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ABSTRACT 

Changes in Hippocampal-Anterior Cingulate Cortex Interactions  

During Remote Memory Recall 

by 

Ryan A. Wirt 

Dr. James Hyman, Examination Committee Chair 

Assistant Professor of Psychology 

University of Nevada Las Vegas 

 

Spatial memory is an important cognitive process that relies on extensive neural networks 

throughout the brain. The hippocampus (HC) is important for the formation of these memories but 

over time, in a process referred to as consolidation, recall becomes increasingly reliant on other 

brain areas. The anterior cingulate cortex (ACC), a region within the medial prefrontal cortex, is 

important for spatial learning, spatial working memory, and remote memory recall, but the 

mechanisms underlying recall processes are still unknown. To better understand the role of the 

ACC and HC during memory recall, we introduced rodents into a series of spatially and texturally 

unique environments at differing delay periods (day 1 (learning), day 11 (recent), and day 18 

(remote)) while simultaneously recording local field potentials (LFPs) from both areas. We found 

significant increases in theta band coherence between ipsilateral ACC and HC LFPs during remote 

memory recall but not recent memory recall. In addition to these changes, directional analysis 

revealed a reversal in signal initiation, such that during the learning and recent recall condition, 

hippocampal theta oscillations led ACC theta oscillations. However, during the remote recall 

condition, the direction changed, and ACC theta led hippocampal theta activity. This experiment 
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provides evidence of time-dependent changes in ACC – hippocampal network interactions, and 

illustrates a possible mechanism that describes how the ACC mediates recall of remote spatial 

memories. 

Keywords: Hippocampus; Anterior cingulate; Theta; Spatial memory; Remote memory 
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CHAPTER 1 

INTRODUCTION 

Spatial memory is defined as the ability to store and retrieve information about our 

environment. For humans and other animals, quickly encoding contextually relevant information 

such as reliable food sources, shelter, or the locations of potential harm is critical to their survival; 

moreover, recalling that information at a later date is equally important, but there is still much 

more to be learned about the mechanisms associated with these processes. Decades of research has 

suggested that the hippocampus (HC) is fundamental for forming new memories in humans (Opitz, 

2014), non-human primates (Templer & Hampton, 2013), and rodents (Moser & Moser, 1999), 

but over time, as memories become more remote, the continued role of the HC in memory 

processes remains unknown (Nadel & Moscovitch, 1997; Frankland & Bontempi, 2005). The 

anterior cingulate cortex (ACC), an area within the medial prefrontal cortex is important for a 

number of complex cognitive processes including: predicting outcomes (Hyman et al., 2017), 

evaluation of context (Hyman et al., 2012); rule learning (Fincham & Anderson, 2006), and an 

array of spatial working memory tasks (Ragozzino et al., 1998). Additionally, rodent studies have 

identified the ACC as an important brain for recall of older, or more remote, memories (Bontempi 

et al., 1999; Teixeira et al., 2006; Ding et al., 2008). Interestingly, the ACC and HC are linked via 

coherent theta oscillations during spatial learning (Benchenane et al., 2010) and tasks involving 

spatial working memory (Siapas et al., 2005; Hyman et al., 2010). Thus, it has become increasingly 

apparent that both areas are linked and further investigation into this network may help to 

illuminate the process of remote memory recall.  

A classic example that illustrates the importance of the HC for learning new spatial 

information comes from Morris and colleagues (1982), where researchers lesioned the HC in their 
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rodent subjects and measured time spent looking for an escape platform in a water maze. Initial 

exposures showed no difference in latencies between the HC lesion group and controls, but on 

subsequent trials, the control group repeatedly located the escape platform significantly faster than 

the experimental group. The experimental group did eventually learn the location of the escape 

platform, but clearly hippocampal ablations impaired spatial learning. More recently, a modified 

version of this experiment was used to test the continued involvement of the HC in spatial memory 

recall. Using the sodium ion channel blocker lidocaine, it was revealed that the temporally 

inactivation of the HC impairs performance on the Morris water maze even after a thirty-day delay 

period after acquisition (Broadbent et al., 2006). Considering hippocampal inactivation following 

a delay period does not impair remote recall performance on other spatial memory tasks, such as 

the five-arm maze (Maviel et al., 2004), more research is needed to identify the role of the HC in 

this process. The rodent HC is extremely important for spatial learning, but whether or not it has a 

continued role in memory processes is still unknown. 

While it has been firmly established that the HC is important for learning new information, 

whether the HC is needed for retrieval of older, or more remotely formed, information is still a 

topic of considerable debate  (Eichenbaum, 2004). When we are awake and learning about the 

surrounding world, the HC is receiving input from sensory areas through the entorhinal cortex 

(Yoder et al., 2015), and then during sleep, the HC sends signals to other brain areas which 

coordinate memory formation (Buzsáki, 2015). This process of reorganization, or consolidation, 

may allow some memories to become dependent on other areas throughout the brain. These areas 

include cortical association areas like the parietal cortex (Berryhill et al., 2007), perirhinal cortex 

(Wiig & Bilkey, 1994), auditory cortex (Rothschild et al., 2016), and visual association areas 

(Mishkin, 1982), along with non-cortical structures including the cerebellum (Takehara et al., 
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2003), locus coeruleus (Takeuchi et al., 2016), and ventral tegmental area (Tomapry et al., 2015.  

There are two leading theories to explain this standard consolidation theory (SCT) and 

multiple trace theory (MTT) states that over time integrated pathways between the HC and cortical 

association areas weaken, and cortico-cortical pathways strengthen, eventually leading to 

hippocampally independent memories (Squire & Alvarez, 1995; McClelland et al, 1995). But, as 

described above, some types of information, like the location of an escape platform in a Morris 

water maze,  seem to always rely on an intact HC. MTT attempted to explain this discrepancy, in 

short, memory traces occur in both the HC and cortical circuits and both continue to be important 

for memory recall (Nadel & Moscovitch, 1997). and while some types of memories can still be 

recalled without the HC. For example, an animal may exhibit some memory recall after complete 

hippocampal ablation, but the memory would be incomplete and lack substance regarding 

contextual aspects of that memory (Moscovitch et al, 2005) indication that some trace remains in 

the HC.  

Outside of the HC, other areas are important for memory recall. Recently, the ACC has 

gained attention for its role in memory recall. In human imaging studies prefrontal areas have been 

shown to become more activated during effortful recall of previously learned words (Schater et 

al., 1998). In rodents, postmortem imaging has revealed that the ACC was more activated after 

recalling remotely learned contextual information (Bontempi et al., 1999), and pharmacological 

inactivation impaired remote recall of fear memories (Frankland et al., 2004) and spatial navigation 

(Teixeira et al., 2006). Taken together, these experiments indicate that the ACC is important for 

recall of remotely formed memories, and may serve as a link between the limbic system and 

cortical memory networks. However, memory impairments in human cingulotomy patients are 
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rare and short-lived (Cohen et al., 1999; Sharim & Pouratian, 2016), suggesting that more research 

is needed to confirm the ACCs involvement in memory recall.  

The process of bringing contextual information into conscious thought requires multiple 

brain areas to work in unison. Gray (1994) theorized that physically separate brain areas can 

communicate via synchronous neural oscillations, or local field potentials (LFPs). LFPs are 

generated as the result of the summed electrical signals in a brain area, and analysis of different 

frequency patterns can offer unique windows into brain function. Recordings of LFPs in the 

rodents have revealed theta rhythm (5-12 Hz) to occur in multiple  brain areas, including the 

amygdala (Pare & Gaudrequ, 1996), mPFC (Jones & Wilson, 2005), and HC (Buzsáki, 1986) 

during a variety of exploratory behaviors such as running and sniffing (Vanderwolf, 1969; 

Vanderwolf, et al., 1973). Moreover, theta represents the online state of hippocampal function 

(Buzsáki, 2002) and acts as an important mechanism for learning (Hyman et al., 2003), and 

disruption of hippocampal theta activity via inactivation of the medial septum significantly impairs 

spatial learning (Andersen et al., 1979). Theta rhythm is not specific to rodents, in humans, cortical 

and hippocampal theta (4-7 Hz) are associated with improved spatial navigation (Kahana et al., 

1999; Zhang et al., 2015) and working memory (Gevins et al., 1997).  

In recent years, data from ACC -  HC research has led to the hypothesis that the HC shares 

information with other brain areas via theta band oscillations (Siapas et al., 2005, Jones and Wilson 

2005, Hyman et al., 2005 Buzsáki & Moser, 2013; Colgin, 2015; Backus et al., 2016). Indeed, 

hippocampal theta entrains the amygdala when retrieving fear memories (Seidenbecher, 2003) and 

the ACC during decision making (Jones & Wilson, 2005a) and spatial working memory tasks 

(Siapas et al, 2005; Jones & Wilson, 2005; Hyman et al., 2010). In some cases, ACC theta can 

modulate other brain areas including the VTA during effortful tasks completion (Elston & Bilkey, 
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2017) and the HC during contextually guided object sampling (Place et al., 2016). Theta 

interactions between the HC and ACC are highly correlated with rodent behavior, and mounting 

evidence suggests these interactions might allow the two areas to share contextual representations 

(Wirt & Hyman, 2017).  

In this study, we aim to better understand the role of ACC – hippocampal interactions. 

Previous research on this network has suggested that these areas are important for processing 

spatial information; because of this, we have chosen to focus on how these two areas interact 

during acquisition and recall after different delay periods of spatial information. To test this, we 

allowed animals to freely explore a series of spatially and texturally unique environments while 

we recorded LFPs from dorsal CA1 in the HC and the ACC. Given the hypothesis that theta 

oscillations are a means for the HC to communicate with other brain areas, and the ACC and HC 

have been previously shown to interact while learning new spatial information (Benchenane et al., 

2010) we predicted that interactions between these areas will occur during the learning phase of 

this experiment. Moreover, if the HC has a continued role in memory recall, those interactions 

should continue during the recent and remote recall conditions. Lastly, if the ACC is responsible 

for storing or mediating memory recall theta oscillations are a means for brain areas to 

communicate, then ACC theta should lead hippocampal theta during remote recall conditions.  
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CHAPTER 2 

REVIEW OF RELATED LITERATURE 

The Hippocampus and Memory 

Within the limbic system, the HC, located in the medial temporal lobes of the brain, is 

highly attuned to processing spatial information, temporal sequencing of events, and forming new 

memories. Decades of research has improved our understating of this brain area, few reports have 

been as influential as the seminal case studies of Henry Molaison (Scoville & Milner, 1957; Milner 

et al., 1968; Sagar et al., 1988; Smith et al., 1988; Squire, 2009). In the years since the initial report 

on H.M (Scoville & Milner, 1957) numerous investigations of human and non-human animal 

models have significantly added to our understanding of the HC, specifically its role in learning 

and memory. This section will review this evidence for the role of the HC in memory formation 

and identify some of the limitations of the current literature.  

Henry Molaison (1926 – 2008), more commonly referred to as patient H.M. is perhaps the 

most famous case study in of all memory research. H.M. suffered from severe epilepsy that resulted 

from a bicycle accident in his youth. At the age of 27, he was referred to neurosurgeon William 

Scoville who was able to identify and remove the location of H.M.’s seizure generation. After the 

bilateral removal of the medial temporal lobes, H.M. the symptomology of his epilepsy improved, 

but unfortunately, he suffered from partial retrograde and severe anterograde amnesia, meaning he 

was unable to form new autobiographical memories for the rest of his life. The symptoms caused 

by the removal of these brain areas suggest that the HC is important for the formation of new 

memories. Additionally, the partial retrograde amnesia that H.M. displayed suggest that these brain 

areas only temporally hold information. It is true that H.M.s surgery removed much more than the 

bilateral hippocampal formation, and that more tissue was removed than originally thought. 
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However, other case studies including that of patient E.P, who suffered similar memory 

impairments resulting from encephalitis, have been well documented (Baxendale, 1998; Insausti 

et al, 2013). In addition to human case studies much of our knowledge relating to hippocampal 

function has come from research using animal models.  

Animal models have been an invaluable tool in understanding how the brain works. Despite 

the fact that there are a number of neuroanatomical differences between the primate and rodent 

hippocampal formation, evidence from human case studies, non-human primates, and rodents 

suggest that memory systems between mammals are comparable (Clark & Squire, 2013; Strange 

et al., 2014). Using an animal model allows research to utilize experimental manipulations that 

would be impractical to implement on human participants. For example: direct infusions of 

lidocaine to the rodent HC revealed its importance for remembering the locations of a foot shock 

in a spatial working memory task (Farr et al., 2000); ablation to the rodent HC impairs social 

memory (Stevenson & Caldwell, 2014) and spatial navigation (Kosaki et al., 2014); and depth 

electrodes in the monkey HC revealed changes to hippocampal activity after learning new 

associations (Wirth et al., 2000). These studies and many others provide clear evidence for the role 

of the HC in learning and memory, and with the advent of new technologies our understanding of 

memory systems is continually improving. The use of post-mortem imaging revealed that the HC 

becomes highly active when learning reward locations on a radial arm maze which is indicative of 

this area’s role in spatial discrimination. However, this experimental technique also showed that 

the increases were only temporary, suggesting that hippocampal involvement is limited to recently 

learned information (Bontempi et al., 1999). Additionally, the use of transgenic mice in 

neuroscience has given researcher the opportunity to examine and manipulate memory systems at 

the synaptic level. This has allowed researchers to identify specific brain areas of memory 
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formation and to effectively erase those memories (Hitt & Siegelbaum, 2014). Taken together 

these findings show that the HC is important for learning new information, and, at least for a short 

time, storing those memories.  

Neural representations of memory might exist as sparse neural traces referred to as engrams 

which are groups of neurons that exhibit synchronized firing patterns during memory retrieval 

(Martin & Morris, 2002). Numerous theoretical models have pointed to the existence of such 

engrams (Govindarajan et al., 2006; Gelbard-Sagiv et al., 2008; Fritz et al., 2005; Hübener & 

Bonhoeffer, 2010; Josselyn, 2010), but conclusive evidence did not exist until researchers injected 

an adeno-associated virus containing channelrhodopsin (ChR2) into CA1 of the rodent HC to 

optogenetically stimulate memory traces and initiate memory recall. To do this, a virus along with 

transgenic mice were used so researchers could tag hippocampal neurons during very specific time 

windows while animals were contextually fear conditioned. Then at a later time in a new 

environment the tagged cells were optically stimulated, and the subject exhibited the same freezing 

behavior as observed in the fear conditioning environment (Liu et al., 2012). Using this genetic 

manipulation, researchers were able to describe the mechanism for how memories in the HC were 

recalled. The reactivation of neurons that were active in an environment during a fear conditioning 

task caused the subjects to recall a false memory. A follow up study took this idea further by 

manipulating this process and induce false memory recall. Ramirez and colleagues (2013) used 

the same genetic manipulations as described above to tag and control neural representations of a 

fear memory. Here, subjects were placed in a contextual fear conditioning chamber and the 

previously tagged neurons were activated via optogenetic stimulation. Then in a neutral 

environment, those neurons were re-stimulated, the next day subjects were reintroduced a day later 

into a neutral environment and they exhibited fear responses. The identification of memory traces 
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within the HC established this area’s role in storing and retrieving new memories (Tonegawa et 

al., 2015) but less in known about the involvement of the HC in remote memory recall.  

The HC has previously been shown to have a role in new memory formation and the above 

studies have revealed that, at least for a short period, some memories are dependent on this area. 

To test if memory dependency in the HC is temporary Takehara et al. (2003) lesioned the HC, they 

hypothesized that if memory transfer occurs, then hippocampal ablation would not affect recall of 

more remote memories. Using the trace eye blink conditioning protocol, researchers found 

hippocampal lesion to affect recent recall (1 day) but not remote recall (greater than 14 days), an 

indication that some memories do in fact become hippocampally independent after consolidation. 

However, this is not always the case, using different experimental techniques, some researchers 

have found conflicting results. Hattori et al. (2015) conditioned subjects on a similar same trace 

eyeblink conditioning paradigm and found that electrophysiological activity from the 

hippocampus continued to show learned responses, even after a 30-day delay period. While it is 

true that previous reports found successful recall of these same memories following a complete 

hippocampectomy (Kim et al., 1995; Takehara et al., 2003), Hattori’s work provided a more robust 

representation by showing hippocampal neurons continuing to process information about 

conditioned behavior even after a 30-day delay. 

The experiments above illustrate the importance of the HC for learning new information. 

Moreover, the discovery and manipulation of hippocampal engrams suggests that this area is 

important for storing newly formed contextual memories. Furthermore, it does seem to be true that 

the intact HC has continued involvement in memory recall, but evidence is less definitive. Henry 

Molaison’s partial retrograde amnesia implied that over time, it is possible to efficiently recall 

memories even after complete removal of the medial temporal lobes, including the HC, which 
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clearly indicates that the HC has limited involvement in memory dependency. To this end, other 

brain areas, notably cortical structures become increasingly important for recall of previously 

learned information.  

Information Sharing  

Many cognitive processes require multiple brain areas to work together. For example: 

human EEG studies have reported elevated synchronization between brain areas during auditory 

perception (Steinmann et al., 2014), visual perception (Kottlow et al., 2012), problem solving (Cao 

et al., 2015) , executive function (Mizuhara & Yamaguchi, 2007), spatial navigation (Lega et al., 

2012), and memory recall (Wang et al., 2018). This also occurs in rodents, during recall of fear 

memories, the HC and amygdala are highly synchronized via theta band oscillations (Seidenbecher 

et al., 2003), and the HC and cerebellum has been shown to exhibit elevated theta coherence during 

conditioned reflexive responses (Hoffmann & Berry, 2009). These data indicate that some the 

certain brain areas seem become functionally linked during task execution, including during 

different types of memory recall, the HC is connected with specific brain areas related to the 

sensory aspects of those memories (i.e. when recalling visual memories visual association 

memories are synchronized with the HC.  

The HC has functional connections with a vast number of brain areas but anatomical 

studies suggest there is a special relationship with the ACC. There are direct projects from the HC 

to prefrontal areas (Swanson, 1981), and reciprocal connections between the ACC and the HC 

through the nucleus reuniens, medial dorsal thalamic nucleus, and entorhinal cortex (Vertes, 2006; 

Vertes et al., 2007) and direct connections from the ACC to dorsal CA1 in the HC (Rajasethupathy 

et al., 2015) which allow these two areas to communicate via multiple pathways. And while it is 

true that we are still unsure of how this occurs, a growing body of evidence suggests that 
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information is shared between brain areas via synchronous neural oscillations (Gray, 1994; 

Buzsáki, 1996; Fries, 2005; Buzsaki, 2006), during behaviors that require animals to process 

spatial information, the HC and prefrontal areas exhibit synchronized neuronal activity (Ekstrom 

et al., 2005; Hyman et al., 2005; Buzsáki, 2005). While the functional relevance of this interplay 

is still unclear, numerous studies have attempted to understand how synchronous interactions 

between these areas affect learning. When investigating oscillatory activity there are two primary 

measures of interest: coherence and frequency phase. Coherence is a measure of power spectra; it 

analyzes the rate at which two separate waveforms change frequency and amplitude in 

coordination with each other. High coherence between brain areas is indicative of communication 

(Fries, 2005) and states of high theta coherence between the HC and ACC are predictive of 

successful place learning (Kim et al., 2012). Separately, frequency phase can be used to assess the 

direction of information flow between brain areas by analyzing the synchronization between the 

two independent signals (Adhikari et al., 2010; Lachaux et al., 1999). Analysis of synchronicity 

and coherence has allowed researchers to infer a mechanism for neural communication. 

Coherent and synchronous interactions between the HC and ACC are important for a 

number of high level processing and when the connections between the HC and ACC are severed, 

there are severe deficits in spatial working memory (Wang & Cai, 2006) and spatial learning 

(Wang & Cai, 2008). Coordination of theta range activity is associated with working memory 

(Hyman et al., 2010; Jones & Wilson, 2005a; Jones & Wilson, 2005b), memory retrieval (Kaplan 

et al., 2014), spatial decision making (Belchior et al., 2014), learning (Benchenane et al., 2010), 

and context exploration (Hyman et al., 2005) indicating that interactions between the HC and ACC 

have an important role in learning. While it is true that the research on theta band communication 

between these areas is extensive, more research is needed to fully understand why this relationship 
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is so important, how communication is generated, and the extent of the information that is being 

shared. 

The Anterior Cingulate Cortex and Remote Memory 

The ACC, a region within the medial prefrontal cortex, is important for a number of high-

level cognitive processes including: movement planning and initiation (Devinsky et al., 1995); 

attention to self-generated action (Barbas & Mesulam, 1981); choice evaluation (Kernnerley & 

Wallis, 2009); monitoring conflict (Botvinick et al., 2001), pain, negative affect, depression (Onda 

et al., 2009), and reward history (Holroyd & coles, 2008); cognitive and attentional control (Paus, 

2001); error detection (Holroyd & Coles, 2002); integration of autonomic nervous system into 

cognition (Critchley et al., 2003); remote memory (Frankland & Silva, 2004); and possibly remote 

memory recall (Bontempi et al., 1999; Frankland & Silva, 2004). However, the vast array of 

functions that the ACC is involved in has made pinpointing its role in long-term memory difficult.  

Memory is the capacity to retain and access information and ACC ablation disrupts this 

process. For example, inactivating the ACC disrupts the ability to retrieve information from the 

short-term memory store (Seamans et al., 1995), which suggested that this area is necessary for 

either retaining or recalling that type of information. The ACC is also important for some types of 

remote memory recall. The role of the ACC in this type of memory recall was first identified by 

Bontempi and colleagues (1999). Using post-mortem imaging, this group revealed that the ACC 

had become extremely active when animals were recalling remotely formed contextual 

information. Such increases were not observed during learning and recent recall conditions 

suggesting that this area either stores or helps mediate the recall of remote spatial memories. 

Similar findings have been reported in a number of other behavioral paradigms including taste 

aversion (Ding et al., 2008), spatial navigation (Teixeira et al., 2006), and conditioned fear 
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responses (Frankland et al., 2004). The collection of studies above were instrumental in identifying 

that the ACC is involved in remote recall but because the deficits in memory recall resulted from 

ablation, making it difficult to draw conclusions on what role the ACC has in memory processes. 

However, electrophysiological methods allow researchers to monitor ACC activity in awake and 

behaving animals. For example, ACC neuronal recordings have shown that ACC cells exhibit 

unique firing patterns between contexts (Hyman et al., 2012; Ma et al., 2016), and different aspects 

of working memory tasks (Fuster, 1973; Jung et al., 1998; Fuster, 2001; Goldman-Rakic, 1996; 

Bissonette et al., 2013; Rushworth et al., 2003). However, the role of the ACC in recalling 

information after a long delay period, referred to here as remote recall was unclear until Takehara 

& McNaughton (2008) showed that neural networks in the ACC are reorganized following 

consolidation of fear memories putting forward a putative  mechanism for the role of the ACC in 

remote memory recall. The experiments above offer evidence for how the ACC is involved in 

memory recall, but additional research is needed to further explain how the ACC  is involved in 

this process.  

In recent years, the use of novel experimental techniques has helped provide additional 

support for the how the ACC is involved in memory processes. Postmortem imaging has revealed 

that the ACC exhibits an increase in activity around the time of remote memory recall (Bontempi 

et al., 1999) but fails to identify any mechanisms associated with memory recall. Optogenetic 

stimulation has proven to be an exciting technique for understanding how the brain functions but 

the procedures require genetically invasive manipulations. While each technique offers a 

compelling view of neural function, additional evidence will help explain how the ACC and other 

brain areas work together to produce memory recall.  

Conclusion 
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This review examined how the HC and ACC are involved in encoding and recalling spatial 

information. Indeed, the HC is important for learning and retrieving recently acquired spatial 

information, but its continued involvement in long-term memory  is less understood. Other studies 

have identified that the ACC is important in the recall of remote memories, but the mechanisms 

involved are still unclear. Multisite electrophysiological studies have reported robust 

unidirectional interactions between the HC and ACC during multiple forms of spatial working 

memory and spatial learning and it has been inferred that these interactions are indicative of the 

HC sharing information with the ACC. If this is the case, when memories become dependent on 

the ACC, we should observe a reverse in the direction of information flow such that the ACC leads 

the HC during recall. To build upon current knowledge of how information is shared between brain 

areas and to understand how the ACC is involved in memory, we will examine how hippocampal-

ACC interactions change throughout learning, recent memory recall, and remote memory recall.  

 

 

 

 

 

 

 

 

 

 

 



  15 

HYPOTHESES & IMPLICATIONS 

Hypothesis 1 

We hypothesized that the interactions between the ACC and HC will increase as a result of 

recalling remote memories. To test this, we measured changes in theta coherence between the HC 

an ACC while rats completed a spatial memory recall task. We expected to find significant 

increases in theta coherence between the HC and ACC during the remote recall conditions but not 

during the learning or recent recall conditions. Theta coherence is indicative of how effective two 

brain areas are linked and the increases suggest that as time passes, and memories become more 

remote, there may be a need for more robust interactions between the HC and ACC. 

Hypothesis 2 

We also hypothesized that the ACC mediates remote memory recall. To test this, we  performed 

directional analysis of LFPs generated in the ACC and HC using the lead-lag correlation method. 

During learning and recent retrieval of spatial information we expected that hippocampal theta 

would lead ACC activity as has been previously shown. However, during the remote retrieval 

conditions, when contextual memories are dependent on the ACC, we predicted a shift in 

directionality, such that the ACC would lead HC theta activity. This finding provides functional 

evidence in support of the ACC as an important brain area in remote memory recall. 
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CHAPTER 3 

MATERIALS & METHODS 

Subjects 

A total of six male Long-Evans rats (450-600 grams) obtained from Charles River 

Laboratories, Inc. (Wilmington, MA) were used in this experiment. Subjects were individually 

housed on a twelve-hour light-dark cycle with food and water available ad libitum. Rats were 

handled by experimenters for a minimum of two weeks before and experimental procedures took 

place, and surgical procedures were not performed until  subjects reached a minimum of 450 

grams. All experimental procedures were approved by the University of Nevada Las Vegas 

Institutional Animal Care and Use Committee.  

Surgery  

Subjects were deeply anesthetized using isoflurane gas (1 – 3%) before being placed into 

a stereotaxic frame. The scalp fur was shaved, and the area washed with betadine solution before 

an incision was made. The incision was ~thirteen mm in length which revealed an area of the skull 

extending five mm anterior to bregma, 4 mm beyond lambda and laterally into the cranial ridge on 

both sides of the skull. When the skull was fully exposed we drilled screw holes with a number 14 

burr in the following locations: +4.5 mm AP and 1.5 mm ML; +1 mm AP and 3.5 mm ML; -4.0 

mm AP and 4.5 mm ML; -6.5 mm AP and 1.0 mm AP. When the holes were drilled small screws 

were placed in the respective areas to help affix the recording device to the skull (see Figure 1). 

Two posterior screws placed just above the cerebellum were connected to a grounding wire and 

soldered into the electric interface board (EIB) (Plexon, Dallas) as is typically done in rodent in 

vivo recordings (Buzsáki, 1986) (see Figure 1). Next, we performed three  
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Figure 1. Sketch of surgical procedures and hyperdrive recording device. (A) The 
location of skull screws, ground screws, and craniotomies.  Note the ground screws 
are placed ~ 1 and ~ 2 mm to the right of Lambda targeting the cavity between the 
cerebrum and cerebellum. (B) Top, view EIB and drivers. EIB is used to transfer 
signal to computer work station. Drivers are used to lower wires into the brain. 
Bottom, view of the bottom and canula bundles. Canula bundles are used to house 
tetrodes.   
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separate craniotomies, one over the frontal cortex and two over dorsal CA1 in the HC (see Figure 

1). After the meninges were removed the bottom of four bundles, comprised of thirty-gauge 

cannula, that housed the tetrodes were placed over the desired brain area. For the ACC, two 

bundles containing 8 tetrodes each (bottom radius ~ 1.0 mm) were angled at ten degrees and placed 

touching the cortical surface + 3.0 mm AP and + 0.5 mm ML from bregma. For the HC, two 

bundles containing 8 tetrodes each (bottom radius ~ 1.0 mm) were place on top of the cortical 

surface – 3.5 mm AP and + 2.5 ML from bregma. When the hyperdrive bundles were positioned 

over the targeted brain areas. we affixed it to the skull using dental acrylic. When the dental acrylic 

had fully hardened, the tetrodes were lowered approximately 400 µm into the cortex. Chromic gut 

absorbable sutures were applied if necessary to close incision around dental acrylic and the rats 

were given a minimum of seven days post-surgery to recover before experimental procedures took 

place. During the seven-day recovery period, subjects received sub-cutaneous injections of Baytril 

to decrease the risk of post-surgical infection, and Anafen to reduce inflammation resulting from 

surgical procedures. After this time, a tether was used to connect dual headstage adapters and the 

EIB to the Intan acquisition board. We then slowly lowered tetrodes ventrally into the ACC (DV 

~ 1.5 mm), and dorsal CA1 (DV ~ 2.0 mm) before behavioral testing began.  

LFP Recordings  

LFPs were obtained using a 128 channel hyperdrive recording device (see figure 1B) and 

an RDH evaluation board (Intan Technologies, Los Angeles, CA). The RDH board plugs into the 

EIB and converts analog signals into digital data then transfers that data to the RDH 2000 USB 

interface board (Intan Technologies, Los Angeles, CA) which feeds the digital signal into a 

computer workstation. Continuous data was acquired at a sampling rate of 30 KHz, during 

acquisition, data were bandpass filtered between 1-6000 Hz using Open Ephys open source data 
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acquisition software (Cambridge, MA). To identify wire placement within the HC we used 

stereotaxic coordinates (Paxinos & Watson 6th ed.) and tracked wire depth. For both the ACC and 

HC, we lowered wires into areas with the most robust activity and  

 

 

 

 

 

 

 

 

 

 

Figure 2. Histological verification of wire tracts in the dorsal CA1 in the HC and the 
ACC.  (A) Coordinates of ACC and HC adapted from The Rat Brain 6th ed. (Paxinos 
& Watson, 2007). (B) After behavioral protocols were complete animals were deeply 
anesthetized under isoflurane and 100 𝜇A current was passed through all electrodes for 
a minimum of 25 seconds to mark placement of tetrodes. After brains were removed 
they were sliced at 40 𝜇m, placed on a glass slide and viewed under a microscope to 
verify placement of recording wires. These brain slices were taken from a 
representative subject, data from other animals were similar.  
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tracked wire depth. After the experimental procedures were completed, the location of recording 

wires was then confirmed with histology (see Figure 2A & B). 

Behavioral Task 

To test the hypothesis that interactions between the ACC and HC change as memories 

become more remote, we introduced subjects into six visually and texturally unique environments 

at differing delay periods, up to 18 days. For each session, animals were brought to the recording 

room and allowed to habituate for a minimum of thirty minutes. After that time, subjects were 

placed on a pedestal and fed Fruit Loops (Kellogg’s, Battle Creek, MI) while the headstage and 

headstage adapter were plugged into the EIB. When the connection was secured, animals were 

placed in each environment, and allowed to freely explore for exactly ten minutes. After this time, 

subjects were removed from the environment and placed upon the pedestal for one minute before 

being placed into the next environment. For the full schedule of environment exposures on each 

per day and delay period see Figure 3A. On day one, subjects were introduced to environment A 

and B. On day two, subjects re-explored environment A and then introduced into environments C 

and D. On day three, subjects were re-exposed to environments B and D and then introduced to 

environment E. On day four, subjects were re-exposed to environments A, B, C, D, E and 

introduced into environment F. Seven days after the fourth day of training (day 11), subjects were 

reintroduced into environments A, C, and E. Fourteen days after the fourth day of training (day 

18), subjects were reintroduced into environments B, D, and F (see Figures 3A & B). Because 

neural data from the first four days was not significantly different (p > 0.05), and that the current 

study was interested in how interactions change between brain  
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Figure 3.  Behavioral task and environment examples.  (A) Schematic of the behavioral 
protocol for the memory task. Note that subjects were exposed to environment A and B  
and equal amount of times throughout the experiment, and that subjects were exposed to 
environment A and B on day 1. environment A on day 11, and environment B on day 18. 
(B) Example of the subjects exposure to an environment. (C) Actual photos of the 
environments that the subjects were exposed to. Note each environment is made of a 
unique material and has a unique color and shape.  
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areas as a function of time, we only report data from day 1 (learning), day 11 (recent), and day 18 

(remote). Each environment was a unique shape and constructed out of different building materials 

such that the design of each environment would provide unique visual cues and textural cues which 

allowed subjects to distinguish between them. Environment A was triangular shaped with walls 45 

cm tall and 45 cm long made from textured white plastic. Environment B was hexagonally shaped 

with walls 45 cm tall and each side 30 cm long. The floor and the walls will be made from textured 

vinyl poster board. Environment C was circular shaped with walls 45 cm tall and a diameter of 63 

cm and made from smooth red plastic. Environment D was the shape of a pentagon with sides 45 

cm tall and 45 cm long constructed from poster board covered in vinyl (see Figure 3C). The 

disparities in shape and size of each environment was meant to give rodents enough information 

to be able to quickly differentiate between each context.  

Data Analysis and Pre-Processing 

Behavior 

Rodents are naturally inquisitive to new surroundings, but after the surroundings become 

more familiar they will develop more comfortable tendencies and become less likely to explore 

their surroundings. To measure if subjects recall previous experiences within each environment, 

we tracked movement related to exploration using Bonsai open source software (Cambridge, MA). 

X-Y position data gave us an exact reading of animal location. Tracking data was then converted 

into Matlab (Mathworks, Natick, MA, USA) using custom-written Matlab code. Each environment 

was separated into standardized squares. Next, the total amount of time spent in each quadrant 

during the recording session to form the percent time spent value was calculated as  

P =
T%

(S(ST%))
 

where P is the percent time spent, T overall time spent, and n is each quadrant. The cumulative 
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sum calculation identifies the values that are different than the average. Using the Matlab function 

cumsum we calculated the cumulative sum of the values in the percent time spent value. These 

values create a shape similar to a logarithmic curve. we then calculated the area under the curve 

using the Matlab function trapz and all behavioral statistics were calculated using these values. To 

control for behavioral differences between day 1, day 11, and day, 18, we analyzed the first 200 

seconds of behavioral data to ensure that changes in neural activity were not due to changes in 

behavior. We analyzed the last 200 seconds of behavior to test repeated exposure would affect 

exploratory behavior in each environment. If the subjects explored less than that would be an 

indication of some type of memory contextual recall.  

Local Field Potentials 

To analyze continuous data from LFP recordings, Open Ephys data was read into a 

computer workstation and down sampled to 1000 Hz using custom written Matlab code. To 

remove the 60 Hz noise signal, we notch filtered data between 58 and 61 Hz using Matlab function 

butter. Outliers were identified as any value more than 3 standard deviations about the mean. These 

values were removed and replaced with the preadjusted mean. To minimize redundancy and 

remove signal artifacts, we identified good recording wires in each recording location using visual 

inspection. This was achieved by plotting five-second time windows of activity on each tetrode. 

Then, we identified 1 good wire from each recording location in each of our subjects by analyzing 

levels of theta power using the FFT function in Matlab. We also analyzed the values in the FFT to 

ensure changes in all future analysis were not due to changes in frequency power.  

Coherence 

To better understand the functional relationship between the ACC and HC we computed 

power spectra and measured coherence between ipsilateral AC and HC for the first 200 seconds in 
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each environment. Data was filtered between 5-12 Hz using the high/low Butterworth filter in 

Matlab. Power spectra was then computed using a fast Fourier transform (FFT), then coherence 

values were computed between the ACC and HC using the Matlab function mscohere. Coherence 

is a measure of how signal X corresponds to signal Y by comparing power spectral densities of 

both signals for each frequency. The coherence value is computed as 

C)*(𝑓) =
|P)*(𝑓)|-

P))(𝑓)P**(𝑓)
 

where C is the coherence value between 0 and 1, P is power spectral densities, x and y are 

respective signals, and f is frequency (Kay, 1988). To test if coherence values between the ACC 

and HC change over time, we computed a one-way ANOVA on the coherence values of ipsilateral 

HC- ACC LFPs by delay period.  

Lead-Lag Correlations 

 To better understand the directional effects of information flow we computed lead-lag 

correlations on the instantaneous waveforms generated from ACC and hippocampal LFPs. ACC 

and HC signals were window filtered between 5 and 12 Hz using the window filter function fir1 

in Matlab. Cross correlations measure similarities between two signals as a function of time shifts, 

using the function xcorr in Matlab, we computed the cross correlation for sliding ACC signals for 

every millisecond up to 100 milliseconds in each direction compared to HC signals for the for first 

200 seconds of LFPs of each environment exposure. This created a distribution of all correlation 

coefficients which allowed us to identify when the time-series signals from the ACC and HC were 

most correlated. Next, we computed the Wilcoxon rank sum test to identify if the max lags between 

days were significantly different from zero (methods for lead-lag correlation adapted from 

Adhikari et al., 2010). 
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CHAPTER 4 

RESULTS 

Behavior & Fast Fourier Transform 

To test for memory recall and control for behavioral changes we analyzed the behavior and 

frequency power. Coherence measures can be influenced by a number of behavioral factors. In 

rodents, hippocampal theta rhythm is highly correlated with movement speed and grooming 

behavior (Penley et al., 2012), changes in behavior could influence theta band frequency power 

and possibly cause us to make inaccurate conclusions about these findings. To account for this, we 

identified a time period of environment exposure (the first 200 seconds of each environment) 

where movement was not found to be statistically different between day 1, day 11, and day 18. 

Moreover, we also compared FFT values during the first 200 seconds of each experimental day 

and found no significant differences in theta frequency power 

To test the subject’s recollection of each environment, we analyzed the amount of 

movement related to exploratory activity on day 1, day 11, and day 18. We assumed that after 

initial exposure the exploratory behavior would decrease, suggesting that the animal no longer 

viewed the environments as novel, thus clearly indicating that the subject was recalling 

information about the environment. Each environment was a different shape and size, so they 

needed to be analyzed independently. The subjects visited environment A and environment B on 

day 1 (see Figure 4A), note that subjects spent a large amount exploring the entire environment, 

and revisited environment A on day 11 (see Figure 4C)  and then revisited environment B on day 

18 (see Figure 4C), This can be seen that subjects only visited a limited number of locations . We 

analyzed the first and last 200 seconds of  
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Figure 4. Time spent plots show exploration decreases during recall conditions. (A) The 
last 200 seconds of movement data from environment A (triangle) and B (hexagon) on 
day 1, bottom right subplot is corresponding path. (B) The last 200 seconds of movement 
data from environment on day 11, bottom right subplot is corresponding path. (C) The 
last 200 seconds of movement data from environment B on day 18, bottom right subplot 
is corresponding path. (D) Mean of the area under the curve values for environment A. 
Note the similarities during the first 200 seconds of each day and the difference between 
values during the last 200 seconds. (E) Mean of the area under the curve values for 
environment B. Note the similarities during the first 200 seconds of each day and the 
difference between values during the last 200 seconds. The space covered figures were 
taken from a representative subject and data from other animals were similar.  
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exploration of environment A on day 1 and day 11 to test recent recall. For remote recall, we 

analyzed the first and last 200 seconds of exploration in environment B on day 1 and day 18. In 

order to account for the discrepancies in shape and size of each environment, we separated each 

shape into a unique number of squares. Environment A was separated into 220 individual squares 

and environment B was separated into 300 individual squares, this allowed us to look at the amount 

of time the animal spent in each quadrant. We concluded that when animals spend an equal amount 

of time in each quadrant it is indicative of exploration, but when they spent the majority of time in 

a limited number of squares, minimal exploration was occurring.  

To test how behavior changed, we calculated the amount of time spent in each square for 

eight fifty second time bins (first and last 200 seconds) and then calculated percent time spent 

value (shown above). Next, we generated the cumulative sum of the percent time spent in each 

quadrant. Then, we calculated the area under the curve for the first twenty values of the cumulative 

sum for environment A. A paired sample t-test revealed no significant difference between behavior 

during the first 200 seconds of exposure of environment A ( t(19) = 1.77, p = 0.09; mean of day 1 

= 0.5; s.e.m. = 0.08 and day 11 = 0.56; s.e.m = 0.13). However, the area under the curve for the 

last 200 seconds of environment A revealed a significant difference between days, indicating that 

there was a decrease in exploratory behavior during the last part of the recent recall day suggesting 

subjects habituated more rapidly (t(19) = 2.321, p = 0.03; mean day 1 = 0.49; s.e.m = 0.010, day 

11 = 0.62; s.e.m = 0.013) (see Figure 4D). Because environment B was larger, we calculated the 

area under the curve for the first twenty-four values. A paired sample t-test revealed similar 

findings for the first 200 seconds of exposure for environment B revealed no significant difference 

between behavior (t(23) = 1.17, p = 0.25; mean of day 1 = 0.60; s.e.m.= 0.11 and day 18 = 0.66; 

s.e.m. = 0.09). However, the same analysis on the last 200 seconds revealed that subjects exhibited 
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significant decreases in exploratory behavior between days (t(23) = 3.19, p = 0.004; mean of day 

1 = 0.60; s.e.m. = 0.02, day 18 = 0.74; s.e.m = 0.018) (see Figure 4E).  

In addition to analyzing behavioral changes, we also examined if there were any increases 

or decreases theta band frequency power (see Figure 5A & B), note the highly powered signals at 

8 Hz in both ACC and HC spectrograms. We separately analyzed ACC and HC LFPs recorded 

during the first 200 seconds of environment exposure. Because our analysis was strictly theta 

based, we extracted power from the theta range  
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(5 – 12 Hz) before transforming the values into z scores. For the HC, we computed a one-way 

ANOVA on z scored FFTs. The means for environment A (mean = 3.11; s.e.m.= 0.98) and B 

(mean = 1.74; s.e.m.= 0.46) during day 1, environment A (mean = 2.77, s.e.m. = 0.83) during day 

11, and environment B (mean = 2.14, s.e.m.= 0.46) on day 18 were not significantly different 

(F(3,188) = 0.746, p = 0.53). Similarly, a one-way ANOVA for ACC values during the same time 

window in environment A (mean = 0.79, s.e.m.= 0.21) and B (mean = 1.36, s.e.m. = 0.44) on day 

1, environment A (mean = 0.83, s.e.m.= 0.18) on day 11, and environment B (mean = 1.26, s.e.m.= 

0.17) on day 18, also revealed no significant differences in theta power (F(3,188) = 1.863, p = 

0.13; see Figure 5C). These results indicate that any changes in future analysis were not merely 

the result of increases or decreases frequency power within each brain area. 

Collectively, this data illustrates that animals had no significant differences in behavior or 

frequency power during the first 200 seconds of environment exposure. It also indicates that 

subjects habituated more quickly to the environments on subsequent  more time exploring each 

environment. During both recent and remote recall days, the animals habituated significantly faster 

as seen by our percent time spent calculation. To control for behavioral differences in our data, 

future analysis is only during the first 200 seconds of environment exposures, a time when behavior 

was not significantly different.  

Figure 5.  Spectrograms and z-scored FFT means. (A) Spectrogram of HC activity 
during the remote recall condition (day 18), note the high-powered theta band 
activity. (B) Spectrogram of ACC LFPs during the remote recall condition. (C) The 
z–scored means of the FFT of HC wire average for the first 200 seconds each 
environment exposure during day 1, day 11, and day 18; there were no significant 
differences (p > 0.05). (D) The z–scored values of the FFT of ACC wires for the first 
200 seconds in each environment exposure during day 1, day 11, and day 18; there 
were no significant differences  (p > 0.05). 
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Coherence  

After confirming memory recall in behavior, and confirming that no significant changes in FFT 

scores occurred during first 200 seconds, all future analysis only used these times. We analyzed 

coherence between the ACC and HC and found that both areas were highly coherent in the theta 

range during the remote recall condition. This can be seen clearly with the light-colored areas in 

the coherogram around 8 Hz (see Figure 6A). To identify  

how interactions between the ACC and HC change as a result time, we filtered LFP data between 

5 and 12 Hz. It was predicted that the more remote the spatial memory was, the greater the reliance 

on oscillatory interactions between the ACC and HC would be. After computing theta band 

coherence values, we compared the values between days. A one-way ANOVA revealed a 

significant main effect of delay period for theta band coherence  

between ipsilateral ACC and HC (F (2, 197) =20.82, p = 6.26e-9). We next used the Tukey – 

Kramer test to identify what day the theta coherence changed. We found the coherence value for 

initial exposure (mean = 0.21; s.e.m.= 0.04) and recent recall (mean =0.12; s.e.m. = 0.04) were 

significantly lower than the remote recall condition (mean = 0.41, s.e.m.= 0.03) p < 0.0001 (see 

Figure 6B). These data suggest that recall of older, or more remote, memories relies on the 

functional interactions between the ACC and HC. During recall of more recent memories we did 

not find any significant differences in ACC – hippocampal theta band coherence, which suggests 

that some type of neural network reorganization occurs between the recent and remote recall 

conditions. 

Lead-Lag Correlation  

 After identifying significant changes in coherence between the ACC and HC  
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Figure 6. Coherogram and 
Coherence means for ipsilateral 
ACC and HC LFP data. (A) 
Representative image of the first 
200 seconds of ipsilateral ACC – 
HC coherence during the remote 
recall condition. Data from other 
animals were similar.  (B) The 
means and standard error for theta 
coherence on day 1, day 11, and day 
18. Note, the significant changes do 
not occur until the remote recall 
period.   
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during the remote recall condition, we were interested in identifying which brain area initiated 

these interactions. Coherence between the ACC and HC was imitated by one of three possible 

outcomes; first, the HC initiated coherence with the ACC, second, coherence was generated by 

some other brain area, and last, ACC theta activity caused coherence with the HC.  Previous reports 

have shown hippocampal activity to lead prefrontal activity during spatial working memory tasks 

(Siapas et al., 2005), and during contextually guided object sampling, ACC  activity leads 

hippocampal activity (Place et al., 2016). Bidirectional interactions between these two areas have 

led researchers to the hypothesis that that the HC sends spatial information via theta band 

oscillations to the mPFC, and the ACC guides memory retrieval (Navawongse & Eichenbaum, 

2013; Jin & Maren, 2015). If this is the case, then we should see ACC activity leading HC activity. 

We hypothesized that after memories became dependent on the ACC, theta oscillations effectively 

allow the two areas to communicate during memory recall, ACC theta band oscillations should 

lead hippocampal activity. To test this, we analyzed lag differences between LFPs in the HC and 

ACC during day 1, day 11, and day 18, (see Figure 7A), note on day one, the hippocampal signal 

is leading the ACC signal, on day 11 the results were highly variable with no consistent pattern 

emerging, and on day 18 ACC activity led the HC. To quantify these changes, we calculated the 

cross correlations the ACC and HC LFPs at specified increments. ACC signals were shifted 

forward and backward in time at 1 ms increments up to 100 ms in each direction, at each time 

point a cross-correlation was calculated between the ACC and HC LFPs. This created a distribution 

of cross-correlation coefficients over each time shift, allowing us to see the temporal offset of 

signals and infer whether one signal leads the other. Results from the lead-lag  



  34 

 

 

 

 

 

 

 

Figure 7. Filtered LFP trace and Lead lag correlation for day 1, day 11, and day 18. (A) 
Representative figures of HC and ACC signals during day 1, day 11, and day 18 
conditions. Note the HC (red) reaching its peak before the ACC (blue) on day 1 (left). 
On day 11 (middle), notice that either signal consistently leads the other. On day 18 
(right) the ACC signal peaks prior to the HC signal, which is an indication that ACC 
activity leads the HC during the remote recall condition. (B) distribution of lag time for 
HC and ACC signal for day 1 (left), day 11 (middle), and day 18 (right). Note on day 1 
the highest correlation between the two signals occurs when the HC signal is offset 
backwards in time. This changes during the remote recall condition such that the highest 
correlation between the two signals occurs when the HC signal is moved forward in 
time. These figures were taken from a representative subject and data from other animals 
were similar.  
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correlations for day 1 (mean lag time = -17.0 ms, median = -11) and day 11 (mean lag time = -

16.4 ms, median = -8) had the highest cross-correlations when ACC signals were shifted 

backwards in time, thus indicating that the hippocampal signal led the ACC signal during these 

days. However, on day 18 the highest cross-correlation occurred when the ACC was shifted 

forward in time (mean = 30.8 ms, median = 16.5) (see Figure 7B) indicating that the ACC was 

leading the HC during remote memory recall. We then used the Wilcoxon rank sum test to identify 

if the changes in lag time were significantly greater than zero. The difference between max lags 

for day 1 and day 11 was not significantly different from zero (p > 0.05, Wilcoxon’s rank sum 

test). The difference between max lags for day 11 and day 18 was not significantly different from 

zero (p > 0.05, Wilcoxon’s rank sum test). However, the difference between the max lag day 1 and 

day 18 was significantly different (p < 0.05, Wilcoxon’s rank sum test). These results provide 

evidence in support of bidirectional interactions between the ACC and HC. On day 1 and day 11. 

The findings are consistent with previous reports of that show the hippocampal theta directing 

prefrontal unit activity (Benchenane et al., 2010) and theta oscillations (Hyman et al, 2010) during 

spatial learning. These findings support models of PFC guided memory recall (Eichenbaum, 2017; 

Frankland & Bontempi, 2005). The change in directionality of theta activity during the remote 

recall condition could be an indication that the ACC initiates recall of spatial memories, therefore 

providing an explanation for why ACC ablation causes temporally graded memory impairments 

(Bontempi et al., 1999; Liu et al., 2009; Weible et al., 2012).  
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CHAPTER 5 

DISCUSSION 

This study aimed to identify electrophysiological evidence that could explain how the 

ACC-hippocampal network interact during remote memory recall. We recorded LFPs from the 

ACC and HC, and performed coherence and lead-lag cross-correlation analysis on these signals. 

The results revealed that re-exposure to environments during a more remote delay period (18 days) 

produced significant increases in coherence, which suggests increased communication between 

theses brain areas (Fries, 2005). Moreover, lead-lag analysis provided evidence that support the 

hypotheses of an ACC mediated recall. These findings are consistent with previous reports that 

have identified the importance of the ACC in remote memory recall (Bontempi et al, 1999; Restivo 

et al., 2009; Weible et al., 2012), however, to our knowledge, this is the first electrophysiological 

evidence that explains how the ACC initiates memory recall through communication with the HC. 

We first set out to identify if subjects exhibited memory recall by comparing exploratory 

behavior on initial exposure to subsequent exposures. It appeared that subjects did recall 

environmental information, as analysis of different time windows revealed that when subjects 

revisited environments, the amount of exploratory behavior significantly decreased. This finding 

indicates that that the animals had recalled enough information about the environment such that it 

was no longer novel. The memory task used in this experiment takes advantage of the rodent’s 

natural curiosity. When exposed to a novel environment rats will vigorously explore their new 

surroundings, but on subsequent exposures, rats will decrease the amount of exploratory behavior 

(Terry, 1979; Leussis & Bolivar, 2006).  

After confirming the animals successfully recalled environmental information, we aimed 

to identify changes in ACC and HC LFP activity. Coherence, which measures the extent at which 
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two independent signals change frequency and amplitude together, can be indicative of the degree 

to which two separate brain areas are communicating (Fries, 2005; Bastos et al., 2015; Fries, 2015). 

Previous reports have shown that the HC and ACC exhibit elevated theta band coherence during a 

number of spatial working memory tasks (Siapas et al., 2005; Jones & Wilson, 2005; Hyman et 

al., 2010), and while it is true that more research is needed to better understand the importance of 

those interactions, mounting evidence suggests that these interactions may cause the 

reorganization of neural spike patterns which could contribute to learning (Benchenane et al., 

2010; Benchenane et al., 2011).  

Here, we analyzed theta band coherence between the HC and ACC while subjects learned 

new contextual information, and also during recall conditions during both recent and more remote 

delay periods. Despite not finding any significant differences in behavior or frequency power 

during the first 200 seconds of environment exposure, analysis of coherence revealed significant 

increases in ipsilateral ACC-hippocampal interactions. Interestingly the change did not occur until 

the remote memory recall condition, suggesting that as time passes, and the consolidation process 

begins, successful recall of these memories may become reliant on interactions between the ACC 

and HC. Considering the importance of the ACC for remote memory recall (Bontempi et al., 1999; 

Teixeira et al., 2006; Ding et al., 2008), the electrophysiological marker, which supports previous 

findings, is of great significance, and an important step in identifying how both the HC and ACC 

have continued involvement in these memory processes. 

We next set out to identify the mechanism that could described the role of the ACC in 

remote memory recall. We performed the lead-lag correlation analysis technique which describes 

the directionality, or initiation, signal generation. During the learning phase of this experiment, 

our findings were consistent with previous reports such that the HC led ACC activity, and during 
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the recent recall day there did not seem to be a directional relationship between the two areas. 

However, during the remote recall phase, the data indicated a change in directionality and the ACC 

actually led the HC, suggesting that the ACC was initiating the coherent interactions during remote 

memory recall. It seems that the ACC initiates memory recall with the HC which might explain 

why there are changes in ACC and HC coherence after the passage of time. These findings offer 

support for  a proposed model of memory recall initiation (see figure 8), which shows  the change 

in recall control after the delay period, note that during learning the HC is more important than the 

ACC for recall, but over time, the ACC has a more active role in the recall process. Additionally, 

these data support multiple trace theory as it appears that there is continued involvement of the HC 

during recall of these types of memories.  

Implications  

In the present study, we identified a novel electrophysiological marker that may illustrate 

why the ACC is so important for remote memory recall. The increases in ACC-hippocampal 

coherence suggest that both areas become more aligned during remote memory recall. In addition, 

the directional changes of theta activity indicate that the ACC initiates memory recall. Together, 

the findings from this project indicate that the ACC has a more active role in memory recall, but 

are unable to specify exactly what neural  
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changes occur during the delay period, or what role the ACC has in the memory consolidation 

process. However, there are a number of supported conceptualizations of how the ACC contributes 

to memory recall.  

Memory processes are heavily reliant on numerous structures within the limbic system 

(Rajmohan, & Mohandas, 2007). Specifically, the HC for its role in forming new memories and 

mediating the consolidation process (Eichenbaum, 2007), but it is clear that some aspects of spatial 

memories eventually become dependent on extrahippocampal brain areas. However, according to 

MTT, retrieval of contextual episodic memories is continuously dependent on an intact HC (Nadel 

& Moscovitch, 1997) because some aspect of the memory trace is still within the HC. Our data 

offer support for MTT because we show the relationship between the HC and ACC becomes more 

robust as time passes. But what is the role of the ACC? Results from the lead-lag correlation 

suggest that the ACC is sending some type of information to the HC.  

Figure 8. Proposed model for control of memory recall . Note, that over time, the ACC 
has a more active role in initiating recall, and the HC has less.  
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In neural networks learning is thought to result in permanent changes in neural structure. 

These changes occur throughout the brain including the ACC. Maviel and colleagues (2004) were 

interested in how these changes relate to recall of remote spatial memories. After training animals 

on a reward location in a five–arm maze, the examination of the growth – associated protein 43, 

or GAP–43, revealed that animals exhibit increases of GAP-43 in prefrontal areas after a 

significant delay period. Similar findings have been reported in separate tasks (fear conditioning) 

by Restivo and colleagues (2009). Additionally, Einarsson & Nader (2012) were able to block 

learning effects with injections of anisomycin directly into the ACC. Crucially, these findings were 

supported by electrophysiological evidence and a functional mechanism by Takehara & 

McNaughton (2008). After training subjects in contextual fear conditioning chamber Takehara re-

exposed animals at differing delay periods (up to 6 weeks) and analyzed changes in neural spiking 

activity. They report reorganization of mPFC neuronal firing patterns after the delay period 

indicating functional changes to ACC activity, suggesting, that over time, as the fear memory 

became consolidated, something related to that memory was stored in ACC circuits. The changes 

to ACC neural structure and spike timing might relate to a change in dependency of remote 

memories.  

Numerous experimental reports and computational models have aimed to identify and 

explain the memory trace. The Tonegawa group has been central to this endeavor with their 

numerous discoveries, especially the ability to manipulate memory traces in the rodent 

hippocampal formation (Lui et al., 2012; Ramirez et al., 2013), but the continued role the HC has 

in memory recall is still a topic of debate (Morris, 2006), and engrams of hippocampally 

independent memories have been quite elusive. After consolidation, memories are spread out 

across a complex network throughout the brain (Squire & Alvarez, 1995; McClelland, 
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McNaughton, & O’Reilly, 1995). In recent years a few studies have been able to initiate contextual 

fear memory recall through optogenetic stimulation of medial prefrontal circuits (Rajasethupathy 

et al., 2015), suggesting that as memory traces in the HC naturally fade, engrams within the ACC 

become increasingly important (Kitamura et al., 2017). These studies have been monumental, but 

there is still uncertainty regarding what type of information occurs in ACC neural networks. 

Limitations  

It is true that we used a subtle gauge of memory recall, However, despite our recall measure 

being strictly movement based, it is consistent with other experimental findings that employed 

more stringent memory tasks such as taste aversion (Ding et al., 2008) and contextual fear 

conditioning (Kitamura et al., 2017). And, while it is possible that the observed changes could 

have arisen due to increases in or decreases in frequency power, we controlled for behavior and 

only analyzed coherence and lead-lag correlations during the time windows that did not have 

significant differences in movement or FFT. Moreover, other factors such as the slight changes in 

recording areas due to movement of tetrodes influenced our findings. Lastly, it is possible that 

another brain area is influencing ACC activity and ACC acts as a conduit between the HC and that 

other brain area. Future work should attempt to account for these possible limitations  

Future directions  

Future work should aim to identify what changes occur in the ACC that allow this area to 

entrain hippocampal theta activity, and what role the HC has during recall of remote spatial 

memories. Additionally, these investigations should attempt to identify if the observed changes in 

this network are a result of memory traces forming in the ACC, or if there is some unknown 

mechanism related to working memory that drives the electrophysiological changes. Analysis of 

other frequency bands and spike patterns within these brain areas will aid in the discovery of novel 
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mechanisms for remote memory recall.  

In order to understand memory processes future research should test whether the changes 

in network interactions between the ACC and HC are caused by increased task difficulty, 

consolidation, or some other cognitive or neural process. Future work could utilize a memory task 

in which environmental similarities are an additional variable. If increased coherence is a result of 

task difficulty, then when animals are exposed to two similar environments, there should be at 

least some discernable changes in interactions based of more difficult or less difficulty recall 

situations. While the experiment described above might reveal some insight into how difficulty 

impacts the interactions between the ACC and HC, it is unlikely that the findings would reveal 

directional changes based solely on task difficulty. Siapas et al. (2005) and Hyman et al. (2005) 

utilized a number of spatial tasks that ranged in difficulty and did not report directional changes in 

the hippocampal-prefrontal network, indicating that task difficulty is probably irrelevant. More 

likely, it is possible that the observed changes in coherence and directionality were a result of time 

passing and reorganization of memory traces than task difficulty.  

Identifying the cause of this change in neural activity will help to formulate a better 

understanding of memory recall but exploring other mechanisms that contribute to recall is equally 

important. Our experiment focused on theta band frequencies, but further investigation is required 

to better understand the neural correlates related to other rhythmic changes occurring during 

remote memory recall. However, our data also found high power in beta (15 – 30 Hz) and gamma 

(30 – 80 Hz) band frequencies (Wang, 2010). To this end, additional work is needed to investigate 

how the neurons change firing patterns as a result of learning, and how this affects unit phase 

locking to external LFPs.  

Beta oscillations are a harmonic of theta oscillations and such might be an important 
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contributor to HC cellular function and hippocampal communication with cortical brain areas 

(Igarashi et al., 2014). During visual cue onset beta band power decreased in the PFC but PFC-HC 

synchrony increased (Brincat & Miller, 2016) which might suggest the importance of this network 

for internal memory processing or at least visual working memory states. The extent of beta band 

oscillations in hippocampal function is still largely unknown. This oscillation was thought to exert 

control over motor systems (Bouyer et al., 1987) but more recent studies have identified that it has 

an integral role in integrating sensory systems (Witham et al., 2007). Considering the possibility 

that the ACC acts as an area that mediates memory recall by integrating cortical network 

information, understanding how beta band communication between the ACC and HC might yield 

some interesting findings.  

In addition to examining the role of beta oscillations in memory recall, understanding the 

effect of gamma band is also important. The gamma cycle is found throughout the brain, 

particularly in hippocampal (Montgomery et al., 2008), parietal, and frontal areas (Bouyer et al., 

1981). It is closely related to a number of physical properties of neurons such that the time window 

of this oscillation is closely aligned with the outcome of GABA and AMPA signaling (Johnston 

& Wu, 1994). Traditionally, gamma band oscillations are associated with neuron to neuron 

communication during perceptual processing (Gray & Di Prisco, 1997) and attentive states (Fries 

et al., 2001) but using genetic manipulations, researchers have been able to increase attention by 

stimulating prefrontal networks at the gamma band frequency (Kim et al., 2016). Additionally, 

through cross frequency coupling, hippocampal theta coupled with gamma oscillations has been 

shown to entrain neocortical neurons which are an important mechanism for neural function (Sirota 

et al., 2008).  

Investigating how other frequency bands such as beta and gamma oscillations change will 
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provide additional insight into how brain areas change communication patterns change as a result 

of time passing analyzing spike patterns in neurons would provide insight into the types of 

processing that is taking place during this type of learning and memory recall. In recent years a 

number of studies have reported changes in neural firing patterns, or spike timing reorganization, 

that are directly related to learning (Benchenane et al, 2010; Benchenane et al, 2011) and memory 

consolidation (Takehara & McNaughton, 2008) in the mPFC. These studies indicate that prefrontal 

areas are undergoing some type of change related to learning processes and systems consolidation. 

In our study, we focused primarily on LFPs, but future work should attempt to identify if there are 

changes in either ACC or hippocampal activity relating to the passage of time. This work would 

provide additional insight into how both areas functionally reorganize as a result of new memory 

Future research should also investigate the effect of outer area neural oscillations have on 

HC neurons. Place et al. (2016) previously reported prefrontal oscillations leading hippocampal 

activity during object exploration, our data also show this effect during remote memory recall. 

However, to my knowledge, and despite the abundance of reports showing how HC oscillations 

affect other brain areas, (Siapas et al., 2005; Rutishauser, Ross, Mamelak, & Schuman, 2010; Jones 

& Wilson, 2005; Belluscio, Mizuseki, Schmidt, Emptor, & Buzsáki, G. (2012) none have shown 

the ACC or mPFC to influence hippocampal unit activity. While identifying how outer area phase 

locking influence cellular activity in the HC could help to explain the role of the HC in memory 

recall, drawing conclusions about this relationship continue to be difficult. Because of this, future 

research should investigate how ACC theta phase locking influences hippocampal cellular activity.  

Conclusion 

This project only begins to examine the vast functions of the ACC – hippocampal network 

and additional work is needed to further assess how reciprocal information transfer between these 
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brain areas contributes to all aspects of memory. Examination of broadband frequency changes in 

coherence could offer to provide fundamental information relating to how the two areas 

communicate. Moreover, investigations of neural population changes could provide information 

on the specific role each area has during memory recall. The data provided here only offer minimal 

insight into the complex workings of memory systems but as more research emerges, we will 

eventually begin to disentangle these complex neural processes. 
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