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Abstract

Bipolar disorder (BP), a severe mental disorder characterized by recurring manic and
depressive episodes, has been shown to have a strong genetic underpinning. Current theory
suggests that it is the summation of risk alleles, spread across the entirety of the genome, which
contributes to the development of BP, as well as other polygenic traits. The comorbid nature of
these polygenic traits are often problematic for diagnosticians as the symptomology of the
disorders may vary substantially between individuals and can create diagnostic confusion. To
alleviate issues such as these, a more objective measure, to be used alongside current diagnostic
procedures, is needed. To accomplish this, researchers have begun to turn their attention towards
an ever increasing body of publicly available genetic data.

Recently, polygenic risk scores have been implemented in genetic risk prediction.
Genome-wide association study (GWAS) summary statistics, derived on a plethora of psychiatric
disorders, are readily accessible and provide a cost efficient strategy for generating risk scores. In
this study, we attempted to not only predict the diagnosis of bipolar disorder utilizing publicly
available genotype information, but to also improve upon current methodology by showing that
the inclusion of risk scores calculated on comorbid traits can benefit the accuracy and
generalizability of the classification model. While the results reported herein are mixed, this study
provides strong support for the feasibility of genetic prediction of psychiatric disorders. This
approach was, to our knowledge, entirely novel and the first time it had been implemented in

practice.
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Background and Literature Review

Misdiagnosis, the incorrect diagnosis of an illness or disorder, is an unfortunate reality of
the diagnostic process. Misdiagnosis results in the application of ineffective treatment, the need
for reassessment, and an increase in total treatment costs, all of which is in addition to the negative
impact misdiagnosis can have on a patient’s mental and physical well-being. A quick PubMed
search will show that the misdiagnosis of psychiatric illnesses has been under intense scrutiny for
many years, with bipolar disorder (BP) being of particular concern. In a survey conducted by
Hirschfeld, Lewis, and Vornik (2003), the four most frequent misdiagnoses of BP reported were
those of unipolar depression, schizophrenia, and borderline or antisocial personality disorder. It is
apparent that a more objective measure, to be used alongside current clinical practices, is needed
to assist in the diagnosis of not just BP, but many other psychiatric disorders as well.

The wide range of symptomologies of BP are a significant factor as they create confusion
during the diagnostic process, even more so when a patient’s history is unknown and reliance on
self-report data is high. Currently, BP is classified by the Diagnostic and Statistical Manual of
Mental Disorders — 5 (American Psychiatric Association, 2013) as having multiple subtypes, with
the subtypes reported as BP type I (having experienced one or more manic/mixed episodes), BP
type II (never experienced a manic episode, but have experienced one hypomanic and depressive
episode), substance/medication-induced bipolar and related disorder (disturbed mood that occurs
during substance use or withdrawal), and other specified bipolar and related disorder (atypical BP
that does not meet the criteria for BP type I or II). Unfortunately, many patients will only seek help
for depressive symptoms and, as such, BP type II is often misdiagnosed and subsequently treated
as unipolar depression (Hirschfeld & Vornik, 2004). As it stands, the misdiagnosis of BP, as well

as many other psychiatric disorders, is an issue that has yet to be adequately addressed. To improve



upon current methodology, scientists have begun to turn their attention to the biological etiology
of psychiatric disorders.

The exact cause of BP is currently unknown, however, many factors are thought to play a
significant role. In recent years, the development of BP has been linked to a myriad of biological
underpinnings, such as neurochemical imbalances (Manji et al., 2003), structural abnormalities in
the brain (Rajkowska, Halaris, & Selemon, 2001), and genetic variations (Craddock & Jones,
1999). While ample progress has been made in the examination of BP in the field of neuroscience
and pharmacology, technological improvements, such as DNA microarrays and next generation
sequencing (NGS), have opened up many avenues for genetic research. While the price for NGS
is steadily decreasing over time (Park & Kim, 2016), its cost is still too high for feasible use on
samples of large size. DNA microarrays, on the other hand, remain a simple and extremely cost
effective method to examine the genome in a variety of ways. These include the examination of
expression levels of various genes, the analyzation of binding sites of transcription factors, or
targeted genotyping for regions of particular interest (Bumgarner, 2013). For our purposes, we
choose to turn our attention to the broad usage of microarrays to survey single nucleotide
polymorphisms (SNPs) spread across the entirety of the genome.

SNPs are single nucleotide changes that occur in abundance within the human genome, yet
the impact these small variations have on an organism’s development are generally minimal and
are most often not selected against, in terms of evolution. With that said, SNPs can have a notable
effect on genetic function, such as changes in the amino acid produced by a codon, alterations to
expression of a particular gene, and reductions in messenger RNA stability (Shastry, 2009).

Current theory, now referred to as the common disease — common variant hypothesis, suggests



that common variants play a prominent role in a diverse array of common diseases and are a prime
candidate for targeted study (Cargill et al., 1999).

Microarrays targeting SNPs have been used extensively in genome-wide association
studies (GWANS) to identify potential variants involved in the development of various different
disorders such as schizophrenia (SCZ; Ripke et al., 2014), BP (Sklar et al., 2011), Crohn’s disease
(Barret et a., 2008), and many others. A GWAS can be applied to two different types of
phenotypes, those that are categorical (i.e. case and control) and those that are quantitative (i.e.
height and intelligence). While quantitative GWAS are preferred as they grant more statistical
power to detect significant effects (Bush & Moore, 2012), many GWAS conducted on psychiatric
disorders are binary (affected or unaffected). For example, an earlier GWAS examining BP
conducted by the Psychiatric Genomics Consortium (Sklar et a., 2011), did not attempt to
differentiate between different BP subtypes and instead used case control methodology, a
limitation that was most likely due to limited sample size. However, as technology improved and
the availability of genetic information increased over time, GWAS began to examine differences
in subtypes and have identified risk alleles that are associated not only with individual BP subtypes,
but other phenotypes as well (Charney, et al., 2017).

Over time, researchers developed statistical methods to estimate the shared genetic effects
of risk alleles on multiple binary traits (Lee et al., 2012), an approach referred to as genetic
correlation. Recent studies report compelling evidence for genetic correlations between BP type |
and SCZ, as well as larger genetic correlations between BP type Il and major depressive disorder
(Stahl etal., 2019). The examination of these correlations, found among many different psychiatric
disorders, has been under investigation for more than a decade. Significant effort has been made

to not only understand the etiology of these disorders, but the underlying pleiotropy as well. It is



now widely held that a large number of the genetic variants being discovered today contribute to
the development of multiple different disorders, and that this genetic overlap is linked to the
comorbid nature of many of these disorders (Rzhetsky et al., 2007), however, the effect these
variants have, in terms of their impact on development, vary widely from disorder to disorder, as
reported by recent GWAS. A consistent, yet unfortunate, result outlined by these experiments is
that even when SNPs are found to be statistically significant, the effect sizes reported tend to be
small with the total variance accounted for being less than expected. Findings such as these
eventually led to the development of polygenic theories, the idea that a large number of these
disorders are due to an accumulation of many small genetic factors (Abdolmaleky, Thiagalingam,
& Wilcox, 2005). A prominent technique that has been implemented extensively in recent years
that makes use of the effect sizes reported by GWAS is that of polygenic risk scores (PRS).

A PRS is a single value estimate sum of risk alleles for a given phenotype, spread across
an individual’s entire genome, which can be used to determine an individual’s risk for that
particular trait. The use of PRSs has increased extensively over the last decade as the field moves
away from traditional monogenic theories and evidence for polygenic traits continues to grow.
Interestingly, one of the first studies to incorporate the use of PRSs examined schizophrenia and
bipolar disorder (Purcell et al., 2009). In this study, the International Schizophrenia Consortium
concluded that thousands of SNPs explained a “third of the total variation in liability” and that the
genetic risk of these SNPs was shared more with BP than any of the other disorders examined.

A current limitation of PRS methodology is that in order to calculate a risk score, a
significance threshold for SNP inclusion must be set. If a GWAS significance threshold of 5x107®
were to be implemented in practice, it is likely that too few SNPs would be included, and the

overall detection of signal would be drastically limited. Yet, if a threshold is too relaxed (i.e. p-



value = 1), then the signal might be masked as there could potentially be too much noise
incorporated into the score. To date, many studies looking to apply PRS methodology decide on
a set of arbitrary thresholds and compare across the thresholds post hoc to determine those which
worked best for the targeted population.

There are two commonly implemented practices for risk score calculation, that of
determining risk stratification, where the goal is to order individuals by their level of risk,
essentially creating a spectrum, or that of genetic prediction, where the goal is to accurately
differentiate between an affected individual and an unaffected control (Chatterjee, Shi, & Garcia-
Closas, 2016). The majority of studies conducted thus far have attempted to perform the latter,
generally by establishing the efficacy of the approach by calculating an AUC for the final
classification model. A limitation of this approach is that in order to calculate a PRS for a given
individual, a SNP must be denoted not only in the GWAS, but the sample of interest as well.

A wide variety of microarray platforms used by independent groups made this necessity
difficult as they examined distinct genotypes by implementing different microarray platforms that
were produced by separate companies. This eventually led to complications in the inference of
probable risk markers when scientists attempted to combine samples for performing meta-analyses
to increase power for detection. The development of statistical techniques to impute the
unavailable genetic information thus became necessary. It was found that the alleles between two
SNPs could be estimated quite successfully by using haplotype information derived from the
population. With the efforts of the International HapMap Project (Gibbs et al., 2003), the available
haplotype information of the population expanded and was eventually condensed into large files

referred to as reference panels. With more complex methods available in today’s world, reference



panels are now generally created by subjecting many human genomes to whole-genome and exome
sequencing, then combining this information to create said panels (McCarthy et al., 2016).

As the knowledge and understanding of genetic imputation developed over time, scientists
began to incorporate data from multiple ethnic backgrounds into a single reference panel, as
ancestral human migration and demographic histories were known to be complex. Howie,
Marchini, and Stephens (2011) provided evidence that these diverse reference panels not only
provided a higher accuracy in imputation, but also had generalizability to a wider variety of ethnic
populations. This discovery not only increased the total number of genotypes available for
examination, it also reduced the amount of error during inference and led to a substantial
improvement in the quality of imputed calls. In order to assess the overall accuracy of imputation,
a method was developed where imputed SNPs were masked then reimputed using nearby variants.
The reimputed SNPs could then be compared with the masked SNPs to evaluate the amount of
concordance (Howie, Donnelley, & Marchini, 2009).

The implementation of these diverse theories and methodologies is how we believe an
objective measure can be procured to assist in the diagnosis of psychiatric disorders. Many studies
have already been conducted in an attempt to use PRSs in classification models to detect
differences between affected and unaffected samples, however, they have been met with limited
success and apply a wide array of techniques. This study attempted to build on current
understanding and application by employing some techniques discussed herein, as well as newer
procedures such as including PRSs derived from multiple different traits. This approach has been

shown to be feasible in our previous work (Chen et al., 2018).



Introduction

Bipolar disorder, a severe mental disorder characterized by recurring manic and depressive
episodes, has been shown to have a strong genetic underpinning with heritability rates as high as
85% (Smoller & Finn, 2003). A substantial amount of research has been conducted to discover
candidate genes, such as ANK3 (Sklar et al., 2011) and CACNAI1C (Ferreira et al., 2008),
however, these genes collectively account for only a small portion of the overall heritability and
there has yet to be a major finding that implicates any single gene as a major contributor to the
development of BP. Current theory suggests that it is the summation of risk alleles, spread across
the entirety of the genome, that lead to the development of BP, as well as other polygenic traits,
such as SCZ (Gejman, Sanders, & Duan, 2010).

The polygenic nature of these traits may explain why recent studies have found an overlap
in genetic risk loci between BP and SCZ (Purcell et al., 2009). It is probable that some genetic
variants involved in the development of BP may also be implicated in the development of other,
possibly comorbid, traits (Lydall et al., 2011; Lee et al., 2013). This shared genetic underpinning
may explain why disorders such as anxiety, depression, substance abuse, and many other
psychiatric illnesses, often accompany the diagnosis of BP. The comorbid nature of these traits
are often problematic for diagnosticians as the symptomology of the disorders can vary
substantially between individuals and are prone to creating diagnostic confusion that is ultimately
dependent upon the expertise of the clinician, leading to diagnoses with large variance. To
alleviate issues such as these, a more objective measure, to be used alongside current diagnostic
procedures, is needed.

Recently, PRSs have been implemented in the use of genetic risk prediction. A PRS for

an individual is the summation of the number of risk alleles the individual carries, weighted by the



effect sizes these risk alleles carry for a given phenotype. As a PRS is an aggregated estimate of
genetic risk for a particular trait, exactly how these genetic risks are defined will have a direct
impact on the estimate. Traditionally, researchers have used only well replicated markers, such as
GWAS findings, to define genetic risks, however, due to the small effects of individual alleles,
GWAS validated markers only account for a small fraction of phenotype variation. This generates
a PRS, calculated from the effect sizes of these GWAS variants, with an overall limited application.
To ensure the practicality and usefulness of a PRS, researchers are required to optimize the
significance threshold for marker selection to calculate a precise PRS. One approach is to select a
series of thresholds to compute the PRSs and evaluate the predictive effect of these PRSs on a trait
of interest (Euesden, Lewis, & O’Reilly, 2014). Generally speaking, as the significance threshold
becomes more stringent (i.e. association p-value decreases), fewer markers would be included, and
the selected markers would also be more specific to the trait of interest, leading to an increase in
specificity. As the significance threshold is relaxed (i.e. association p-value increases), sensitivity
increases, as well as the overall amount of noise. To combat the sensitivity versus specificity issue,
researchers have begun to test the predictive power of a PRS at a series of different p-value
thresholds (PT), while comparing the accuracy of prediction across all thresholds implemented (So
& Sham, 2016). With this approach, a more accurate prediction is obtained, as well as a set of
genetic variants that are, in theory, most likely to contribute to the development of the trait.
While individual genotype data can be difficult to obtain, GWAS summary statistics are
readily accessible and cover a wide variety of traits. Due to their ease of accessibility and large
power, GWAS summary statistics are a prime candidate for use in genetic prediction. GWAS
summary data provides population information for SNPs of a given trait and can be used in the

calculation of a PRS to predict the genetic risk of a trait of interest for an individual, given that an



individual’s genotype information is available. When risk scores are compared across a large
sample size, it becomes feasible to separate the sample into affected and unaffected groups, based
on their predicted risk for a given trait. Interestingly, recent studies have shown that the addition
of'a comorbid trait into the prediction model may increase the accuracy of prediction for a trait, as
compared to the use of a single trait predicting itself (Krapohl et al., 2017). While there has yet to
be any conclusive results in the utilization of genetic data for the singular prediction of BP, there
has been substantial effort from the field to predict other, highly heritable, traits. These include
the prediction of SCZ using blood-based biomarkers (Chan et al., 2015), the prediction of
educational achievement, body mass index, and general cognitive ability (Krapohl et al., 2017), as
well as the prediction of ten complex traits ranging from mental health disorders, such as major
depressive disorder, to cardiometabolic traits, such as total level of cholesterol (So & Sham, 2016).

Due to the sheer complexity of these polygenic traits, there has yet to be an established
approach for model selection. In this study, we aimed to create a multi-polygenic prediction model
(MPM) that could accurately categorize individuals into one of two categories, affected with
bipolar disorder or unaffected. Similar to the approach used by Krapohl et al. (2017), risk scores
generated from the use of comorbid traits via GWAS summary statistics were used as multiple
predictors in the formation of a single model, rather than implementing BP in a model by itself.
We hypothesized that the inclusion of comorbid traits would improve the accuracy and of the final
model. In addition, we also implemented a PRS calculation method similar to that of So and Sham
(2016) where arbitrary PTs were set to ascertain the best threshold for which SNPs should be
chosen. It was believed that this approach would be more likely to circumvent overfitting of the
training data and would lead to a model with greater generalizability. The combination of these

two approaches was hypothesized to create a model with enough sensitivity to include crucial



SNPs, yet have high enough specificity to reduce noise and combat issues of overfitting. This
approach was, to our knowledge, entirely novel and the first time it had been implemented in

practice.
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Methods

TARGET SAMPLES

In predictive analytics, a training and test sample, both with the same trait of interest, are
required to generate and assess the efficacy of a given model. The training sample is used for
feature selection, the process of selecting the necessary features that allude to the highest
achievable signal while reducing the number of features as much as possible, as well as the
formation of the actual model (i.e. hyperparameters and regression coefficients). The testing
sample is then used to evaluate the application of the model on a group of individuals that are
independent of the training sample. Successful implementation of the model on an unrelated
sample provides backing to the hypotheses and reduces the risk of overfitting. When predicting a
binary variable, such as bipolar disorder, the goal is to generate a model that is able to separate the
entirety of the sample into two groups, in this case, affected and unaffected, with the final
assessment being that of the accuracy of separation.

Target samples were downloaded from NIMH Genetics, a repository for genetic samples
and data funded by the National Institute of Mental Health. The samples used in this study are a
subset of a genome-wide association study conducted by the Psychiatric Genome Wide
Association Study Consortium (Sklar et al., 2011). The Psychiatric Genomics Consortium (PGC)
Bipolar Disorder Working Group association study was comprised of eleven different samples,
however, only seven of those samples were made available for public access and thus, only seven
of the eleven samples were included in this study. A description of the individual samples, such
as their ancestry, sample size, and microarray platform used for genotyping are shown in Table 1.

Target samples were combined if the same microarray was used for genotyping, producing

a total of four different samples to undergo imputation. The samples were named based on
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abbreviations of their microarray platform, Affy 6, Affy 5, Affy 500k, and 1550, and are referred
to as such from here on. Each of the four target samples was imputed using the software IMPUTE2
(Howie, Donnelly, & Marchini, 2009) and the 1000 Genomes Phase 3, build 37 reference panel
(The 1000 Genomes Project Consortium, 2015). Refer to the Imputation subsection for a more in
depth explanation of imputation procedures.

After imputation, the Affy 6, Affy 5, and 1550 data sets were combined into one data set
(N =4754) to serve as the sample for training and validation of the model, whereas the Affy 500k
data set was left out for independent testing. The Affy 500k data set was kept separate for
independent testing as it was the largest individual data set (N = 2519) of the four combined

samples.

GENOME-WIDE ASSOCIATION STUDY SUMMARY STATISTICS

Effect sizes provided via GWAS study summary statistics were used for PRS calculation.
All GWAS data sets used in this study were acquired from public databases, such as LD Hub and
IBDGenetics. Table 2 provides detailed information about which GWAS data sets were included
in this study, as well as where they were obtained. A total of 29 data sets were used for PRS
calculation based on prior association with BP and public availability. Each of the 29 predictor
data sets contained information such as, but not limited to, SNP ID, chromosome number, base-
pair position, effect size (beta or odds ratio), and p-value. The majority of these studies examined
individuals of European descent and had sample sizes that ranged from 4,596 (Preschool

Internalizing Problems) to 307,354 (Major Depressive Disorder 2018).
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IMPUTATION AND QUALITY CONTROL

For a SNP to be included in PRS calculation, it must be present in both the samples and
the GWAS from which the effect size is being estimated. Therefore, imputation was performed to
increase the total amount of SNPs available for PRS calculation. Pre-imputation quality control
was performed on the Affy 6, Affy 5, Affy 500k, and 1550 data sets utilizing PLINK software. As
per the recommendations of Anderson et al. (2010) to ensure higher quality calls, SNPs were
removed if they met any of the following criteria: genotype call rate less than 95%, minor allele
frequency less than 1%, and/or Hardy-Weinberg Equilibrium less than 5x10°.

In order to use a more recent reference panel, all target samples had their genome positions
converted from NCBI build 36 to NCBI build 37 using the liftOver software (Hinrichs et al., 2006).
To help facilitate this process, liftOverPlink (Ritchie, 2014), a liftOver wrapper, was used to assist
in altering the genomic positions of the data files as liftOver cannot be used directly on plink data
formats. Once the liftOver process was completed, genotypes were imputed using the software
IMPUTE2 and the 1000 Genomes Phase 3, build 37 reference panel. IMPUTE2 best practices
procedures were followed as a general workflow. Target samples were first separated by
chromosome, excluding sex chromosomes X and Y, creating 22 subsets per sample to alleviate
computation bottlenecks. To further decrease overall computation time and allow rapid future
analyses, SHAPEIT2 (Delaneau, Zagury, & Marchini, 2013) was used to pre-phase target sample
genotypes. During pre-phasing, estimated haplotypes were generated based on the sample’s
genotypes, these estimated haplotypes were then imputed using the reference panel (Howie,
Fuchsberger, Stephens, Marchini, & Abecasis, 2012). Each chromosome was then imputed in five
million base pair segments. After imputation, each chromosome was combined into a single file,

per sample, and genotypes with an info score less than 0.3 were removed. The software GTOOL
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(Freeman & Marchini, 2007) was then used to convert the genotype files into a PED format for
downstream analyses. A threshold of 0.9 was set for GTOOL, meaning the probability of an allele
pair must exceed 0.9 to be called as a genotype, otherwise the pair is set to unknown (0 0).

Once all pedigree files were produced, Affy 6, Affy 5, and 1550 data sets were combined
into a single data set to serve for training model purposes, as described in the Target Samples
section. The pre-imputation quality control procedures stated above were then conducted once
more to ensure high quality calls and reduce missingness. If an imputed SNP in the pedigree file
was reported without an RSID, or if it was found to be triallelic, it was removed with PLINKs
exclude function. The removal of non-identified SNPs was necessary as RSID is a needed

component for matching between builds, especially during the process of risk score calculation.

RISK SCORE CALCULATION

Polygenic risk scores were calculated with the software PRSice (Euesden, Lewis, &
O’Reilly, 2015), a program designed to automate the PRS calculation process. PRSice takes in
GWAS summary statistics and uses the provided effect sizes to calculate risk scores for every
individual of a given target sample. To reduce overfitting and selection bias, risk scores were
calculated at ten different PTs: 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, and 1. This
approach was first implemented by So and Sham (2016) and was shown to be effective at
estimating predictive power. PRSice’s best fit function was not used as it was prone to gravitating
towards the inclusion of all SNPs (i.e. PT = 1), a method that would be likely to overfit the training
data.

Risk scores were calculated for each individual of every target sample for each of the 29

predictor data sets. A PRS for individual j is calculated at threshold Pr as:
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PRSp,j = it BiGi ;
where PRSp,;jrepresents individual j°s PRS for every SNP i that has a p-value less than P7. A SNPs

genotype is represented as G and GWAS effect size estimate is represented as .

To reduce bias in PRS calculation for SNPs in linkage disequilibrium (LD), clumping was
performed using the default settings of PRSice, an r* threshold of 0.1, a p-value threshold of 1, and
a clumping distance of 250 kilobases. When two SNPs are found to be in LD, the SNP with the
lowest p-value is held while the leftover SNP is excluded from future risk score calculations. Any

given SNP can only be included in a single clump, if it is included at all.

SINGLE POLYGENIC PREDICTOR MODELS

To assess the efficacy of a MPM in the prediction of BP, each of the 29 predictor variables
were examined separately. For the MPM to be viable, it must first outperform each of the
predictors singularly in the prediction of BP. Risk scores calculated for each of the predictor
variables were entered into individual logistic regressions using the glm function of the rms R
package. Area under the receiver operating characteristic (AUC) curve was used to assess the
predictive validity of each of the 29 predictor data sets individually and was calculated using the
prediction.obj function of the ROCR R package. The results of this process are shown in Table 3.
As it became apparent that a large number of variables were gravitating towards large PTs, an
additional approach was implemented whereby AUC values were rounded to the nearest hundredth
decimal place in hopes of creating a more sparse SNP inclusion procedure to reduce problems of
overfitting. For example, Verbal Numerical Reasoning’s (VNR) highest AUC (0.51822) was at a
PT of one, which led to the subsequent inclusion of 146,596 SNPs in the PRS calculation, however,

when rounded, the highest AUC was 0.52 at the lowest PT of 0.0001, which lead to the inclusion
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of 149 SNPs in the PRS calculation. Failure to have rounded the VNR AUC would have led to the
inclusion of 146,447 more SNPs and an increase in AUC of 0.00217. The results of this process

are shown in Table 4.

MULTI-POLYGENIC PREDICTOR MODEL

Risk scores calculated via different predictor data sets were incorporated as separate
variables in elastic net regression. The threshold chosen for SNP inclusion of any given variable
was that which provided the highest AUC, if the same AUC was given at different thresholds, the
lowest threshold was always chosen. Elastic net regularized regression (Zou & Hastie, 2005), a
method that penalizes the regression coefficients, was implemented in order to perform variable
selection and model creation. Elastic net regression applies two regularization techniques, L1
regularization for variable selection and model shrinkage, and L2 regularization to combat issues
of having more variables than sample size and perform grouping of correlated variables. Elastic
net regression was primarily chosen as it selects groups of variables based on their collinearity,
either including or excluding grouped variables together. The final model produced by the elastic
net is both concise (elimination of unnecessary variables) and penalized, which serves to reduce
the complications of selecting from large sets of variables, as well as to circumvent overfitting

inherent in model construction.

MODEL TRAINING
To create a model with minimal bias and high accuracy, repeated 10-fold cross-validation
with resampling was used (Kohavi, 1995). In this process, the training data set was first divided

into ten equally sized segments, then nine of the ten segments were used to predict the training
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sample while the remaining segment is withheld for validation. This process is then repeated ten
times with each segment used only once for validation. After all ten folds have been used as
validation, this process begins once more, until the 10-fold cross-validation has repeated a total of
n times, with n representing the number of repeats chosen by the user. To reduce the total variance
of the model, these cross-validation procedures were repeated 100 times. Cross-validation was
performed using the trainControl function of the caret R package.

The hyperparameters of the elastic net regression, alpha and lambda, were derived during
training. A grid of 10 alpha values was created by setting an ascending sequence from zero to one
(i.e. 0.00,0.11,0.22, ..., 1.00) and a grid of 100 lambda values was created by setting a descending
sequence from 100 to 0.01 (i.e. 100, 91.11, 83.02, ..., 0.01). The alpha and lambda values were
then given to the expand.grid R command to create a data frame with dimensions 1000 x 2 that
listed all possible combinations of both alpha and lambda values. This grid was then provided in
the train function of the caret R package under the tuneGrid argument. The best alpha and lambda
values were then provided and used in model training. At this point, a cutoff value was chosen
based on the highest AUC provided by the model and this cutoff value was used as a means to
assess the models performance on the test sample.

The process stated above was then compared to the standard cv.glmnet function of the
glmnet package in R. In all circumstances, cv.glmnet provided a model that produced a lower
AUC than manually creating a grid and providing it to caret’s train function. Therefore, cv.glmnet

was not used for final model creation.
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Results

Logistic regression was performed on each of the 29 variables at the 10 different PTs
specified. An AUC was then calculated for every PT (Table 3 and Table 4). The highest AUC for
a single variable (0.97081) was found when using the BP PGC GWAS with a PT of one, followed
by SCZ (AUC=0.77011,PT=1), BP NIMH (AUC =0.75175, PT = 1), anorexia (AUC = 0.60401,
PT =0.5), and MDD (AUC = 0.60164, PT = 0.3). Coefficients for the simple logistic regressions
using variables BP PGC, BP NIMH, and SCZ are shown in Table 5. A high AUC for BP PGC was
expected as the target and test samples used in this study were included in the analyses of the BP
PGC GWAS and, as such, would be much more prone to overfitting due to data relatedness. The
relatively high AUC for SCZ was also expected as this study, also conducted by the PGC, shared
an overlap of controls with the BP PGC GWAS.

For a MPM to be viable it must outperform the single best predictor, in terms of
classification accuracy, as such, multiple different models and approaches were examined. All
regression coefficients and classification results of the model building process are shown in Tables
6 and 7, respectively. BP PGC was implemented in a model by itself on the training sample and
provided an AUC of 0.97081, a training accuracy of 0.90240, and a prime cutoff value of 0.48863.
This single predictor model, as well as the cutoff value, was then administered to the test sample,
which provided a test accuracy of 0.97261. The above approach was also used on BP NIMH and
SCZ to assess their efficacy as singular predictors, with their final test accuracy found to be
0.55141 and 0.54863, respectively.

All variables, with the chosen PT being that which provided the highest AUC in simple
logistic regression, were included into an elastic net regression to create a classification model on

PRSs derived from multiple traits. The AUC for classification of the training sample when using
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all traits (using highest non-rounded AUC for inclusion criteria) was 0.98493, with a training
accuracy of 0.93942, and a prime cutoff value of 0.49072. This multi-predictor model, as well as
the derived cutoff value, was then applied to the test sample, which provided a test accuracy of
0.56689.

It was apparent that the highest AUC for 15 of the 28 variables was found when a PT of
one was specified for risk score calculation, as such, to alleviate issues of overfitting inherent in
this process, as well as to make an effort to include fewer SNPs in the risk score calculation, the
AUCs were rounded to the nearest hundredth decimal place in an attempt to increase the
generalizability of the model. The same steps stated above were then implemented to test the
efficacy of the MPM approach when using the highest rounded AUC for inclusion criteria. For the
training sample, an AUC of 0.98189, a training accuracy of 0.93058, and a prime cutoff value of
0.48008 was found. This rounded multi-predictor model and its cutoff value was then applied to
the test sample which provided a test accuracy of 0.85113, showing a substantial improvement in
terms of model generalizability.

Since the BP PGC variable was not independent of the training and test sample, it was
decided that the singular BP PGC and rounded MPM classification results were most likely due to
overfitting. As such, it was hypothesized that it would be beneficial to remove this biased variable
and instead more heavily rely on the BP NIMH variable, which should, in theory, provide higher
performance than the BP PGC, given its substantially larger sample size in the GWAS analysis.
Non-rounded and rounded MPMs were implemented with the BP PGC variable excluded and
resulted in test accuracies of 0.76419 and 0.55617, respectively. Surprisingly, the non-rounded
model greatly outperformed the rounded model under these circumstances. It was possible that

this was due, at least in part, to overfitting of the SCZ variable, which also shared a relationship
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with the training and test samples. As such, non-rounded and rounded MPMs were once again
created, this time excluding both the BP PGC and SCZ variables. These models provided test

accuracies of 0.57840 (non-rounded) and 0.81064 (rounded).
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Discussion

An objective measure for the diagnosis of psychiatric disorders is needed. With estimated
heritability rates as high as 85% for BP (Smoller & Finn, 2003), it is a prime candidate for genetic
based prediction. This project is one of the first to demonstrate that the prediction of BP, utilizing
an individual’s genotype information, is feasible. This research provides some of the first steps in
forming an objective biological measure that could potentially be used alongside clinicians in a
real world setting to help boost the accuracy of diagnosis. If genetic prediction theories were to
be successfully implemented in practice, misdiagnosis would inevitably decline and lead to a
decrease in patient treatment costs, as well as an increase in a patient’s overall well-being.

The data suggests that genetic prediction for bipolar disorder is entirely feasible and further
examination is warranted. It would also seem reasonable to assume that other highly heritable
psychiatric disorders could be subject to similar protocol, however, the generalizability of this
approach to other disorders was not examined in this study. The results reported herein also
provide reasonable evidence for the incorporation of an MPM approach in psychiatric disorder
genetic prediction. The test accuracy produced by the MPM, when excluding biased variables (BP
PGC and SCZ), provides strong support for the MPM as it outperformed BP NIMH singularly.
With that said, the MPM did fail to outperform BP PGC outright and, as such, should be interpreted
with caution, however, this particular finding is most likely due to biased variables and data
relatedness. While an accuracy of 81% is promising, there is still substantial room for improvement
in future studies. Incorporating environmental factors, such as early life stressors and
socioeconomic status, into the model building process could prove extremely beneficial as it is
widely held that an individual’s genetic composition is not the sole determinant in the development

of BP or other psychiatric disorders.
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While generating a single numerical score that estimates an individual’s genetic risk for a
particular disorder is an attractive concept, PRS calculation is most likely oversimplifying a
complex biological process. With costs of genetic sequencing decreasing rapidly over time, it will
become more and more feasible for scientists to move away from microarray analyses, and thus
the implementation of PRSs, and focus more heavily on the examination of the multitudes of
different sequencing applications. Whole-genome sequencing in particular will enable scientists
to examine biological phenomenon in more detail and will also circumvent some of the current
limitations encountered in this study, such as the inability of genotyping technologies to examine
extremely rare (minor allele frequency < 0.01) variants. Multi-omic approaches, studies that make
use of multiple different “omic” technologies, have become more widespread as the availability of
this data continues to rise (Hasin, Seldin, & Lusis, 2017). It is possible that the integration of multi-
omic information can be beneficial in the derivation of a psychiatric classification model. In a
similar network, this proposed methodology has already been implemented in a number of studies
examining classification of cancer types, such as that conducted by Rappoport & Shamir (2018).
While the amount of available psychiatric multi-omics data is not as extensive as is that for cancer,
this remains a plausible avenue of research for future application.

With this said, a genetic-based prediction model can only be used in real-world settings if
it is first validated and is able to show a high level of consistency in its ability to accurately separate
affected and unaffected individuals. It must be noted that the goal of this study was not necessarily
to develop a model that can be used directly in a clinical setting, but rather to provide theory and
suggested application. A significant constraint of this study is the use of a binary model, as should
we attempt to try and predict the diagnosis of a schizophrenic individual using the models

generated here, the individual would most likely align with the bipolar disorder group, assuming
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current theory is correct. For more realistic application, scientists will need to move away from
binary classification and attempt to implement multi-classification models with the end goal being
the separation of target samples with various different psychiatric disorders or possibly even
heterogeneous subtyping.

As with all genetic prediction, there are many ethical and moral concerns to be
thoroughly discussed. Prediction in early, or even prenatal, development is becoming more and
more realistic as the field continues to advance at a rapid pace. While concerns such as these are
warranted, the beneficial impact this research may have should not be ignored. If early life
diagnosis becomes achievable, affected individuals would be able to undergo assessment and
treatment at a much earlier age, potentially alleviating many of the difficulties faced in later
stages of life. The concerns associated with early life prediction should be examined extensively

and methodically before any implementation is considered.
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Table 1. Individual sample information.

Sample Ancestry | Case | Control | Platform

Systematic Treatment

Enhancement Program for | European- Affymetrix GeneChip Human

Bipolar Disorder American 922 645 | Mapping 500K Array
Affymetrix GeneChip Human

University College London | British 457 495 | Mapping 500K Array

Systematic Treatment

Enhancement Program for | European- Affymetrix Genome-Wide

Bipolar Disorder American 659 192 | Human SNP Array 5.0

Thematically Organized Affymetrix Genome-Wide

Psychosis Study Norwegian | 203 349 | Human SNP Array 6.0
Affymetrix Genome-Wide

Trinity College Dublin Irish 150 797 | Human SNP Array 6.0
Affymetrix Genome-Wide

University of Edinburgh Scottish 282 275 | Human SNP Array 6.0

Pritzker Neuropsychiatric

Disorders Research European-

Consortium American | 1130 718 | Illumina HumanHap 550
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Table 3. AUC derived on PRSs at multiple different p-value thresholds for multiple traits
examined by GWASs.

P-value Threshold
0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.3 0.5 1

Trait

Alcdep 0.49860 | 0.51179 | 0.51951 | 0.54691 | 0.55257 | 0.56935 | 0.57858 | 0.58319 | 0.58469 | 0.58537
Anorexia 0.49832 | 0.51331 | 0.51841 | 0.53666 | 0.54643 | 0.57884 | 0.59448 | 0.59573 | 0.60401 | 0.60341
Anxiety 0.51516 | 0.49986 | 0.50061 | 0.51864 | 0.52399 | 0.53693 | 0.54026 | 0.53501 | 0.53445 | 0.53383
Autism 0.50449 | 0.50409 | 0.50396 | 0.50678 | 0.50102 | 0.50530 | 0.50598 | 0.50422 | 0.50448 | 0.50703
BP PGC 0.62542 | 0.72724 | 0.76723 | 0.85916 | 0.89721 | 0.95038 | 0.96066 | 0.96816 | 0.97015 | 0.97081
BP NIMH 0.57688 | 0.60278 | 0.61319 | 0.65991 | 0.68614 | 0.73176 | 0.74150 | 0.74472 | 0.74934 | 0.75175
BMI 0.53277 | 0.51962 | 0.51691 | 0.50851 | 0.50078 | 0.50091 | 0.50422 | 0.50063 | 0.50163 | 0.50214
CAD 0.51246 | 0.50290 | 0.49905 | 0.50510 | 0.51039 | 0.50508 | 0.50187 | 0.50371 | 0.49947 | 0.49943
CD 0.52216 | 0.52849 | 0.52814 | 0.52499 | 0.52464 | 0.52519 | 0.52021 | 0.52534 | 0.52593 | 0.52519
College 0.51432 | 0.53895 | 0.54053 | 0.53185 | 0.53174 | 0.53531 | 0.53853 | 0.53913 | 0.54439 | 0.54283
CPD 0.50331 | 0.50472 | 0.51043 | 0.50670 | 0.51627 | 0.51823 | 0.51818 | 0.52444 | 0.52394 | 0.52472
DS 0.52789 | 0.52735 | 0.53849 | 0.55650 | 0.55987 | 0.56400 | 0.55649 | 0.55976 | 0.55929 | 0.55827
Evrsmk 0.50510 | 0.50810 | 0.51740 | 0.51365 | 0.52471 | 0.52907 | 0.53623 | 0.54544 | 0.54447 | 0.54238
Former 0.50565 | 0.51677 | 0.53066 | 0.53195 | 0.53265 | 0.54051 | 0.54226 | 0.55128 | 0.55191 | 0.55204
IBD 0.50611 | 0.51226 | 0.51330 | 0.51641 | 0.51848 | 0.52486 | 0.53737 | 0.54641 | 0.54908 | 0.55047
Income 0.51440 | 0.51224 | 0.50192 | 0.50601 | 0.50851 | 0.50424 | 0.51665 | 0.52228 | 0.52234 | 0.51958
INT 0.51446 | 0.50801 | 0.49994 | 0.51812 | 0.51750 | 0.51038 | 0.52260 | 0.54036 | 0.47049 | 0.46656
Logonset 0.50296 | 0.50169 | 0.50810 | 0.51026 | 0.52129 | 0.53404 | 0.54028 | 0.54094 | 0.54133 | 0.54150
MDD 0.56735 | 0.57012 | 0.56960 | 0.59586 | 0.59440 | 0.58037 | 0.59478 | 0.60164 | 0.58942 | 0.58372
Memory 0.51113 | 0.52321 | 0.52279 | 0.52626 | 0.51813 | 0.50201 | 0.49762 | 0.50508 | 0.50936 | 0.50686
Neuroticism | 0.51226 | 0.51428 | 0.51747 | 0.52676 | 0.53073 | 0.53309 | 0.53035 | 0.52512 | 0.52604 | 0.52637
Openness 0.50508 | 0.50628 | 0.51825 | 0.53191 | 0.54008 | 0.54493 | 0.54837 | 0.54734 | 0.54899 | 0.54952
OPPH 0.51993 | 0.50662 | 0.50486 | 0.50377 | 0.50976 | 0.50777 | 0.51020 | 0.52247 | 0.52455 | 0.52534
SCZ 0.61725 | 0.63972 | 0.65740 | 0.69215 | 0.70626 | 0.73877 | 0.74958 | 0.76530 | 0.76941 | 0.77011
SWB 0.52151 | 0.52842 | 0.52770 | 0.53242 | 0.53021 | 0.54515 | 0.55060 | 0.55434 | 0.55336 | 0.55364
TG 0.54653 | 0.54375 | 0.54480 | 0.55323 | 0.54956 | 0.54975 | 0.55441 | 0.55514 | 0.55462 | 0.55538
ucC 0.50676 | 0.50789 | 0.51060 | 0.51007 | 0.51578 | 0.52679 | 0.52691 | 0.52750 | 0.53117 | 0.53140
VNR 0.51605 | 0.50145 | 0.50507 | 0.52077 | 0.52226 | 0.50841 | 0.50317 | 0.51234 | 0.51732 | 0.51822
YoS 0.52523 | 0.53400 | 0.53758 | 0.54340 | 0.55199 | 0.57346 | 0.57549 | 0.57479 | 0.57426 | 0.57584

Highest AUC for a given trait is shown in bold. Alcdep: alcohol dependence; Anorexia: anorexia
nervosa; Anxiety: anxiety disorders; Autism: autism spectrum disorders; BP PGC: bipolar
disorder study conducted by the Psychiatric Genomics Consortium; BP NIMH: bipolar disorder
study conducted by the National Institute of Mental Health Genetics Consortium; BMI: body
mass index; CAD: coronary artery disease; CD: Crohn’s disease; College: educational
attainment; CPD: cigarettes smoked per day; DS: depressive symptoms; Evrsmk: ever smoked;
Former: former smoker; IBD: inflammatory bowel disease: Income: household income; INT:
preschool internalizing problems; Logonset: age of smoking initiation; MDD: major depressive
disorder; Memory: declarative memory; Neuroticism: Big 5 neuroticism; Openness: Big 5 neo-
openness; OPPH: one person per household income; SCZ: schizophrenia; SWB: subjective well-
being; TG: Triglycerides; UC: ulcerative colitis; VNR: verbal-numerical reasoning; YoS: total
years of schooling.
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Table 4. Rounded AUCs derived on PRSs at multiple different p-value thresholds for
multiple traits examined by GWAS:s.

P-value Threshold
0.0001 | 0.0005 | 0.001 | 0.005 | 0.01 | 0.05 0.1 0.3 0.5 1

Trait

Alcdep 0.50 0.51 0.52 0.55 | 055] 0.57 | 058 | 0.58 | 0.58 | 0.59
Anorexia 0.50 0.51 0.52 054 | 055) 058 | 0.59 | 0.60 | 0.60 | 0.60
Anxiety 0.52 0.50 0.50 052 | 052 054 | 054 | 054 | 0.53 | 0.53
Autism 0.50 0.50 0.50 0.51 | 050 | 051 | 0.51 | 0.50 | 0.50 | 0.51
BP PGC 0.63 0.73 0.77 08 |090| 095 | 096 | 097 | 097 | 0.97
BP NIMH 0.58 0.60 0.61 066 | 069 | 073 | 074 | 0.74 | 0.75 | 0.75
BMI 0.53 0.52 0.52 0.51 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50
CAD 0.51 0.50 0.50 0.51 0.51 | 051 | 0.50 | 0.50 | 0.50 | 0.50
CD 0.52 0.53 0.53 052 | 052 053 | 052 ] 053 | 053 | 0.53
College 0.51 0.54 0.54 053 [ 053] 054 | 054 | 054 | 054 | 0.54
CPD 0.50 0.50 0.51 0.51 052 | 052 | 052 | 0.52 | 0.52 | 0.52
DS 0.53 0.53 0.54 0.56 | 0.56 | 056 | 0.56 | 0.56 | 0.56 | 0.56
Evrsmk 0.51 0.51 0.52 0.51 052] 053 | 054 | 055 | 0.54 | 0.54
Former 0.51 0.52 0.53 053 | 053] 054 | 054 | 055 | 055 | 0.55
IBD 0.51 0.51 0.51 052 1052 052 | 054 | 0,55 | 055 | 0.55
Income 0.51 0.51 0.50 0.51 051] 050 | 052 | 052 | 0.52 | 0.52
INT 0.51 0.51 0.50 052 052 051 | 052 | 054 | 047 | 0.47
Logonset 0.50 0.50 0.51 0.51 052] 053 | 054 | 054 | 054 | 0.54
MDD 0.57 0.57 0.57 0.60 | 059 | 058 | 0.59 | 0.60 | 0.59 | 0.58
Memory 0.51 0.52 0.52 0.53 | 052 ] 0.50 | 0.50 | 0.51 | 0.51 | 0.51
Neuroticism | 0.51 0.51 0.52 053 | 053] 053 | 0.53 | 053 | 053 | 0.53
Openness 0.51 0.51 0.52 053 | 054 054 | 0.55 | 055 | 0.55 | 0.55
OPPH 0.52 0.51 0.50 050 | 051 051 | 0,51 | 052 | 052 | 0.53
SCZ 0.62 0.64 0.66 069 |071 | 074 | 0.75 | 0.77 | 0.77 | 0.77
SWB 0.52 0.53 0.53 053 | 053] 055 | 055 | 055 | 055 | 0.55
TG 0.55 0.54 0.54 055 | 055 055 | 055 | 056 | 055 | 0.56
ucC 0.51 0.51 0.51 0.51 052] 053 | 0.53 | 0.53 | 0.53 | 0.53
VNR 0.52 0.50 0.51 052 | 052 051 | 0.50 | 051 | 052 | 0.52
YoS 0.53 0.53 0.54 054 | 055| 057 | 0.58 | 0.57 | 0.57 | 0.58

Highest AUC for a given trait is shown in bold. Alcdep: alcohol dependence; Anorexia: anorexia
nervosa; Anxiety: anxiety disorders; Autism: autism spectrum disorders; BP PGC: bipolar
disorder study conducted by the Psychiatric Genomics Consortium; BP NIMH: bipolar disorder
study conducted by the National Institute of Mental Health Genetics Consortium; BMI: body
mass index; CAD: coronary artery disease; CD: Crohn’s disease; College: educational
attainment; CPD: cigarettes smoked per day; DS: depressive symptoms; Evrsmk: ever smoked;
Former: former smoker; IBD: inflammatory bowel disease: Income: household income; INT:
preschool internalizing problems; Logonset: age of smoking initiation; MDD: major depressive
disorder; Memory: declarative memory; Neuroticism: Big 5 neuroticism; Openness: Big 5 neo-
openness; OPPH: one person per household income; SCZ: schizophrenia; SWB: subjective well-
being; TG: Triglycerides; UC: ulcerative colitis; VNR: verbal-numerical reasoning; YoS: total
years of schooling.

27



Table 5. Regression coefficients for simple logistic regression models.

Non-

Non- Rounded Rounded Non-

Rounded | Rounded BP BP Rounded Rounded
Trait BP (PGC) | BP (PGC) | (NIMH) (NIMH) SCZ SCZ
Intercept -17.5607 -16.1519 23.86 14.68 39.859 39.07
BP PGC 38151.084 | 20735.5446 NA NA NA NA
BP NIMH NA NA 21450 15340 NA NA
SCZ NA NA NA NA | 46348.409 | 26250.104

BP PGC: bipolar disorder study conducted by the Psychiatric Genomics Consortium; BP NIMH:

bipolar disorder study conducted by the National Institute of Mental Health Genetics
Consortium; SCZ: schizophrenia.

28




Table 6. Regression coefficients for multi-polygenic predictor models.

Non-Rounded

Non- Non-Rounded Rounded MPM | MPM - BP Rounded MPM -

Rounded Rounded MPM - BP - BP (PGC) (PGC) and BP (PGC) and
Trait MPM MPM (PGC) excluded | excluded SCZ excluded | SCZ excluded
Intercept -96.94444 -74.979202 -10.3858666 -7.4328533 -34.13627 -28.32416
Alcdep 2459.68875 | 2800.942491 1875.953059 2253.591377 1706.71899 2346.15849
Anorexia 3989.38227 2996.63294 1066.568552 802.5648813 2009.351 1416.92933
Anxiety 12.606423 -0.9031498 43.5836368 23.98228
Autism . -63.224565 -155.746319 -36.4274775 . -35.18637
BP (PGC) 26463.83938 | 14303.11812 NA NA NA NA
BP (NIMH) -56.58548 -99.028914 13109.57106 8376.498009 -121.15683 11616.57034
BMI 7.102537 -107.0921427 -99.3551526 32.35455 -98.23423
CAD . -8.113078 35.4877234 31.7325285 . 21.17856
CD 6750.08084 -21.658604 -3.5385627 0.2440534 3876.8225 .
College -129.04479 -18.619458 5548.230201 206.3624924 138.64419 184.04608
CPD 3272.5812 650.321552 201.6442959 4.9343829 8290.32759 .
DS -5044.31038 | -4893.224933 5924.258851 698.4235454 -1020.71742 994.98831
Evrsmk 1979.71442 | 1304.471172 -1872.590716 -1648.607391 1319.72505 -988.33835
Former 6600.99984 | 3312.284547 712.9202237 355.6200735 3545.63115 661.28323
IBD 1257.49852 . 3815.824048 1280.361676 2850.34165 543.63331
Income 73.40921 103.680915 3269.849015 234.9909525 108.61418 .
INT -5613.95989 | -2511.205372 95.78244 90.1016555 -7648.7379 89.57707
Logonset 247.035386 -2825.350564 -1562.332739 5075.82959 -2328.79962
MDD . 3015.529478 528.6195298 367.16917 886.29848
Memory -387.262055 217.7386108 187.3721036 . 242.01629
Neuroticism . . -71.8485767 -109.7288885 | 18575.59833 .
Openness 450.1478 174.601369 21.9920758 8376.498009 412.02422 130.41048
OPPH 6178.0403 | 10348.48981 5086.003194 53.23667 4585.90657 3871.84333
SCZ 14160.9248 | 7815.776374 27097.76169 5953.961511 NA NA
SWB -6299.58581 | -1817.719839 -5277.865037 13634.66003 -7021.5495 -1647.02413
TG 15368.19751 | 8498.062691 8365.368878 -1304.539482 9952.87307 5025.86637
ucC -1723.24221 -204.309772 -3007.690578 4321.31047 -3429.35404 -108.38843
VNR 13.707697 -2323.844887 -346.2942198 -6183.58599 .
YoS 2541.127777 22255.3316 17.2981481 26709.3741 7982.79392

Variables excluded by the elastic net are denoted as a period. Alcdep: alcohol dependence; Anorexia:
anorexia nervosa; Anxiety: anxiety disorders; Autism: autism spectrum disorders; BP PGC: bipolar
disorder study conducted by the Psychiatric Genomics Consortium; BP NIMH: bipolar disorder study
conducted by the National Institute of Mental Health Genetics Consortium; BMI: body mass index; CAD:
coronary artery disease; CD: Crohn’s disease; College: educational attainment; CPD: cigarettes smoked
per day; DS: depressive symptoms; Evrsmk: ever smoked; Former: former smoker; IBD: inflammatory
bowel disease: Income: household income; INT: preschool internalizing problems; Logonset: age of
smoking initiation; MDD: major depressive disorder; Memory: declarative memory; Neuroticism: Big 5
neuroticism; Openness: Big 5 neo-openness; OPPH: one person per household income; SCZ:
schizophrenia; SWB: subjective well-being; TG: Triglycerides; UC: ulcerative colitis; VNR: verbal-
numerical reasoning; YoS: total years of schooling. MPM: classification model consisting of all variables
at their best AUC as reported from simple logistic regression; MPM — BP PGC excluded: classification
model consisting of all variables, except BP PGC, at their best AUC as reported from simple logistic
regression; MPM — BP PGC and SCZ excluded: classification model consisting of all variables, except
BP PGC and SCZ, at their best AUC as reported from simple logistic regression. Non-Rounded and
Rounded refer to the AUC derived at each p-value threshold, Non-Rounded models included variables
chosen at the best AUC, whereas Rounded models included variables chosen at the best AUC after
rounding the AUC to the nearest hundredth decimal place.
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Table 7. Classification results for each model examined.

Model Train Train Prime Train MSE | Test
AUC Accuracy | Cutoff Accuracy

Non-Rounded 0.97081 0.90240 0.48863 0.06904 0.97261

BP PGC

Rounded BP PGC 0.96816 0.89945 0.47581 0.07181 0.96189

Non-Rounded 0.75175 0.67143 0.58080 0.19899 0.55141

BP NIMH

Rounded BP NIMH 0.74934 0.66786 0.53182 0.20017 0.58992

Non-Rounded SCZ 0.77011 0.69983 0.51562 0.19503 0.54863

Rounded SCZ 0.76530 0.69499 0.50593 0.19693 0.54744

Non-Rounded MPM | 0.98493 0.93942 0.49072 0.05082 0.56689

Rounded MPM 0.98189 0.93058 0.48008 0.05540 0.85113

Non-Rounded MPM | 0.84435 0.77072 0.50192 0.16266 0.76419

- BP PGC excluded

Rounded MPM - 0.84043 0.76525 0.49999 0.16659 0.55617

BP PGC excluded

Non-Rounded MPM | 0.80091 0.72592 0.51853 0.18113 0.57840

BP PGC and SCZ

excluded

Rounded MPM - 0.79833 0.72402 0.54511 0.18374 0.81064

BP PGC and SCZ

excluded

BP PGC: bipolar disorder study conducted by the Psychiatric Genomics Consortium; BP NIMH:
bipolar disorder study conducted by the National Institute of Mental Health Genetics
Consortium; SCZ: schizophrenia study conducted by the Psychiatric Genomics Consortium;
MPM: classification model consisting of all variables at their best AUC as reported from simple
logistic regression; MPM — BP PGC excluded: classification model consisting of all variables,
except BP PGC, at their best AUC as reported from simple logistic regression; MPM — BP PGC
and SCZ excluded: classification model consisting of all variables, except BP PGC and SCZ, at
their best AUC as reported from simple logistic regression. Non-Rounded and Rounded refer to
the AUC derived at each p-value threshold, Non-Rounded models included variables chosen at
the best AUC, whereas Rounded models included variables chosen at the best AUC after
rounding the AUC to the nearest hundredth decimal place.
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Figure 1. Probability scores for simple logistic regression using only the BP PGC variable
at the non-rounded highest AUC. Blue denotes case and red denotes control.
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Rounded BP (PGC) Training Dataset
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Figure 2. Probability scores for simple logistic regression using only the BP PGC variable
at the rounded highest AUC. Blue denotes case and red denotes control.
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Non-Rounded BP (NIMH) Training Dataset
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Figure 3. Probability scores for simple logistic regression using only the BP NIMH variable
at the non-rounded highest AUC. Blue denotes case and red denotes control.
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Figure 4. Probability scores for simple logistic regression using only the BP NIMH variable
at the rounded highest AUC. Blue denotes case and red denotes control.
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Non-Rounded SCZ Training Dataset
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Figure 5. Probability scores for simple logistic regression using only the SCZ variable at
the non-rounded highest AUC. Blue denotes case and red denotes control.

35



Rounded SCZ Training Dataset
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Figure 6. Probability scores for simple logistic regression using only the SCZ variable at
the rounded highest AUC. Blue denotes case and red denotes control.
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Non-Rounded MPM Training Dataset
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Figure 7. Probability scores for the multi-polygenic prediction model using all variables at
the non-rounded highest AUC. Blue denotes case and red denotes control.
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Figure 8. Probability scores for the multi-polygenic prediction model using all variables at
the rounded highest AUC. Blue denotes case and red denotes control.

38



Non-Rounded MPM - BP (PGC) Excluded Training Dataset
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Figure 9. Probability scores for the multi-polygenic prediction model using all variables,
except BP PGC, at the non-rounded highest AUC. Blue denotes case and red denotes
control.
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Rounded MPM - BP (PGC) Excluded Training Dataset
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Figure 10. Probability scores for the multi-polygenic prediction model using all variables,
except BP PGC, at the rounded highest AUC. Blue denotes case and red denotes control.
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Non-Rounded MPM - BP (PGC) and SC2Z Excluded Training Dataset
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Figure 11. Probability scores for the multi-polygenic prediction model using all variables,
except BP PGC and SCZ, at the non-rounded highest AUC. Blue denotes case and red
denotes control.

41



Rounded MPM - BP (PGC) and SCZ Excluded Training Dataset
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Figure 12. Probability scores for the multi-polygenic prediction model using all variables,
except BP PGC and SCZ, at the rounded highest AUC. Blue denotes case and red denotes
control.
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