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ABSTRACT 

An Evaluation of Alzheimer’s Disease-related Pathology in Two Different Mouse Models of  
Diabetes in Immune-Challenged Mice 

By 

Andrew Scott Murtishaw 

Dr. Jefferson Kinney, Examination Committee Chair 
Associate Professor of Psychology 
University of Nevada, Las Vegas 

 

 Obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome are related disorders 

with wide-ranging and devastating effects that can be observed throughout the body. One 

important and understudied organ of damage is the brain. Clinical and epidemiological studies 

have found that T2DM, and more specifically hyperinsulinemia, significantly increases the risk 

of cognitive decline and increases the likelihood of Alzheimer’s disease (AD) and other forms of 

dementia in the elderly. Insulin has slightly different functions in the peripheral body than in the 

central nervous system and the dysregulation of these functions may contribute to the onset and 

progression of late-life neurodegenerative disease. These experiments were designed to 

investigate cognitive function and AD-related disease pathology in two different models of 

diabetes, one model resulting from a diabetogenic compound that selectively targets insulin-

producing pancreatic β-cells and the other model based on diet-induced obesity. Additionally, 

these diabetic models were combined with a genetic mouse model of inflammation to explore the 

compounding effects of multiple AD risk factors. We found that diabetic-status, regardless of 

whether it was drug- or diet-induced, resulted in profound impairments in learning and memory 

and subtle alterations to AD-related histopathology within the hippocampus. Additionally, 

impairments were most dramatic in male mice; whereas females appeared to be more resistant to 

metabolic disturbances. 
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CHAPTER 1 

INTRODUCTION 

  The United States Census Bureau projects that our population will grow by nearly 25% to 

over 400 million people by the year 2050 and that 1 in 5 Americans will be over the age of 65 

(Colby & Ortman, 2015). As our elderly population continues to grow, Type-2 diabetes mellitus 

(T2DM) and Alzheimer’s disease (AD) are also increasing at alarming rates. Both of these 

diseases are chronic and complicated and ultimately lead to devastating outcomes. The Center 

for Disease Control and Prevention rank both of these diseases in the top ten causes of death and 

these rankings climb higher within the elderly population (CDC, 2014; Tschanz et al., 2004).  

 Diabetes mellitus (DM) is a complex metabolic disorder characterized by hyperglycemia, 

disturbed insulin signaling, and is associated with microvascular and macrovascular 

complications, including cardiovascular disease, nephropathy, retinopathy, and neuropathy (Li & 

Hölscher, 2007). Current world-wide prevalence rates of DM indicate that 415 million people are 

diagnosed with the disease (IDF, 2015). In the United States alone, current estimates indicate 

that nearly 29 million, or 9.3% of the population, are diagnosed with diabetes. Conservative 

estimates suggest that another 86 million have prediabetes, which is often defined as an 

intermediate state of increased blood glucose, placing them at high risk for developing diabetes 

(CDC, 2014). Type-1 diabetes (T1DM) accounts for about 5-10% of DM cases and is associated 

with hyperglycemia, deficient insulin production, and cognitive deficits with varying degree of 

severity depending upon the age of onset of diabetes, the degree of glycemic control, and the 

duration of the disease (Brands, Biessels, de Haan, Kappelle, & Kessels, 2005). Type-2 diabetes 

(T2DM) is the predominant form of the disease, accounting for 90-95% of cases and is 
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characterized by hyperglycemia, insulin resistance, and is associated with obesity, hypertension, 

hypercholesterolemia, and hyperlipidemia (Kloppenborg, van den Berg, Kappelle, & Biessels, 

2008). Cognitive impairments in learning and memory, mental flexibility, and executive 

functioning are commonly associated with T2DM (Awad, Gagnon, & Messier, 2004; Strachan, 

Deary, Ewing, & Frier, 1997). 

  AD is the most common form of dementia, accounting for nearly 80% of cases 

(Alzheimer's Association, 2016). In 2016, there are an estimated 5.4 million AD patients in the 

USA and nearly 46.8 million worldwide and this number is expected to reach 131.5 million by 

2050 (Alzheimer's Association, 2016; IDF, 2017). The greatest risk factor for developing AD is 

increased age: 11% of individuals over the age of 65 have AD and that number increases to 32% 

for individuals over the age of 85 (Alzheimer's Association, 2016) AD is a neurodegenerative 

disorder marked by key symptoms such as a progressive decline in memory, impairments in 

speech, language, spatial orientation, and disturbances in sensorimotor systems (Martins et al., 

2006). In addition to severe cognitive impairments, the core pathological hallmarks of AD 

include β-amyloid (Aβ) plaques, neurofibrillary tangles, neuronal loss, and neuroinflammation 

(Alzheimer, Stelzmann, Schnitzlein, & Murtagh, 1995; Selkoe, 2000). The exact pathological 

etiology of AD is unknown but prevailing theories are based on the build-up of Aβ peptides into 

neurotoxic soluble Aβ oligomers and insoluble Aβ plaques or the accumulation of neurofibrillary 

tangles (Selkoe, 2000; Small & Duff, 2008). Familial AD has been linked to a number of 

mutations that exist in three genes (amyloid precursor protein (APP), presenilin-1, and 

presenilin-2) that lead to an early-onset of AD (<65 years of age); however, these mutations only 

account for 1-5% of total AD cases (Ridha et al., 2006). The vast majority of AD cases are 
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sporadic in origin and are less clearly defined by a single mutation but rather some combination 

of many different genetic, environmental, and behavioral risk factors (Pedersen, Gatz, Berg, & 

Johansson, 2004). There are a number of risk factors that have been identified for developing 

late-onset AD and include increased age, presence of APOE-ε4, and cardiovascular disease 

(Corder et al., 1993; Cummings, 2004). APOE-ε4 has been shown to greatly compound and 

increases the effect of other important risk factors of late-onset AD, including hyperinsulinemia 

and T2DM (Luchsinger, Tang, Shea, & Mayeux, 2004; Peila et al., 2002). 

 In addition to the above neuropathological hallmarks, AD is characterized by vascular 

lesions, glucose intolerance, adiposity, hypertension, hyperglycemia, hyperinsulinemia, and 

insulin resistance, which are all symptoms also associated with T2DM (Haan, 2006). A study 

conducted by researchers at the Mayo Clinic found that a staggering 80% of AD patients either 

had diagnosed T2DM or impaired fasting glucose, indicating rampant metabolic disturbances 

(Janson et al., 2004). A key focus of recent years has been expanding our understanding in the 

role of insulin signaling in normal brain functions and the manner in which abnormalities to 

insulin signaling and metabolism contribute to disorders of aging, particularly Alzheimer’s 

disease. 
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CHAPTER 2 

REVIEW OF RELATED MATERIAL 

Type 2 Diabetes and Alzheimer’s Disease 

 The clinical association between T2DM and Alzheimer’s disease is well established, as 

well as with other neurodegenerative disorders, including vascular dementia and Parkinson’s 

disease (Biessels, Staekenborg, Brunner, Brayne, & Scheltens, 2006; Brands et al., 2005; Janson 

et al., 2004). Numerous cross-sectional studies have shown that the percentage of T2DM among 

AD patients is significantly greater than age-matched non-AD controls (Kuusisto et al., 1997; Ott 

et al., 1996; Stewart & Liolitsa, 1999). Longitudinal studies demonstrate that T2DM more than 

doubles the risk of AD when compared to non-diabetic control groups (Arvanitakis, Wilson, 

Bienias, Evans, & Bennett, 2004; Grodstein et al., 2001; Leibson et al., 1997; Ott et al., 1999; 

Peila et al., 2002). Additionally, higher incidence rates of AD is observed among those who have 

suffered from T2DM for longer than 5 years (Leibson et al., 1997)  

  It is important to note that T2DM is not a disease that is exclusively associated with the 

elderly. Despite higher prevalence rates in older aged individuals, T2DM is being diagnosed 

more frequently in young people and the number of cases appear to parallel the rise in childhood 

obesity (Freedman, Mei, Srinivasan, Berenson, & Dietz, 2007; Weiss et al., 2004). The number 

of individuals diagnosed with DM is expected to surge to 592 million by 2035 with diagnoses 

occurring earlier in life (IDF, 2015). This could be especially problematic since the longer the 

duration of DM in an individual, the more profound the cognitive impairments and the greater 

the risk of developing AD (Leibson et al., 1997). Obese adolescents with T2DM score 

significantly lower than healthy-age matched controls on a number of cognitive measures, 
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including verbal memory, executive function, and psychomotor efficiency (Yau et al., 2010). 

Even in the absence of T2DM, individuals that exhibit impairments in glucose metabolism and 

increased serum insulin are at higher risk for mild cognitive impairment, suggesting an important 

contribution of improper glycemic control and hyperinsulinemia to cognitive decline (Stolk et 

al., 1997; Yaffe, Blackwell, Whitmer, Krueger, & Barrett Connor, 2006). 

 The Honolulu Asia Aging study, a cohort study of ethnic Japanese males with AD, found 

that comorbidity with T2DM caused a higher number of neurofibrillary tangles, amyloid plaques, 

and cerebral amyloid angiopathy (Peila et al., 2002). The association between T2DM and AD is 

particularly strong among individuals who possess the APOE ε4 allele, as those with T2DM and 

are also APOE ε4 carriers have twice the risk of developing AD compared to non-diabetic APOE 

ε4 carriers (Peila et al., 2002). Additionally, although the brains from patients with T2DM 

frequently exhibit amyloid deposition, this amyloid deposition is markedly greater in those with 

both T2DM and the APOE ε4 genotype (Messier, 2003; Peila et al., 2002). T2DM poses an 

increased risk for developing AD on its own but that risk is greatly exacerbated in those carrying 

an APOE ε4 allele, which can be found in nearly half of all AD patients (Alzheimer's 

Association, 2016). 

 T2DM is a multi-faceted disease with many contributing risk factors and several key 

hallmarks, including hyperglycemia and hyperinsulinemia, but research is beginning to suggest 

that hyperinsulinemia and insulin dysregulation may be the biggest factor in cognitive decline 

and onset of dementia. Numerous studies have demonstrated that serum levels of insulin of AD 

with no diagnosis of T2DM or any other metabolic disease are elevated compared to controls 

(Carantoni et al., 2000; Fujisawa, Sasaki, & Akiyama, 1991; Kuusisto et al., 1997). Despite 
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elevated peripheral insulin levels, individuals diagnosed with Alzheimer’s disease exhibit 

marked reductions in insulin receptor expression in the brain (Frölich et al., 1998). Post-mortem 

brains of patients with either AD or T2DM show decreased levels and activity in several 

components of the insulin-AKT signaling pathway and this signaling deficiency is significantly 

more severe in individuals with both AD and T2DM (Liu, Grundke-Iqbal, & Gong, 2011). 

Recently, it has been demonstrated that higher insulin resistance in late middle-aged adults 

results in a greater correlation with increased amyloid plaque deposition in frontal and temporal 

areas of the brain with no diagnosis of AD or cognitive impairment (Willette et al., 2015). The 

pattern of amyloidosis in these cognitively healthy but insulin resistant individuals reflects a 

deposition pattern that closely mirrors early AD progression. Disruptions to insulin signaling 

may make neurons more susceptible to metabolic stress, which would accelerated neuronal 

dysfunction. Increased density of amyloid plaque deposition positively correlates with the 

duration of T2DM in post-mortem brains (Janson et al., 2004).  

 Several components within the insulin signaling pathway have been implicated in the 

onset and progression of Alzheimer’s disease, namely the influence on tau phosphorylation and 

APP metabolism, which will be discussed below.  

Insulin Signaling and Insulin Resistance 

 Sine the discovery of insulin in 1921, the signaling mechanisms and biological effects of 

insulin have been widely studied in the classical insulin target organs of the periphery, namely 

skeletal muscle, fat, and the liver, especially in regards to glucose uptake, gene expression, and 

cellular proliferation (Schwartz & Porte, 2005; Wilcox, 2005).  
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 The insulin receptor is a hetero-tetrameric receptor that consists of two extracellular α-

subunits that bind insulin and two transmembrane β-subunits that lead to intracellular tyrosine 

kinase activity. Following insulin binding to the α-subunit, the β-subunits are activated leading to 

autophosphorylation of the receptor complex. Once the insulin receptor complex is activated, 

insulin receptor substrate (IRS) proteins are phosphorylated leading to the activation of 

phosphoinositide-3 kinase (PI3K). P13K, in turn, typically activates one of two major signaling 

pathways. The first being the mitogen-associated protein kinase (MAPK) pathway or the other 

the Akt pathway. While both pathways are vital for cellular differentiation and growth, Akt 

signaling is also involved with protein synthesis and plays a key role in the phosphorylation and 

subsequent inhibition of GSK-3β (Wilcox, 2005). The inhibition of GSK-3β leads to an increase 

in glycogen synthesis in the periphery and prevents this kinase from phosphorylating tau proteins 

within the brain, which will be detailed in a later section (Hooper, Killick, & Lovestone, 2008). 

 Insulin plays a crucial role in glucose homeostasis through the regulation of hepatic 

glucose production and glucose uptake into various tissues and managing this balance. The vast 

majority of the body, with the exception of the brain, relies on insulin to transport glucose from 

the bloodstream into the cells of peripheral target tissues. Insulin binding has been shown to 

regulate glucose transport through coordinating the translocation of glucose transporter 4 

(GLUT4) into the cellular membrane in adipocytes and myocytes (Huang & Czech, 2007). 

GLUT4 is the major insulin-mediated glucose transporter in peripheral tissues. Under normal 

conditions, insulin activation of the P13K-Akt pathway leads to the phosphorylation of AS160, 

which is directly responsible for the rapid and precise insertion of GLUT4 from intracellular 

stores into the membrane (Kim & Feldman, 2012). Decreased association of the P13K regulatory 
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p85 and IRS leads to impaired Akt signaling and impaired GLUT4 insertion is the primary cause 

of insulin resistance and has been reported in obese individuals, patients with T2DM, and in both 

genetically obese and high-fat fed animals (Asano et al., 2007; Kim & Feldman, 2012).  

 Hyperinsulinemia precedes the classic hyperglycemic state by many years in the majority 

of T2DM cases, resulting in insulin receptor insensitivity and a defect of insulin signal 

transduction due to chronic overstimulation (Weyer, Hanson, Tataranni, Bogardus, & Pratley, 

2000). Despite hyperinsulinemia being considered the primary cause of T2DM onset, 

hyperinsulinemia is present in most diagnosed cases of T2DM, but not all cases, particularly 

those in late-stage T2DM (Laakso, 1993). The loss of hyperinsulinemia as T2DM progresses 

may be explained by the profound pancreatic β-cell death that occurs in later stages of the 

disease as β-cells become exhausted from producing increasingly larger amounts of insulin to 

compensate for insulin receptor insensitivity and an apoptotic response to glucose toxicity (Jörns, 

Tiedge, Ziv, Shafrir, & Lenzen, 2002; Robertson & Harmon, 2006). 

 Hyperglycemia is generally considered the major cause for the development of diabetic 

end-organ damage and common complications, including diabetic neuropathy and retinopathy 

(Gispen & Biessels, 2000). The toxic effects of hyperglycemia ultimately trigger several 

metabolic and molecular cascades that can lead to progressive neuronal dysfunction. Long-term 

exposure to hyperglycemia leads to abnormalities in cerebral capillaries, such as a thickening of 

the basement membrane, an increase in reactive oxygen species, and advanced glycation of 

important structural proteins, leading to ischemia of the brain and subcortical white-matter 

lesions (Mankovsky, Metzger, Molitch, & Biller, 1996). White matter lesions within the frontal 

lobe are associated with cognitive impairments and are common in healthy elderly adults but the 
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severity and prevalence is strongly increased in patients with vascular risk factors, T2DM, and 

among those with dementia (Manschot et al., 2006; Pantoni et al., 1999). In addition to β-

amyloid deposition in the brain parenchyma, Aβ accumulates along the blood vessels in AD 

brains contributing to endothelial dysfunction and leading to cerebral amyloid angiopathy 

(Grinberg, Korczyn, & Heinsen, 2012). Impaired integrity of the blood-brain-barrier has been 

reported in both human AD studies and in animal models of AD (Blennow et al., 1990; Skoog et 

al., 1998). The combination of a compromised blood-brain-barrier due to glucose toxicity and the 

detrimental effects of dysregulated insulin signaling is particularly problematic in disease 

progression. 

 Insulin resistance, regardless of disease origin (obesity, T2DM, metabolic disease), is 

exceedingly common in older adults, with current estimates suggesting that over half of 

individuals over the age of 60 are affected with some notable degree of insulin resistance (Craft, 

2005). Chronic peripheral hyperinsulinemia ultimately results in down-regulation of brain insulin 

uptake and long-term reduction in brain insulin levels affecting cognition and increasing 

inflammation in the CNS (Baura et al., 1996; Craft et al., 1998; Fishel et al., 2005). 

Insulin Signaling in the Brain 

 The brain was long thought to be an “insulin insensitive organ” until insulin receptors 

were first localized in the CNS in 1978 and while not completely insulin-independent, the brain 

is certainly insulin-responsive (Belfiore, Frasca, Pandini, Sciacca, & Vigneri, 2009; Havrankova, 

Roth, & Brownstein, 1978). Insulin receptors are widely distributed throughout the brain with the 

highest concentrations in specific regions such as the olfactory bulb, the hypothalamus, frontal 

cortex, and areas within the hippocampus (Havrankova et al., 1978; van Houten, Posner, 
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Kopriwa, & Brawer, 1979). Insulin receptors are located on synapses in both neurons and 

astrocytes, with a much higher concentration on neuronal post-synaptic densities (Abbott, Wells, 

& Fallon, 1999). Despite considerable homology in insulin receptors located in the periphery and 

in the brain, there are some differences between them. Brain insulin receptors located within the 

brain are smaller in overall size due to smaller α-subunits and, unlike peripheral receptors, are 

not internalized or desensitized after insulin binding (Heidenreich, Zahniser, Berhanu, 

Brandenburg, & Olefsky, 1983).  

 Interestingly, there does appear to be regional differences in insulin receptor density 

between embryonic brains and mature brains, implying a developmental role for insulin. For 

example, a developing brain undergoing rapid neurogenesis has extremely high levels of insulin 

receptors in the thalamus, the caudate-putamen, and in numerous discrete nuclei located in the 

mesencephalon and brainstem but these areas express relatively low levels of insulin receptors in 

an adult brain (Kar, Chabot, & Quirion, 1993). The brain of the Drosophila fruit fly contains 

clusters of neurons that co-express four insulin genes — two are homologous to mouse and 

human insulin and two genes are dissimilar and found only in Drosophila — that upon ablation 

results in undergrowth, developmental delays, and lethality (Rulifson, Kim, & Nusse, 2002). 

Entirely knocking out insulin in mice does not immediately result in glycosuria at birth but they 

do rapidly develop classical symptoms of DM with ketoacidosis leading to death within just 48 

hours (Duvillié et al., 1997). 

 Insulin, primarily produced by the pancreas, must cross the blood-brain barrier to initiate 

signaling within the CNS. Plasma insulin circulates at levels nearly one hundred times greater 

than are observed in the cerebrospinal fluid (Woods, Seeley, Baskin, & Schwartz, 2003). The 
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rate of insulin passage from plasma to brain interstitial fluid is tightly regulated with specific, 

selective active transport across the blood-brain-barrier (Baura et al., 1996; Pardridge, 1986). 

Insulin receptors located on the luminal surface of capillary endothelial cells are internalized into 

the cell as part of a membrane-bound vesicle upon insulin binding, which is then transported 

across the cell and exocytosed to release insulin into the brain interstitial fluid (Woods et al., 

2003). Studies have shown that peripheral administration of insulin leads to an increase in insulin 

levels within the CNS although less than 1% of peripheral insulin crosses the blood-brain barrier 

(Margolis & Altszuler, 1967; Woods, Lotter, McKay, & Porte, 1979). Despite the majority of 

insulin in the CNS being transported across the blood-brain-barrier, some evidence indicates that 

a small percentage of CNS insulin levels can be produced neurons within the brain (Devaskar et 

al., 1994; Schechter, Holtzclaw, Sadiq, Kahn, & Devaskar, 1988). It has been posited that these 

insulin producing brain cells and pancreatic-β cells evolved from the same common ancestral 

insulin-producing neuron (Rulifson et al., 2002).  

 Recent evidence suggests that insulin resistant individuals experience impaired transport 

of insulin from the periphery into the CNS, suggesting that receptor mediated transport of insulin 

across the blood-brain-barrier is also subject to similar regulatory mechanisms occurring in 

peripheral insulin resistance (Heni et al., 2014). Insulin resistance occurring at the blood-brain-

barrier can lead to the inadequate levels of brain insulin seen in AD (Craft et al., 1998). 

Supporting this relationship between insulin resistance and impaired transport across the blood-

brain-barrier, it has been well-documented that exercise and weight loss can reverse insulin 

resistance occurring in the peripheral body in T2DM and obesity (Gurley, Griesel, & Olson, 

2016; Kennedy et al., 1999; O’Gorman et al., 2006), but newer evidence that a decrease in body 
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fat correlates with increased brain insulin sensitivity suggests that a similar restoration is 

occurring to insulin transport across the blood-brain-barrier and insulin receptors within the brain 

(Tschritter et al., 2012). 

 The mammalian brain depends on glucose as its main source of energy by consuming 

nearly 20% of all glucose-derived energy in the body despite accounting for only ~2% of total 

body weight (Mergenthaler, Lindauer, Dienel, & Meisel, 2013). The largest potion of energy 

consumed by the brain is for neuronal communication and information processing in the form of 

action potentials, post-synaptic potentials, and the maintenance of ion gradients to maintain the 

resting membrane potential (Howarth, Gleeson, & Attwell, 2012; Ivannikov, Sugimori, & Llinás, 

2010). Glucose entry into the brain is primarily driven by the large blood-to-brain concentration 

gradient that facilitates movement across the endothelial membrane via GLUT1 transporters. 

GLUT1 is also highly expressed on astrocytes, microglia, and oligodendrocytes, facilitating 

glucose uptake into the glial cells. Neurons express GLUT3, which has a higher transport rate 

than GLUT1, ensuring that neurons have a sufficient glucose supply under a variety of glucose 

levels and varying activity state demands (Dienel, 2012). It is important to note that both GLUT1 

and GLUT3, the primary glucose transporters in the brain, are insulin-independent and rely on 

concentration gradients to drive the movement of glucose from the extracellular milieu into the 

cell (Simpson, Carruthers, & Vannucci, 2007). Additionally, astrocytes are large consumers of 

glucose and other brain metabolites and serve a key role in helping neurons meet their energy 

demands by converting glucose to lactate and shuttling lactate to neurons as a supplemental fuel 

source (Pellerin & Magistretti, 2011). The astrocyte-to-neuron lactate shuffle is intimately linked 

to glutamate uptake which drives glycolysis and glutamate recycling in astrocytes in order to 
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provide glutamine and lactate to neurons and appears to play a crucial role in long-term memory 

formation, particularly during consolidation (Newman, Korol, & Gold, 2011; Suzuki et al., 

2011).   

 Although neurodegenerative diseases have not typically been considered to be caused by 

a disturbed metabolism, numerous studies demonstrate that bioenergetic defects are emerging as 

important pathophysiological mechanisms (Kapogiannis & Mattson, 2011). One of the earliest 

signs of AD is altered cerebral blood flow and a reduction in brain glucose metabolism (Hoyer, 

2004). The expression of GLUT1 and GLUT3 glucose transporters is reduced in AD brains 

within discrete regions such as the temporal and parietal lobes compared to control subjects 

(Simpson, Chundu, Davies-Hill, Honer, & Davies, 1994). In a mouse model of AD 

overexpressing human APP, the expression of GLUT1 is reduced both at the blood-brain-barrier 

and in astrocytes, resulting in impaired glucose transport and reduced astrocytic-derived lactate 

during neuronal activation (Merlini, Meyer, Ulmann-Schuler, & Nitsch, 2011). 

 Despite insulin not playing a major role in glucose uptake within the brain, insulin still 

plays a key modulatory role in energy homeostasis. Insulin, along with leptin and several other 

neuropeptides and neurotransmitters, target the hypothalamus to create a complex and tightly 

regulated network (Leibowitz & Wortley, 2004). The administration of insulin directly into the 

brain has an anorexigenic effect; whereas, the inhibition of insulin signaling yields an orexigenic 

effect (Carvalheira et al., 2003; Obici, Feng, Karkanias, Baskin, & Rossetti, 2002; Woods et al., 

1979). Intracerebroventricular administration of insulin leads to an upregulation of α-melanocyte 

stimulating hormone (α-MSH), an anorexigenic peptide; additionally, this insulin-induced 

reduction in food intake can be prevented with an α-MSH antagonist (Benoit et al., 2002). 
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Insulin activation of the PI3K pathway leads to activation of pATP-dependent potassium 

channels (KATP) channels in both the pancreas and within the brain, in regions like the 

hypothalamus and hippocampus (Khan, Goforth, Zhang, & Satin, 2001; Niswender et al., 2003). 

Within the pancreas, this insulin-induced KATP hyperpolarization acts as a negative feedback in 

β-cells to cease insulin production (Khan et al., 2001). In the hypothalamus, KATP channel 

activation is thought to serve as a molecular endpoint after activation of insulin and leptin 

receptors, which both inactivate the same hypothalamic glucose-response neurons via the PI3K 

pathway (Spanswick, Smith, Mirshamsi, Routh, & Ashford, 2000). 

 Insulin not only plays a key role in the inhibition of food intake energy expenditure but 

also directly activates dopaminergic neurons within the mesolimbic pathway (Figlewicz et al., 

2007). Mice with a brain specific knockout of insulin receptor exhibit an increase in monoamine 

oxidase A and B, resulting in an increased turnover of dopamine and depressive-like behavior 

(Kleinridders et al., 2015). Insulin has been shown to play a modulatory role in 

neurotransmission by promoting NMDA glutamate receptor phosphorylation that increases the 

opening of Ca2+ channels, influencing AMPA receptor internalization, and recruiting post-

synaptic GABA receptors (Wan, Xiong, Man, Ackerley, & Braunton, 1997). Intranasal insulin 

administration improves verbal memory and selective attention in healthy humans under normal 

glycemic conditions (Kern et al., 2001). Younger individuals with diabetes do not typically 

exhibit severe evidence of learning and memory impairments; however, subjects with T2DM 

over 60 years of age perform significantly worse than age-matched non-diabetic controls in a 

number of cognitive tasks, including memory recall and processing speed (R. Kumar, Looi, & 

Raphael, 2009; Ruis et al., 2009; C. M. Ryan & Geckle, 2000). A recent study found that the 
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incidence of mild-cognitive impairment was much higher in elderly patients with T2DM than 

non-diabetic subjects (Gao et al., 2017). Additionally, T2DM-related cognitive deficits appear to 

more pronounced the longer the duration of the disease, suggesting cumulative damage as the 

disease progresses due to prolonged exposure the devastating effects of neuronal insulin 

signaling perturbations (Hazari, Reddy, Uzma, & Kumar, 2015).  

Insulin Signaling and Tau Pathology 

 Tau is expressed abundantly throughout the central nervous system. Tau is located 

primarily within the axons of neurons is associated with microtubules. The carboxy-terminus of 

tau is characterized by a series of repeats that help determine the ability of tau to stabilize and 

facilitate the polymerization of microtubules (Gustke, Trinczek, Biernat, & Mandelkow, 1994; 

Weingarten, Lockwood, Hwo, & Kirschner, 1975). The ability of tau to bind to and promote the 

stabilization of microtubules is regulated by phosphorylation around this microtubule binding 

carboxy-terminal domain with over 30 potential phosphorylation sites (Avila, Lucas, Perez, & 

Hernandez, 2004; Sergeant et al., 2008). A number of Ser/Thr kinases and phosphatases are 

responsible for the regulation of tau phosphorylation, including GSK-3β and protein phosphatase 

2A (PP2A). GSK-3β and PP2A are considered two of the most important proteins involved with 

regulating tau phosphorylation (Hooper et al., 2008; Planel, Yasutake, Fujita, & Ishiguro, 2001).  

Hyperphosphorylated tau is the principal component of the paired helical filaments that make up 

the core of the neurofibrillary tangles that are associated with AD (Grundke-Iqbal et al., 1986; 

Iqbal, Zaidi, Bancher, & Grundke-Iqbal, 1994).  

 Hyperphosphorylation of tau is a complex interaction of increased kinase activity and 

decreased phosphatase activity. GSK-3β is the kinase that has emerged as the most important 
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kinase related to AD pathology. GSK-3β is capable of phosphorylating tau on virtually all known 

phosphorylation sites and is consistently upregulated in the brains of AD patients (Lovestone et 

al., 1994; Muñoz-Montaño, Moreno, Avila, & Diaz-Nido, 1997). Insulin receptor activation of 

Akt typically results in phosphorylation of GSK-3β, which prevents GSK-3β from 

phosphorylating tau proteins but when insulin resistance occurs Akt is unable to inhibit GSK-3β, 

which results in rampant tau hyperphosphorylation (Taniguchi, Emanuelli, & Kahn, 2006). Tau 

dysfunction is not only due to the over activity of kinases that add phosphate groups but the 

inability of phosphatases to dephosphorylate tau at an appropriate level.   

 Ser/Thr phosphatases, the main type of phosphatases in the brain, can be sorted into five 

main types (PP1, PP2A, PP2B, PP2C, and PP5) based upon their specificities (Liu, Grundke-

Iqbal, Iqbal, & Gong, 2005). PP2A is the major tau phosphatase, accounting for over 70% of 

total phosphatase activity occurring within the brain (Liu et al., 2005). PP2A has a much stronger 

affinity than other phosphatases to dephosphorylate PHF and restore the microtubule assembly-

promoting ability of tau (Wang, Gong, Zaidi, Grundke-Iqbal, & Iqbal, 1995). 

 Patients with AD have been shown to have reduced PP2A mRNA expression in the 

hippocampus and PP2A protein levels to be selectively decreased in AD-affected regions, 

including the frontal and temporal regions, but not in other areas that are not typically associated 

with AD (Sontag et al., 2004). Streptozotocin (STZ) is a toxin produced by Streptomycetes 

achromogenes and is commonly used to model DM. This toxin targets pancreatic β-cells by 

entering through the glucose transporter GLUT2 where it alkylates DNA, which leads to cell 

death (Delaney et al., 1995). While STZ is often utilized to induce insulin deficiencies that are 

widely associated with T1DM, there is evidence to suggest that smaller doses of STZ can lead to 



 
 
 
 
 
 

17 

a diabetic state in between T1DM and T2DM, similar to the β-cell exhaustion seen in the later 

stages of T2DM (Reed et al., 2000; Srinivasan, Viswanad, Asrat, Kaul, & Ramarao, 2005). 

Increased tau phosphorylation following STZ administration in rodents has been robustly 

demonstrated at a number of phosphorylation sites (Clodfelder-Miller, Zmijewska, Johnson, & 

Jope, 2006; Murtishaw et al., 2016; Qu et al., 2011). An increasing number of studies are 

emerging to investigate the role that spontaneous T2DM has on AD pathogenesis, including the 

use of transgenic mice and diet-induced obesity. Obese mice with mutations in the leptin 

receptor, termed db/db mice, develop hyperglycemia, hyperinsulinemia, numerous epitopes of 

hyperphosphorylated tau, and impairments in spatial learning (Kim, Backus, Oh, Hayes, & 

Feldman, 2009; Li, Deng, Sheng, & Zuo, 2012). Diet-induced obesity in the 3xTg mouse model 

of AD given access to high-fat chow results in aggravated tau pathology, further indicating a 

critical role between T2DM and tau pathology (Julien et al., 2010).   

Insulin Signaling and Amyloid Pathology 

 A key feature of AD is the altered expression and improper processing of APP that 

accumulates Aβ peptides into neurotoxic oligomers and amyloid plaques. The APP protein is a 

type 1 integral membrane with a large extracellular domain, a hydrophobic transmembrane 

domain, and a short C-terminus intracellular domain and is critical for neuronal synaptogenesis, 

synapse remodeling, and neurite outgrowth (Zhang, Ma, Zhang, & Xu, 2012; Zheng & Koo, 

2006). APP metabolism can follow two distinct pathways: the nonamyloidgenic pathway or the 

amyloidgenic pathway. In the nonamyloidgenic pathway, APP is cleaved by α-secretase, which 

releases an extracellular neurotrophic NH2-terminal soluble fragment (sAPP) and an intracellular 

COOH-terminal fragment (CTFα) that does not generate Aβ peptides (Allinson, Parkin, Turner, 
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& Hooper, 2003). In the amyloidgenic pathway, APP is cleaved by β-secretase resulting in a 

soluble intracellular domain (sAPPβ) that is then further cleaved by γ-secretase to form an APP 

intracellular domain (AICD) and the amyloidgenic Aβ peptide, which then aggregates and 

fibrillates to form amyloid plaques within the brain (Buoso, Lanni, Schettini, Govoni, & Racchi, 

2010; Zhang et al., 2012). Numerous studies now show that insulin signaling is capable of 

regulating key steps in the amyloid cascade and has a profound impact on the aggregation of Aβ 

within the brain (Pandini et al., 2013). 

 As previously discussed, GSK3 is key signaling molecule downstream of AKT, which 

can come in two forms: GSK3α and GSK3β (Takashima, 2006). GSK3α increases Aβ production 

by promoting the stimulation of γ-secretase cleavage of APP along the amyloidgenic pathway, 

increasing Aβ burden throughout the brain (Muyllaert et al., 2008). Normally Akt 

phosphorylation leads to the phosphorylation of GSK3α, holding it in a fairly inactive state; 

however, impaired insulin signaling reduces Akt phosphorylation leading to reduced 

phosphorylation of GSK3α, thus promoting its activation (Kim, Sullivan, Backus, & Feldman, 

2011). It has also been shown that Akt can inhibit APP trafficking and the secretion of Aβ 

peptides, demonstrating that Akt signal is vital for both the amyloid and tau pathologies seen in 

AD (Shineman, Dain, Kim, & Lee, 2009). 

 Insulin increases the presence of insulin-degrading enzyme (IDE), which is the main 

enzyme responsible for insulin degradation (Hari, Shii, & Roth, 1987). IDE regulated 

downstream of insulin receptor and is upregulated through the activation of the PI3K-Akt 

pathway, serving in a classical negative feedback capacity (Zhao et al., 2004). IDE plays a major 

role in catabolic regulation by degrading a number of short peptides in addition to insulin, 
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including insulin-like growth factors I and II, amylin, as well as Aβ peptides (Qiu & Folstein, 

2006). Additionally, under physiological conditions, microglia have been shown to secrete high 

levels of extracellular IDE that degrades the extracellular Aβ that has been secreted by neurons 

(Qiu et al., 1998). The ability of Aβ to degrade IDE has been shown to be lower in AD brains 

(Pérez, Morelli, Cresto, & Castaño, 2000). Additionally, hippocampal levels of IDE are 

significantly lower in AD patients compared to controls (Cook et al., 2003). Elevated levels of 

insulin induce Aβ accumulation due to the competition of increasing levels of Aβ for IDE, 

leading to a self-propagating cycle and, ultimately, once brain insulin levels have decreased 

because of insulin resistance at the blood-brain-barrier, IDE production is drastically reduced 

leading to further Aβ accumulation (Craft et al., 1998; Fishel et al., 2005). 

 The GK rat, an animal model of T2DM, expresses a partial loss-of-function IDE mutation 

that results in a 30% reduction in insulin degradation and increased Aβ accumulation (Farris et 

al., 2004). In mice with complete deletions of IDE, Aβ levels in the brain are dramatically 

increased, further suggesting a critical relationship between IDE activity and Aβ clearance 

(Farris et al., 2003; Miller et al., 2003). APP transgenic mice that were also bred to overexpress 

human IDE experienced a significant reduction in Aβ levels, an almost complete prevention of 

amyloid plaque deposition, and a rescue of premature death often associated with mice 

expressing APP mutations (Leissring et al., 2003).  

 Interestingly, soluble Aβ can bind to the insulin receptors in neurons located within the 

hippocampus and prevent autophosphorylation of the insulin receptor from occurring and thus 

blocking the downsttream activation of the PI3K/Akt pathway (Townsend, Mehta, & Selkoe, 

2007). In addition to the loss of Akt signaling, Aβ and Aβ-derived diffusible ligands (ADDLs) 
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binding to insulin receptors results in a massive downregulation of surface insulin receptors 

resulting in increased loss of synaptic spines and inhibition of long-term potentiation, which 

could be mitigated by increasing the amount of available insulin (De Felice et al., 2009; X. Liu et 

al., 2014). PDK, a key regulatory protein in the PI3K-Akt pathway, is prevented from interacting 

with Akt by intracellular Aβ interference further inhibiting Akt activation (Frisardi et al., 2010).  

 Rats given unlimited access to fructose-containing water leads to insulin resistance and 

results in increased amyloidgenic pathway processing of APP through an increase in expression 

of β-secretase and stimulation of γ-secretase activity, as well as a decreased level of IDE, 

resulting in enhanced Aβ production and aggregation (Luo et al., 2011). APPswe/PS1dE9 mice 

fed a high-fat diet for 23 weeks displayed severe hyperinsulinemia, an increase in Aβ levels, and 

significantly elevated amyloid plaque deposition (Ramos-Rodriguez et al., 2014). Insulin 

depletion has been shown to increase hippocampal tau hyperphosphorylation of APP transgenic 

mice, which typically display excessive production of β-amyloid peptides and subsequent Aβ 

plaques, further demonstrating potentially linked pathways between the amyloid and tau 

pathologies (Jolivalt et al., 2010). 

 Deposition of β-amyloid in pancreatic islet cells and in the brain is a shared pathology 

between T2DM and AD (Beeler, Riederer, Waeber, & Abderrahmani, 2009). Amyloid in the 

pancreas is produced by pancreatic β-cells and co-released with insulin (S. E. Kahn, D'Alessio, 

Schwartz, & Fujimoto, 1990). The islet amyloid peptide is cleaved from islet amyloid 

polypeptide (IAPP), which shares a 90% structural similarity with APP in the brain (Cooper et 

al., 1987). Mice that overexpress IAPP develop Aβ plaques and tau tangles in β-cells leading to 

β-cell dysfunction and develop DM; the targeted disruption of IAPP improves glucose tolerance 
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and enhances insulin secretion (Gebre-Medhin et al., 1998; Janson et al., 1996). Patients with 

T2DM exhibit amyloid plaques and tau tangles in pancreatic islets, suggesting common 

pathophysiological mechanisms in AD and T2DM (Miklossy et al., 2010). 

 As discussed above, decreased levels of PP2A or increased inhibition of PP2A is 

typically associated with the tau-related pathology associated with AD by failing to 

dephosphorylate tau proteins at a healthy rate; however, evidence suggests that PP2A may also 

play a role in amyloid pathology. PP2A has been shown to dephosphorylate APP at Thr-668 and 

that PP2A can be inactivated using okadaic acid, which increases phosphorylation of APP 

resulting in increased production and secretion of both sAPPα and sAPPβ (Sontag et al., 2007). 

Increased APP phosphorylation at Thr-668 has been implicated in an increase in the 

amyloidgenic processing of APP and Aβ production (Ando, Iijima, Elliott, Kirino, & Suzuki, 

2001). Further supporting the link between tau and amyloid pathologies, neurons cultured from 

Tau – / – mice are protected from Aβ induced neuronal death and cytotoxicity, suggesting tau is 

crucial for the neurotoxic effects of Aβ (Rapoport, Dawson, Binder, Vitek, & Ferreira, 2002). 

This observation is supported by post-mortem studies that show that amyloid deposition is 

diffuse and widespread and doesn’t correlate well with cognitive decline, whereas tau pathology 

tends to be progressive in nature, following a distinct sequential pattern, and strongly correlates 

with the degree of dementia observed in clinical patients and in memory loss associated with AD 

(E. Braak et al., 1999; H. Braak & Braak, 1991; 1997).   

Experimental Hypotheses and Implications 

 Insulin resistance is one of the core features of metabolic syndrome, which is a clustering 

of diseases that include T2DM and obesity. Until recently, the research related to insulin 
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resistance was targeted towards peripheral tissue such as muscle and adipose tissue; however, a 

more recent focus on insulin resistance within the nervous system suggests that the brain and the 

blood-brain-barrier is susceptible to the damaging effects of insulin resistance. Insulin resistance 

in T2DM has been correlated with an increase in risk for developing AD through the damaging 

effects of Aβ and tau-related toxicity on neurons. Recent evidence supports the notion that AD, 

or at least some cases of AD, might be a slow-progressing metabolic disease occurring within the 

CNS, and an increasing weight of evidence demonstrates this intricate link between insulin 

resistance and AD. Individuals with T2DM and obesity are at a much higher risk for the 

development of AD. Additionally, AD patients often develop insulin resistance and 

hyperglycemia. Insulin resistance, due to an impairment in insulin signaling, is a common 

pathway between T2DM and AD, representing a key link. Insulin plays a key role in Aβ and tau 

regulation. In turn, Aβ has profoundly negative effects on insulin signaling, 

 The purpose of this study is to examine the role that insulin disturbances play in the 

pathogenesis of AD. A considerable amount of data exists regarding the onset and progression 

AD pathology in transgenic models utilizing known mutations causing familiar AD; however, 

these only represent roughly 1-5% of the human population and don’t accurately reflect the 

disease population. Inducing a diabetic-like state in an animal model that displays AD pathology 

is a valid, translational approach in examining mechanisms associated with sporadic AD. 

 This experiment is to examine the role of two different types of insulin perturbations on 

dementia-related pathology. To induce a diabetic-like state in Cohort 1, mice were injected with 

STZ at 45 mg/kg (intraperitoneal) using a staggered protocol similar to previous work in our 

laboratory (Murtishaw et al., 2018). One major difference in this project, compared to our 



 
 
 
 
 
 

23 

previous work, is to extend the timeline between STZ administration and behavioral testing. Our 

laboratory has previously tested typically subjects within 6 weeks of STZ injections; however, 

we wanted to see if an extended 6 months of extended hyperglycemia resulted in similar or 

worse deficits to a shorter timeline. In Cohort 2, mice were placed on a high-fat diet for 6 months 

to induce obesity and insulin resistance. Additionally, both treatments were administered in both 

C57BL/6J and CX3CR1-/- mice to explore the interaction of multiple risk factors associated with 

AD. As mentioned previously, neuroinflammation is a core feature of AD and serves to rapidly 

progress the disease pathology. CX3CR1 is the obligate receptor for the CX3CL1 chemokine and 

is found almost exclusively on microglia within the brain. CX3CR1-/- mice have a green-

fluorescent protein inserted into the CX3CL1 binding site, leading to mice that are lacking a 

functional CX3CR1 and consequently experience elevated neuroinflammation. Please see Table 

1 below for a complete list of experimental groups in each cohort. 

 Behavioral tests commenced 6 months following onset of treatment. The open field was 

performed to access anxiety-like behavior. To assess basic learning and memory, exploratory 

behavior was measured in the novel object recognition (NOR) task. The Barnes maze task was 

utilized to evaluate deficits in spatial learning and memory. To investigate protein changes 

related to AD pathology, Western blotting was conducted on hippocampal tissue. Specifically, 

proteins of interest focused on targets associated with tau pathology and insulin signaling. Tau 

pathology was primarily focused on because mice don’t naturally form amyloid plaques and 

these mice lacked any inserted transgenes related to amyloid pathology. Microvascular 

hemorrhages associated with AD were analyzed via immunohistochemistry. 

 Hypothesis 1: 
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 Administration of STZ will lead to behavioral and biochemical changes associated with 

 AD following prolonged exposure to hyperglycemia. These STZ-induced alterations will 

 be more pronounced in CX3CR1gfp/gfp animals. 

  Implications for Hypothesis 1: If administration of STZ leads to enhanced AD  

  pathology in CX3CR1gfp/gfp, then these data highlight the link between insulin  

  perturbation and inflammation. 

 Hypothesis 2: 

 Obesity-induced insulin resistance will lead to behavioral and biochemical changes 

 associated with AD. Insulin resistance will be more pronounced in animals with 

 enhanced neuroinflammation (CX3CR1gfp/gfp mice). 

  Implications for Hypothesis 2: If obesity-related insulin alterations leads to AD- 

  pathology, then these data would suggest that HFD could be a potential model to  

  recapitulate sporadic AD in order to better represent our clinical population.  

  Additionally, if obesity and inflammation interact to exacerbate deficits in   

  behavior and changes related to AD, these data would suggest an additive effect  

  between these multiple AD risk factors.  
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Table 1 Experimental Cohorts 

Cohort 1 (STZ) Cohort 2 (HFD) 

Males Females Males Females 

Controls (n=12) Controls (n=12) Controls (n=12) Controls (n=12) 

STZ (n=12) STZ (n=12) HFD (n=12) HFD (n=12) 

CX3CR1-/- (n=12) CX3CR1-/- (n=12) CX3CR1-/- (n=12) CX3CR1-/- (n=12) 

CX3CR1-/- + STZ  (n=12) CX3CR1-/- + STZ  (n=12) CX3CR1-/-+ HFD  (n=12) CX3CR1-/-+ HFD (n=12) 

 

 

 

 

 

Figure 1  Cohort 1 Timeline 

 

 

 

 

 

Figure 2  Cohort 2 Timeline  
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CHAPTER 3 

MATERIALS AND METHODS 

Subjects 

 The number of subjects needed was calculated using G Power (Faul, Erdfelder, Lang, & 

Buchner, 2007). With power set at 0.80 and α = 0.05 (two-tailed), sample size was determined to 

be a minimum of n = 10 per treatment group for behavioral testing and n = 4 for tissue analysis, 

by using data previously collected in our laboratory (Murtishaw et al., 2018).). To provide 

sufficient power for this experiment and to account for the occasional loss of an animal, n = 12 

per treatment group was utilized in each cohort.  

 Male and female C57BL/6J and CX3CR1tm`Litt/J mice (referred to as CX3CR1-/-) were 

housed six per cage and were separated by sex, genotype, and treatment group. The colony room 

was set to a 12:12 light:dark cycle and all behavioral tests were conducted within the light cycle. 

Mice had access to chow and water ad libitum, with the exception of a six hour fasting period 

prior to blood glucose readings wherein food was removed. Animals still had access to water 

during the fasting period and food was returned immediately following blood glucose 

monitoring. All procedures performed in this experiment were approved by the University of 

Nevada, Las Vegas Institutional Animal Care and Use Committee and conducted in accordance 

with the NIH guidelines for the care and use of laboratory animals. 

Treatment Groups 

 Animals in Cohort 1 were randomly assigned to vehicle or STZ groups (n = 12 per 

group), resulting in four treatment groups for both males and females: Control, STZ, CX3CR1-/-, 

and CX3CR1-/-+STZ. Streptozotocin (Sigma-Aldrich) was prepared fresh prior to administration 
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by dissolving the streptozotocin in 0.1 M sodium citrate buffer (pH 4.5) for a final concentration 

of 4.5 mg/mL. Following a 6-hour fast, animals were injected with STZ via intraperitoneal 

injection at a volume of 0.1 mL/10 g to achieve a final concentration of 45 mg/kg.  Because STZ 

is pharmacologically active for  only 15 minutes (Schein, Kahn, Gorden, Wells, & Devita, 1973), 

all injections were administered within 10 minutes of mixing before preparing a fresh batch. 

Control mice were administered vehicle (citrate buffer) via intraperitoneal injection at a volume 

of 0.1 mL/10 g. Based upon previous work in our laboratory, animals were injected on days 1, 2, 

3, 14, 15, 16 (Murtishaw et al., 2018). Streptozotocin is known to cause an initial state of 

potentially lethal hypoglycemia due to destroyed pancreatic β-cells releasing large amounts of 

insulin (Szkudelski, 2001). To counteract this hypoglycemia, all animals were given 5% 

Ensure® mixed in their water for 24 hours. 

 Animals in Cohort 2 were randomly assigned to normal chow or high-fat chow groups (n 

= 12 per group), resulting in four treatment groups for both males and females: Control, HFD, 

CX3CR1-/-, and CX3CR1-/-+HFD. A standard high-fat chow with 60 kcal% fat (D12452, 

Research Diets) and corresponding control chow with 10 kcal% fat (D12451J, Research Diets) 

were utilized in this experiment. Experimental chow was maintained throughout the entire 

duration of the experiment. 

 Animals were 3 months old at the beginning of treatment (STZ injections or HFD chow). 

Blood glucose levels were monitored throughout the experiment to confirm hyperglycemia in 

animals by collecting lateral tail vein blood after a six hour fast. The withdrawal site was cleaned 

with alcohol while gently restraining the animal, followed by a nick to the lateral tail vein with a 

sterile blade to obtain a small drop of blood. Blood glucose levels were read using an 



 
 
 
 
 
 

28 

AlphaTrak® Blood Glucose Monitoring System. Baseline measurements of blood glucose and 

weights were collected one day prior to the beginning of treatment and then obtained once a 

month for the duration of the experiment, which lasted for a total of 6 months.  

Behavioral Testing 

Open Field 

 To assess mobility and any potential anxious behavior, the open field task was utilized to 

monitor behavior. A Plexiglass chamber (37 cm L x 37 cm W x 37 cm H) with white interior was 

used. Animals were removed from the colony room, brought to the dedicated testing room, and 

placed in the open field chamber. Subjects were allowed to freely explore for 5 minutes while 

their activity was recorded via the tracking system. Animals were removed from the arena at the 

end of the trial and placed back in their home cage located in in the colony room. Chambers were 

thoroughly cleaned with 10% ethanol between each session. Data collected included total 

distance travelled and time spent in perimeter of the arena. 

Novel Object Recognition 

 Novel object recognition was used to investigate memory capitalizing on a rodent’s 

innate exploratory behavior and preference for novelty items (Antunes & Biala, 2011).  The 

novel object recognition was performed in the same chamber used for open field and began 

twenty-four hours following the open field task. On the first day of testing,  animals received a 

randomized pair of identical objects that were placed in opposing corners of the arena. Potential 

objects included: yellow cylinders, red circles, or black squares. Each object was similar in size 

and had been previously tested to ensure similar saliency. During the five-minute trial, animals 

were allowed to freely explore while the tracking system measured amount of time investigating 
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each object (calculated as the animal’s nose being less than 4 centimeters from the object) and 

speed. Following the trial completion, animals were placed back in their home cage in the colony 

room. The chamber and object were cleaned with 10% ethanol between each trial. 

 The second day of Novel Object Recognition was performed twenty-four hours later. 

Animals were placed back in the chamber with one of the original objects from Day 1 testing 

along with a new object (novel object). During the 5-minute trial, the tracking system measured 

the amount of time spent with both the familiar and novel objects as well as speed. Animals were 

returned back to their home cage following the completion of the trial. Chambers and objects 

were cleaned with 10% ethanol solution between every session to remove any olfactory bias. 

Barnes Maze 

 The Barnes maze was utilized to assess cognitive deficits in spatial learning and memory. 

The maze, made of white, circular plastic (92 cm diameter) with a black false bottom, was 

purchased from Maze Engineers (Glenview, IL). Twenty holes (5 cm diameter) were spaced 

evenly along the perimeter of the maze with a small black plastic escape chamber and a small 

black plastic ramp were placed under the target hole. A black curtain with was placed two foot 

away from the edge of the maze and contained seven distinct visuo-spatial cues utilizing 

different colors, shapes, and patterns. Bright lights placed around the maze and a loud tone (86 

dB, 4 kHz) were used to motivate the animals to find the escape hole.  

 Animals were randomly assigned to one of three possible different escape locations to 

avoid any possible spatial bias. The Barnes maze protocol consisted of three distinct phases: 

habituation, training, and probe. A single habituation trial consisted of the animal placed under a 

large glass container overlapping the escape chamber and nearby area for three minutes and 
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allowed to freely enter the hole. Animals were gently guided into the hole after three minutes had 

elapsed and given two minutes in the dark escape chamber with the tone turned off. Training 

phase to assess learning began twenty-four hours later and lasted for four days. During each day 

of the training days, animals received four individual trials separated by fifteen minutes. Each 

trial the animal was placed in the center of the maze under a black container for 15 seconds. 

After the container was removed, subjects were allowed to freely explore the maze until entering 

the escape chamber or until three minutes had elapsed, upon which animals were gently lead to 

the target hole. Animals were rewarded with one-minute in the dark escape chamber without the 

tone and then placed back in home cage until next trial. The probe trial was conducted twenty-

four hours after the final training day to assess memory. During the probe trial, the escape 

chamber was removed and animals were allowed to freely explore the maze for a total of three 

minutes. Throughout the experiment, trials were recorded by an overhead tracking system 

(Ethovision), which tracked latency, speed, and distance. Errors were manually scored by 

researchers blind to treatment group. The maze was thoroughly cleaned with 70% ethanol 

between every trial to remove any potential scent cues. 

Tissue Examination 

Tissue Collection 

 Animals were humanely euthanized via carbon dioxide asphyxiation. Immediately 

following carbon dioxide asphyxiation, subjects had blood drawn via cardiac puncture to be used 

in an insulin ELISA. Following the blood collection, brains were rapidly removed, the 

hippocampus dissected out, until finally the tissue was rapidly frozen using liquid nitrogen. 

Tissue was kept at -80˚ Celsius until further processing.  
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ELISA 

 Blood was collected in capillary microvettes (Kent Scientific) during euthanization, 

immediately centrifuged (4500 x g) at 4˚ Celsius for 10 minutes, and plasma was then carefully 

removed. Plasma insulin levels were determined by using an Insulin ELISA (Alpco), following 

manufacturer instructions. Briefly, standards, controls, and samples were added to the 

microplate, along with the included working strength conjugate, and incubated for 2 hours at 

room temperature. Wells were then washed 6 times, TMB Substrate added, and incubated for 15 

minutes at room temperature. Following the final incubation, stop solution was added and the 

plate was read at 450 nm. 

SDS-PAGE Western Blotting 

 Western blotting was performed to examine protein level expression related to tau 

pathology and insulin signaling within the hippocampus. Hippocampal tissue was homogenized 

using the Bio-Plex® Cell Lysis Kit (Bio-Rad) and a number of techniques to rupture cells 

including an initial homogenization with a POLYTRON ® homogenizer (Kinematica), followed 

by a 24-hour freeze-thaw cycle at -80˚ Celsius, and finally by sonication (Sonifer SFX, VWR). 

Following  the final sonication step, supernatant was collected following centrifugation at 4500 x 

g for 15 minutes. Utilizing a Pierce® BCA Protein Assay Kit (Thermo Fisher Scientific), protein 

concentrations for each sample was calculated. 20 µg of each sample were loaded onto a 10% 

SDS-PAGE gel to separate proteins and then transferred onto a PVDF membrane (Immunobilon-

FL, 0.45 micron; Millipore). Membranes were blocked using Odyssey Blocking Buffer (LI-

COR) and then probed with primary antibodies overnight at 4˚ Celsius (AKT, 1:1000, Abcam; β-

Actin, 1:20,000, ProteinTech; Insulin degrading enzyme, 1:1,000, Abcam; GSK3β, 1:1,000, Cell 
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Signaling; pAKT, 1:1000, Abcam; pGSK3β, 1:1,000, Cell Signaling; phospho-insulin receptor, 

1:1000, Abcam; phospho-Tau Serine202, 1:1,000, Santa Cruz; phospho-Tau Threonine231, 

1:1000, Abcam; phospho-Tau Serine396, 1:1,000, Santa Cruz; phospho-Tau Serine404, 1:1000, 

Santa Cruz; pan-Tau, 1:10,000, Abcam). 

 The following day, membranes were probed with a fluorescence-based secondary 

antibodies based upon host species of primary antibody (LI-COR). Following secondary 

antibody incubation and washes, each membrane was imaged using the Odyssey® Infrared 

Imaging System (LI-COR) . All obtained images were analyzed utilizing Image Studio 

Software® (LI-COR). Each protein of interest was normalized to an appropriate housekeeping 

protein: β-actin, AKT, or GSK3β.  

Statistical Analyses 

 Differences in blood glucose, body weights, and Barnes maze hidden training (latency, 

errors, speed) were analyzed by repeated measures analysis of variance (ANOVA) with group as 

the factor. Open field data (total distance travelled and perimeter time), novel object recognition 

day 1 data (time spent investigating objects and speed), novel object recognition day 2 speed, 

Barnes maze probe data (number of nose pokes into holes, speed), and tissue analyses (ELISA, 

Western blot ) were analyzed by one-way between subjects ANOVA with group as the factor.  

 For NOR Day 2, a performance index for novelty preference over the familiar object and 

was compared against chance (50%) using a Student’s t-test for each group. Similarly, time spent 

in target quadrant during the Barnes maze probe trial was compared against chance (25%) using 

a Student’s t-test for each group. 
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 Following a significant ANOVA, a Tukey post-hoc comparison of groups was performed 

to determine points of significance. Within each cohort, males and females were analyzed 

separately. 
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CHAPTER 4 

RESULTS 

Metabolic Measures 

Body Weight 

 Body weights were monitored throughout the course of the experiment to observe any 

changes due to drug treatment or diet.  

 In Cohort 1, baseline weights established prior to administration of STZ did not differ 

between groups (F3,44 = 0.418, p = 0.741; Figure 3a). Across the experiment, statistical analysis 

revealed a significant ANOVA for Cohort 1 males (F3,44 = 4.657, p = 0.007); however, post-hoc 

analysis did not reveal any significant differences against controls (Figure 3a). The significant 

difference was driven by the weights of CX3CR1-/- animals being significantly greater than STZ 

(p = 0.005) and CX3CR1-/- + STZ (p = 0.04).  

 In Cohort 1 females, there was no difference in baseline weights (F3,44 = 0.928, p = 0.435; 

Figure 3a). Across the experiment, CX3CR1-/- females demonstrated significantly higher weights 

(F3,44 = 6.841, p = 0.001; Tukey post-hoc: controls vs CX3CR1-/- p = 0.026; figure 3a). 

 In Cohort 2, there was no difference in baseline weights for males prior to beginning 

high-fat chow (F3,44 = 2.703, p = 0.057; Figure 3b). Across the course of the experiment, both 

high-fat diet groups exhibited significantly greater weights compared to controls (F3,44 = 

110.823, p < 0.001; Tukey post-hoc: controls vs HFD p < 0.001, controls vs CX3CR1-/-+HFD p 

< 0.001; Figure 3b). Additionally, Tukey post-hoc revealed that CX3CR1-/-+HFD did not gain as 

much weight compared to HFD-alone throughout the experiment (p = 0.048).  
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 Weights in Cohort 2 females did not differ at baseline (F3,44 = 0.409, p = 0.747; Figure 

2b) but were significantly different across the experiment (F3,44 = 58.474, p < 0.001; Figure 2b)  

with both HFD groups weighing significantly more than controls (Tukey post-hoc: controls vs 

HFD p < 0.001, controls vs CX3CR1-/-+HFD p < 0.001). 

Blood Glucose Levels 

 Blood glucose levels were monitored prior to the start of STZ injections or before 

beginning HFD at three months of age and then monitored monthly over the course of the 

experiment.  

 In Cohort 1 males, no differences were observed in baseline blood glucose levels (F3,44 = 

0.418, p = 0.741; Figure 4a). Following STZ injections, a significant difference arose in blood 

glucose across the remaining experiment with both STZ-treated groups exhibiting elevated blood 

glucose (F3,44 = 82.274, p < 0.001; Tukey post-hoc: controls vs STZ p < 0.001, controls vs 

CX3CR1-/-+STZ p < 0.001; Figure 4a). Additionally, blood glucose in CX3CR1-/-+STZ males 

was significantly greater compared to STZ-alone animals (Tukey post-hoc: p <  0.001).   

 In Cohort 1 females, there was no significant difference in baseline weights (F3,44 = 

0.928, p = 0.435; Figure 4a). Though noticeably lower than males following injections, blood 

glucose in STZ and CX3CR1-/-+STZ females were still significantly elevated across the 

experiment (F3,44 = 50.061, p < 0.001; Tukey post-hoc: controls vs STZ p < 0.001, controls vs 

CX3CR1-/-+STZ p < 0.001; Figure 4a).  

  In Cohort 2 males, there were no differences observed in baseline blood glucose levels 

(F3,44 = 0.791, p = 0.506; Figure 4b). Following the commencement of high-fat chow, blood 

glucose levels were significantly elevated in all treatment groups (F3,44 = 75.158, p < 0.001; 
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Tukey post-hoc: controls vs HFD p < 0.001, controls vs CX3CR1-/- p = 0.002, controls vs 

CX3CR1-/-+HFD p < 0.001; Figure 4b).  

 Cohort 2 females did not differ in blood glucose at baseline (F3,44 = 1.44, p = 0.245, 

Figure 4b); however, blood glucose levels were significantly elevated in all treatment groups 

across the experiment (F3,44 = 64.168, p < 0.001; Tukey post-hoc: controls vs HFD p < 0.001, 

controls vs CX3CR1-/- p = 0.044, controls vs CX3CR1-/-+HFD p < 0.001; Figure 4b). 

Plasma Insulin Levels 

 To further evaluate the diabetic status of treatment groups, plasma insulin levels were 

measured at the end of the experiment. 

 In Cohort 1 males, insulin levels were significantly reduced in both STZ-treated groups 

(F3,16 = 4.727, p = 0.015; Tukey post-hoc: controls vs STZ p = 0.042, controls vs CX3CR1-/-

+STZ p = 0.035; Figure 5a). No differences were observed in the insulin levels in Cohort 1 

females (F3,16 = 1.875; p = 0.174; Figure 5a). 

 In Cohort 2 males, high-fat chow led to significantly greater plasma insulin levels (F3,16 = 

11.252, p < 0.001: Tukey post-hoc: controls vs HFD p = 0.028, controls vs CX3CR1-/-+HFD p = 

0.001; Figure 5b). Similarly in Cohort 2 females, high-fat chow resulted in a large increase in 

plasma insulin (F3,16 = 13.252, p < 0.001: Tukey post-hoc: controls vs HFD p = 0.009, controls  

vs CX3CR1-/-+HFD p < 0.001; Figure 5b). 

Behavioral Testing 
Open Field 
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 The open field task was performed to monitor potential differences in exploratory 

behavior and anxiety-like phenotypes by measuring total distance travelled throughout the arena 

and the proportion time spent in the perimeter of the arena.  

 Cohort 1 males did not demonstrate any differences in open field on total distance 

travelled (F3,44 = 0.22, p = 0.882; Figure 6a) or proportion of time spent in the perimeter of the 

arena (F3,44 = 0.22, p = 0.292; Figure 6c).  

 No differences were observed in Cohort 1 females on total distance travelled (F3,44 = 

1.102, p = 0.359; Figure 6a) or in the proportion time spent in the perimeter of the maze (F3,44 = 

1.922, p = 0.14; Figure 6c). 

 Cohort 2 males travelled equivalently throughout the open field arena (F3,44 = 1.117, p = 

0.352; Figure 6b) and did not differ in proportion time spent in perimeter (F3,44 = 0.803, p = 

0.499; Figure 6d).  

 Cohort 2 females did not show differences in distance travelled (F3,44 = 0.849, p = 0.475; 

Figure 6b) or proportion time spent in the border of the arena (F3,44 = 0.571, p = 0.637; Figure 

6d). 

Novel Object Recognition 

 The novel object recognition task was performed as a test of basic learning and memory. 

Animals are innately drawn to novelty items in their environment and difficulties identifying 

objects as new or familiar is a common deficit in various forms of dementia. This task takes 

advantage of a rodent’s innate preference for novelty items and is considered a gold-standard test 

in Alzheimer’s disease research.  



 
 
 
 
 
 

38 

 On NOR Day 1, animals were presented with identical objects. Males in Cohort 1 spent 

equivalent times investigating the two identical objects (F3,44 = 0.624, p = 0.604; Figure 7a) and 

moved around the arena at a comparable speed (F3,44 = 0.21; p = 0.889; Figure 7c).  

 No differences were observed in Cohort 1 females on time spent investigating the two 

objects (F3,44 = 0.75, p = 0.529; Figure 7a) or on speed (F3,44 = 1.185, p = 0.326; Figure 7c). 

 Cohort 2 males did not exhibit any significant differences on NOR Day 1 in the time 

spent investigating objects (F3,44 = 0.177, p = 0.912; Figure 7b) or in the speed at which they 

moved around the chamber (F3,44 = 1.176, p = 0.33; Figure 7d). No differences were observed in 

Cohort 2 females on time spent investigating objects (F3,44 = 0.976, p = 0.412; Figure 7b) or 

speed (F3,44 = 1.902, p = 0.143; Figure 7d). 

 On NOR Day 2, animals were presented with an object that they had previously 

encountered on Day 1 and a novel object presented during Day 2 for the first time. A 

performance index was created to demonstrate the novelty preference and compared against 

chance, which was set at 0.5 as chance predicts that animals will spend equivalent times with 

both objects.  

 In Cohort 1 males, controls (t11 = 3.691, p = 0.004; Figure 8a) and CX3CR1-/- (t11 = 

2.366, p = 0.037; Figure 8a) spent significantly more time with the novel object, whereas STZ 

and CX3CR1-/-+STZ groups failed to demonstrate a novelty preference (t11 = 1.275, p = 0.229 

and t11 = -.356, p = 0.728, respectively; Figure 8a). Cohort 1 males moved at equivalent speed 

throughout the task (F3,44 =0.231, p = 0.874; Figure 8c).  

 Females in Cohort 1 mirrored the Cohort males with controls and CX3CR1-/- 

demonstrating a significant novelty preferences (t11 = 3.529, p = 0.005 and t11 = 3.322, p = 0.007, 
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respectively; Figure 8a) and the STZ and CX3CR1-/-+STZ groups failing to demonstrate a 

novelty preference (t11 = 0.625, p = 0.546 and t11 = -.69, p = 0.504, respectively; Figure 8a). No 

differences were observed in speed in Cohort 1 females (F3,44 = 1.628, p = 0.197; Figure 8c). 

 In Cohort 2 males, all groups with the exception of CX3CR1-/-+HFD demonstrated 

novelty preferences (controls t11 = 4.393, p = 0.001, HFD t11 = 0.847, p = 0.416, CX3CR1-/- t11 = 

2.748, p = 0.019, and CX3CR1-/-+HFD t11 = 2.327, p = 0.04; Figure 8b). No differences were 

observed in Cohort 2 males on speed (F3,44 = 0.347, p = 0.791; Figure 8d).  

 In Cohort 2 females, controls and CX3CR1-/- groups demonstrated a novelty preference 

(t11 = 3.583, p = 0.005 and t11 = 2.496, p = 0.032, respectively; Figure 8b). HFD and CX3CR1-/-

+HFD females failed to demonstrate a novelty preference (t11 = 1.382, p = 0.195 and t11 = 0.557, 

p = 0.589, respectively; Figure 8b). No differences were observed in speed (F3,44 = 0.635, p = 

0.597; Figure 8d) in Cohort 2 females. 

Barnes Maze, Hidden Training 

 The Barnes maze was performed to measure any potential differences in spatial learning 

and learning. This task utilized bright lights and a loud tone, which are both aversive to rodents, 

to encourage the animal to seek out the hidden dark chamber placed under one of the holes. 

During the four training days, the latency to find the escape hole was measured, along with errors 

and the speed at which the subject moved across the maze.  

 In Cohort 1 males, the STZ and CX3CR1-/-+STZ groups took significantly more time to 

locate the escape chamber (F3,188 = 7.153, p < 0.001; Tukey post-hoc: controls vs STZ p = 0.012, 

controls vs CX3CR1-/-+STZ p < 0.001; Figure 9a). These same male STZ and CX3CR1-/-+STZ 

groups also committed significantly more errors than the other groups in Cohort 1 (F3,188 = 7.653, 



 
 
 
 
 
 

40 

p < 0.001; Tukey post-hoc: controls vs STZ p = 0.011, controls vs CX3CR1-/-+STZ p < 0.001; 

Figure 9c). No differences were observed in speed (F3,188 = 1.963, p = 0.121; Figure 9e). 

 In Cohort 1 females, statistical analysis revealed an overall significant difference in 

latency to find the escape chamber (F3,188 = 2.894, p = 0.037; Figure 9a); however, no groups 

significantly differed from the control group with CX3CR1-/-+STZ failing to reach significance 

in the post-hoc analysis (p = 0.053). Female mice in both the STZ and CX3CR1-/-+STZ groups 

made significantly more errors across the experiment (F3,188 = 5.648, p < 0.001; Tukey post-hoc: 

controls vs STZ p = 0.005, controls vs CX3CR1-/-+STZ p = 0.017; Figure 9c). No differences 

were observed in speed (F3,188 = 1.723, p = 0.164; Figure 9e). 

 In Cohort 2 males, significantly longer latencies to find the escape chamber arose for the 

HFD alone group (F3,188 = 6.981, p < 0.001; Tukey post-hoc: controls vs HFD p = 0.005; Figure 

9b). Only the HFD alone group displayed significant differences in the amount of errors 

committed during training days  (F3,188 = 9.212, p < 0.001; Tukey post-hoc: controls vs HFD p < 

0.001; Figure 9d). No significant differences were observed in speed (F3,188 = 2.083, p = 0.104; 

Figure 9f).  

 In Cohort 2 females, only CX3CR1-/-+HFD displayed significantly longer latencies (F3,188 

= 7.43, p < 0.001; Tukey post-hoc: controls vs CX3CR1-/-HFD p < 0.001; Figure 9b). Similarly, 

only CX3CR1-/-+HFD females committed significantly more errors compared to controls (F3,188 

= 6.881, p < 0.001; Tukey post-hoc: controls vs CX3CR1-/-+HFD p < 0.001; Figure 9d). No 

differences were observed in speed (F3,188 = 0.626, p = 0.599; Figure 9f). 

Barnes Maze Probe Trial 
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 During the Barnes maze probe trial, the hidden escape chamber was removed twenty-four 

hours after the final hidden training day. The amount of time that the animal spent in the target 

area and the number of nose pokes into the escape hole was measured. 

 In Cohort 1 males, control and CX3CR1-/- mice displayed selective searches for the 

escape chamber by spending significantly more time in the target quadrant than chance predicts 

(controls t11 = 5.598, p < 0.001; CX3CR1-/- t11 = 3.425, p = 0.006; Figure 10a). Both STZ-treated 

groups failed to demonstrate a significant selective search (STZ t11 = 2.13, p = 0.416; CX3CR1-/-

+STZ t11 = 1.974, p = 0.074; Figure 10a). No significant differences were observed in Cohort 1 

males in the number of nose pokes into the escape hole (F3,44 = 2.268; p = 0.094; Figure 10c). No 

differences were observed in speed (F3,44 = 0.557; p = 0.646; Figure 10e).  

 In Cohort 1 females, all groups demonstrated a selective search by spending significantly 

more time in the target quadrant (controls t11 = 4.382, p = 0.001; STZ t11 = 3.469, p = 0.005; 

CX3CR1-/- t11 = 5.968, p < 0.001; CX3CR1-/-+STZ t11 = 5.598, p < 0.001; Figure 10a). No 

significant differences were observed in number of target hole pokes (F3,44 = 1.357, p = 0.268; 

Figure 10c) or in speed (F3,44 = 1.201; p = 0.32; Figure 10e). 

 In Cohort 2 males, all groups demonstrated selective searches for the target quadrant 

(controls t11 = 9.413, p < 0.001; HFD t11 = 2.4897, p = 0.015; CX3CR1-/- t11 = 3.852, p = 0.003; 

CX3CR1-/-+HFD t11 = 3.174, p = 0.009; Figure 10b). Only the HFD alone group demonstrated 

significantly fewer nose pokes into the target hole (F3,44 = 3.104, p = 0.036; Tukey post-hoc: 

controls vs HFD p = 0.035; Figure 10d). No difference was observed in speed (F3,44 = 0.453, p = 

0.715; Figure 10f). 
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 In Cohort 2 females, only CX3CR1-/-+HFD failed to display a selective search (controls 

t11 = 5.57, p < 0.001; HFD t11 = 4.135, p = 0.002; CX3CR1-/- t11 = 4.26, p = 0.001; CX3CR1-/-

+HFD t11 = 2.161, p = 0.054; Figure 10b). Similarly, only the CX3CR1-/-+HFD group had 

significantly fewer nose pokes into the target hole (F3,44 = 9.851, p < 0.001; Tukey post-hoc: 

controls vs CX3CR1-/-+HFD p = 0.035; Figure 10d). No difference was observed in speed (F3,44 

= 1.28, p = 0.293; Figure 10f). 

Tissue Analysis 

Western Blotting: Phosphorylated and Total Tau 

 Western blotting was conducted to examine differences in protein expression between 

treatment groups in two broad categories: the first being phosphorylated tau and the second being 

proteins associated with insulin signaling. Four different epitopes of phosphorylated tau (serine 

396, serine 404, serine 202, and threonine 231) are commonly found to be hyperphosphorylated 

in patients with Alzheimer’s disease, and to a lesser degree, in patients with T2DM. Total tau 

levels were also analyzed to see if there were any gross abnormalities to pan-tau, which could 

indicate excessive cellular death.  

 In Cohort 1 males, both groups treated with STZ (STZ alone and CX3CR1-/-+STZ) had 

significant elevations in tau phosphorylated at site serine 396 (F3,28 = 5.148, p = 0.006; Tukey 

post-hoc: controls vs STZ p = 0.008, controls vs CX3CR1-/-+STZ p = 0.036; Figure 11a).  Only 

STZ males displayed significant elevations in tau phosphorylated at site serine 404 (F3,28 = 3.17, 

p = 0.029; Tukey post-hoc: controls vs STZ p = 0.029; Figure 11c). No differences were 

observed in phosphorylated tau at site serine 202 (F3,28 = 2.921, p = 0.054; Figure 12a), 
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phosphorylated tau at site threonine 231 (F3,28 = 1.67, p = 0.199; Figure 12c), and no differences 

were detected in total tau (F3,28 = 1.073, p = 0.377; Figure 12e). 

 In Cohort 1 females, no signification differences were observed in tau phosphorylated at 

sites serine 396 (F3,28 = 1.994, p = 0.138; Figure 11a), serine 404 (F3,28 = 0.711, p = 0.553; Figure 

11c), serine 202 (F3,28 = 0.536, p = 0.662; Figure 12a), serine 202 (F3,28 = 0.306, p = 0.821; 

Figure 12c), or in total tau (F3,28 = 0.558, p = 0.647; Figure 12e). 

 In Cohort 2 males, there was a significant increase in phosphorylated tau at site serine 

396 in th:e HFD group (F3,28 = 3.056, p = 0.045; Tukey post-hoc: controls vs HFD p = 0.048; 

Figure 11b). Tau phosphorylated at site serine 404 (F3,28 = 0.251, p = 0.86; Figure 11d), site 

serine 202 (F3,28 = 1.124, p = 0.356; Figure 12b), and site threonine 231 (F3,28 = 0.887, p = 0.46; 

Figure 12d) remained unchanged. No differences were observed in levels of total tau (F3,28 = 

0.468, p = 0.707; Figure 12f), 

 Cohort 2 females did not display any significant differences in any phosphorylated tau 

epitopes: serine 396 (F3,28 = 0.652, p = 0.588; Figure 11b), serine 404 (F3,28 = 1.106, p = 0.363; 

Figure 11d), serine 202 (F3,28 = 0778, p = 0.523; Figure 12b), threonine 231 (F3,28 = 1.861, p = 

0.159; Figure 12d) or in total tau (F3,28 = 0.135, p = 0.938; Figure 12f).  

Western Blotting: Insulin Signaling-related Proteins 

 Several proteins associated with insulin signaling were evaluated to determine if any 

components within this pathway were altered and could serve as a potential pathway for 

increased tau phosphorylation. Analyzed proteins included: insulin degrading enzyme, pAKT, 

pGSK3β, and cdk5. 
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 In Cohort 1 males, a significant decrease in levels of insulin degrading enzyme were 

observed in both the CX3CR1-/- and CX3CR1-/-+STZ groups (F3,28 = 5.623, p = 0.004; Tukey 

post-hoc: controls vs CX3CR1-/- p = 0.004, controls vs CX3CR1-/-+STZ p = 0.014; Figure 13a). 

No significant differences were observed in levels of pAKT (F3,28 = 1.867, p = 0.159; Figure 

13c). Levels of pGSK3β remained unchanged between the groups (F3,28 = 0.28, p = 0.839; Figure 

14a). No differences were detected in cdk5 (F3,28 = 1.81, p = 0.169; Figure 14c). 

 In Cohort 1 females, there was a significant decrease in insulin degrading enzyme both 

the CX3CR1-/- and CX3CR1-/-+STZ groups (F3,28 = 8.796, p < 0.001; Tukey post-hoc: controls 

vs CX3CR1-/- p < 0.001, controls vs CX3CR1-/-+STZ p = 0.015; Figure 13a). No differences 

were observed in levels of pAKT (F3,28 = 1.933, p = 0.147; Figure 13c), pGSK3β (F3,28 = 1.151, 

p = 0.346; Figure 14a), or cdk5 (F3,28 = 0.443, p = 0.724; Figure 14c). 

 In Cohort 2 males, a significant decrease in insulin degrading enzyme was observed in 

both the CX3CR1-/- and CX3CR1-/-+HFD groups (F3,28 = 21.099, p < 0.001; Tukey post-hoc: 

controls vs CX3CR1-/- p < 0.001, controls vs CX3CR1-/-+HFD p < 0.001; Figure 13b). Statistical 

analysis did not reveal any significant differences in levels of pAKT (F3,28 = 0.442, p = 0.725; 

Figure 13d). A reduction in pGSK3β was observed in the HFD and CX3CR1-/-+HFD groups 

(F3,28 = 5.388, p = 0.005; Tukey post-hoc: controls vs HFD p = 0.004, controls vs CX3CR1-/-

+HFD p = 0.039; Figure 14b). No differences were observed in cdk5 levels (F3,28 = 1.45, p = 

0.249; Figure 14d).  

 In Cohort 2 females, insulin degrading enzyme was found to be significantly reduced in 

both the CX3CR1-/- and CX3CR1-/-+HFD groups (F3,28 = 41.0741, p < 0.001; Tukey post-hoc: 

controls vs CX3CR1-/- p < 0.001, controls vs CX3CR1-/-+HFD p < 0.001; Figure 13b). No 
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differences were observed in pAKT (F3,28 = 0.791, p = 0.509; Figure 13d), pGSK3β (F3,28 = 

1.981, p = 0.14; Figure 14b), or in cdk5 (F3,28 = 1.861, p = 0.159; Figure 14d). 
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Figure 3 Weights. a) STZ did not result in significant differences in body weight (±SEM) 
in Cohort 1 males or females. b) HFD significantly increased body weights (±SEM) in both 
males and females across the experiment. * = p < 0.05 against controls; # = p < 0.05 HFD versus 
CX3CR1-/-+HFD 
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Figure 4 Blood glucose. a) STZ resulted in significantly increased blood glucose levels 
(±SEM) in both males and females. b) HFD significantly increased blood glucose (±SEM) in 
both males and females across the experiment. * = p < 0.05 against controls; # = p < 0.05 STZ 
versus CX3CR1-/-+STZ 
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Figure 5 Plasma insulin. a) STZ resulted in significantly decreased plasma insulin (±SEM) 
in males. b) HFD significantly increased plasma insulin (±SEM) in both males and females. * = 
p < 0.05 against controls. 
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Figure 6 Open Field. No differences were observed in distance travelled (a, b; ±SEM) or 
time spent in the perimeter of the arena (c, d; ±SEM) during the open field in either cohort. 
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Figure 7 Novel Object Recognition, Day 1. No differences were observed in time spent 
investigating identical objects (a, b; ±SEM) or speed (c, d; ±SEM) in either cohort. 
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Figure 8 Novel Object Recognition, Day 2. a) Controls and CX3CR1-/- in Cohort 1 (males 
and females) spent significantly more time with the novel object. STZ and CX3CR1-/-+STZ 
males and females did not display a novelty preference. b) In Cohort 2, controls (male and 
female), CX3CR1-/- (male and female), and CX3CR1-/-+HFD (males) spent significantly more 
time with the novel object; whereas HFD (males and females) and CX3CR1-/-+HFD (females) 
spent less time with the novel object. No differences were observed in speed in any groups (c, d; 
±SEM). # = significantly greater than chance (p < 0.05) 
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Figure 9 Barnes Maze, Hidden Training. STZ and CX3CR1-/-+STZ males had significantly 
longer latencies (a, ±SEM) and errors (c, ±SEM). In Cohort 2, male HFD and female CX3CR1-/-

+HFD took longer to find the escape chamber (b, ±SEM) and committed more errors (d, ±SEM). 
No differences were observed in speed in any groups (e, f; ±SEM). * = p < 0.05 against controls; 
# = p < 0.05 HFD versus CX3CR1-/-+HFD. 
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Figure 10 Barnes Maze, Probe Trial. a) STZ and CX3CR1-/-+STZ males did not spend 
significantly more time in the target quadrant than chance would predict; all other groups 
displayed a selective search b) In Cohort 2, all groups, except for HFD males and CX3CR1-/-

+HFD females, displayed selective searches. c) No differences in target hole pokes in Cohort 1 
(±SEM). d) Male HFD and female CX3CR1-/-+HFD groups performed significantly fewer target 
hole pokes (±SEM). No differences were observed in speed in any groups (e, f; ±SEM). * = p < 
0.05 against controls; # = significantly greater than chance (p < 0.05). 
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Figure 11 Western Blot: pTau396 and pTau404. a) STZ and CX3CR1-/-+STZ males had 
significantly elevated pTau396 (±SEM). b) Male HFD mice displayed elevated levels of 
pTau396 (±SEM). c) STZ resulted in increased pTau404 in males. d) No differences were 
observed in pTau404 levels (±SEM) in Cohort 2. * = p < 0.05 against controls. 
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Figure 12 Western Blot: pTau202, pTau404, Total Tau. No differences were observed in 
pTau202 (a, b; ±SEM), pTau231 (c, d, ±SEM) or total tau (e, f, ±SEM) in either cohort. 
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Figure 13 Western Blot: IDE and pAKT. Significant reductions were observed in all  
CX3CR1-/- groups, regardless of DM status (a, b; ±SEM). No significant differences were 
observed in pAKT in either cohort (c, d; ±SEM). * = p < 0.05. 
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Figure 14 Western Blot: pGSKβ and cdk5. a) No significant changes in pGSKβ (±SEM) in 
Cohort 1. b) HFD and CX3CR1-/-+HFD males experienced reduced pGSKβ levels (±SEM).  
Levels of cdk5 remained unchanged in all groups in both cohorts (c, d; ±SEM). * = p < 0.05. 
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CHAPTER 5 

CONCLUSION 

 The above studies were designed to investigate the effects of two different models of 

diabetes and their interactions within an established model of inflammation on alterations related 

to Alzheimer’s disease. Specifically we evaluated learning and memory and tau-related 

pathology. We found that both models (Cohort 1 = STZ and Cohort 2 = HFD) led to impairments 

in learning and memory, as evidenced by deficits in both the novel object recognition and Barnes 

maze tasks. We hypothesized that these outcomes would be worsened when combined with the 

CX3CR1-/- mouse model of inflammation. While we generally saw equivalent or worse 

outcomes in male and female CX3CR1-/-+STZ compared to STZ alone, we surprisingly observed 

that HFD led to slightly better cognitive outcomes when combined with CX3CR1-/- mouse 

model, which will be discussed more below.  

 In these experiments, we utilized streptozotocin to induce diabetes in Cohort 1. Our lab 

has previously demonstrated that a similar protocol to the one used in this experiment resulted in 

a sustained state of hyperglycemia, which we were able to replicate in this study (Murtishaw et 

al., 2018). Interestingly, males in the CX3CR1+STZ groupd had significantly greater elevated 

blood glucose than the STZ-alone males, indicating an additive effect between genotype and 

STZ. Both groups of females administered STZ also experienced hyperglycemia, regardless of 

genotype. The elevation in blood glucose was much more subdued in female mice when 

contrasted with the more severe elevation observed in the males. This same pattern, of males 

experiencing much higher blood glucose than females, was observed in the high-fat diet cohorts 

and blood glucose never reached the levels observed in the STZ cohort. Female mice have been 
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found to be more resistant to metabolic challenges than males, including the use of both 

streptozotocin and high-fat diet (Elias et al., 1994; Pettersson, Waldén, Carlsson, Jansson, & 

Phillipson, 2012). It is interesting to note that the majority of research conducted on diabetes in 

rodents is primarily performed on male mice due to female mice exhibiting less pronounced 

disturbed metabolic phenotypes. However, these differences can also be seen in the human 

population. Type-1 diabetes is predominated by males and can be as disproportionate as 1:7 in 

populations that arise from a European origin (Gale & Gillespie, 2001). Additionally, there 

appears to be a reversal in prevalence depending upon stage of reproductive life with more 

diabetic men prior to puberty and more women are diagnosed after menopause (Wild, Roglic, 

Green, Sicree, & King, 2004).  

 A major point of these experiments was to evaluate whether our low-dose, staggered 

streptozotocin protocol resulted in sustained metabolic changes as far out as six months after the 

initial injections rather than just six weeks. These data suggest that our streptozotocin protocol is 

sufficient to result in a state of hyperglycemia that lasts for a significant amount of time. Six 

months following the injections, blood glucose levels were still elevated in all groups that had 

received streptozotocin. It is possible that those elevated levels might eventually begin to return 

to normal levels if the pancreas is able to regenerate enough pancreatic β-cells but it is evident 

from these data that six months is not enough time for sufficient pancreatic β-cell regeneration, at 

least not enough to begin to lower blood glucose.  

 In these studies, administration of streptozotocin led to significant decreases in plasma 

insulin in male mice but not in female mice; whereas circulating insulin was dramatically 

increased in all groups fed a high-fat diet, regardless of genotype or sex. These data are 
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consistent with observations in other STZ studies, including our own lab, showing that reducing 

the number of pancreatic β-cells will result in lowered levels of plasma insulin (Murtishaw et al., 

2018). Diet-induced obesity has been shown to increase circulating insulin levels in response to 

increasingly elevated blood glucose and that the pancreas releases more insulin to divert rising 

glucose levels from the bloodstream into target tissue, which ultimately leads to the insulin 

resistance commonly observed in T2DM (Winzell & Ahrén, 2004).  

 Memory impairments observed in the novel object recognition task are consistent with 

those that are observed in patients with AD and rodent models of AD. The novel object 

recognition task relies on the entorhinal cortex and the hippocampus (Antunes & Biala, 2011; 

Reger, Hovda, & Giza, 2009). These two regions are areas of the brain that appear to be the most 

vulnerable in early stages of AD (Braak & Braak, 1991). Lesions to the hippocampus have been 

shown to impair the ability of an animal to discriminate between an object that is familiar and an 

object that is novel (Antunes & Biala, 2011). Animals were tested in the open field arena for 

deficits in locomotor activity and anxiety-like phenotypes but because no differences were 

observed in these parameters the deficits in learning and memory are not likely due to 

differences in mobility or anxious behavior. Animals across all groups, in both cohorts, explored 

objects equivalently and moved around the arena comparably on the first day of novel object 

training. Diabetic-status, regardless of STZ or HFD-origin, resulted in reductions in preference 

for the novel object. Interestingly, we did not see novel object deficits in male CX3CR1-/-+HFD 

mice, whereas HFD-alone led to impaired novelty recognition. This same pattern of learning 

deficits occurring in HFD males but not CX3CR1-/-+HFD males was also observed in the Barnes 

maze, which will be discussed below.  
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 Animals were also tested in the Barnes maze task, a more complex hippocampal-

dependent task, to assess spatial learning and memory. In Cohort 1, both male groups treated 

with streptozotocin took longer to find the hidden escape chamber, committed significantly more 

errors, and spent less time in the target quadrant during the probe trial. Females treated with 

streptozotocin exhibited no differences in any measure of the Barnes maze. Interestingly, HFD 

males in Cohort 2 exhibited deficits in spatial learning, whereas CX3CR1-/-+HFD did not 

demonstrate any such impairment. In fact, CX3CR1-/-+HFD males performed comparable to 

controls and even slightly better than their CX3CR1-/- littermates on certain aspects of the Barnes 

maze. Others have found that CX3CR1-/- mice have impaired hippocampal-learning in the Morris 

water maze, another task to measure spatial learning (Rogers et al., 2011). These same   

CX3CR1-/- mice were shown to have significantly reduced hippocampal-dependent long-term 

potentiation compared to controls (Rogers et al., 2011).  

 Perhaps of most interest, recent reports have demonstrated that the CX3CL1/CX3CR1 

signaling system is a novel regulatory mechanism on the production of insulin secretion and 

pancreatic β-cell function (Lee et al., 2013). Lee et al. found that the removal of functional 

CX3CR1 leads to metabolic disturbances, including hyperglycemia, reduced insulin production, 

and changes in pancreatic β-cells morphology. It is plausible that if CX3CR1-/- mice are already 

experiencing an abnormal metabolic profile resulting in altered glucose metabolism that the 

introduction of a high-fat diet led to an alternative fuel source that inadvertently resulted in better 

cognitive outcomes. Ketones, in particular acetoacetate and β-hydroxybutyrate, can be relied 

upon as an alternative fuel source for the brain by converting β-hydroxybutyrate to acetoacetate, 

acetoacetate to acetoacetyl CoA, and acetoacetyl CoA to acetyl CoA, which can then be used in 
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the citric acid cycle as an energy source (Cunnane et al., 2011). The lack of cognitive 

impairments in the CX3CR1-/-+HFD male mice was an unexpected finding and contrary to our 

initial hypothesis that outcomes would be worse than in HFD mice alone. No measures were 

taken to monitor ketone levels during the course of the experiment or other metabolic parameters 

that might elucidate shifts in carbohydrate or lipid metabolism, as this was outside the scope of 

these experiments. Future studies should investigate this more thoroughly, including an 

exploration as to why this benefit was observed in male but not female CX3CR1-/-+HFD 

animals. 

 A number of proteins associated with AD-related tau pathology and insulin signaling 

were investigated in hippocampal tissue within these cohorts. Significantly increased levels of 

phosphorylated tau were observed only in male mice treated with streptozotocin (both STZ alone 

and CX3CR1-/-+STZ) and in male mice fed HFD alone. No significant changes in 

phosphorylated tau were observed in CX3CR1-/-+HFD male mice or any of the female groups. 

Neurofibrillary tangles, which are composed of hyperphosphorylated tau, are highly associated 

with cognitive deficits in patients with AD and are commonly observed in AD preclinical models 

(Braak & Braak, 1991; Shi et al., 2011). We analyzed two major kinases, GSK3β and cdk5, to 

evaluate potential mechanisms associated with the increase in phosphorylated tau at sites Serine 

396 and Serine 404. Only males on high-fat chow exhibited significantly altered levels of 

pGSK3β with no streptozotocin-treated groups exhibiting the same changes. Given the large 

number of potential kinases that can phosphorylate tau, it is possible that another kinase is 

significantly changed in the streptozotocin model or that small changes in numerous kinases 

contribute to an overall increase in tau phosphorylation and that these small alterations, while 
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large enough to be biologically significant, are not large enough to be statistically significant. 

Additionally, there could be significant alterations in phosphatases, the proteins that remove 

phosphate groups from tau to restore tau’s affinity for microtubules, which results in the same 

outcome of tau hyperphosphorylation. Phosphatases were not analyzed in these cohorts and 

future experiments should include an analysis of both kinases and phosphatases to get a better 

understanding of the dynamic nature of tau phosphorylation and dephosphorylation in the 

presence of metabolic disturbances.  

 One of the most striking results in these experiments was the finding that CX3CR1-/- 

mice, regardless of diabetic status, displayed significant reductions in insulin degrading enzyme 

compared to wildtype mice. As far as we can tell, we are the first to report that insulin degrading 

enzyme is significantly reduced in the hippocampus of CX3CR1-/- mice. As mentioned above, 

Lee et al. (2014) demonstrated that CX3CR1-/- mice exhibited metabolic disturbances but did not 

measure metabolic alterations in the brain and did not evaluate insulin degrading enzyme in any 

tissue. Our data fit within their findings of CX3CL1/CX3CR1 as a novel regulatory pathway in 

insulin production and that CX3CR1 deficiency could lead to alterations in insulin production 

and therefore reductions in insulin degrading enzyme. More research is needed to understand the 

role that the CX3CL1/CX3CR1 pathway plays in metabolic homeostasis both in the periphery 

and within the CNS.  

 Given the role of insulin resistance and insulin signaling perturbations in the pathogenesis 

of AD, it is possible that interventions currently approved for T2DM may also be useful in the 

treatment of AD. Insulin treatment reduces the development of tau pathology through an 

enhanced regulation of GSK-3β as numerous studies have demonstrated that insulin 
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administration mitigate tau phosphorylation following STZ administration (Jolivalt et al., 2008; 

Planel et al., 2007). However, the route of insulin delivery may be especially important in our 

clinical AD population due to chronic hyperinsulinemia in the peripheral tissues and 

hypoinsulinemia in the brain. In fact, several studies have shown that T2DM patients who 

regularly take insulin as a form of treatment are at even greater risk for AD than individuals with 

T2DM who either take no medications or utilize other forms of T2DM medication, by as much 

as fourfold (Huang et al., 2014; Ott et al., 1999). Intranasal insulin appears to be a viable long-

term treatment option since intranasal administration appears to quickly elevate levels of insulin 

within the brain by crossing perivascular channels and axonal pathways in olfactory and 

trigeminal areas without affecting peripheral insulin levels (Reger et al., 2006; Thorne, Pronk, 

Padmanabhan, & Frey, 2004). Intranasal insulin administration has shown some therapeutic 

promise results improving recall, attention, and several other cognitive measures in patients with 

AD and mild cognitive impairment (Craft et al., 2012; Reger et al., 2008).  

 Thiazolidinedioenes (TZDs), rosiglitazone, and pioglitazone are ligands for peroxisome 

proliferator-activated receptors (PPARs), a family of nuclear receptors involved in the regulation 

of gene transcription associated with lipid and glucose metabolism (Gryguek-Gorniak, 2014). 

TZDs are commonly used as an anti-diabetic drug due to their beneficial effects on glucose 

homeostasis by increasing insulin sensitivity. In several AD mouse models, long-term 

administration of rosiglitazone resulted in enhanced clearance of Aβ, a reduction in amyloid 

plaques, decreased tau phosphorylation, and improved cognitive functions (Escribano et al., 

2010; Yu et al., 2015). Additionally, rosiglitazone reduced tau phosphorylation in Otsuka Long 

Evans Tokushima Fatty rats, a model of spontaneously occurring T2DM, further implicating 
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insulin signaling in the formation of AD-related pathologies(Yoon et al., 2010).  The use of 

rosiglitazone in human clinical trials has had mixed results. One study found that six months of 

treatment with rosiglitazone improved recall and selective attention in patients with mild AD 

compared to age-matched controls, while another found that rosiglitazone improved scores on 

the Alzheimer’s Disease Assessment Scale-Cognitive subscale but only in individuals with 

APOEε4 negative genotypes (Risner et al., 2006; Watson, Cholerton, Reger, & Baker, 2005). 

Another large multicenter trial found no evidence that rosiglitazone resulted in any meaningful 

cognitive or global functional improvements in AD patients (Tzimopoulou et al., 2010). 

 Memantine, one of the few drugs approved by the Food and Drug Administration for 

clinical use of AD, is known to be a non-competitive, moderate affinity antagonist of the NMDA 

receptor and is used to relieve excessive glutamate noise in order to ameliorate glutamate 

excitotoxicity and slow the progression of neuronal death (Chen & Lipton, 2006; Lipton, 2004). 

Much more recently, Memantine was demonstrated to act on hippocampal KATP to promote 

CaMKII activity in the brains of an APP transgenic AD model to enhance LTP and improved 

blood glucose levels in the ob/ob diabetic mouse model, suggesting that Memantine could be 

potentially advantageous in treating mild to moderate AD patients with diabetes (Moriguchi et 

al., 2016).  

 The power of preventative measures should not be overlooked in the research frenzy to 

treat AD. A staggering 90% of all T2DM cases are estimated to be entirely preventable through 

modifications to diet, activity levels, and simple behavioral modifications (Hu et al., 2001). 

Previous estimates have suggested that nearly half of all AD cases are attributable to modifiable 

risk factors (smoking, physical inactivity, depression, hypertension, diabetes, and obesity) and 
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that a 10-25% reduction in these risks could reduce the number of AD cases in the United States 

by 500,000 and nearly 1-3 million cases world-wide (Barnes & Yaffe, 2011). 

 A recent study found that adherence to a Mediterranean-diet, increased physical activity, 

and a lower BMI correlated with lower levels of amyloid deposition and tau tangles in patients 

with mild cognitive impairment (Merrill et al., 2016). Neuropsychological examinations in 

healthy elderly adults, 60-75 years of age, indicate that beginning a regular aerobic program 

improved performance in cognitive tasks that rely heavily on frontal lobe function when 

compared to age-matched controls who did not exercise regularly (Kramer et al., 1999). In a 

randomized control study with elderly adults, those who began a regular exercise program 

experienced an increase in hippocampal BDNF levels, an increase in hippocampal volume, and 

improvements to spatial memory compared to the non-exercising control group who experienced 

significant loss in hippocampal volume (Erickson et al., 2011). A small series of case studies 

recently conducted at the Mary S. Easton Center for Alzheimer’s Disease Research at UCLA 

found that a twenty-five point behavioral modification program intended to improve metabolic 

performance, including items such as a low-grain diet, intermittent fasting, optimized sleep, daily 

exercise, and the addition of resveratrol and Axona (a prescription medical food specifically for 

AD) to the diet, significantly improved cognitive functions in 9 out of the 10 test subjects, 

warranting the need for more extensive, controlled clinical trial on the importance of diet and 

lifestyle interventions (Bredesen, 2014). Indeed, in a large double-blind randomized controlled 

study with multi-domain intervention, including exercise and dietary guidance, elderly patients 

in the multi-domain intervention experienced significant improvements across several cognitive 

domains (Ngandu et al., 2015). 
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 The benefits of studies that include exercise should not come as a surprise since it is well-

known that aerobic exercise and resistance training improves insulin sensitivity and dramatically 

increases GLUT4 expression and mobilization through both insulin–dependent and insulin-

independent pathways in peripheral tissues (Lehnen, 2013). Rats that were fed a high-fat diet for 

16 weeks and given access to running wheels had improved memory, restored insulin sensitivity, 

and increased hippocampal BDNF levels compared to high-fat diet rats not given regular 

exercise (Noble et al., 2014). Recent evidence suggests that exercise can also restore insulin 

sensitivity at the blood-brain-barrier leading to an increase in brain insulin levels similar to the 

effect of exercise on the reversal of insulin resistance that has now been documented both in 

peripheral tissues and in the CNS (Biessels & Reagan, 2015; Tschritter et al., 2012). 

 Interestingly, recent evidence suggests that the insulin-dependent GLUT4 transporter can 

be found in low levels on neurons within several brain regions, including the cortex and 

hippocampus, where energy demands are high and can be rapidly inserted in the typical insulin-

dependent manner but also in an insulin-independent manner following neuronal activity, similar 

to GLUT4 insertion in muscle tissue following exercise (Ashrafi, Wu, Farrell, & Ryan, 2017). 

Decreased glucose utilization in the brains of AD patients is consistently noted as one of the first 

symptoms in early stages of the disease (Hoyer, 2004; Simpson et al., 1994). The brain shows an 

incredible amount of metabolic flexibility by being able to easily utilize not only glucose and 

lactate but also ketones as fuel (Mergenthaler et al., 2013). Recent work involving PET imaging 

has demonstrated that while key regions of the brain involved with AD pathology experience 

decreased uptake of glucose, those same areas showed no impairments with ketone uptake, 

suggesting that supplying the brain with ketones might be a viable complementary strategy to 
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counteract metabolic imbalances within the brain (Castellano et al., 2014). Axona or AC-1202, 

the prescription medical food used in the UCLA study mentioned above, is a proprietary food 

replacement high in medium chain triglycerides from which ketone bodies are easily produced 

(Ashrafi et al., 2017; Cunnane et al., 2016). As expected, AC-1202 significantly elevated serum 

ketone levels without further modification to an existing diet and resulted in significant cognitive 

improvements in patients with mild AD compared to the placebo controls (Henderson et al., 

2009). AC-1204 is the pharmaceutical follow-up to AC-1202 and enrollment has just completed 

in a large-scale Phase 3 clinical trial. Providing an alternative energy source to a glucose-starved 

brain in the form of ketones shows consistent improvements in cognitive measures but still needs 

to be thoroughly evaluated on other pathological markers of the disease. Given the cognitive 

benefits observed in the male CX3CR1-/-+HFD mice, an interesting follow-up study would be to 

investigate the benefits of a ketogenic diet or AC-1202 in the metabolically challenged CX3CR1-

/- mouse model or in other preclinical AD models. 

 There have been no new treatments approved for AD in over 12 years and the failure rate 

of clinical trials in potential new drugs is 99.6% in drug trials conducted since 2002 (Cummings, 

Morstorf, & Zhong, 2014). Due to the absence of effective treatments that permanently halt or 

reverse AD progression, it is certainly warranted to demand increased scrutiny for effective 

preventative measures, particularly in regards to well-established risk factors, such as insulin 

resistance and T2DM.  

 Insulin resistance is the core pathogenic feature of metabolic syndrome, a cluster of 

diseases that include T2DM and obesity. Until recently, the research related to insulin resistance 

was targeted towards peripheral tissue such as muscle and adipose tissue; however, a more recent 
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focus on insulin resistance within the nervous system suggests that the brain and the blood-brain-

barrier is susceptible to the damaging effects of insulin resistance. Insulin resistance observed in 

T2DM has been demonstrated to correlate with an increased risk in the development of AD by 

making brain cells more susceptible to the damaging effects of Aβ and tau-related toxicity. 

Recent evidence supports the notion that AD, or at least some cases of AD, may be a slow-

progressing brain metabolic disease, with an increasing weight of evidence demonstrating an 

intricate link between insulin resistance and AD. Individuals with obesity and T2DM are at an 

increased risk for dementia. Patients with dementia, particularly with AD, commonly develop 

insulin resistance and hyperglycemia. Insulin resistance is a common pathway between T2DM 

and AD. Insulin signaling plays a key role in Aβ and tau regulation. In turn, Aβ has profoundly 

negative effects on insulin signaling. 

 Despite the increased scrutiny regarding insulin resistance in the nervous system, there is 

still a paucity of data to come to definitive conclusions regarding the exact role that insulin 

resistance plays in various disease states considering that metabolic disease is often accompanied 

with hyperinsulinemia, hyperglycemia, hyperlipidemia and inflammation. Additionally, a 

number of genetic and environmental risk factors, including a lack of exercise, increased BMI, 

smoking, unmanaged stress, and even aging can effect the development and persistence of 

insulin resistance (Sesti, 2006). The effects of T2DM on the brain are most pronounced in the 

elderly, suggesting that the aging brain is more susceptible to the effects of DM, likely due to the 

fact that numerous processes that would normally mitigate the toxic effects of hyperglycemia, 

oxidative stress, advanced glycation end-products are all impacted in an aged brain (Biessels et 
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al., 2002). Further studies are needed to understand these various contributions, as well as 

potential therapeutic targets. 

 Overall, these experiments demonstrate that perturbations to insulin, whether through 

streptozotocin or high-fat diet, have dramatic impacts on learning and memory. Profound 

cognitive deficits were observed in recognition memory and spatial learning in male diabetic 

mice; whereas female mice were much less likely to experience comparable cognitive deficits. 

The data collected from the tissue analyses suggest that these metabolic disruptions do not 

necessarily result in dramatic histopathological changes related to AD. Both streptozotocin and 

high-fat diet models are excellent routes of inducing diabetes in rodents but do not appear to be 

sufficient to induce overt AD-like alterations in the brain on the cellular level, at least on 

multiple targets on their own. These diabetic models could be useful tools when combined with 

other AD risk factors or AD-related mututations to investigate the synergistic effect of multiple 

risk factors. These experiments attempted to combine the diabetic risk associated with AD with 

an inflammation model to explore this cumulative risk; however, because CX3CR1-/- mice have 

recently been shown to already have preexisting metabolic alterations, the unexpected and 

contrary results between the streptozotocin and HFD cohorts further complicates this pathway of 

inquiry. It is possible that utilizing a different route of inflammation, such as administration of 

lipopolysaccharide or PolyI:C to activate toll-like receptors, could be more beneficial in 

investigations into the combined risk of diabetes and inflammation.  

 The results from these experiments suggest that both cohorts represent a good model of 

DM. The streptozotocin model resulted in dramatic elevations in blood glucose levels and 

modest reductions in insulin; whereas, the high-fat diet model resulted in more subdued 
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elevations in blood glucose levels but marked increases in circulating insulin levels. These 

different diabetic models can allow the researcher the opportunity to investigate the contributions 

of severe hyperglycemia following streptozotocin versus the dramatic hyperinsulinemia 

associated with diet-induced obesity on cognitive outcomes and other alterations within the 

brain. It is thought that hyperglycemia and hyperinsulinemia contribute differently to AD 

pathogenesis and these two different models could help elucidate their individual contributions. 

It is difficult to separate out their individual impact though as one is rarely present without the 

other in most models of DM. 

 Continued research to further elucidate the exact role and mechanisms by which insulin 

resistance can contribute to the development and progression of AD-related pathology is 

imperative to developing therapeutic interventions. Research continues to support the notion that 

high peripheral insulin levels and peripheral insulin resistance modulate cognition and AD-

related pathologies within the brain. Given the global obesity epidemic, there is a mounting need 

to understand the relationship between insulin resistance, cognitive impairments, and the long-

term term damage occurring within the nervous system. The model of insulin resistance and 

metabolic impairments contributing to the pathogenesis of AD is only one possible etiology in a 

disease with a myriad of potential etiologies and may not apply to all AD patients; however, 

further knowledge in this area might yield promising therapeutic interventions and preventative 

measures that will be particularly useful in a subpopulation of AD patients. 
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53. Murtishaw AS. Central and peripheral disruptions to insulin signaling on behavior and pathology 
 related to dementia. UNLV Neuroscience Journal Club. Las Vegas, NV, July 2016 [Oral 
 presentation]. 
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52. Murtishaw AS, Bolton MM, Heaney CF, Langhardt MA, Belmonte KCD, Boren, AJ, Calvin KN, 
 Kinney JW. Effects of GABA-B receptor modulation in a model of chronic inflammation. 
 International Behavioral Neuroscience Society annual meeting. Budapest, Hungary, June 2016.  
 
51. Murtishaw AS. Understanding the role of diabetes in the development of Alzheimer’s disease. 
 UNLV Graduate and Professional Student Association Research Forum. Las Vegas, NV, March 
 2016 [Oral presentation]. 
 
50. Murtishaw AS, Heaney CF, Bolton MM, Belmonte KCD, Langhardt MA, Calvin KN, Boren AJ, 
 Kinney JW. A novel administration of systemic streptozotocin leads to alterations relevant to 
 vascular dementia and Alzheimer’s disease. Society for Neuroscience annual meeting. Chicago, 
 IL, October 2015. 
 
49. Bolton MM, Heaney CF, Murtishaw AS, Langhardt MA, Kinney JW. Interactions of ketamine 
 administration and mTOR signaling on parvalbumin-positive neurons. Society for Neuroscience 
 annual meeting. Chicago, IL, October 2015.  
 
48. Bolton MM, Heaney CF, Murtishaw AS, Kinney JW. Interactions of behavioral training and 
 ketamine administration on changes in parvalbumin-positive neurons. International Behavioral 
 Neuroscience Society annual meeting. Victoria, British Columbia, Canada, June 2015. 
 
47. Murtishaw AS, Heaney CF, Bolton MM, Belmonte KCD, Langhardt MA, Kinney JW. An evaluation 
 of peripheral insulin disruption on behavior, phosphorylated tau levels, and microglia activity. 
 International Behavioral Neuroscience Society annual meeting. Victoria, British Columbia, 
 Canada, June 2015. 
 
46. Murtishaw AS. Type-II Diabetes Mellitus & Alzheimer’s disease. Invited speaker. University of 
 Phoenix Fourth Annual Research and Scholarship Symposium. Las Vegas, Nevada, May 2015 
 [Oral presentation]. 
 
45. Bolton MM, Heaney CF, Murtishaw AS, Langhardt MA, Kinney JW. Ketamine administration on 
 changes in parvalbumin neurons in various behavioral measures.  UNLV Graduate and 
 Professional Student Association Research Forum. Las Vegas, NV, March 2015. 
 
44. Heaney CF, Bolton MM, Murtishaw AS, Kinney JW. GABAB ligand dose-dependent changes in 
 spatial learning and hippocampal GABAergic and plasticity proteins. UNLV Graduate and 
 Professional Student Association Research Forum. Las Vegas, NV, March 2015. 
 
43. Murtishaw AS. Insulin signaling disruption within the brain: Relevance to Alzheimer’s disease. 
 UNLV Graduate and Professional Student Association Research Forum. Las Vegas, NV, March 
 2015 [Oral presentation]. 
 
42. Bolton MM, Heaney CF, Murtishaw AS, Langhardt MA, Kinney JW. Interactions of behavioral 
 training and ketamine administration on changes in parvalbumin neurons. American Chemical 
 Society Southern Nevada Section Annual Research Competition. Henderson, NV, November 
 2014. 
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41. Heaney CF, Bolton MM, Murtishaw AS, Kinney JW. GABAB ligand dose-dependent changes in 
 spatial learning and hippocampal GABAergic and plasticity proteins. American Chemical Society 
 Southern Nevada Section Annual Research Competition. Henderson, NV, November 2014. 
 
40. Murtishaw AS, Heaney CF, Bolton MM, Belmonte KCD, Hagins PM, Langhardt MA, Kinney JW. 
 An investigation of insulin receptor disruption and chronic inflammation as risk factors of 
 Alzheimer’s disease. American Chemical Society Southern Nevada Section Annual Research 
 Competition. Henderson, NV, November 2014. 
 
39. Bolton MM, Heaney CF, Murtishaw AS, Langhardt MA, Kinney JW. Interactions of behavioral 
 training and ketamine administration on changes in parvalbumin neurons. Society for 
 Neuroscience annual meeting. Washington, D.C.,November 2014. 
 
38. Heaney CF, Bolton MM, Murtishaw AS, Kinney JW. GABAB ligand dose-dependent changes in 
 spatial learning and hippocampal GABAergic and plasticity proteins. Society for Neuroscience 
 annual meeting. Washington, D.C., November 2014. 
 
37. Langhardt MA, Murtishaw AS, Heaney CF, Bolton MM, Belmonte KC., Hagins PM, Kinney JW. 
 Facilitation of GABAB receptor function modulates chronic inflammatory effects. Society for 
 Neuroscience annual meeting. Washington, D.C., November 2014. 
 
36. Murtishaw AS, Heaney CF, Bolton MM, Belmonte KCD, Hagins PM, Langhardt MA, Kinney JW. 
 Chronic inflammation and insulin signaling perturbations in a diabetic model of Alzheimer’s 
 disease. Society for Neuroscience annual meeting. Washington, D.C., November 2014. 
 
35. Heaney CF, Bolton MM, Murtishaw AS, Kinney JW. Evaluation of multiple doses of GABAB 
 ligands on learning and memory. GABAergic Signaling in Health & Disease, 
 Neuropharmacology 24th annual meeting. Pentagon City, VA, November 2014. 
 
34. Hagins PM, Murtishaw AS, Heaney CF, Bolton MM, Belmonte KCD, Langhardt MA, Kinney JW. 
 Chronic inflammation in a diabetic model of Alzheimer’s disease. Nevada IDeA Network of 
 Biomedical Research Excellence Undergraduate Research Opportunity Program Poster 
 Symposium. Las Vegas, NV, August 2014. 
 
33. Murtishaw AS, Heaney CF, Bolton MM, Belmonte KCD, Hagins PM, Langhardt MA, Kinney, J.W. 
 Chronic inflammation in a diabetic model of Alzheimer’s disease. International Behavioral 
 Neuroscience Society annual meeting. Las Vegas, NV, June 2014.     
 
32. Bolton MM, Heaney CF, Murtishaw AS, Kinney JW. Developmental Alteration of GABAB Receptor 
 Function Results in Behavioral Deficits in Adulthood. UNLV Graduate and Professional Student 
 Association Research Forum. Las Vegas, NV, May 2014. 

31. Heaney CF, Bolton MM, Murtishaw AS, Kinney JW. The effects of baclofen and phaclofen on 
 performance in the Morris water maze. UNLV Graduate and Professional Student Association 
 Research Forum. Las Vegas, NV, May 2014. 
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30. Murtishaw AS. Chronic inflammation in a diabetic model of Alzheimer’s disease. UNLV 
 Department of Psychology Research Highlights. Las Vegas, Nevada, March 2014 [Oral 
 presentation]. 
 
29. Murtishaw AS. LPS-induced chronic inflammation in a model of sporadic Alzheimer’s disease. 
 UNLV Graduate and Professional Student Association Research Forum. Las Vegas, NV, March 
 2014 [Oral presentation]. 
 
28. Bolton MM, Heaney CF, Murtishaw AS, Langhardt MA, Kinney JW. Developmental alteration of 
 GABAB receptor function results in behavioral deficits in adulthood. Society for Neuroscience 
 annual meeting. San Diego, CA, November 2013. 
 
27. Heaney CF, Bolton MM, Murtishaw AS, Kinney JW. The effects of baclofen and phaclofen on 
 performance in the Morris water maze. Society for Neuroscience annual meeting. San Diego, CA, 
 November 2013.  
 
26. Langhardt MA, Bolton MM, Heaney CF, Murtishaw AS, Nagls S, Kinney JW. Evaluation of 
 ketamine-induced changes in spatial working memory and GABAergic systems. Society for 
 Neuroscience annual meeting. San Diego, CA, November 2013. 
 
25. Murtishaw AS, Heaney CF, Bolton MM, Langhardt MA, Belmont KCD, Kinney JW. An acute LPS-
 induced inflammatory response in a diabetic model of Alzheimer’s disease. Society for 
 Neuroscience annual meeting. San Diego, CA, October 2013. 
 
24. Belmonte KCD, Murtishaw AS, Heaney CF, Bolton MM, Kinney JW. An acute inflammatory 
 response in a diabetic model of Alzheimer’s disease. McNair Scholars Research Program Poster 
 Symposium. Las Vegas, NV, October 2013. 
 
23. Langhardt MA, Bolton MM, Heaney CF, Murtishaw AS, Kinney JW. Ketamine-induced deficits in 
 working memory with relevance to schizophrenia. UNLV McNair Scholars Research 
 Symposium. Las Vegas, NV, October 2013. 
 
22. Belmonte KCD, Murtishaw AS, Heaney CF, Bolton MM, Kinney JW. An acute inflammatory 
 response in a diabetic model of Alzheimer’s disease. Nevada IdeA Network of Biomedical 
 Research Excellence Undergraduate Research Opportunity Program Poster Symposium. Las 
 Vegas, NV, August 2013. 
 
21. Langhardt MA, Bolton MM, Murtishaw AS, Heaney CF, Kinney JW. Ketamine Induced Deficits in 
 Working Memory with Relevance to Schizophrenia. University of California, Berkeley 21st 
 Annual McNair Scholars Symposium. Berkeley, CA, August 2013. 
 
20. Bolton MM, Heaney CF, Sabbagh JJ, Murtishaw AS, Magcalas CM, Kinney J.W. Comparison of 
 postnatal ketamine dosage on behavioral deficits in adulthood. UNLV Graduate and Professional 
 Student Association Research Forum. Las Vegas, NV, May 2013. 
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19. Heaney CF, Bolton MM, Murtishaw AS, Sabbagh JJ, Magcalas CM, Kinney JW. Changes in 
 GABAB tone in development produces behavioral deficits in adulthood. UNLV Graduate and 
 Professional Student Association Research Forum. Las Vegas, NV, May 2013. 
 
18. Murtishaw AS. Ketamine-induced behavioral impairments and alterations in hippocampal
 GABAergic neuron distribution. UNLV Graduate and Professional Student Association 
 Research Forum. Las Vegas, NV, May 2013 [Oral presentation]. 
 
17. Murtishaw AS. Acute inflammation in a diabetic model of Alzheimer’s disease. UNLV Department 
 of Psychology Proseminar. Las Vegas, Nevada, February 2013 [Oral presentation]. 
 
16. Bolton MM, Heaney CF, Sabbagh JJ, Murtishaw AS, Magcalas CM, Kinney JW. Comparison of 
 postnatal ketamine dosage on behavioral deficits in adulthood. Sierra Nevada Chapter for Society 
 for Neuroscience 4th Annual Research Symposium. Reno, NV, November 2012. 
 
15. Heaney CF, Bolton MM, Murtishaw AS, Sabbagh JJ, Magcalas CM, Kinney JW. Changes in 
 GABAB receptor tone in development produces behavioral deficits in adulthood. Sierra Nevada 
 Chapter for Society for Neuroscience 4th Annual Research Symposium. Reno, NV, November 
 2012. 
 
14. Bolton MM, Heaney CF, Sabbagh JJ, Murtishaw AS, Magcalas CM, Kinney JW. Comparison of 
 postnatal ketamine dosage on behavioral deficits in adulthood. Society for Neuroscience annual 
 meeting. New Orleans, LA, October 2012. 
 
13. Heaney CF, Bolton MM, Murtishaw AS, Sabbagh JJ, Magcalas CM, Kinney JW. Changes in 
 GABAB receptor tone in development produce behavioral deficits in adulthood. Society for 
 Neuroscience annual meeting. New Orleans, LA, October 2012. 
 
12. Murtishaw AS, Sabbagh JJ, Heaney CF, Bolton MM, Magcalas CM, Langhardt MA, Kinney JW. 
 Ketamine-induced behavioral impairments and alterations in hippocampal GABAergic neuron 
 distribution. Society for Neuroscience annual meeting. New Orleans, LA, October 2012. 
 
11. Sabbagh JJ, Murtishaw AS, Heaney CF, Bolton MM, Magcalas CM, Kinney JW. Chronic calcium 
 dysregulation produces cognitive deficits and biochemical changes relevant to Alzheimer’s 
 disease. Society for Neuroscience annual meeting. New Orleans,  LA, October 2012. 
 
10. Magcalas CM, Heaney CF, Bolton MM, Murtishaw AS, Sabbagh JJ, Kinney JW. Alterations in 
 GABAB in development produce behavioral and protein changes in adulthood. Nevada IdeA 
 Network of Biomedical Research Excellence Undergraduate Research Opportunity Program 
 Poster Symposium. Las Vegas, NV, August 2012. 
 
9. Bolton MM, Heaney CF, Sabbagh JJ, Murtishaw AS, Kinney JW. Comparison of an adult and 
 developmental animal model of schizophrenia. UNLV Graduate and Professional Student 
 Association Research Forum. Las Vegas, NV, May 2012. 
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8. Heaney CF, Bolton MM, Murtishaw AS, Sabbagh JJ, Magcalas CM, Kinney JW. An investigation of 
 the effects of alterations of GABAB receptor function on learning and memory. UNLV Graduate 
 and Professional Student Association Research Forum. Las Vegas, NV, May 2012. 
 
7. Murtishaw AS. GABAergic alteration and behavioral impairments from ketamine: A possible 
 mechanism for treatment resistant depression. UNLV Department of Psychology  Proseminar. Las 
 Vegas, Nevada, May 2012 [Oral presentation]. 
 
6. Bolton MM, Heaney CF, Sabbagh, JJ, Murtishaw AS, Kinney JW. Comparison of an adult and 
 developmental animal model of schizophrenia. Society for Neuroscience annual meeting. 
 Washington, D.C., 2011. 
 
5. Heaney CF, Sabbagh JJ, Bolton MM, Murtishaw AS, Santa-Ana I, Kinney JW. An investigation of 
 alterations in GABAergic tone in an animal model of schizophrenia. UNLV Graduate and 
 Professional Student Association Research Forum. Las Vegas, NV, May 2011. 
 
4. Heaney CF, Bolton MM, Murtishaw AS, Sabbagh JJ, Kinney JW. An investigation of the effects of 
 alterations in GABAB receptor function on learning and memory. Society for Neuroscience 
 annual meeting. Washington, D.C., November 2011. 
 
3. Sabbagh JJ, Bolton MM, Heaney CF, Murtishaw, AS, Kinney JW. Deficits in emotional learning and 
 memory in an animal model of schizophrenia. Society for Neuroscience annual meeting. 
 Washington, D.C., November 2011. 
 
2. Heaney CF, Sabbagh JJ, Bolton MM, Murtishaw AS, Santa-Ana I, Kinney JW. An investigation of 
 alterations in GABAergic tone in an animal model of schizophrenia. Society for Neuroscience 
 annual meeting. San Diego, CA, November 2010. 
 
1. Sabbagh JJ, Heaney CF, Bolton MM, Murtishaw AS, Ure JA, Kinney JW. Donepezil and galanin 
 interactions in learning and memory and a model of cholinergic loss. Society for Neuroscience 
 annual meeting. San Diego, CA, November 2010. 
 
GRANT SUBMISSIONS, SIGNFICICANT CONTRIBUTIONS  
 
NIH P20 Center of Biomedical Research Excellence (COBRE)  
“Center for Neurodegeneration and Translational Neuroscience” 
PI: Jeffrey Cummings, M.D.; Project 3 Director: Jefferson Kinney, Ph.D. 
Funded Fall 2015, $11 million grant 
 
Faculty Opportunity Awards Program, University of Nevada, Las Vegas  
“Evaluation of biomarkers in Alzheimer’s disease animal models and clinical populations”  
PI: Jefferson Kinney, Ph.D. 
Not funded. 
 
McKnight Endowment Fund for Neuroscience, Memory and Cognitive Disorder Award “An 
Investigation of Neuroinflammation in a Diabetic Model of Alzheimer’s Disease”  
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PI: Jefferson Kinney, Ph.D. 
Not funded. 
 

SERVICE/OUTREACH  
 
UNLV Best Teaching Practices Expo Committee Member & Judge, Jan. 2017 
 Asked to serve as a judge and on the planning advisory board for the first annual best teaching 
 practices expo designed to highlight innovative teaching methods of various full-time and part-
 time instructors at UNLV. 
 
SfN LGBT Social,  Nov. 2017, Nov. 2016, Oct. 2015, Nov. 2014,  

Sole organizer of an SfN LGBT Social held at the Society for Neuroscience Annual Conferences 
in 2014, 2015, and 2016. This event serves as a networking platform to bring LGBT 
neuroscientists together from across the globe to share research. This social was regularly 
attended by ~300 LGBT neuroscientists. 

 
UNLV Psychology Department Research Panel, Sept. 2016 
 Invited to participate on a panel discussing experience regarding research and graduate school for 
 newly admitted graduate students within the UNLV Psychology Department. 
 
Graduate Student Success Panel, Aug. 2016. 
 Invited to participate in a university-wide panel for incoming graduate students on successful 
 strategies to meet the various demands of graduate school. 
 
Graduate Student Research Panel, Oct. 2015 
 Invited to participate on a panel discussing experience regarding research and graduate school for 
 undergraduate students seeking advice on graduate school and for fellow  graduate students. 
 
IBNS Communications Committee, Dec. 2014–Present 
 The Communications Committee of the International Behavioral Neuroscience Society 
 disseminates accurate and timely information concerning research in the field of  behavioral 
 neuroscience, to the scientific community, funding agencies, legislative authorities, and the 
 general public. 
 
IBNS Newsletter Guest Editor, Dec. 2014–Feb. 2015 
 Edited and contributed to the quarterly newsletter for members of the International 
 Behavioral Neuroscience Society. 
. 
Guest Lecturer and Science Consultant LAW 728 Bioethics, August 2014 – December 2014. 
 UNLV Boyd School of Law. Las Vegas, Nevada 
 
Las Vegas Brain Bee, Feb. 2014–Present 
 Along with 6 other board members of the Nevada Brain Bee, we organized the first annual Las 
 Vegas Brain Bee in 2014 and subsequent Brain Bees in 2015, 2016, and 2017. Funding was 
 secured to send the winner to National Brain Bee in Baltimore, MD. 
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UNLV Honors Thesis Committee Member: Krystal Belmonte, 2014 
 Thesis title: “Diabetic model of Alzheimer’s disease via intraperitoneal induction.”  
 
UROP Mentor: Patrick Hagins, Summer 2014 
 Served as mentor for Patrick Hagins, recipient of Nevada IDeA Network of Biomedical 
 Research Excellence Undergraduate Research Opportunity Program.  
 
IBNS Local Organizing Committee, Fall 2013–Summer 2014 

Served as a member of the Local Organizing Committee for the International Behavioral 
Neuroscience Society 2014 Conference held in Las Vegas, NV. IBNS sponsored a Brain Safety 
Initiative, which included a brain awareness event at Wright Elementary and a fundraiser 
donation to Clark County School District for the Safe Routes to School Program to purchase bike 
helmets for underprivileged children. 

 
UROP Mentor: Krystal Belmonte, Summer 2014 
 Served as mentor for Krystal Belmonte, recipient of Nevada IDeA Network of Biomedical 
 Research Excellence Undergraduate Research Opportunity Program & McNair Scholar Summer 
 Research Award.  
 
McNair Mentor: Krystal Belmonte, Summer 2014 
 Served as mentor for Krystal Belmonte, recipient of McNair Scholar Summer Research Award. 
 
Nevada Brain Bee Association, Fall 2013–Present 
 Founding member and Board member of the Nevada Brain Bee Association. NBBA is 501(c)(3) 
 Non-profit organization founded in 2013.  NBAA is a regional division of the International Brain 
 Bee, which is a worldwide neuroscience competition for high school students. 
 
Guest lecturer PSY 403 (Physiology of Psychology): Mechanisms of learning and memory. 
 UNLV, Las Vegas, Nevada, June 2013. 
 
McNair Mentor: Michael Langhardt, Summer 2013 
 Served as mentor for Michael Langhardt, recipient of McNair Scholar Summer Research  Award. 
 
Experimental Student Council, Neuroscience Emphasis Representative, 2012–2016 
 ESC serves as a liaison between the graduate students and the faculty in the Experimental 
 Psychology Department.  
 
Q:UNLV, 2012–Present 

Serve as a member of Q:UNLV. Q:UNLV is a council steered by UNLV’s Vice-President to 
promote diversity and inclusion for the LGBTQ staff and faculty at UNLV. 

 
Brain Awareness Week, 2012–Present 
 Organize local outreach programs as part of The Dana Foundation’s Brain Awareness Week to 
 promote brain safety and neuroscience awareness at numerous elementary schools in Las Vegas, 
 Searchlight, Pahrump, and across Southern Nevada. 
 
UNLV Graduate Neuroscience Association, 2011–Present 
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  Founding member of GNA. GNA meets monthly to discuss recent advances and  publications in  
  neuroscience. 
 
UNLV Neuroscience Journal Club, 2009–Present 
  As a graduate student member of the NJC my main focus is primarily to teach undergraduate  
  students how to read and understand journal articles. 
 
Anatomy & Physiology Tutor, 2008–2011 
  Tutored students in BIOL 348 (Human Anatomy) and BIOL 223 (Anatomy & Physiology I). 
 

PROFESSIONAL MEMBERSHIPS   
 
Society for the Study of Ingestive Behavior, 2015–Present 
Alzheimer’s Association, Desert Southwest Chapter, 2014–Present 
Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment,  2013–
Present 
National Organization of Gay and Lesbian Scientists and Technical Professionals, 2013–Present 
International Behavioral Neuroscience Society, 2013–Present 
Sierra Nevada Chapter of the Society for Neuroscience, 2009–Present 
Society for Neuroscience, 2008–Present 
 
 


