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Abstract 
 

Human T cells may be genetically modified to express targeted chimeric antigen receptors (CARs).  We 

have previously demonstrated that T cells modified to express a CAR specific to the B cell tumor antigen 

CD19, termed 19-28z, successfully eradicate systemic human CD19+ tumors in SCID-Beige mice.  While 

these results are encouraging, this xenogeneic tumor model fails to address potential limitations of this 

therapeutic approach in the clinical setting wherein these modified T cells encounter a hostile tumor 

microenvironment.  Specifically, these models fail to address potential effector T cell inhibition mediated 

by endogenous regulatory T cells (Tregs).  To investigate the role of inhibitory Tregs, we initially assessed 

the in vitro function of CAR-modified T cells in the context of Tregs.  We found that CD19-targeted T cell 

proliferation and cytotoxicity were inhibited by purified natural Tregs.  To further assess the role of these 

Tregs in vivo, we isolated and genetically modified Tregs to express the CD19-targeted 19z1 CAR.  We 

verified specific trafficking of targeted Tregs to CD19+ tumors in vivo, and demonstrate that 19z1 Tregs 

wholly inhibit anti-tumor function of subsequently injected 19-28z effector T cells even at low Treg to 

effector T cell ratios (1:8).  In order to overcome this limitation, we assessed whether the addition of a pro-

inflammatory cytokine in vitro could overcome Treg inhibition.  Indeed, the addition of exogenous IL-12 

mediated resistance of 19-28z T cells to Treg inhibition.  In light of this data we generated a bicistronic 

retroviral vector containing both the 19-28z CAR as well as the murine IL-12 fusion gene (19-28z IRES IL-

12).  Significantly, we found that 19-28z/IL-12+ T cells when compared to 19-28z+ T cells exhibited 

enhanced proliferation in vitro as well as resistance to Treg mediated inhibition.  Finally, we demonstrate 

that 19-28z/IL-12+ T cells overcome Treg inhibition in vivo in our SCID-Beige Treg tumor model.  In 

conclusion, tumor targeted T cells modified to express IL-12 demonstrate significantly enhanced in vivo 

anti-tumor efficacy in the presence of Tregs that are similarly targeted to the site of tumor.  These results 

validate utilization of IL-12 secreting tumor targeted T cells in future clinical trials. 
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Introduction 
 

Adoptive T cell Therapy For Cancer 

 Adoptive T-cell therapy refers to the infusion of tumor-targeting T-cells into the 

tumor-bearing host. The principle that T cells may serve as an effective and specific 

reagent for the eradication of tumor cells is demonstrated by the following observations 

from the allogeneic setting- 1. Patients undergoing allogeneic bone marrow 

transplantation (allo-BMT) for hematologic malignancies have lower relapse rates when 

compared to patients receiving a syngeneic bone marrow graft from an identical twin 

sibling; 2. Patients who have received a T-depleted allo-BMT graft, while experiencing 

fewer undesirable graft versus host T cell-mediated complications (GvHD), also 

experience a higher degree of tumor relapse; and 3. Patients who experience chronic 

GvHD are overall less likely to have disease relapse when compared to those patients 

who do not develop GvHD.  These clinical findings strongly suggest that T cells mediate 

both a GvHD effect as well as a graft versus leukemia (GvL) effect.  Finally, the role of T 

cell-mediated targeting and eradication of tumor is most powerfully demonstrated by the 

high rates of remissions seen in patients with chronic myelogenous leukemia (CML) who 

relapse after allo-BMT but are subsequently treated with T cells harvested from their 

original stem cell donor, a procedure known as donor leukocyte infusion (DLI)1-3. While 

these data support the contention that T cells may eradicate systemic disease, enthusiasm 

for the use of DLI in the allo-BMT setting is tempered by the lack of suitable HLA-

identical bone marrow donors for many patients, associated GvHD complications, and 

the fact that efficacy of this approach appears to be largely limited to patients with CML. 
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In the autologous setting, adoptive T cell therapy has achieved very limited 

success. In this setting of melanoma, tumor infiltrating lymphocytes (TILs), specific to 

antigens on melanoma tumor cells, may be isolated from resected tumor, expanded ex 

vivo, and subsequently re-infused back into patients with metastatic disease 4-7.  While 

this approach has resulted in significant tumor regressions in some patients, over 80% of 

patients eventually relapse or fail to respond at all.  Furthermore, application of this 

approach in most other cancers has not been studied, and would likely be limited by a 

paucity of TILs present in tumors less immunogenic to the host than melanoma.   

 

Chimeric Antigen Receptors 

 To overcome lack of suitable donors, tumor specificity and complications from  

GvHD , autologous T cells may be genetically targeted to tumor antigens through 

chimeric antigen receptors (CARs) using gammaretroviral vectors8.  These genetically 

engineered CARs fuse a tumor antigen specific single chain fragment (scFv) derived 

from mouse antibody to the TCR ζ-signaling domain, and will serve as artificial T-cell 

receptors (TCRs) that allow us to mimic a functional TCR signal transduction response 

with effective activation.   The specificity to the tumor antigen and autologous nature of 

the modified T-cells to the patient may provide effective therapy while minimizing the 

risk for the development of GVHD or autoimmune reactivity against normal tissues.  

Furthermore, targeting tumor cells with CAR-modified T cells has the advantage of 

overcoming several tumor immune escape mechanisms including the failure of tumors to 

express immunogenic proteins, the failure of tumors to express co-stimulatory ligands, 

and tumor downregulation of MHC-mediated antigen presentation8-10.  However, 
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although this form of therapy appears promising, recent clinical trials using genetically 

modified T cells have largely failed to eradicate patient disease11,12  It is increasingly 

apparent that the factors determining the success of therapy are not only the effective 

targeting and trafficking of modified T cells to the site of tumor, but also their ability to 

persist in a hostile tumor microenvironment.  In order to better understand treatment 

failures using this approach, models that study anti-tumor response of T cells as they 

encounter an inhibitory environment are needed.  To this end, we sought to investigate 

the impact of regulatory T cells (Tregs), a potent endogenous suppressive element of the 

immune system, on the anti-tumor activity of adoptively transferred modified T cells at 

the site of tumor. 

 

Regulatory T cells 

 Tregs are a subset of CD4+ CD25+ T cells that are either derived from the thymus, 

referred to as natural Tregs (nTregs), or from the periphery where non-Tregs may be 

induced to acquire a Treg phenotype13.  Such “induced” Tregs have been categorized as 

phenotypically distinct Tr1 and Th3 subsets of Tregs14.  Of all the subsets, the best 

characterized are nTregs.  These cells, defined as CD4+ CD25+ CD127- Foxp3+ T cells, 

have been extensively studied and widely accepted to facilitate suppression of 

autoimmune T cell responses and maintain peripheral tolerance15-18.  These cells 

represent approximately 5-10% of the peripheral CD4+ T cells in both mice and 

humans16,19,20, and have high expressions of cytotoxic T lymphocyte associated antigen 4 

(CTLA-4), glucocorticoid-induced TNFR-related protein (GITR), CD39, and CD7321-23 

in addition to the above markers.  In many cancers, including the B cell malignancies 
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chronic lymphocytic leukemia (CLL) and non-Hodgkins lymphoma, it is reported that 

elevated numbers of Tregs are present in the periphery and within the tumor of the 

patient24-26.  Furthermore, there appears to be a direct correlation between increased 

amount of Tregs and poorer prognosis amongst many malignancies24,27,28.  Although the 

precise mechanism of suppression by Tregs remain controversial and appear to be 

environment dependent29, the increased presence of this suppressive cellular entity raises 

the concern that the hostile microenvironment it creates could hinder the success of 

cancer adoptive cell therapies30. 

 The difficulty with studying the tumor microenvironment and how it causes tumor 

immune escape is the laborious dissection through the many players in the immune 

system.  While there have been many studies implicating Tregs as the cause of failed 

anti-tumor immune response using either specific Treg depleting strategies28,31,32 or even 

systemic lymphodepletion33,34.  Because there are so few Tregs naturally, the creation of 

models that study the effect of Tregs on anti-tumor immunity has been technically 

challenging.  Until recently, Tregs were thought to be anergic and infeasible to expand in 

culture.  But new discoveries in the biology of Tregs has enabled investigators to 

effectively and readily isolate35, stimulate, and expand pure Tregs for experimental 

purposes36-38.  Despite this advancement in ex vivo culture methods, progress has been 

slow in the study of Tregs in vivo due to the incomplete understanding in what causes 

increased levels of Tregs in cancer.  As a result, investigators have been unable to study 

the impact of Tregs prospectively, in a manner that mimics the clinical setting. 
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Interleukin-12 

 IL-12 is a heterodimeric cytokine composed of an α chain (p35 subunit) and a β 

chain (p40 subunit) dimerized via a disulfide link.   When first isolated, IL-12 was 

reported to enhance the cytotoxic potential of both NK cells as well as T cells, enhance 

activated T cell proliferation, and mediate Th1 differentiation39,40. Mescher and co-

workers equated IL-12-mediated signaling to a “signal 3” for T cells wherein co-

stimulation (signal 2) with associated IL-2 secretion augments T cell proliferation, while 

IL-12 signaling (signal 3) specifically enhances T cell cytotoxic effector function through 

upregulation of granzyme B, thereby effectively overcoming T cell tolerance41-43. 

 More recently, investigators have found that IL-12 has a marked influence on the 

tumor microenvironment and T cell resistance to Tregs and apoptosis.  Kilinc et al have 

demonstrated profound reversal of tumor immune suppression in Balb/c mice bearing 

established lung carcinoma tumors following intra-tumoral injection of IL-1244.  

Investigators found that following intra-tumoral IL-12 injection, there was a steady 

decrease in the Treg population within the tumor associated with an increased secretion 

of IFNγ and restored expression of granzyme B by infiltrating CD8+ effector/memory T 

cells.  Furthermore, the authors noted an increased infiltration of exogenous tumor-

targeted T cells into the tumor and this cascade of events resulted in tumor regression.  

Similarly, studies by Bankert et al found that IL-12 could reverse anergy of T cells 

derived from human lung tumor tissues45-47.  Xenografted human lung tumor tissue into 

SCID mice followed by intra-tumoral injection with IL-12 microbeads resulted in 

complete eradication of tumor cells in the xenograft, a process of tumor regression 

primarily mediated by endogenous CD4+ T cells through an IFNγ dependent mechanism.  
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These studies demonstrate that IL-12 may mediate reactivation of anergic CD4+ T cells 

within the tumor leading to profound expansion of these reactivated T cells with 

associated secretion of IFNγ.  Finally, work by King and Segal expanded on these 

observations by demonstrating in the murine setting that anergy of CD4+ T cells induced 

upon co-culture with Tregs was reversed by the addition of exogenous IL-1248.  The 

authors demonstrate that this effect was due solely on effects by IL-12 on the effector T 

cell population, with IL-12 having no effect on the Treg population.  These observations 

make IL-12 an attractive agent to incorporate into gene-modified adoptive T cell therapy 

as a means to overcome the suppressive tumor microenvironment. 

 Here, we sought to investigate the in vivo impact of Tregs on targeted T cell 

therapy in a systemic tumor model and devise a way to overcome the suppression, if any, 

that would be present.   We have previously generated CARs specific for the human 

CD19 (hCD19) antigen expressed on normal B cells and most B cell malignancies49,50.  

While human CD19-targeted T cells eradicate established human CD19+ Raji Burkitt 

lymphoma tumors in a majority of treated SCID-Beige mice49, this xenogeneic tumor 

model fails to address potential limitations of immune suppression by Tregs. We 

therefore utilized CAR-modified Tregs, similarly targeted to CD19, to generate a 

suppressive tumor microenvironment that mimics the clinical setting.  In this model, the 

CD19 targeted human Tregs are infused into SCID-Beige mice bearing established 

CD19+ human tumors prior to the adoptive transfer of targeted cytotoxic T cells. Our 

results demonstrate that CAR+ Tregs traffic to the site of tumor and exert potent 

suppression on similarly targeted effector T cells.  Full suppression by the Tregs require 

their localization to the site of tumor as well as in vivo activation through the CAR. 
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Utilizing a bicistronic retroviral vector containing both 19-28z CAR as while as the IL-12 

fusion gene, we demonstrate that targeted delivery of a pro-immune cytokine can reverse 

such Treg-mediated suppression.  Taken together, our data support the hypothesis that 

antigen specific Tregs may significantly compromise the efficacy of genetically modified 

T cell therapy.   The inhibition, however, can be overcome by the incorporation of genes 

of proinflammatory cytokines in the CAR which facilitates its delivery specifically at the 

tumor microenvironment. 
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Statement of Purpose, Specific Aims, and Hypothesis 
 
 The purpose of this research project is to study the biology of CAR modified 

adoptive T cell therapy in the presence of a hostile tumor microenvironment.  We decided 

to study this in the context B cell malignancies, because a majority of patients with B cell 

malignancies either die from their disease or are incurable despite a multitude of 

treatment options such as chemotherapy, bone marrow transplantation, radiation, and in 

recent years, monoclonal antibodies such as Rituximab and Alemtuzumab.  This 

heterogeneous group of neoplasms comprise a vast majority of non-Hodgkin’s 

lymphomas (NHL), acute lymphoblastic leukemias (ALL), and chronic lymphocytic 

leukemias (CLL).  The targeting of CD19 using autologous anti-tumor T cells would be a 

promising novel treatment approach that could improve the outcome of these patients.   

 A better understanding of the tumor microenvironment provides clues as to why 

adoptive T cell therapies in their current form have only modest potential for full tumor 

eradication.  While T cells may be successfully targeted to the tumor, they are likely to 

encounter a wide array of suppressive elements that may facility tumor immune escape.  

For this reason, future research in the field of adoptive T cell therapy of requires studies 

not only on the T cell specificity to tumor, but also a focus on how these T cells are 

capable of maintaining effector function within the tumor microenvironment. In our 

proposed studies, we sought to investigate first the impact Tregs at the site of tumor on 

the efficacy of adoptively transferred cytotoxic T cells, and, second, the impact of IL-12 

secretion by tumor targeted T cells on the resistance of these T cells to inhibition by the 

suppressive tumor microenvironment.  We anticipate that this clinically relevant model 
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will have broad implications to adoptive T cell therapies of cancer and the design of 

future clinical trials using this treatment modality.  The specific aims of this project are: 

 

Aim 1. To isolate and expand a viable population of CD4+CD25+FOXP3+ Tregs 

from human peripheral blood for CD19 CAR transduction. 

 

Hypothesis: We hypothesize that a viable population of CD4+CD25+FOXP3+ Tregs 

can be isolated from human peripheral blood and successfully expanded for CD19 CAR 

transduction. 

 

 

Aim 2.  To investigate whether CAR modified Tregs retain functionality on effector 

T cell proliferation and cytotoxicity in vitro. 

 

Hypothesis:  We hypothesize that Tregs  transduced with CARs will retain suppressive 

functionality when compared to non-transduced Tregs and potently inhibit effector T cell 

functions. 

 

 

Aim 3.  To assess whether adoptively transferred CAR modified Tregs  traffic to site 

of tumor and hinder the successful treatment of SCID-beige mice with CD19+ 

Burkitt’s lymphoma with 19-28z+ T cells. 
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Hypothesis: We hypothesize that CD19 specific Tregs will successfully traffic to the 

sites of tumor and suppress the antitumor effects of 19-28z+ T cells against CD19+ 

Burkitt’s lymphoma in a dose dependant manner in vivo. 

 

Aim 4. To demonstrate the ability of IL-12 modified tumor targeted T cells to 

overcome Treg inhibition within the tumor microenvironment. 

 

Hypothesis:  IL-12 protects CAR-modified T cells from Tregs, reversing the previously 

observed Treg suppression of effector T cell cytotoxicity at the site of tumor. 
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Methods: 

 

Isolation of CD4+ CD25- responder T cells and CD4+ CD25+ nTregs 

Peripheral blood from healthy donors, obtained under institutional review board (IRB)-

approved protocol 95-054, was collected in BD Vacutainer CPT tubes (BD Medical, 

Sandy, UT), and fractionated by subsequent centrifugation as per the manufacturer’s 

instructions to yield peripheral blood mononuclear cells (PBMNCs).  CD4+ CD25- 

responder T cells and CD4+ CD25+ Tregs were then isolated from PBMNCs using the 

CD4+ CD25+ Regulatory T Cell Isolation Kit (Dynal brand; Invitrogen, Carlsbad, CA) 

following the manufacturer’s protocol.  Briefly, CD4+  T cells were negatively isolated 

with magnetic microbeads, the population is then positively selected for CD25+.  FACS 

analysis is then used to confirm CD25 and Foxp3 double-positivity.  Purity of the isolated 

cells was always above 90% as assessed by FACS analysis. 

 

Genetic Modification of T cells 

We performed retroviral transduction of healthy human donor T cells, obtained following 

informed consent under the MSKCC institutional review board approved protocol #90-

095, by activating the cells using PHA or in the case of Tregs the Dynal CD3/CD28 

human Treg expander and transducing using PG-13 retroviral supernatants with 

spinoculation in retronectin coated 6 well plates for 1 hour with retroviral supernatent at 

3200 rpm, 37oC, for 2 consecutive days as previously reported51. 
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Culture and expansion of CAR+ T cells 
 
CAR+ effector T cells were expanded in RPMI media supplemented with IL-2 

(100IU/ml) with weekly stimulation on CD19/CD80 NIH-3T3 fibroblasts as artificial 

antigen presenting cells51.  CAR+ Tregs were expanded in RPMI media supplemented 

with IL-2 (500IU/ml) and rapamycin 1ug/ml with Dynal CD3/CD28 human Treg 

Expander beads or  CD19/CD80 NIH-3T3 fibroblasts. 

 

In vitro Cytotoxicity Assay 
 
19-28z+ effector T cells were co-cultured with Raji cells in RPMI media at 1:1 ratio with 

or without equal amounts of 19z1+ Tregs for 24 hours.  Flow cytometric analysis with 

anti-CD19 antibody (Caltag Laboratories, Burlingame, CA) was done at 24 hours after 

start of co-culture, CD19 positive cells were gated and regarded as viable Raji cells. 

 

Suppression Assay 

5 x105 T cells were labeled with 5 µM CFSE (Invitrogen, Carlsbad, CA) and cultured 

with titrated numbers of purified autologous CD4+ CD25+ Foxp3+ Tregs in RPMI 

(GIBCO brand; Invitrogen, Carlsbad, CA) supplemented with 10% heat-inactivated fetal 

bovine serum (FBS; HyClone, Logan, UT) in 24-well tissue culture plates (Costar, 

Corning, NY).  Stimulation was carried out in the absence of IL-2 and with 5 x105 

Dynabeads CD3/CD28 T Cell Expander (Dynal brand; Invitrogen, Carlsbad, CA) for a 

bead-to-responder T cell ratio of 1:1.  After 72 hours of incubation at 37°C, responder T 

cell proliferation was determined by flow cytometric detection of CFSE fluorescence as 

well as Luminex assay detection of IL-2 in the media.  
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Bioluminescence imaging 

Bioluminescence was detected using a Xenogen IVIS Imaging System (Xenogen). We 

performed imaging either 10-15 sec following bolus IV injection with coelenterazine 

(250 µg) (Nanolight Technology), substrate for extGLuc, or 10-15 min after 

intraperitoneal injection of D–luciferin (150 mg kg-1) (Xenogen), substrate for FFLuc.  

We imaged mice individually whenever coelenterazine substrate was used whereas 2-5 

mice were simultaneously imaged in luciferin-based acquisitions. Time of image 

acquisition was in the range of 0.5 to 3 min.  Field of view of 15, 20, or 25 cm with low, 

medium, or high binning in an open filter was utilized to maximize signal intensity and 

sensitivity.  We obtained acquisition of image data sets and measurement of signal 

intensity through region of interest (ROI) analysis using Living Image software 

(Xenogen), and normalized images displayed on each data set according to color 

intensity.  

 

Statistical Analysis 

Statistical analysis done using paired t test for line graph comparisons and log rank 

analysis for survival curve comparisons.  P values of less than 0.05 were considered 

statistically significant. 
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Results 

 
I. Natural and induced Tregs can be modified with CARS and are readily 

expandable.  

 To establish a tumor microenvironment similar to the clinical setting, where Tregs 

are elevated at the tumor, we sought to genetically redirect them to the actual location of 

the cancer cells.   We have previously shown that effector T cells may be modified to 

express a functional CD19-specific CAR, termed 19z149, that facilitates specific 

accumulation of T cells at the site of tumor and exert effector function.  However, it is 

less certain whether human Tregs can be manipulated with equal efficiency due to their 

anergic nature and difficulty to maintain in culture37,52.  To assess the feasibility of genetic 

modification in Tregs, we isolated natural Tregs (nTregs) and generated induced Tregs 

(iTregs) for our experiments.    nTregs were isolated using immunomagnetically sorting 

for the CD4+ CD25hi population from PBMNCs.  The nTregs isolated were consistently 

>95% in purity with their Foxp3 expression routinely 70-90% (Fig. 1a).  iTregs were 

generated using a published method by coculturing CD4+ CD25- Foxp3- cells with TGF-

β53,54, with the induced Foxp3 expression routinely 60-80% (Fig. 1b).   The cells were 

then retrovirally transduced with 19z1 using a previously described method (Fig. 1c)49, 

and over 60% Foxp3+ CAR+ cells are readily obtainable for both nTreg (Fig. 1d) and 

iTreg (data not shown) groups.  

 We next assessed the proliferation potential of the CAR+ Tregs, to see if sufficient 

cell numbers could be obtained for larger scale in vivo experiments.  We have previously 

developed a method to expand CAR+ T cells using NIH-3T3 murine fibroblasts 
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genetically engineered to express CD19 and CD80 [3T3(CD19/CD80)]49.  To compare 

the efficacy of commercial CD3/CD28 T cell expansion beads with 3T3 (CD19/CD80) 

AAPCs at expanding Tregs, equal numbers of CAR+ nTregs and iTregs were cocultured 

with beads per manufacturer’s recommended protocol or 3T3 (CD19/CD80) AAPCs after 

initial T-cell transduction.  CAR+ nTregs and iTregs proliferated equally well for both 

conditions, with greater than 120 fold total cell expansion over 28 days (Fig. 1e).  

However, in terms of expanding pure populations of transduced Tregs, we found in a 

follow-up experiment that the 3T3 (CD19/CD80) AAPCs provided specific stimulation 

for the CAR+ cells and generated nearly twice the amount of absolute CAR+ cells over 

beads at 28 days (Fig. 1f).   
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Figure 1.  Isolation and transduction of Tregs.  (A) Isolation of nTregs from peripheral 
blood utilizing the Dynal Treg isolation kit.  Treg phenotype is verified by CD4 CD25 
surface staining as well as Foxp3 intracellular staining.  (B) Generation of iTregs using 
10ng/mL TGF-b for 3 days during initial activation of CD4+ CD25- naïve T cells. (C) 
Schematic of the 19z1 CAR.  (D) Isolated nTregs are successfully transduced with the 
19z1 CAR, FACS analysis is done using intracellular Foxp3 staining as well as an 
antibody specific for the CAR, 12d11, created at Sloan-Kettering Cancer Center. (E) 
19z1+ Tregs exhibit capacity for expansion on 3T3(hCD19/CD80) AAPCs and 
CD3/CD28 microbeads. (F) The absolute percentage of 19z1+ Tregs in increased with 
3T3(hCD19/CD80) AAPC expansion in comparison to CD3/CD28 microbeads (n = 3; *, 
p < 0.01). 
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II. Expanded natural but not induced Tregs confer potent suppressive activity. 

To better mimic a hostile tumor microenvirnment, we sought to define the 

suppressive activity of expanded CAR+ nTreg and iTregs and identify the more potent 

and consistent suppressor cell type of the two. Because both nTreg and iTreg share 

approximately the same number of Foxp3+ CAR+ cells, we predicted that their 

suppression capability would be comparable.  We first conducted a standard CFSE-

labeled suppression assay where 5 x105 effector cells were cocultured with different 

ratios of suppressor cells.  Unexpectedly, while nTregs showed visible inhibition even at 

1:16 suppressor to effector cell ratio, iTregs showed no inhibition at all for all ratios 

compared to control, non-suppressive CD4+ Foxp3- cells (Fig. 2a). 

 To confirm the inhibitory activity of the Tregs, we used the Luminex assay to 

detect IL-2 as a surrogate marker for functional suppression in the cocultures.  The IL-2 

level for cocultures with nTregs decreased as we increased the suppressor to effector 

ratio, consistent with published data52,55. However, in contrary to the nTreg results, the IL-

2 level in the cocultures with iTregs increased as we added more suppressors (Fig. 2b). 

 To further characterize the hostile tumor microenvironment mediated by Tregs, 

we next sought to compare the suppressive capability of nTreg and iTregs in terms of 

inhibition of effector T cell cytotoxicity.  Effector T cells were first cocultured with 

nTreg or iTregs at 1:1 ratio for 24 hours to ensure the Tregs can exert their suppressive 

function upon the effector T cells.  Next, Raji cells, also at 1:1 ratio with the effector T 

cells, were added to the cocultures.  24 hours later, effector T cell cytotoxicity was 

assessed by the amount of Raji cells that remain in culture.  CAR+ effector T cells were 
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cocultured with Raji cells alone as positive control, and nTreg as well as iTregs were 

cocultured with Raji cells alone for negative control.  The data showed that nTregs 

completely inhibited killing of Raji cells in culture, as the Raji cell population remaining 

were nearly identical to negative controls.  iTregs were unable to inhibit effect T cells, as 

CAR+ effector T cells were able to completely eradicate the Raji cells in the coculture in 

similar fashion to effector T cells alone (Fig. 2c). 
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Figure 2.  CAR+ nTregs mediate potent suppression in vitro. (A) 19z1+ nTregs inhibit 
proliferation of CD3/CD28 microbead stimulated T cells as assessed by FACS analysis of 
CFSE stained T cells at 3 days after co-culture.  Inhibition is evident even at a nTreg to T 
cell ratio of 1:16.  iTregs and control group with non-Treg CD4+ T cells demonstrated no 
inhibition. (B) nTreg inhibits naïve T cell secretion of IL-2 in a dose dependent manner 
as assessed by Luminex cytokine assay of culture media 1 day after activation of T cells 
with CD3/CD28 microbeads.  iTreg cultures resulted in more IL-2 secretion, in a dose 
dependant manner, when compared to no Treg controls (n = 3). (C) Isolated nTregs, as 
opposed to iTregs, inhibit 19-28z effector T cell lysis of Raji tumor cells at 24 hours 
following addition of targeted tumor cells. 
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III. CAR+  nTregs specifically traffic to site of  tumor. 
 

 Having determined that nTregs are the more potent suppressor cells, we decided 

to utilize them instead of iTregs for all subsequent experiments, and elected to 

characterize their trafficking pattern in vivo to see if they can be brought to the site of 

tumor.  We employed a dual bioluminescent imaging model that will allow us to 

simultaneously image tumor cells and T cells within the same animal.  We injected 

SCID-Beige mice subcutaneously with tumor cells that are modified to express the 

bioluminescent enzyme Firefly luciferase (Raji-FFLuc) in the left flank to establish a 

solid tumor as a target for the CAR+ nTregs to see if they will successfully traffic to 

tumor.  At 7 days, when the tumors were palpable, mice were injected intravenously with 

1 x 107 targeted nTregs modified to express the membrane anchored bioluminescent 

enzyme external-Gaussia luciferase (19z1+ extGLuc+ nTregs) to allow for dual imaging of 

the tumor as well as the nTregs.   nTregs co-transduced with the irrelevant Pz1 CAR56 (an 

irrelevant CAR targeted to the prostate tumor antigen PSMA) and extGLuc, were used as 

a control.   Bioluminescent imaging at 24 hours demonstrated 19z1+ extGLuc+ T cell 

signal localization at the Raji tumor on the left flank as well as the liver.  In contrast, Pz1+ 

extGLuc+ nTregs did not traffic to the Raji tumor but only to the liver (Fig. 3a).  At 

autopsy, immunohistochemistry staining for T cells using CD3 confirms the presence of 

Tregs in the Raji tumor for the mouse that received the19z1+ extGLuc+ but not the Pz1+ 

extGLuc+ nTregs (Fig. 3b).   These observations strongly suggest CAR+ nTregs are 

capable of specifically trafficking to tumor. 
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Figure 3.  CAR+ nTregs traffic specifically to tumor. (A) 19z1+ nTregs labeled with 
exGLuc were imaged 24 hours following systemic infusion into SCID-Beige mice with 
subcutaneous Raji-FFLuc tumors.  Differential bioluminescent imaging of tumor and T 
cells demonstrates trafficking of 19z1+ nTregs to the tumor while control Pz1+ nTregs fail 
to accumulate in the tumor. (B) Immunohistochemistry of subcutaneous Raji tumors 
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verify the presence of CD3+ Tregs in the 19z1+ nTreg infused mice with little presence of 
Tregs in the Pz1+ nTreg treated mice. 
 
 
IV. CAR+ nTregs prevent the successful eradication of established systemic Raji 

tumor by adoptive transfer of similarly targeted CAR+ effector T cells. 

 

 To investigate the impact of nTregs at the site of tumor on the efficacy of 

adoptively transferred CAR+ effector T cells in vivo, we next employed a previously 

described systemic Raji tumor model where a single injection of 19-28z+ effector T cells 

can eradicate established systemic Raji tumors 60%-80% of the time49.   In this 

experiment, SCID-Beige mice were injected intravenously with 1 x 106 Raji tumor cells, 

4 days later, 1 x 107 19z1+ nTregs were systemically injected in the tumor bearing mice 

24 hours prior to the19-28z+ effector T cell injection (also 1 x 107 cells) to ensure that the 

Tregs arrive at the site of tumor first to exert suppression .  We observed that, consistent 

with our in vitro data, 19z1+ nTregs were capable of completely inhibiting the eradication 

of tumor by the 19-28z+ effector T cells, with 80% survival in the 19-28z+ effector T cell 

alone group and 0% survival in the effector T cell plus Treg group as well as the Treg 

alone and Pz1+ effector T cell control groups (Fig. 4a). 

 To assess for the minimum dose of nTregs required to exert suppression, we 

titrated the amount of nTregs to effector ratios from 1:16 to 1:1 in the same animal 

model.  We observed that the CAR+ nTregs were able to fully suppress the anti-tumor 

efficacy of effector T cells at a dose as low as 1:8 suppressor to effector cell ratio, 

suggesting that CAR+ nTregs are potent inhibitors of adoptively transferred T cell therapy 
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that do not require high cell number to generate a hostile tumor microenvironment (Fig. 

4b). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. CAR+ nTregs inhibit antitumor efficacy of adoptively transferred CAR+ T cells 
in vivo.  (A) 19z1+ nTregs infused 24 hours prior to 19-28z+ effector T cell treatment 
completely abrogated anti-tumor efficacy of these effector T cells when compared to 
mice treated with 19-28z+ effector T cells alone (*, p < 0.01 compared to 1928z Teff + 
19z1 Treg). (B) Four doses of nTregs were compared for ability to suppress T cell 
therapy; compete suppression of anti-tumor efficacy were noted at 1:1, 1:4, and 1:8 Treg-
to-effector T cell ratios (*, p < 0.02 compared to 1:8 Tregs). 
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V. Full in vivo suppression by CAR+ nTregs requires their localization at the site of 

tumor and presence of zeta chain signaling domain. 

 
 To dissect the mechanism contributing to Treg suppression observed in our 

system, we employed the use of three different CARs, each with distinct properties.  

19z1+ Tregs localizes to the site of tumor and exerts effector in the presence of CD19 

antigen stimulation as stated above.  Also as shown above, Pz1+ Tregs do not traffic to 

the site of tumor nor do they respond to CD19 antigen stimulation (Fig. 5b).  A third 

CAR, termed 19(del), which contains the anti-CD19 scFv but lacks the TCR ζ-signaling 

domain (Fig. 5a), generates Tregs that do not respond to CD19 antigen stimulation (Fig. 

5b) but retains the ability to traffic specifically to Raji tumor (data not shown), possibly 

due to the ability of the anti-CD19 scFv to facilitate accumulation of cells upon contact 

with its cognate antigen at the tumor bed.   

 To test whether localization as well as TCR signaling were necessary for the 

observed suppression, mice were injected intravenously with Raji tumor on day -4, then 

injected with 19z1+, 19(del)+, and Pz1+ nTregs on day 0, followed by injection of 19-28z+ 

effector T cells 1 day later as described previously.  Our data demonstrates that while 

19z1+ Tregs conferred full suppression, resulting in 0% long term survival for the 19-28z 

T cell treated mice, both 19(del)+ and Pz1+ Tregs were able to confer partial suppression, 

resulting in 33% long term survival (Fig. 5c).  This finding suggests that full suppressive 

activity requires both localization at the site of tumor and TCR signaling, but a partial 

suppression is possible without either property. 
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Figure 5. Full nTreg suppression in vivo is dependent on cell localization at site of tumor 
and TCR signaling. (A) Schematic of the 19(del) CAR. (B) 19z1, 19(del), and Pz1 
transduced nTregs were expanded on 3T3 (hCD19/CD80) AAPCs to assess proliferation.  
Only 19z1+ proceeded to expand significantly (20 fold) over 15 days. (C) 19z1+ nTregs 
infused 24 hours prior to 19-28z+ effector T cell treatment completely abrogated anti-
tumor efficacy of these effector T cells when compared to 19(del)+ and Pz1+ nTreg 
infused mice which only conferred partial suppression. (*, p < 0.01 compared to 1928z 
Teff + 19z1 Treg; **, p < 0.02) 
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VI. Exogenous IL-12 protects 19-28z T cells from Treg inhibition of proliferation. 

 Having observed that Tregs localized at the site of tumor can act as inhibitors 

against adoptively transferred tumor-targeted effector T cells, we sought to discover ways 

to overcome this suppression.  We decided to test the effect of the pro-inflammatory 

cytokine IL-12 on our T cells, because it has been well documented to promote T cell 

effector function (see introduction- interleukin 12).  We used a CFSE-based proliferation 

assay to assess the suppression of effectors by Tregs in the presence or absence of IL-12.  

Resting 19-28z+ T cells (effectors) were CFSE-labeled and co-cultured with Tregs at 

three different effector to suppressor ratios in a standard suppression assay.  Dynal 

CD3/CD28 beads were added at 1:1 bead to effector cell ratio to activate the 19-28z+ T 

cells.  Flow cytometric analysis for CFSE+ T cells were done on day 3 post activation, 

showing effects of Treg suppression with/without IL-12 1ng/ml in the culture media. 

(Fig. 6a) Proliferation of 19-28z+ T cells in the presence of Tregs without IL-12 in the 

media. (Fig. 6b) Proliferation of 19-28z+ T cells in the presence of Tregs with IL-12 

supplementation.  Data demonstrates increased proliferation of 19-28z+ T cells (69.1, 

67.3,and 54.5% vs 30.3, 26.6, 18.6%) with the addition of IL-12. 
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Figure 6.  IL-12 protects T cells from Treg suppression.  (A) nTregs co-cultured with 19-
28z+ effector T cells followed by stimulation with CD3/CD28 microbeads results in the 
inhibition of 19-28z+ T cell expansion.  (B) The addition of exogenous IL-12 (1ng/mL) to 
the T cell co-culture restores 19-28z+ effector T cell proliferation despite the presence of 
inhibitory nTregs. 
 

VII. Anti-CD19 T cells genetically modified to express IL-12 overcome Treg 

inhibition in vivo. 

 In light of the above observation that IL-12 can mediate effector T cell resistance 

to Treg inhibition, we elected to generate CD19 targeted T cells capable of secreting IL-

12, using a bicistronic retroviral vector containing the 19-28z CAR and murine IL-12 

fusion gene (Fig. 7a).  We next tested the utility of T cells modified using this construct 

using the previously established SCID-Beige tumor model.  The expression of the 19-28z 

IRES IL-12 transduced T cells readily express the CAR at a level comparable to the 19-

28z parent CAR transduced T cells.  An animal tumor model with 1:1 Treg to T cell 
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inhibition were set up as described in the previous experiment, and data shows 60% long 

term survival of 1928z/IL-12+ T cell treated mice vs. 1928z+ T cell and irrelevant Pz1+ T 

cell treated mice which had 0% survival (Fig. 7b).  

 

 

Figure 7. 19-28z IRES IL-12 T cells are resistant to Treg suppression in vivo.  (A) 
Schematic of the 19-28z IRES IL-12 CAR. (B) Infusion of 1 x 107 19-28z IRES IL-12 in 
Raji tumor bearing SCID-Beige mice 24 hours following infusion of 19z1+ nTregs 
resulted in 60% complete tumor eradication in contrast to infusion with 19-28z+ effector 
T cells which failed to demonstrate survival benefit when compared to the Pz1+ T cell 
control mice (*, p < 0.02 compared to 1928z T cell + Tregs). 
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 Discussion 

 To better understand the biology of tumor targeted genetically modified T cells in 

the setting of a suppressive environment, we have developed a novel tumor model where 

Tregs actively inhibit adoptively transferred cytotoxic T cells at the site of tumor.  This 

model enables investigators for the first time to prospectively generate a suppressive 

tumor microenvironment using tumor targeted Tregs, allowing for the studying of their 

impact on adoptive cellular cancer therapy.  In this report, we demonstrated that human 

Tregs are readily expandable, transduceable with CARs, and retain potent suppressive 

capabilities.  When these tumor targeted Tregs are infused to the tumor bearing host, they 

specifically travel to sites of tumor and actively suppress the anti-tumor killing mediated 

by adoptively transferred cytotoxic T cells.  We further utilize this model to demonstrate 

that, when the pro-inflammatory cytokine IL-12 is incorporated into the CAR, effector T 

cells can be made to resist the Treg suppression.  When IL-12 secreting T cells are used 

for adoptive T cell therapy, they have the ability to overcome the hostile tumor 

microenvironment generated by Tregs. 

 Although adoptive T cell therapy in the setting of allo-BMT has demonstrated the 

potential of T cells as an effective anti-tumor reagent, in the autologous setting, most 

clinical trials have been met with only modest if any anti-tumor responses.  A better 

understanding of the tumor microenvironment will provide clues as to why adoptive T 

cell therapies fail despite promising preclinical data.  Tumor specificity of T cells can be 

generated ex vivo through gene transfer of tumor targeted CAR genes, however, this 

alone is likely not sufficient for the generation of truly effective anti-tumor activity.  

Adoptively transferred CAR targeted T cells will encounter a wide array of inhibitory 
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factors upon successful trafficking to the site of tumor following infusion into the patient, 

and these factors are likely to quickly negate meaningful anti-tumor effects mediated by 

these T cells.  Therefore, future research must focus on generating means whereby these 

T cells are made capable of maintaining effector function within the tumor 

microenvironment.  Furthermore, the concept of adoptively transferred tumor targeted T 

cells solely as agents of tumor cell destruction needs to be modified.  In other words, 

since tumor-targeted T cells may specifically home to sites of tumor, these T cells could 

further serve as agents capable of targeted delivery of other anti-tumor, pro-immune 

reagents.   The impact of IL-12 secretion by tumor targeted T cells may not only be the 

resistance of these T cells to inhibition by the tumor microenvironment, but also the 

ability of targeted IL-12 secretion at the tumor site to modify the tumor 

microenvironment, reactivate anergic endogenous tumor specific tumor infiltrating 

lymphocytes, and further recruit other anti-tumor immune effectors such as NK cells and 

additional T cells to the tumor thereby generating a broader and more potent anti-tumor 

immunity.  Moreover, since the IL-12 cytokine is secreted locally with markedly lower 

levels of systemic IL-12, this approach is likely safer and has less risk for the toxicities 

seen previously in clinical trials utilizing systemic high dose IL-12 infusions. 

 Our laboratory studies T cells genetically targeted to the CD19 antigen expressed 

on B cell malignancies through the introduction of CD19 targeted CARs in xenogeneic 

SCID-Beige CD19+ tumor models.  Although these models are highly useful in studying 

the cytotoxicity of our T cells and their ability to traffic to the site of tumor, they do not 

provide any insight on how the adoptively transferred T cells would respond to a 

suppressive microenvironment as one that is likely encountered clinically, mediated by 
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Tregs.  We therefore sought to utilize our genetic modification technique on Tregs and 

similarly target them to the site of tumor, mimicking the scenario where elevated levels 

of Tregs are present at the site of tumor. 

 Recent discoveries in Treg biology have enabled investigators to better 

understand what is needed to effectively stimulate and therefore expand Tregs to 

meaningful numbers for experiments.  Moreover, in contrast to traditional beliefs where 

Tregs are described as anergic cells, they are now shown to undergo rapid cell division 

when they are activated in the appropriate culture environment.  This has allowed for the 

effective gene transfer previously not thought possible into Tregs.  To date, there are two 

published reports of genetically redirected Tregs.  One of which is in the setting of 

treatment for experimental colitis in mice57, and the other for the treatment of 

experimental autoimmune encephalomyelitis in mice58.  We for the first time demonstrate 

that redirected Tregs can potently suppressive effector T cells in the setting of adoptive 

tumor immunotherapy for cancer.  However, the utility of redirected Tregs utilizing CAR 

targeting technology may be extended to a myriad of uses to suppress autoimmunity 

whenever a target antigen is identifiable. 

 We conclude that the novel Treg model presented here represents a highly useful 

tool in the biological study of adoptive T cell therapy.  Furthermore, the promising results 

demonstrated by combining IL-12 secretion along with CAR-targeting represents a potent 

and available advancement that may be readily applied to the design of clinical trials in 

the future. 
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