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ABSTRACT 

Type 2 diabetes (T2D) has been studied for decades. Many risk factors of T2D 

have been identified, but few studies were designed to investigate the pharmacokinetics/ 

pharmacodynamics (PK/PD) risk factors preceding the onset of T2D. Moreover, although 

the disease progression of T2D has received considerable attention, little is known about 

the disease development of T2D. It is important to understand the temporal changes of 

the risk factors of glucose and insulin kinetics during the development of T2D for a better 

understanding of the etiology of T2D.  

The objectives of this work are: 1) to develop a population-based glucose-insulin 

PK/PD model and identify the PK/PD risk factors preceding the onset of T2D, 2) to 

develop a methodology to evaluate the development of T2D, 3) model the time-course of 

the disease development based on the disease development variables (DDVs) derived 

from repeated intravenous glucose tolerance tests (IVGTT) and oral glucose tolerance 

tests (OGTT). The central hypothesis is that the development of T2D can be described 

and characterized by the glucose-insulin kinetics by employing a population-PK/PD 

based disease development analysis. 

To summarize, a glucose-insulin kinetic model was developed and presented in 

Chapter 2. The pharmacokinetics/pharmacodynamics (PK/PD) risk factors preceding the 

onset of T2D were investigated using a population-based Bayesian nonlinear hierarchical 

model. In Chapter 3, a methodology describing the disease development of T2D was 

developed based on four important DDVs of T2D, namely fasting blood glucose (FBG), 

fasting serum insulin (FSI), homeostatic model assessment of insulin resistance (HOMA-

IR) and body mass index (BMI). These DDVs were investigated for their temporal 
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patterns and relationships to the time-course of the development of T2D. The proposed 

model enables a quantitative, time-based evaluation of the development of T2D in this 

high risk population. In Chapter 4, the DDVs derived from repeated IVGTTs were 

evaluated. By applying the mixed effect analysis, important DDVs were identified as 

potential new biomarkers of T2D. Chapter 5 is an extension of application of the disease 

development analysis based on the DDVs derived from OGTTs. Chapter 6 is the 

conclusions and future works of this thesis. 

The proposed population model of glucose-insulin kinetics has demonstrated that 

pharmacokinetic differences exists for the high risk population and can be helpful for 

prediction of T2D. By applying the proposed disease development analysis, the time-

dependency and temporal patterns of the DDVs can be identified. An examination of the 

temporal changes in DDVs for the glucose-insulin system before the diagnosis of the 

disease provides a quantitative evaluation of the pathophysiological evolution of T2D and 

is valuable in predicting T2D. 
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ABSTRACT 

Type 2 diabetes (T2D) has been studied for decades. Many risk factors of T2D 

have been identified, but few studies were designed to investigate the pharmacokinetics/ 

pharmacodynamics (PK/PD) risk factors preceding the onset of T2D. Moreover, although 

the disease progression of T2D has received considerable attention, little is known about 

the disease development of T2D. It is important to understand the temporal changes of 

the risk factors of glucose and insulin kinetics during the development of T2D for a better 

understanding of the etiology of T2D.  

The objectives of this work are: 1) to develop a population-based glucose-insulin 

PK/PD model and identify the PK/PD risk factors preceding the onset of T2D, 2) to 

develop a methodology to evaluate the development of T2D, 3) model the time-course of 

the disease development based on the disease development variables (DDVs) derived 

from repeated intravenous glucose tolerance tests (IVGTT) and oral glucose tolerance 

tests (OGTT). The central hypothesis is that the development of T2D can be described 

and characterized by the glucose-insulin kinetics by employing a population-PK/PD 

based disease development analysis. 

To summarize, a glucose-insulin kinetic model was developed and presented in 

Chapter 2. The pharmacokinetics/pharmacodynamics (PK/PD) risk factors preceding the 

onset of T2D were investigated using a population-based Bayesian nonlinear hierarchical 

model. In Chapter 3, a methodology describing the disease development of T2D was 

developed based on four important DDVs of T2D, namely fasting blood glucose (FBG), 

fasting serum insulin (FSI), homeostatic model assessment of insulin resistance (HOMA-

IR) and body mass index (BMI). These DDVs were investigated for their temporal 
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patterns and relationships to the time-course of the development of T2D. The proposed 

model enables a quantitative, time-based evaluation of the development of T2D in this 

high risk population. In Chapter 4, the DDVs derived from repeated IVGTTs were 

evaluated. By applying the mixed effect analysis, important DDVs were identified as 

potential new biomarkers of T2D. Chapter 5 is an extension of application of the disease 

development analysis based on the DDVs derived from OGTTs. Chapter 6 is the 

conclusions and future works of this thesis. 

The proposed population model of glucose-insulin kinetics has demonstrated that 

pharmacokinetic differences exists for the high risk population and can be helpful for 

prediction of T2D. By applying the proposed disease development analysis, the time-

dependency and temporal patterns of the DDVs can be identified. An examination of the 

temporal changes in DDVs for the glucose-insulin system before the diagnosis of the 

disease provides a quantitative evaluation of the pathophysiological evolution of T2D and 

is valuable in predicting T2D. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

The pathogenesis and nature history of type 2 diabetes (T2D) has been studied for 

decades. Although various risk factors of T2D have been identified and reported in the 

literature, including age, ethnicity, obesity, and family history, little is known about the 

risk factors based on the pharmacokinetics and pharmacodynamics (PK/PD) of glucose-

insulin. With the development of population PK/PD, the study of population-based 

glucose-insulin PK/PD modeling is able to identify the “PK/PD” risk factors of T2D and 

addresses the unbalanced glucose and insulin kinetics relative to the development of 

T2D. The abnormalities of glucose-insulin regulation and the biphasic insulin secretion 

would be helpful for early detection of T2D for individuals with high risk. Furthermore, 

the relationship between disease development of T2D and the glucose-insulin kinetics 

can be investigated by disease development analysis. The study of the disease 

development analysis of T2D would enable a quantitative, time-based evaluation of the 

development of T2D based on temporal changes of glucose-insulin kinetics during the 

disease development period. The disease development model may be used to quantify the 

effect of interventions/prevention strategies such as drug treatment and lifestyle 

modification, which is important for evaluating regimens that prevent or delay the onset 

of T2D. 
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1.2 Epidemiology of diabetes mellitus 

1.2.1 Prevalence of diabetes mellitus 

The prevalence of diabetes mellitus has been increasing dramatically worldwide 

in the last few decades due to changes in human behavior and lifestyle (1). In the United 

states, approximately 25.8 million people have diabetes, accounting for 8.3% of the 

population in 2011 (2). The epidemic is also rapidly growing in developing nations in 

Asia, Africa, and South America. The estimated percentage increase of people with 

diabetes from 2000 to 2010 was 57% in Asia, 50% in Africa, and 44% in South America 

(1). According to a report from the International Diabetes Federation, an estimated 258 

million people had diabetes in 2010, which corresponds to 6.4% of the world’s adult 

population (3). The incidence rate of diabetes is still increasing. It is estimated there will 

be over 324 million people who will live with diabetes by 2025 and the number is 

expected to be as high as 438 million by 2030 (3, 4).  

Diabetes is a global burden due to its long-term cost and complications. In the 

United States, the total cost of disease in 2007 was $174 billion including $116 billion in 

excess medical expenditures, $31 billion on general medical costs, $27 billion directly 

related to treatment of diabetes and $58 billion spent on treatment of the complications of 

diabetes including neurological symptoms, peripheral vascular diseases, cardiovascular 

diseases, renal complications, metabolic complications, and ophthalmic complications 

(1).  

1.2.2 Epidemiology of type 1 diabetes 

Type 1 diabetes (T1D) accounts for about 5%-10% of the cases of diabetes (2). 

Type 1 diabetes is also called juvenile diabetes and typically occurs in children under 15 
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years old (5). The incidence rate of T1D has high variability worldwide ranging from 

36.5 per 100,000 person-years in Finland to 0.1 per 100,000 person-years in China (6). 

Despite T1D occuring in most ethnic groups worldwide, the white population has the 

highest incidence rate. In addition, the incidence rate has gradually increased in children 

in the white population in the United States from 4 per 100,000 person-years in 1900 to 

20 per 100,000 person-year in 1976 (7).  

1.2.3 Epidemiology of type 2 diabetes 

T2D accounts for over 90% of cases of diabetes (2). In contrast to T1D, the 

incidence rate of T2D significantly increases with age and ranges from 10 per 100,000 

person-years for the individuals 20-29 years old to 612 per 100,000 person-years for 

individuals between 60 and 69 years old (7). The incidence rate of T2D is also associated 

with ethnicity, obesity, and family history of T2D. It had been reported the prevalence in 

the United States is 7.1% in non-Hispanic whites, 8.4% in Asian Americans, 12.6% in 

non-Hispanic blacks, and 11.8% in Hispanics (2). The incidence rate is relatively high in 

Asian, African, and Hispanic groups compared to Caucasian group. Colditz et al. showed 

the incidence rate of T2D increased exponentially by 27% per increment in BMI for 

overweight or obese US women (8). The incidence rate of T2D in this population rose 

from an estimated 93 per 100,000 person-years for the individuals with a BMI of 25 to 

1016 per 100,000 person-years for the individuals with a BMI of 35. Another commonly 

known risk factor of T2D is family history. Family history of T2D has been found as an 

important risk factor in many studies (9-13). The cumulative risk of T2D is 29.2% and 

41.9% respectively for individuals with one diabetic parent and two diabetic parents, 
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which are significantly higher than the 14.0% for the individuals with no diabetic parent 

(11). 

T2D can be prevented or its onset can be delayed by lifestyle modification and/or 

pharmacological interventions. Therefore, prevention is one of the most effective ways to 

reduce the cost, mobility and mortality caused by the disease and complications of the 

disease. 

1.3 Development and prevention of type 2 diabetes 

1.3.1 Development of type 2 diabetes 

According to the diagnostic criteria of American Diabetes Association (ADA), the 

development of T2D involves three stages: normal, prediabetes, and diabetes (2). 

Prediabetes is an intermediate stage before T2D and characterized by impaired glucose 

tolerance. Three diagnostic tests are currently used to determine the stages of T2D: 

fasting plasma glucose (FPG) test, oral glucose tolerance test (OGTT), and glycated 

hemoglobin (A1C) test. The diagnostic criterion used by ADA are shown in Table 1.1 

(2). 

Imparied fasting glucose refers to the prediabetes condition detected by FPG test, 

and impaired oral glucose refers to the prediabetes condition detected by OGTT. 

Approximately 25% of the individuals with prediabetes (both impaired fasting glucose 

and impaired oral glucose) progress to T2D and 25% of the individuals revert back to 

normal over a 3 to 5 years period (14-16). This not only indicates that prediabetes is an 

important predictor of T2D but also shows that the development of T2D is reversible at 

this early stage. Thus, early intervention of the development of the disease is one of the 

best and practical solutions for reducing the high cost and incidence rate of T2D. A recent 



 

 

5

study by Appleton investigated the reproducibility of OGTT for diagnosis of normal, 

impaired oral glucose, or diabetes with two OGTTs performed on the same subject within 

2 to 6 weeks periods (17). The rate of having the same classifications from the two 

OGTTs as normal, impaired oral glucose, and diabetes are only 91%, 48%, and 78% 

respectively. In order to adequately handle the intra-subject variability from an OGTT 

during the development of the disease at the early stage, periodically repeated 

measurements or combined tests are helpful to increase the precision of the tests and 

reduce the false positives and negative results for diagnostic purposes (18-21). 

Insulin resistance 

Insulin resistance refers to the reduced insulin effect on suppressing hepatic 

glucose production, on stimulating glucose removal and glycogen synthesis in skeletal 

muscles tissue, and on inhibiting the lipolysis of adipose tissue (5). Insulin resistance is a 

metabolic syndrome of T2D and is associated with hypertension, dyslipidemia, 

atherosclerosis, and cardiovascular diseases (22). Insulin resistance results in increased 

plasma glucose levels and also higher serum insulin levels to compensate the high 

glucose concentration. The signs of insulin resistance, including hyperglycemia and 

hyperinsulinemia, have been reported as early predictors of T2D in longitudinal studies 

(23-25). The presence of insulin resistance occurs earlier than the presence of prediabetes 

(impaired glucose tolerance) and persists though the progression of T2D (26, 27). 

β-cell dysfunction 

Insulin is a peptide hormone produced by β-cells of islets of Langerhans in 

pancreas (Figure 1.1). β-cell dysfunction refers to the reduced insulin secretion after 

glucose challenge due to the failure of the β-cells in pancreas to compensate for 
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hyperglycemia. β-cell dysfunction is present in all cases of T2D and possibly caused by 

glucotoxicity and β-cell exhaustion due to insulin resistance and impaired glucose 

tolerance (28-30). β-cell function changes substantially during the development of T2D 

and also after the diagnosis of T2D. It generally starts with the diminished first phase 

insulin secretion during the period of prediabetes (impaired glucose tolerance) and 

deteriorates to the overall reduction of insulin secretion from β-cells in the late phase of 

T2D (31-33). The diminished first phase insulin secretion has been reported as an early 

predictor of T2D (25, 31, 34-36). 

1.3.2 Risk factors of type 2 diabetes 

Based on ADA, the risk factors of T2D include: presence of glucose tolerance/or 

impaired fasting glucose, age>45, family history of diabetes, overweight, lack of 

exercise, hypertension, low HDL cholesterol level, high triglyceride level, ethnicity 

(Non-Hispanic Blacks, Hispanic/Latino Americans, Asian Americans and Pacific 

Islanders, American Indians and Alaska Natives) and history of gestational diabetes 

mellitus (37). In addition, other predictors of T2D have been reported in the literature, 

including the reduced glucose removal rate, hyperinsulinemia, increased body weight, 

and reduced acute insulin response (the first 10 minutes insulin response after an glucose 

challenge) (23, 35, 38). These risk factors of T2D can be separated into two types of 

variables: time-invariant and time-variant variables. Time-invariant risk factors remain 

the same with time, for example: ethnicity and family history of T2D. This type of risk 

factors is easy to manipulate when estimating risk of T2D for specific populations, but it 

provides no information on how the disease progresses over time and the stages of the 

disease development. The time-variant risk factors contain additional time information 
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about the pathology the T2D and provide better prediction of risks of T2D based on 

current conditions of the individuals. However, the time-variant variables are relatively 

hard to manipulate due to the high inter-occasion variability and intra-individual 

variability. Therefore, a more in-depth mathematical model and statistical methods are 

required to perform data analyses on time-variant variables. 

1.3.3 Screening for type 2 diabetes 

T2D is a chronic disease that develops over years of pre-diabetic stage. In the 

study of Warram et al., 6 selected variables were monitored for 15 years before the 

diagnosis of T2D (39). Fasting glucose, insulin, and 2-hour glucose post-challenge 

increased within 5 years before the diagnosis of T2D while rising fasting triglycerides 

begins at least 10 years before the diagnosis of T2D. It is clear that there are early signs 

of T2D presented before the diagnosis of the disease and screening is one effective way 

to identify the individuals proceeding to T2D. In addition, about 27% of the individuals 

with diabetes remain undiagnosed, which corresponds to 7 million people in the U.S. (2). 

Without screening, these people could develop severe complications from T2D without 

detection, such as stroke, blindness, renal failure, and amputation. Therefore, screening of 

T2D is not only important to prevent or delay the onset of T2D for individuals but also 

helps to identify the subjects with undiagnosed T2D and further reduce the chances of 

complications due to T2D.  

There are two types of screening methods of T2D. One is questionnaire-based and 

the other one is laboratory-based. The questionnaire-based screening methods are usually 

used as initial screening tools to identify the population with high risk of T2D. In 

Finland, the diabetes risk score was developed based on the presences of the risk factors 
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of T2D, including age, BMI, waist circumference, use of blood pressure medication and 

etc. (40). The questionnaire-based screening methods provide fast, simple, convenient 

low-cost way to identify high risk population of T2D, but the results of these screening 

methods can not used for diagnostic purposes. On the other hand, the laboratory-based 

screening methods, such as fasting plasma glucose test, OGTT, and A1C test can be used 

to diagnose prediabetes and T2D, but they are relatively expensive and require specialists 

for performing assays on blood samples.  

1.3.4 Type 2 diabetes prevention trials 

There is evidence that T2D can be prevented or its onset can be delayed with 

lifestyle modification and pharmacological intervention (41-45). In the lifestyle 

modification trials, the subjects with high risk of T2D (usually already with impaired 

glucose tolerance) were enrolled in programs with a restrictive controlled diet and/or 

exercise. The effects of the lifestyle modifications on preventing T2D were evaluated by 

the reduction in incidence rate of T2D. It is reported that the lifestyle modification trial 

can reduce the incidence rate by about 28% to 59% in studies with 2.5 to 6 years follow-

up (46). In pharmacological trials, subjects with high risk of T2D were treated by 

medications, including acarbose, metformin, and orlistat to prevent the onset of T2D (43-

45). Pharmacological treatments can also reduce the incidence rate by about 25.5% to 

37% (43-45). Although the pharmacological trials significantly reduce the incidence rate 

of T2D, they are not recommended by ADA (47). Firstly, pharmacological preventions 

usually were less effective than life-style modifications. For instance, metformin is less 

effective than exercise/diet to reduce the incidence rate of T2D (43). Secondly, the 

beneficial effects of lifestyle modification continue after the prevention period (48, 49), 
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while the pharmacological interventions usually lose their effectness after the treatment 

period (50, 51). For instance, troglitazone-treated subjects had similar incidence rate of 

T2D as the subject-treated with placebo after 1 year of discontinuation of treatments (50). 

In another example, the effect of metformin on T2D prevention did not persist when the 

drug stopped (51). Thirdly, the lifestyle modifications have other benefits, such as 

reducing the chance of cardiovascular diseases and dyslipidemia. The pharmacological 

interventions require monitoring adverse drug effect and their benefits on other diseases 

are not clear. Finally, the lifestyle modifications are more cost effective than 

pharmacological interventions. Diet control and exercise cost very little compared to the 

medications for T2D(47). 

1.4 Models of longitudinal data 

 Longitudinal data analysis arises in many biomedical applications including PK, 

PD, and disease progression modeling. The longitudinal analysis usually contains “time” 

as a predictor variable and one or more “biomarkers” of interest as the response variables. 

The repeatedly measured data of the biomarkers are collected and analyzed in the 

longitudinal analysis to evaluate the temporal patterns of the biomarkers. For example, 

PK modeling is important to investigate the mechanisms of drug absorption, disposition, 

metabolism and elimination. PD analysis is used to evaluate the relationship between 

drug concentration and drug effect. Disease progression modeling is useful to quantify 

the development and progression of diseases and determine the best regimen to prevent 

or treat a disease. 

 The classic nonlinear longitudinal model (non-population based approach) has 

been extensively developed and applied in the field of PK/PD. This kind of model is 
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usually developed based on the physiology of the human body to evaluate or predict drug 

concentrations and/or responses. With newly developed methodology and software, 

population-based longitudinal model has received great attention. The main purpose of 

the population-based PK/PD model is to estimate the population parameters, inter-

individual variability, and effects of covariates. This approach is useful to select a dose 

for a population, to identify the source of the variability, to predict the drug’s response 

for individuals. The structural model of the population PK/PD model is usually less 

complex compared to the classic PK/PD model. The modeling data of the population-

based analysis usually requires more individuals but fewer samples for each individual. 

The classic PK/PD analysis has fewer individuals but rich-data in each individual to show 

the detailed longitudinal pattern of the response variables, such as drug concentration and 

drug effect. In contrast to PK/PD models which have drug concentration or effect as the 

response variable, the disease progression model has the biomarker of the disease as the 

response variable. The disease progression model can involve a population-based PK/PD 

model to evaluate the long term drug effect on the progression of disease and helps to 

individually optimize the therapy regimen of a disease. In general, the population-based 

approach involves a complex statistical model structure to address the hierarchy of the 

data and to evaluate the population parameters as well as the inter-individual variability. 

The population-based analysis can be done by a frequentist or Bayesian statistical 

approach, specifically the mixed effect model approach or the Bayesian hierarchical 

model approach. 
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1.4.1 Mixed effect model 

A mixed effect model is a frequentist statistical model which expresses the 

response variable as a function of predictor variables with both the fixed effect and 

random effect parameters. This approach has been widely used in the field of population 

PK/PD analysis. Some programs and software that are available for this type of analysis 

include NONMEM, MONOLIX, S-ADAPT, NLMIXED procedures in SAS, nlme 

package in R and SPLUS. There is an extensive literature on the mixed effect model 

approach, especially in the field of PK/PD. Ette and Williams provide a comprehensive 

book review of the linear and non-linear mixed effect models and the applications in 

NONMEN, R and S-PLUS (52). A review about the statistical aspect of the mixed-effect 

model and the use of the nlme package is provided by Pinheiro and Bates (53). 

The basic mixed effect model, similar to the simple linear regression model, has a 

response variable y  (e.g. drug concentration/effect), and a predictor variable x  (e.g. 

time). The mean of the response variable is characterized by a function  f of the 

predictor variable, and the intra-individual variability is described by a random variable 

 . The model of the data of the jth observation of the ith subject can be written as: 

  ijiijij xfy  θ,         (1.1) 

The regression function  f  can be a linear or nonlinear function of ijx . This function 

represents for the structural model of PK/PD or disease progression. The mixed effect 

parameter vector iθ  of the ith subject is the sum of a fixed effect parameter vector μ  of 

the population and a random effect parameter vector iη  of the ith subject. 

ii ημθ           (1.2) 
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The fixed effect parameter vector μ  represents the population parameter vector and the 

random effect vector iη  represents the inter-individual variability by using a multivariate 

normal distribution with a mean of zero vector 0 and a variance-covariance matrixΩ . 

 Ω0,η MVNi ~         (1.3) 

The variance-covariance matrix Ω  addresses the magnitude and the correlation of the 

inter-individual variability of the population. The description above only covers the basis 

of the mixed effect model. Davidian and Giltinan has a detailed review for various mixed 

effect models and statistical aspect of the model structures (54).  

Numerous algorithms have been developed for mixed effect model analyses 

including, the first order conditional estimate (FOCE) algorithm implemented in 

NONMEM (55), the stochastic approximation expectation maximization (SAEM) 

algorithm in MONLIX (56), the Monte Carlo Expectation Maximization (MCPEM) 

algorithm in S-ADAPT (57), the adaptive Gaussian quadrature method in SAS, and the 

restricted maximum likelihood (REML) method in nlme package of R. The primary aim 

of these algorithms is to evaluate the maximum likelihood estimates of the population 

parameters. Dartois et al. provides a review for comparing different algorithms by 

simulation (58). In general, FOCE used in NONMEM is the most popular algorithm used 

to estimated population parameters in PK/PD analyses because the early development 

and wide usage of NONMEM. The algorithms implementing Markov chain Monte Carlo 

methods, such as SAEM and MCPEM algorithm, have higher successful rate in 

convergence, but they usually require more calculation time.  
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1.4.2 Bayesian hierarchical model 

A Bayesian hierarchical model is analogous to the mixed effect model in the 

frequentist statistical approach. An extensive review of Bayesian data analysis is 

provided n the book by Gelman et al. (59). The basic statistical structure of the Bayesian 

hierarchical model for population PK/PD analysis involves three levels of hierarchy: 

prior, population, and individual level. In a Bayesian statistical approach, previous 

experiences and knowledge can be implemented as the prior information. This approach 

is useful for sequential studies or adaptive design clinical trials. The statistical structure 

of a Bayesian statistical model is similar to a mixed effect model, but a Bayesian 

statistical model has an extra layer of hierarchy, the prior distributions. The hierarchy of 

prior is corresponding to the highest level and needs to be specified before the analysis. 

WinBUGS is the most extensively used software for Bayesian analysis (60). The 

WinBUGS differential equation interface written by Lunn extend the flexibility of 

WinBUGS to various PK/PD or disease progression analysis (61). 

In the individual level of the hierarchy, the Bayesian regression model describes 

the response variable ijy  and the predictor variable ijx  of the jth observation of the ith 

subject as: 

  ,,~ iijij xfNy θ         (1.4) 

In general, the observed ijy  is assumed to be normally distributed with a mean of 

 iijxf θ,  and a precision of  . The regression function  iijxf θ,  represents the predicted 

ijy  value at ijx  with the individual parameter vector iθ  of the ith subject. The precision   

is the reciprocal of the variance of the normal distribution. The term “precision” is 

commonly used in Bayesian literature and software instead of variance for easy 
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calculation. In the population level of the hierarchy, the individual parameter vector iθ  is 

assumed to be multi-normal distributed with a mean vector μ  and an inverse covariance 

matrix 1Ω . 

 1,~ Ωμθ MVNi         (1.5) 

The vector μ  would be the population parameter vector and Ω  would be the covariance 

matrix for inter-individual variability. In the highest level of hierarchy, prior distributions 

are given to  , μ , and 1Ω . For example, a gamma distribution can be used for  , a 

multi-normal distribution can be used to μ , and a Wishart distribution can be used for 

1Ω . The book review of Gelman et al. describes the prior distribution selection (59). 

Additional in-depth review about prior selection and the philosophical foundation for 

Bayesian inference is provided by Kass et al. (62). 

 In a Bayesian analysis, Markov chain Monte Carlo methods, including Gibbs 

sampling, and Metropolis-Hastings sampling method, are used to estimate the posterior 

distributions of the parameters (63, 64). The mean and 95% credible set of a parameter 

can be estimated based on its estimated posterior distribution of the parameter. 

WinBUGS is the most commonly used software in Bayesian analysis. Although the 

running time in WinBUGS is longer compared with the algorithms used in mixed effect 

model analysis, WinBUGS has a higher successful rate of convergence and provides 

accurate estimates of covariance matrix for inter-individual variability without 

approximation (58, 65). In addition, WinBUGS provides a flexible platform for various 

statistical models and a variety of distributions for choosing. WinBUGS can also 

incorporate other statistical analysis, such as multivariate regression or survival analysis 

together with the population PK/PD analysis. Although WinBUGS is not the mainstream 
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software used in population PK/PD analysis, it offers a flexible environment for various 

statistical analyses and provides additional value in population PK/PD analysis. 

1.5 Glucose and insulin kinetics 

1.5.1 Glucose kinetics 

Diabetes is characterized by a persistent high blood sugar in human body. 

Information of glucose kinetics is important to understand the pathology of the disease. 

Plasma glucose can originates exogenously from ingestion of food and also endogenously 

from the liver by glycogenolysis. The disposition of glucose is speficially evaluated 

based on radio-labeled glucose tracers in order to prevent the confounding effect from 

both exogenous absorption and endogenous glucose production. Segal S. et al. used C14-

labeled glucose to investigate the disposition of glucose (66). A three exponential 

function has been found best to describe glucose disposition. Later, Ferrannini E. et al. 

proposed a three compartment model to describe body glucose kinetics by a plasma, rapid 

equilibrating, and slowly equilibrating compartments (67). These types of studies are 

great contributions to the understanding of the metabolism and disposition of glucose, but 

the insulin effect on the glucose metabolism and the hepatic glucose production are still 

two important factors that need to be incorperated in glucose kinetic models. 

In 1979, Bergman et al. proposed the minimal model (68). The model included 

the insulin effect on glucose removal in a glucose kinetic model. The model has two 

compartments to describe the disposition of glucose and an “insulin action” compartment 

to describe the effect of insulin on glucose removal (Figure 1.2). The amount of “insulin 

action effect”  tX  is calculated based on the insulin concentration time curve over 
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baseline. This model became one of the most popular model to describe glucose kinetics 

for incorporating insulin effects on glucose removal. Later, Caumo A. and Covelli C. 

evaluated hepatic glucose production using deconvolution technique using labeled 

IVGTTs (69). A drop in hepatic glucose production has been found in the first 30 minutes 

after IVGTT, and then hepatic glucose production is back to normal at 90 minutes after 

IVGTT (Figure 1.3). To overcome the complexity of the physiology of glucose regulation 

in the human body, a variety of models have already been developed. 

1.5.2 Insulin kinetics 

Insulin is a peptide hormone with a molecular weight of 5808 Da and is produced 

by the β-cells of islets of Langerhans in pancreas (Figure 1.1). Insulin is the most 

important hormone to regulate glucose metabolism by increasing the uptake of glucose 

from blood in the liver, muscle and fast tissues. Insulin also reduces blood glucose level 

by inhibiting the release of glucagon. The synthesis of insulin is taking place in β-cells of 

islets of Langerhans. Proinsulin, a precursor of insulin, converts into insulin and C-

peptide in an equalmolar pattern and then is stored in secretory granules in β-cells (70). It 

has been found that a β-cell contains approximately 13,000 insulin granules (71). The 

insulin granules can be further divided into different insulin pools according to the 

different movement patterns and relative locations (72). Readily releasable pools, 

composed of insulin granules adjacent to the plasma membranes of  -cells, exist in a 

fully releasable state for the quick response to a sudden glucose increase. In the cell 

plasma of the  -cells, insulin granules denoted reserve pools secrete insulin granules for 

maintaining regular insulin level. Gupta et al. proposed a detailed insulin kinetic model to 

analyze the insulin kinetics of the insulin pools in  -cells (73). 



 

 

17

 The main feature of insulin secretion is its biphasic secretion pattern. After a 

bolus glucose challenge, a fast insulin secretion (first phase insulin secretion) can be 

observed in the first 10 minutes and followed by a prolonged insulin secretion (second 

phase insulin secretion). This pattern was early described by a mathematical model 

developed by Grodsky (74). Several other kinetic models have been proposed to describe 

the biphasic secretion pattern from different experimental approaches (75-78). Another 

important factor affecting insulin kinetics is hepatic extraction of insulin. After insulin is 

secreted from pancreas, it directly goes into the portal vein before entering the circulatory 

system. Insulin and C-peptide are secreted in an equalmolar manner, and C-peptide is not 

extracted by liver. Therefore, data of C-peptide can be used to assess hepatic extraction of 

insulin. By modeling both insulin and C-peptide kinetics, insulin hepatic extraction can 

be estimated as the ratio of unextracted insulin and C-peptide. Toffolo G. et al. used a 

minimal model of insulin and C-peptide to assess the insulin hepatic extraction. Their 

results indicate that the liver can extract 70% insulin in the basal state and 54% during 

IVGTT (76). 

Since insulin is secreted endogenously from pancreas, disposition of insulin can 

only be evaluated by labeled tracer studies to prevent the confounding effect from 

endogenous insulin production. Silver A. et al. used insulin-131I to evaluate the 

disposition of insulin (79). It has been found that the kidneys can also greatly affect 

insulin metabolism. Subjects with renal failure have significantly lower insulin removal 

rate compared to normal and diabetic subjects. A three compartment model has been 

found to best describe the disposition of insulin. An insulin kinetic model can not be 

considered complete if the model does account for the kinetics interaction of glucose and 
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insulin. This a need for modeling the glucose-insulin kinetics by including a glucose and 

insulin feedback loops in the model. 

1.6 Disease progression model 

The disease progression model provides an extensive tool to describe the time-

course of the disease progression and quantify the effects of drugs/interventions to the 

disease by modeling the biomarkers (or surrogates endpoints) in a longitudinal model. 

The goal of disease progression modeling is not only focusing on the drug effects during 

the treatment period but also on the post treatment effects on the disease. Disease 

progression modeling has substantial influences on drugs selection and regimen design of 

disease treatments. For example, the deterioration of T2D involves insulin resistance and 

β-cell dysfunction. The disease progression modeling would be useful to identify the 

most suitable drug and regimen specific to the different stages of insulin resistance or of 

β-cell dysfunction. An extensive review section of the models of natural disease 

progression has been done by Mould (52). The mathematical model of disease 

progression contains two main components: the model of natural progression of disease 

and the PK/PD model of drug treatments.  

The mathematic models of natural disease progression can be divided into three 

major categories: linear model, asymptotic models, and differential equation models (52). 

Linear model is a simplest way to describe the nature progression of disease. The linear 

model has a general form: 

  tStS  0          (1.6) 

 tS  represents the disease progression function of a continuous biomarker or rating 

score which is closely associated with the progression of the disease. 0S  represents the 
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basal level of the disease status and   is the slope, or the rate parameter of the disease 

progression over time, t . The effect of drug treatment  tE  can be described as a 

function of t : 

      ttEStS  0        (1.7) 

     ttEStS  0        (1.8) 

The drug treatment effect can be described as modifying the baseline of the disease (1.7) 

or modifying the rate of disease progression in (1.8). The linear model has been used to 

describe the progression of Alzheimer’s disease by Holford and Chan (80, 81). The 

advantage of the linear model is its simplicity and it is best to describe the disease 

progression for short period of follow-up. 

 Natural disease progression can also be described by asymptotic models, such as 

an exponential model, or Emax model. 

  teStS  
0         (1.9) 

 
tS

tS
StS





50

max
0         (1.10) 

In the exponential model (1.9), 0S  represent the initial state of the biomarker of the 

disease and   represents the rate of the deterioration (first order) of the disease. The 

exponential function has been used to describe some biomarkers that decrease with time, 

for instance, the loss of bone density for postmenopausal women (82). The exponential 

model has the advantage of describing the curvature of the disease progression. In 

addition, the exponential disease progression model can be easily extended to an 

accelerated failure time model or proportional hazard model which is commonly used in 

survival analysis.  
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The maxS  in the Emax model (1.10) represents the maximum level of the 

biomarkers or score of the disease and 50S  represents the time progressing to the half 

level between 0S  and maxS . 0S  and maxS  are the nature limits of the boundaries of the 

biomarker. The Emax function has been used to describe the pain resolution by Anderson 

et al. (83). In addition to exponential and Emax models, a combined exponential model 

was developed to describe the progression of Parkinson’s disease by Holford et al. as 

follows (84): 

     t
ss

t eSeStS    10        (1.11) 

0S  and ssS represent the basal state and steady state of the disease.   represents the rate 

constant of the disease progression. This model is an alternative choice of the Emax 

function that can be used to describe the natural limits of the basal state and the steady 

state of the disease maturation. 

The natural history of the disease progression also can be modeled by differential 

equations. This type of the disease progression model has the following general form: 

     SfSf
dt

tSd
trtprog         (1.12) 

The rate of change in  tS  is modeled by the disease progression function  Sf prog  and 

the treatment effect function  Sftrt . Such model has been successfully used to describe 

the growth of bacteria and effect of antibiotics for a long term therapy (85, 86). For 

example, Zhi et al. proposed the model to describe the growth kinetics of Pseudomonas 

aeruginosa and the effect of piperacillin as follows (86): 

 
     SfSf

dt

tSd
trtprog         (1.13) 
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  SSf prog       
  S

cck

cck
Sf

mec

mec
trt 









50

max  

In the function of the disease progression  Sf prog , S  and   represent the bacterial 

concentration and apparent growth rate of the organism, respectively. The treatment 

effect of antibiotics was modeled by the Emax function with the parameters maxk and 50k  

when the concentration of the antibiotics c  is larger than the minimum effective 

antibiotic concentration mecc . In addition to modeling the growth kinetics of bacteria, this 

type of model can be extended to describe the time course of the tumor growth with the 

effect of the chemotherapy or the life span of red blood cells with the effect of 

erythropoietin (87-89). 

1.7 Models for type 2 diabetes 

T2D is a chronic disease relative to the unbalanced glucose-insulin system. 

Numerous mathematical models have been developed for various purposes, such as to 

provide interpretation of the deterioration of the glucose-insulin system processing to 

T2D, to provide pathophysiology-based diagnosis of the progression of T2D, to quantify 

and evaluate the drug effects on the glucose-insulin system. Landersdorfer et al. 

discussed that mathematical models can be divided into six categories: models for the 

intrinsic interaction between glucose and insulin, models for the glucose-insulin system 

incorporating drug effects, models describing secondary drug effects, models describing 

effects on ancillary biomarkers, and models of disease progression (90). The purpose of 

this thesis is to indentify the PK/PD risk factors associated with the development of T2D 

and to develop a disease development model of T2D. Hence, the following sections 
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would focus on models for the intrinsic interaction between glucose and insulin used for 

diagnostic purposes and models for disease progression. 

1.7.1 Models for diagnostic purposes 

The development of T2D involves the deterioration of insulin resistance and β-

cell dysfunction, which are characterized by the reduced insulin effect on glucose 

removal and the diminished insulin secretion (34, 38). Mathematical models have been 

developed to quantify the levels of insulin resistance and β-cell dysfunction and to detect 

abnormalities in the glucose-insulin kinetics for individuals who may have pre-diabetes 

or diabetes. The most frequently used models for diagnostic purposes of T2D are the 

Bergman’s minimal model and homeostasis model assessment (HOMA) model (68, 91). 

Minimal model 

The Bergman’s minimal model is one the most popular mathematical models used 

to evaluate insulin sensitivity and glucose effectiveness based on data of intravenous 

glucose tolerance test (IVGTT). This model was firstly proposed in 1979 by Bergman et 

al. (68). To date, more than 500 papers had been published based on the uses and the 

extensions of the model (92). The structure and equations of the minimal model is 

presented in Figure 1.2. The minimal model described the glucose disappearance as the 

effect from the remote insulin compartment. The plasma insulin  tI  served as a forcing 

function that the excessive amount of insulin over the baseline produces the “insulin 

action”  tX  in remote insulin compartment, and the glycogen synthesis in liver and 

periphery tissues were assumed to be regulated by the amount of “insulin action”  tX  

(68). The minimal model describes the glucose-insulin system with a very compact 
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mathematical structure and provides parameters describing glucose effectiveness (SG) and 

insulin sensitivity (SI), which have been considered in diagnosis of diabetes. In 1980, 

Toffolo et al. extended minimal model to describe the effect of glucose on the insulin 

production (78). Together with the original minimal model proposed in 1979, the 

minimal model provides a complete description to the glucose and insulin regulatory 

system. Some later versions of the minimal model incorporated the changes in hepatic 

glucose production after an IVGTT (69), and some studies extended the minimal models 

to estimate insulin sensitivity and glucose effectiveness indexes based on OGTT (93, 94). 

However, De Gaetano and Arino indicated that the equations of the minimal model are 

mathematically incorrect and the model cannot be used to fit glucose and insulin data 

simultaneously (77). Moreover, most versions of the minimal models do not account for 

the biphasic insulin kinetics which is associated with the deterioration of β-cell 

dysfunction. Despite these limitations, the minimal model has been used in estimating the 

insulin sensitivity and providing information for the diagnosis of T2D. 

Homeostatic model assessment  

The homeostatic model assessment (HOMA) indexes were developed to assess 

insulin resistance (HOMA-IR) and β-cell function (HOMA- β) based on the fasting 

glucose and insulin/C-peptide concentrations (91). The HOMA indexes have been widely 

used for diagnostic purposes of T2D with more than 500 citations (95). The HOMA 

model contains a series of nonlinear empirical functions describing the glucose and 

insulin regulations in the organs and tissues at the homeostatic (fasting) state. The 

numerical solutions for HOMA-IR and HOMA- β can be estimated by either the graph-

based method or the equation of the fasting glucose and insulin levels (96). The values of 
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HOMA-IR and HOMA- β can be directly obtained from the graph based on fasting 

plasma glucose and serum insulin concentrations in Figure 1.4. The alternative method is 

to use the simple mathematical approximations shown below: 

 

(mU/L)ionconcentratinsulin  serum Fasting:FSI

(mg/dL)ionconcentrat glucose plasma Fasting:FPG

63-FPG

FSI360
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405
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





 

The advantage of the HOMA indexes is their simplicity compared to the 

hyperglycemic clamp, euglycemic clamp or IVGTT when estimating insulin sensitivity 

and β-cell function (68, 97). Thus, they are more practical for use in large scale 

epidemiological studies. However, the nonlinear empirical functions describing the 

glucose and insulin regulations in the organs and tissues used in the HOMA model 

remains unpublished and the model is not validated for patients receiving insulin 

treatments (90). HOMA indexes are simple measurements of insulin resistance and β-cell 

function at the homeostasis state (fasting state), but these indexes do not reflect insulin 

resistance and β-cell dysfunction at the stimulated/dynamic state. 

1.7.2 Disease progression models for type 2 diabetes 

T2D is a progressive disease. Long-term medical care and treatments are required 

to maintain normal blood glucose levels. The disease progression model evaluating the 

long-term anti-diabetic effect of gliclazide on the progression of T2D was developed by 

Frey et al. (98). In the study, the disease progression of T2D was described as a linear 
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function of fasting plasma glucose concentration. The effect of gliclazide was evaluated 

by the following equations in the responders and non-responders: 

Responders:    tEtFPGtFPG base        (1.14) 

Non-responders:   tFPGtFPG base        (1.15) 

The fasting plasma glucose served as the biomarker of T2D and the time course of the 

disease progression was described by a function of fasting plasma glucose  tFPG . T2D 

is assumed to progress from the base glucose level ( baseFPG ) linearly with a rate,  , 

over time, t . The effect of gliclazide is described by the function  tE . This study has 

successfully characterized the relationship between the time-course of the progression of 

T2D and the long term anti-diabetic effect of gliclazide on the progression of T2D. This 

approach provided a tool to visualize and quantify the effect of the treatment on disease 

progression.  

Later, de Winter et al. extended Frey’s model and proposed a mechanism-based 

disease progression model which assesses the progression of T2D based on the 

physiological homeostasis of glucose and insulin (99). The effects of pioglitazone, 

metformin and gliclazide were modeled as treatment functions that affect the homeostasis 

of fasting plasma glucose (FPG), fasting serum insulin (FSI) and glycated hemoglobin 

A1c (A1C) described by a two linked turn-over model. The model provided systemic-

specific parameters which addressed the progression of T2D by a physiological based 

model and allowed the quantification of the treatment of T2D. 

In contrast to the progression of the disease after T2D has been diagnosed, the 

objective of this work is to describe the development of the disease. Although prevention 

of T2D is the best way to prevent/prolong the onset of the disease, the procedures to 
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identify people with high risk factors and methods to evaluate the status of T2D still need 

to be improved. The focus of the thesis is on modeling the development of T2D with 

PK/PD based risk factors derived from IVGTT or OGTT. This work would provide 

valuable information to accurately identify people with high risk of T2D and adjust the 

procedures to quantify the development of T2D.  

1.8 Objectives and specific aims 

The primary objective is to characterize the development of type 2 diabetes with a 

disease development model based on the glucose-insulin kinetics for better prediction and 

understanding of the development of the disease. 

Specific aim 1: To formulate an integrated population glucose-insulin PK/PD model to 

characterize the glucose insulin regulation and insulin’s biphasic secretion after an 

intravenous glucose tolerance test and to use the proposed model to evaluate parameters’ 

differences for populations with different level of risks factors preceding type 2 diabetes. 

Specific aim 2: To develop a population-based methodology to describe the development 

of type 2 diabetes based on four important variables namely, fasting blood glucose, 

fasting serum insulin, homeostatic model assessment of insulin resistance and body mass 

index and to identify important temporal patterns and time-dependencies of these disease 

development variables over the disease development period. 

Specific aim 3: To identify the important disease development variables derived from an 

intravenous glucose tolerance test and evaluate the relationship between the temporal 

changes of these variables and the development of type 2 diabetes.  

Specific aim 4: To identify important disease development variables associated with the 

development of type 2 diabetes based on glucose and insulin measurements from an oral 
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glucose tolerance test and to evaluate the relationship between the temporal patterns of 

these variables and the development of the disease. 

1.9 Hypotheses 

The central hypothesis of this thesis is that the development of type 2 diabetes can 

be described and characterized by the glucose-insulin kinetics by employing population-

PK/PD based disease development analysis. 

Hypothesis 1: It is possible to characterize the glucose-insulin regulation and physiology 

of the insulin biphasic secretion using a population PK/PD model and early pre-diabetic 

pharmacokinetic differences exist in the population with different level of risk preceding 

type 2 diabetes. 

Hypothesis 2: The specific temporal patterns and time-dependencies of the four important 

disease development variables are hypothesized to exist and can be identified by applying 

population-based disease development model. 

Hypothesis 3: The important disease development variables derived from an intravenous 

glucose tolerance test are hypothesized to exist and can be identified by the proposed 

disease development analysis. 

Hypothesis 4: The important disease development variables derived from an oral glucose 

tolerance test are hypothesized to exist and can be identified by the proposed disease 

development analysis. 

1.10 Outline of the thesis 

A glucose-insulin kinetic model is developed and presented in Chapter 2. The 

pharmacokinetics/pharmacodynamics (PK/PD) risk factors preceding the onset of T2D 

were investigated in the progressor group of T2D using the population-based Bayesian 
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nonlinear hierarchical model of glucose-insulin kinetics. Based on the analysis, 

pharmacokinetic differences exist for the high risk population (progressors) which may 

be helpful for prediction of T2D. 

In Chapter 3, a disease development variable (DDV) based model is developed. 

Four important DDVs of T2D, namely fasting blood glucose, fasting serum insulin, 

homeostatic model assessment of insulin resistance and body mass index were 

investigated for their temporal patterns and relationships to the time-course of the 

development of T2D by population based approaches. The proposed model enables a 

quantitative, time-based evaluation of the development of T2D in this higher risk 

population. 

The important DDVs of T2D derived from the repeatedly intravenous glucose 

tolerance tests (IVGTT) were identified and presented in Chapter 4. By applying the 

mixed effect analysis, important DDVs were identified by the mixed effect analysis. 

Chapter 5 is an extension of application of the disease development analysis on DDVs 

derived from the repeatedly measured OGTT. The important DDVs were identified and 

the temporal patterns of these DDVs were evaluated. Chapter 6 is the conclusions and 

future works of this thesis. 
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Table 1.1 Diagnostic criterion of type 2 diabetes used by ADA 

ADA Criterion FPG test OGTT A1C test 

Normal <100 mg/dL < 140 mg/dL < 5.7% 

Prediabetes 100 - 125 mg/dL 140 - 199 mg/dL 5.7 - 6.4 % 

Diabetes ≥ 126 mg/dL ≥ 200 mg/dL ≥ 6.5 % 
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Figure 1.1. β-cells of islets of Langerhans in pancreas(http://trialx.com/curetalk/wp-
content/blogs.dir/7/files/2011/05/diseases/Beta_Cell_Function-2.gif) 
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Figure 1.2. The structure and the corresponding differential equations of minimal model 
(68). The plasma insulin  tI  served as a forcing function that the excessive amount of 

insulin over the baseline produces the “insulin action”  tX  in remote insulin 
compartment, and the glycogen synthesis in liver and periphery tissues were assumed to 
be regulated by the amount of “insulin action”  tX  The minimal model describes the 
glucose-insulin system with a very compact mathematical structure and provides 
parameters describing glucose effectiveness (SG) and insulin sensitivity (SI). 
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Figure 1.3. Average time course of hepatic glucose production obtained from 2 

compartmetn minimal model by deconvolution (69) 
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Figure 1.4. The graph-based method for estimating homeostatic model assessment-insulin 
resistance (HOMA-IR shown as %S) and homeostatic model assessment-β-
cell function (HOMA-β shown as %B). Based on fasting plama glucose and 
insulin concentration, the HOMA-IR and HOMA-β can be evaluated from the 
graph. 
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CHAPTER 2. ANALYSIS OF PK/PD RISK FACTORS FOR 

DEVELOPMENT OF TYPE 2 DIABETES IN HIGH RISK 

POPULATION USING BAYESIAN ANALYSIS OF GLUCOSE-

INSULIN KINETICS 

2.1 Abstract 

This study was designed to investigate the pharmacokinetics/pharmacodynamics 

(PK/PD) risk factors preceding the onset of type 2 diabetes using a population-based 

Bayesian nonlinear hierarchical model to describe the glucose-insulin kinetics. One 

hundred fifty-two healthy subjects with a family history of type 2 diabetes were recruited. 

Each subject received an intravenous glucose tolerance test (IVGTT) and glucose and 

insulin concentrations were collected when entering the study. After the test, subjects 

were followed for up to 25 years and further divided into the progressor group or the non-

progressor group according to the follow-up results. A glucose-insulin kinetic model was 

developed to account for the physiology and molecular biology of the insulin biphasic 

secretion and glucose-insulin interactions with a minimal structure. The population 

PK/PD parameters of the two groups were estimated from the proposed glucose-insulin 

kinetic model. The relationships between the population PK/PD parameters and the 

diabetic follow-up results were evaluated. A high insulin baseline concentration, a lower 

maximum insulin-dependent glucose removal and a lower insulin removal rate constant 

were found associated with the development of type 2 diabetes in the high risk 

population. The study shows that very early pre-diabetic pharmacokinetic differences 

exist and can be helpful for prediction of development of type 2 diabetes. 
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2.2 Introduction 

Type 2 diabetes (T2D) is a disorder of unbalanced glucose and insulin levels. An 

understanding of glucose-insulin regulation and kinetic relationship is critical to an 

investigation of the development of T2D. A variety of the mathematical kinetics models 

has been proposed for describing the glucose and insulin kinetics (73, 75-78, 100-102). 

Most of these models focus on how insulin affects the glucose metabolism or how 

glucose affects insulin secretion and do not include the complete mechanism, which 

includes the mutual effects i.e. glucose’s effect on insulin kinetics and vice versa. 

The main feature of insulin secretion is its biphasic secretion pattern. This pattern 

was earlier described by a mathematical model developed by Grodsky (74). The model 

describes insulin as stored packets inside the  -cells, and each insulin packet has a 

specific threshold-level to glucose concentration. When the glucose concentration 

increases, a specific number of insulin packets are secreted into the blood. Recently, the 

movement of insulin granules inside  -cells and the mechanism of exocytosis have been 

revealed by total internal reflection fluorescence microscopy (TIRFM) (72, 103, 104). 

The insulin granules can be further divided into different insulin pools according to the 

different movement patterns and relative locations(104). Readily releasable pools, 

composed of insulin granules adjacent to the plasma membranes of  -cells, exist in a 

fully releasable state and are associated with the fast first phase of insulin secretion. 

These pools provide a quick response of insulin secretion to a sudden glucose increase. In 

the cell plasma of the  -cells, insulin granules denoted reserve pools secrete insulin 

granules for maintaining the baseline insulin level and producing the second phase insulin 

secretion though the nonstandard secretion pathway and provide supplemental insulin 
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granules to the readily releasable pools(104). Gupta et al. proposed a insulin kinetic 

model to analyze the insulin kinetics of -cells, the post hepatic insulin delivery and 

insulin elimination (73). The model has detailed descriptions of the insulin pools inside 

the -cells and of how glucose affects the insulin production and secretion. Several other 

kinetic models have been proposed to describe the biphasic secretion pattern and 

provided agreement with data from different experimental approaches (75-78).  

The Bergman’s minimal model, uses remote insulin as a forcing function that 

regulates the glycogen synthesis in liver and periphery tissues (68, 78). The minimal 

model describes the glucose-insulin system with a very compact mathematical structure 

and provides parameters describing glucose effectiveness and insulin sensitivity, which 

are useful in diagnosis of diabetes. Later versions of the minimal model account for the 

changes in hepatic glucose production after an intravenous glucose tolerance test 

(IVGTT) (69, 105). Population-based Bayesian approaches have also been developed 

(106, 107). However, most versions of the minimal models do not account for the 

biphasic insulin kinetics and are not designed to fit the glucose and insulin data 

simultaneously. De Gaetano et al. discussed some mathematical issues of the minimal 

model and proposed a new dynamical model (77). The dynamical model provides 

simultaneous fits to glucose and insulin data and solves the equilibrium problems of the 

minimal model by the use of the delayed differential equations. 

Recently, an integrated model for glucose and insulin was proposed by Silber et 

al. using a population kinetic approach in NONMEM (102). The model describes the 

glucose-insulin kinetics in three parts: glucose kinetics, insulin kinetics, and a control 

mechanism. The control mechanism has three effect compartments that regulate the 
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glucose-insulin interactions with three power functions. Two glucose effect 

compartments inhibit the glucose production and stimulate the secretion of insulin. One 

insulin effect compartment regulates the glucose level by stimulating the glucose 

clearance. This model provides extensive physiological structures and mechanisms that 

contain three feedback loops for glucose-insulin regulation, but this model has a complex 

structure and requires 20 fixed effect parameters in the glucose-insulin kinetic model. 

In this study, a simple integrated glucose-insulin kinetic model was proposed. 

This model was developed though a comparison of the glucose-insulin kinetic models 

with different dynamic effects functions. With its minimal structure, this model is readily 

analyzed in a population pharmacokinetic parameter framework. The parameters have 

intuitive meanings that are associated with the physiology of the glucose removal and 

insulin production. The parameters’ differences were analyzed for the two groups with 

different follow-up outcomes. The parameter estimates were compared between the 

groups with the intent to identify PK/PD risk factors for development of T2D.  

2.3 Specific aim and hypothesis 

The specific aim of this chapter is to formulate an integrated population glucose-

insulin PK/PD model to characterize the glucose insulin regulation and insulin’s biphasic 

secretion after an intravenous glucose tolerance test and to use the proposed model to 

evaluate parameters’ differences for populations with different level of risks factors 

preceding type 2 diabetes. 

The specific hypothesis is that it is possible to characterize the glucose-insulin 

regulation and physiology of the insulin biphasic secretion using a population PK/PD 
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model and early pre-diabetic pharmacokinetic differences exist in the population with 

different level of risk preceding type 2 diabetes. 

2.4 Methods 

2.4.1 Subjects 

Between 1963 and 1983, the data of 152 non-diabetic healthy subjects with a 

family history of type-2 diabetes (diabetic parents) were collected by the Joslin Diabetes 

Center (Boston MA). No subjects had pre-diabetes or diabetes when entering the study. 

All participants received an IVGTT at the beginning of the study. After an eight to 

twelve-hour fasting period the concentrations of blood glucose and plasma insulin were 

obtained for each subject before a 0.5 g/kg glucose injection. Glucose and insulin blood 

samples were then collected at 1, 3, 5, 10, 20, 30, 40, 50, 60, 90, 120 and 180 minutes 

post-injection. The subjects were followed up to 25 years after the IVGTT. At the end of 

the follow-up period, data of presence or absence of T2D were collected. 25 of 152 

participants developed T2D. These subjects were further divided into progressor and non-

progressor group with sample sizes of 25 and 127 respectively. The subject demographics 

at the time entering the study is summarized in Table 2.1. 

2.4.2 Assays 

Glucose concentrations of the blood samples were measured by the ferricyanide 

method with a coefficient of variation (CV) of the assay of 1.5% (108). For determination 

of insulin concentrations, a double-antibody radioimmunoassay technique was used with 

a 17.6% CV (109). All of the insulin and glucose concentrations were measured by one 

technician in the Joslin Diabetes Center to control the measurement error. 
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2.4.3 Glucose-Insulin kinetic model 

The goal of the model-building process is to design an integrated population 

glucose-insulin kinetics model with a simple structure considering the cellular 

physiologic features of the insulin biphasic secretion and accounting for the mutual 

kinetic interactions of glucose and insulin after IVGTT. The specific final model is 

shown in Figure 2.1. 

Glucose kinetics model 

The disposition function of glucose was described by an one-exponential model 

and the glucose removal is regulated by the insulin concentration. The blood glucose 

concentration  tCg  is given by the following model equations: 

      

   
g
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ssigrg
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, 0,0

(2.1) 

The rate change of glucose concentration 
 

dt

td Cg  is given as the production of 

glucose minus the removal of glucose. The glucose concentration is assumed at the 

steady state ss,gC  before the injection of glucose, and is determined as the hepatic glucose 

production rate gpk  divided by glucose volume distribution gV  times insulin effect 

function of glucose removal  ssigr CE , . After the glucose injection is introduced into the 

blood stream, the increase in glucose concentration is calculated as the glucose dose gD  

divided by the distribution volume gV . The hepatic glucose production rate, the dose of 
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glucose (0.5 g/kg) and the distribution volume of glucose are denoted by gpk , D  and gV  

respectively in (2.1). The volume distribution of glucose is normalized by the body 

weight. Due to lack of hot glucose tracer data in this study, the changing in the hepatic 

production rate after IVGTT can not be evaluated. The hepatic glucose production rate 

was assumed to be unchanged ( gpk ) after IVGTT. The glucose removal is regulated by an 

insulin effect function   tCE igr . 

Insulin kinetics model 

The insulin secretion kinetic model was developed according to the physiology of 

the insulin granule extocytosis process described in Ohara-Imaizumi’s study (104). The 

first phase of the insulin secretion is created by the fast insulin release from the readily 

releasable pools docked to the  -cells’ membranes in the pancreas. The second phase of 

the insulin secretion is mainly created by the insulin granules in the reserve pools located 

in the inner  -cells. These processes are described by the following model equations: 

         tIktCE
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RI  denotes the amount of insulin in the reserve pools in the β-cells. The rate 

change of insulin 
 

dt

td I R  in the reserve pool is given as the production of insulin 

  tCE gip  minus the secretion rate of insulin from β-cells (2.2). The insulin production 

rate is assumed to depend on glucose concentration and modeled by an effect function, 

  tCE gip . The insulin secretion from the reserve pools in the  -cells to the blood 

stream was modeled by a first order process with an insulin secretion rate constant secik . 

 tCi  represents the insulin concentration. In (2.3), the disposition of insulin was 

described by an one-exponential model with an insulin removal rate constant irk . The 

distribution volume of insulin is denoted as iV  and the hepatic extraction ratio is denoted 

as E . Due to lack of insulin tracer and C-peptide data, the volume distribution of insulin 

and the hepatic extraction ratio were not identifiable and accordingly fixed at 45 ml/kg 

body weight and 54%, respectively, according to reported values (76, 110). In the 

modeling of the first phase insulin secretion, the amount of insulin secreted from the 

readily releasable pools was approximated as a “bolus injection” to account for its fast 

secretion pattern. The amount of secreted insulin was assumed to be proportional to the 

increase in glucose concentration in the IVGTT study. Accordingly, the increase in 

glucose concentration after glucose injection is 
gV

D
, and the amount of insulin secreted 

from the readily releasable pools is approximated by 
g

p V

D
S , where pS  represents the 

proportionality constant that scales the amount of insulin secreted in the first phase. pS  is 

a variable for the effectiveness of glucose, resulting in a quick insulin secretion. 
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2.4.6 Glucose and insulin effect function selection 

Equations presented in (2.1), (2.2) and (2.3) define the basic structure of the 

glucose-insulin kinetic model. The dynamics of glucose-insulin interactions were 

modeled by various effect functions. Four types of effect functions were investigated in 

the development of the proposed model (2.4-2.7). The effect functions were selected 

because of their simplicity and providing great stability for mathematical calcaulations. 

To reduce the complexity of the model of the model and facilitate the statistical analysis 

the model assumes no delays in the insulin effect on glucose removal and glucose effect 

on insulin production. 

The following effect functions were considered: 

A proportional effect function:  
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A proportional power effect function:  
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A linear effect function: 
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     


 ss,ggipipgip CtCSktCE  

 







 0x,0

0xif,x
x  

An Emax effect function:  
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The first function (2.4) has the simplest form describing the concentration-effect 

relationship with only one parameter. grS  and ipS  represent the insulin effectiveness on 

glucose removal and glucose effectiveness on insulin production. The concentrations 

were normalized by the steady state concentrations to make grS  and ipS  equal to the 

insulin removal rate constant and insulin production rate at steady state. The second 

function (2.5) has more flexibility with an additional power parameter. The third function 

(2.6) and the forth function (2.7) describe a linear concentration-effect and an Emax 

model with steady state corrections. The effects are dependent on the concentrations 

when the concentrations are higher than the steady state concentration. 

Population PK/PD analyses were performed for models with different combinations 

of effect functions to describe the glucose-insulin interactions. These effect functions 

were compared based on the posterior mean of deviance (Dbar) and the deviance 

information criterion (DIC) (111). The Dbar is equal to -2 log-likelihood. The model with 

a lower Dbar has a better fit to the data according to information theoretical principles. 

DIC is a model selection criterion developed based on the information theory according 

to Bayesian principles. It’s analogous to the Akaike’s information criterion (AIC) in the 

frequentist’s approach (112). DIC is the sum of the Dbar and the effective number of 

parameters, which are associated with the goodness of fit and the complexity of model.  
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2.4.4 Bayesian hierarchical model 

A nonlinear Bayesian hierarchical model was used to estimate the population 

glucose-insulin kinetics parameters. Bayesian hierarchical model provides intuitive 

statistical structure for the population kinetic analysis in terms of individual level of 

hierarchy, population level of hierarchy and prior distributions. The principles of 

Bayesian data analysis are well discussed by Gelman et al. (59). The model specification 

follows the directed plot used in WinBUGS (Figure 2.2) (60).The model building process 

includes three stages.  

The first stage is modeling the residual error structure for the observed data in the 

lowest level of the hierarchy: 

    ,,loglogNormal~ iijij tfy θ         (2.8) 

All estimated concentrations are non-negative ensured by a log-normal 

distribution used to describe the distribution of the observations. The terms   iijtf θ,log  

and   represent the parameters of the log normal distribution. In following the normal 

parameterization in WinBUGS the precision,  , is used which is equal to the inverse of 

the variance. The observation of the ith subject at the jth time point is denoted by ijy . The 

function  iij ,tf θ  represents the fitted values at ijt  with parameter vector iθ .  

In the second stage, the log of individual parameter vectors is modeled by a 

multivariate normal distribution in the middle level of the hierarchy: 

   1
i ,MVN~log Ωμθ        (2.9) 

μ  represents the mean vector of the individual log parameter vectors, and 1Ω  

represents the inverse covariance matrix of the individual log parameters. Accordingly, 
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Ω  is the covariance matrix which accounts for the inter-individual variability and 

correlations. 

In the third stage, conjugate prior distributions are assigned to  , μ  and 1Ω  in 

the highest level of the hierarchy.   has a gamma prior distribution; μ  has a multivariate 

normal prior distribution, and 1Ω  has a Wishart prior distribution. The structure of this 

Bayesian hierarchical statistical model is shown in the direct plot in Figure 2.2.  

2.4.5 Structure of covariates 

The follow-up results of disease status were used as covariates for the population 

pharmacokinetic parameter. 
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The individual log parameter vectors are modeled by a multivariate normal 

distribution  1,MVN Ωμ . The population mean vector (μ ) are different for subjects in 

different groups. The reference parameter nonDMμ  is the population parameter vector of 

the non-progressor group. The DMμ  is the population parameter vector of progressor 
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group. (%)nonDMvsDMD  represents the population parameter differences in percentage 

between the progressor group and non-progressor group.  

2.4.9 Prior distributions 

No prior information for parameters was available for this newly developed 

model. Thus, vague prior distributions were used: 
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The specification of the prior distributions follows the parameterization in 

WinBUGS.   and   are the shape and rate parameters of the gamma distribution. Κ  

and 1Σ  are the location parameter vector and inverse covariance matrix of the 

multivariate normal distribution. R  and   are the scale matrix and degree of freedom of 

the Wishart distribution. 

2.4.6 Programs and algorithms  

The posterior distributions of individual, population parameters and secondary 

parameters were estimated by Metropolis-Hasting sampling method in WinBUGS 

version1.4.3 (113). The numerical solutions of the differential equations were calculated 

by the WinBUGS differential equation interface (WBDiff) (61). The specific codes for 
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describing the differential equations in the glucose-insulin model were written in Pascal 

in BlackBox (114). The convergence of the Markov chains is evaluated by the Gelman-

Rubin plot (115). The chains are defined as converged when the Gelman-Rubin statistic 

is smaller then 1.2. Initially, three Markov chains were run simultaneously for 20,000 

samples in each chain to access the convergence of log population parameter vector μ . 

Once the chains of vector μ  were converged to stationary distributions, the samples 

Dbar, DIC and the all parameters of interest were collected from the extra 5,000 runs of 

the three chains. The posterior distributions of parameters were estimated according to 

the 15,000 samples. Medians of the posterior distributions were reported as the Bayesian 

estimates of the parameters, and the 95% Bayesian credible sets were estimated as the 

intervals between the 2.5 and 97.5 percentiles of the posterior distributions. R version 

2.6.2 was used for graph generation(116). 

2.5 Results 

2.5.1 Preliminary model independent measurements 

The glucose baseline, the insulin baseline and the acute insulin response (AIR) 

after IVGTT were estimated for subjects in the two groups. The glucose and the insulin 

baselines were defined as the first measurements of glucose and insulin concentrations 

before IVGTT. The AIR after IVGTT was calculated by the trapezoidal rule as the 

insulin concentration vs. time area above the insulin baseline concentration from 0 to 10 

minutes. The estimates of means and 95% confidence intervals of glucose baseline, 

insulin baseline and AIR for the two groups are summarized in Figure 2.3. The means of 

the two groups were compared by the two sample t-test. The mean of insulin baseline of 
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the progressor group is significantly higher than the mean of the non-progressor group 

(p<0.05).  

2.5.2 Model selection 

Dbar and DIC values were estimated for models with different glucose-insulin 

effect functions. The model for which the glucose removal is described by a steady state 

corrected Emax model and the insulin production rate is described by a power 

proportional function provided the overall lowest Dbar and DIC values (27966 and 28936 

respectively) among all the models considered (Table 2.2). This final model gave the 

overall best fit to the data with relatively few parameters (Figure 2.1). 

2.5.3 Population parameter estimates 

A total of 1,970 glucose and 1,975 insulin samples of 152 subjects were analyzed 

by the proposed population glucose-insulin kinetic model. The posterior medians and 

95% Bayesian credible sets for the population kinetic parameters of glucose and insulin 

of the progressor group and the non-progressor group are summarized in Table 2.3.  

The population PK/PD parameters’ differences in percentage between the two 

groups were estimated. Subjects in the progressor group tended to have a 23.2% lower 

maximum insulin-dependent glucose removal grSmax  and a 49.7% lower insulin removal 

rate constant irk  compared to subjects in the non-progressor group (Figure 2.4). The 

differences were statistically significant (The 95% credible sets of the differences in 

percentage do not contain zero). The variance-covariance matrix for inter-individual 

variability is shown in Table 2.4. The highest correlation between any two parameters 
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was 0.82 which is the correlation between the glucose production rate parameter, gpk , 

and the glucose removal rate constant at steady state, grk . 

Population model predictions and observed concentrations of glucose and insulin 

for two groups are shown in semi-log plots (Figure 2.5). The majority of measured 

glucose blood and insulin plasma concentrations fell within the 95% Bayesian predictive 

interval. Figure 2.6 shows individual fits to the glucose and insulin concentrations for two 

representative subjects in each group. For some subjects, the glucose concentrations 

dropped below the steady state concentration from 60 to 120 minutes post glucose 

injection due to the effect of insulin (the upper right figure in Figure 2.5). Additionally, 

the insulin biphasic secretion can be dominated by either the first phase insulin secretion 

(the lower right figure in Figure 2.5) or the second phase secretion (the lower left figure 

in Figure 2.5). The proposed Bayesian glucose-insulin kinetics model provided the 

flexibility to fit these different kinetic scenarios. 

2.5.4 Residual error 

The exponential proportional error model was used for both glucose and insulin 

data. The estimate of residual error for glucose was 0.0722 with 95% Bayesian credible 

set between 0.0695 and 0.0751. This is corresponding to a 7.23% (6.96% ~ 7.52%) of 

coefficient of variation (CV). The variation includes the assay variability of 1.5% (117). 

The estimated residual error for insulin was 0.202 with 95% Bayesian credible set 

between 0.194 and 0.210. The corresponding CV is 20.4% (19.6%~21.2%) which is of 

similar magnitude to the assay variability of 17.6% (109). The residual errors mainly 

include the within-subject variability and the variability of the assays. 
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The goodness of fit was evaluated by the scatter plots of individual predicted 

values vs. the individual observed values and the residual plots. The scatter plot of the 

individual predicted values vs. the individual observed values is shown in Figure 2.7 and 

the correlation coefficients between the individual values and the observed values are all 

higher than 0.98. The residual plots for glucose and insulin data are shown in Figure 2.8. 

The residuals were calculated as the differences between the logarithm of observed data 

and of the logarithm of estimated concentration. The time scale is transformed as the 

square root of time in order to better visualize the frequent data of early sampling times. 

No clear over- and under-estimations were found, and the variability of the residuals 

seems consistent at different time points.  

2.6 Discussion 

A higher insulin baseline concentration, a lower maximum insulin-dependent 

glucose removal grSmax  and a lower insulin removal rate constant irk  were found 

associated with the development of T2D in the high risk population. These parameters’ 

differences were estimated from the IVGTT data collected at a time when the subjects 

had no signs of impaired glucose tolerance or diabetes. Considering the follow-up period 

of up to 25 years (average of 13-14 years), these deviations may be considered as very 

early signs of the progression towards development of T2D. The pathogenesis of T2D has 

been investigated in Pima Indians (38). In these previous studies, weight gain, decrease in 

insulin-stimulate glucose disposal, and decrease in acute insulin response (AIR) were 

identified longitudinally as factors associated with the progression from normal to 

impaired glucose tolerance and also from impaired glucose tolerance to diabetes. Based 

on our proposed model, the low grSmax  is associated with a reduced insulin-dependent 
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glucose removal effect. This is consistent with the decrease in insulin-stimulated glucose 

disposal in the study of Pima Indians. But, the estimates of pS  were not significantly 

different between the progressor and non-progressor group. In addition, the reduced AIR 

was not found in the progressor group. 

AIR is sensitive to the increase in glucose concentration. Although the dose used 

in IVGTT is adjusted by subject’s body weight, the increase in glucose concentration 

after IVGTT is different in different subjects. In our study, the means of AIR were equal 

to 825.28 min·mU/L in the progressor group and 577.80 min·mU/L in the non-progressor 

group. In the study of Xiang et al., the AIR of 86 Hispanic women with prior gestational 

diabetes was calculated with a mean of 408 min·mU/L (118), which is lower than the 

mean value reported in our study. This is possibly caused by the different study groups 

and also the different glucose doses used in IVGTT (0.5mg/kg vs. 0.3 mg/kg). pS  in our 

model is normalized by the increase in glucose concentration after IVGTT, so pS  is an 

alternative way to quantify the acute insulin response, which is not sensitive to the 

different glucose doses in IVGTT or different increases in glucose concentration after 

IVGTT. The estimated insulin removal rate constant irk  is smaller in the progressor 

group. The first phase of insulin secretion is modeled as a bolus injection, thus irk  is 

mainly determined by the slope of the curve during the first phase of the insulin secretion. 

The small insulin removal rate constant may be associated with the slow insulin uptake or 

utilization. 

To investigate the dynamics of glucose-insulin interactions, sixteen combinations 

of the four different effect functions were evaluated. Although there are many 

possibilities for describing the concentration-effect relationship, the four functions in this 
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study were chosen for their easy interpretation and simplicity. The specific 

parameterizations of the effect functions were designed to get a better stability in the 

parameter estimation process and get a better estimate of the equilibrium of the glucose-

insulin system at steady state. The final model provided the best overall fit to the 

population data and had relatively few parameters resulting in low Dbar and DIC values.  

Figure 2.9a illustrates the glucose removal vs. insulin concentration curves of the 

two groups from simulation based on population parameters of two groups. The glucose 

removal was considered to be insulin-regulated. According to the model comparison 

results, the Emax model with a steady state correction was chosen to describe the 

relationship between insulin level and glucose removal. When insulin concentration is 

higher than the steady state concentrations, the effect of insulin on glucose removal is 

determined by the 50ikc  and grSmax parameters. However, they are not directly 

comparable to the various parameters that have been proposed to quantify insulin 

sensitivity or insulin resistance in other publications (68, 91, 119, 120). The insulin 

production rate in the reserve pool was modeled by the power proportional function of 

glucose. The insulin production vs. concentration curves of the two groups are shown in 

Figure 2.9b. Subjects in the progressor group have higher insulin production rate than the 

subjects in the non-progressor group, but the differences are not statistically significant. 

Bayesian based population PK/PD analysis has a similar statistical model 

structure to the frequentist (non-Bayesian) based analysis. The main difference is the 

Bayesian approach has prior distributions for the parameters, and the prior distributions 

are based on experience and belief. Despite the debates between the Bayesian and the 

frequentist statistical modeling, the concepts of both approaches are accepted and have 
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been used for decades in the field of statistics. Both types of statistical approaches can be 

applied to estimate population PK/PD parameter, but the estimation methods are 

different. WinBUGS is a statistical program widely used in the Bayesian statistical 

analysis, which applies the Markov Chain Monte Carlo (MCMC) methods to estimate the 

PK/PD parameters. The algorithm used in WinBUGS offers a very high success rate of 

convergence which is most helpful in population PK/PD studies (58). In addition the 

stability of the numeric analysis in the Bayesian approach (WinBUGS) appears 

considerably better. The Bayesian approach also provides prior information for future 

studies. In the Bayesian approach, the likelihood function and the Fisher information 

matrix are calculated without approximation. The population and individuals’ parameters 

can be estimated simultaneously as well as the secondary parameters and predictive 

intervals. However, running the MCMC methods is computational intensive and typically 

requires more time than the frequentist approaches.  

Study limitations: C-peptide is co-secreted with insulin in an equimolar ratio and 

has no liver extraction (121). Thus, data of C-peptide is used to estimate the insulin 

hepatic extraction ratio. Due to lack of C-peptide data, the insulin hepatic extraction ratio 

is not identifiable and required the use of published values in this study. Thus, to 

incorporate the hepatic extraction in our model, the mean value of the insulin extraction 

ratio reported previously was used (76). Similarly, the distribution volume of insulin can 

not be estimated without an insulin tracer. The volume distribution of insulin was fixed at 

the mean value of 45 ml/kg reported from a previous study (110). In the propsed model, 

two scale parameters, pS  and ipS , are sensitive to the fixed distribution volume of insulin 

and hepatic extraction ratio. Other constant rate parameters and glucose kinetic 
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parameters are not sensitive to the fixed parameter values. The change in the hepatic 

glucose production after IVGTT was not addressed in this model due to lack of glucose 

tracer data. Due to the complexity of the insulin-glucose system some simplifying 

assumptions are necessary in order to derive a practical, relatively simple model. To not 

assume a constant endogenous glucose production would significantly confound the 

analysis. 

In the insulin kinetic study of Gupta et al., the insulin disposition was modeled by 

a simple one-compartmental model (73). The reported estimates of insulin elimination 

rate constants are 0.124±0.0465 min-1 for obese children, 0.113±0.0462 min-1 for lean 

children. The estimate of the insulin removal rate constant was close to the estimate of 

irk  in the non-progressor group of our study (0.097 min-1). The estimated insulin 

production rates at steady state were 9.46 and 12 mU/min for the two groups in our study, 

which is close to the second phase insulin secretion of the healthy volunteers described in 

Silber’s study (9~10 mU/min at the glucose baseline concentration of 88 mg/dL) (102). 

In summary, the proposed population-based model has demonstrated the ability to 

describe the glucose-insulin kinetics by a simple model that address the physiology and 

molecular biology of insulin’s biphasic secretion after IVGTT and the mutual kinetic 

interactions of glucose and insulin. Although the hepatic extraction of insulin can not be 

estimated and the change in hepatic glucose production is not addressed in this study, the 

compact model was able to describe the physiologic features of the glucose-insulin 

kinetics and insulin’s biphasic secretion. The study demonstrates that a Bayesian-based 

population pharmacokinetic approach can identify early pre-diabetic pharmacokinetic 

differences and that may be helpful for better prediction of the development of T2D.
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Table 2.1. Subject demographics when entering the study  

 Progressor group Non-progressor group All 

Number of subjects 25 127 152 

Gender (males in %) 60.0% 42.5% 45.4% 

Weight in kg (mean sd) 
range 

96.3 29.9 
63-193 

73.3 17.8 
46-136 

77.1 21.9 
46-193 

Height in cm (mean sd) 
range 

171.8 9.2 
147-191 

169.1 11.0 
147-206 

169.5 10.8 
147-206 

BMI (mean sd) 
range 

32.2 7.6 
23-53 

25.4 4.3 
18-41 

26.5 5.6 
18-53 

Starting age (mean sd) 
range 

33.48 8.07 
21-50 

32.96 10.02 
16-59 

33.05 9.70 
16-59 
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Table 2.2. Model comparisons.    
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Table 2.3. Posterior median and 95% Bayesian credible sets (C.S.) of population 
kinetic parameters  

 Progressor group Non-progressor group 

Parameter Population estimate (95%C.S.) Population estimate (95%C.S.) 

gpk (mg/min) 95.8 (60.1 - 145) 87.9 (71.4 - 104) 

gV (dL/kg) 2.21 (2.05 - 2.38) 2.22 (2.15 - 2.3) 

grk (1/min) 0.00596 (0.00361 - 0.00919) 0.00718 (0.00577 - 0.00855) 

grSmax (1/min) 0.175 (0.0139 - 0.0226) 0.0230 (0.0203 - 0.026) 

50ikc (mU/L) 12.4 (5.41 - 25.9) 6.4 (4.25 - 9.23) 

ipS (mU/min) 12 (8.11 - 19) 9.46 (8.02 - 11) 

  1.29 (1.13 - 1.47) 1.3 (1.22 - 1.39) 

secik  (1/min) 0.0935 (0.0588 - 0.164) 0.0651 (0.0557 - 0.0766) 

irk (1/min) 0.0484 (0.0356 - 0.0716) 0.097 (0.0843 - 0.11) 

pS (mU·dL/mg) 2.65 (1.88 - 3.7) 2.09 (1.79 - 2.42) 
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Table 2.4. Inter-individual variance covariance matrix (Ω) 

 

 

 gpk  gV  grk  grSmax  50ikc  ipS    secik  irk  pS  

gpk  0.272          

gV  -0.0202 0.0331         

grk  0.241 -0.0451 0.316        

grSmax  0.0863 -0.0231 0.0954 0.145       

50ikc  0.378 -0.0584 0.34 0.235 1.44      

ipS  0.0428 -0.0106 -0.0146 0.022 0.231 0.321     

  -0.00438 0.0068 -0.0221 0.00664 0.0295 -0.0298 0.0792    

secik  -0.00822 0.0059 -0.0343 0.0483 -0.149 0.0281 0.00644 0.418   

irk  -0.0756 0.00785 -0.0531 -0.00519 -0.141 0.00656 0.00147 -0.0362 0.122  

pS  0.159 -0.007 0.0891 0.152 0.541 0.194 0.0546 0.215 -0.0434 0.664 
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Figure 2.1. The proposed glucose-insulin kinetic model. The dispositions of glucose and 
insulin were described by one-exponential models. The glucose removal was 
modeled by an Emax effect function of insulin with a steady state correction, 
and the insulin production rate was modeled by a proportional power effect 
function of glucose concentration. The biphasic insulin secretion is controlled 
by two pools: the readily releasable pool (IRRP) and the reserve pool (IR). 
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Figure 2.2. Directed plot of Bayesian hierarchical model. The directed plot follows the 
descriptions in the WinBUGS user manual. The lowest level of hierarchy is 
shown in the inner plate. The individual’s observations have a log-normal 
distribution with a mean calculated by individual’s parameter vector iθ  and 

ijt , and a precision parameter 2 . The second level of the hierarchy is shown 
in the outer box. Assuming the logarithm of individual parameter vectors are 
multivariate normal distributed, μ  and 1Ω  represent the population mean and 
inverse covariance matrix. The Prior distributions in the highest level of the 
hierarchy are on the pop of the directed plot. The ellipses represent stochastic 
nodes and the rectangles represent constants. 
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Figure 2.3. Means and 95% confidence intervals for glucose baseline, insulin baseline 
and acute insulin response of the two groups. The p-values were calculated by 
the two sample t-tests. 
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Figure 2.4. 95% Bayesian credible sets of parameters’ differences in percentage between the progressor group and the non-progressor 
group. The diamonds in the figure represent posterior medians of the difference in percentage. The 95% Bayesian credible 
sets were created according to the posterior distributions. The asterisks indicate the parameters’ differences in percentage 
are statistically significant. (95% Bayesian credible sets do not contain zero)  
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Figure 2.5. Population model predictions and observed concentrations of glucose and insulin for the two groups. The solid lines 
represent the population prediction curves. The broken lines represent the Bayesian 95% predictive intervals. (nobs: 
number of observations) 
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Figure 2.6. Individual predictions and observed concentrations of glucose and insulin for two subjects in the two groups. The solid 
lines represent the individual fitted curves. The broken lines represent the Bayesian 95% predictive intervals. 
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Figure 2.7. Individual predicted vs. observed concentrations for glucose and insulin of the two groups. The solid lines represent the 
identity lines. The correlation coefficients are estimated and all of them are larger than 0.98. 
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Figure 2.8. Residual plots of the logarithm of glucose and insulin concentrations for progressor and non-progressor groups. The scale 
of the x-axis is square root of time to better visualize the early sampling time.  
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Figure 2.9. Simulations of glucose and insulin regulations based on population 
parameters from two groups (a)Plot of insulin’s glucose removal effect vs. 
insulin concentration of the two groups. (b) Plot of insulin production rate vs. 
glucose concentration of the two groups. 
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CHAPTER 3. A BAYESIAN POPULATION ANALYSIS OF THE 

DEVELOPMENT OF TYPE 2 DIABETES IN THE OFFSPRING OF 

DIABETIC PARENTS 

3.1 Abstract 

Disease progression of type 2 diabetes (T2D) has received considerable attention, 

but little is known about the disease development of T2D. The purposes of this study 

were to identify disease development variables (DDV) for development of T2D and to 

compare corresponding models for disease development. All subjects included in this 

study were the offspring of diabetic parents and were followed up to 25 years. Repeated 

fasting blood samples were collected during the follow-up. Longitudinal data of four 

DDVs, namely fasting blood glucose (FBG), fasting serum insulin (FSI), homeostatic 

model assessment of insulin resistance (HOMA-IR) and body mass index (BMI) were 

recorded and compared. According to the diabetes status at the end of the follow-up, the 

data analysis involved a progressor group of 25 subjects, and a non-progressor group of 

127 subjects. The temporal changes in the four DDVs over the time course of the disease 

development were evaluated by a single-slope and a two-slope population-based 

Bayesian model. A two-slope model based on FBG was found to be the best disease 

development model. For non-progressors, the FBG baseline stayed at 69.2 [66.5, 72.1] 

mg/dL (Bayes estimate [95% Bayesian credible set]) and increased with age by a rate of 

0.227mg/dL [0.149, 0.3] per year. For the progressors, the FBG increase with age the 

same rate as non-progressors and started to have an additional increase of 2.27 [0.505, 

4.52] mg/dL per year, starting 8.73 [-10.8, -6.93] years before the diagnosis of T2D. No 

significant longitudinal increasing or decreasing temporal pattern was found for FSI, 
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HOMA-IR and BMI by the population-based Bayesian approach. The proposed model, 

which enables a quantitative, time-based evaluation of the development of T2D in this 

higher risk population, may be used to quantify the effect of interventions/prevention 

strategies such as drug treatment and lifestyle changes. 

3.2 Introduction 

About 24 million people in the United States (7.8% of the population) were 

reported to have diabetes in 2007 (122). The total cost of diabetes in 2007 was $174 

billion including $116 billion in excess medical expenditures, $31 billion in general 

medical costs, $27 billion directly for treating diabetes and $58 billion for treating the 

complications of diabetes (123). The prevalence of diabetes is still increasing. The 

number of adults with diabetes in the world is predicted to rise from 135 million in 1995 

to 300 million in the year 2025 (4). Approximately 90-95% of the whole U.S. diabetes 

population are affected by type 2 diabetes (T2D) (122). Although T2D has been studied 

for many decades, currently there is still no cure. Prevention is one of the most effective 

ways to reduce the incident rate and cost of the disease. Type 2 diabetes is a chronic 

disease, and the development of the disease involves years of pre-diabetic stage. Many 

factors had been reported that increase the risk of diabetes by American Diabetes 

Association (ADA) including family history of diabetes, obesity, race, previously 

identified impaired glucose tolerance/or impaired fasting glucose, hypertension, low 

HDL cholesterol level, high triglyceride level, and history of gestational diabetes mellitus 

(37). However, most of these risks are categorical time-invariant variables and provide 

little information about the changes of the risk factors over the development process of 

T2D.  
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Another important factor associated with the development of T2D is insulin 

resistance (124). The natural history of insulin resistance in the pathogenesis of T2D was 

studied by Weyer et al. (38). In that study, insulin resistance was evaluated by three 

variables: rate of glucose disposal, acute insulin response, and endogenous glucose 

output. These variables were evaluated from normal to impaired glucose tolerance to 

diabetes over 5.1 1.4 years. The decreases in acute insulin response and in insulin-

stimulated glucose disposal were found to be significant during the developing process of 

T2D. HOMA-IR and BMI have also been reported to be associated with the development 

of T2D (91, 125-128). HOMA-IR is developed based on the physiology of glucose and 

insulin regulations in the organs and tissues at homeostasis state and widely used to 

evaluate insulin resistance in clinical and epidemiological researches (91), and BMI is 

one of most extensive used index to evaluate the level of obesity (129). The high insulin 

resistance and BMI have been found to be risk factors in many retrospective studies (38, 

130-132). In the studies of Warram et al., 6 selected variables repeatedly measured 15 

years before the diagnosis of T2D were compared in five individuals (39). Fasting 

glucose, insulin, and 2-hour glucose post-challenge increased within 5 years before the 

diagnosis of T2D while fasting triglycerides began rising at least 10 years before the 

diagnosis of T2D. As a whole the group was obese from the start of observation, but this 

did not change during follow-up.  

The PK/PD risk factors for development of T2D were investigated previously 

(133). A high insulin baseline concentration, a low maximum insulin-dependent removal 

and a low insulin removal rate constant were found to be associated with the development 

of T2D. Although these variables are known to increase the risk of T2D, the relationships 
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between the time course of the development of T2D and the magnitude and change in 

these risk factors were not determined. Recently, a disease progression model was 

developed by de Winter et al. to assess the effects of treatments over the time-course of 

the progression of diabetes (99). The effects of pioglitazone, metformin and gliclazide 

were modeled as treatment effect functions of time based on measurements of fasting 

plasma glucose, fasting serum insulin and glycated hemoglobin A1c (A1C). However, that 

study only focused on subjects who already had been diagnosed with T2D. 

In contrast to the progression of the disease after the disease has been diagnosed, 

the objective of the chapter is to develop a model to describe the development of T2D. 

With the additional longitudinal data of fasting blood glucose, fasting serum insulin, 

HOMA-IR, and BMI, the current disease development modeling is an extension of 

previous analysis. Specifically, the disease development model in the present work is 

aimed at a quantitative longitudinal evaluation of the developing stage of the disease, 

which hopefully may provide a mechanistic and quantitative basis for evaluating the 

effect of interventions/prevention strategies of T2D such as drug treatment and lifestyle 

changes.  

3.3 Specific aim and hypothesis 

The specific aim of this chapter is to develop a population-based methodology to 

describe the development of type 2 diabetes based on four important variables namely, 

fasting blood glucose, fasting serum insulin, homeostatic model assessment of insulin 

resistance and body mass index and to identify important temporal patterns and time-

dependencies of these disease development variables over the disease development 

period. 
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The hypothesis is that the specific temporal patterns and time-dependencies of the 

four important disease development variables are hypothesized to exist and can be 

identified by applying population-based disease development model. 

3.4 Method 

3.4.1 Subjects 

The study is based on a 25-year follow-up study in Joslin Diabetes Center, 

Boston, Massachusetts (24). Between 1963 and 1983, 152 healthy off-spring of diabetic 

parents were recruited in the Joslin Diabetes center. None had diabetes or impaired 

glucose tolerance. The participants were surveyed to evaluate the status of T2D up to 25 

years. During the follow-up, fasting blood glucose concentration (FBG), fasting serum 

insulin concentration (FSI), body mass index (BMI) and age of the participants were 

repeatedly collected on all participants in the Joslin Diabetes center. At the end of the 

follow-up, 25 subjects had developed T2D. All of the subjects were separated into a 

progressor group and a non-progressor group resulting in group sizes of 25 and 127 

respectively. The characteristics of the progressor and the non-progressor groups are 

summarized in Table 3.1. 

In the progressor group, the ages of entering the study ranged from 21 to 50 years 

and the ages of diagnosis of T2D ranged from 35 to 63 years. Subjects in the progressor 

group have an average of 6.4 fasting blood tests performed during the follow-up. The 

follow-up and the ages of diagnosis of T2D for subjects in the progressor group is shown 

in Figure 3.1. In the non-progressor group, the ages of entering the study ranged from 13 

to 59 years. Subjects in the progressor group have an average of 5.8 fasting blood tests 
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performed. The follow-up and data collection over time in the non-progressor group is 

summarized in Figure 3.2. 

3.4.2 Fasting blood test  

All participants were instructed to consume a high-carbohydrate diet (250 to 300 

g/day) for 3 days before the fasting blood test. The fasting blood samples of the 

participants were collected the next morning after over night fasting. Blood glucose and 

serum insulin concentrations were determined from the fasting blood samples. For the 

fasting blood tests done before 1983, the blood glucose concentrations were measured by 

the ferricyanide method with a coefficient of variation (CV) of 1.5% (117). Thereafter, 

the glucose oxidize method was used with a CV of 1.35% (134). The insulin serum 

concentrations were measured by a double-antibody radio-immunoassay with a 17.6% 

CV (109).  

3.4.3 Preliminary, naïve pooled data approach 

The temporal patterns of the four disease development variables (DDVs), namely 

fasting blood glucose concentration (FBG), fasting serum insulin concentration (FSI), 

homeostatic model assessment of insulin resistance (HOMA-IR) and body mass index 

(BMI) were analyzed by the naïve pooled data approach. The four DDVs were defined as 

follows: 

2height(m)

weight(kg)
:BMI

405

(mU/L) Insulinserumfasting(mg/dL) glucosebloodfasting
:IR-HOMA

(mU/L)ionconcentrat insulin serum fasting:FSI

(mg/dL)ionconcentrat glucose blood fasting:FBG


 



 

 

74

In the naïve pooled approach, all the data of progressors were considered as 

collected from one individual and pooled together. Then, the relationship between the 

DDVs and the time prior to diagnosis of T2D (TIMEtoD) were evaluated by a 

generalized cross-validation cubic spline approach. TIMEtoD was used to account for the 

time-dependence of the DDVs in the progressors prior to the diagnosis of the disease and 

calculated as the age of the fasting blood test minus the age of diagnosis of T2D. The 

generalized cross-validation cubic spline approach was used to summarize the trend of 

the DDVs for its advantages of minimum oscillatory behavior and continuously 

differentiable (135). The smoothness of the cubic spline functions were optimized by 

generalized cross-validation (135). The fitted curves in Figure 3.3 suggest that the 

temporal patterns of the DDVs may be described by a single-slope linear model or a two-

slope linear model and these two models were tested in the later Bayesian hierarchical 

analyses. The single-slope model is used to evaluate the direction and rate of the temporal 

change of the DDV over TIMEtoD, and the two-slope model is the extension of the 

single-slope model to provide a basis for assessing the start of the deterioration of disease 

development. 

3.4.4 Bayesian hierarchical approach 

Both the single-slope and the two-slope model were subsequently applied in a 

more in-depth analysis employing a population-based Bayesian hierarchical approach.  

First, the four DDVs (FBG, FSI, HOMA-IR, and BMI) were fitted to a single-slope linear 

model. The statistical models of the single-slope model of DDV shown as follows for 

non-progressor and progressor group: 
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ijijiage,ibase,ij AGEkk DDV

group progressor-Non
      (3.1) 

ijijiTIMEtoD,ijiage,iipg,ibase,ij TIMEtoDkAGEkPGkk DDV

group Progressor
 (3.2) 

The predictor variable, age (AGE), was included in both models to evaluate the 

natural progression of the DDV over age in the progressor and non-progressor group. The 

variables, progressor indicator (PG, Progressor:PG=1, Nonprogressor:PG=0) and time to 

diagnosis (TIMEtoD), were included in the progressor group model so that progressors 

can be differentiated from the non-progressors after adjusting the age effect. The model 

(3.2) contains four parameters: a baseline parameter ( basek ), a progressor effect parameter 

( pgk ), an age effect parameter ( agek ), and a TIMEtoD effect parameter ( TIMEtoDk ). ij  

represents the residual error from the jth observation of the ith subject. The baseline ( basek ) 

and age effect ( agek ) on DDV are mainly determined by the data of the non-progressor 

group. The progressor group effect ( pgk ) and TIMEtoD effect ( TIMEtoDk ) are determined 

by the extra increasing or decreasing of DDV over TIMEtoD before diagnosis of T2D in 

the progressor group after adjusting the age effect.  

Secondly, the data of DDVs were fitted to a two-slope linear model which is the 

extension from the single slope model. According to the preliminary naïve pooled data 

analysis in Figure 3.3, FBG showed a clear increasing pattern about 10 years before 

diagnosis of T2D. Therefore, FBG was fitted by the following two-slope model: 

FBG: 

ijijiage,ibase,ij AGEkkDDV 
group progressor-Non

      (3.3) 
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  ijsepij,iTIMEtoDijage,iiipgibaseij kTIMEtoDkAGEkPGkkDDV 


-

group Progressor

2,,

 

 







  0a if , 0  

0a if , a  
a         (3.4) 

In Figure 3.3, FSI, HOMA-IR, and BMI showed an increasing pattern at the early 

stage of the development of the disease, and they were fitted by the following two-slope 

model: 

FSI, HOMA-IR, and BMI: 

ijijiage,ibase,ij AGEkkDDV 
group progressor-Non

     (3.5) 

  ijsepij,iTIMEtoDijage,iiipgibaseij kTIMEtoDkAgekPGkkDDV 


-

group Progressor

1,,

 

 







  0a if , 0  

0a if , a  
a         (3.6) 

The two slopes in the two-slope model are separated by a separation-point 

parameter ( sepk ). For FBG, the extra increase over TIMEtoD after sepk  is described by a 

slope parameter 2TIMEtoDk . For FSI, HOMA-IR, and BMI, the early increase before sepk  is 

described by the parameter 1TIMEtoDk . 

3.4.5 Bayesian statistics 

For consistency, the statistical estimation methods used in the analysis of the 

model and the parameterization were the same for all DDVs. The two-slope model of 

FBG was used to illustrate the Bayesian statistical analysis. The hierarchy of the two-

slope Bayesian model and the distribution assumptions are summarized as follows: 
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ijijiage,ibase,ij AGEkk FBG

:group progressor-Non

Level Individual

      (3.9) 

 
 



,0~

-FBG

group Progressor

2,,

normal

kTIMEtoDkAGEkPGkk

ij

ijsepij,iTIMEtoDijage,iiipgibaseij 


 

In the highest level of the hierarchy, prior distributions were given to the 

population mean, population precision, and the precision (reciprocal of variance) of 

residuals. Vague normal prior distributions were given to the population mean parameters 

( base , age , pg , and 2TIMEtoD ). In order to prevent a local convergence at the extremes 

which results in a false collapse of the two-slope model to a single-slope model, an 

uniform prior distribution was assigned to the population break-point parameter ( sep ) 

with a range between -17.97 and -2.33 corresponding to the 10% and 90% percentiles of 
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TIMEtoD. Vague uniform prior distributions were given to the population precision, 

base , age , pg , 2TIMEtoD , and sep . A vague gamma distribution was given to the 

precision ( ) of the residuals. Uniform and gamma distributions are commonly used as 

vague or non-informative priors in the literature for Bayesian statistical analysis (136). In 

the population level of the hierarchy, the individual parameters, ibasek , , iagek , , ipgk , , 

iTIMEtoDk ,2 , and isepk , were summarized by the normal distributions with means of 

base , age , pg , 2TIMEtoD , and sep , and precisions of base , age , pg , 2TIMEtoD , and sep , 

respectively. The precisions were the reciprocals of 2
base , 2

age , 2
pg , 2

2TIMEtoD , and 2
sep , 

which summarized to the inter-individual variability of ibasek , , iagek , , ipgk , , iTIMEtoDk ,2 , and 

isepk , . In the individual level of the hierarchy, the data was fitted to a two-slope model 

and the residuals ( ji, ) were assumed to be normal distributed with a mean of zero and a 

precision of   , where j denoted the sequencing of the observations of the ith individual. 

Normal distribution has been extensively used in the Bayesian model because of its great 

simplicity and easy interpretation. 

3.4.6 Programs and algorithms 

All of the posterior distributions of the parameters were estimated by the Markov 

chain Monte Carlo method in WinBUGS version 1.4.3 (60). Three Markov chains were 

run simultaneously for 20,000 samples for each parameter. The convergence of the chains 

was accessed by the Gelman-Rubin statistic (137). After burn-in with the first 10,000 

samples in each chain, a total of 30,000 samples from the three chains were used to 

estimate the posterior distribution of each parameter. The mean of the parameter’s 
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posterior distribution is defined as the Bayes estimates for the parameter. The 95% 

Bayesian credible set (95%C.S.) is the interval between the 2.5 and 97.5 percentile of the 

posterior distribution. The deviance information criteria (DIC) of both single-slope and 

two-slope models were estimated for model comparison (138). The graphs were 

generated by R version 2.9.0 (139). 

3.5 Results 

3.5.1 Bayesian hierarchical approach 

First, the data of the four DDVs were fitted by a single-slope model. The 

summary of Bayesian population parameter estimates and the corresponding 95% 

Bayesian credible sets (95%C.S.) are shown in Table 3.2. The Bayes estimate of TIMEtoD  

for FBG was 0.974 [0.551, 1.41] (Bayes estimate [95%C.S.]) mg/dL per year. The 

significant positive TIMEtoD  indicated there was an increasing pattern in FBG over 

TIMEtoD for the progressors. The estimates of TIMEtoD  for FSI, HOMA-IR, and BMI 

were not significantly different from 0 (95%C.S.s contain 0).  

Secondly, the four DDVs were fitted by the two-slope model. The Bayesian 

estimates of the population means ( base , age , pg , 1TIMEtoD , sep , and 2TIMEtoD ) and 

95% C.S. for the four DDVs are shown in Table 3.3. The further finding in the two-slope 

model about FBG was that the estimate of sep  was -8.73 [-10.8, -6.93] year and 

2TIMEtoD  was significant positive with an estimate of 2.27 [0.505, 4.52] mg/dL per year 

after the separation point. The population age effect parameter, age , was significant with 

an estimate of 0.227 [0.149, 0.3] mg/dL per year, the estimate of base  is 69.2 [66.5, 72.1] 
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mg/dL, and the estimate of pg  was 1.41 [-1.74, 4.49] mg/dL. The parameter estimates 

suggest that the temporal pattern of FBG in the progressor group started at 70.6 mg/dL 

( base + pg ) and increased by a rate of 0.227 mg/dL ( age ) per year with age, and then at 

8.73 years ( sep ) years before the diagnosis of T2D FBG increased by a rate of 2.5 

mg/dL ( age + 2TIMEtoD ). The estimated DICs of the single-slope and two-slope model of 

FBG were 5988.6 and 5942.5, respectively, which suggests the two-slope model is more 

adequate to describe the temporal pattern of FBG than the single-slope model and able to 

further address the separation time the two slopes, which gives valuable information 

about the starting time of the deterioration of the disease. For FSI, HOMA-IR, and BMI, 

the estimates of 1TIMEtoD  are not significant different from 0.  

The two-slope development pattern of FBG in the progressor group and the 

natural age progression in the non-progressor group are shown in Figure 3.4. For proper 

reference the TIMEtoD is used as the x-axis of the progressor plot to illustrate the effect 

of TIMEtoD before diagnosis of T2D. Age is used as the x-axis for the non-progressors 

to show the natural age progression of T2D. The x-axes of the two plots have the same 

graphical time scaling to enable a proper visual comparison of the two groups. The 

overall two-slope development pattern is readily observed in the plot. For the subjects in 

the non-progressor group, only the baseline of FBG and the natural age progression of 

FBG were modeled. TIMEtoD is not available in the non-progressor group, so these 

subjects’ data was mainly used as the background comparison between the two groups 

over age. Representative individual fits of two data-rich progressors are shown in Figure 

3.5 to illustrate the two-slope pattern. The inter-individual variability of the individual 
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parameters ( ibasek , , ipgk , , iagek , , isepk , , and iTIMEtoDk ,2 ) of FBG are summarized by base , 

pg , age , sep , and 2TIMEtoD . The parameter estimates of inter-individual variability are 

shown in Table 3.4. The Bayes estimate of the standard deviation of residual   for FBG 

is 6.29 mg/dL [5.97, 6.63] and the residual plot of the individual fit of FBG is shown in 

Figure 3.6. The variability of the residual is consistent over age and follows a normal 

distribution.  

No significant longitudinal increasing or decreasing was found in FSI, HOMA-IR 

and BMI over TIMEtoD before the diagnosis of T2D. The single-slope and two-slope 

models are not applicable. The significant population progressor effect ( pg ) in FSI and 

BMI (Table 3.3) indicate the progressors have a higher FSI and BMI than the non-

progressors. The population age effect parameters of FBG, FSI, and BMI are all 

significant different from zero. Thus, the age effect on the nature disease progression is 

needed to be accounted in the model. 

3.6 Discussion 

Risk factors of T2D have been investigated in many cross-sectional and 

prospective studies (25, 128, 130). Often, these risk factors are only measured once and 

treated as time invariant variables. However, some of the risk factors are actually time-

variant, such as glucose, insulin concentrations, and HOMA-IR, which are changing 

along with the development of T2D. Knowing the temporal changes of these time-variant 

variables is helpful to understand the pathophysiology of T2D and better evaluate the risk 

of developing diabetes. In the studies by Warram et al. and Weyer et al., several selected 

DDVs were analyzed by the average, pooled data approach to investigate the temporal 
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changes of the DDVs during development of T2D (38, 39). The advantage of this 

approach is its simplicity. It is easy to visualize the general temporal changes of the 

averages of the DDVs at different stages. However, due to the effect of averaging, the 

data means may not represent the individual data, and the results may be greatly biased 

by the inter-subject variability (52). In this study the temporal patterns of DDVs over the 

development of T2D were investigated based on additional longitudinal repeatedly 

measured fasting blood samples, BMI and age. 

First, the temporal patterns of the DDVs were summarized by the pooled data 

analysis to identify possible models for the disease development. These possible models 

were then further investigated and tested by the Bayesian hierarchical approach. The 

Bayesian approach enables estimation of individual and population parameters and inter-

individual variability and avoids the potential artifacts and bias associated with using 

averaging based on pooled data. 

The results of Bayesian analysis on FBG suggest that there is a significant 2.5 

mg/dL increase per year in FBG starting 8.73 years before the diagnosis of T2D. In 

contrast, the study of Bleich et al. showed that the fasting glucose concentration starts 

rising 1.5 years before the diagnosis of type 1 diabetes (140). This indicates that the 

fasting glucose follows a two-slope progression pattern in both type 1 and 2 diabetes, but 

the rise in the fasting glucose concentration starts much earlier in T2D. The development 

of T2D is characterized by insulin resistance early in the course and then followed by 

beta-cell dysfunction (5). Those who eventually developed T2D may have insulin 

resistance for years without having substantial hyperglycemia due to the compensation of 

the hyper-secreted insulin from beta-cells (141). The failure of beta-cell to compensate 
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for insulin resistance causes the beta-cell dysfunction and hyperglycemia. The study of 

Harris et al. indicated the onset of T2D was started at least 4-7 years before clinical 

diagnosis based on linear extrapolation of percentage of retinopathy.(142). Our study 

shows that the rise in FBG can be used to identify the subjects of high risk of T2D earlier 

than retinopathy and can assess the starting time of beta-cell dysfunction. According to 

the current diagnostic criteria of T2D of Would Health Organization (WHO) and ADA, 

the stages of T2D can be separated into normal glucose tolerance (NGT), impaired 

glucose tolerance (IGT), and T2D based on the fasting glucose test. Although the 

standard NGT and IGT classification has been widely used, it provides no information 

about the temporal changes of the biomarker (FBG) during the development of T2D. The 

current proposed longitudinal model can identify the important temporal pattern of FBG 

and can be used to quantify the effect of interventions on FBG, a primary biomarker of 

T2D, in T2D prevention trials. 

Insulin resistance and obesity are both conditions associated with T2D (130, 143). 

In this study, insulin resistance was evaluated by the indexes of FSI and HOMA-IR, and 

obesity was evaluated by BMI. Table 3.1 shows the starting BMI in the progressor group 

is significantly higher than the non-progressor. This suggests high BMI is a risk factor of 

T2D, which is also reported in many previous studies (128, 130, 131). Despite the 

increasing temporal pattern in FSI, HOMA-IR, and BMI can be visually observed in the 

preliminary naïve pooled data approach, the increasing temporal pattern of FSI, HOMA-

IR and BMI over TIMEtoD was found not to be significant in the progressor group by the 

Bayesian hierarchical approach. This conflict can be attributed to the high inter-

individual variability and the effect of averaging in the naïve pooled approach (52). 
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Although the average curves of these DDVs increased over TIMEtoD, the increasing 

pattern is not clearly shown in the majority of the progressors. None of the TIMEtoD  

parameters in the single-slope model and the 1TIMEtoD  parameters in the two-slope model 

of these DDVs was found to be significant by the Bayesian approach. Nevertheless, the 

parameter pg  of BMI is significantly larger than zero, which is consistent with the high 

BMI in the progressor group shown in Table 3.1. Obesity can be considered as a long-

term static risk factor, while FBG is a relative short-term, dynamic, time-variant risk 

factor of T2D. 

The subjects in the progressor group were followed up to 25 years. With this long 

follow-up period, the data provides a broad scope for evaluating the development of T2D. 

However, the model due to its simple structure and few structural parameters, which are 

dictated by the sparseness of intra-individual data, enables just a simple assessment of the 

DDVs over TIMEtoD. The population parameters just show the trend of the majority. 

Some individuals may not follow the trend of population entirely. The studies of Weyer 

et al. suggest that the change in the acute insulin response may follow a pattern of 

increase then decrease when approaching the diagnosis of diabetes (38, 144). This type of 

non-monotonic patterns was not detectable in our study. Some subjects in the non-

progressor group might have started developing T2D, but there is no way to know 

whether these people were going to become diabetic or not due to the limited follow-up 

period. This may bias the age effect extracted from the non-progressor group. However, 

given the nature of the data, the non-progressor group is still the only practical choice for 

providing a correction for the natural age effect. The collinearity between AGE and 

TIMEtoD in the progressor group may reduce the accuracy and precision when 



 

 

85

estimating TIMEtoDk  or 2TIMEtoDk  (145). However, this does not affect the model 

predictability and the interpretation of the TIMEtoD effect after adjusting the AGE effect. 

In this study, the time course of development of T2D was investigated by a 

population-based Bayesian hierarchical analysis of several potential disease development 

variables. FBG was found to be the variable best describing the temporal changes during 

disease development over the long follow-up period. In contrast, no consistent increasing 

or decreasing patterns of FSI, HOMA-IR and BMI were found. The proposed model 

provides a quantitative longitudinal evaluation of the development of T2D. Accordingly, 

the proposed model may be used to quantify the effect of interventions, such as the effect 

of drugs aimed at preventing or slowing down the development of this disease, or may be 

used to evaluate the effect of lifestyle changes. In contrast to traditional, long-term, final 

outcome analysis, a model-based longitudinal evaluation of the disease development 

provides a much faster assessment of interventions. This is particularly important in 

dealing with a disease like T2D which has a very long development period before 

diagnosis
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Table 3.1. Summary of characteristics of the progressor and non-progressor groups 

 Progressor group Non-progressor group p-value(a) 

Number of subjects 25 127 NA 

Gender (males in %) 60% 42.5% 0.119 

Starting age (mean SD) 
range 

33.6 7.9 
21.1-49.8 

32.9 10 
13.4-59 

0.702 

Starting BMI (mean SD) 
range 

32.3 8.05 
23.2-53.1 

25.3 4.33 
17.2-49.6 

0.00015 

Years followed (mean SD) 
range 

13.5 5.74 
3.22-23.9 

13 6.55 
0.77-25.6 

0.677 

(a): p-value of a t-test for comparing the means of two groups 
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Table 3.2. Summary of Bayes estimates and 95% credible sets of population mean parameters in the single-slope model                    
for the four disease development variables (DDV) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Population mean estimates of the parameters in the single-slope model 
DDV Baseline 

base  
Progressor effect 

pg  
Age effect 

age  
TIMEtoD effect 

TIMEtoD  

FBG 
( mg/dL) 

69.4 
[66.5, 72.2] 

14.5 
[9.43, 19.4] 

0.221 

[0.145, 0.301] 
0.974 

[0.551, 1.41] 

FSI 
(mU/L) 

20.7 
[17.4, 24.6] 

69.6 
[-15.8, 155] 

-0.133 

[-0.231, -0.0507] 
5.84 

[-2.85, 14.6] 

HOMA-IR 
4.21 

[3.48, 5.00] 
23.3 

[-4.71, 51.1] 
-0.0218 

[-0.0418, -0.00364] 
2.04 

[-0.904, 5.03] 

BMI 
(kg/m2) 

23.9 
[22.5, 25.2] 

8.35 
[3.2, 13.5] 

0.047 

[0.0155, 0.0841] 
0.147 

[-0.149, 0.446] 
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Table 3.3. Summary of Bayes estimates and 95% credible sets of population mean parameters in the two-slope model for the four 
disease development variables (DDV) 

Population mean estimates of the parameters in the two-slope model 
DDV Baseline 

base  
Age effect 

age  
Progressor effect 

pg  
TIMEtoD effect (a) 

1TIMEtoD  
Separation point 

sep  
TIMEtoD effect (b) 

2TIMEtoD  

FBG 
( mg/dL) 

69.2 
[66.5, 72.1] 

0.227 

[0.149, 0.3] 
1.41 

[-1.74, 4.49] 
NA 

-8.73 
[-10.8, -6.93] 

2.27 
[0.505, 4.52] 

FSI 
(mU/L) 

21 
[16.8, 24.4] 

-0.14 

[-0.227, -
0.0274] 

31.7 
[0.891, 63] 

5.35 
[-16.3, 26.9] 

-11.2 
[-12.6, -9.6] 

NA 

HOMA-IR 
4.00 

[3.23, 4.91] 

-0.0161 

[-
0.0397,0.0027] 

9.21 
[-0.770, 19.0] 

2.06 
[-4.48, 8.50] 

-11.0 
[-12.4, -9.44] 

NA 

BMI 
(kg/m2) 

24 
[22.7, 25.3] 

0.0437 

[0.0094, 
0.0754] 

7.78 
[3.53, 12] 

0.198 
[-0.23, 0.649] 

-6.48 
[-10.5, -3.83] 

NA 

(a): the temporal pattern of the DDV over TIMEtoD was modeled before the separation point 

(b): the temporal pattern of the DDV over TIMEtoD was modeled after the separation point 
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Table 3.4. Summary of Bayes estimates and 95% Bayesian credible sets of base , age , pg , sep , and 2TIMEtoD  in the                    
two-slope model of FBG 

Inter-individual standard deviations of the parameters in the two-slope model  
DDV Baseline 

base   
Age effect 

age  
Progressor effect 

pg  
Separation point 

sep  
TIMEtoD effect 

2TIMEtoD  

FBG 
( mg/dL) 

3.34 
[0.791, 5.26] 

0.11 

[0.0599, 0.154] 
2.31 
[0.106, 6.21] 

1.14 
[0.141, 2.43] 

3.17 
[1.45, 5.96] 

 

 

 

 

 



 

 

90

 

Figure 3.1. Summary of the repeated fasting blood tests and ages of diagnosis of type 2 diabetes in the progressor group. The straight 
lines show the follow-up periods of the progressors. The dots represent the fasting blood tests and the crosses (x) denote 
the ages of diagnosis of type 2 diabetes. 



 

 

91

 

Figure 3.2. Summary of the follow-up and the repeated fasting blood tests in the non-progressor group. The straight lines show the 
follow-up periods of the non-progressors. The dots represent the ages of the fasting blood tests. 
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Figure 3.3. Generalized cross-validation cubic spline fits of FBG, FSI, HOMA-IR, and BMI over TIMEtoD for the progressor group 
by the naïve pooled approach. Repeated samples were collected for each progressor before diagnosis of type 2 diabetes. 
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Figure 3.4. The population fits of FBG in the progressor group (n=25) and non-progressor group (n=127) by the Bayesian hierarchical 
approach. For the progressors, the x-axis represents TIMEtoD to emphasize the two-slope temporal pattern of FBG over 
TIMEtoD. For the non-progressors, the x-axis represents age to illustrate the nature progression over age in the non-
progressor group in contrast to the progressor group. 
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Figure 3.5. Representative individual fits of FBG in two progressors. The repeatedly measured FBG were fitted by the two-slope 
model while FSI data were included for comparison. 
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Figure 3.6. The residual plot of FBG over age. The estimate of   is 6.3 mg/dL with a 95%C.S. [5.98, 6.64] (number of 
observations=892, number of subjects=152). 
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CHAPTER 4. DISEASE DEVELOPMENT MODELING OF TYPE 2 

DIABETES IN OFFSPRING OF DIABETIC PARENTS BASED ON 

DISEASE DEVELOPMENT VARIABLES DERIVED FROM IVGTT  

4.1 Abstract 

The objectives of this study were to find possible disease development variables 

(DDVs) of type 2 diabetes (T2D) and to evaluate the temporal changes of these DDVs 

during the development period of T2D. Non-diabetic offspring of diabetic parents were 

recruited and followed up to 25 years. Repeated intravenous glucose tolerance tests 

(IVGTTs) were performed during the follow-up. The analysis consisted of a progressor 

group of 25 subjects who developed T2D and a non-progressor group of 122 subjects 

who did not develop T2D during the follow-up period. The IVGTT were analyzed by a 

non-parametric kinetic analysis of the glucose and insulin concentration data. The DDVs 

from the IVGTTs included single glucose/insulin concentration measurements, 

differences in glucose/insulin concentrations, and several quantities derived from the 

non-parametric kinetic analysis of the glucose-insulin data. The DDVs were identified by 

a mixed effect regression analysis by determining if significant changes in the variables 

occurred during the disease development period. The results of the analysis indicated that 

the following DDVs were significantly associated with development of T2D: fasting 

blood glucose (FBG), the difference in glucose concentrations at 10 and 50 minutes, the 

difference in insulin concentrations at 3 and 20 minutes, the difference between insulin 

concentrations at 120 minute and the fasting level, and the non-parametrically estimated 

insulin concentration at 104 minutes. Taken together these variables indicate that changes 

in the first and second phase insulin secretion are important indicators of the development 
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of T2D. This study provided longitudinal information about the pathogenesis of T2D and 

enables a quantitative, evaluation of the development of T2D in this higher risk 

population, which may be used to quantify the effect of interventions/prevention 

strategies such as drug treatments and lifestyle changes. 

4.2 Introduction 

The pathogenesis and the nature history of type 2 diabetes (T2D) have been 

studied for decades. However, very few studies were designed to investigate the temporal 

changes of the glucose and insulin kinetics during the development of T2D. These types 

of studies are important for understanding the pathology mechanism and pathogenesis of 

T2D by identifying the specific patterns of the insulin-glucose system associated with the 

development of the disease. Before the diagnosis of T2D, most people have an 

intermediary pre-diabetes phase with impaired glucose tolerance characterized by an 

abnormal fasting blood glucose level. Many subjects with pre-diabetes progress to T2D 

in just 3 years (146). Insulin resistance and β-cell dysfunction, which are also associated 

with the development of T2D, result in abnormalities in the glucose-insulin regulations 

leading to reduced glucose removal, increased insulin baseline level, and diminished first 

phase insulin secretion (23, 25, 34-36, 38). These early signs are all predictive of T2D, 

but little is known about how they are changing during the T2D development process.  

The intravenous glucose tolerance test (IVGTT) is a standard method to evaluate 

the glucose-insulin kinetics after a glucose challenge. IVGTT has the distinct advantage 

that the intravenous administration of glucose, in contrast to an oral administration, is not 

confounded by the absorption process in gastrointestinal system and generates a better 

defined first phase insulin secretion (125). The IVGTT enables an accurate evaluation of 
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the glucose removal and the biphasic insulin secretion pattern, which are critical to assess 

the risks of T2D by evaluating the insulin sensitivity and the deterioration of the β-cell 

(38, 147). Many mathematical models of the glucose-insulin kinetics have been 

developed for the analysis of IVGTT data, including models based on Bergman’s 

empirical minimal model, and several mechanism-based models (68, 73, 77, 102, 133). 

However, the use of these models to evaluate insulin sensitivity and β-cell function 

requires mathematical modeling skills and software.  

Multiple logistic regression analysis is a very informative statistical methodology 

useful to identify predictors of T2D (25, 128, 131, 148, 149). Unfortunately, the 

important variable associated with disease development, namely time, is missing in 

logistic regression analysis. The differences in the follow-up periods of prospective 

studies, for example 3 years v.s. 20 years follow-up, cannot be accounted for by regular 

logistic regression analysis. Repeated, longitudinal samples of the predictors of T2D are 

necessary for better prediction of T2D by properly accounting for the time dependency of 

the variables associated with the disease development. Evaluation of the temporal 

changes of the predictors during the development process of T2D is critical for 

identification of disease development variables (DDV) and the statistical modeling of the 

disease progression.  

Various disease progression models have been developed to evaluate drugs’ 

effects on the progression of diseases (81, 84, 99). These models make use of biomarkers 

of the disease which are longitudinally measured to evaluate the effect of drugs or other 

interventions on the bio-markers, as an indirect measure of the drug effect on the disease 

progression (81, 84). In contrast to the more common modeling of disease progression, 



 

 

99

this study is focusing on disease development i.e. investigates the kinetic changes in the 

insulin-glucose physiology taking places before the diagnosis of T2D. Thus, the major 

distinction is that this study is relevant to preventive medicine, which essentially is not 

the case for disease progression studies. In addition, the DDVs derive from IVGTT data 

were estimated by a model-independent approach for the glucose-insulin kinetics, which 

provides an easy and fast assessment of the development of T2D. The DDVs were 

evaluated by a population-based analysis, mixed effect model analysis. An examination 

of the temporal changes in DDVs for the glucose-insulin system occurring before the 

diagnosis of the disease provides a quantitative evaluation of the pathophysiological 

evolution of T2D. This type of preventive-medicine-driven research can lead to a better 

understanding the etiology of T2D, and can provide a quantitative basis for the evaluation 

of various interventions strategies such as drugs and lifestyle changes.  

4.3 Specific aim and hypothesis 

The specific aim of this chapter is to identify the important disease development 

variables derived from an intravenous glucose tolerance test and evaluate the relationship 

between the temporal changes of these variables and the development of type 2 diabetes.  

The specific hypothesis is that the important disease development variables 

derived from an intravenous glucose tolerance test are hypothesized to exist and can be 

identified by the proposed disease development analysis. 



 

 

100

4.4 Methods 

4.4.1 Subjects 

The subjects’ data is based on the 25-years follow-up study published previously 

(24). Between 1963 and 1983, 152 healthy offspring of parents with T2D were recruited 

in the Joslin Diabetes Center (JDC). The study was approved by the human study review 

board of JDC and conducted according to the Declaration of Helsinki: 

“Recommendations guiding physicians in biomedical research involving human 

subjects", adopted by the 18th World Medical Assembly, Helsinki, Finland, June 1964. 

Informed consent was obtained from all individuals before participation in the study. All 

participants had normal glucose tolerance and received an intravenous glucose tolerance 

test (IVGTT) when entering the study. Thereafter, the participants were followed up to 25 

years to ascertain the status of T2D. The detailed methods of follow-up and evaluation of 

diabetes have been described in previously studies (23, 24). In addition to the follow-up, 

repeated IVGTTs were performed and the data of the glucose and insulin concentrations 

after IVGTTs were collected. The subjects were divided into a progressor group and a 

non-progressor group according to the status of T2D in the end of follow-up.  

A total of 339 IVGTTs were performed on the 152 non-progressor and 25 

progressors of T2D. Some missing blood samples were found in 38 of the 339 IVGTT. 

These data were excluded from the analysis. A total of 301 sets of IVGTT data performed 

on 147 subjects were included in the analysis, which contains 65 and 236 IVGTT data in 

25 subjects in the progressor group and 122 subjects in the non-progressor group, 

respectively. Characteristics of the progressor and the non-progressor groups are 

summarized in Table 4.1.  
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4.4.2 Intravenous glucose tolerance tests 

All participants of IVGTT received a high-carbohydrate diet over three days (250 

to 300 g/day) before an overnight fast prior to the I.V. glucose administration. One blood 

sample was collected as the fasting sample before the glucose administration. Thereafter 

0.5 g/kg glucose was intravenously infused over 3-5 minutes, and twelve blood samples 

were collected at 1, 3, 5, 10, 20, 30, 40, 50, 60, 90, 120 and 180 minutes post infusion. 

The blood glucose concentrations were measured by the ferricyanide method for the 

IVGTTs done before 1983 with a coefficient of variation (CV) of 1.5% (117). After 

1983, the glucose oxidize method was used with a 1.35% CV (150). The insulin serum 

concentrations were measured by a double-antibody radio-immunoassay with a 17.6% 

CV (109).  

4.4.3 Analysis of type 2 diabetes development 

The disease development analysis assesses the temporal changes of various 

disease development variables (DDV) using the glucose and insulin measurements data 

from IVGTTs performed during the disease development period. The longitudinal data of 

DDVs were analyzed by a linear mixed effect model: 

ijijiage,ibase,ij AGEkk DDV

group progressor-Non
 

ijijiTIMEtoD,ijiage,iipg,ibase,ij TIMEtoDkAGEkPGkk DDV

group Progressor
 

inj1Ni1         (4.1) 
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In the equation above, the time dependency of the DDV is described for both non-

progressor and progressor group. In the non-progressor group, the national time-

dependency of the DDV is modeled as a linear function of age. While the extra effects 

from disease development of T2D on the DDV in the progressor group are modeled 

additively by the predictor variables, TIMEtoD and PG. The predictor variables, PG, 

AGE and TIMEtoD, represent progressor group indicator, age, and the time prior to the 

diagnosis of T2D (TIMEtoD). The variable TIMEtoD is the normalized time variable for 

progressors whose diagnostic times of T2D were known and calculated as the subject’s 

age at IVGTT minus the subject age at the diagnosis of T2D. ijDDV  represents the jth 

DDV of subject i. N denotes the total number of subjects, and in  denotes the number of 

IVGTTs performed on subject i. The regression parameters, ibase,k , ipg,k , iage,k  and 

iTIMEtoD,k  represent the intercept, progressor effect, age effect and TIMEtoD effect of the 

ith subject. base , pg , age , and TIMEtoD  represent the fixed effects (population) 

parameters. ibase, , ipg, , iage, , and iTIMEtoD,  represent the random effects parameters, 

which are assumed to be multivariate normal distributed. The mixed effect model 

analyses were performed in R 2.10.1(139). The population parameter, TIMEtoD , is the key 

parameter to address the temporal change of the DDV in the progressor group, and pg  is 
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important to distinguish the two groups at TIMEtoD=0. Accordingly, a DDV is 

considered significant when the p-values of TIMEtoD  and pg  are both less than 0.05.  

4.4.4 Disease development variables 

The DDV candidates include all of the measured single glucose or insulin 

concentration or difference in glucose/insulin concentrations, or glucose-insulin 

concentration predicted by a non-parametric analysis at any time point post IVGTT. The 

non-parametric estimation of the glucose and insulin response is used to provide accurate 

interpolations of the glucose and insulin concentrations up to 180 minutes after the 

IVGTT. Accordingly, the glucose and insulin curves were estimated from the IVGTT 

data by cubic spline functions based on 12 samples collected after the intravenous 

glucose administration. The smoothness of the cubic spline was determined according to 

the cross-validation principle and the leave-one-out approach using the R function 

smooth.spline(). The R package “nlme” was used in the linear mixed effect model 

analysis. The fixed and random effect parameters were estimated by the function mle() 

using the restricted maximum likelihood method. The non-parametric analyses and all 

graphs were done in R version 2.10.1(139). 

4.5 Results 

4.5.1 DDVs using single measurement 

The single measurement DDVs with significant TIMEtoD  (p-value<0.05) are listed 

in Table 4.2. Among the single measurement DDV, only FBG gave both significant 

TIMEtoD  and pg  with values 0.474 mg/dL/year (p=0.0247) and 7.99 mg/dL (p<0.01) 
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respectively. The significant positive value of TIMEtoD  indicates an increasing temporal 

pattern of fasting glucose concentration over TIMEtoD in the progressor group (Figure 

4.1). The significance of pg  suggests the progressor group has higher fasting glucose 

concentration than the non-progressor group at TIMEtoD=0. The DDV defined by the 

insulin concentration at 3 minute (I3) gave the most significant TIMEtoD  of -3.43 

mU/L/year (p <0.01), but the non-significance of pg  indicates that this DDV was not 

different between the groups at the diagnosis time of T2D, TIMEtoD=0, (Figure 4.1). 

Accordingly, significance of both TIMEtoD  and pg  are needed to qualify a DDV as 

significant. 

4.5.2 DDVs based on two measurements 

Glucose data 

The DDVs defined as the sum or difference of two glucose or insulin 

concentrations were also tested in the mixed effect analysis. The three most significant 

DDVs of glucose are shown in Table 4.3. The DDV defined as the difference between 

glucose concentrations at 10 and 50 minutes (G10-50) was found to be the most significant 

DDV based on two glucose measurements. The predicted G10-50 for a 45 years progressor 

at TIMEtoD=0 is 24.8 mg/dL lower than a 45 years non-progressor.  

Insulin data 

For the DDVs of two measurements of insulin, the three most significant DDVs 

are shown in Table 4.4. The DDV defined by the difference between insulin 

concentration at 120 minutes and fasting insulin level (I120-0) was found to be the most 
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significant combination. This DDV indicates the second phase insulin secretion may be 

an important indicator of the development of the T2D. The predicted I120-0 for a 45 years 

progressor at TIMEtoD=0 is 15.3 mU/L higher than a 45 years non-progressor. The DDV 

for the difference between insulin concentrations at 3 and 20 minutes (I3-20) which is 

almost as significant, is associated with the first phase insulin secretion. The predicted I3-

20 for a 45 years progressor at TIMEtoD=0 is 62.5 mU/L lower than a 45 years non-

progressor. The significance of I120-0 and I3-20 taken together indicates that changes in the 

first and second phase insulin responses are important indicators of the development 

T2D. Three representative population fits are shown in Figure 4.2 to illustrate the mixed 

effect model estimations of these DDVs. The x-axes of the figures shown are TIMEtoD 

and age for the progressor group and the non-progressor group, respectively, to visualize 

the effects of TIMEtoD and age in the two groups. The fitted curves were constructed 

according to the estimated parameters values of the fixed effect regression model. 

4.5.3 DDVs defined from non-parametric analysis 

Representative cubic spline fits of glucose and insulin data are shown in Figure 

4.3. The glucose and insulin concentrations non-parametrically estimated at each minute 

from 1 to 180 minutes post glucose administration were used to define the various DDVs 

candidates considered in the analysis. 

Each DDV was examined by the mixed effect model. The estimates and p-values 

of TIMEtoD  and pg  for the 360 kinetic measurements (180 predicted glucose 

concentrations and 180 predicted insulin concentrations) are shown in Figure 4.4 and 

Figure 4.5. For the 180 predicted glucose concentrations, TIMEtoD  is significant (p-

value<0.05) at 5-12 minutes and at 137 -180 minutes post intravenous glucose 
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administration and pg  is significant at 30-92 minutes (Figure 4.4). For the 180 predicted 

insulin concentrations, TIMEtoD  is significant at 1-8 minutes and at 101-113 minutes and 

pg  is significant at 35-173 minutes (Figure 4.5). According to the DDV selection criteria 

mentioned previously, the DDV of non-parametric kinetic measurement of insulin at 101-

113 minutes are all significant and the most significant variable is at 104 minutes (NPI104) 

with a TIMEtoD  of 0.898mU/dL/year (p=0.0441) and pg  of 33.1 mU/dL (p<0.01). 

4.6 Discussion 

Although many predictors of T2D have been identified, very few studies focus on 

the temporal changes of such predictors during the disease development period. In this 

study, a linear mixed effect model analysis was used to identify DDVs as important 

quantitative indicators of the pathogenesis of T2D. In the analyses of the DDVs of single 

measurements, FBG gave significant TIMEtoD  (p =0.0247) and pg  (p <0.01) values. 

FBG is the standard diagnostic test of T2D used by American Diabetes Association and 

World Health Organization. Thus, FBG was used as the standard DDV reference for 

comparisons of DDV in this study.  

Important DDVs defined by two measurements were also identified by the mixed 

effect analysis. These DDVs can be divided into three categories: 1. DDVs relative to 

glucose removal, 2. DDVs relative to the early phase insulin secretion, and 3. DDVs 

relative to the late phase insulin secretion. The DDV relating to glucose removal is 

represented by the variable G10-50. This DDV gives a simple model-independent way to 

measure glucose removal requiring only two samples. The DDV defined by G10-50 is 

more significant than FBG, and this variable has a clear decreasing temporal pattern over 
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TIMEtoD, and distinguishes the progressors from non-progressors (Figure 4.2). The 

DDV dealing with the early phase insulin secretion is defined by the insulin difference I3-

20. The early phase insulin secretion, or the first phase insulin secretion, is commonly 

considered as the fast insulin response at the first 10 minutes after glucose administration 

(151, 152). I3 may thus be considered a variable for the early phase insulin secretion. 

Although I3 is significant decreasing over TIMEtoD, I3 alone can not distinguish the 

progressors from non-progressors when they became diabetic. I20 may be served as a 

correction “offset” variable that reduces the between-subject variability so that the 

variable defined as the insulin difference I3-20 results in both TIMEtoD  and pg  becoming 

significant. The fasting serum insulin (FSI) is the most commonly correction variable 

used in many studies that employ a baseline correction (25, 38, 152). However, I20 

showed greater significance than FSI in this analysis. The DDV relative to the late phase 

insulin secretion is represented by the variable I120-0. The late insulin secretion, or second 

phase insulin secretion, is usually defined as the insulin secretion post 10 minutes after 

glucose challenge (151), which has a very broad range. The 2 hour insulin concentration 

after OGTT was studied among Nauruan (148). The high 2 hour insulin response 

predicted T2D or impaired glucose tolerance for normal subjects, but the low 2 hour 

insulin response predicted T2D for subjects with impaired glucose tolerance. In our 

study, the variable of I120-0 is closely related to the late phase insulin response. Figure 4.2 

shows that this DDV was increasing from normal to diabetic in the progressor group. No 

clear pattern of decreasing was observed. The controversy may be caused by the baseline 

correction. In addition, the extrapolated value of I120-0 at TIMEtoD=0 in the progressor 

group is higher than the value of I120-0 in the non-progressor group. The significant DDV 
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defined by the non-parametric estimation of insulin at 104 minute (NPI104) also indicates 

the late insulin response is increasing during the development of T2D (Figure 4.6). These 

findings suggest the prolonged or high second phase insulin secretion is associated with 

development of T2D. 

The mixed effect analysis using non-parametrically determined DDVs showed 

that the glucose curves at 5-12 and 137-180 minutes have a significant decrease and 

increase respectively during the development period of T2D. Since the amount of glucose 

infused in IVGTT is normalized by body weight as 0.5 g/kg and no pattern of increasing 

of insulin concentration was found at 5-12 minutes, the decrease in glucose concentration 

during this period cannot be caused by an increased body weight or increased insulin 

level. Thus, the decrease in glucose may be caused by changing in glucose disposition 

during the disease development period. The insulin curves at 1-8 and 101-113 minutes 

post IVGTT were significantly decreasing and increasing respectively before the 

diagnosis of T2D. The decrease in insulin concentration at 1-8 minutes indicates that the 

first phase insulin secretion is diminishing, but the non-significant pg  indicates the 

DDVs can not effectively distinguish the progressors from non-progressor group, which 

is consistent with the variable I3 that has a significant TIMEtoD  but non-significant pg . At 

101-113 min both TIMEtoD  and pg  are significant. This suggests that the increase in the 

late phase insulin secretion is associated with development of T2D.  

Study limitations 

The non-progressor group was assumed to provide no information of the disease 

development. However, some subjects in the non-progressor group might have started to 

develop T2D, but the changes in DDVs for the non-progressor group is evaluated as an 
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age effect. All DDVs were modeled by the same linear mixed effect model, but the 

temporal patterns of some DDVs may not be linear. For example, a DDV may have a two 

stage pattern, e.g. an initial linear change followed by a nonlinearly change. Despite these 

limitations, the proposed approach provides a “model-independent/non-parametric” 

analysis that makes simple comparisons and selection of DDVs possible. The simplicity 

of the evaluations facilitates the interpretation. For example TIMEtoD  provides basic 

information about the temporal increase/decrease in the DDV, and pg  enables a simple 

determination of how well the DDV distinguishes the progressors and non-progressors 

groups. The variables defined by G10-50, I3-20, I120-0, and NPI104 appear as good or better 

variables for disease development as FBG. However, these variables require an IV 

glucose administration and 1-2 blood samples, which is a more involved testing 

procedure than the simple determination of FBG, but less involved than a standard 

IVGTT. 

This study demonstrates that the proposed disease development analysis is able to 

identify the important DDVs that show significant temporal changes during the 

development period of T2D. These DDV may be used to better quantify the risk of 

development of T2D. Although some of the DDVs are associated with reduced glucose 

removal and diminished first phase insulin secretion, which have already been found to 

predict T2D in previous studies (23, 35, 36, 38), our approach gives a new general way to 

analyze development of T2D. The method determines the temporal pattern of DDV in an 

intuitive, simple and robust way that due to its non-parametric nature is free of the 

assumptions associated with model-dependent analysis approaches.   
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In summary, this study approach provides valuable longitudinal information 

valuable for a better understanding of the pathogenesis of T2D. The approach also 

enables a quantitative, time-based evaluation of the development of T2D, which may be 

used to quantify the effect of interventions/prevention strategies such as drug treatments 

and lifestyle modifications. 
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Table 4.1. Summary of characteristics of the progressor and non-progressor groups 

 
 

 

 

 

 

 

 

 

 

 

 

 

 Progressor group Non-progressor group 

Number of subjects 25 122 

Number of IVGTTs performed 65 236 

Gender (males in %) 60% 41.2% 

Starting age (mean sd) 
range 

34 7.96 
21.5-50.1 

33.7 10 
16.2-59.7 

BMI (mean sd) 
range 

32.2 7.62 
23.3-53.1 

25.5 4.4 
17.9-41.3 

Years followed (mean sd) 
range 

13.2 5.88 
2.33-23.9 

12.5 6.6 
0.31-24.6 
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Table 4.2. Summary of the estimates and p-values of fixed effect (population) parameters for one measurement-based DDVs which 
result in a p-value for TIMEtoD  that is less than 0.05 

DDV 
base  

Estimate   (p-value) 

age  

Estimate   (p-value) 

pg  

Estimate   (p-value) 

TIMEtoD  

Estimate   (p-value) 

FBG(a) 
70.1        (<0.001) 0.206       (<0.001) 7.99         (<0.001) 0.474       (0.0247) 

G5 262         (<0.001) 0.0826     (0.672)       -12.7         (0.181) -1.65        (0.0142) 

G10 228         (<0.001) 0.26         (0.118)       -8.69         (0.275) -1.31        (0.0204) 

G180 68.9        (<0.001) -0.065      (0.196)        1.29          (0.588) 0.455       (0.012) 

I1 133         (<0.001) -1.04        (0.0116)       -15.6          (0.4) -2.94        (0.0383) 

I3 114         (<0.001) -0.863      (0.0177)       -19.9          (0.228) -3.44        (0.0061) 

I30 63.7        (<0.001) -0.292      (0.255)  25.1          (0.0968) -2.44        (0.0486) 

(a) pg  and TIMEtoD  are both significant 
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Table 4.3. Summary of estimates and p-values of fixed effect (population) parameters of the 3 most significant DDVs based on two 
glucose measurements. The DDV is significant when p-values of TIMEtoD and pg  are both smaller than 0.05. When the 
DDV is significant, a smaller p-value of pg  indicates a better DDV. 

DDV 
base  

Estimate   (p-value) 

age  

Estimate   (p-value) 

pg  

Estimate   (p-value) 

TIMEtoD  

Estimate   (p-value) 

G10-40 121         (<0.001) -0.209       (0.198) -30.3       (<0.001) -1.32        (0.0283) 

G10-50 140         (<0.001) -0.194       (0.249) -34.8       (<0.001)   -1.91        (0.00194) 

G10-60 152         (<0.001) -0.148       (0.388) -33.2       (<0.001)    -2             (0.00522) 
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Table 4.4. Summary of the estimates and p-values of fixed effect (population) parameters of the 3 most significant DDVs based on 
two insulin measurements. 

DDV 
base  

Estimate   (p-value) 

age  

Estimate   (p-value) 

pg  

Estimate   (p-value) 

TIMEtoD  

Estimate   (p-value) 

I120-0 0.913      (0.645) -0.00649      (0.892) 15.3        (<0.001) 0.771      (<0.001) 

I3-10 14.4        (0.0381) 0.0166        (0.926) -51           (<0.001) -2.5          (<0.001) 

I3-20   31.2        (0.00506) -0.234          (0.390)  -62.5        (<0.001)  -2.46        (0.00794) 
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Figure 4.1. Population fits of the FBG and I3 in the progressor group (n=25) and non-progressor group (n=122). In the population fit 
for the progressors, the x-axis represents TIMEtoD to emphasize the two-slope pattern over TIMEtoD. In the non-
progressors, the x-axis represents subject age to illustrate the natural change over time in the DDV in the non-progressor 
group.
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Figure 4.2. Population fits of the DDVs defined by G10-50, I3-20, and I120-0 in the progressor 
group and non-progressor group. 
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Figure 4.3. Representative cubic spline fits of glucose and insulin data of two IVGTTs from the same subject at TIMEtoD equal to -
11.89 and -1.52 years. 
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Figure 4.4. Estimates and p-values of TIMEtoD and pg  of   DDVs based on non-parametrically estimation of glucose level from 1 to 
180 minute. The dashed lines in the p-value plots are drawn at the significance level 0.05. 
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Figure 4.5. Estimates and p-values of TIMEtoD and pg  of the DDVs based on non-parametric estimation of insulin level from 1 to 180 
minute. The dashed lines in the p-value plots are drawn at the significance level 0.05 
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Figure 4.6. The population fits of the DDVs of NPI104 in the progressor group and non-progressor group. 
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CHAPTER 5. DISEASE DEVELOPMENT MODELING OF TYPE 2 

DIABETES IN OFFSPRING OF DIABETIC PARENTS BASED ON 

DISEASE DEVELOPMENT VARIABLES DERIVED FROM OGTT  

5.1 Abstract 

The objectives of the study were to identify important variables associated with 

the development of type 2 diabetes (T2D) based on glucose and insulin measurements 

from an oral glucose tolerance test (OGTT) and to evaluate the temporal patterns of these 

variables during the development of the disease. Repeated OGTTs were performed for up 

to 25 years on 149 healthy offspring of two parents with T2D. Types 2 diabetes 

developed in 24 of the participants and did not develop in the remaining 125 subjects. 

Disease development variables (DDV) derived from glucose and insulin measurements 

and the temporal patterns of DDVs were compared by using population-based 

approaches, including a mixed effect analysis and Bayesian hierarchical analysis. The 

DDVs defined as the glucose concentration at 90 minute, the difference of glucose 

concentrations between 60 and 30 minutes, and the area under the glucose curve from 0 

to 240 minutes were significant and appeared as good as, or better than the fasting blood 

glucose or the 2-h glucose OGTT levels commonly used to identify T2D. The study 

demonstrated that the proposed disease development analysis is able to identify important 

DDVs which show significant temporal changes during the development period of T2D. 

The newly identified DDVs are valuable for the understanding of the pathogenesis of 

T2D. 
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5.2 Introduction 

Oral glucose tolerance test (OGTT) is a standard diagnostic test of type 2 diabetes 

(T2D) adopted by World Health Organization (WHO) and American Diabetes 

Association (ADA) (153). The 2 hour OGTT glucose concentration has been found to be 

one of the most important predictors of “worsening to diabetes” in many longitudinal 

prospective studies (154-157). OGTT has been used to confirm the diagnosis of T2D and 

impaired glucose tolerance, identified by the fasting glucose test (158). In addition, 

several methods have been developed to estimate insulin sensitivity and β-cell function 

based on data from OGTT (93, 94, 120).  

Due to the simplicity and more natural glucose loading of OGTT in comparison to 

an intravenous glucose tolerance test (IVGTT), OGTT is more frequently used than 

IVGTT in evaluating the development of T2D. Although OGTT provides valuable 

information about the metabolic syndrome of T2D, the temporal patterns of the variables 

derived from OGTT data and the time-dependency of these variables during the 

development of T2D are not clear. Recently, with the development population-based 

analysis, various disease progression models have been developed to describe the 

progression of diseases and evaluate the temporal patterns of related biomarkers (81, 84, 

99). In the disease progression model of de Winter et al., (99) the effects of anti-diabetic 

drugs on the progression of T2D was evaluated based on repeatedly measured fasting 

glucose, fasting insulin, and glycated hemoglobin A1c (A1C). However, the study only 

focused on subjects who already had been diagnosed with T2D and did not consider any 

measurements from OGTT to evaluate the progression of the disease. 



 

 

123

In contrast, this study is focusing on the identification of disease development 

variables (DDV) associated with the development of T2D before the diagnosis of the 

disease. By applying a disease development model analysis of the glucose and insulin 

data from OGTT, the temporal patterns of DDVs were examined by a population-based 

analysis to help in the understanding of the pathogenesis of T2D. Such disease 

development analysis provides a continuous longitudinal evaluation of the developing 

stage of T2D, which is an important quantitative foundation for evaluating the effect of 

interventions/prevention strategies such as drug treatment and lifestyle changes. 

5.3 Specific aim and hypothesis 

The specific aim of this chapter is to identify important disease development 

variables associated with the development of type 2 diabetes based on glucose and insulin 

measurements from an oral glucose tolerance test and to evaluate the relationship 

between the temporal patterns of these variables and the development of the disease. 

The specific hypothesis is that the important disease development variables 

derived from an oral glucose tolerance test are hypothesized to exist and can be identified 

by the proposed disease development analysis. 

5.4 Methods 

5.4.1 Subjects 

The study is based on a 25-year follow-up study in Joslin Diabetes Center (JDC), 

Boston, Massachusetts (24). Between 1963 and 1983, 155 healthy offspring of parents 

with T2D were recruited. The study was approved by the human study review board of 

JDC and conducted according to the Declaration of Helsinki: “Recommendations guiding 
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physicians in biomedical research involving human subjects", adopted by the 18th World 

Medical Assembly, Helsinki, Finland, June 1964. Informed consent was obtained from 

all individuals before participation in the study. All participants had normal glucose 

tolerance and received repeated OGTTs during followed-up for up to 25 years for 

tracking the status of T2D. The detailed methods of follow-up and evaluation of T2D 

have been described previously (23, 24).  

A total of 552 OGTTs were performed during the follow-up for all participants. 

At the end of follow-up, the subjects were divided into a progressor group and a non-

progressor group according to the T2D status. Data of 25 OGTTs with missing blood 

samples were excluded from the analysis. After data exclusion, a total of 92 and 435 

OGTTs from the 24 progressors and 125 non-progressors, respectively, were used in the 

analysis. Characteristics of the progressor and the non-progressor groups are summarized 

in Table 5.1. 

5.4.2 Oral glucose tolerance tests 

All participants were instructed to consume a high-carbohydrate diet over three 

days (250 to 300 g/day) and have an overnight fast before OGTT. Before the test, a blood 

sample was collected as the fasting sample and then 100g glucose in solution was taken 

orally at time zero over a 5 minutes period and blood samples were collected at 15, 30, 

45, 60, 90, 120, 180 and 240 minutes. The blood glucose concentrations were measured 

by the ferricyanide method for the OGTTs done before 1983 with a coefficient of 

variation (CV) of 1.5% (117). After 1983, the glucose oxidize method was used with a 

1.35% CV (150). The insulin serum concentrations were measured by a double-antibody 

radio-immunoassay with a 17.6% CV (109).  
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5.4.3 Identifications of disease development variables 

A disease development variable (DDV) is a data-derived parameter quantitatively 

associated with the disease development and can potentially serve as a biomarker for the 

development of disease. In this study, DDVs of T2D were sought among the glucose and 

insulin measurements collected from the OGTTs. The potential DDVs were 

longitudinally repeatedly measured during the follow-up period and then compared by a 

population-based mixed effect model analysis. The mixed effect model had the following 

mathematical expectation formulation for non-progressor and progressor group: 

ijijiage,ibase,ij AGEkk DDV

group progressor-Non
      (5.1) 

ijijiTIMEtoD,ijiage,iipg,ibase,ij TIMEtoDkAGEkPGkk DDV
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To summarize, the model was used to evaluate the time-dependency of the DDV over age 

(AGE) and over the time prior to the diagnosis of T2D (TIMEtoD) in the non-progressor 

and progressor group. In the non-progressor group, the national time-dependency of the 

DDV is modeled as a linear function of age. While the extra effects from disease 

development of T2D on the DDV in the progressor group are modeled additively by the 

predictor variables, TIMEtoD and progressor group indicator (PG). The variable 

TIMEtoD is the normalized time variable for progressors whose diagnostic times of T2D 
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were known and calculated as the subject’s age at OGTT minus the subject age at the 

diagnosis of T2D. PG is the indicator variable for the progressor group. PG equals to one 

if the subject is progressor and zero if the subject is in the non-progressor group. 

The effects of the predictor variables were described as the mixed effect 

parameters ( k ), which are the sum of fixed effect parameters ( ) and random effect 

parameters ( ). The fixed effects parameters (population parameters) of the progressor 

group indicator ( pg ) and the time prior to the diagnosis of T2D ( TIMEtoD ) are the two 

key parameters used to distinguish the two groups and used to characterize the temporal 

change of the DDV in the progressor group. Accordingly, a DDV is considered 

significant when the p-values of the two fixed effect parameters ( pg  and TIMEtoD ) are 

both less than 0.05. The mixed effect model analysis was performed in R version 2.10.1 

by the lme() function (139). 

In the mixed effect analysis, the tested DDV candidates included the direct 

measurements of glucose and insulin concentrations, the differences of two glucose or 

insulin concentrations, and non-parametrically estimated glucose-insulin kinetic 

parameters. The non-parametrically determined glucose-insulin kinetic parameters 

include the maximum glucose and insulin concentrations (Cgmax and Cimax), the times to 

reach Cgmax and Cimax (tgmax and timax), and the areas under the curve of glucose and insulin 

from 0 to 240 minutes (AUCg0-240 and AUCi0-240). The parameters, Cgmax, Cimax, tgmax and 

timax were estimated by generalized cross-validation cubic spline curves fits to glucose 

and insulin concentrations using the R function smooth.spline(). The areas under the 

curve (AUCg0-240 and AUCi0-240) were estimated by the trapezoidal method. 
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5.4.4 Investigation of the temporal patterns of DDVs 

In the mixed effect analysis, the temporal pattern of each DDV prior to the 

diagnosis of T2D is assumed to be linear for fast evaluations of all of the DDV candidates 

in R. However, the DDV may have some distinct different patterns deviating from a 

straight line relationship. Therefore, the temporal patterns of the important DDVs 

identified previously were investigated by a non-parametric, pooled data analysis to 

visualize the possible temporal changes over TIMEtoD. Subsequently, a Bayesian 

hierarchical analysis was then applied to fit to the corresponding possible pattern of the 

DDV over TIMEtoD by the function  ijTIMEtoDf  in the following Bayesian 

hierarchical model (5.2): 

ijijiage,ibase,ij AGEkk DDV

group progressor-Non
 

  ijijijiage,iipg,ibase,ij TIMEtoDfAGEkPGkk DDV

group Progressor
   (5.2)  

The above model is similar to the model used in the mixed effect analysis. The difference 

is the function  ijTIMEtoDf  which represents the functional form of the temporal 

pattern of the DDV over TIMEtoD after adjusting the progressor effect for age effect. 

Bayesian hierarchical analysis is applied because it provided a better successful rate of 

convergence for various functions to address the different temporal patterns and flexible 

statistical models than the mixed effect analysis employed by the lme() or nlme() 

functions in R. Bayesian hierarchical analysis was performed in WINBUGS 1.4.3(60). 

The hierarchy of the Bayesian model and the assumptions of parameter distributions are 

summarized as follows: 
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In the individual level of the hierarchy, the data was fitted to the two-slope model 

which is close to the temporal patterns shown in Figure 5.1. This two-slope model also 

provided easy interpretations of parameters and simple function to describe the disease 

development. The residuals ( ji, ) were assumed to be normal distributed with a mean of 

zero and a precision of  , where j denoted the sequencing of the observations of the ith 

subject. In the population level of the hierarchy, the individual parameters, ibasek , , iagek , , 

ipgk , , and iTIMEtoDk ,  were assumed to be normal distributed with mean ( ) and precision 

parameters ( ). The individual separation point parameters ( isepk , ), were summarized by 
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a truncated normal distribution. In the highest level of the hierarchy, prior distributions 

were assigned to the population parameters and residuals. Vague normal prior 

distributions were given to the population parameters ( base , age , pg , and TIMEtoD ). A 

uniform prior distribution was assigned to the population break-point parameter( sep ) 

with a support from -22 to -4.57 corresponding to the 10% and 90% percentiles of 

TIMEtoD to prevent a local convergence at the extremes which results in a collapse of 

the two-slope model to a single-slope model. Vague uniform prior distributions were 

given to base , age , pg , TIMEtoD , and sep . A vague gamma distribution was given to 

the precision ( ) of the residuals. 

All of the posterior distributions of the parameters were estimated by the Markov 

chain Monte Carlo method in WinBUGS version 1.4.3 (159). Three Markov chains were 

run simultaneously for 20,000 samples for each parameter. The convergence of the chains 

was accessed by the Gelman-Rubin statistic (137). After burn-in with the first 10,000 

samples in each chain, a total of 30,000 samples from the three chains were used to 

estimate the posterior distribution of each parameter. The means of the parameters’ 

posterior distributions are Bayesian estimates of the parameters. The 95% Bayesian 

credible sets (95% C.S.) is the intervals between the 2.5 and 97.5 percentiles of the 

posterior distributions. 
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5.5 Results 

5.5.1 Identifications of disease development variables 

DDVs of direct measurements 

The repeatedly measured glucose and insulin concentrations in OGTTs were 

evaluated by the mixed effect model. The DDVs with significant pg  and TIMEtoD  (p-

value<0.05) are listed in Table 5.2. All of the significant DDVs are based on the 

measurements of glucose but not insulin. As expected, the standard diagnosis criteria of 

T2D, fasting blood glucose (FBG) and 2 hours glucose concentration (OG120), are 

significant and have temporal increasing patterns during the disease development period 

(Figure 5.1). In addition to FBG and OG120, the DDV defined as the glucose 

concentration at 90 minutes (OG90) gave the most significant pg  and TIMEtoD . The 

DDV, OG90, is potentially at least as good as FBG and OG120 for describing the 

development of T2D. 

The DDVs defined as the difference of two glucose or insulin concentrations were 

also tested by the mixed effect model. The most significant DDVs defined as a difference 

of two glucose or insulin measurements are shown in Table 5.3. The DDV of the 

difference between glucose concentrations at 60 and 30 minutes (OG60-30) was found to 

be the most significant DDV based on two glucose measurements. OG60-30 gave more 

significant TIMEtoD  than OG120 and more significant pg  than both FBG and OG120. For 

the DDVs of the difference of two measurements of insulin, the DDV defined by the 

difference between insulin concentration at 120 and 45 minutes (OI120-45) was significant 
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(p-values <0.05). However, the temporal pattern of OI120-45 was not as clear as other 

DDVs determined by glucose measurements mentioned previously (Figure 5.1). 

DDVs defined by non-parametric analysis 

Representative cubic spline fits of glucose and insulin data of two OGTT data are 

shown in Figure 5.2. The Cgmax, Cimax, tgmax, timax, AUCg0-240 and AUCi0-240 were estimated 

non-parametrically and subsequently analyzed by the mixed effect model (5.1). The 

results of fixed effect parameter estimations of these DDVs are summarized in Table 5.4. 

The DDV, AUCg0-240, is the most significant DDV determined by the non-parametric 

approach and gave the smallest p-values for pg  and TIMEtoD .  

5.5.2 Temporal patterns of disease development variables 

The temporal patterns of six DDVs namely, FBG, OG120, OG90, OG60-30, OI120-45, 

and AUCg0-240, were investigated by the pooled data approach using cubic spline 

functions (Figure 5.1). Based on the cubic spline curves, four DDVs including FBG, 

OG120, OG90 and AUCg0-240 showed a two-slope pattern, while OG60-30 and OI120-45 

showed a simple linear increase. The DDVs with the two-slope pattern had a stationary 

stage approximately 10 years prior to the diagnosis of T2D followed by a progression 

stage for the development of the disease. The two-slope model assumes the DDV changes 

after the separation point parameter, isep,k , which is the time of the separation of the two-

slopes. The estimates of the population parameters ( ) are summarized in Table 5.5.  

Similar to the mixed effect model, the individual parameters ( ik ) were 

summarized by the population mean parameter ( ) in the Bayesian approach. The 

estimated separation parameters sep  of FBG, OG120, OG90, and AUCg0-240 ranged from -
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10.3 to -6.87 years. This suggests that the development of T2D follows a two-slope 

pattern starting at 6.87 to 10.23 years before the diagnosis of T2D. 

5.6 Discussion 

In regular OGTTs, only the blood samples of fasting glucose and the 2 hour 

glucose concentrations are collected. Although the 2 hour OGTT glucose is one the most 

sensitive biomarkers for diagnosis of T2D (157, 160), the blood samples collected at 

other time points are still valuable for evaluating the pathophysiology of T2D. The 

current study suggests that the blood sample collected at 45, 60, 90 120, 180, 240 post an 

OGTT are all significantly associated with the development of T2D, and DDVs derived 

from the additional samples (e.g. OG90 and OG60-30) are potential biomarker of T2D that 

may perform better, or as well as OG120. The OGTT has the potential to provide better 

prediction and diagnosis of T2D when incorporating such extra glucose measurements. 

The temporal pattern of FBG and OG120, which are the two common criteria for 

diagnosis of impaired glucose tolerance and T2D, were also evaluated in this study. Both 

FBG and OG120 showed the two-slope temporal pattern which suggests there is a 

stationary stage followed by an exaggeration stage before the diagnosis of T2D. The 

separation point parameters ( sep ) between the two-slopes were estimated as -9.88 [-12, -

8.45] (mean 95% C.S.) years and -6.87 [-8.9, -5.22] years for FBG and OG120, 

respectively. The FBG and OG120 parameters provide different information about the 

development of T2D. The FBG parameter gives information about the basal line glucose 

level at homeostasis state, while OG120 gives information about glucose tolerance 

following an oral glucose stimulation. The results suggest that the impaired fasting 

glucose tolerance may start earlier than the impaired oral glucose tolerance. For the 
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DDVs defined by the differences of two measurements, OG60-30, showed the most 

significant and consistent linear increasing pattern over the entire follow-up period in the 

progressor group. In contrast to OG120, which relates to the late state of an OGTT the 

OG60-30 serves as a DDV of T2D relating to the glucose tolerance in the early phase of 

OGTT. Although a high fasting insulin and a low 2 hour OGTT insulin concentration has 

been reported as predictors of T2D (131, 148), these variables did not show an increasing 

or decreasing pattern in our analysis. The only significant DDV defined by insulin 

measurements is the difference between insulin concentrations at 120 and 45 minutes 

(OI120-45), but this DDV just showed a weak increasing pattern (Figure 5.1) and was not 

as informative as DDVs defined by glucose measurements. The temporal patterns of the 

FBG, OG120, OG090, OG60-30 are shown in Figure 5.3 to visualize the time-course of the 

development of the disease in the progressor group as compared to the non-progressor 

group. The DDVs defined by OG90 and OG60-30 appear as good or better variables for 

disease development as FBG or OG120 and provide added value to an OGTT by only 

requiring 3 extra samples.  

In the non-parametric analysis, AUCg0-240 is the most significant DDV associated 

with the development of T2D. Since AUCg0-240 is mainly dependent on all of the 

measurements of glucose, the increasing pattern of AUCg0-240 can be explained by the 

significant increasing patterns of the individual DDVs derived by glucose levels at 45, 

60, 90, 120, 180 and 240 minutes.  

The intent of the proposed population-based approach is to deal with the routinely 

collected OGTT data and addresses the time-dependency of the measurements from 

OGTT during disease development period of T2D. In comparison to the classical logistic 
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regression analysis, the proposed approach is focusing on the temporal changes of the 

time-variant DDVs and provides a time-sensitive quantification of the disease 

development rather than risks or incidence rate of T2D. Both mixed effect and Bayesian 

hierarchical statistical analysis were used in the study. For the initial identification of 

DDVs, the mixed effect analysis profromed in R 2.10.1 gave a fast and general 

“screening” for all possible DDV candidates. For the later evaluations of the temporal 

patterns of DDVs, the Bayesian approach was preferred because of its flexibility for 

different kind linear and non-linear functions and high successful rate of convergence. 

Study limitations 

In the study, only the off-spring of parents with type 2 diabetes were recruited and 

the oral glucose dose used in OGTT was 100g which is different from the current 

standard of 75g suggested by WHO and ADA (161). Hence, the results of the study may 

not be fully applicable to the current 75g OGTT. Furthermore, the changes in DDVs for 

the non-progressor group were assumed to be purely an age effect. This assumption may 

be partly violated because some of the subjects in the non-progressor group may 

eventually develop T2D following the completion of the follow-up study. Despite these 

limitations, the proposed approach provides a quantitative way to identify important 

DDVs and to evaluate the temporal pattern of these DDVs during the development of 

T2D. 

5.7 Conclusion 

The proposed disease development analysis is able to identify important DDVs 

characterized by significant temporal changes during the development period of T2D. 

Although the few extra blood samples during an OGTT will involve more cost and 
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extend the testing, this may be offset by the valuable information obtained. The proposed 

approach offers a new way to analyze development of T2D and provides valuable 

quantitative longitudinal information about the pathogenesis of T2D. Importantly, the 

approach is particularly useful for quantifying the effect of interventions/prevention 

strategies such as drug treatments and lifestyle modifications. 
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Table 5.1. Summary of characteristics of the progressor and non-progressor groups 

 
 

 

 

 

 

 

 

 

 

 

 

 Progressor group Non-progressor group 

Number of subjects 24 125 

Number of OGTTs performed 92 435 

Gender (males in %) 58% 43.2% 

Starting age (mean sd) 
range 

34.1 7.89 
21.11-49.8 

33.4 10 
13.4-59 

Starting BMI (mean sd) 
range 

32.5 7.79 
23.2-53.1 

25.4 4.42 
17.2-40.6 

Years followed (mean sd) 
range 

13.2 5.72 
3.22-23.5 

12.5 6.48 
0.63-24.3 



 

 

137

 

Table 5.2. Summary of the estimates and p-values of fixed effect (population) parameters for one measurement-based                        
DDVs resulting in p-values for pg  and TIMEtoD  that are both less than 0.05 

DDV 
base  

Estimate   (p-value) 

age  

Estimate   (p-value) 

pg  

Estimate   (p-value) 

TIMEtoD  

Estimate   (p-value) 

FBG 69.9         (<0.001) 0.205       (<0.001) 15.9        (<0.001) 1.27        (<0.001) 

OG45 108          (<0.001) 0.409       (0.00480) 37.9        (<0.001) 1.35       (0.00919) 

OG60 97.6         (<0.001) 0.535       (0.00109) 47.3        (<0.001) 1.87        (0.00136) 

OG90 82.7         (<0.001) 0.552       (<0.001) 58.2        (<0.001) 3.03        (<0.001) 

OG120 76.7         (<0.001) 0.407       (<0.001) 49.3        (<0.001)  3.07        (0.00159) 

OG180 72.5         (<0.001) 0.0165    (0.879) 35.4        (<0.001)  2.63       (0.00112) 

OG240 72.7         (<0.001) -0.205      (0.00738)  14.6        (0.00921)  1.52        (<0.001) 
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Table 5.3. Summary of the estimates and p-values of fixed effect (population) parameters of the most significant DDVs defined as    
the difference of two glucose, or two insulin measurements. 

DDV 
base  

Estimate   (p-value) 

age  

Estimate   (p-value) 

pg  

Estimate   (p-value) 

TIMEtoD  

Estimate   (p-value) 

OG60-30 -19.3      (<0.001) 0.432       (<0.001) 29.5      (<0.001)  1.46       (0.00109) 

OI120-45  -40.3      (0.00415) 0.902       (0.0189)  67.2     (0.00127) 2.87        (0.0495) 
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Table 5.4. Summary of estimates and p-values of fixed effect (population) parameters of non-parametric kinetic 
parameters, Cgmax, tgmax, AUCg0-240, Cimax, timax, and AUCi0-240 

DDV 
base  

Estimate   (p-value) 

age  

Estimate   (p-value) 

pg  

Estimate   (p-value) 

TIMEtoD  

Estimate   (p-value) 

Cgmax
(a) 

107         (<0.001)  0.425       (0.00189)  46.0        (<0.001)    2.07       (0.00376) 

tgmax 46.1        (<0.001)     0.145       (0.183)   22.4        (0.00528) 1.25        (0.291) 

AUCg0-240
(a) 

20100       (<0.001)   49.3        (0.00767) 8620       (<0.001)   513         (<0.001) 

Cimax 119         (<0.001)   -0.0355     (0.944) 134         (0.0803) 3.07        (0.534) 

timax 76.4        (<0.001)     0.164       (0.223)   24.1        (0.00236) 1.25        (0.266) 

AUCi0-240 19200      (<0.001)    -37.0        (0.650)     28900      (0.130) 1480        (0.424) 

(a): p-values for pg  and TIMEtoD  are both less than 0.05 
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Table 5.5. Summary of Bayesian estimates and 95% credible sets (95% C.S.) of population mean parameters of the two-slope model 
for the four DDVs 

DDV 
Estimate of base  

(95% C.S.) 

Estimate of age  

(95% C.S.) 

Estimate of pg  

(95% C.S.) 

Estimate of sep  

(95% C.S.) 

Estimate of TIMEtoD  

(95% C.S.) 

FBG 

69.5 

(66.4, 72.8) 

0.214 

(0.128, 0.301) 

0.528 

(-3.16, 4.25) 

-9.88 

(-12.0, -8.45) 

2.05 

(0.647, 3.66) 

OG120 

75.4 

(66.7, 84.3) 

0.444 

(0.226, 0.668) 

16.1 

(7.04, 25.0) 

-6.87 

(-8.90, -5.22) 

8.72 

(2.49, 16.1) 

OG90 

85.7 

(72.6, 95.6) 

0.469 

(0.194, 0.809) 

13.3 

(2.16, 24.7) 

-10.3 

(-12.74, -7.48) 

5.58 

(2.76, 8.87) 

AUCg0-240 

10650 

(8950, 12300) 

279 

(235, 327) 

1970 

(530, 3400) 

-9.76 

(-13.3, -6.96) 

757 

(188, 1390) 
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Figure 5.1. Population fits of the disease development variables (DDV) defined by FBG, 
OG120, OG90, OG60-30, AUCg0-240, and OI120-45 in the progressor group over the 
time prior to the diagnosis of T2D (TIMEtoD). The solid lines represent the 
mixed effect model fits and the dashed curves represent the cubic spline fitted 
curves. 
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Figure 5.2. Representative cubic spline fits of glucose and insulin data of two OGTTs from the same subject over the time prior to the 
diagnosis of T2D (TIMEtoD) equal to -7.16 and -0.8 years.   
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Figure 5.3. Population fits of the DDVs, FBG, OG120, OG090, and OG60-30, in the 
progressor group (n=24) and non-progressor group (n=125) over the time 
prior to the diagnosis of T2D (TIMEtoD). In the population fit for the 
progressors, the x-axis represents TIMEtoD to emphasize the two-slope 
pattern over TIMEtoD. In the non-progressors, the x-axis represents age to 
illustrate the natural change over time in the DDV in the non-progressor 
group.  
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CHAPTER 6  CONCLUSIONS AND FUTURE WORKS 

6.1 Conclusions 

In chapter 2, a simple glucose-insulin kinetic model was proposed. This model 

was developed though a comparison of the glucose-insulin kinetic models with different 

dynamic effects functions. With its minimal structure, this model is readily analyzed in a 

population pharmacokinetic framework. The model parameters have intuitive meanings 

that are associated with the physiology of the glucose removal and insulin production. 

The proposed model shows it ability to describe the glucose-insulin feedback loops and 

biphasic insulin secretion. The abnormal changes in glucose-insulin kinetics and biphasic 

insulin secretion are closely associated with the development of type 2 diabetes. By 

employing a population Bayesian analysis, glucose-insulin kinetics based differences 

were found between the progressor and non-progressor groups of type 2 diabetes. 

Ditermination of early pre-diabetic pharmacokinetic differences may be helpful for better 

prediction of the development of T2D. 

Although many risk factors of type 2 diabetes have been indentified, the temporal 

patterns and the time-dependency of these risk factors were still not clear. To further 

understand the pathophysiology of type 2 diabetes, a disease development model of type 

2 diabetes was developed (chapter 3). Based on repeated measured fasting blood glucose, 

fasting serum insulin, HOMA-IR, and BMI, the disease development modeling is an 

extension of chapter 2. A two-slope model was successfully developed for fasting blood 

glucose, one of the gold standards for diagnosis of type 2 diabetes. In contrast to the 

classic logistic regression analysis, this work is aimed at a time-based evaluation of the 

developing stage of the disease and to provide a mechanistic and quantitative basis for 
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evaluating status of type 2 diabetes. Accordingly, the proposed model may be used to 

quantify the effect of interventions aimed at preventing or slowing down the development 

of this disease. This is particularly important in dealing with diseases like type 2 diabetes 

which have a very long development period before diagnosis. 

By applying the proposed disease development analysis, important DDVs derived 

from IVGTT were identified in chapter 4. This is the first attempt in the literature to 

identify risk factors of type 2 diabetes based on their temporal patterns before the 

diagnosis of the disease using repeated measured IVGTT data. The newly identified 

DDVs, reduced glucose removal (G10-50), diminished first phase insulin secretion (I3-20), 

and increased second phase insulin secretion (I120-0), were found to be associated with the 

pathophysiology of the disease. These new propsed DDVs are easy to calculate and 

providing a quick assessment of the development of type 2 diabetes.  

In chapter 5, important DDVs derived from OGTT were identified by the 

proposed disease development analysis. Two new identified DDVs, OG90 and OG60-30, 

appear as good or better variables for disease development as FBG or OG120 used by 

American Diabetes Association and World Health Organisation. The study has the 

potential to complement or replace the classic OGTT and provide more accurate 

prediction for the development of type 2 diabetes. 

The proposed population model of glucose-insulin kinetics has demonstrated that 

pharmacokinetic differences exists for the high risk population and can be helpful for 

prediction of T2D. By applying the proposed disease development analysis, the time-

dependency and temporal patterns of the DDVs can be identified. An examination of the 

temporal changes in DDVs for the glucose-insulin system before the diagnosis of the 
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disease provides a quantitative evaluation of the pathophysiological evolution of T2D and 

is valuable in predicting T2D. 

6.2 Future work 

6.2.1 Continue the follow-up 

In this study, 25 subjects developed type 2 diabetes out of 152 healthy offspring 

of diabetic parents during the follow-up. Although this data set appears to be the most 

comprehensive data set avaliable with such a long follow-up time (up to 25 years), the 

group of 25 subjects in the progressor group is statistically not considered as large 

population. Since some non-progressors can develop type 2 diabetes after the last follow-

up, continuing the follow-up would be one of the best ways to increase the sample size of 

the progressor group and provide a better reference group in addition to increasing the 

data of the repeated IVGTTs and OGTTs. With new follow-up data, it is possible to 

provide a better estimation for predicting type 2 diabetes and to find important temporal 

patterns of the DDVs relative to type 2 diabetes. 

6.2.2 Incorporate more variables 

This thesis is focusing on risk factors of type 2 diabetes based on glucose-insulin 

kinetics. There are many other risk factors, in addition to the glucose-insulin kinetics, 

associated with the development of type 2 diabetes, such as reduced HDL and increased 

triglyceride. It is possible to incorporate these variables in future studies to improve the 

predictions. Other time-invariant variables could also be included in the model, for 

example, the diagnosis age of their parents, economic status, and genetic factors may 

affect the temporal pattern of some DDVs. These variables can also be modeled as 
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covariates for pgk  or TIMEtoDk . When incoperating all such variables, the model become 

more comprehensive in describing the pathophysiology of type 2 diabetes. 

6.2.3 Verify the results with other studies 

The study is focusing on the Caucasian subjects recruited in Joslin Diabetes 

Center. It is necessary to exminate the modeling results in different populations. Ethnic 

status, environment factors, disease status, economic status and genetic status can all 

affect the reliability of the model predictions. Since IVGTT and OGTT have been 

performed for many years in numerous diabetes research centers and hospitals, it is 

possible to conduct model validation studies to consider other group differences. 

The proposed disease development analysis provides a novel way to evaluate the 

development of chronic diseases. By the repeated examinations of the DDVs, it is 

possible to estimate the time left before the diagnosis of the disease. The time-based 

information provides additional incentives to encourage people to reduce the risks 

through lifestyle modifications or preventive medications. The approach could be further 

extended to quantify the development of other chronic diseases, such as atherosclerosis 

and osteoporosis. Ideally, the medical examinations in future may will not only provide 

laboratory values of biomarkers but also give additional time based information of the 

onset of chronic diseases based on individual’s laboratory values hange of such values 

over time. This would be valuable for early prevention of chronic diseases and reduce the 

cost and incidence rate of such diseases. 
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APPENDIX A. WBDIFF CODES FOR GLUCOSE-INSULIN 

INTERACTIVE MODEL 

The following codes written in BlackBox Component Builder are corresponding to the 
model presented in Figure 2.1.  

 
(*1*) MODULE WBDiffNewhome62;   
  IMPORT 
   WBDiffODEBlockM, 
   Math; 
  TYPE 
   Equations = POINTER TO RECORD 
(WBDiffODEBlockM.Equations) END; 
   Factory = POINTER TO RECORD 
(WBDiffODEBlockM.Factory) END; 
  CONST 
   nEq = 2; 
  VAR 
   fact-: WBDiffODEBlockM.Factory; 
    
(*2*)  PROCEDURE (e: Equations) Derivatives (IN theta, C: ARRAY OF 
REAL; n: INTEGER; t: REAL; 
(*3*)       OUT dCdt: ARRAY OF REAL); 
(*4*)  VAR 
(*5*)   block: INTEGER; 
(*6*)   kgp, vg, kgr, kmaxgr, kic50, kip, beta, kir, vi, gss,iss: REAL; 
(*7*)  BEGIN 
(*8*)   block := e.Block(); 
(*22*)  kgp:= theta[0]; 
(*22*)  vg:= theta[1];  
(*22*)  kgr := theta[2];                     (*inport data from WinBugs*) 
(*22*)  kmaxgr := theta[3];  
(*22*)  kic50:=theta[4]; 
(*22*)  kip := theta[5]; 
(*22*)  beta:=theta[6]; 
(*22*)  kir:= theta[7];  
(*22*)  vi:= theta[9]; 
 
(*13*)  CASE block OF 
(*14*)   |0:  
(*15*)   |1:  
 (*18*)  END; 
     gss:=kgp/(vg*kgr); 
     iss:=kip/(kir*vi); 
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(*19*)   dCdt[0] := kgp/vg-(kgr+kmaxgr*MAX(C[1]-
iss,0)/(kic50+MAX(C[1]-iss,0))) *C[0]; 
(*21*)   dCdt[1] := kip* Math.Power(MAX(C[0],1)/gss,beta)/vi - kir * 
C[1]; 
 
(*22*)  END Derivatives; 
    
(*23*)  PROCEDURE (e: Equations) Adjust (IN theta: ARRAY OF REAL; 
VAR C: ARRAY OF REAL; 
(*24*)     n: INTEGER; t: REAL); 
(*25*)  VAR 
(*26*)   block: INTEGER; 
    vi,sp,dose, vg: REAL; 
(*27*)  BEGIN 
(*28*)   block := e.Block(); 
(*22*)      vg:= theta[1];  
(*22*)     sp:= theta[8]; 
(*22*)     vi:= theta[9]; 
(*22*)     dose:= theta[10]; 
(*29*)   CASE block OF 
(*30*)   |0: 
(*30*)   |1: 
(*31*)     C[0] := C[0] + dose/vg; 
(*31*)     C[1] := C[1] + sp*(dose/vg)/vi; 
(*35*)  END; 
(*36*)  END Adjust; 
    
  PROCEDURE (equations: Equations) SecondDerivatives (IN theta, 
x: ARRAY OF REAL; 
      numEq: INTEGER; t: REAL; 
      OUT d2xdt2: ARRAY OF REAL); 
  BEGIN 
   HALT(126) 
  END SecondDerivatives; 
  PROCEDURE (equations: Equations) Jacobian (IN theta, x: 
ARRAY OF REAL; 
      numEq: INTEGER; t: REAL; 
      OUT jacob: ARRAY OF ARRAY OF 
REAL); 
  BEGIN 
   HALT(126) 
  END Jacobian; 
 
  PROCEDURE (f: Factory) New (option: INTEGER): 
WBDiffODEBlockM.GraphNode; 
  VAR 
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   equations: Equations; 
   node: WBDiffODEBlockM.GraphNode; 
  BEGIN 
   NEW(equations); 
   node := WBDiffODEBlockM.New(equations, nEq); 
   RETURN node 
  END New; 
    
  PROCEDURE Install*; 
  BEGIN 
   WBDiffODEBlockM.Install(fact) 
  END Install; 
    
  PROCEDURE Init; 
  VAR 
   f: Factory; 
  BEGIN 
   NEW(f); fact := f 
  END Init; 
 BEGIN 
  Init 
(*1*) END WBDiffNewhome62. 
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APPENDIX B. WINBUGS CODES FOR BAYESIAN ANALYSIS 

The following WinBUGS codes are corresponding to the Bayesian hierarchical model 
presented in Figure 2.2.  
 
model {     
 for(i in 1:n.ind) 
 { 
  for(j in 1:n.grid) 
  { 
   data.g[i,j] ~ dlnorm(logmodel.g[i,j],tau.g) 
   preddata.g[i,j] ~ dlnorm(logmodel.g[i,j],tau.g) 
   logmodel.g[i,j]<-log(gluins[i,j,1]) 
   data.i[i,j] ~ dlnorm(logmodel.i[i,j],tau.i) 
   preddata.i[i,j] ~ dlnorm(logmodel.i[i,j],tau.i) 
   logmodel.i[i,j]<-log(gluins[i,j,2]) 
  } 

gluins[i, 1:n.grid, 1:dim]<-newhome62(inits[i,1:dim], grid[1:n.grid], 
theta[i,1:11], origins[i,1:n.block], tol) 

  inits[i,1] <- theta[i,1]/(theta[i,2]*theta[i,3])                    #kgp/(vg*kgr) 
  inits[i,2] <- theta[i,6]/(theta[i,10]*theta[i,8])                  #kip/(vi*kir) 
  
  origins[i,1]<- -1.0 

 origins[i,2]<- 0.0 
 
  #linear gr & Emax ip 
 
  theta[i,1] <-exp(par[i,1])                       #kgp 
  theta[i,2] <-wt[i]*exp(par[i,2])                 #normalized vg 
  theta[i,3] <-exp(par[i,3])                       #kgr 
  theta[i,4] <-exp(par[i,4])                       #kmaxfr 
  theta[i,5] <-exp(par[i,5])                       #kic50 
  theta[i,6] <-exp(par[i,6])                       #kip 
  theta[i,7] <-exp(par[i,7])                       #beta 
  theta[i,8] <-exp(par[i,8])                       #kir 
  theta[i,9] <-exp(par[i,9])                       #sp 
  theta[i,10] <-wt[i]/10.22222              #vi/(1-E) 
  theta[i,11]<-500*wt[i]     #dose 
 
  par[i, 1:9] ~ dmnorm(theta.mean[i, 1:9], omega.inv[1:9, 1:9]) 
 
  for(k in 1:9) 
  { 
   theta.mean[i,k]<-mu[k]+diffdm[k]*dm[i] 
  } 
 } 
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 mu[1:9] ~ dmnorm(mu.prior.mean[1:9], mu.prior.precision[1:9, 1:9]) 
 diffdm[1:9] ~ dmnorm(diffdm.prior.mean[1:9], diffdm.prior.precision[1:9, 
1:9]) 
 omega.inv[1:9, 1:9] ~ dwish(omega.inv.matrix[1:9, 1:9], omega.inv.dof) 
 omega[1:9, 1:9] <- inverse(omega.inv[1:9, 1:9]) 
 for(k in 1:9) 
 { 
  exp.mu[k]<-exp(mu[k]) 
  exp.mudm[k]<-exp(mu[k]+diffdm[k]) 
  diffexpdm.ratio[k]<-(exp.mudm[k]-exp.mu[k])/exp.mu[k] 
 } 
 tau.g ~ dgamma(0.01, 0.01) 
 sigma.g <- 1 / sqrt(tau.g) 
 tau.i ~ dgamma(0.01, 0.01) 
 sigma.i <- 1 / sqrt(tau.i) 
} 

  
Inference data: 
list( 
dim = 2, 
tol = 1.0E-3, 
n.ind = 154, n.grid = 13, n.block = 2, 
grid = c(-0.01,1,3,5,10,20,30,40,50,60,90,120,180), 
 
#prior 
mu.prior.mean = c( 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), 
mu.prior.precision = structure( 
.Data = c( 
1.0E-4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 1.0E-4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 1.0E-4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 1.0E-4, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 1.0E-4, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 1.0E-4, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0E-4, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0E-4, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0E-4), 
.Dim = c(9, 9)), 
diffdm.prior.mean = c( 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), 
diffdm.prior.precision = structure( 
.Data = c( 
1.0E-4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 1.0E-4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 1.0E-4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
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0.0, 0.0, 0.0, 1.0E-4, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 1.0E-4, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 1.0E-4, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0E-4, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0E-4, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0E-4), 
.Dim = c(9, 9)), 
omega.inv.matrix = structure( 
.Data = c( 
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 
), 
.Dim = c(9,9)), 
omega.inv.dof = 9 
) 
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The following WinBUGS codes are corresponding to the Bayesian hierarchical model 
presented in equations (3.7), (3.8), and (3.8).  
 
model 
{ 
 SEQ.mn<-mean(SEQ[]) 
 PTID.mn<-mean(PTID[]) 
 SEX.mn<-mean(SEX[]) 
 FSI.mn<-mean(FSI[]) 
 BMI.mn<-mean(BMI[]) 
 IBM.mn<-mean(IBM[]) 
 HOMA.mn<-mean(HOMA[]) 
 for( i in 1 : N ) { 
  for( k in T[i]:(T[i+1]-1) ) { 
   FBG[k] ~ dnorm(Y[k],tau.c) 
   pred[k] ~ dnorm(Y[k],tau.c)    
   Y[k] <- kbase[i] +  kbasediff[i]*DM[k]+ kage[i] * TestAge[k] +  
     ktimetod[i]*step(TIMEtoD[k] -kbp[i])*(TIMEtoD[k] -
kbp[i])*DM[k] 
  } 
  kbase[i] ~ dnorm(kbase.c, tau.kbase) 
  kbasediff[i] ~ dnorm(kbasediff.c, tau.kbasediff) 
  kage[i] ~ dnorm(kage.c, tau.kage) 
  ktimetod[i] ~ dnorm(ktimetod.c, tau.ktimetod)  
  kbp[i] ~ dnorm(kbp.c, tau.kbp)I(-17.97,-2.33)   
 } 
 tau.c ~ dgamma(0.01,0.01) 
 sigma <- 1 / sqrt(tau.c) 
 kbase.c ~ dnorm(0.0,1.0E-6)   
 kbasediff.c ~ dnorm(0.0,1.0E-6)  
 kage.c ~ dnorm(0.0,1.0E-6) 
 ktimetod.c ~ dnorm(0.0,1.0E-6)  
 kbp.c ~ dunif(-17.97,-2.33)  
 sigma.kbase ~ dunif(0,1000) 
 sigma.kbasediff ~ dunif(0,1000)  
 sigma.kage ~ dunif(0,1000) 
 sigma.ktimetod ~ dunif(0,1000) 
 sigma.kbp ~ dunif(0,1000) 
 tau.kbase<-1/(sigma.kbase*sigma.kbase) 
 tau.kbasediff<-1/(sigma.kbasediff*sigma.kbasediff) 
 tau.kage<-1/(sigma.kage*sigma.kage) 
 tau.ktimetod<-1/(sigma.ktimetod*sigma.ktimetod) 
 tau.kbp<-1/(sigma.kbp*sigma.kbp) 
} 
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APPENDIX C. R CODES FOR MIXED EFFECT ANALYSIS 

The following R codes are corresponding to the mixed effect analysis presented in Figure 
4.4 and 4.5.  
 
library(nlme) 
all_ivgtt<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and IVGTT\\all_ivgtt.txt", header=T) 

 
attach(all_ivgtt) 
all_ivgtt<-all_ivgtt[TIMEtoD<=0,]      
for(i in 1:339) 
{if(all_ivgtt$DM[i]==0) all_ivgtt$TIMEtoD[i]<-0} 
#data_ivgtt<-all_ivgtt[is.na(IV_GLU180)==F & 
is.na(IV_INS180)==F,][,c(1,7,9,10,12:37)]      
#length=317 
data_ivgtt<-na.omit(all_ivgtt[,c(1,7,9,10,12:37)])     #length=301  38 sets have NA 
detach(all_ivgtt) 
 
attach(data_ivgtt) 
id.seq<-unique(PTID) 
time<-c(0,1,3,5,10,20,30,40,50,60,90,120,180) 
dm<-DM 
age<-TESTAGE 
ptid<-PTID    
testage<-TESTAGE                 
timetod<-TIMEtoD 
GLU<-data_ivgtt[,5:17] 
INS<-data_ivgtt[,18:30] 
 
saved.glu<-matrix(,301,180) 
saved.ins<-matrix(,301,180) 
sub<-1 
start<-1 
 
for(i in 1:301) 
{ 
 spl_glu<-
smooth.spline(as.numeric(GLU[i,2:13])~time[2:13],df=8,all.knots=T)          
 glu.pred<-predict(spl_glu,seq(1,180,1)) 
 saved.glu[i,1:180]<-glu.pred$y 
} 
 
#lme fit  glu 
 
base.pv.g<-numeric() 
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base.mn.g<-numeric() 
dm.pv.g<-numeric() 
dm.mn.g<-numeric() 
age.pv.g<-numeric() 
age.mn.g<-numeric() 
timetod.pv.g<-numeric() 
timetod.mn.g<-numeric() 
 
for(i in 1:180) 
{ 
 for(j in 4:8)   #adjust the msTol from 1e-4 to 1e-8 
 { 
 testdata<-data.frame(cbind(ptid,dm,age,timetod,saved.glu[,i])) 
 names(testdata)<-c("PTID","DM","AGE","TIMEtoD","METRIC") 
 testdata.grped<-
groupedData(METRIC~DM+AGE+TIMEtoD|PTID,data=testdata) 
 test1.lme<-
try(lme(METRIC~DM+AGE+TIMEtoD,random=~DM+AGE+TIMEtoD|PTID,data=t
estdata.grped,control=list(maxiter=100,opt="optim",msTol=1/(10^j))),TRUE) 
if(class(test1.lme)=="try-error") break   #if test1.lme is a try-error, 
then quit loop 
 base.pv.g[i]<-summary(test1.lme)$tTable[1,5] 
 base.mn.g[i]<-summary(test1.lme)$tTable[1,1] 
 dm.pv.g[i]<-summary(test1.lme)$tTable[2,5] 
 dm.mn.g[i]<-summary(test1.lme)$tTable[2,1] 
 age.pv.g[i]<-summary(test1.lme)$tTable[3,5] 
 age.mn.g[i]<-summary(test1.lme)$tTable[3,1] 
 timetod.pv.g[i]<-summary(test1.lme)$tTable[4,5] 
 timetod.mn.g[i]<-summary(test1.lme)$tTable[4,1] 
 } 
} 
 
result.glu.ivgtt<-
data.frame(cbind(base.pv.g,base.mn.g,dm.pv.g,dm.mn.g,age.pv.g,age.mn.g,time
tod.pv.g,timetod.mn.g)) 
 
write.table(result.glu.ivgtt,"C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and IVGTT\\result_glu_ivgtt_final.txt",sep=" ",quote=F) 
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APPENDIX D. R CODES FOR GENERATING FIGURES 

The following R codes are used to generate all of the figures presented in the thesis. 
 
 
Figure 2.3 
pred.dmnondmg<-read.table("C:\\Documents and 
Settings\\clin\\Desktop\\homeostasis project\\data pred BUGS DMnonDM g.txt", 
header=T) 
data.dmnondmg<-read.table("C:\\Documents and 
Settings\\clin\\Desktop\\homeostasis project\\data R DMnonDM g.txt", header=T) 
pred.dmnondmi<-read.table("C:\\Documents and 
Settings\\clin\\Desktop\\homeostasis project\\data pred BUGS DMnonDM i.txt", 
header=T) 
data.dmnondmi<-read.table("C:\\Documents and 
Settings\\clin\\Desktop\\homeostasis project\\data R DMnonDM i.txt", header=T) 
n.dmnondmg<-length(pred.dmnondmg[,1])/13  
n.dmnondmi<-length(pred.dmnondmi[,1])/13 
conc.v.dmnondmg<-matrix(data.dmnondmg$dv,13,n.dmnondmg) 
conc.v.dmnondmi<-matrix(data.dmnondmi$dv,13,n.dmnondmi) 
conc.dmg<-matrix(data.dmnondmg$dv[1:(25*13)],,13,byrow=T) 
gbase.dmg<-conc.dmg[,1] 
conc.nondmg<-matrix(data.dmnondmg$dv[(26*13+1):(153*13)],,13,byrow=T) 
gbase.nondmg<-conc.nondmg[,1] 
conc.dmi<-matrix(data.dmnondmi$dv[1:(25*13)],,13,byrow=T) 
ibase.dmi<-conc.dmi[,1] 
conc.nondmi<-matrix(data.dmnondmi$dv[(26*13+1):(153*13)],,13,byrow=T) 
ibase.nondmi<-conc.nondmi[,1] 
air.dmi<-(conc.dmi[,1]-conc.dmi[,1]+conc.dmi[,2]-conc.dmi[,1])*1/2 + 
(conc.dmi[,2]-conc.dmi[,1]+conc.dmi[,3]-conc.dmi[,1])*2/2 + 
(conc.dmi[,3]-conc.dmi[,1]+conc.dmi[,4]-conc.dmi[,1])*2/2 + (conc.dmi[,4]-
conc.dmi[,1]+conc.dmi[,5]-conc.dmi[,1])*5/2 
air.nondmi<-(conc.nondmi[,1]-conc.nondmi[,1]+conc.nondmi[,2]-
conc.nondmi[,1])*1/2 + (conc.nondmi[,2]-conc.nondmi[,1]+conc.nondmi[,3]-
conc.nondmi[,1])*2/2 + 
(conc.nondmi[,3]-conc.nondmi[,1]+conc.nondmi[,4]-conc.nondmi[,1])*2/2 + 
(conc.nondmi[,4]-conc.nondmi[,1]+conc.nondmi[,5]-conc.nondmi[,1])*5/2 
gbase.dmfam<-c(gbase.dmg,gbase.nondmg) 
ibase.dmfam<-c(ibase.dmi,ibase.nondmi) 
air.dmfam<-c(air.dmi,air.nondmi) 
gbase<-c(mean(gbase.dmg),mean(gbase.nondmg)) 
ibase<-c(mean(ibase.dmi),mean(ibase.nondmi)) 
AIR<-c(mean(air.dmi),mean(air.nondmi)) 
par(mfcol=c(3,1)) 
par(mex=0.8) 
dmlabel=c("DM","nonDM") 
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dotchart(gbase,labels=dmlabel,xlim=c(70,90), pch=23,main="Means and 95% 
Confidence Intervals",xlab="Glucose baseline (mg/dL)") 
lines(c(mean(gbase.dmg)-
qnorm(0.975)*sd(gbase.dmg)/sqrt(25),mean(gbase.dmg)+qnorm(0.975)*sd(gbas
e.dmg)/sqrt(25)),c(1,1),lwd=4) 
lines(c(mean(gbase.nondmg)-
qnorm(0.975)*sd(gbase.nondmg)/sqrt(128),mean(gbase.nondmg)+qnorm(0.975)
*sd(gbase.nondmg)/sqrt(128)),c(2,2),lwd=4) 
dotchart(ibase,labels=dmlabel,xlim=c(10,40), pch=23,main="",xlab="Insulin 
baseline (mU/L)") 
lines(c(mean(ibase.dmi)-
qnorm(0.975)*sd(ibase.dmi)/sqrt(25),mean(ibase.dmi)+qnorm(0.975)*sd(ibase.d
mi)/sqrt(25)),c(1,1),lwd=4) 
lines(c(mean(ibase.nondmi)-
qnorm(0.975)*sd(ibase.nondmi)/sqrt(128),mean(ibase.nondmi)+qnorm(0.975)*sd
(ibase.nondmi)/sqrt(128)),c(2,2),lwd=4) 
dotchart(AIR,labels=dmlabel,xlim=c(400,1200), pch=23,main="",xlab="Acute 
insulin response (min mU/L)") 
lines(c(mean(air.dmi)-
qnorm(0.975)*sd(air.dmi)/sqrt(25),mean(air.dmi)+qnorm(0.975)*sd(air.dmi)/sqrt(2
5)),c(1,1),lwd=4) 
lines(c(mean(air.nondmi)-
qnorm(0.975)*sd(air.nondmi)/sqrt(128),mean(air.nondmi)+qnorm(0.975)*sd(air.n
ondmi)/sqrt(128)),c(2,2),lwd=4) 
 
 
Figure 2.4 
dmnondmratio<-read.table("C:\\Documents and 
Settings\\clin\\Desktop\\homeostasis project\\data pred BUGS 
DMnonDMratio.txt", header=T)  #fixed 
par(mfrow=c(1,1)) 
par(mex=0.8) 
para<-matrix(dmnondmratio$median,1,10,byrow=T) 
kgp<-para[,1] 
vg<-para[,2] 
kgr<-para[,3] 
Smaxgr<-para[,4] 
kic50<-para[,5] 
Sip<-para[,6] 
beta<-para[,7] 
kisec<-para[,8] 
kir<-para[,9] 
Sp<-para[,10] 
para.table<-cbind(Sp,kir,kisec,beta,Sip,kic50,Smaxgr,kgr,vg,kgp) 
rownames(para.table)<-c("diabetic") 
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datlabel<-
c(expression(S[p]),expression(k[ir]),expression(k[isec]),expression(beta),expressi
on(S[ip]),expression(k[ic50]),expression(S[maxgr]),expression(k[gr]),expression(v
[g]),expression(k[gp])) 
dotchart(100*para.table[1,],labels=datlabel,xlim=c(-100,450),pch=23,main="95% 
credible sets of parameters' differences (progressors vs 
nonprogressors)",xlab="Difference in percentage (%)") 
for(i in 1:10) 
{ 
 lines(100*c(dmnondmratio$pred2.5[i],dmnondmratio$pred97.5[i]),c(abs(i-
11),abs(i-11)),lwd=5) 
} 
lines(c(0,0),c(0,34),lty=2) 
text(100*dmnondmratio$pred97.5[9]+15,2,cex = 1.5,"*") #kir 2 
text(100*dmnondmratio$pred97.5[4]+15,7,cex = 1.5,"*") #Simax 7 
 
 
Figure 2.5 
j<-13                                     
dm<-c(rep(1,26),rep(0,128)) 
#Get 95% PI data form WinBugs outpot 
pred97.5.v.dmnondmg<-
matrix(pred.dmnondmg$pred97.5[1:length(data.dmnondmg[,1])],j,n.dmnondmg) 
pred2.5.v.dmnondmg<-
matrix(pred.dmnondmg$pred2.5[1:length(data.dmnondmg[,1])],j,n.dmnondmg) 
median.v.dmnondmg<-
matrix(pred.dmnondmg$median[1:length(data.dmnondmg[,1])],j,n.dmnondmg) 
id.v.dmnondmg<-matrix(data.dmnondmg$id,j,n.dmnondmg) 
time.v.dmnondmg<-matrix(data.dmnondmg$time,j,n.dmnondmg) 
conc.v.dmnondmg<-matrix(data.dmnondmg$dv,j,n.dmnondmg) 
dm<-c(rep(2,26),rep(1,128),rep(0,187)) 
#Get 95% PI data form WinBugs outpot 
pred97.5.v.dmnondmi<-
matrix(pred.dmnondmi$pred97.5[1:length(data.dmnondmi[,1])],j,n.dmnondmi) 
pred2.5.v.dmnondmi<-
matrix(pred.dmnondmi$pred2.5[1:length(data.dmnondmi[,1])],j,n.dmnondmi) 
median.v.dmnondmi<-
matrix(pred.dmnondmi$median[1:length(data.dmnondmi[,1])],j,n.dmnondmi) 
id.v.dmnondmi<-matrix(data.dmnondmi$id,j,n.dmnondmi) 
time.v.dmnondmi<-matrix(data.dmnondmi$time,j,n.dmnondmi) 
conc.v.dmnondmi<-matrix(data.dmnondmi$dv,j,n.dmnondmi) 
par(mfrow=c(2,2)) 
par(mex=0.7) 
time.dmg<-data.dmnondmg$time[1:(25*13)] 
conc.dmg<-data.dmnondmg$dv[1:(25*13)] 
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plot(conc.dmg~time.dmg,pch=20,xlim=c(0,200),ylim=c(20,800), xlab="Time 
(Min)",ylab="Glucose Conc (mg/dL)",main="Progressor group (nobs=325)") 
lines(pred.dmnondmg$median[(25*13+1):(26*13)]~time.v.dmnondmg[,1],lty=1,lw
d=1) 
lines(pred.dmnondmg$pred97.5[(25*13+1):(26*13)]~time.v.dmnondmg[,1],lty=3,l
wd=1) 
lines(pred.dmnondmg$pred2.5[(25*13+1):(26*13)]~time.v.dmnondmg[,1],lty=3,lw
d=1) 
time.nondmg<-data.dmnondmg$time[(26*13+1):(153*13)] 
conc.nondmg<-data.dmnondmg$dv[(26*13+1):(153*13)] 
plot(conc.nondmg~time.nondmg,pch=20,xlim=c(0,200),ylim=c(20,800), 
xlab="Time (Min)",ylab="Glucose Conc (mg/dL)",main="Non-progressor group 
(nobs=1645)") 
lines(pred.dmnondmg$median[(153*13+1):(154*13)]~time.v.dmnondmg[,1],lty=1,l
wd=1) 
lines(pred.dmnondmg$pred97.5[(153*13+1):(154*13)]~time.v.dmnondmg[,1],lty=
3,lwd=1) 
lines(pred.dmnondmg$pred2.5[(153*13+1):(154*13)]~time.v.dmnondmg[,1],lty=3,
lwd=1) 
time.dmi<-data.dmnondmi$time[1:(25*13)] 
conc.dmi<-data.dmnondmi$dv[1:(25*13)] 
plot(conc.dmi~time.dmi,pch=20,xlim=c(0,200),ylim=c(1,800), xlab="Time 
(Min)",ylab="Insulin Conc (mU/L)",main="Progressor group (nobs=325)") 
lines(pred.dmnondmi$median[(25*13+1):(26*13)]~time.v.dmnondmi[,1],lty=1,lwd
=1) 
lines(pred.dmnondmi$pred97.5[(25*13+1):(26*13)]~time.v.dmnondmi[,1],lty=3,lw
d=1) 
lines(pred.dmnondmi$pred2.5[(25*13+1):(26*13)]~time.v.dmnondmi[,1],lty=3,lwd
=1) 
time.nondmi<-data.dmnondmi$time[(26*13+1):(153*13)] 
conc.nondmi<-data.dmnondmi$dv[(26*13+1):(153*13)] 
plot(conc.nondmi~time.nondmi,pch=20,xlim=c(0,200),ylim=c(1,800), xlab="Time 
(Min)",ylab="Insulin Conc (mU/L)",main="Non-progressor group (nobs=1650)") 
lines(pred.dmnondmi$median[(153*13+1):(154*13)]~time.v.dmnondmi[,1],lty=1,l
wd=1) 
lines(pred.dmnondmi$pred97.5[(153*13+1):(154*13)]~time.v.dmnondmi[,1],lty=3,l
wd=1) 
lines(pred.dmnondmi$pred2.5[(153*13+1):(154*13)]~time.v.dmnondmi[,1],lty=3,l
wd=1) 
 
 
Figure 2.6 
par(mfrow=c(2,2)) 
par(mex=0.7) 
i<-3 
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plot(pred97.5.v.dmnondmg[,i]~time.v.dmnondmg[,i], 
type="l",xlim=c(0,200),ylim=c(50,450),log="y" 
, xlab="Time (Min)",ylab="Glucose Conc (mg/dL)",main=c("Progressor 
Group"),lty=3) 
points(conc.v.dmnondmg[,i]~time.v.dmnondmg[,i],pch=20) 
lines(median.v.dmnondmg[,i]~time.v.dmnondmg[,i], lty=1) 
lines(pred2.5.v.dmnondmg[,i]~time.v.dmnondmg[,i],lty=3) 
i<-91 
plot(pred97.5.v.dmnondmg[,i]~time.v.dmnondmg[,i], 
type="l",xlim=c(0,200),ylim=c(50,450),log="y" 
, xlab="Time (Min)",ylab="Glucose Conc (mg/dL)",main=c("Non-progressor 
Group"),lty=3) 
points(conc.v.dmnondmg[,i]~time.v.dmnondmg[,i],pch=20) 
lines(median.v.dmnondmg[,i]~time.v.dmnondmg[,i], lty=1) 
lines(pred2.5.v.dmnondmg[,i]~time.v.dmnondmg[,i],lty=3) 
i<-3 
plot(pred97.5.v.dmnondmi[,i]~time.v.dmnondmi[,i], 
type="l",xlim=c(0,200),ylim=c(5,250),log="y" 
, xlab="Time (Min)",ylab="Insulin Conc (mU/L)",main=c("Progressor 
Group"),lty=3) 
points(conc.v.dmnondmi[,i]~time.v.dmnondmi[,i],pch=20) 
lines(median.v.dmnondmi[,i]~time.v.dmnondmi[,i], lty=1) 
lines(pred2.5.v.dmnondmi[,i]~time.v.dmnondmi[,i],lty=3) 
i<-91 
plot(pred97.5.v.dmnondmi[,i]~time.v.dmnondmi[,i], 
type="l",xlim=c(0,200),ylim=c(5,250),log="y" 
, xlab="Time (Min)",ylab="Insulin Conc (mU/L)",main=c("Non-progressor 
Group"),lty=3) 
points(conc.v.dmnondmi[,i]~time.v.dmnondmi[,i],pch=20) 
lines(median.v.dmnondmi[,i]~time.v.dmnondmi[,i], lty=1) 
lines(pred2.5.v.dmnondmi[,i]~time.v.dmnondmi[,i],lty=3) 
 
 
Figure 2.7 
par(mfrow=c(2,2)) 
par(mex=0.7) 
plot(conc.dmg~pred.dmnondmg$median[1:(25*13)],xlim=c(0,550),ylim=c(0,550),
pch=20,xlab="Individual Predicted Glucose Conc(mg/dL)",ylab="Oberved 
Glucose Conc (mg/dL)",main="Progressor group (nobs=325)" ) 
lines(c(0,550),c(0,550)) 
cor(conc.dmg,pred.dmnondmg$median[1:(25*13)]) 
text(400,100, c("Cor: 0.992")) 
plot(conc.nondmg~pred.dmnondmg$median[(26*13+1):(153*13)],xlim=c(0,550),y
lim=c(0,550),pch=20,xlab="Individual Predicted Glucose 
Conc(mg/dL)",ylab="Oberved Glucose Conc (mg/dL)",main="Non-progressor 
group (nobs=1645)") 
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lines(c(0,550),c(0,550)) 
cor(conc.nondmg,pred.dmnondmg$median[(26*13+1):(153*13)],use="complete.o
bs") 
text(400,100, c("Cor: 0.987")) 
plot(conc.dmi~pred.dmnondmi$median[1:(25*13)],xlim=c(0,900),ylim=c(0,900),pc
h=20,xlab="Individual Predicted Insulin Conc(mU/L)",ylab="Oberved Insulin Conc 
(mU/L)",main="Progressor group (nobs=325)") 
lines(c(0,800),c(0,800)) 
cor(conc.dmi,pred.dmnondmi$median[1:(25*13)]) 
text(650,180, c("Cor: 0.982")) 
plot(conc.nondmi~pred.dmnondmi$median[(26*13+1):(153*13)],xlim=c(0,900),yli
m=c(0,900),pch=20,xlab="Individual Predicted Insulin 
Conc(mU/L)",ylab="Oberved Insulin Conc (mU/L)",main="Non-progressor group 
(nobs=1650)") 
lines(c(0,800),c(0,800)) 
cor(conc.nondmi,pred.dmnondmi$median[(26*13+1):(153*13)],use="complete.ob
s") 
text(650,180, c("Cor: 0.985")) 
 
 
Figure 2.8 
par(mfrow=c(2,2)) 
par(mex=0.7) 
residual1<-log(conc.dmg)-log(pred.dmnondmg$median[1:(25*13)]) 
plot(residual1~sqrt(time.dmg),pch=20,ylim=c(-
0.8,0.8),xlab=expression(paste(sqrt(Time(min)))),ylab="Log glucose 
concnetration residual",main="Progressor group (nobs=325)") 
abline(0,0) 
low1<-qnorm(0.025,0,sd=sd(residual1)) 
high1<-qnorm(0.975,0,sd=sd(residual1)) 
#abline(low1,0,lwd=2,lty=3) 
#abline(high1,0,lwd=2,lty=3) 
residual3<-log(conc.nondmg)-log(pred.dmnondmg$median[(26*13+1):(153*13)]) 
plot(residual3~sqrt(time.nondmg),pch=20,ylim=c(-
0.8,0.8),xlab=expression(paste(sqrt(Time(min)))),ylab="Log glucose 
concnetration residual",main="Non-progressor group (nobs=1645)") 
abline(0,0) 
low3<-qnorm(0.025,0,sd=sd(residual3,na.rm=T)) 
high3<-qnorm(0.975,0,sd=sd(residual3,na.rm=T)) 
#abline(low3,0,lwd=2,lty=3) 
#abline(high3,0,lwd=2,lty=3) 
residual2<-log(conc.dmi)-log(pred.dmnondmi$median[1:(25*13)]) 
plot(residual2~sqrt(time.dmi),pch=20,ylim=c(-
1.5,1.5),xlab=expression(paste(sqrt(Time(min)))),ylab="Log insulin concnetration 
residual",main="Progressor group (nobs=325)") 
abline(0,0) 
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low2<-qnorm(0.025,0,sd=sd(residual2)) 
high2<-qnorm(0.975,0,sd=sd(residual2)) 
conc.nondmi[181]<-1.0 
residual4<-log(conc.nondmi)-log(pred.dmnondmi$median[(26*13+1):(153*13)]) 
plot(residual4~sqrt(time.nondmi),pch=20,ylim=c(-
1.5,1.5),xlab=expression(paste(sqrt(Time(min)))),ylab="Log insulin concnetration 
residual",main="Non-progressor group (nobs=1650)") 
abline(0,0) 
low4<-qnorm(0.025,0,sd=sd(residual4,na.rm=T)) 
high4<-qnorm(0.975,0,sd=sd(residual4,na.rm=T)) 
 
 
Figure 2.9 
#(a)Insulin's Glucose Removal Effect vs Insulin Concentration 
expmu<-read.table("C:\\Documents and Settings\\clin\\Desktop\\homeostasis 
project\\data pred BUGS expmu.txt", header=T)  #fixed 
mudm<-read.table("C:\\Documents and Settings\\clin\\Desktop\\homeostasis 
project\\data pred BUGS mudm.txt", header=T)  #fixed 
par(mfrow=c(1,1)) 
par(mex=0.8) 
kgr<-expmu$median[3] 
Simax<-expmu$median[4] 
kic50<-expmu$median[5] 
I<-c(1:200) 
vi<-70.472857/10.2222 
Iss<-expmu$median[6]/(vi*expmu$median[9])  
gr<-kgr+Simax*pmax(I-Iss,0)/(kic50+pmax(I-Iss,0)) 
plot(gr~I,type="l",ylim=c(0,0.042),main="(a) Insulin-Dependent Glucose Removal 
Effect Curves",ylab="Glucose Removal (1/min)",xlab="Inuslin Concentration 
(mU/L)",lty=1) 
kgr<-mudm$median[3] 
Simax<-mudm$median[4] 
kic50<-mudm$median[5] 
I<-c(1:200) 
vi<-96.272064/10.2222 
Iss<-mudm$median[6]/(vi*mudm$median[9])  
gr<-kgr+Simax*pmax(I-Iss,0)/(kic50+pmax(I-Iss,0)) 
lines(gr~I,type="l",lty=2) 
text(52,0.024,"Non-progressor") 
text(52,0.022,"group") 
text(110,0.018,"progressor") 
text(110,0.016,"group") 
quantile(data.dmnondmi[,3],c(0.025,0.975),na.rm = T) 
#(b)  Insulin Production Rate vs Glucose Concentration 
par(mfrow=c(1,1)) 
par(mex=0.8) 
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G<-c(0:300) 
kip<-expmu$median[6] 
beta<-expmu$median[7] 
gss<-expmu$median[1]/(expmu$median[2]*70.472857*expmu$median[3])  
ip<-kip*(G/gss)^beta 
plot(ip~G,type="l",ylim=c(0,80),main="(b) Glucose-Dependent Insulin Production 
Rate Curves",ylab="Insulin Production Rate (mU/min)", xlab="Glucose 
Concentration (mg/dL)") 
 
kip<-mudm$median[6] 
beta<-mudm$median[7] 
gss<-mudm$median[1]/(mudm$median[2]*96.272064*mudm$median[3])  
ip<-kip*(G/gss)^beta 
lines(ip~G,type="l",lty=3) 
text(170,44,"Progressor") 
text(170,48,"group") 
text(250,34,"Non-progressor") 
text(250,30,"group") 
quantile(data.dmnondmg[,3],c(0.025,0.975),na.rm = T) 
 
 
Figure 3.1 
WINBUGS_glu_ins<-read.table("C:\\Documents and 
Settings\\clin\\Desktop\\Disease development and FBG 
FSI\\WINBUGS_glu_ins.txt", header=T) 
library(nlme) 
attach(WINBUGS_glu_ins) 
DM_glu_ins<-na.omit(WINBUGS_glu_ins[DM==1,]) 
detach(WINBUGS_glu_ins) 
attach(DM_glu_ins) 
AgeOut<-DM_glu_ins$TestAge-TIMEtoD 
#profile of follow-up 
testdata.dm.na<-
data.frame(cbind(DM_glu_ins$PTID,DM_glu_ins$SEX,DM_glu_ins$TestAge, 
AgeOut,DM_glu_ins$TIMEtoD,DM_glu_ins$FBG,DM_glu_ins$BMI)) 
names(testdata.dm.na)<-c("PTID","SEX","AGE","AGEOUT", 
"TIMEtoD","FBG","BMI") 
testdata.dm<-na.omit(testdata.dm.na) 
id.seq<-unique(testdata.dm$PTID) 
seq.len.dm<-length(id.seq) 
plot(NULL,ylim=c(0.5,25.5),yaxt="n",xlim=c(15,85),ylab="Subjects 
(n=25)",xlab="Age (year)", 
main="Follow-up in the progressor group",font=2, font.lab=2) 
SEX.pg<-numeric() 
AGE.pg<-numeric() 
BMI.pg<-numeric() 
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FOLLOW.pg<-numeric() 
length.pg<-numeric() 
AgeOut.pg<-numeric() 
for(i in 1:seq.len.dm) 
{ 
 SEX.pg[i]<-testdata.dm[testdata.dm[["PTID"]]==id.seq[i],]$SEX[1]  
 AGE.pg[i]<-testdata.dm[testdata.dm[["PTID"]]==id.seq[i],]$AGE[1]  
 BMI.pg[i]<-testdata.dm[testdata.dm[["PTID"]]==id.seq[i],]$BMI[1] 
 AgeOut.pg[i]<-testdata.dm[testdata.dm[["PTID"]]==id.seq[i],]$AGEOUT[1]  
 FOLLOW.pg[i]<--
testdata.dm[testdata.dm[["PTID"]]==id.seq[i],]$TIMEtoD[1] 
 length.pg[i]<-length(testdata.dm[testdata.dm[["PTID"]]==id.seq[i],]$AGE) 
 age<-testdata.dm[testdata.dm[["PTID"]]==id.seq[i],]$AGE 
 y<-rep(i,length(age)) 
 points(y~age,pch=20,cex=0.85) 
 time.dm<-testdata.dm[testdata.dm[["PTID"]]==id.seq[i],]$AGEOUT[1] 
 duration<-c(min(age),time.dm) 
 pt<-c(i,i) 
 lines(pt~duration) 
 points(i~time.dm,pch=4) 
} 
detach(DM_glu_ins) 
 
 
Figure 3.2 
attach(WINBUGS_glu_ins) 
CON_glu_ins<-na.omit(WINBUGS_glu_ins[DM==0,]) 
detach(WINBUGS_glu_ins) 
attach(CON_glu_ins) 
AgeOut<-CON_glu_ins$TestAge-TIMEtoD 
#profile of follow-up 
testdata.CON.na<-
data.frame(cbind(CON_glu_ins$PTID,CON_glu_ins$SEX,CON_glu_ins$TestAge
, AgeOut,CON_glu_ins$TIMEtoD,CON_glu_ins$FBG,CON_glu_ins$BMI)) 
names(testdata.CON.na)<-c("PTID","SEX","AGE","AGEOUT", 
"TIMEtoD","FBG","BMI") 
testdata.CON<-na.omit(testdata.CON.na) 
id.seq<-unique(testdata.CON$PTID) 
seq.len.CON<-length(id.seq) 
plot(NULL,ylim=c(0.5,127.5),yaxt="n",xlim=c(15,85),ylab="Subjects 
(n=127)",xlab="Age (year)", 
main="Follow-up in the non-progressor group",font=2,font.lab=2) 
SEX.nonpg<-numeric() 
AGE.nonpg<-numeric() 
BMI.nonpg<-numeric() 
FOLLOW.nonpg<-numeric() 
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length.nonpg<-numeric() 
for(i in 1:seq.len.CON) 
{ 
 SEX.nonpg[i]<-testdata.CON[testdata.CON[["PTID"]]==id.seq[i],]$SEX[1]  
 AGE.nonpg[i]<-testdata.CON[testdata.CON[["PTID"]]==id.seq[i],]$AGE[1]  
 BMI.nonpg[i]<-testdata.CON[testdata.CON[["PTID"]]==id.seq[i],]$BMI[1]  
 FOLLOW.nonpg[i]<--
testdata.CON[testdata.CON[["PTID"]]==id.seq[i],]$TIMEtoD[1] 
 length.nonpg[i]<-
length(testdata.CON[testdata.CON[["PTID"]]==id.seq[i],]$AGE) 
 
 age<-testdata.CON[testdata.CON[["PTID"]]==id.seq[i],]$AGE 
 y<-rep(i,length(age)) 
 points(y~age,pch=20,cex=0.85) 
 time.CON<-testdata.CON[testdata.CON[["PTID"]]==id.seq[i],]$AGEOUT[1] 
 duration<-c(min(age),time.CON) 
 pt<-c(i,i) 
 lines(pt~duration) 
 #points(i~time.CON,pch=4) 
} 
 
 
Figure 3.3 
timetod<-seq(-25,0,0.001) 
x<-seq(-25,0,0.001) 
par(mfrow=c(2,2)) 
i<-1 
plot(DM_glu_ins[,7]~DM_glu_ins$TIMEtoD, pch=19,cex=0.60, 
xlab="TIMEtoD (years)", ylab="FBG (mg/dL)", ylim=c(60,150),main="Pooled data 
fit (Progressors)",font=2,font.lab=2) 
gcv<-smooth.spline(DM_glu_ins[,7]~DM_glu_ins$TIMEtoD) 
lines(predict(gcv,x),lwd=2) 
i<-2 
plot(DM_glu_ins[,8]~DM_glu_ins$TIMEtoD, pch=19,cex=0.60, 
xlab="TIMEtoD (years)", ylab="FSI (mU/L)",ylim=c(0,150), main="Pooled data fit 
(Progressors)",font=2,font.lab=2) 
gcv<-smooth.spline(DM_glu_ins[,8]~DM_glu_ins$TIMEtoD) 
lines(predict(gcv,x),lwd=2) 
i<-3 
plot(DM_glu_ins[,11]~DM_glu_ins$TIMEtoD, pch=19,cex=0.60, 
xlab="TIMEtoD (years)", ylab="HOMA-IR", ylim=c(0,40),main="Pooled data fit 
(Progressors)",font=2,font.lab=2) 
gcv<-smooth.spline(DM_glu_ins[,11]~DM_glu_ins$TIMEtoD) 
lines(predict(gcv,x),lwd=2) 
i<-4 
plot(DM_glu_ins[,9]~DM_glu_ins$TIMEtoD, pch=19,cex=0.60, 
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xlab="TIMEtoD (years)", ylab="BMI", ylim=c(15,70),main="Pooled data fit 
(Progressors)",font=2,font.lab=2) 
gcv<-smooth.spline(DM_glu_ins[,9]~DM_glu_ins$TIMEtoD) 
lines(predict(gcv,x),lwd=2) 
 
 
Figure 3.4 
nf <- layout(matrix(1:2,1,2,byrow=TRUE), c(1,1.97), c(1.5), TRUE) 
layout.show(nf) 
mar1a<-c(5,4,2,2)+0.1 
par(mar=mar1a) 
pred.time<-seq(-25,0,0.01) 
pred.FBG<-79.33+0.227*as.numeric(I(pred.time< (-8.73)))*(pred.time+8.73)+ 
(0.227+2.27)*as.numeric(I(pred.time> (-8.73)))*(pred.time+8.73) 
plot(testdata.dm$FBG~testdata.dm$TIMEtoD, 
pch=20,cex=0.55,ylim=c(60,145),xaxp=c(-20,0,2), 
xlab="TIMEtoD (years)", ylab="FBG (mg/dL)", 
main="Progressors",font=2,font.lab=2) 
lines(pred.FBG~pred.time,lwd=2) 
pred.AGE<-seq(0,100,0.01) 
pred.FBG<-69.2+pred.AGE*0.27 
plot(testdata.CON$FBG~testdata.CON$AGE,pch=20,cex=0.55,ylim=c(60,145), 
xlab="Age (years)", ylab="FBG (mg/dL)", main="Non-
progressors",font=2,font.lab=2) 
lines(pred.FBG~pred.AGE,lwd=2) 
 
 
Figure 3.5 
kage<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and FBG FSI\\predkage.txt", header=T)$mean 
kbase<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and FBG FSI\\predkbase.txt", header=T)$mean 
kbasediff<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and FBG FSI\\predkbasediff.txt", header=T)$mean 
kbp<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and FBG FSI\\predkbp.txt", header=T)$mean 
ktimetod<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and FBG FSI\\predktimetod.txt", header=T)$mean 
testdata<-data.frame(WINBUGS_glu_ins[,c(2,4,5,6,7,8)]) 
id.seq<-unique(testdata$PTID) 
seq.len<-length(id.seq) 
seq_DM<-c(20,27) 
par(mfrow=c(2,2)) 
for(i in seq_DM) 
{  
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 plot(testdata[testdata[["PTID"]]==id.seq[i],]$FBG~testdata[testdata[["PTID"
]]==id.seq[i],]$TestAge,xlim=c(20,65),ylim=c(53,125), 
 xlab="Age (years)",ylab="FBG (mg/dL)",main="Individual fits", 
pch=19,cex=0.75,font=2, font.lab=2) 
 TtoD<-seq(-20,0,0.05) 
 DM_status<-testdata[testdata[["PTID"]]==id.seq[i],]$DM[1] 
 age_start<-testdata[testdata[["PTID"]]==id.seq[i],]$TestAge[1]-
testdata[testdata[["PTID"]]==id.seq[i],]$TIMEtoD[1]-25 
 age<-seq(age_start+5,age_start+25,0.05) 
 y<-kbase[i]+ kbasediff[i]*DM_status+ kage[i]*age + 
ktimetod[i]*as.numeric(I(TtoD>kbp[i]))*(TtoD -kbp[i])*DM_status 
 lines(y~age,lwd=1.5) 
 text(age_start+33,61,"TIMEtoD",font=2) 
 lines(c(age_start+5,age_start+25),c(63,63)) 
 text(age_start+5,58,-20,font=2); 
lines(c(age_start+5,age_start+5),c(61,63)); 
 text(age_start+15,58,-
10,font=2);lines(c(age_start+15,age_start+15),c(61,63)); 
 text(age_start+25,58,0,font=2);lines(c(age_start+25,age_start+25),c(61,63
)); 
} 
i<-20  
 plot(testdata[testdata[["PTID"]]==id.seq[i],]$FSI~testdata[testdata[["PTID"]]
==id.seq[i],]$TestAge,xlim=c(20,65),ylim=c(-5,70), 
 xlab="Age (years)",ylab="FSI (mU/L)",main="Individual fits", 
pch=19,cex=0.75,font=2, font.lab=2) 
 text(age_start+33,14,"TIMEtoD",font=2) 
 lines(c(age_start+5,age_start+25),c(16,16)) 
 text(age_start+5,11,-20,font=2); 
lines(c(age_start+5,age_start+5),c(14,16)); 
 text(age_start+15,11,-
10,font=2);lines(c(age_start+15,age_start+15),c(14,16)); 
 text(age_start+25,11,0,font=2);lines(c(age_start+25,age_start+25),c(14,16
)); 
 
i<-27  
 plot(testdata[testdata[["PTID"]]==id.seq[i],]$FSI~testdata[testdata[["PTID"]]
==id.seq[i],]$TestAge,xlim=c(20,65),ylim=c(-5,70), 
 xlab="Age (years)",ylab="FSI (mU/L)",main="Individual fits", 
pch=19,cex=0.75,font=2, font.lab=2) 
 text(age_start+33,3,"TIMEtoD",font=2) 
 lines(c(age_start+5,age_start+25),c(5,5)) 
 text(age_start+5,0,-20,font=2); lines(c(age_start+5,age_start+5),c(3,5)); 
 text(age_start+15,0,-
10,font=2);lines(c(age_start+15,age_start+15),c(3,5)); 
 text(age_start+25,0,0,font=2);lines(c(age_start+25,age_start+25),c(3,5)); 



 

 

169

Figure 3.6 
WINBUGS_glu_ins<-read.table("C:\\Documents and 
Settings\\clin\\Desktop\\Disease development and FBG 
FSI\\WINBUGS_glu_ins.txt", header=T) 
pred_FBG<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and FBG FSI\\predFBG.txt", header=T)$mean 
 
residual<-WINBUGS_glu_ins$FBG-pred_FBG 
plot(residual~WINBUGS_glu_ins$TestAge,pch=20,cex=0.85,xlab="Age (years)", 
ylab="Residuals", 
main="Residual plot of individual predictions of FBG",font=2, font.lab=2) 
abline(h=0) 
qqnorm(residual,pch=20,cex=0.55) 
qqline(residual) 
 
 
Figure 4.1 
library(nlme) 
all_ivgtt<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and IVGTT\\all_ivgtt.txt", header=T) 
attach(all_ivgtt) 
all_ivgtt<-all_ivgtt[TIMEtoD<=0,]     #360-21=339 
for(i in 1:339) 
{if(all_ivgtt$DM[i]==0) all_ivgtt$TIMEtoD[i]<-0} 
data_ivgtt<-na.omit(all_ivgtt[,c(1,7,9,10,12:37)])     #length=301  38 sets have NA 
detach(all_ivgtt) 
attach(data_ivgtt) 
id.seq<-unique(PTID) 
time<-c(0,1,3,5,10,20,30,40,50,60,90,120,180) 
timetod<-seq(-25,0,0.1) 
age<-seq(15,75,0.01) 
nf <- layout(matrix(1:4,2,2,byrow=TRUE), c(1,1.81), c(1,1), TRUE) 
layout.show(nf) 
result<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and IVGTT\\result_ivgtt_new.txt", header=T) 
result.new<-na.omit(result) 
attach(result.new) 
par<-as.numeric(result.new[timetod.pv.g < 0.05 , ][1,1:8]) 
y<-par[2]+par[4]+par[6]*(47.16+timetod)+par[8]*timetod 
plot(data_ivgtt[DM==1,]$IV_GLU000~data_ivgtt[DM==1,]$TIMEtoD,ylim=c(55,12
0),pch=19,cex=0.65,font=2,font.lab=2, 
ylab="Fasting blood glucose (mg/dL)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(y~timetod) 
y<-par[2]+par[6]*age 
plot(data_ivgtt[DM==0,]$IV_GLU000~data_ivgtt[DM==0,]$TESTAGE,ylim=c(55,1
20),pch=19,cex=0.65,font=2,font.lab=2, 
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ylab="Fasting blood glucose (mg/dL)",xlab="Age (year)") 
lines(y~age) 
par<-as.numeric(result.new[timetod.pv.g < 0.05 , ][6,1:8]) 
y<-par[2]+par[4]+par[6]*(47.16+timetod)+par[8]*timetod 
plot(data_ivgtt[DM==1,]$IV_INS003~data_ivgtt[DM==1,]$TIMEtoD,ylim=c(0,350),
pch=19,cex=0.65,font=2,font.lab=2, 
ylab="Insulin at 3 min (mU/L)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(y~timetod) 
y<-par[2]+par[6]*age 
plot(data_ivgtt[DM==0,]$IV_INS003~data_ivgtt[DM==0,]$TESTAGE,ylim=c(0,35
0),pch=19,cex=0.65,font=2,font.lab=2, 
ylab="Insulin at 3 min (mU/L)",xlab="Age (year)") 
lines(y~age) 
detach(result.new) 
 
 
Figure 4.2 
timetod<-seq(-25,0,0.1) 
age<-seq(15,75,0.01) 
nf <- layout(matrix(1:6,3,2,byrow=TRUE), c(1,1.81), c(1,1,1), TRUE) 
layout.show(nf) 
result.g<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and IVGTT\\result_gludif_ivgtt_final2.txt", header=T) 
attach(result.g) 
par<-as.numeric(result.g[timetod.pv.g<0.05 & dm.pv.g < 0.0005,][3,1:8]) 
#GLU10-50 
y<-par[2]+par[4]+par[6]*(47.16+timetod)+par[8]*timetod 
plot((data_ivgtt[DM==1,]$IV_GLU010-
data_ivgtt[DM==1,]$IV_GLU050)~data_ivgtt[DM==1,]$TIMEtoD,ylim=c(50,230), 
pch=19,cex=0.65,font=2,font.lab=2, 
ylab="G10-50 (mg/dL)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(y~timetod) 
y<-par[2]+par[6]*age 
plot((data_ivgtt[DM==0,]$IV_GLU010-
data_ivgtt[DM==0,]$IV_GLU050)~data_ivgtt[DM==0,]$TESTAGE,ylim=c(50,230), 
pch=19,cex=0.65,font=2,font.lab=2, 
ylab="G10-50 (mg/dL)",xlab="Age (year)") 
lines(y~age) 
detach(result.g) 
result.i<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and IVGTT\\result_insdif_ivgtt_final2.txt", header=T) 
attach(result.i) 
par<-as.numeric(result.i[timetod.pv.i<0.05 & dm.pv.i < 0.000005,][1,1:8]) 
y<--par[2]-par[4]-par[6]*(47.16+timetod)-par[8]*timetod 
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plot((data_ivgtt[DM==1,]$IV_INS120-
data_ivgtt[DM==1,]$IV_INS000)~data_ivgtt[DM==1,]$TIMEtoD,ylim=c(-
40,70),pch=19,cex=0.65,font=2,font.lab=2, 
ylab="I120-0 (mU/L)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(y~timetod) 
y<-par[2]+par[6]*age 
plot((data_ivgtt[DM==0,]$IV_INS120-
data_ivgtt[DM==0,]$IV_INS000)~data_ivgtt[DM==0,]$TESTAGE,ylim=c(-
40,70),pch=19,cex=0.65,font=2,font.lab=2, 
ylab="I120-0 (mU/L)",xlab="Age (year)") 
lines(y~age) 
#IV_INS003-IV_INS020 
par<-as.numeric(result.i[timetod.pv.i<0.05 & dm.pv.i < 0.000005,][3,1:8]) 
y<-par[2]+par[4]+par[6]*(47.16+timetod)+par[8]*timetod 
plot((data_ivgtt[DM==1,]$IV_INS003-
data_ivgtt[DM==1,]$IV_INS020)~data_ivgtt[DM==1,]$TIMEtoD,ylim=c(-
160,160),pch=19,cex=0.65,font=2,font.lab=2, 
ylab="I3-20 (mU/L)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(y~timetod) 
y<-par[2]+par[6]*age 
plot((data_ivgtt[DM==0,]$IV_INS003-
data_ivgtt[DM==0,]$IV_INS020)~data_ivgtt[DM==0,]$TESTAGE,ylim=c(-
160,160),pch=19,cex=0.65,font=2,font.lab=2, 
ylab="I3-20 (mU/L)",xlab="Age (year)") 
lines(y~age) 
 
 
Figure 4.3 
GLU<-data_ivgtt[,5:17] 
INS<-data_ivgtt[,18:30] 
detach(data_ivgtt) 
par(mfcol=c(2,2)) 
i<-144 
 plot(as.numeric(GLU[i,2:13])~time[2:13],pch=19,cex=0.65,font=2,font.lab=
2, 
 ylab="Glu conc (mg/dL)",xlab="Time (min)",main="Cubic spline fit of 
IVGTT data ",ylim=c(0,700)) 
 spl_glu<-
smooth.spline(as.numeric(GLU[i,2:13])~time[2:13],df=8,all.knots=T) 
 glu.pred<-predict(spl_glu,seq(1,180,0.1)) 
 lines(glu.pred) 
 plot(as.numeric(INS[i,2:13])~time[2:13],pch=19,cex=0.65,font=2,font.lab=2
, 
 ylab="Ins conc (mU/L)",xlab="Time (min)",ylim=c(0,300)) 
 spl_ins<-
smooth.spline(as.numeric(INS[i,2:13])~time[2:13],df=7,all.knots=T) 
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 ins.pred<-predict(spl_ins,seq(1,180,0.1)) 
 lines(ins.pred) 
i<-230 
 plot(as.numeric(GLU[i,2:13])~time[2:13],pch=19,cex=0.65,font=2,font.lab=
2, 
 ylab="Glu conc (mg/dL)",xlab="Time (min)",main="Cubic spline fits of 
IVGTT data",ylim=c(0,700)) 
 spl_glu<-
smooth.spline(as.numeric(GLU[i,2:13])~time[2:13],df=8,all.knots=T) 
 glu.pred<-predict(spl_glu,seq(1,180,0.1)) 
 lines(glu.pred) 
 plot(as.numeric(INS[i,2:13])~time[2:13],pch=19,cex=0.65,font=2,font.lab=2
, 
 ylab="Ins conc (mU/L)",xlab="Time (min)",ylim=c(0,300)) 
 spl_ins<-
smooth.spline(as.numeric(INS[i,2:13])~time[2:13],df=7,all.knots=T) 
 ins.pred<-predict(spl_ins,seq(1,180,0.1)) 
 lines(ins.pred) 
 
 
Figure 4.4 
result.glu.ivgtt<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and IVGTT\\result_glu_ivgtt_final.txt", header=T) 
attach(result.glu.ivgtt) 
result.ins.ivgtt<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and IVGTT\\result_ins_ivgtt_final.txt", header=T) 
attach(result.ins.ivgtt) 
par(mfrow=c(2,2)) 
plot(timetod.mn.g[1:180]~c(1:180),xlab="Time(min)",ylab=expression(mu[TIMEto
D]),main="Fixed effect parameters of TIMEtoD (Glucose)",type="l",ylim=c(-
1.6,1.1)) 
points(timetod.mn.g[1:180]~c(1:180),pch=19,cex=0.4) 
abline(h=0,lty=2) 
plot(timetod.pv.g[1:180]~c(1:180),ylim=c(0,1),xlab="Time(min)",ylab="P-
value",main="P-values (Glucose)",type="l") 
points(timetod.pv.g[1:180]~c(1:180),pch=19,cex=0.4) 
abline(h=0.05,lty=2) 
plot(dm.mn.g[1:180]~c(1:180),xlab="Time(min)",ylab=expression(mu[PG]),main=
"Fixed effect parameters of PG (Glucose)",type="l") 
points(dm.mn.g[1:180]~c(1:180),pch=19,cex=0.4) 
abline(h=0,lty=2) 
plot(dm.pv.g[1:180]~c(1:180),ylim=c(0,1),xlab="Time(min)",ylab="P-
value",main="P-values (Glucose)",type="l") 
points(dm.pv.g[1:180]~c(1:180),pch=19,cex=0.4) 
abline(h=0.05,lty=2) 
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Figure 4.5 
par(mfrow=c(2,2)) 
plot(timetod.mn.i[1:180]~c(1:180),xlab="Time(min)",ylab=expression(mu[TIMEto
D]),main="Fixed effect parameters of TIMEtoD (Insulin)",type="l",ylim=c(-3,1.1)) 
points(timetod.mn.i[1:180]~c(1:180),pch=19,cex=0.4) 
abline(h=0,lty=2) 
plot(timetod.pv.i[1:180]~c(1:180),ylim=c(0,1),xlab="Time(min)",ylab="P-
value",main="P-values (Insulin)",type="l") 
points(timetod.pv.i[1:180]~c(1:180),pch=19,cex=0.4) 
abline(h=0.05,lty=2) 
plot(dm.mn.i[1:180]~c(1:180),xlab="Time(min)",ylab=expression(mu[PG]),main="
Fixed effect parameters of PG (Insulin)",type="l") 
points(dm.mn.i[1:180]~c(1:180),pch=19,cex=0.4) 
abline(h=0,lty=2) 
plot(dm.pv.i[1:180]~c(1:180),ylim=c(0,1),xlab="Time(min)",ylab="P-
value",main="P-values (Insulin)",type="l") 
points(dm.pv.i[1:180]~c(1:180),pch=19,cex=0.4) 
abline(h=0.05,lty=2) 
 
 
Figure 4.6 
saved.glu<-matrix(,301,180) 
saved.ins<-matrix(,301,180) 
sub<-1 
start<-1 
for(i in 1:301) 
{ 
 spl_glu<-
smooth.spline(as.numeric(GLU[i,2:13])~time[2:13],df=8,all.knots=T)          
 glu.pred<-predict(spl_glu,seq(1,180,1)) 
 saved.glu[i,1:180]<-glu.pred$y 
 
 spl_ins<-
smooth.spline(as.numeric(INS[i,2:13])~time[2:13],df=7,all.knots=T) 
 ins.pred<-predict(spl_ins,seq(1,180,1)) 
 saved.ins[i,1:180]<-ins.pred$y 
} 
plot.data<-data.frame(cbind(data_ivgtt[,1:4],saved.ins[,104])) 
names(plot.data)<-c("PTID","TESTAGE","DM","TIMEtoD","INS104") 
attach(plot.data) 
result.ins.ivgtt<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and IVGTT\\result_ins_ivgtt_final.txt", header=T) 
attach(result.ins.ivgtt) 
parins104<-as.numeric(result.ins.ivgtt[104,]) 
nf <- layout(matrix(1:2,1,2,byrow=TRUE), c(1,1.81), c(1), TRUE) 
layout.show(nf) 
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timetod<-seq(-25,0,0.1) 
age<-seq(15,75,0.01) 
y<-
parins104[2]+parins104[4]+parins104[6]*(47.16+timetod)+parins104[8]*timetod 
plot(plot.data[DM==1,]$INS104~plot.data[DM==1,]$TIMEtoD,ylim=c(0,150),pch=
19,cex=0.5,font=2,font.lab=2, 
ylab="Insulin at 104 min (mU/L)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(y~timetod) 
y<-parins104[2]+parins104[6]*age 
plot(plot.data[DM==0,]$INS104~plot.data[DM==0,]$TESTAGE,ylim=c(0,150),pch
=19,cex=0.5,font=2,font.lab=2, 
ylab="Insulin at 104 min (mU/L)",xlab="Age (year)") 
lines(y~age) 
 
 
Figure 5.1 
all_ogtt<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and ogtt\\all_ogtt.txt", header=T) 
attach(all_ogtt) 
all_ogtt<-all_ogtt[TIMEtoD<=0,]     
for(i in 1:552) 
{if(all_ogtt$DM[i]==0) all_ogtt$TIMEtoD[i]<-0} 
data_ogtt<-na.omit(all_ogtt[,c(1,4,7:18,20,22,25:31,33,35,38)])     #length=527  
detach(all_ogtt) 
attach(data_ogtt) 
id.seq<-unique(PTID) 
time<-c(0,15,30,45,60,90,120,180,240) 
ptid<-PTID    
age<-TESTAGE                 
timetod<-TIMEtoD 
dm<-DM 
GLU<-data_ogtt[,8:16] 
INS<-data_ogtt[,17:25] 
pred.time<-c(1:240) 
aucg240<-numeric() 
for(j in 1:527) 
{ 
 g<-as.numeric(GLU[j,]) 
 aucg240[j]<-15*(g[1]+g[2])/2 +15*(g[2]+g[3])/2 +15*(g[3]+g[4])/2 
+15*(g[4]+g[5])/2 + 
  30*(g[5]+g[6])/2 +30*(g[6]+g[7])/2 +60*(g[7]+g[8])/2 
+60*(g[8]+g[9])/2 
} 
 
timetod.pred<-seq(-25,0,0.1) 
par(mfrow=c(3,2)) 
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result<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and OGTT\\result_ogtt_new.txt", header=T) 
result.new<-na.omit(result) 
attach(result.new) 
par<-as.numeric(result.new[timetod.pv.g < 0.05 & dm.pv.g < 0.0001, ][1,1:8]) 
y<-par[2]+par[4]+par[6]*(47.16+timetod.pred)+par[8]*timetod.pred 
plot(data_ogtt[DM==1,]$O_GLU000~data_ogtt[DM==1,]$TIMEtoD,pch=19,cex=0
.65,font=2,font.lab=2, 
ylab="FBG (mg/dL)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(smooth.spline(data_ogtt[DM==1,]$O_GLU000~data_ogtt[DM==1,]$TIMEto
D,df=3),lty=2) 
lo<-lowess(data_ogtt[DM==1,]$O_GLU000~data_ogtt[DM==1,]$TIMEtoD) 
lines(y~timetod.pred) 
par<-as.numeric(result.new[timetod.pv.g < 0.05 & dm.pv.g < 0.0001, ][5,1:8]) 
y<-par[2]+par[4]+par[6]*(47.16+timetod.pred)+par[8]*timetod.pred 
plot(data_ogtt[DM==1,]$O_GLU120~data_ogtt[DM==1,]$TIMEtoD,pch=19,cex=0
.65,font=2,font.lab=2, 
ylab="OG120 (mg/dL)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(smooth.spline(data_ogtt[DM==1,]$O_GLU120~data_ogtt[DM==1,]$TIMEto
D,df=3),lty=2) 
lines(y~timetod.pred) 
par<-as.numeric(result.new[timetod.pv.g < 0.05 & dm.pv.g < 0.0001, ][4,1:8]) 
y<-par[2]+par[4]+par[6]*(47.16+timetod.pred)+par[8]*timetod.pred 
plot(data_ogtt[DM==1,]$O_GLU120~data_ogtt[DM==1,]$TIMEtoD,pch=19,cex=0
.65,font=2,font.lab=2, 
ylab="OGL90 (mg/dL)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(smooth.spline(data_ogtt[DM==1,]$O_GLU090~data_ogtt[DM==1,]$TIMEto
D,df=3),lty=2) 
lines(y~timetod.pred) 
detach(result.new) 
result<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and oGTT\\result_gludif_ogtt.txt", header=T) 
attach(result) 
par<--as.numeric(result[timetod.pv.g<0.05 & dm.pv.g < 0.00000001,1:8]) 
y<-par[2]+par[4]+par[6]*(47.16+timetod.pred)+par[8]*timetod.pred 
plot((data_ogtt[DM==1,]$O_GLU060-
data_ogtt[DM==1,]$O_GLU030)~data_ogtt[DM==1,]$TIMEtoD,pch=19,cex=0.65,
font=2,font.lab=2, 
ylab="G60-30 (mg/dL)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(smooth.spline((data_ogtt[DM==1,]$O_GLU060-
data_ogtt[DM==1,]$O_GLU030)~data_ogtt[DM==1,]$TIMEtoD,df=3),lty=2) 
lines(y~timetod.pred) 
detach(result) 
y<-
20137.26123+8617.13402+49.29864*(47.16+timetod.pred)+513.22996*timetod.p
red 
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testdata<-data.frame(cbind(ptid,dm,age,timetod,aucg240)) 
names(testdata)<-c("PTID","DM","AGE","TIMEtoD","METRIC") 
attach(testdata) 
plot(testdata[DM==1,]$METRIC~testdata[DM==1,]$TIMEtoD,pch=19,cex=0.65,fo
nt=2,font.lab=2, 
ylab="AUCg0-240(min*mg/dL)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(smooth.spline(testdata[DM==1,]$METRIC~testdata[DM==1,]$TIMEtoD,df=3
),lty=2) 
lines(y~timetod.pred) 
write.table(testdata,"C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and OGTT\\WINBUGS\\AUCg.txt",sep=" ",quote=F) 
detach(testdata) 
result<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and OGTT\\result_insdif_ogtt.txt", header=T) 
attach(result) 
par<--as.numeric(result[timetod.pv.i<0.05 & dm.pv.i < 0.05,1:8]) 
y<-par[2]+par[4]+par[6]*(47.16+timetod.pred)+par[8]*timetod.pred 
plot((data_ogtt[DM==1,]$O_INS120-
data_ogtt[DM==1,]$O_INS045)~data_ogtt[DM==1,]$TIMEtoD,pch=19,cex=0.65,f
ont=2,font.lab=2, 
ylab="I120-45(mU/L)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(smooth.spline((data_ogtt[DM==1,]$O_INS120-
data_ogtt[DM==1,]$O_INS045)~data_ogtt[DM==1,]$TIMEtoD,df=3),lty=2) 
lines(y~timetod.pred) 
detach(result) 
 
 
Figure 5.2 
par(mfcol=c(2,2)) 
i<-132 
 plot(as.numeric(GLU[i,])~time,ylab="Glucose conc (mg/dL)",xlab="Time 
(min)",main="Cubic spline fits (TIMEtoD = -7.16 years)",ylim=c(50,220)) 
 spl_glu<-smooth.spline(as.numeric(GLU[i,])~time,df=5,all.knots=T) 
 glu.pred<-predict(spl_glu,seq(1,240,0.1)) 
 lines(glu.pred) 
 plot(as.numeric(INS[i,])~time,ylab="Insulin conc (mU/L)",xlab="Time 
(min)",ylim=c(0,150)) 
 spl_ins<-smooth.spline(as.numeric(INS[i,])~time,df=4,all.knots=T) 
 ins.pred<-predict(spl_ins,seq(1,240,0.1)) 
 lines(ins.pred) 
i<-137 
 plot(as.numeric(GLU[i,])~time,ylab="Glucose conc (mg/dL)",xlab="Time 
(min)",main="Cubic spline fits (TIMEtoD = -0.8 years)",ylim=c(50,220)) 
 spl_glu<-smooth.spline(as.numeric(GLU[i,])~time,df=5,all.knots=T) 
 glu.pred<-predict(spl_glu,seq(1,240,0.1)) 
 lines(glu.pred) 
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 plot(as.numeric(INS[i,])~time,ylab="Insulin conc (mU/L)",xlab="Time 
(min)",ylim=c(0,150)) 
 spl_ins<-smooth.spline(as.numeric(INS[i,])~time,df=4,all.knots=T) 
 ins.pred<-predict(spl_ins,seq(1,240,0.1)) 
 lines(ins.pred) 
 
 
Figure 5.3 
timetod.pred<-seq(-25,0,0.01) 
age.pred<-seq(10,75,0.01) 
nf <- layout(matrix(1:8,4,2,byrow=TRUE), c(1,1.985), c(1,1,1,1), TRUE) 
layout.show(nf) 
y<-
69.48+0.5281+0.2143*(47.33+timetod.pred)+2.047*as.numeric(I(timetod.pred> (-
9.881)))*(timetod.pred-(-9.881)) 
plot(data_ogtt[DM==1,]$O_GLU000~data_ogtt[DM==1,]$TIMEtoD,ylim=c(55,145
),pch=19,cex=0.65,font=2,font.lab=2, 
ylab="FBG (mg/dL)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(y~timetod.pred) 
y<-69.48+0.2143*age.pred 
plot(data_ogtt[DM==0,]$O_GLU000~data_ogtt[DM==0,]$TESTAGE,ylim=c(55,14
5),pch=19,cex=0.65,font=2,font.lab=2, 
ylab="FBG (mg/dL)",xlab="Age (year)") 
lines(y~age.pred) 
y<-75.39+16.1+0.4444*(47.33+timetod.pred)+8.718*as.numeric(I(timetod.pred> 
(-6.87)))*(timetod.pred-(-6.87)) 
plot(data_ogtt[DM==1,]$O_GLU120~data_ogtt[DM==1,]$TIMEtoD,ylim=c(30,300
),pch=19,cex=0.65,font=2,font.lab=2, 
ylab="G120 (mg/dL)",xlab="TIMEtoD (year)",xlim=c(-25,0.1)) 
lines(y~timetod.pred) 
y<-75.39+0.4444*age.pred 
plot(data_ogtt[DM==0,]$O_GLU120~data_ogtt[DM==0,]$TESTAGE,ylim=c(30,30
0),pch=19,cex=0.65,font=2,font.lab=2, 
ylab="G120 (mg/dL)",xlab="Age (year)") 
lines(y~age.pred) 
y<-85.66+13.32+0.4686*(47.33+timetod.pred)+5.58*as.numeric(I(timetod.pred> 
(-10.03)))*(timetod.pred-(-10.03)) 
plot(data_ogtt[DM==1,]$O_GLU090~data_ogtt[DM==1,]$TIMEtoD,pch=19,cex=0
.65,font=2,font.lab=2, 
ylab="G90 (mg/dL)",xlab="TIMEtoD (year)",ylim=c(30,260),xlim=c(-25,0.1)) 
lines(y~timetod.pred) 
y<-85.66+0.4686*age.pred 
plot(data_ogtt[DM==0,]$O_GLU090~data_ogtt[DM==0,]$TESTAGE,pch=19,cex=
0.65,font=2,font.lab=2,ylim=c(30,260), 
ylab="G90 (mg/dL)",xlab="Age (year)") 
lines(y~age.pred) 
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result<-read.table("C:\\Documents and Settings\\clin\\Desktop\\Disease 
development and oGTT\\result_gludif_ogtt.txt", header=T) 
attach(result) 
par<--as.numeric(result[timetod.pv.g<0.05 & dm.pv.g < 0.00000001,1:8]) 
y<-par[2]+par[4]+par[6]*(47.33+timetod.pred)+par[8]*timetod.pred 
plot((data_ogtt[DM==1,]$O_GLU060-
data_ogtt[DM==1,]$O_GLU030)~data_ogtt[DM==1,]$TIMEtoD,pch=19,cex=0.65,
font=2,font.lab=2, 
ylab="G60-30 (mg/dL)",xlab="TIMEtoD (year)",xlim=c(-25,0.1),ylim=c(-80,90)) 
lines(y~timetod.pred) 
y<-par[2]+par[6]*age.pred 
plot((data_ogtt[DM==0,]$O_GLU060-
data_ogtt[DM==0,]$O_GLU030)~data_ogtt[DM==0,]$TESTAGE,pch=19,cex=0.6
5,font=2,font.lab=2, 
ylab="G60-30 (mg/dL)",xlab="AGE (year)",ylim=c(-80,90)) 
lines(y~age.pred) 
detach(result) 
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APPENDIX E. PUBLICATIONS AND SUBMITTED MANUSCRIPTS 

1.  Lin CW, Veng-Pedersen P. Analysis of PK/PD risk factors for development of 

type 2 diabetes in high risk population using Bayesian analysis of glucose-insulin 

kinetics. J Pharmacokinet Pharmacodyn. 2009 Oct; 36 (5): 421-41. 

 

2.  Lin CW, JH Warram, Veng-Pedersen P. A Bayesian Population Analysis of 

Development of Type 2 Diabetes in the Offspring of Diabetic Parents. J 

Pharmacokinet Pharmacodyn. 2011 Aug 11. 

 

3.  Lin CW, JH Warram, Veng-Pedersen P. Disease Development Analysis of Type 

2 Diabetes in Offspring of Parents with Type 2 Diabetes based on Glucose and 

Insulin variables after IVGTT. (submitted)  

 

4.  Lin CW, JH Warram, Veng-Pedersen P. Disease Development Analysis of Type 

2 Diabetes in Offspring of Parents with Type 2 Diabetes based on Glucose and 

Insulin Variables after OGTT. (submitted)  
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