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ABSTRACT 

 

 

COPY NUMBER VARIANT ANALYSIS OF PATIENTS WITH MALFORMATIONS 

OF CORTICAL DEVELOPMENT. 

Luis Kolb, Kaya Bilguvar, Michael Di Luna, Chris Mason, Yasar Bayri,  Ali Ozturk, 

Zulfikar Ayer, Nikhil Nayak, and Murat Gunel.  Department of Neurosurgery, Yale 

University School of Medicine, New Haven, CT. 

 

Copy Number Variants (CNVs) are DNA fragment that are approximately 1 kilobase (kb) 

to several megabases for which copy-number differences have been revealed by 

comparison of two or more genomes. The Human Genome project has led to the 

identification of close to 1500 of these variable regions covering 12% of the human 

genome. Even though many of these variants are considered to be benign, some of these 

genomic rearrangement have been found to be disease causing, including several nervous 

system disorders such as Charcot-Marie-Tooth, Williams-Beuren Syndrome, and Prader-

Willi syndrome. 

 

 In this study we have performed copy number variant analysis on 252 patients with 

cortical malformations. Cortical malformations represented in our cohort included 

patients with cortical dysplasia (95), lissencephaly (33), heterotopia (10), pachygyria (8), 

and polymicrogyria (20), among other diseases.   

 



 

Two disease-causing copy number variants were identified, and those two diseases are 

the focus of this manuscript: a diffuse villous hyperplasia of the choroid plexus, and 

cerebellar atrophy with pachygyria.  

 

Diffuse villous hyperplasia of the choroid plexus is a rare cause of hydrocephalus not 

amenable to shunting alone. Tetrasomy of the short arm of Chromosome 9 was identified 

using high-resolution genomic array mapping, broadening the phenotype of this 

described entity to include diffuse villous hyperplasia of the choroid plexus. 

 

Congenital ataxia with cerebellar hypoplasia is a heterogeneous group of disorders that 

presents with motor disability, hypotonia, incoordination, and impaired motor 

development. A homozygous deletion in the VLDLR gene was identified using high 

density single nucleotide polymorphism (SNP) micro arrays in a Turkish family with two 

siblings affected with cerebellar atrophy and pachygyria. Previous identification of 

VLDLR mutations in a Turkish family with quadrupedal gait led to various speculations 

ranging from “reverse evolution” to cultural influences. Discovery of disease causing 

homozygous deletions in a new Turkish family, which maintained bipedal movement, 

constitutes significant evidence against these speculations. 
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INTRODUCTION 

 

 

Malformations of cortical development (MCD) are an important cause of epilepsy and 

developmental delay.1 It is estimated that up to 40% of children with refractory epilepsy 

have a cortical malformation.2 This group of disorders is composed of a large spectrum of 

abnormalities related to cortical development with varied genetic etiologies, anatomic 

abnormalities, and clinical manifestations. While prior to 1980 many of these disorders 

were solely diagnosed at autopsy, the use of magnetic resonance imaging (MRI) has 

dramatically improved our ability to recognize these diseases.  

 

Cerebral cortical development involves a series of highly organized and complex events, 

broadly including neural stem cell proliferation, migration, and neuronal differentiation. 

Disruptions of any of these various stages may result in malformations of cortical 

development. Disorders due to abnormalities of cell proliferation may cause 

microcephaly (small brain), megalencephaly (large brain), or cortical dysplasia (focal 

areas of abnormal neuronal architecture). Disorders of initiation of neuronal migration 

may result in periventricular heterotopia (PH) (abnormal nodules of neurons located 

along the ventricular wall). Disorders of later migration and motility cause disruption of 

the normal 6-layered cortex, such as classic lissencephaly (smooth brain) and subcortical 

band heterotopia (heterotopic neurons located midway between the surface of the brain 

and lateral ventricles). Finally, disorders of neuronal arrest can result in neurons that fail 

to stop upon reaching their intended destination in the cerebral cortex and over migrate 
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onto the cortical surface as is the case in cobblestone lissencephaly. Although cortical 

development has been separated into these stages, there is a significant overlap with no 

clear juncture, and many abnormalities may cause dysfunction at more than one level. 

Thus, malformation syndromes are typically classified based on the earliest assumed 

disruption of development. These concepts serve as the basis for the latest classification 

scheme for these disorders.3 (Table 1)  

 

 
The pathogenesis of these malformations is thought to be multifactorial. Genetic 

mutations or environmental insults, acquired either in utero at different stages of brain 

development or during the perinatal or postnatal period after corticogenesis, may all 

contribute to the development of these diseases. 4, 5  The extent of the malformation 

syndrome will be determined by the timing, severity, type of environmental influences, 

and genetic factors.  
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Table 1: Classification of diseases of cortical development. 
 
 

I. Malformations due to abnormal neuronal and glial proliferation or 
apoptosis 
a. Decreased proliferation / increased apoptosis or increased proliferation / 

decreased apoptosis – abnormalities of brain size 
i. Microcephaly with normal to thin cortex 

ii. Microlissencephaly (extreme microcephaly with thick cortex) 
iii. Microcephaly with extensive polymicrogyria 
iv. Macrocephalies 

b. Abnormal proliferation (abnormal cell types) 
i. Nonneoplastic 

1. Cortical hamartomas of tuberous sclerosis 
2. Cortical dysplasia with balloon cells 
3. Hemimegalencephaly 

ii. Neoplastic (associated with disordered cortex) 
1. Dysembryoplastic neuroepithelial tumor 
2. Ganglioglioma 
3. Gangliocytoma 

II. Malformations due to abnormal neuronal migration 
a. Lissencephaly / subcortical band heterotopia spectrum 
b. Cobblestone complex / congenital muscular dystrophy syndromes 
c. Heterotopia 

i. Subependymal (periventricular) 
ii. Subcortical (other than band heterotopia) 

iii. Marginal glioneuronal 
III. Malformations due to abnormal cortical organization (including late 

neuronal migration) 
a. Polymicrogyria and schizencephaly 

i. Bilateral polymicrogyria syndromes 
ii. Schizencephaly (polymicrogyria with clefts) 

iii. Polymicrogyria or schizencephaly as part of multiple congenital 
anomaly / mental retardation syndromes 

b. Cortical dysplasia without balloon cells 
c. Microdysgenesis 

IV. Malformations of cortical development, not otherwise classified 
a. Malformations secondary to inborn errors of metabolism 

i. Mictochondrial and pyruvate metabolic disorders 
ii. Peroxisomal disorders 

b. Other unclassified malformations 
i. Sublobar dysplasia 

ii. Others 
 
Adapted from Barkovich et al. 3. 
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Work in determining the genetic basis of various MCD has given us greater insight and 

understanding into the underlying pathophysiology of these disorders. Different 

mutations of the same gene can cause different phenotypes, likely based on the degree of 

protein dysfunction (so termed genotype-phenotype correlation). Loss or disruption of the 

functional domains within a gene in some cases is enough to determine the phenotype of 

the disorder. Alternatively, specific mutations in a given gene can also lead to a gain of 

function for the aberrant protein. Mosaicism can occur when the mutation is present in a 

subpopulation of cells, whereas germ line mutations typically lead to expression of the 

mutant gene in all cells. Functional mosaicism occurs due to X-inactivation in which the 

mutation is present on 1 X chromosome but not the other. The mutant gene is then 

expressed only in cells in which the mutant gene is found on the active X chromosome, 

explaining why affected females often are less severely affected than males. An 

understanding of some of the underlying genetic basis for these disorders will play an 

important role in genetic counseling of affected individuals and their families.1 

 

Traditionally, genetic diseases are classified as chromosomal (numerical or structural); 

Mendelian (or single gene disorders); multifactorial/polygenic complex diseases; 

congenital anomalies; and diseases associated with specific mitochondrial gene 

mutations. Apart from chromosomal disorders, essentially all genetic disorders result 

from either some sort of alteration or mutation occurring in a specific gene (single gene 

diseases) or from the involvement of multiple loci spread across the human genome 

(polygenic disorders). Each of these disorders has major impact on patients. The majority 

of chromosomal disorders affect patients before birth and carry serious health burden 
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throughout childhood and during the early years of life. Single gene diseases peak around 

mid-childhood and pose a real medical and health burden from the perinatal period to 

adult age. In contrast polygenic/multifactorial disorders present late, with the exception 

of developmental anomalies requiring active multi-disciplinary care during the early life.6  

 

Genetic studies on human disease have been for long time limited to the investigation of 

single gene diseases.  These monogenic disorders tend to be rare, severe and follow clear 

patterns of inheritance that can be accurately traced through generations.  Once these 

diseases were adequately phenotyped, specific candidate genes within linkage intervals 

were searched for mutations in the patients and family members. More than 2000 

diseases have been identified in this manner, with most of these diseases caused by single 

base mutations that lead to missense or nonsense mutations according to the Database of 

Genomic Variants (http://projects.tcag.ca/variation/).  For example, four autosomal 

recessive genes are associated with microcephaly: Microcephalin7, ASPM (abnormal 

spindle-like, microcephaly-associated)8 9, CDK5RAP2 (CDK5 regulatory subunit-

associated protein 2) 10, and CENPJ (centromere protein J) 10. These genes seem to play a 

role in cell division during neurogenesis at the ventricular neuroepithelium by playing an 

important role in the regulation of microtubules and cell cycle progression during cell 

division.10 11-13 X-Linked mutations in FLNA 14-16and autosomal recessive mutations in 

ARFGEF2 (ADP-ribosylation factor guanine exchange factor 2) 17 are associated with 

Periventricular Heterotopia; and Subcortical band heterotopia is caused by mutations in 

the microtubule-associated DCX gene18. Several genes have been identified giving rise to 

classic lissencephaly: LIS1 (Lissencephaly1, autosomal dominant),19 DCX (Doublecortin, 
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X-linked dominant),20 TUBA1A (Tubulin alpha 1A, autosomal dominant),21, 22 ARX 

(Aristaless, X-linked dominant),23 and RELN (Reelin, autosomal recessive) 23, with 

causative genes having characteristic differences in the clinical and radiographic 

presentation. Cobblestone lissencephaly follows an autosomal recesive intheritance 

pattern and has been associated with POMT124, POMT225 , POMGnT126, and Fukutin27; 

genes involved in the glycosylation of α dystroglycan, a receptor for multiple 

extracellular molecules that maintains the stability of the cell surface.   Bilateral frontal 

and parietal polymicrogyria seem to be associated with mutations in the G-protein-

coupled receptor gene (GPR56)28, 29, assumed to play a role in the regional organization 

of the brain (Table 2). 
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Table 2: Genetic basis of malformations of cortical development 
 
 

Syndrome Locus Gene Protein 
 

Autosomal recessive periventricular 
heterotopia / micrcocephaly 

 

8p23 MCPH1 Microcephalin 

 
Autosomal recessive periventricular 

heterotopia / micrcocephaly 
 

1q31 ASPM Abnormal spindle-like 
microcephaly 

 
Autosomal recessive microcephaly 

 
9q34 CDK5RAP2 CDK-5 regulatory-

associated protein 2 

 
Autosomal recessive microcephaly 

 
13q12.2 CENPJ Centromere-associated 

protein J 

 
Autosomal recessive periventricular 

heterotopia / micrcocephaly 
 

20q13.13 ARFGEF2 ARFGEF2 

Amish lethal microcephaly 17q25.3 SLC25A19 Nuclear mitochondrial 
deoxynucleotide carrier 

Seckel syndrome 1 3q22-q24 ATR Ataxia telangiectasia 
and Rad3 related protein 

 
Isolated lissencephaly sequence 

 
Xq22.3-q23 DCX-XLIS DCX 

 
Subcortical band heterotopia 

 
Xq22.3-q23 DCX-XLIS DCX 

Miller-Dieker syndrome 17p13.3 Several 
contiguous 

PAFAH1B1, 14-3-3 and 
others 

 
Isolated lissencephaly sequence 

 
17p13.3 LIS1 PAFAH1B1 

 
Subcortical band heterotopia 

 
17p13.3 LIS1 PAFAH1B1 

 
Lissencephaly with cerebellar hypoplasia 

 
7q22 RELN Reelin 

 
X-linked lissencephaly with abnormal 

genitalia 
 

Xp22.13 ARX Aristaless-related 
homeobox protein 

 
Fukuyama congenital muscular 

dystrophy 
 

9q31 FCMD FCMD or Fukutin 
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Table 2: Genetic basis of malformations of cortical development (Cont.) 
 
 

Syndrome Locus Gene Protein 
 

Muscle-eye-brain disease 
 1p33-p34 POMGnT1 Unknown 
 

Muscle-eye-brain disease 
 19q13.3 FKRP Fukutin-related protein 
 

Congenital muscular dystrophy 19q13.3 FKRP Fukutin-related protein 
 

Congenital muscular dystrophy 
 22q12.3-q13.1 LARGE  
 

Walker-Warburg syndrome 
 
 9q34.1 POMT1 

O-Mannosyl-transferase 
1 

 
Walker-Warburg syndrome 

 19q13.3 FKRP Fukutin-related protein 
 

Walker-Warburg syndrome 
 9q31 FCMD FCMD 
 

Bilateral periventricular nodular 
heterotopia 

 Xq28 FLNA Filamin-A 
 

Bilateral periventricular nodular 
heterotopia + microcephaly 

 20q13.3 ARFGEF2 BIG2 
 

Bilateral periventricular nodular 
heterotopia 

 5p15 Unknown Unknown 
 

Tuberous sclerosis chromosome 1 
 9q32 TSC1 Hamartin 
 

Tuberous sclerosis chromosome 2 
 16p13.3 TSC2 Tuberin 
 

Bilateral frontoparietal polymicrogyria 
 16q13 GPR56 Unknown 
 

Warburg microsyndrome 1 
 2q21.3 RAB3GAP  
 

Bilateral perisylvian polymicrogyria 
 Xq28 Unknown Unknown 

 
Adapted from Barkovich et al. 3. 
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Recent advances in molecular genetics have enabled us to identify specific groups of 

disorders that result from previously uncharacterized mechanisms. Often these disorders 

do not conform to the standard basic principles of genetics, and involve specific areas of 

the human genome. A broad term ‘genomic disorders’ has been coined to describe these 

conditions6. Broadly, this group of disorders can be subdivided into disorders in the 

genome architecture, trinucleotide repeat disorders, chromosome breakage disorders, 

non-disjunction disorders, and complex genomic diseases. 6 

 

These disorders follow unusual non-traditional inheritance mechanisms that involve 

genomic regions that directly or indirectly influence the regulation and expression of one 

or more genes manifesting in complex phenotypes. The evolution of the mammalian 

genome has resulted in the duplication of genes, gene segments and repeats of gene 

clusters.30 This aspect of genome architecture provides recombination hot spots between 

non-homologous regions of chromosomes that are distributed across the whole genome. 

These genomic regions become susceptible to further DNA rearrangements that may be 

associated with abnormal phenotypes. 31-34 

 

These ‘hotspot’ regions usually lie within genomic regions referred to as Low Copy 

Number Repeats (LCR). LCR are region specific DNA blocks usually 10 to 300 

kilobases (kb) in size and of > 95% to 97% similarity to each other that usually map to 

two or three locations in the genome.35-37  It is estimated this regions account for ~5% of 

the human genome.  They can contain any standard constituent of genomic DNA, 

including gene families, gene containing structural motifs, or sequences of unknown 
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function present in clusters or dispersed through the genome. Examples include the HLA 

and related genes, actins, zinc-finger genes, and the CRI-S232 sequence family. LCRs are 

distinguished from highly repetitive sequences in the human genome by their high degree 

of sequence similarity and large numbers, and often appear to locate preferentially near 

centromeres and telomeres in human chromosomes.38, 39   

 

The term ‘genome architecture disorder’ refers to a disease that is a result of  an alteration 

of the genome that results in complete loss, gain or disruption of the structural integrity of 

dosage sensitive genes.40, 41 Disruption in the function of dosage sensitive gene may 

result from number of mechanisms including gene interruption, gene fusion, position 

effect, unmasking of a recessive allele, presence of a functional polymorphism, and gene 

transvection effect.6 Notable examples include a number of microdeletion / 

microduplication syndromes such as Williams- Beuren syndrome 42, Prader-Willi 

syndrome43, Angelman syndrome44, Smith Magenis syndrome45, Potoki Lupski 

syndrome45, DiGeorge syndrome46, and Neurofibromatosis type 147. (Table 3)  In these 

conditions there is a critical rearranged genomic segment flanked by large (usually > 10 

kb), highly homologous low copy repeat structures that can act as recombination 

substrates.48 Meiotic recombination between non-allelic LCR copies, also known as non-

allelic homologous recombination, can result in deletion or duplication of the intervening 

segment6. The phenotype of these disorders is distinctly recognizable with particular 

clinical and facial dimorphic features.  
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An increasing number of Mendelian diseases are being recognized to result from 

recurrent inter and intra chromosomal rearrangements involving unstable genomic 

regions.6 These genomic regions have been shown to be predisposed to non-allelic 

homologous recombination by proximity to ‘hot spot’ genomic segments.49  Large 

genomic deletions and duplications have been reported as being pathogenic in cases of 

various diseases, such as Duchenne and Becker muscular dystrophies, familial breast 

cancer, hereditary nonpolyposis colorectal cancer, and Williams-Beuren syndrome. 

(Table 4) Previously, our lab reported a homozygous microdeletion in the parkin gene 

(PARK 2) in a Turkish family in which six members were afflicted with autosomal 

recessive Parkinsonism. 50 Mutations in the PARK2 gene had been previously shown to 

be associated with early-onset Parkinson’s disease51. 

 

Even though traditionally when one considers what constitute ‘genetic diseases’ one 

usually refers to traits inherited in a Mendelian fashion and resulting from base pair 

changes that alter an encoded protein’s structure, function and regulation, clinical 

conditions observed in genetics are sporadic in >97% of the cases.  Often these cases are 

not due to mutant genes, but instead result from genomic copy number variations.52 2-3% 

of children are born with a major birth defect and often these are sporadic in nature.53, 54  

Chromosomal anomalies, such as trisomy 21, have been shown to be responsible for birth 

defects in ~0.2% of live births.55 Recessive traits are thought to compose a similar 

proportion .55  De novo point mutations are also known to cause sporadic disease as is in 

common cases of achondroplasia, neurofibromatosis type 1, and tuberous sclerosis, as 

well as multiple other diseases.52    
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Direct estimates of human per-nucleotide rates for spontaneous mutations have been 

estimated to between 0.5 x 10-8 to 3 x 10-8  from the per-locus mutation rates and 

sequences of de novo nonsense nucleotide substitutions, deletions, insertions, and 

complex events causing autosomal dominant and X-Linked diseases56.  In the context of 

the 3 x109 bp haploid human genome, this rate corresponds to ~60 new mutations per 

germ cell, with male germ cells having more than female germ cells as most point 

mutations presumably represent DNA replication or repair errors.  Approximately 2% 

(2.4) of them will affect exonic sequences, thus about two exons (and thus genes) have a 

de novo base-pair change. Of these, at least one third are likely to have little effect as 

they would lie in the third position of a codon.52 Thus, it seems paternal age affect is the 

most likely cause of ‘sporadic cases’ often being found among the last-born children of a 

sibship.57, 58  

 

In contrast, the de novo locus-specific mutation rates for genomic rearrangements has 

been calculated to be between 10-6 and 10-4 from sporadic microdeletion syndromes, 

common autosomal dominant or X-Linked disease prevalence rates, by direct 

measurement by either sperm PCR at the alpha globin or t(11;22) recombination 

breakpoint sites, and by genomic assays comparing child to parents in trios.52 This rate is 

at between 2 and 4 orders of magnitude (100 to 100,000 fold) greater than observed rates 

of de novo locus-specific mutation point mutations. It appears that genomic 

rearrangements are more common than point mutations, and that the mechanisms causing 

them are more prevalent as well. 
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There appears to be three primary recombination mechanisms responsible for generating 

deletions and duplications that cause genomic rearrangements that can be associated with 

genomic disorders.49 Nonallelic homologous recombination (NAHR), described above, 

appears to be the more frequent mechanism for specific regions of the genome that have 

architecture that favors genomic instability, and has been proposed as the main 

mechanism for genomic rearrangements due to the proximity of most genomic 

rearrangements to low copy repeats40, 59. This seems to be especially true for most of the 

recurrent rearrangements that share a common size, show clustering of breakpoints, and 

recur in multiple individuals. In this process, non-allelic copies of LCRs, instead of the 

copies at the usual allelic positions, are aligned in meiosis or mitosis. This 

‘misalignment’ results in genomic rearrangements in the progeny cells. When the two 

LCRs are located on the same chromosome and in direct orientation, the resulting 

rearrangement is either a deletion or duplication. When the LCRs are in the same 

chromosome but in opposite orientation, the process results in inversion of the fragment 

flanked by them. Non-allelic homologous recombination on different chromosome results 

in chromosomal translocation.41  

 

Nonhomologous end joining (NHEJ) and the Fork Stalling and Template Switching 

(FoSTeS) have been proposed as the other two mechanisms responsible for genomic 

rearrangements, especially for the non-recurrent cases.  Non-recurrent rearrangements are 

of different sizes in each patient, but may share a small region of overlap whose change 

in copy number may result in shared clinical features among different patients.59 These 
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non- recurrent rearrangements might be stimulated by low copy repeat regions, as well as 

might be mediated by highly homologous repetitive sequences such as the Alu, and LINE 

sequences.  

 

Nonhomologous end joining (NHEJ), which plays a critical role in V D J recombination -

the process by which B-cell and T-cell diversity is generated, is one of the two major 

mechanisms used by eukaryotic cells to repair both physiological and pathological double 

stranded breaks (DSB).60, 61  NHEJ is considered to be the major mechanism responsible 

for joining translocated chromosomes in cancer.61 The process proceeds in four steps: 

detection of DSB; molecular bridging of both broken DNA ends; modification of the 

ends; and ligation of the ends.  Sequence studies on non-recurrent deletions in the DMD 

gene and the PLP1 gene, as well as duplications on the PLP1 have found evidence these 

genomic rearrangements are caused by the NHEJ mechanism.62, 63 It has been proposed 

that the first step of the rearrangement is when a single DSB occurs in one strand; 

followed by the broken ends being invaded and copied from the sister chromatid; and 

finally the ends being rejoined via NEHJ. 

 

Some rearrangements are far more complex than those able to be explained by NAHR 

and NEHJ mechanisms. To explain these more complex events, the Fork Stalling and 

Template (FoSTees) model has been proposed.64 In this model, during DNA replication 

the DNA replication fork stalls at one position causing the lagging strand to disengage 

from the original template, and transfer and anneal to another replication fork in physical 

proximity. The DNA replication process then ‘primes’ again, and continues DNA 
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synthesis65. Switching to another folk located downstream would result in a deletion, 

while switching to a fork upstream would result in duplication. The process of 

disengaging, invading/annealing, synthesis/extension could occur multiple times resulting 

the observed complex rearrangements.49  Although still very limited, preliminary data 

implies that FoSTeS might be a major mechanism of duplication, and might have also 

been the driving force in the origin of Low Copy Repeats. 

 

Eighteen years ago it became evident that genomic rearrangements and gene dosage 

effects, rather than the classical model of coding region DNA sequence mutations, could 

be responsible for nervous system diseases when a duplication in CMT1A was 

discovered to be responsible for Charcot-Marie Tooth neuropathy type 1a, a common, 

autosomal dominant adult-onset neurodegerative disease.66, 67  Now, several 

neurodegenerative and neurodevelopmental disorders are known to be caused by 

disparate recurrent and non-recurrent genomic rearrangements.68 These genomic 

disorders include peripheral and central nervous system neuropathies, well-recognized 

syndromes with characteristic phenotypes, and also a growing group of psychiatric 

illnesses.  Some of these disorders include the deletion in PMP22 causing hereditary 

neuropathy with liability to pressure palsies (HNPP), and some of the recurrent 

microdeletion disorders previous mentioned like Williams-Beuren Syndrome42, 

Angelman syndrome44, and Prader Willi syndrome43.  
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Several new genomic disorders caused by genomic rearrangements leading to nervous 

system diseases have been recently recognized. Duplications of the genomic region 

deleted in Williams-Beuren syndrome have been described, with patients characterized 

by prominent speech delay.42, 69, 70 Tandem duplications of LMNB1 have been reported to 

cause adult-onset autosomal dominant leukodystrophy71, and duplications in 

PAFAH1B1/LIS1 and YWHAE –genes deleted in lissencephaly (PAFAH1B1/LIS1 alone) 

and Miller-Dieker syndrome (both) were found in patients with developmental delay72, 73. 

Finally, two new microdeletion syndromes have been described in 17q21.3174, 75 and 

15q13.376, and the reciprocal duplications, have been recognized.  

 

With the advent of the completion of the Human Genome, thousands of single nucleotide 

polymoprhisms have been discovered and their use as common polymorphic markers has 

revolutionized genome-wide studies. A SNP is a variation of a single nucleotide in the 

DNA sequence that occurs between members of the same species. SNPs may fall within 

the coding sequence of genes, intronic sequence of genes, or in intergenic regions.  Some 

SNPs may contribute directly to disease phenotype by altering the gene function, 

especially those lying within the coding sequences. The majority, though, are located 

outside protein coding regions.77  

 

There are approximately 10 million SNPs with a minimum allele frequency of 1% that 

have been discovered spread throughout the genome.78 A minimum allele frequency of 

1%, which means the rarer allele occurs with a frequency of at least 1% of the population, 

is commonly used as a cutoff when considering a single base change as a rare variant or 
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polymorphisms.  Assays have been developed using SNPs as markers that are cheap and 

easy to perform and take advantage of SNPs being numerous, frequent and stable.  These 

assays are increasingly being used in genome wide studies of individuals, families and 

populations. 

 

A large, well-characterized collection of SNPs has become increasingly important in the 

discovery of DNA sequence variations that affect biological function.  A block of 

associated SNPs in a region of the genome is called a haplotype. Many parts of the 

genome exist with distinctive areas of common haplotypes, which account for most of the 

individual variation within a population. The International HapMap Project is an 

international collaboration with the goal of developing a haplotype map of the human 

genome, which will describe the common patterns of human genetic variation.79 In many 

ways this is information is thought to simplify the human genome so that instead of 

having to scan through 10 million SNPs to explain human variation, it may be possible to 

breakdown the genome into specific areas of increase variation that can be specifically 

tagged with SNPs, thereby reducing the amount of genotyping required. The current 

phase II HapMap characterizes over 3.1 million human SNPs from four geographically 

diverse populations80. 

 
 

In addition to the identification of thousands of SNPs, the Human Genome project has led 

to the identification of a range of other DNA sequence variations such as insertions, 

deletions, and translocations of various segments of chromosomes.81  The term Copy 

Number Variant (CNV) was coined to describe a copy number change involving a DNA 
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fragment that is approximately 1 kilobase (kb) to several megabases for which copy-

number differences have been revealed by comparison of two or more genomes. These 

changes can be copy-number gains (duplications or insertional transpositions, losses 

(deletions), gains or losses of the same locus, or multiallelic or complex rearrangements. 

This excludes insertions or deletions involving transposable elements.  Even though it 

was well known previous to the Human Genome Project that large duplications and 

deletions have a mechanistic role in the development of a range of human genetic 

diseases, it was during the Human Genome Project and subsequent studies that it was 

appreciated that humans carry a far higher than expected number of CNVs.82-84 It has 

been speculated there are close to 1500 variable regions covering 12% of the human 

genome that equal or even surpass the number of nucleotides affected by SNPs. 85  

  

CNV discovery will continue. Many of these CNVs are likely to represent benign 

variants, but proving they do not have phenotypic consequences or that they do not 

account for normal physical or behavioral traits will be a challenge. It is also a challenge 

to establish a cause-and-effect relationship for a specific genomic rearrangement and a 

given phenotype; and even more of a challenge to determine the dosage-sensitive gene or 

genes within the genomic rearrangement. Regardless, when analyzing genetic disorders, 

one should consider new mutation. Given that the frequency of de novo structural 

changes can be four orders of magnitude greater than that of base pair changes, CNV 

should be considered a potential significant cause of sporadic disease and Mendelian 

disorders. These diseases include the malformations of cortical development detailed 

above. 
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STATEMENT OF PURPOSE & SPECIFIC AIMS 

 

The purpose of this study is to utilize molecular genetics techniques, specifically SNP 

genotyping, CNV analysis and homozygosity mapping, in order to find genetic mutations 

that cause diseases of neural development.  This manuscript details our studies on our 

neurogenetics cohort and on two diseases in particular:  Cerebellar Atrophy, and Choroid 

Hyperplasia.  Our aim is to uncover the gene mutations that cause these disorders so that 

we may develop a better understanding of the pathophysiology of these diseases 

specifically and malformations of neural development generally.      

 

 

 



 20 

METHODS 

 

 

Patient Identification and Collection of Blood Samples 

 

Approval for this study was obtained from the Yale Human Investigations Committee 

(Protocol 7680).  The patients afflicted with malformations of cortical development were 

identified by physicians at Yale New Haven Hospital as well as collaborators at other 

institutions in the United States and Europe. Diagnosis for each patient was established 

by the identifying physician based on physical findings, computerized tomography (CT) 

findings, and/ or magnet resonance imaging (MRI) findings. For patients identified at 

Yale New Haven Hospital, the author attained consent and collected their blood samples.  

For patient identified elsewhere, consent was attained and blood samples were collected 

by the collaborating physicians, and Ethical Committee approval was obtained from each 

institution.   

 

 

Isolation of Genomic DNA 

 

Total genomic DNA was isolated from lymphocyte nuclei using a procedure described by 

Bell et al. 86.  Ten milliliters of blood collected in a heparinized tube and then kept at 4°C 

was mixed with 90 ml of 0.32 M sucrose / 10 mM TrisHCl (pH 7.5) / 5 mM MgCl2 / 1% 

Triton X-100 at 4°C to lyse all cells.  The nuclei were collected by centrifugation at 1000 
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X g for 10 min.  The nuclear pellet was suspended in 4.5 ml of 0.075 M NaCl / 0.024 M 

EDTA (pH 8.0) with a Pasteur pipette.  Then 0.5 ml of 5% sodium dodecyl sulfate and 

proteinase K at 2 mg/ml were added and the mixture was incubated for approximately 12 

hr at 37°C.   

 

The digest was gently mixed with 5 ml of phenol saturated with 20 mM Tris HCl (pH 

8.0).  Five milliliters of chloroform / isoamyl alcohol (24:1, vol/vol) was added and 

gentle mixing was continued.  The phases were separated by centrifugation for 15 min at 

1000 X g.  The upper, aqueous, phase was removed and gently extracted with the 

chloroform / isoamyl alcohol mixture.  After centrifugation, the aqueous phase was 

removed; 0.5 ml of 3 M sodium acetate and 11 ml of 100% ethanol (at room temperature) 

were added.  The DNA was precipitated by inverting the tube several times and then 

removed with a Pasteur pipette and placed in 1 ml of 10 mM Tris HCl (pH 7.5) / 1 mM 

EDTA.  The DNA was allowed to dissolve at 4°C.  From 10 ml of blood, 20-50 µg of 

DNA was obtained.  In cases where the yield is low, we incubate the DNA at -20°C in 

the presence of ammonium acetate. Genomic DNA was isolated by the author and 

laboratory technicians.     

 

 

Single Nucleotide Polymorphism Genotyping and Quality Control 

 

Single Nucleotide polymorphism genome-wide genotyping was performed on the 

Illumina plataform 370 Human CNV and the Human610-Quad Beadchip (containing 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379.473 and 620,089 SNPs respectively; Illumina, San Diego, CA, USA). All procedures 

were done according to manufacturer’s protocol.  Briefly, 200 ng of genomic DNA was 

amplified, fragmented, and hybridized to the array, and products were fluorescently 

labeled and scanned with Illumina Beadstation scanner. Raw data was then uploaded in 

Beadstudio v3.3 genotyping software (Illumina, San Diego, CA, USA) for further 

analysis.  Samples  of  subjects  that  had  genotype  call  rates  <  97%  (n=6), 

 heterozygosity  >  37%  (n=3)  or  samples  with  incorrectly  imputed  gender  (n=0) 

 were  excluded. SNP genotyping was performed by laboratory technicians. 

 

 

CNV Detection 

 

Data was analyzed using BeadStudio v3.3 (Illumina Inc., San Diego, CA). Two metrics 

were visualized using this tool: B allele frequency and log R ratio. The B allele frequency 

is the theta value for an individual SNP corrected for cluster position. This parameter 

provides an estimate of the proportion of times an individual allele at each polymorphism 

was called A or B. In this setting, an individual who is homozygous for the B allele (BB 

genotype) would have a score close to 1, an individual homozygous for the A allele (AA) 

would have a score close to 0, and an individual who is heterozygous (AB) would have a 

score of approximately 0.5. Significant deviations from these figures in contiguous SNPs 

are indicative of a CNV. The log R ratio is defined as the log (base 2) ratio of the 

observed normalized R value for the SNP divided by the expected normalized R value for 

the SNPs theta value. The expected R value is calculated from the values theta and R, 
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where R is the intensity of dye labeled molecules that have hybridized to the beads on the 

array and theta is the ratio of signal at each polymorphism for beads recognizing an A 

allele to beads recognizing a B allele. The expected R value for any individual at any 

typed SNP is calculated using a large population of typed individuals. Therefore, the ratio 

of observed R to expected R in any individual at any SNP gives an indirect measure of 

genomic copy number. An R value above 1 is indicative of an increase in copy number, 

and an R value below 1 suggests a decrease (deletion) in copy number. While this metric 

exhibits a high level of variance for individual SNPs, it does provide a measure of copy 

number when log R ratio values for numerous contiguous SNPs are visualized.  We 

evaluated both the log R ratio and the B allele frequency plots across the genome in all 

samples. (Figure 1, Figure 2) 
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Figure 1: Homozygous Deletion example. Log R ratio plot. Scatter points represent 

normalized log2 ratios (y) for probes along the chromosome. A segment was considered 

to be significant if y > 3 or y < -3. A deletion spanning 2 consecutive probes with y < -3 

can be appreciated. 
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 Figure 2: Heterozygous deletion example. Log R ratio plot. Scatter points represent 

normalized log2 ratios (y) for probes along the chromosome. A segment was considered 

to be significant if y > 1.5 or y < -1.5. A deletion spanning 2 kb y < -1.5 can be 

appreciated. 

 

 

 

 



 26 

A previously described high-resolution CNV detection algorithm, the PennCNV 

algorithm 87, was used to infer CNVs from the signal intensity data. This algorithm 

incorporates multiple sources of information, including total signal intensity and allelic 

intensity ratio at each SNP marker, the distance between neighboring SNPs, the allele 

frequency of SNPs, as well as family information when available. We set a threshold at 2 

SNPs for homozygous deletions and 10 SNPs for heterozygous deletions to avoid false 

positive calls. This threshold was previously shown to result in a false positive rate lower 

than 1% for high-quality samples 87, 88. 

To define common and rare CNVs we mapped these CNVs to the UCSC genome browser 

for comparison with those previously identified in other publications, or with those 

included in the database of genomic variants (http://projects.tcag.ca/variation). The 

common and rare CNVs were defined as those that occurred at a frequency of >1% or 

<1% in general populations. The CNVs which were not detected in control subjects and 

in the database of genomic variants were considered to be possibly disease causing. 

Genechip analysis was performed by the author and by laboratory personnel. 

 

 

Inbreeding Coefficient 

Plink software, a whole genome association analysis toolset, was used to calculate the 

inbreeding coefficient for each individual patient using the B allele signal data.89  The 

Inbreeding coefficient is a measure of how close two people are genetically to each other. 

Plink calculates the inbreeding coefficient based on the observed versus expected number 
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of homozygous genotypes given a large number of SNPs in a homogeneous sample. 

Inbreeding coefficient calculations were performed by the author and laboratory 

personnel.   

  

Homozygosity Mapping 

 

Plink software was used to conduct runs of homozygosity for each individual patient 

using the B allele signal data.89 In brief, the Plink algorithm performs a run of 

homozygosity by taking a window of X SNPs and sliding this across the genome. At each 

window position it determines whether this window looks 'homozygous' enough (yes/no) 

(i.e. allowing for some number of heterozygous or missing calls). Then, for each SNP, it 

calculates the proportion of 'homozygous' windows that overlap at that position.  It 

creates a call for segments based on this metric, e.g. based on a threshold for the average. 

Homozygous runs were performed using the 100 SNP, 1000 kb windows with SNP 

densities of 1 SNP per 50 kilobases. One heterozygous SNP call and 5 missing SNP calls 

were allowed per homozygous window.  Homozygosity runs were performed by the 

author and laboratory personnel.  
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Candidate Gene Mutational Analysis 

 

Exon-intron boundaries of the candidate genes were determined based on the University 

of California at Santa Cruz (UCSC) Genome Browser (NCBI Build 36.1).  PCR primers 

were designed using PRIMER3 (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi). .  The Basic Local Alignment Search Tool 

(http://www.ncbi.nlm.nih.gov/blast/) was used for these primers. Exon amplicons were 

amplified and sequenced using standard techniques.  Mutational analysis was performed 

by the author and by laboratory personnel.   

 

 

Quantitative RT-PCR 

 

Array CNV analysis results were confirmed with quantitative RT-PCR using the standard 

curve method for absolute quantization.  Primers were designed using Primer Express 

Software, version 2.0 (Applied Biosystems), with the following criteria: amplicon size of 

80 to 200/250 bp, GC content of 20 to 80%, no more than two guanines or cytosines in 

the primer 3’ end, and melting temperature (Tm) of 59 to 60°C.  Finally, the Basic Local 

Alignment Search Tool (http://www.ncbi.nlm.nih.gov/blast/) was used for these primers. 

 

The experimental design and calculations were performed as described by Applied 

Biosystems (User Bulletin #2).  To determine copy number changes, fourfold ranges of 

five different serial dilutions from five pooled normal control DNA samples were used.  
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In addition, we used 5 ng of genomic DNA from the patient’s DNA and pooled normal 

control DNA.  The RT-PCRs were performed in triplicate for each reaction.  The 15-µl 

reactions contained 1X final concentration of Power SYBR Green PCR Master Mix (part 

number 4367660, Applied Biosystems) and 400 nM of each primer (Invitrogen).  Each 

experiment was performed using a 384-well optical PCR plate and the Applied 

Biosystems machine (model 7900HT) with default cycling conditions. 

 

A standard curve was created using the calculated threshold cycle of each dilution for 

each gene.  Amplifications were performed on the same diluted samples using primers for 

the reference and target genes.  For all experimental samples, the target quantity was 

determined from the standard curve and divided by the target quantity of the normal 

reference DNA.  To assess reaction specificity and to verify product identity, melting 

curve analysis was performed following amplification.  We used the standard curves with 

an efficiency between 90% and 100%, which corresponds to a slope between 23.58 and 

23.20.  Quantitative PCR was performed by the author and laboratory personnel. 
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RESULTS 

 

Patient Collection 

 

To this date, 563 patients with malformations of cortical development and 

syndromic neurodevelopment diseases have been collected from Yale-New Haven 

Hospital as well as from collaborators in Europe. Of these 563 patients, 252 patients were 

diagnosed with cortical malformations and were included in this study. Patients within 

the designation of cortical malformations included patients diagnosed with 

polymicrogyria (20), schizencephaly (16), developmental anomaly/ dysplasia (39), and 

broadly as malformations of cortical development not specified (MCD - 95). 130 patients 

were genotyped on 370k microarray Illumina Human CNV bead chips, while 119 

patients were genotyped on the Illumina 610 Quad chips. Beadchip data from six (6) 

chips with call rates less than 97% was considered to be of poor quality and was excluded 

from this study. Genotype analysis also revealed three duplicates, which were removed as 

well. Sex phenotype on the bead chip data for each patient was also cross-matched with 

the reported sex to validate the integrity of the each patient sample. 

A control group composed of forty (40) patients with a diagnosis of renal tubular 

acidosis and of self-reported consanguinity was also genotyped on 370k Human CNV 

Illumina bead chips.   
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Figure 3: Demographics of Neurogenetics cohort. Total number of patients 

currently in the cohort is 563 including 252 patients with the diagnosis of cortical 

malformations.  
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Figure 4: Demographics of patients with cortical malformations within the 

Neurogenetics Cohort.  Total number of patients with cortical malformations is 

252. MCD stands for malformations of cortical development not specified. 
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Copy Number Variant Analysis 

 

Analysis for copy number variants was performed using the Penn CNV algorithm in 

conjunction with visual inspection of the signal intensities on the Beadstudio plataform. 

Because of the difference in SNP densities between the two microarray platforms, results 

are presented divided.  

 

 

Copy Number Variant Analysis of patients on Illumina 370 Human CNV (N=127) 

 

Copy number variant analysis of the 127 patients genotyped on the Illumina 370 Human 

CNV bead chips revealed 20 homozygous deletions and 237 heterozygous deletions. Of 

the 20 homozygous deletions, 7 contain or are within genes. Comparing these seven copy 

number variants with the published reports and database of human variation eliminates 

six areas where there is evidence of variability in the general population. One intergenic 

deletion has not previously been reported.  

 

 

Copy Number Variant Analysis of patients on Illumina 610 Quad (N=119) 

 

Copy number variant analysis of the 119 patients genotyped on the Illumina 610 Quad 

Chips revealed 593 homozygous deletions and 840 heterozygous deletions. Of the 593 

homozygous deletions, 130 contain or are within genes. Comparing these 130 copy 
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number variants with the published reports and database of human variation eliminates 

128 areas where there is evidence of variability in the general population. Two exonic 

homozygous deletions are not previously reported, and are located in the VLDLR gene 

(see below). 

 

Copy Number Variants on Illumina 370 Human CNV 

 

GROUP # PATIENTS HZ 

DELETIONS 

HET 

DELETIONS 

NON-

REPORTED 

CORTICAL DYSPLASIA 5 1 4 0 

DEVELOPMENTAL ANOMALY 37 6 35 0 

DNET 9 2 6 0 

HETEROTOPIA 6 0 5 0 

LISSENCEPHALY 22 2 37 0 

MCD 20 5 29 1 

MULTIPLE 3 2 58 0 

POLYMICROGYRIA 17 1 35 0 

SCHIZENCEPHALY 8 1 28 0 

Total 127 20 237 0 

 

Table 5: Genomic Deletions per Malformations of Cortical Development Sub-group in patients 

genotyped on Illumina 370 Human CNV Bead Chip. Hz, Homozygous; Het, Heterozygous. 
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Copy Number Variants on Illumina 610 Quad 

 

GROUP # PATIENTS HZ 

DELETIONS 

HET 

DELETIONS 

NON-

REPORTED 

CORTICAL DYSPLASIA 7 25 35 0 

PACHYGYRIA 8 35 58 2 

DNET 1 6 4 0 

HETEROTOPIA 4 23 25 0 

LISSENCEPHALY 8 33 94 0 

MCD 74 395 500 1 

MULTIPLE 6 24 47 0 

POLYMICROGYRIA 2 13 15 0 

SCHIZENCEPHALY 8 39 62 0 

Total 119 593 840 0 

 

Table 6: Genomic Deletions per Malformations of Cortical Development Sub-group in patients 

genotyped on Illumina 610 Quad Bead Chips. Hz, Homozygous; Het, Heterozygous. 

 

 

 

 

Copy Number Variant Analysis of Controls 

 

Copy number variant analysis of the 40 controls on the Illumina 370 Bead chips revealed 

fifteen homozygous deletions and 139 heterozygous deletions. Of the fifteen homozygous 

deletions, seven are within genes. Comparing these 7 copy number variants with the 
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published reports and database of human variation eliminates one area of common 

variability. Five homozygous mutations are known to cause autosomal recessive cases of 

renal acidosis.  

 

 

 

 

 

Figure 5: Homozygous deletions within genes in the control population (N = 40). 

Mutations in CLCNKA and CLCNKB, part of the family of voltage-gated chloride 

channels, have been associated with Barter’s syndrome Type 4, an autosomal recessive 

disorder defined by hypokalemic metabolic acidosis (OMIM # 602522). Mutations in 

FRAS1, which encodes a putative extracellular matrix (ECM) protein, is mutated in 

Fraser syndrome (OMIM #219000). 
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Copy Number Variant Analysis of Heterozygous Deletions and Amplifications 

 

We are currently in the process of further investigating identified heterozygous deletions 

as well as amplifications on our samples (results not shown) in order to identify 

mutations that might be disease causing in our cohort.  

 

 

 

Diffuse Villous Hyperplasia of the Choroid Plexus 

 

Background 

 

Diffuse villous hyperplasia of the choroid plexus (DVHCP) is defined as diffuse 

enlargement of the entire choroid plexus occurring throughout the length of the choroid 

fissure.  DVHCP is a rare cause of hydrocephalus which according to contemporary case 

reports, is not adequately treated by shunting; It is a rare disorder, having been reported 

in only a handful of cases90-94.  Hydrocephalus and congenital malformations of the 

Dandy-Walker Complex are not often associated with chromosomal abnormalities.  

Herein we describe a case of a female child born with hydrocephalus, and multiple 

craniofacial anomalies including cleft palate and lip.  CT scan demonstrated DVHCP and 

hypoplasia of the cerebellar vermis.   
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Figure 6:  Axial non-contrast head CT. Representative images through the lateral 

ventricles (A) and third ventricle (B) demonstrate hydrocephalus, diffuse enlargement of 

the arachnoid spaces, diffuse villous hyperplasia of the choroid plexus and hypoplasia of 

the cerebellar vermis.  (C) Axial T1-weighted MRI with contrast further highlights the 

diffusely enlarged choroid plexus within the lateral ventricles.  (D) Sagital T1-weighted 

MRI without contrast demonstrates the hypoplastic cerebellar vermis consistent with 

Dandy-Walker malformation.  (E) Intra-op composite endoscopic view of the right 

foramen of Monroe revealing the dense choroid plexus. 
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High-resolution array mapping of the child’s genomic DNA demonstrated 

complete tetrasomy of the short arm of chromosome 9, establishing the karyotype of the 

child as 46XX+9p.  Complete, non-mosaic tetrasomy 9p is an extremely rare, typically 

fatal syndrome with a broad range of clinical features ranging from normal phenotype to 

Dandy-Walker Malformation and perinatal demise.  This is the first description of this 

genetic anomaly using high-resolution arrays, in a viable child broadening the clinical 

spectrum to include diffuse villous hyperplasia of the choroid plexus leading to 

hydrocephalus.   

 

Clinical Presentation 

 

  

The child presented to neurosurgical attention at the age of three months with an 

increasing head circumference, which crossed percentiles and failure to thrive.  She was 

the product of a term pregnancy, born to healthy parents with no prior history of genetic 

disease.  On examination, the head circumference was 42.5 cm.  Sutures were splayed 

open and the anterior fontanelle was widened and tense.  The child had a unilateral (left) 

cleft lip and palate, low-set ears, micrognathia, and beaking of the nose.  Otherwise, there 

were no other noted systemic signs or symptoms.  CT/MRI demonstrated 

ventriculomegaly, hyperplasia of the choroids plexus in the lateral ventricles, and a 

Dandy-Walker malformation variant.   
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Intervention/Technique 

 

The patient was taken to the operating room and a ventriculoperitoneal shunt was 

placed under endoscopic guidance.  Intra-op, marked hyperplasia of the choroid plexus 

was noted (Figure 1E).  The CSF overproduction overwhelmed her abdominal absorptive 

capacity leading to CSF ascites and wound dehiscence.  After an antibiotic course and 

shunt externalization (her CSF drainage was in excess of 1L/day), endoscopic-assisted 

surgical debulking of her bilateral choroid plexus hyperplasia was performed.  The shunt 

was then successfully internalized.  After two years of follow-up, her ventriculomegaly is 

gradually resolving as her shunt continues to function. 

 

Copy Number Variant Analysis 

 

Using the Beadstudio v3.3 genotyping software (Illumina, San Diego, CA, USA), 

analysis of the data revealed tetrasomy of the entire short arm of chromosome 9 (Figure 

2).  No other chromosomal anomalies were seen, indicating a karyotype/genotype of 

46XX+ 
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Figure 7: High-resolution SNP/CNV array analysis of the patient’s genomic DNA. 

Tetrasomy of the short arm of chromosome 9: 46XX+9p (Illumina BeadStudio 

Chromosome 9 window, b-allele frequencies).   

 

 

 

Cerebellar Atrophy and Pachygyria 

 

Background 

 

Non progressive human congenital ataxias are a rare, heterogeneous group of disorders 

that are characterized by motor disability, muscular hypotonia, incoordination, and 

impaired motor development.95-97  They present initially with general symptoms such as 

delayed motor milestones and hypotonia during the post natal period and early childhood, 

followed by the gradual onset of ataxic gait during the first few years of life. Some cases 

improve as motor functions develop, while others worsen early during infancy as motor 

demands increase on coordination. 97  
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This heterogeneous group of disorders has been associated with multiple other diseases 

including brain malformations, genetic syndromes, and congenital infections. It is 

thought that 4% of cases are due to a perinatal cause, while 45% of the cases are due to 

prenatal causes. The remaining half are speculated to be of unknown etiology.96 Of the 

associated brain malformations, cerebellar hyoplasia seems to be the most common, 

occurring in slightly less than 50% of cases. 98 The most severe cases have been noted to 

have marked hyoplasia of the vermis ,and mild to moderate involvement of the 

neocerebellum, but in other cases the neuroimaging findings have not correlated with the 

severity of the disease.98  

 

Evaluation of the distinguishable, inherited congenital ataxia syndromes with cerebellar 

hypoplasia has led to the identification of novel genes involved in the embryonic 

development of the cerebellum. Mutations in the Reelin gene have been identified to 

cause autosomal recessive lissencephaly with cerebellar hypoplasia 99, and PTF1a  

mutations have been linked to cerebellar agenesis and neonatal diabetes.100 Studies on 

Joubert syndrome, a group of recessively inherited conditions characterized by congenital 

ataxia, hypotonia, episodic breathing, mental retardation, and a specific malformation of 

the brainstem, cerebellum, and peduncles, have led to the identification of several genes 

including AHI1, NPHP1, CEP290, MKS3, and RPGR1L; encoding cilia-like functioning 

and modular scaffolding proteins.101-112 

 

Recently, mutations in the Very Low Density Lipoprotein Receptor (VLDLR) have been 

identified in patients in the Turkish 113 114, Iranian 115 and Hutterite 116 populations with 
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cerebellar atrophy and congenital ataxia following an autosomal recessive type of 

inheritance. These findings in conjunction with advances in the roles of these genes in 

mouse models have led to further understanding of the Relin-Vldlr pathway and its role 

in the developing cerebellum.   

 

Clinical Presentation 

 

The family originates from southeast Turkey. The two affected siblings are a product of a 

self-reported consanguineous first cousin marriage, ages 11 (NG 374-1) and 8 (NG 374-

2) at the time of presentation (Figure 8). Both patients were delivered by uneventful c-

sections with normal weights and heights at birth. They started holding their heads 

around 40 days, began to sit unsupported at age 1, and started walking at age 18 months 

with support from their hands. This is in contrast to unaffected children, which are able to 

walk unassisted on average by 15 months of age. The patients’ gait is severely ataxic, and 

they demonstrate hyperactive deep tendon reflexes. They do not exhibit any tremor. 

Examination also reveals dysarthria, dysmetria, and dysdiadokinesis, and they cannot 

construct full sentences. The older patient exhibits selective mutism, constructing full 

sentences only when speaking to himself. MRI scans from both affected siblings show 

pachygyria and cerebellar atrophy (Figure 8).    
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Figure 8 

 A. Representative pedigree of family NG-374.  Affected members are identified 

by filled symbols. Diagonal lines indicate deceased family members. Circles represent 

female and squares represent male family members.  

B. Magnetic Resonance Imaging (MRI) of the brain of affected siblings.  Sagittal 

T1 (1,2) and Coronal T2 (3,4) weighted images demonstrate prominent pachygyria and 

hypoplasia of the cerebellar vermis and hemispheres in both patients NG 374-1 (1,3) and 

NG 374-2 (2,4). 
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Copy Number Variant Analysis 

 
 

Homozygosity mapping of the affected siblings on Beadstudio v3.3 identified a 10 kb 

homozygous block shared by both patients in chromosome 9 starting at 102,542 bps and 

ending at 10,533,899 bps.  Affected-only copy number variation analysis of both siblings 

on Human610-Quad beadchips using the PennCNV algorithm and visual inspection of 

the plotted intensities on Beadstudio v3.3 showed a shared homozygous deletion (Figure 

9) on chromosome 9 spanning approximately 9.7 kb with the first and last deleted SNP 

markers being rs2375994 and rs10967306. The deletion was noted to be within the 

previously identified homozygous block on both patients. Compared to published reports 

of genomic variation in the Database of Human Variation 

(http://projects.tcag.ca/variation/), this area does not appear to be an area of common 

variability. Homozygous deletions in the VLDLR gene were absent in 300 other Turkish 

patients with malformations of cortical development that were genotyped. 

 

 

 
PCR / QPCR Results 

 

PCR analysis of the patients and parents revealed a homozygous deletion in the VLDRL 

gene encompassing exon 2, exon3, and exon 4 and no comparable homozygous deletion 

in the parents (Figure 9).  Real time PCR analysis of the region confirmed the 
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homozygous deletion in both siblings, and also found a heterozygous deletion in both 

parents when compared to controls. (Figure 5) Sequence analysis revealed a 21,218 bp 

deletion including exons 2 ,3, and 4 and part of exons 1 and 5 that began on 2612144 bps 

and ends on 2633338 bps. 
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Figure 9:  

A. Log R ratio plot of the genome-wide SNP based genotyping demonstrates a region on 

Chromosome 9 with a microdeletion in the VLDLR gene shared by both patients.  Scatter 

points represent normalized log R ratios (y) for probe intensities along the chromosome. 

Negative values below y = -1 represent a homozygous deletion spanning 9 consecutive 

probes shared by both patients. Shaded areas represent areas of autozygosity.  

B. Closer view of the deleted region on Chromosome 9 spanning 21,218 bps 

including the 9 consecutive SNPs.  Deleted segment is represented by a black bar. 

C. Quantitative PCR results of exon 3 of the VLDLR gene within the deleted 

segment showing homozygous deletions in both patients and heterozygous deletions in 

both parents. 
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Inbreeding Coefficient Estimates 
 

 

Inbreeding coefficient estimates were obtained for each patient using the Inbreeding 

coefficient function of the Plink software. Because of the differences in the SNP marker 

densities, results were divided by beadchip type. The mean for the 127 patients 

genotyped on the Illumina Human CNV 370k was 0.034 with a range of -0.01 to 0.203. 

The mean for the 119 patients genotyped on the Illumina 610 Quad beadchip was 0.022 

with a range of -0.014 to 0.175. The mean for the 40 controls genotyped on the Illumina 

370k was 0.087 with a range of 0.015 to 0.22.  The overall mean for all the 245 

genotyped patients was 0.028 with a range of -0.012 to 0.203. 
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Table 7: Inbreeding coefficients for each subgroup.  Inbreeding coefficients were 

compared between patients that had self reported consanguinity versus patients with 

unknown or reported no consanguinity.  The mean of the inbreeding coefficients for 

patients that were reported as consanguineous was 0.075 while the mean of the patients 

reported as non consanguineous or unknown was 0.005  

 

 

 

 

Table 8: Inbreeding coefficients for patients reported as consanguineous and 

patients reported as non-consanguineous. Inbreeding coefficient mean for patients 

reported as consanguineous was significantly higher than the inbreeding coefficient for 

patients reported as non-consanguineous.  
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Homozygosity Mapping 

 

We are currently in the process of performing homozygosity mapping on our samples 

(results not shown) in order to find common homozygous areas that may harbor 

homozygous mutations responsible for autosomal recessive diseases in the 

consanguineous cohort. Inbreeding coefficients will be used to select a consanguineous 

group of patients.       
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DISCUSSION 

 

 

The results of the two studies presented above demonstrate the utility of SNP genotyping 

and CNV analysis in uncovering the genetic basis of malformations of cortical 

development.  Specifically, two diseases are presented in this manuscript:  choroid 

hyperplasia, and cerebellar atrophy as part of the ongoing effort to identify disease-

causing mutations in our cohort of patients with cortical malformations. 

 

Choroid Hyperplasia 

 

First described in 1973117, tetrasomy 9p as a rare congenital chromosomal anomaly. Since 

that time, approximately 50 cases have been reported with a wide variety of phenotypic 

variants.  The severity of phenotype appears to correlate with the degree of mosaicism 

with non-mosaic cases resulting in perinatal demise in the first few weeks of life118-123.  

The majority of cases of 9p tetrasomy are mosaic and thus accounting for the diverse 

range of mild to severe phenotypes.  Commonality among the phenotypes has allowed for 

a syndrome to emerge consisting of hypertelorism, beaked nose, cleft palate and midface 

abnormalities, ear malformations, skeletal and joint abnormalities, hypoplasia of the nails 

and digits, hypertelorism, urogenital anomalies, developmental retardation, hypotonia, 

open sutures/wide fontanelles, clinodactyly, growth retardation, and 

ventriculomegaly/macrocephaly or microcephaly119, 120, 124, 125.   
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 Three prior infants have been described with choroid plexus pathology in 

association with 9p duplications.  Norman et al reported two patients, one with 

hemorrhagic choroid plexus hyperplasia, early perinatal demise, and mosaic tetrasomy of 

9p karyotype of 47,XY,+idic(9)(q11) and a second child developed hydrocephalus at 11 

months with choroid plexus hyperplasia on ultrasound and a trisomy 9p karyotype of 47, 

XX, +der(9)t(9;?)(q13;?)126.  The unknown, precise definition of the duplication 

demonstrates the low-resolution of Giemsa banding and traditional FISH analysis.  

Shapiro et al described a patient with bilateral choroid plexus “papillomata” and partial 

9p tetrasomy, partial 9p trisomy and a karyotype of 47, 

XX,+psudic(9)t(9;9)(9pter→9q22.1::9q12 or 13→9pter)123.  Hydrocephalus was initially 

thought to be a feature not seen in non-mosaic 9p duplications125, however,  numerous 

children are reported with mosaic and non-mosaic 9p duplications (trisomy or tetrasomy, 

complete or partial) associated with hydrocephalus119, 120, 122, 125, 127-130 or hydrocephalus 

specifically from Dandy-Walker malformations118, 131-139.  Only previously mentioned 

two papers specifically discuss the presence of choroid plexus abnormalities123, 126. 

 DVHCP is a rare disorder and results from treatment are limited to those reported 

in fewer than 10 reported cases.  Two reports have demonstrated complete resolution of 

hydrocephalus after choroid plexus resection, however there was associated morbidity 

with the approach140, 141.  The majority of cases argue for debulking of the choroid plexus 

and subsequent shunting as externalized ventricular drainage failed to demonstrate 

complete cessation of CSF overproduction90-94, 142.  This was the approach employed by 

our group. 
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The presence of 9p duplications has been examined in choroid plexus tumor 

specimens: cytogenic studies on 49 choroid plexus tumors found 9p duplication in 50% 

of choroid plexus papillomas and 33% of choroid plexus carcinomas143, while others 

have not been able to demonstrate consistent 9p duplications in choroid plexus tumors126, 

144.  The gain of 9p was associated with a significantly longer survival, and better 

prognosis for patients with choroid carcinomas143.  There likely exist genes on 9p, which 

play a role in choroid plexus growth and development.  This report expands the spectrum 

of phenotypic anomalies associated with non-mosaic tetrasomy 9p syndrome to include 

DVHCP.  As we refine the intervals on chromosome 9p involved, we will understand the 

relation of genes on 9p to midline anomalies and the growth and tumorigenesis of the 

choroid plexus. 

 

Cerebellar Atrophy 

 

The VLDLR gene is composed of 19 exons, spans 32 kb, and encodes a protein that is 

part of the Low Density Lipoprotein (LDL) gene family. It encodes a five domain, ligand 

binding receptor that is characterized by an N terminal 328-amino acid cysteine-rich 

ligand-binding domain, a 396-amino acid EGF precursor homology domain, a 46-amino 

acid O-linked sugar domain, a 22-amino acid single transmembrane domain, and a 54-

amino acid cytoplasmic COOH terminal domain. In humans two forms of the receptor  

have been identified, one that resembles the LDL receptor, and an alternative form with 

four domains that lacks the O-linked sugar domain. 145.The VLDLR has been suggested 

to be important in the metabolism of apoprotein-E containing triacylglycerol-rich 
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lipoproteins, beta-migrating VLDL and intermediate-density lipoproteins.146 It is also part 

of the Reelin signaling pathway 147. 

 

Reelin is an extracellular glycoprotein that is secreted by several types of neurons, 

including the Cajal-Retzius cells in the marginal zones of the cortex during embryonic 

development.148 It is important in the regulation of neuronal migration and positioning in 

the developing brain, as well as modulating synaptic plasticity and long term potentiation 

in the hippocampus during adulthood149. It has also been shown to stimulate dendrite and 

dentritic spine development 150, and the continual migration of neuroblasts generated in 

adult neurogenesis sites such as the subventricular zone and dentate nucleus.151 It is 

thought to interact through one of two receptors, the VLDLR and the Apolipoprotein-E 

Receptor Type 2 (ApoER2)152, on several intracellular proteins including Dab-1, an 

adapter protein. 147 According to a recent study, these two receptors might have divergent 

roles with VLDLR conducting the stop signal for migrating neurons while ApoER2 is 

essential for the migration of late-born neocortical neurons.153 

 

Reelin -/- mice were originally described by Falconer et. al in 1951 and were named for 

their distinct ataxic and “reeling” gait.154 Affected mice exhibit failed migration of the 

Purkinje cells, inverted cortical lamination, cerebellar hypoplasia, and ataxia.155-158. In 

humans, homozygous mutations of the Reelin gene are responsible for a type of 

autosomal recessive lissencephally, Norman-Roberts syndrome99. Another protein found 

to have a role in lissencephally, Pafahb1 (LIS1), was also shown to be part of the reelin 

pathway, interacting with the intracellular segment of VLDLR.159  
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Mutations in the VLDRL gene have been previously described both in humans and in 

animal models. Vldlr -/- mice appear to be grossly and neurologically normal, but contain 

ectopically located Purkinje cells in the cerebellum and radially aligned neurons in the 

cortex that appear to have failed to distribute152, 160. The first mutation observed in a 

human case in the gene was in the Hutterite population116 where a 199-kb homozygous 

deletion encompassing the complete VLDLR gene and possibly adjacent regulatory 

regions was noted to be responsible for the “Dysequillibrium Syndrome”. Originally 

described in the 1980s, the “Dysequillibrium Syndrome” in the Hutterite population 

consisted of an autosomal recessive constellation of non-progressive cerebellar ataxia, 

mental retardation, and cerebellar hypoplasia161, 162.  Patients were also noted to have 

delayed ambulation, strabismus, mild cortical simplification on MRI, and short stature 

(15%).  However, this deletion also encompassed adjacent regulatory regions, and 

possibly a second gene.  It was therefore unclear whether a mutation in VLDRL could 

solely explain the syndrome in its entirety.  Subsequently, a homozygous nucleotide 

substitution in exon 10 resulting in a premature stop codon in the VLDLR gene identified 

in an Iranian family with Disequilibrium Syndrome gave rest to this argument, and 

indeed showed that a truncated VLDRL protein in isolation was a satisfactory cause of 

DES.   

 

Since then, three Turkish families have been reported with Unertan Syndrome, which is a 

rare autosomal recessive neurodevelopmental condition with cerebellar and cortical 

hypoplasia accompanied by mental retardation, primitive and dysarthric speech, and most 
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notably, quadrupedal locomotion163.  One non-sense and one frameshift mutation (in two 

separate families) resulting in premature stop codons in exons 5 and 17 were identified in 

the Turkish families with Unertan syndrome, presumably causing the VLDLR to lack 

transmembrane and signaling domains.  

   

The cause of differences in locomotion phenotype are unclear, but Ozcelik et al. argue 

that it might be a result of different mutations in the same gene leading to different 

phenotypes, and variable expressions of the disease phenotype.114, 164 Ozcelik et al 

explain that they believe quadrupedal gait to be the result of their reported homozygous 

deletions resulting in this specific gait compared to the mutations resulting in the 

Dysequillibrium syndrome. In contrast, Herz and Humphrey argue that quadrupedal 

locomotion has developed in a subset of reported patients with VLDLR deletions as an 

adaptive process to the severe truncal ataxia, and the Unertan syndrome does not 

represent a separate genetic entity165, 166.  They believe that rural surfaces, imitation of the 

behavior of other affected siblings, lack of medical attention, and social acceptance of 

quadrupedal gait without correction are believed to have contributed to the development 

of quadrupedal gait in these patients. Even though it is true that some families were 

isolated from medical attention, this claim has also been debated by the presence of 

families where extensive medical care was sought, and quadrupedal gait was strongly 

discouraged yet still developed.  

 

Including our recent report, to date five different mutations in nine families have been 

described in the VLDLR gene including the original description in the Hutterites.  
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Structural examination of the gene and the defective protein does not reveal any 

identifiable portion that seems to be responsible for quadrupedal gait.  A stop codon in 

exon 5 and a frameshift mutation in exon 17 both lead to quadrupedal gait in Turkish 

families, whereas a stop codon in exon 10, and our recent report of a deletion affecting 

exons 1-5 resulted in bipedal, ataxic gait.  Thus, it is likely that DES and Unertan 

syndrome are clinically, but not genetically distinct syndromes, and represent a spectrum 

of disease resulting from dysfunctional VLDLR protein.  Where along the spectrum an 

affected patient will lay is likely the product of a complex interaction between genetic 

makeup and the environment, and cannot be predicted based on the mutation alone.  It is 

unlikely that VLDRL represents an indispensable gene in human bipedalism and 

evolution, but rather an integral part of cerebellogenesis. 
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