,
2004.

[31] Kozak, M., “Pushing the limits of the scanning mechanism for initiation of
translation,” Gene, Vol. 299, 2002, pp. 1–34.

[32] Gillespie, D. T., “A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions,” J. Comput. Phys., Vol. 22, 1976,
pp. 403–434.

[33] Gillespie, D. T., “Exact stochastic simulation of coupled chemical reaction,” J.
Phys. Chem., Vol. 81, 1977, pp. 2340–2361.

[34] Gillespie, D. T., “A rigorous derivation of the chemical master equation,” Phys-
ica A, Vol. 188, 1992, pp. 402–425.

[35] McAdams, H. H. and Arkin, A., “Stochastic mechanisms in gene expression,”
Proc. Natl. Acad. Sci. USA, Vol. 94, 1997, pp. 814–819.

[36] Arkin, A., Ross, J., and McAdams, H. H., “Stochastic kinetic analysis of devel-
opmental pathway bifurcation in phage lambda-infected Escherichia coli cells,”
Genetics, Vol. 149, 1998, pp. 1633–1648.

[37] Kierzek, A. M., “STOCKS: STOChastic kinetic simulations of biochemical sys-
tems with Gillespie algorithm,” Bioinformatics , Vol. 18, No. 3, 2002, pp. 470–
481.

[38] Gillespie, D. T., “Approximate accelerated stochastic simulation of chemically
reacting systems,” J. Chem. Phys., Vol. 115, 2001, pp. 1716–1733.

[39] Gillespie, D. T. and Petzold, L. R., “Improved leap-size selection for accelerated
stochastic simulation,” J. Chem. Phys., Vol. 119, No. 6, 2003, pp. 8229–8234.

[40] Cao, Y., Gillespie, D. T., and Petzold, L. R., “Avoid negative population in
explicit poisson tau-leaping,” J. Chem. Phys., Vol. 123, art. no. 54104, 2005.

[41] Tian, T. and Burrage, K., “Binomial leap methods for simulating stochastic
chemical kinetics,” J. Chem. Phys., Vol. 121, 2004, pp. 10356–10364.

162

[42] Chatterjee, A., Vlachos, D. G., and Katsoulakis, M. A., “Binomial distribution
based τ -leap accelerated stochastic simulation,” J. Chem. Phys., Vol. 122, art.
no. 024112, 2005.

[43] Pettigrew, M. F. and Resat, H., “Multinomial tau-leaping method for stochastic
kinetic simulations,” J. Chem. Phys., Vol. 126, No. 8, 2007.

[44] Kuwahara, H. and Mura, I., “An efficient and exact stochastic simulation
method to analyze rare events in biochemical systems,” J. Chem. Phys.,
Vol. 129, 2008, pp. 165101.

[45] Gillespie, D. T., Roh, M., and Petzold, L. R., “Refining the weighted stochastic
simulation algorithm,” J. Chem. Phys., Vol. 130, 2009, pp. 174103.

[46] Gillespie, D. T., “Stochastic simulation of chemical kinetics,” Annu. Rev. Phys.
Chem., Vol. 58, 2007, pp. 35–55.

[47] Gillespie, D. T., “The chemical Langevin equation,” J. Chem. Phys., Vol. 113,
No. 1, 2000, pp. 297–306.

[48] McQuarrie, D. A., “Stochastic approach to chemical kinetics,” J. Appl. Prob.,
Vol. 4, 1967, pp. 413–478.

[49] Gibson, M. A. and Bruck, J., “Exact stochastic simulation of chemical systems
with many species and many channels,” J. Phys. Chem. A, Vol. 105, 2000,
pp. 1876–1889.

[50] Cao, Y., Li, H., and Petzold, L. R., “Efficient formulation of the stochastic
simulation algorithm for chemically reacting systems,” J. Chem. Phys., Vol. 121,
No. 9, 2004, pp. 4059–4067.

[51] Lok, L. and Brent, R., “Automatic generation of cellular reaction networks with
Moleculizer 1.0,” Nat. Biotech., Vol. 23, 2005, pp. 131–136.

[52] McCollum, J. M., Peterson, G. D., Cox, C. D., Simpson, M. L., and Samatova,
N. F., “The sorting direct method for stochastic simulation of biochemical sys-
tems with varyinng reaction execution behavior,” Comput. Biol. Chem., Vol. 30,
2006, pp. 39–49.

[53] Li, H. and Petzold, L. R., “Logarithmic direct method for discrete stochastic
simulation of chemically reacting systems,” Technical Report,2006.

[54] Cao, Y., Gillespie, D. T., and Petzold, L. R., “Efficient stepsize selection for the
tau-leap simulation method,” J. Chem. Phys., Vol. 124, No. 4, art. no. 044109,
2006.

[55] Papoulis, A., Probability, Random Variables and Stochastic Processes, McGraw-
Hill, New York, 1984.

163

[56] Cao, Y. and Petzold, L. R., “Accuracy limitations and the measurement of
errors in the stochastic simulation of chemically reacting systems,” J. Comput.
Phys., Vol. 212, 2005, pp. 6–24.

[57] Cai, X. and Xu, Z., “K-leap methods for accelerating stochastic simulation
of gene expression,” IEEE Conf. Genomic Signal Processing and Statistics ,
College Station, Texas, 2006.

[58] Cai, X. and Xu, Z., “K-Leap methods for accelerating stochastic simulation of
chemically reacting systems,” J. Chem. Phys., Vol. 126, No. 7, 2007, pp. 074102.

[59] Devroye, L., Non-uniform Random Variate Generation, Springer-Verlag,
Berlin, 1986.

[60] Devroye, L., “Generating the maximum of independent identically distributed
random variables,” Computers and Mathematics with Application, Vol. 6, 1980,
pp. 305–315.

[61] Kachitvichyanukul, V. and Schmeiser, B. W., “Bionmial random variate gner-
ation,” Communications of the ACM , Vol. 31, No. 2, 1988, pp. 216–222.

[62] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numer-
ical Recipes in C , Cambridge University Press, Cambridge, 1995.

[63] Kennell, D. and Riezman, H., “Transcription and translation initiation frequen-
cies of the Escherichiacoli lac operon,” J. Mol. Biol., Vol. 114, 1977, pp. 1–21.

[64] Kierzek, A. M., Zaim, J., and Zielenkiewicz, P., “The effect of transcription and
translation initiation frequencies on the stochastic fluctuations in prokaryotic
gene expression,” J. Biol. Chem., Vol. 276, 2001, pp. 8165–8172.

[65] Rathinam, M., Petzold, L. R., Cao, Y., and Gillespie, D. T., “Stiffness in
stochastic chemically reacting system: the implicit tau-leaping method,” J.
Chem. Phys., Vol. 119, No. 24, 2003, pp. 12784–12794.

[66] Xu, Z. and Cai, X., “Unbiased tau-leap methods for stochastic simulation of
chemically reacting systems.” J. Chem. Phys., Vol. 128, 2008, pp. 154112.

[67] Goutsias, J., “Quasiequlibrium approximation of fast reaction kinetics in
stochastic biochemical systems,” J. Chem. Phys., Vol. 122, art. no. 184102,
2005.

[68] Haseltine, E. L. and Rawlings, J. B., “Approximate simulation of coupled fast
and slow reactions for stochastic chemical kinetics,” J. Chem. Phys., Vol. 117,
No. 15, 2002, pp. 6959–6969.

[69] Le, C. T., Introductory Biostatistics, John Wiley & Sons, Inc., 2003.

164

[70] Kholodenko, B. N., Demin, O. V., Moehren, G., and Hoek, J. B., “Quantifica-
tion of short term signaling by the epidermal growth factor receptor,” J. Biol.
Chem., Vol. 274, 1999, pp. 30169–30181.

[71] Resat, H., Ewald, J. A., Dixon, D. A., and Wiley, H. S., “An integrated model of
epidermal growth factor receptor trafficking and signal transduction,” Biophys
J., Vol. 85, 2003, pp. 730–743.

[72] Csete, M. and Doyle, J., “Bow ties, metabolism and disease,” Trends Biotech-
nol , Vol. 22, 2004, pp. 446–450.

[73] Egger, G., Liang, G., Aparicio, A., and Jones, P. A., “Epigenetics in human
disease and prospects for epigenetic therapy,” Nature, Vol. 429, 2004, pp. 457.

[74] Moore-Ede, M., Sulzman, F. M., and Fuller, C. A., The Clocks that Time Us
Physiology of the Circadian Timing System, Harvard Univ. Press, Cambridge,
MA, 1982.

[75] Young, M. W. and Kay, S. A., “Time zones: a comparative genetics of circadian
clocks,” Nat. Rev. Genet., Vol. 2, 2001, pp. 702–715.

[76] Yu, W. and Hardin, P. E., “Circadian oscillators of Drosophila and mammals,”
J. Cell Sci., Vol. 119, 2006, pp. 4793–4795.

[77] Gonze, D., Halloy, J., and Goldbeter, A., “Deterministic versus stochastic mod-
els for circadian rhythms,” J. Biol. Phys., Vol. 28, 2002, pp. 637–653.

[78] Williams, J. A. and Sehgal, A., “Molecular components of the circadian system
in Drosophila,” Annu. Rev. Physiol., Vol. 63, 2001, pp. 729–755.

[79] Reppert, S. M. and Weaver, D. R., “Molecular analysis of mammalian circadian
rhythms,” Annu. Rev. Physiol., Vol. 63, 2001, pp. 647–676.

[80] Hardin, P. E., “The circadian timekeeping system of Drosophila,” Curr. Biol.,
Vol. 15, 2005, pp. R714–722.

[81] Dunlap, J. C., “Molecular bases for circadian clocks,” Cell., Vol. 96, 1999,
pp. 271–290.

[82] Edmunds, L. N., Cellular and Molecular Bases of Biological Clocks, Springer
Verlag, New York, 1988.

[83] Darlington, T. K., Wager-Smith, K., Ceriani, M. F., Staknis, D., Gekakis, N.,
Steeves, T. D., Weitz, C. J., Takahashi, J. S., and Kay, S. A., “Closing the
circadian loop: CLOCK-induced transcription of its own inhibitors PER and
TIM,” Science, Vol. 280, 1998, pp. 1599–1603.

165

[84] Lee, C., Bae, K., and Edery, I., “PER and TIM inhibit the DNA binding activ-
ity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting
formation of the heterodimer: a basis for circadian transcription,” Mol. Cell
Biol., Vol. 19, 1999, pp. 5316–5323.

[85] Smolen, P., Baxter, D. A., and Byrne., J. H., “Modeling circadian oscillations
with interlocking positive and negative feedback loops,” J. Neurosci., Vol. 21,
2001, pp. 6644–6656.

[86] Bae, K., Lee, C., Hardin, P. E., and Edery, I., “dCLOCK is present in limit-
ing amounts and likely mediates daily interactions between the dCLOCK-CYC
transcription factor and the PER-TIM complex,” J. Neurosci., Vol. 20, 2000,
pp. 1746–1753.

[87] Smolen, P., Baxter, D. A., and Byrne., J. H., “A reduced model clarifies the
role of feedback loops and time delays in the Drosophila circadian oscillator,”
Biophys. J., Vol. 83, 2002, pp. 2349–2359.

[88] Lee, C., Bae, K., and Edery, I., “The Drosophila CLOCK protein undergoes
daily rhythms in abundance, phosphorylation, and interactions with the PER-
TIM complex,” Neuron., Vol. 21, 1998, pp. 857–867.

[89] Glossop, N., Lyons, L. C., and Hardin, P. E., “Interlocked feedback loops within
the Drosophila circadian oscillator,” Science, Vol. 286, 1999, pp. 766–768.

[90] Goldbeter, A., “A model for circadian oscillation in the Drosophila period
protein (PER),” Proc. R. Soc. B , Vol. 261, 1995, pp. 319–324.

[91] Scheper, T. O., Klinkenberg, D., van Pelt, J., and Pennartz, C., “A model
of molecular circadian clocks: multiple mechanisms for phase shifting and a
requirement for strong nonlinear interactions.” J. Biol. Rhythms., Vol. 14, 1999,
pp. 213–220.

[92] Tyson, J. J., Hong, C. I., Thron, C. D., and Novak, B., “A simple model of
circadian rhythms based on dimerization and proteolysis of PER and TIM,”
Biophys. J., Vol. 77, 1999, pp. 2411–2417.

[93] Leloup, J. C. and Goldbeter, A., “Chaos and birhythmicity in a model for
circadian oscillations of the PER and TIM in Drosophila,” J. Theo. Biol.,
Vol. 198, 1999, pp. 445–459.

[94] Petri, B. and Stengl, M., “Phase response curves of a molecular model oscilla-
tor: implications for mutual coupling of paired oscillators,” J. Biol. Rhythms ,
Vol. 16, 2001, pp. 125–141.

[95] Ueda, H. R., Hagiwara, M., and Kitano, H., “Robust oscillations within the
interlocked feedback model of Drosophila circadian rhythm,” J. Theo. Biol.,
Vol. 210, 2001, pp. 401–406.

166

[96] Gonze, D., Halloy, J., and Goldbeter, A., “Robustness of circadian rhythms
with respect to molecular noise,” Proc. Natl. Acad. Sci. USA, Vol. 99, 2002,
pp. 673–678.

[97] Gonze, D., Halloy, J., and Goldbeter, A., “Stochastic models for circadian oscil-
lations: emergence of a biological rhythm,” International J. Quantum Chem.,
Vol. 98, 2004, pp. 228–238.

[98] Calander, N., “Propensity of a circadian clock to adjust to the 24h day-night
light cycle and its sensitivity to molecular noise,” J. Theor. Biol., Vol. 241,
2006, pp. 716–724.

[99] Miura, S., Shimokawa, T., and Nomura, T., “Stochastic simulation on a model
of circadian rhythm generation,” Biosystems., Vol. 93, 2008, pp. 133–140.

[100] Li, Q. and Lang, X., “Internal noise-sustained circadian rhythms in a
Drosophila model,” Biophys. J., Vol. 94, 2008, pp. 1983–1994.

[101] Cai, X., “Exact stochastic simulation of coupled chemical reactions with de-
lays.” J. Chem. Phys., Vol. 126, 2007, pp. 124108.

[102] Edery, I., Zwiebel, L. J., Dembinska, M. E., and Rosbash, M., “Temporal phos-
phorylation of the Drosophila period protein.” Proc. Natl. Acad. Sci. USA,
Vol. 91, 1994, pp. 2260–2264.

[103] Ewer, J., Frisch, B., Hamblen-Coyle, M. J., Rosbash, M., and Hall, J. C.,
“Expression of the period clock gene within different cell types in the brain
of Drosophila adults and mosaic analysis of these cells’ influence on circadian
behavioral rhythms,” J. Neurosci., Vol. 12, 1992, pp. 3321–3349.

[104] Xie, Z. and Kulasiri, D., “Modelling of circadian rhythms in Drosophila incor-
porating the interlocked PER/TIM and VRI/PDP1 feedback loops.” J. Theo.
Biol., Vol. 245, 2006, pp. 290–304.

[105] Hardin, P. E., Hall, J. C., and Rosbash, M., “Circadian oscillations in period
gene mRNA levels are transcriptionally regulated.” Proc. Natl. Acad. Sci. USA,
Vol. 89, 1992, pp. 11711–11715.

[106] Lin, Y., Han, M., Shimada, B., Wang, L., Gibler, T. M., Amarakone, A., Awad,
T. A., Stormo, G. D., Gelder, R. N. V., and Taghert., P. H., “Influence of
the period-dependent circadian clock on diurnal, circadian, and aperiodic gene
expression in Drosophila melanogaster.” Proc. Natl. Acad. Sci. USA, Vol. 99,
2002, pp. 9562–9567.

[107] Spinner, D. S., Liu, S., Wang, S., and Schmidt, J., “Interaction of the myogenic
determination factor myogenin with E12 and a DNA target: mechanism and
kinetics.” J. Mol. Biol., Vol. 317, 2002, pp. 431–445.

167

[108] So, W. V. and Rosbash, M., “Post-transcriptional regulation contributes to
Drosophila clock gene mRNA cycling.” EMBO J., Vol. 16, 1997, pp. 7146–
7155.

[109] Vetterli, M. and Kovacevic, J., Wavelets and Subband Coding , Prentice Hall,
1995.

[110] Sehgal, A., Rothenfluh-Hilfiker, A., Hunter-Ensor, M., Chen, Y., Myers, M. P.,
and Young, M. W., “Rhythmic expression of timeless: a basis for promot-
ing circadian cycles in period gene autoregulation.” Science, Vol. 270, 1995,
pp. 808–810.

[111] Bae, K., Lee, C., Sidote, D., Chuang, K. Y., and Edery, I., “Circadian regulation
of a Drosophila homolog of the mammalian Clock gene: PER and TIM function
as positive regulators.” Mol. Cell. Biol., Vol. 18, 1998, pp. 6142–6151.

[112] Alon, U., An Introduction to Systems Biology: Design Principles of Biological
Circuits, Chapman & Hall/Crc Press, 2006.

[113] Leloup, J. C. and Goldbeter, A., “A model for circadian rhythms in Drosophila
incorporating the formation of a complex between the PER and TIM proteins,”
J. Biol. Rhythms., Vol. 13, 1998, pp. 70–87.

[114] Leloup, J. C. and Goldbeter, A., “Modeling the molecular regulatory mechanism
of circadian rhythms in Drosophila,” Bioessays., Vol. 22, 2000, pp. 84–93.

[115] Gonze, D., Leloup, J. C., and Goldbeter, A., “Theoretical models for circadian
rhythms in Neurospora and Drosophila,” C. R. Acad. Sci. III., Vol. 323, 2000,
pp. 57–67.

[116] Myers, M. P., Wager-Smith, K., Rothenfluh-Hilfiker, A., and Young, M. W.,
“Light-induced degradation of TIMELESS and entrainment of the Drosophila
circadian clock.” Science, Vol. 271, 1996, pp. 1736–1740.

[117] Zeng, H., Qian, Z., Myers, M. P., and Rosbash, M., “A light-entrainment mech-
anism for the Drosophila circadian clock.” Nature, Vol. 380, 1996, pp. 129–135.

[118] Forger, D. B. and Peskin, C. S., “Stochastic simulation of the mammalian
circadian clock,” Proc. Natl. Acad. Sci. USA, Vol. 102, 2005, pp. 321–324.

[119] Bratsun, D., Volfson, D., Tsimring, L. S., and Hasty, J., “Delay-induced
stochastic oscillations in gene regulation,” Proc. Natl. Acad. Sci. USA, Vol. 102,
2005, pp. 14593–14598.

[120] Barrio, M., Burrage, K., Leier, A., and Tian, T., “Oscillatory regulation of Hes1:
Discrete stochastic delay modelling and simulation,” PLoS Comput Biol., Vol. 2,
2006, pp. e117.

168

[121] Ribeiro, A., Zhu, R., and Kauffman, S. A., “A general modeling strategy for
gene regulatory networks with stochastic dynamics,” J. Comput Biol., Vol. 13,
2006, pp. 1630–1639.

[122] Leloup, J.-C., “Circadian clocks and phosphorylation: Insights from computa-
tional modeling,” Cent. Eur. J. Biol., Vol. 4, No. 3, 2009, pp. 290–303.

