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ABSTRACT

NUMERICAL METHODS FOR OPTION PRICING UNDER
THE TWO-FACTOR MODELS

by

Jiacheng Cai

Dr. Hongtao Yang, Examination Committee Chair
Associate Professor of Mathematics

University of Nevada, Las Vegas, USA

Pricing options under multi-factor models are challenging and important problems for

financial applications. In particular, the closed form solutions are not available for the

American options and some European options, and the correlations between factors increase

the complexity and difficulty for the formulations and implements of the numerical methods.

In this dissertation, we first introduce a general transformation to decouple correlated

stochastic processes governed by a system of stochastic differential equations. Then we apply

the transformation to the popular two-factor models: the two-asset model, the stochastic

volatility model, and the stochastic interest rate models. Based on our new formulations,

we develop a mixed Monte Carlo method, a lattice method, and a finite volume-alternating

direction implicit method for pricing the European and American options under these models.

The proposed methods can be easily implemented and need less memory. Numerical results

are also presented to validate our C++ programs and to examine our methods. It shows

that our methods are very accurate and efficient.
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CHAPTER 1

INTRODUCTION

In finance, an option is a contract that gives the buyer (owner) the right (no obligation) to

buy or to sell an underlying asset at a specified strike price on or before a specified date.

Whenever the buyer exercises the option, the seller of the option has the obligation to fulfill

the transaction. The buyer pays a premium, which is the value of the option, to the seller

for the right. The options that gives the right to buy the underlying asset is referred to as

a call option, whereas a put option gives the right to sell the asset. There are two standard

styles of options: the European and American options. The European options can only

be exercised at the option expiration date, while the American options allow the owner to

exercise at any time up to the option expiration date. The other styles such as the Asian

options, Bermuda options, look-back options, etc. are referred as the exotic options.

The valuation problem of the options has been widely studied. The classical model

(Black-Scholes Model) for stock options was first introduced by Fischer Black and Myron

Scholes in 1973 ([5]). Since then, the extensions of their model to other financial derivatives

have been investigated ([34][40]), for example, bonds and their options, futures, swaps, etc.

Besides one factor models, various multi-factor models have been proposed in order to fit the

real markets more accurately. These models include the jump diffusion models (the Merton
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model and Kuo model), stochastic volatility models (the Heston model), stochastic interest

rate models (the Vasicek model and the CIR model for interest rate processes), the stochastic

volatility with jump (the Bates model), etc.

Most of the European options under the multi-factor models cannot be evaluated ana-

lytically or efficiently, and the American options have to be evaluated numerically. Pricing

of these options becomes one of the most challenging and important problems for financial

applications. The difficulty is either due to the nonlinearity (the American option problems)

or the correlation between the factors. Various numerical methods have been extensive-

ly studied such as Monte Carlo method, lattice method, finite difference/element/volume

methods, and semi-analytic methods. We are referred to [28][34][40][54] and the references

cites therein.

The objective of this dissertation is to develop several numerical methods to approximate

option prices under popular two-factor models by decoupling the correlated two factors.

1.1 Option Pricing under Two-Factor Models

In this section, we review the existing works on option pricing under the two-asset model,

the Heston model and the stochastic interest rate models.

1.1.1 The Two-Asset Model

The two-asset model is the extension of the Black-Scholes model from one asset to two. The

price processes of the assets are governed by the following stochastic differential equations

dSi(t)

Si(t)
= (r − qi)dt+ σidBi(t), i = 1, 2,

2



where r is the risk-free interest rate, qi is the dividend rate and σi is the volatility for the

i-th asset, and the Wiener processes B1(t) and B2(t) are correlated with the correlation

dB1(t)dB2(t) = ρdt.

Let V (s1, s2, t) be the value of the option when S1(t) = s1 and S2(t) = s2 at time

t ∈ [0, T ). According to the no-arbitrage pricing theory, the rational price of the European

option with the payoff Φ(s1, s2) (see Table 1.1) is given by

V (s1, s2, t) = E
[
e−r(T−t)Φ(S1(T ), S2(T ))

∣∣S1(t) = s1, S2(t) = s2
]
.

For the American option, we have

V (s1, s2, t) = sup
t≤τ≤T

E
[
e−r(τ−t)Φ(S1(τ), S2(τ))

∣∣S1(t) = s1, S2(t) = s2
]
,

where E is the expectation under the risk neutral measure and the τ is a stopping time. The

most used payoff functions are

Type Payoff
Spread max(S2 − S1 −K, 0)
Call on maximum max(max(S1, S2)−K, 0)
Maximum call max(max(S1 −K1, 0),max(S2 −K2, 0))
Put on minimum max(K −min(S1, S2), 0)
Maximum put max(max(K1 − S1, 0),max(K2 − S2, 0))

Table 1.1: Popular two-asset options

It is known that the European option price is the solution of the following partial differ-

ential equation

∂V

∂t
+ LV = 0,

where

LV =
1

2

2∑
ij

ρσiσjsisj
∂2V

∂si∂sj
+

2∑
i

(r − qi)si
∂V

∂si
− rV.

3



For the American option, we have the following variational inequality problem

∂V

∂t
+ LV ≤ 0, V ≥ Φ, (V − Φ)

(
∂V

∂t
+ LV

)
= 0.

The expectation for the European option price can be expressed in term of the CDF

of the normal and multi-variate normal distribution for the exchange option ([46]) and the

options on the maximum or minimum ([56, 37]), respectively. For the spread option, we

reformulate the expectation as the one with respect to two independent processes so that it

can be also computed by numerical integration (see (3.14) of Example 3.1).

There are several numerical methods developed for the American options. Boyle, Evnine

and Gibbs [7] applied the binomial tree methods in two and three underlying assets. Gamba

and Trigeorgis [27] improved the lattice method by using a transformation to obtain uncorre-

lated processes. Monte Carlo methods are applied to the high dimensional European options

valuation [8] and the upper and lower boundaries of the American option value. Details of

Monte Carlo application are shown in Glasserman’s book [28]. Kovalov, Linetsky and Mar-

cozzi [41] developed a computational method for the valuation of multi-asset American-style

options based on approximating partial differential variational inequality. We are also re-

ferred to [25] for a comprehensive survey of numerical methods in high dimensional American

options.

4



1.1.2 The Stochastic Volatility Model

The Heston model, a commonly used stochastic volatility model, was proposed by Heston in

1993 [33]. It assumes the stochastic volatility v and underlying asset price S follow

dv(t) = κ [η − v(t)] du+ σ
√
v(t)dB1(t),

dS(t)

S(t)
= (r − q)dt+

√
v(t)dB2(t),

where η is the long-term expectation of variance, κ > 0 is the speed of mean reversion, σ

is the volatility of volatility, and the Wiener processes B1(t) and B2(t) are correlated with

correlations dB1(t)dB2(t) = ρdt. If 2κη > σ2 (Feller condition), then v(t) is strictly positive

([13]).

Let V (s, v, t) be the value of the option when v(t) = v and S(t) = s at time t. It is known

that the European option price is the solution of the following partial differential equation

∂V

∂t
+ LV = 0,

where

LV =
1

2
s2v

∂2V

∂s2
+ ρσsv

∂2V

∂s∂v
+

1

2
σ2v

∂2V

∂v2
+ (r − q)s

∂V

∂s
+ κ(η − v)

∂V

∂v
− rV.

For the American option, we have the following variational inequality problem:

∂V

∂t
+ LV ≤ 0, V ≥ Φ, (V − Φ)

(
∂V

∂t
+ LV

)
= 0.

The European option price can be computed by numerical integration with the character-

istic function of S(T ) ([33]). Since there is no closed form solution for the American option

problem under the Heston model, various numerical methods have been considered. For

the Monte Carlo methods, we are referred to [28] and references cited therein. Loeper and
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Pironneau [44] introduced a mixed PDE/Monte Carlo method for the European options with

stochastic volatility. Longstaff and Schwartz [45] provided a Monte Carlo regression method

for the American option. As to the lattice method, several papers [42][53] studied the appli-

cation in this type of models. Beliaeva and Nawalkha [4] proposed a lattice scheme by using

a transformation to generate path-independent tree. A detailed survey of lattice method

application in the Heston model is presented in [4]. For the finite difference approaching,

we are referred to Zvan, Forsyth and Vetzal[62], Oosterlee [50], Ikonen and Toivanen [36].

Haenetjens and in’t Hout [31] presented a summary of ADI schemes for pricing the American

option under the Heston model. However, the above works didn’t avoid the mixed partial

derivative terms raising from the correlation. Detail survey of finite difference scheme can

be found in [31].

1.1.3 The Stochastic Interest Rate Models

Stochastic interest rate models assume that the asset price follows

dS(t)

S(t)
= (r(t)− q)dt+ σdB1(t).

The stochastic interest rate r(t) follows the Vasicek model ([58])

dr(t) = κ(θ − r(t))dt+ vdB2(t)

or the CIR model ([13])

dr(t) = κ (θ − r(t)) du+ v
√
r(t)dB2(t).

Here θ is the long-term expectation of interest rate, κ > 0 is the speed of mean reversion, v

is the volatility of the interest rate, and the Wiener processes B1(t) and B2(t) are correlated

with the correlation dB1(t)dB2(t) = ρdt.
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Let V (s, r, t) be the value of the option when S(t) = s and r(t) = r at time t. It is known

that the European option price is the solution of the following partial differential equation

∂V

∂t
+ LV = 0,

where for the Vasicek model,

LV =
1

2
s2σ2∂

2V

∂s2
+ ρσsv

∂2V

∂s∂r
+

1

2
v2
∂2V

∂r2
+ (r − q)s

∂V

∂s
+ κ(θ − r)

∂V

∂r
− rV,

and for the CIR model,

LV =
1

2
s2σ2∂

2V

∂s2
+ ρσsv

√
r
∂2V

∂s∂r
+

1

2
v2r

∂2V

∂v2
+ (r − q)s

∂V

∂s
+ κ(θ − r)

∂V

∂r
− rV.

For the American option, we have the following variational inequality problem

∂V

∂t
+ LV ≤ 0, V ≥ Φ, (V − Φ)

(
∂V

∂t
+ LV

)
= 0.

For the European options, we are referred to Kim and Kunitomo [38] for an analytic

approximation for the CIR model and Fang [23] for an analytic formula for the Vasicek

model. However, there are few papers about the numerical methods for the American options

under the stochastic interest rate models.

1.2 Summary and Organization of this Dissertation

In this dissertation, we propose a transformation to decouple correlated stochastic processes

governed by a system of stochastic differential equations. Then we apply the new trans-

formation to the popular two-factor models: the two-asset model, the stochastic volatility

model, and the stochastic interest rate models. Based on our new formulations, we develop
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a mixed Monte Carlo method, a lattice method, and a finite volume-alternating direction

implicit method for pricing the European and American options under these models. The

proposed methods can be easily implemented and need less memory. Numerical results are

also presented to validate our C++ programs and to examine our methods. The numerical

experiments show our methods are highly accurate and efficient.

The outlines of the remaining chapters are as follows:

• Chapter 2: Decoupling Multi-factor models.

A transformation to decouple correlated stochastic processes is introduced and applied

to the popular two-factor models.

• Chapter 3: Mixed Monte Carlo Methods with Control Variates.

With the uncorrelated new processes, we are able to express the rational prices of the

European contingent claims under the two-factor models as the nested expectations.

The inner expectation is the price of the European contingent claim for an artificial

asset and can be analytically evaluated by the Black-Scholes formula. Then we use the

Monte Carlo method to estimate the outer expectation. We also employ the control

variates technique to reduce the variances. Numerical results are presented to examine

our methods.

• Chapter 4: Lattice Methods.

We propose a new lattice method for the European and American options under the

two-asset model and the stochastic interest rate models. Since our schemes are based

on the uncorrelated stochastic differential equations, they need less nodes to generate
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the lattice and thus can be easily implemented. Numerical results are also presented

to examine our methods and the early exercise boundaries for the American options.

• Chapter 5: A Finite Volume - Alternative Direction Implicit Method.

We develop a finite volume - alternating direction implicit method for the transformed

American option problem under the stochastic volatility model (the Heston model).

Numerical results show that the method provides fast and accurate approximations of

option prices for all the possible combinations of the model parameters.

• Chapter 6: Conclusion.

We summarize the dissertation and propose several future research topics.
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CHAPTER 2

DECOUPLING MULTI-FACTOR MODELS

In this chapter, we shall introduce a transformation to decouple correlated stochastic pro-

cesses governed by a system of stochastic differential equations. Hence, the option prices can

be evaluated by the nested expectations and the partial differential equations without the

mixed terms.

2.1 Decoupling the Correlated Stochastic Processes

Consider the following system of stochastic differential equations

dXi(t) = ϕi (t,X(t)) dt+ ψi (t,X(t)) dBi(t), i = 1, . . . , n, (2.1)

where X(t) = (X1(t), . . . , Xn(t))
T and B1(t), . . . , Bn(t) are Wiener processes. Let

Σ =


1 ρ12 ρ13 · · · ρ1n
ρ21 1 ρ23 · · · ρ2n
ρ31 ρ32 1 · · · ρ3n
...

...
...

. . .
...

ρn1 ρn2 ρn3 · · · 1

 ,

where

dBi(t)dBj(t) = ρijdt.
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It is known that Σ is a positive definite matrix. Thus it admits the following Cholesky

decomposition

Σ = AAT ,

where A = (aij) is a lower triangular matrix with positive diagonal entries. For n = 2 and

n = 3, we have

A =

[
1 0

ρ12
√

1− ρ212

]
, (2.2)

and

A =


1 0 0

ρ12
√

1− ρ212 0

ρ13
ρ23−ρ12ρ13√

1−ρ212

√
1− ρ213 −

(
ρ23−ρ12ρ13√

1−ρ212

)2

 . (2.3)

Let

W (t) =

W1(t)
...

Wn(t)

 = A−1

B1(t)
...

Bn(t)

 .
It is easy to verify that W is a n-dimensional Brownian motion. Assume that

ψi (t,X(t)) = λiψ (t,X(t)) , i = 1, . . . , n, (2.4)

where λ1, . . . , λn are constants. Then the system (2.1) can be rewritten to

dX(t) = Φ (t,X(t)) dt+ ψ(t,X(t))ΛAdW (t), (2.5)

where Φ (t,X(t)) = (ϕ1 (t,X(t)) , . . . , ϕn (t,X(t)))T and Λ = diag (λ1, . . . , λn). Let

Y (t) =

Y1(t)...
Yn(t)

 = BX(t), (2.6)

where B = ΛD(ΛA)−1 and D = diag (a11, . . . , ann). Then we have by (2.5)

dY (t) = ΛD(ΛA)−1Φ
(
t, B−1Y (t)

)
dt+ ψ

(
t, B−1Y (t)

)
ΛDdW (t). (2.7)

It is apparent that the new processes Y1(t), . . . , Yn(t) are mutually uncorrelated.
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Remark 2.1. when n = 2, we may assume that λ1 is a function of X1 instead of a constant.

Let

Y1(t) = X1(t), Y2(t) = X2(t)− F (X1(t)),

where

F (x) = a21

∫ x

0

λ1(u)du.

Then we have by (2.5)

dY1(t) = ϕ1(t,X(t))dt+ ψ1(t,X(t))dW1(t),

dY2(t) = dX2(t)− a21λ1(X1(t))dX1(t)−
1

2
a21 (λ

′
1(X1(t)))

2
(ψ1(t,X(t)))2 dt

= ϕ̃2(t,X(t))dt+ a22

√
1− ρ212ψ2(t,X(t))dW2(t),

where

ϕ̃2(t,X(t)) = ϕ2(t,X(t))− a21λ1(X1(t))ϕ1(t,X(t))− 1

2
(λ′1(X1(t)))

2
(ψ1(t,X(t)))2 .

2.2 Two-Factor Models

In this section, we will apply the decoupling transformation in the previous section to the

various popular two-factor models in asset pricing.

2.2.1 The Two-Asset Model

The two-asset model reads as follows

dSi(t)

Si(t)
= (r − qi)dt+ σidBi(t), i = 1, 2, (2.8)

where r is the risk-free interest rate, qi is the dividend rate for the i-th asset, σi is the

volatility, and the Wiener processes B1(t) and B2(t) are correlated with the correlation
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dB1(t)dB2(t) = ρdt. Let

Xi(t) = ln

(
Si(t)

Si(0)

)
, i = 1, 2. (2.9)

where Si(0) is a given asset price. Then we have by Ito’s Lemma

dXi(t) =

(
r − qi −

1

2
σ2
i

)
dt+ σidBi(t), i = 1, 2.

Notice that

ψ(t,X(t)) ≡ 1, λi = σi, i = 1, 2.

Let

σ̃2 =
√
1− ρ2σ2, q̃2 = q2 +

1

2
ρ2σ2

2 +
ρσ2
σ1

(
r − q1 −

1

2
σ2
1

)
,

µ1 = r − q1 −
1

2
σ2
1, µ2 = r − q̃2 −

1

2
σ̃2
2.

Then we have by (2.2), (2.6) and (2.7)

Y1(t) = X1(t), (2.10)

Y2(t) = −ρσ2
σ1

X1(t) +X2(t), (2.11)

and

dY1(t) = µ1dt+ σ1dW1(t), (2.12)

dY2(t) = µ2dt+ σ̃2dW2(t). (2.13)

Remark 2.2. We are referred to [27] for a similar transformation.
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2.2.2 The Stochastic Volatility Model

The most popular stochastic volatility model is also known as the Heston model ([33]). It

models one asset price process and its variance as follows

dv(t) = κ (η − v(t)) du+ σ
√
v(t)dB1(t), (2.14)

dS(t)

S(t)
= (r − q)dt+

√
v(t)dB2(t), (2.15)

where r is the risk-free interest rate, q is the dividend rate for the asset, σ is the volatility

of volatility, and the Wiener processes B1(t) and B2(t) are correlated with the correlation

dB1(t)dB2(t) = ρdt. Let

X1(t) = v(t), X2(t) = ln

(
S(t)

K

)
, (2.16)

where K is the strike price. Then we have by Ito’s Lemma

dX1(t) = κ (η −X1(t)) du+ σ
√
X1(t)dB1(t),

dX2(t) =

(
r − q − 1

2
X1(t)

)
dt+

√
X1(t)dB2(t).

Notice that

ψ(t,X(t)) =
√
X1(t), λ1 = σ, λ2 = 1.

We have by (2.6) and (2.7)

Y1(t) = X1(t), Y2(t) = −ρ

σ
X1(t) +X2(t), (2.17)

and

dY1(t) = (a1 + b1Y1(t))dt+ σ
√
Y1(t)dW1(t), (2.18)

dY2(t) = (a2 + b2Y1(t))dt+
√

(1− ρ2)Y1(t)dW2(t), (2.19)
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where

ρ = ρ12, a1 = κη, b1 = −κ, a2 = r − q − ρ

σ
κη, b2 =

ρ

σ
κ− 1

2
.

Remark 2.3. We are referred to [4] for a similar transformation.

2.2.3 The Stochastic Interest Rate Model

The interest rates may be assumed to follow a stochastic process. Here we consider two

popular interest rate models: the CIR model ([13]) and Vasicek model ([58]). The coupled

stochastic differential equations for the asset price and interest rate are as follows

dr(t) = κ(θ − r(t))dt+ v(r(t))pdB1(t), (2.20)

dS(t)

S(t)
= (r(t)− q)dt+ σdB2(t), (2.21)

where q is the dividend rate, θ is the long-term expectation of interest rate, κ > 0 is the

speed of mean reversion, σ is the volatility of the stock price, and v > 0. It is the Vasicek

model and the CIR model when p = 0 and p = 1
2
, respectively.

Let

X1(t) = (r(t))1−p , X2(t) = ln

(
S(t)

K

)
, (2.22)

where K is the strike price. Then we have by Ito’s Lemma

dX1(t) = µ1(X1(t))dt+ σ1dB1(t),

dX2(t) =

(
(X1(t))

1
1−p − q − 1

2
σ2

)
dt+ σdB2(t),

where

µ1(x) = (1− p)κ

(
θ

x
p

1−p

− x

)
− p(1− p)v2

2x
, σ1 = (1− p)v.
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Since

ψ(t,X(t)) = 1, λ1 = (1− p)v, λ2 = σ,

we have by (2.6) and (2.7)

Y1(t) = X1(t), Y2(t) = − ρσ

(1− p)v
X1(t) +X2(t), (2.23)

and

dY1(t) = µ1 (Y1(t)) dt+ σ1dW1(t), (2.24)

dY2(t) = µ2 (Y1(t)) dt+ σ2dW2(t). (2.25)

where

µ2(y) = y
1

1−p − q − 1

2
σ2 − ρσ

(1− p)v
µ1(y). σ2 = σ

√
1− ρ2,

Remark 2.4. When p = 1
2
, using the transformation in Remark 2.1, we obtain

Y1(t) = X1(t), Y2(t) = X2(t)−
2ρσ

v

√
X1(t), (2.26)

and

dY1(t) = κ(θ − Y1(t))dt+ v
√
Y1(t)dW1(t), (2.27)

dY2(t) = g(Y1(t))dt+ σ
√
1− ρ2dW2(t), (2.28)

where

g(Y1(t)) =

(
Y1(t)− q − 1

2
σ2 − 2ρσκ

v
√
Y1(t)

(θ − Y1(t)) +
ρσv

4
√
Y1(t)

)
.
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CHAPTER 3

MIXED MC METHODS WITH CONTROL

VARIATES

The mixed Monte Carlo method was first introduced by Loeper and Pironneau[44] for s-

tochastic volatility model. Cozma and Reisinger extended the method into Heston-CIR

model [16]. In their paper, the stochastic volatility/interest rate process are simulated using

Monte Carlo method, while the option values based on the the asset prices are computed

via PDE/Analytic method. However, their simulation processes and asset price process are

in fact not independent. In this chapter, the mixed Monte Carlo method is developed based

on our decoupled stochastic processes in Chapter 2. We shall show that the rational prices

of the European contingent claims under various two-factor models can be expressed as the

nested expectations. The inner expectation is the price of the European contingent claim

for an artificial asset and can be analytically evaluated by the Black-Scholes formula. We

also use the method of control variates to reduce the variance.

3.1 The Two-Asset Model

Solving the stochastic differential equations (2.12) and (2.13), we get
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Y1(t, T ) =

(
r − q1 −

1

2
σ2
1

)
(T − t) + σ1(W1(T )−W1(t)),

Y2(t, T ) =

(
r − q̃2 −

1

2
σ̃2
2

)
(T − t) + σ̃2(W2(T )−W2(t)).

Then we have by (2.9), (2.10) and (2.11)

S1(T ) = S1(t)e
Y1(t,T ), S2(T ) = S2(t)e

αY1(t,T )+Y2(t,T ), (3.1)

where α = ρσ2

σ1
. We introduce the artificial asset price process

S̃2(t) = S̃2(0)e
Y2(0,t),

where

S̃2(0) =
S2(0)

Sα
1 (0)

,

which satisfies the SDE

dS̃2(t)

S̃2(t)
= (r − q̃2)dt+ σ̃2dW2(t).

Then we have

S2(t) = Sα
1 (t)S̃2(t), t ∈ [0, T ].

Let Φ(S1(T ), S2(T )) be the payoff of a European contingent claim. Then its price at time

t is given by

V (S1, S2, t;T ) = E
[
e−(T−t)rΦ(S1(T ), S2(T ))

∣∣S1(t) = S1, S2(t) = S2

]
(3.2)

= E
[
e−(T−t)rΦ

(
S1(T ), S

α
1 (T )S̃2(T )

)∣∣∣S1(t) = S1, S̃2(t) = S−α
1 S2

]
= E

[
E
[
e−(T−t)rΦ

(
S1(T ), S

α
1 (T )S̃2(T )

)∣∣∣ S̃2(t) = S−α
1 S2

]∣∣∣S1(t) = S1

]
= E

[
Ṽ
(
S−α
1 S2, S1(T ), t, T )

)∣∣∣S1(t) = S1

]
, (3.3)
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where

Ṽ
(
S̃2, z, t, T

)
= E

[
e−(T−t)rΦ

(
z, zαS̃2(T )

)∣∣∣ S̃2(t) = S̃2

]
. (3.4)

In the appendix, we shall work out the analytic formulas for Ṽ for various payoff functions

Φ.

Our mixed Monte Carlo method (MMC) is based on evaluating the expectations in (3.3)

while Ṽ is computed by using the analytic formula (see the appendix). The first algorithm

is the crude Monte Carlo method:

Algorithm 1. A MMC method for the two-asset European contingent claim

1. Initialize positive integer N as the number of simulations. Set V = 0.

2. For n = 1, 2, . . . , N , do

– Simulate Y1 = Y1(t, T ) and compute S̃1 = S1e
Y1 .

– Compute P = Ṽ
(
S−α
1 S2, S̃1, t, T

)
.

– Let V = V + P .

End do.

3. The approximate value of the price is V = V/N .

To speed up the crude Monte Carlo method, we use the technique of control variates to

reduce the variance of the random variable Ṽ
(
S−α
1 S2, S1(T ), t, T

)
. It is apparent that Ṽ is

highly correlated to Y1(T ). Hence we naturally take it for the control variates. Our algorithm

for the mixed Monte Carlo method with the control variates (MMCCV) is as follows:
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Algorithm 2. A MMCCV method for the two-asset European contingent claim

1. Initialize positive integers N as the number of simulations. Set

V = b1 = b2 = b3 = 0

and

Y 1 = E [Y1(t, T )] =

(
r − q1 −

1

2
σ1

)
(T − t).

2. For n = 1, 2, . . . , N , do

– Simulate Y1 = Y1(t, T ) and let S̃1 = S1e
Y1 .

– Compute P = Ṽ
(
S−α
1 S2, S̃1, t, T

)
.

– Let

b1 = b1 + P (Y1 − Y 1),

b2 = b2 + (Y1 − Y 1),

b3 = b3 +
(
Y1 − Y 1

)2
,

V = V + P.

End do.

3. Let V = V/N , b =
(
b1 − V b2

)
/b3. The approximate value of the option price is

V ∗ = V − bb3/N .

Remark 3.1. We use control variates technique for variance reduction according to Glasser-

man’s book [28]. There are other techniques for variance reduction, like stratified sampling

and Latin hypercube sampling. It shall be pointed out that variance reduction techniques

usually introduce dependence across replications, but the dependence from control variate

technique becomes negligible as the number of simulation increases, compared with other

techniques.

Remark 3.2. According to the central limit theorem, we expect that the error from Monte
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Carlo simulations is O
(
N− 1

2

)
.

3.2 The Stochastic Volatility Model

We only consider the European call option since the European put options can be treated

similarly. Let K be the strike price and T be the expiration date of the option.

Using (2.16), (2.17), (2.18), and (2.19), we have

S(T ) = S(t)eX(t,T )+Y (t,T ), (3.5)

where

X(t, T ) = (r − q)(T − t)− 1

2
λ2
∫ T

t

v(s)ds+ λ

∫ T

t

√
v(s)dW2(s), (3.6)

Y (t, T ) = −1

2
ρ2
∫ T

t

v(s)ds+ ρ

∫ T

t

√
v(s)dW1(s), (3.7)

where λ =
√

1− ρ2.

Consider the artificial asset price process S̃(t) = S̃(0)eX(0,t) which is the solution to the

following stochastic differential equation

dS̃(t)

S̃(t)
= (r − q)dt+ λ

√
v(t)dW2(t).

If a path {v(s) : t ≤ s ≤ T} of the volatility is given, then the European call option price

for this stock is given by

Ṽ
(
S̃, t, T

)
= E

[
e−(T−t)r

(
S̃(t)eX(t,T ) −K

)+∣∣∣∣ S̃(t) = S̃

]
= e−q(T−t)S̃N(d1)− e−r(T−t)KN(d2), (3.8)

21



where

d1 =
ln
(

S̃
K

)
+
(
r − q + 1

2
σ̃2
)
(T − t)

σ̃
√
T − t

,

d2 = d1 − σ̃
√
T − t, σ̃ =

(
λ

T − t

∫ T

t

v(s)ds

) 1
2

.

Then the European call option price for the Heston model is given by

V (S, v, t, T ) = E
[
e−(T−t)r

(
S(t)eX(t,T )+Y (t,T ) −K

)+∣∣∣S(t) = S, v(t) = v
]

= E
[
E
[
e−(T−t)r

(
S̃(t)eX(t,T ) −K

)+∣∣∣∣ S̃(t) = SeY (t,T )

]∣∣∣∣ v(t) = v

]
= E

[
Ṽ
(
SeY (t,T ), t, T

)∣∣∣ v(t) = v
]
. (3.9)

As in the previous section, we have the following crude Monte Carlo algorithm:

Algorithm 3. A MMC method for the Heston European call option

1. Initialize positive integer N as the number of simulations. Set V = 0.

2. For n = 1, 2, . . . , N , do

– Simulate Y = Y (t, T ) and compute S̃ = SeY&σ̃.

– Compute P = Ṽ
(
S̃, t, T

)
.

– Let V = V + P .

End do.

3. The approximate value of the option price is V = V/N .

In order to reduce the variance, we use Y (t, T ) for the control variates. To this purpose,

we need Y = E [Y (t, T )|v(t) = v]. Taking the expected value on both sides of (3.7) and

solving the resulting differential equation gives

E [v(s)|v(t) = v] = η + (v − η)e−κt.
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Then we have by (3.7)

Y = E
[
−1

2
ρ2
∫ T

t

v(s)ds+ ρ

∫ T

t

√
v(s)dW1(s)

]
= −1

2
ρ2
∫ T

t

E [v(s)] ds

= −1

2

(
η(T − t) +

v − η

κ

(
1− e−κ(T−t)

))
.

Our algorithm for the mixed Monte Carlo method with the control variates (MMCCV)

is as follows:

Algorithm 4. A MMCCV method for the Heston European call option

1. Initialize positive integer N as the number of simulations. Set V = 0, b1 =

0, b2 = 0, and b3 = 0.

2. For n = 1, 2, . . . , N , do

– Simulate Y = Y (t, T ) and compute S̃ = SeY&σ̃.

– Compute P = Ṽ
(
S̃, t, T

)
.

– Let

b1 = b1 + P (Y − Y ),

b2 = b2 + (Y − Y ),

b3 = b3 +
(
Y − Y

)2
,

V = V + P.

End do.

3. Let V = V/N , b =
(
b1 − V b2

)
/b3. The approximate value of the option price is

V ∗ = V − bb3/N .

Remark 3.3. Consider the stochastic volatility model with jumps introduced by Bates in
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1996 ([3])

dS(t)

S(t)
= (r − q − λζ) dt+

√
v(t)dB1(t) + dZ(t),

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)dB2(t),

where Z(t) =
∑N(t)

n=1

(
eJn − 1

)
, N(t) is a Poisson process with intensity λ and independent of

the Brownian motions B1(t) and B2(t), {Jn}∞1 is a sequence of independent and identically

distributed normal random variables with the mean ln(1 + ζ) and variance δ2, and µJ =

E
[
eJ1 − 1

]
is the expected jump percentage. By Itô’s formula, we get

S(T ) = S(t)eX(t,T )+Y (t,T )+Z(t,T ), (3.10)

whereX(t, T ) and Y (t, T ) are defined in (3.7) and (3.7), and Z(t, T ) =
∑N(T )

n=N(t) Jn−λJµJ(T−

t). Hence, we can apply the above two algorithms to the call option under the Bates model

while Y (t, T ) is replaced by Y (t, T ) + Z(t, T ).

3.3 The Stochastic Interest Rate Model

We only consider the Vasicek model and the CIR model can be treated similarly. Using

(2.22), (2.23), (2.24), and (2.25), we have

S(T ) = S(t)eX(t,T )+Y (t,T ),

where

X(t, T ) =

∫ T

t

(r(s)− q)ds− 1

2
λ2σ2(T − t) + λσ(W2(T )−W2(t)), (3.11)

Y (t, T ) = −1

2
ρ2σ2(T − t) + ρσ(W1(T )−W1(t)). (3.12)
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Define artificial asset price process S̃(t) = S̃(0)eX(0,t) that follows the SDE

dS̃(t)

S̃(t)
= (r(t)− q)dt+ λσdW2(t).

If a path {r(s) : t ≤ s ≤ T} of the interest rate is given, then the European call option

price for this asset is given by

Ṽ
(
S̃, t, T

)
= E

[
e−

∫ T
t r(s)ds

(
S̃(t)eX(t,T ) −K

)+∣∣∣∣ S̃(T ) = S̃

]
, (3.13)

which can be computed by a closed form formula. Then the European call option price for

the stochastic interest rate model is given by

V (S, r, t) = E
[
e−

∫ T
t r(s)ds

(
S(t)eX(t,T )+Y (t,T ) −K

)+∣∣∣S(t) = S, r(t) = r
]

= E
[
E
[
e−

∫ T
t r(s)ds

(
S̃(t)eX(t,T ) −K

)+∣∣∣∣ S̃(t) = SeY (t,T )

]∣∣∣∣ r(t) = r

]
= E

[
Ṽ
(
SeY (t,T ), t, T

)∣∣∣ r(t) = r
]
.

Hence, we have the algorithms similar to Algorithms 3 – 4 to compute the above expectation

for the call price.

3.4 Numerical Results

In this section, we present numerical examples to examine the convergence and accuracy of

the proposed MMC and MMCCV methods in the previous sections. We only consider the

European call options due to the put-call parity. For convenience, we introduce the following

notations.
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Notation Meaning
REF Reference value
CV Numerical result using MMCCV
MMC Numerical result using MMC
RMSE Root mean square error
AE Absolute error
MAE Maximum absolute error
N Number of MC simulations
M Number of time steps for each simulation

Table 3.1: Notations

Example 3.1. (The two-asset model) In this example, we consider the European spread

option, a popular two-asset option with payoff Φ (S1(T ), S2(T )) = (S1(T ) − S2(T ) − K)+.

The parameters are given in Table 3.2.

Parameters Values
K $15
r 0.05
T 1.0 year
q1 0.03
q2 0.02
σ1 0.10
σ2 0.15
ρ 0.8

Table 3.2: The parameters for the spread option

Using the processes Y1(t) and Y2(t), we have for the value of the European contingent

claim in (3.2)

V (S1, S2, t;T ) = E
[
e−(T−t)rΦ̃(Y1(T ), Y2(T ))

∣∣∣Y1(t) = Y1, Y2(t) = Y2

]
. (3.14)

Since Y1 and Y2 follow independent normal distributions, the above expectation can be

computed by numerical integration and will be taken as the reference values.

We first examine the rate of convergence with respect to the number of simulations N .
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We display the maximum absolute errors and root mean square errors for S1 = 100 and

S2 = 50 : 5 : 120 in Figs. 3.1–3.2, respectively. We can observe that the rate of convergence

is about 1
2
as expected. It is also shown that the MMCCV method is about 10 times accurate

as the MMC method, which is due to the variances have been reduced significantly (see Fig.

3.3 for S = 100, N = 2000, M = 1000). We display the option prices and their errors in

Table 3.3, which shows that the MMCCV method provides very accurate approximations of

option prices even with a small number of simulations.
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Figure 3.1: MAE vs N for the European spread option
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Figure 3.2: RMSE vs N for the European spread option
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Figure 3.3: The variance ratios vs S2 for the European spread option.
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S2 REF CV MMC AE-CV AE-MMC
50 33.766178 33.767729 33.800565 0.001551 0.034387
55 28.865186 28.866376 28.894166 0.001190 0.028980
60 23.964301 23.965129 23.987875 0.000828 0.023574
65 19.066659 19.066123 19.018384 0.000536 0.048275
70 14.208092 14.208159 14.173826 0.000067 0.034266
75 9.569087 9.569614 9.547782 0.000527 0.021305
80 5.581564 5.582259 5.570583 0.000695 0.010981
85 2.719943 2.719948 2.714905 0.000005 0.005038
90 1.085857 1.085859 1.084134 0.000002 0.001723
95 0.354055 0.354056 0.353592 0.000001 0.000463
100 0.095085 0.095085 0.094988 0.000000 0.000097
105 0.021342 0.021342 0.021326 0.000000 0.000016
110 0.004073 0.004071 0.004074 0.000002 0.000001
115 0.000672 0.000672 0.000672 0.000000 0.000000
120 0.000098 0.000098 0.000098 0.000000 0.000000
MAX 0.001551 0.048275

Table 3.3: The European spread option prices: S1 = 100, N = 2000, M = 1000.

Example 3.2. (The stochastic volatility model) In this example, we consider the European

call options under the Heston model with the parameters in Table 3.4. We use the option

prices computed by the Bates’ formula in [3] with numerical integration as the reference

values.

Parameters Values
K 100
r 0.05
t0 0.0
T 1.0
q 0.00
κ 1.00
η 0.09
σ 0.9
ρ 0.3

Table 3.4: The parameters for the Heston model

We display the maximum absolute errors and root mean square errors for v = 0.09 and
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S = 50 : 5 : 150 in Figs. 3.4–3.5, respectively. Again, we can observe that the rate of

convergence is about 1
2
as expected. It is also shown that the MMCCV method is about 10

times accurate as the MMC method due to the variance reduction (see Fig. 3.6 for v = 0.09,

N = 2000, M = 1000). The option prices and their errors in Table 3.5 show that the

MMCCV method provides very accurate approximations of option prices even with a small

number of simulations.
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Figure 3.4: MAE vs N for the Heston model
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Figure 3.6: The variance ratios vs S for the Heston model
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S REF CV MMC AE-CV AE-MMC
65 1.935153 1.882274 1.822402 0.052879 0.112751
70 2.604112 2.579329 2.539507 0.024783 0.064605
75 3.458298 3.438213 3.409161 0.020085 0.049137
80 4.547084 4.520669 4.684157 0.026415 0.137073
85 5.934010 6.014273 5.946144 0.080263 0.012134
90 7.695986 7.680517 7.366249 0.015469 0.329737
95 9.912327 9.894834 9.548330 0.017493 0.363997
100 12.637215 12.662328 12.543154 0.025113 0.094061
105 15.866950 15.898040 16.087151 0.031090 0.220201
110 19.535526 19.493760 19.365479 0.041766 0.170047
115 23.546932 23.595580 23.958395 0.048648 0.411463
120 27.810157 27.885419 27.509502 0.075262 0.300655
125 32.254179 32.266008 31.715033 0.011829 0.539146
130 36.828075 36.790434 37.161237 0.037641 0.333162
135 41.496362 41.442971 41.244130 0.053391 0.252232
MAX 0.080263 0.539146

Table 3.5: The European option prices (Heston): v = 0.09, N = 2000, M = 1000.

Example 3.3. (The stochastic interest rate model) In this example, we consider the Euro-

pean call options under the stochastic interest rate model. We shall assume that the interest

rate follows the Vasicek process and use the option prices computed by the analytic for-

mula in Fang’s paper [23] as the reference values. The parameters are given in Table 3.6.

We display the maximum absolute errors and root mean square errors for r = 0.11 and

S = 50 : 5 : 150 in Figs. 3.7–3.8, respectively. The variance ratios are displayed in Fig. 3.9

for r = 0.11, N = 2000,M = 1000. The option prices and their errors are presented in Table

3.7. Again, we have the same observations as in Examples 3.1–3.2.
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Parameters Values
S0 Changing
K 100
r0 0.11
t0 0.0
T 1.0
q 0.00
σ 0.20
κ 2.00
θ 0.07
v 0.1
ρ -0.5

Table 3.6: The parameters for the Vasicek model
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Figure 3.7: MAE vs N for the Vasicek model
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Figure 3.8: RMSE vs N for the Vasicek model
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Figure 3.9: The variance ratios vs S for the Vasicek model
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S REF CV MMC AE-CV AE-MMC
65 0.190539 0.193729 0.197276 0.003190 0.006737
70 0.506896 0.512861 0.521067 0.005965 0.014171
75 1.131576 1.141477 1.157507 0.009901 0.025931
80 2.193787 2.207401 2.178983 0.013614 0.014804
85 3.795243 3.812772 3.769229 0.017529 0.026014
90 5.987420 6.008064 5.947071 0.020644 0.040349
95 8.765632 8.788288 8.708736 0.022656 0.056896
100 12.078444 12.022113 12.172700 0.056331 0.094256
105 15.845353 15.788699 15.966250 0.056654 0.120897
110 19.975172 19.919495 20.121899 0.055677 0.146727
115 24.380248 24.326120 24.551069 0.054128 0.170821
120 28.984916 28.932356 29.177691 0.052560 0.192775
125 33.728793 33.683015 33.411174 0.045778 0.317619
130 38.566558 38.521009 38.231306 0.045549 0.335252
135 43.465823 43.420008 43.113595 0.045815 0.352228
MAX 0.056654 0.352228

Table 3.7: The European option prices (Vasicek): r = 0.11, N = 2000, M = 1000
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CHAPTER 4

LATTICE METHODS

In this chapter, we shall develop lattice methods for the European and American options

under the two-asset model and the stochastic interest rate models. As usual, our lattice

methods are based on simulating the solutions of the stochastic differential equations by

lattice trees. Numerical results will be given to show the efficiency and accuracy of our

methods.

4.1 The Two-Asset Model

Consider an option with expiration date T under the two-asset model (2.8). We want to

compute the option price when S1(t0) = S1,0 and S2(t0) = S2,0.

We have from (2.9)–(2.11)

S1(t) = S1(t0)e
Y1(t), S2(t) = (S1(t))

α S̃2(t), (4.1)

S̃2(t) = S̃2(t0)e
Y2(t), S̃2(t0) = S2(t0) (S1(t0))

−α , (4.2)

where α = ρσ2

σ1
, and Y1(t) and Y2(t) are determined by the stochastic differential equations

(2.12) and (2.13). Without loss of generality, we may assume that σ1 ≥ σ2.

For a given positive integerM , let tm = t0+m∆t form = 0, 1, . . . ,M , where ∆t = T−t0
M

is

the step size in time. The tree for simulating the solution Y1(t) of the stochastic differential
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equation (2.12) consists of the following nodes

(y1,i, tm) : i = −m, . . . , 0, . . . ,m, m = 0, 1, . . . ,M,

where y1,i = ih1 and h1 is the step size for the values of Y1(t). Let p1 and q1 be the

probabilities by which the tree branches from (y1,i, tm) to (y1,i+1, tm+1) and (y1,i−1, tm+1),

respectively.

It follows from the stochastic differential equation (2.12) that

Y1 (tm+1) = Y1 (tm) + µ1∆t+ σ1
√
∆tZm,

where Zm is a standard normal random variable. Then we have

E [Y1 (tm+1)|Y1 (tm) = y1,i] = y1,i + µ1∆t,

and

V [Y1 (tm+1)|Y1 (tm) = y1,i] = σ2
1∆t.

Matching the means and variances, we get

p1 (y1,i + h1) + q1 (y1,i − h1) = y1,i + µ1∆t,

p1 (h1 − µ1∆t)
2 + q1 (−h1 − µ1∆t)

2 = σ2
1∆t.

Solving the above equations together with p1 + q1 = 1, we obtain

h1 =
(
σ2
1∆t+ (µ1∆t)

2) 1
2 , p1 =

1

2

(
1 +

µ1∆t

h1

)
, q1 = 1− p1.

Similarly, we can build the tree for simulating the solution Y2(t) of the stochastic differ-

ential equation (2.13) consists of the following nodes

(y2,j, tm) : j = −m, . . . , 0, . . . ,m, m = 0, 1, . . . ,M,
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where

y2,j = jh2, h2 =
(
σ̃2
2∆t+ (µ2∆t)

2) 1
2 .

The probabilities by which the tree branches from (y2,j, tm) to (y2,j+1, tm+1) and (y2,j−1, tm+1)

are

p2 =
1

2

(
1 +

µ2∆t

h2

)
, q2 = 1− p2,

respectively.

Now the tree for simulating the two-dimensional process (Y1(t), Y2(t)) consists of the

nodes

(y1,i, y2,j, tm) , i, j = −m, . . . , 0, . . . ,m, m = 0, . . . ,M.

The tree for the process (Y1(t), Y2(t)) naturally branches from (y1,i, y2,j, tm−1) to (y1,i−1, y2,j−1, tm),

(y1,i+1, y2,j−1, tm), (y1,i+1, y2,j+1, tm), and (y1,i−1, y2,j+1, tm) with the probabilities

P1 = q1q2, P2 = p1q2, P3 = p1p2, P4 = q1p2,

respectively. According to (4.1) and (4.2), the corresponding tree for the process
(
S1(t), S̃2(t)

)
consisting of the nodes

(
S1,0e

ih1 , S̃2,0e
jh2 , tm

)
, i, j = −m, . . . , 0, . . . ,m, m = 0, . . . ,M.

For a given payoff Φ(S1, S2), we have the following algorithms to compute the prices of

the European and American options.
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Algorithm 5. A lattice method for the European option on two assets

1. Compute

S1,i = S1,0e
(2.0∗i−M)h1 , S̃2,i = S̃2,0e

(2.0∗i−M)h2 , i = 0, 1, . . . ,M.

2. Compute the payoff at the option expiration:

Vi,j = Φ
(
S1,i, (S1,i)

α S̃2,j

)
, i, j = 0, 1, . . . ,M.

3. For m =M − 1,M − 2, . . . , 0, do

For i = 0, . . . ,m, do

For j = 0, . . . ,m, do

Vi,j = e−r∆t (P1Vi,j + P2Vi+1,j + P3Vi+1,j+1 + P4Vi,j+1) .

End do.

End do.

End do.

4. Rerun V0,0 for the approximate value of the option price.
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Algorithm 6. A lattice method for the American option on two assets

1. Compute

S1,i = S1,0e
(i−M)h1 , S̃2,i = S̃2,0e

(i−M)h2 , i = 0, 1, . . . , 2M.

2. Compute the payoff at the option expiration:

Vi,j = Φ
(
S1,i, (S1,2i)

α S̃2,2j

)
, i, j = 0, 1, . . . ,M.

3. For m =M − 1,M − 2, . . . , 0, do

For i = 0, . . . ,m, do

– Set S1 = S1,M−m+2∗i.

– For j = 0, . . . ,m, do

∗ Compute

Vi,j = e−r∆t (P1Vi,j + P2Vi+1,j + P3Vi+1,j+1 + P4Vi,j+1) .

∗ Check for early exercise:

Vi,j = max (Vi,j,Φ (S1, S2)) ,

where S2 = (S1)
α S̃2,M−m+2∗j.

End do.

End do.

End do.

4. Return V0,0 for the approximate value of the option price.
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4.2 The Stochastic Interest Rate Model

Consider an option with expiration date T under the stochastic interest rate model (2.20) –

(2.21). We want to compute the option price V when S(t0) = S0 and r(t0) = r0.

We have from (2.22) and (2.23)

S(t) = KeαY1(t)+Y2(t), r(t) = (Y1(t))
1/(1−p) , (4.3)

where α = ρσ
(1−p)v

, and Y1(t) and Y2(t) are determined by the stochastic differential equations

(2.24) and (2.25) with the initial conditions Y1(t0) = y1,0 and Y2(t0) = y2,0, where

y1,0 = r1−p
0 , y2,0 = log(S0/K)− αr1−p

0 .

For a given positive integerM , let tm = t0+m∆t form = 0, 1, . . . ,M , where ∆t = T−t0
M

is

the step size in time. The tree for simulating the solution Y1(t) of the stochastic differential

equation (2.24) consists of the following nodes

(y1,i, tm) : i = −m, . . . , 0, . . . ,m, m = 0, 1, . . . ,M,

where y1,i = y1,0 + ih1 and h1 is the step size for the values of Y1(t). Let p1 and q1 be the

probabilities by which the tree branches from (y1,i, tm) to (y1,i+1, tm+1) and (y1,i−1, tm+1),

respectively.

We can approximate the stochastic differential equation (2.24) by the Euler scheme:

Y1 (tjm+1) ≈ Y1 (tm) + µ1 (Y1 (tm))∆t+ σ1
√
∆tZm,

where Zm is a standard normal random variable. Then we have

E [Y1 (tm+1)|Y1 (tm) = y1,i] ≈ y1,i + µ1 (y1,i)∆t,
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and

V [Y1 (tm+1)|Y1 (tm) = y1,i] ≈ σ2
1∆t.

Matching the variances, we get

p1 (h1 − µ1 (y1,i)∆t)
2 + q1 (−h1 − µ1 (y1,i)∆t)

2 = σ2
1∆t.

Since p1 + q1 = 1, we have from the above equation

h1 =
(
σ2
1∆t+ (µ1 (y1,i)∆t)

2) 1
2 ,

which depends on y1,i. After dropping the higher order term (µ1 (y1,i)∆t)
2, we get

h1 = σ1
√
dt.

We have by matching the means

p1 (yi + h1) + q1 (yj − h1) = y1,i + µ1 (y1,i)∆t,

which implies

p− q =
µ1 (y1,i)

h1
.

Thus we have

p1 =
1

2

(
1 +

µ1 (y1,i)∆t

h1

)
, q1 = 1− p1.

Notice that p1 may not be between 0 and 1. We shall artificially set

p1 =


0, if p1 < 0;

1, if p1 > 1.

Since Y1(t) should be always positive for the CIR model, we also set

p1 = 1.0, if y1,i ≤ 0
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to make the value of Y1 (tm+1) positive.

Similarly, we can build the tree for simulating the solution Y2(t) of the stochastic differ-

ential equation (2.25) when Y1(t) = y1,i is given. It consists of the following nodes

(y2,j, tm) : j = −m, . . . , 0, . . . ,m, m = 0, 1, . . . ,M,

where

y2,j = y2,0 + jh2, h2 = σ2
√
∆t.

The probabilities by which the tree branches from (y2,j, tm) to (y2,j+1, tm+1) and (y2,j−1, tm+1)

are

p2 =
1

2

(
1 +

µ2 (y1,i)∆t

h2

)
, q2 =

1

2

(
1− µ2 (y1,i)∆t

h2

)
,

respectively. As for probability p1, we shall artificially set

p2 =


0, if p2 < 0;

1, if p2 > 1.

Now the tree for simulating the two-dimensional process (Y1(t), Y2(t)) consists of the

nodes

(y1,i, y2,j, tm) , i, j = −m, . . . , 0, . . . ,m, m = 0, . . . ,M.

The tree for the process (Y1(t), Y2(t)) naturally branches from from (y1,i, y2,j, tm) to (y1,i−1, y2,j−1, tm),

(y1,i+1, y2,j−1, tm), (y1,i+1, y2,j+1, tm), and (y1,i−1, y2,j+1, tm) with the probabilities

P1 = q1q2, P2 = p1q2, P3 = p1p2, P4 = q1p2,

respectively. It follows from (4.3) that the corresponding tree for the process (S(t), r(t))

consisting of the nodes

(
Keαy1,i+y2,j , (y1,i)

1/(1−p) , tm

)
, i, j = −m, . . . , 0, . . . ,m, m = 0, . . . ,M.
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For a given payoff Φ(S), we have the following algorithms to compute the prices of the

European and American options.

Algorithm 7. A lattice method for the European option (stochastic interest rate)

1. Compute

y1,i = y1,0 + (i−M)h1, y2,i = y2,0 + (i−M)h2, i = 0, 1, . . . , 2M.

2. Compute the payoff at the option expiration:

Vi,j = Φ(K exp (y2,2j + αy1,2i)) , i, j = 0, 1, . . . ,M.

3. For m =M − 1,M − 2, . . . , 0, do

For i = 0, . . . ,m, do

– Compute p1 =
1
2

(
1 +

µ1(y1,M−m+2i)∆t

dz

)
.

– If p1 < 0, set p1 = 0; if p1 > 1, set p1 = 1; if y1,M−m+2i ≤ 0, set p1 = 1.

– Set q1 = 1− p1.

– Compute p2 =
1
2

(
1 +

µ2(y1,M−m+2i)∆t

dz

)
.

– If p2 < 0, set p2 = 0; if p2 > 1, set p2 = 1.

– Set q2 = 1− p2.

– Compute the discount factor D = exp
(
− (y1,M−m+2i)

1/(1−p) ∆t
)
.

– For j = 0, . . . ,m, do

Vi,j = D (P1Vi,j + P2Vi+1,j + P3Vi+1,j+1 + P4Vi,j+1) .

End do.

End do.

End do.

4. Rerun V0,0 for the approximate value of the option price.
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Algorithm 8. A lattice method for the American option (stochastic interest rate)

1. Compute

y1,i = y1,0 + (i−M)h1, y2,i = y2,0 + (i−M)h2, i = 0, 1, . . . , 2M.

2. Compute the payoff at the option expiration:

Vi,j = Φ(K exp (y2,2j + αy1,2i)) , i, j = 0, 1, . . . ,M.

3. For m =M − 1,M − 2, . . . , 0, do

For i = 0, . . . ,m, do

– Compute p1 =
1
2

(
1 +

µ1(y1,M−m+2i)∆t

dz

)
;

– If p1 < 0, set p1 = 0; if p1 > 1, set p1 = 1; if y1,M−m+2i ≤ 0, set p1 = 1.

– Set q1 = 1− p1.

– Compute p2 =
1
2

(
1 +

µ2(y1,M−m+2i)∆t

dz

)
;

– If p2 < 0, set p2 = 0; if p2 > 1, set p2 = 1.

– Set q2 = 1− p2.

– Compute the discount factor D = exp
(
− (y1,M−m+2i)

1/(1−p) ∆t
)
.

– For j = 0, . . . ,m, do

∗ Vi,j = D (P1Vi,j + P2Vi+1,j + P3Vi+1,j+1 + P4Vi,j+1).

∗ S = K exp (y2,M−m+2j + αy1,M−m+2i).

∗ Vi,j = max (Vi,j,Φ (S)).

End do.

End do.

End do.

4. Rerun V0,0 for the approximate value of the option price.
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4.3 Numerical Results

In this section, we present numerical examples to examine the convergence and accuracy of

the proposed lattice methods in the previous sections. We will focus on the accuracy of the

method, especially for the European options. We will also examine the early exercise bound-

aries for the American options. For convenience, we introduce the following abbreviations.

Notation Meaning
REF Reference value
LAT Numerical result using lattice
MMC Numerical result using mixed Monte Carlo method
AE Absolute error between the numerical results of LAT and MMC
N Number of MC simulations
M Number of time steps

Table 4.1: Notations

Example 4.1. (The European Spread Option) In this example, we consider the European

spread options whose payoff is Φ (S1(T ), S2(T )) = (S1(T ) − S2(T ) − K)+. The reference

values are computed the same as in example 3.1. The parameters for the two-asset model

are given in Table 4.2.

Parameters Values
K $10
T 1.0 year
t0 0.0
q1 0.05
q2 0.07
r 0.08
σ1 0.3
σ2 0.2

Table 4.2: Parameters for the European spread option

In order to examine the rate of convergence of our lattice method, we plot the maximum
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absolute errors (MAE) against the time step sizes in Figs. 4.1. The MAEs are computed

at the points S1 = 60 : 5 : 120 × S2 = 60 : 5 : 120 with different correlations ρ =

−0.8,−0.4, 0.4, 0.8 and different interest rates r = 0.04, 0.05, 0.06, 0.07, 0.08. We can observe

that the rate of convergence of our lattice method is about 1. For the accuracy of the lattice

scheme, we display the option prices and the absolute errors (AE) in Tables 4.3–4.6. We

can see that the AEs is O (10−3) when the number of time steps M = 1000. All of these

numerical results are as expected since the theoretical rate of convergence of the lattice

method is O (M−1).
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Figure 4.1: The maximum absolute errors of the European spread options
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S2 60 80 100
S1 LAT REF AE LAT REF AE LAT REF AE
85 22.2686 22.2679 0.0007 13.3697 13.3687 0.0010 7.9117 7.9110 0.0007
90 25.9780 25.9775 0.0005 16.1528 16.1518 0.0011 9.8719 9.8710 0.0009
95 29.8525 29.8521 0.0004 19.1589 19.1579 0.0011 12.0595 12.0584 0.0010
100 33.8675 33.8672 0.0002 22.3679 22.3669 0.0010 14.4650 14.4638 0.0012
105 38.0013 38.0012 0.0001 25.7598 25.7589 0.0009 17.0770 17.0757 0.0013
110 42.2353 42.2353 0.0000 29.3158 29.3150 0.0008 19.8830 19.8817 0.0013
115 46.5535 46.5536 0.0001 33.0180 33.0173 0.0007 22.8701 22.8687 0.0013

Table 4.3: The European spread option prices: ρ = −0.8

S2 60 80 100
S1 LAT REF AE LAT REF AE LAT REF AE
85 21.0588 21.0583 0.0005 11.7873 11.7866 0.0007 6.3837 6.3834 0.0003
90 24.8238 24.8234 0.0004 14.5188 14.5180 0.0008 8.1943 8.1938 0.0005
95 28.7665 28.7663 0.0003 17.5018 17.5010 0.0008 10.2562 10.2556 0.0007
100 32.8575 32.8573 0.0001 20.7130 20.7122 0.0008 12.5617 12.5609 0.0008
105 37.0710 37.0710 0.0000 24.1286 24.1279 0.0007 15.0994 15.0985 0.0009
110 41.3855 41.3856 0.0001 27.7260 27.7254 0.0006 17.8562 17.8553 0.0009
115 45.7825 45.7827 0.0002 31.4835 31.4830 0.0005 20.8173 20.8163 0.0009

Table 4.4: The European spread option prices: ρ = −0.4

S2 60 80 100
S1 LAT REF AE LAT REF AE LAT REF AE
85 18.2373 18.2372 0.0002 7.7912 7.7909 0.0003 2.8506 2.8507 0.0001
90 22.2524 22.2523 0.0001 10.3870 10.3866 0.0004 4.1612 4.1611 0.0001
95 26.4707 26.4707 0.0000 13.3485 13.3481 0.0004 5.8014 5.8012 0.0002
100 30.8415 30.8416 0.0001 16.6365 16.6362 0.0003 7.7789 7.7786 0.0003
105 35.3246 35.3247 0.0001 20.2080 20.2078 0.0003 10.0897 10.0893 0.0004
110 39.8890 39.8891 0.0002 24.0198 24.0196 0.0002 12.7201 12.7197 0.0005
115 44.5115 44.5116 0.0002 28.0310 28.0309 0.0001 15.6490 15.6486 0.0005

Table 4.5: The European spread option prices: ρ = 0.4
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S2 60 80 100
S1 LAT REF AE LAT REF AE LAT REF AE
85 16.6045 16.6045 0.0000 4.8703 4.8702 0.0002 0.8598 0.8600 0.0002
90 20.9474 20.9474 0.0001 7.3589 7.3587 0.0002 1.6120 1.6121 0.0001
95 25.4668 25.4669 0.0001 10.3863 10.3861 0.0002 2.7493 2.7493 0.0000
100 30.0922 30.0923 0.0001 13.8772 13.8770 0.0002 4.3335 4.3334 0.0001
105 34.7782 34.7783 0.0001 17.7410 17.7409 0.0001 6.3951 6.3949 0.0002
110 39.4977 39.4978 0.0001 21.8885 21.8885 0.0000 8.9317 8.9315 0.0003
115 44.2351 44.2352 0.0001 26.2417 26.2418 0.0001 11.9132 11.9129 0.0003

Table 4.6: The European spread option prices: ρ = 0.8

Example 4.2. (The American options on two assets) In this example, we examine the early

exercise boundaries of the 1-year American options with the popular payoffs as listed in Table

1.1. The volatilities for the two-asset model and the parameters for the payoffs are given in

Table 4.7. The other parameters (the interest rate r, correlation ρ, and dividend rates q1, q2)

will be specified later. All the early exercise boundaries are computed via bisection method

while the option prices are computed by using Algorithm 6 in section 4.1 with the number

of time steps M = 500.

Parameters Spread Call on max Max call Put on min Max put
K $10 $100 N/A $50 N/A
K1 N/A N/A $80 N/A $5
K2 N/A N/A $120 N/A $12
σ1 0.3 0.3 0.3 0.3 0.3
σ2 0.2 0.2 0.2 0.2 0.2

Table 4.7: Parameters for the American options with two-asset

In the following, we will use Si
t (i = 1, 2) for the spot price of the i-th asset at time

t ∈ [0, T ), E for the immediate exercise region, and Bi
t for the exercise boundary for a

standard American option on the i-th asset.

We first consider the spread options and list the properties of the exercise region proved
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in [10] as follows:

(1) (S1
t , S

2
t , t) ∈ E implies S2

t > S1
t +K.

(2) (S1
t , S

2
t , t) ∈ E implies (S1

t , S
2
t , s) ∈ E for all t ≤ s ≤ T .

(3) (S1
t , S

2
t , t) ∈ E implies (S1

t , λS
2
t , t) ∈ E for all λ ≥ 1.

(4) (S1
t , S

2
t , t) ∈ E implies (λS1

t , S
2
t , t) ∈ E for all 0 ≤ λ ≤ 1.

(5) (0, S2
t , t) ∈ E implies S2

t ≥ B2
t ; S

2
t ≥ B2

t and S1
t = 0 implies (0, S2

t , t) ∈ E.

(6) (S1
t , S

2
t , t) ∈ E and (S̃1

t , S̃
2
t , t) ∈ E implies (S1

t (λ), S
2
t (λ), t) ∈ E for all 0 ≤ λ ≤ 1,

where Si
t(λ) = λSi

t + (1− λ)S̃i
t for i = 1, 2.

(7) The S2 intercept of the early exercise boundary at time t is (0, B2
t ). And limt→T− B2

t =

max
(

r
q2
K,K

)
.

(8) When t→ T−, the early exercise boundary is given by

S2
T = max

(
q1
q2
S1
T +

r

q2
K,S1

T +K

)
.

Our numerical results in Fig. 4.2 agree with the above theoretical properties. In addition,

we can observe that the early exercise boundaries of different times are more dispersive when

the correlation is negative.
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Figure 4.2: The early exercise boundaries of the spread options
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Secondly, we consider the call option on the maximum. Define Ei = E ∩ Gi, i = 1, 2

where Gi ≡ {(S1
t , S

2
t , t) : Si

t = max(S1
t , S

2
t )}. We list the properties of the exercise region

proved in [10]:

(1) (S1
t , S

2
t , t) ∈ E implies (S1

t , S
2
t , s) ∈ E for all t ≤ s ≤ T .

(2) (S1
t , S

2
t , t) ∈ E1 implies (λS1

t , S
2
t , t) ∈ E1 for all λ ≥ 1. (S1

t , S
2
t , t) ∈ E2 implies

(S1
t , λS

2
t , t) ∈ E2 for all λ ≥ 1.

(3) (S1
t , S

2
t , t) ∈ E1 implies (S1

t , λS
2
t , t) ∈ E1 for all 0 ≤ λ ≤ 1. (S1

t , S
2
t , t) ∈ E2 implies

(λS1
t , S

2
t , t) ∈ E2 for all 0 ≤ λ ≤ 1.

(4) (S1
t , 0, t) ∈ E1 implies S1

t ≥ B1
t . (0, S

2
t , t) ∈ E2 implies S2

t ≥ B2
t .

(5) (S1
t , S

2
t , t) ∈ Ej and (S̃1

t , S̃
2
t , t) ∈ Ej implies (S1

t (λ), S
2
t (λ), t) ∈ Ej for j=1,2 and all

0 ≤ λ ≤ 1, where Si
t(λ) = λSi

t + (1− λ)S̃i
t for i = 1, 2.

(6) The S1 intercept of the early exercise boundary at time t is (B1
t , 0). The S2 intercept

of the early exercise boundary at time t is (0, B2
t ) .And limt→T− Bi

t = max
(

r
qi
K,K

)
.

(7) When t→ T−, the early exercise boundary is given by

S1
T = max

(
max

(
r

q1
K,K

)
, S2

T

)
forE1,

S2
T = max

(
max

(
r

q2
K,K

)
, S1

T

)
forE2.

Our numerical results in Fig. 4.3 agree with the above theoretical properties. In addition,

we can observe that the early exercise boundaries of different times are more dispersive when

the correlation is negative.
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Figure 4.3: The early exercise boundaries of the call option on the maximum
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Thirdly, we consider the maximum call option. Define Ei = E ∩ Gi, i = 1, 2 where

Gi ≡ {(S1
t , S

2
t , t) : S

i
t −Ki = max(S1

t −K1, S
2
t −K2)}. We list the properties of the exercise

region proved in [10]:

(1) (S1
t , S

2
t , t) ∈ E implies (S1

t , S
2
t , s) ∈ E for all t ≤ s ≤ T .

(2) (S1
t , S

2
t , t) ∈ E1 implies (λS1

t , S
2
t , t) ∈ E1 for all λ ≥ 1. (S1

t , S
2
t , t) ∈ E2 implies

(S1
t , λS

2
t , t) ∈ E2 for all λ ≥ 1.

(3) (S1
t , S

2
t , t) ∈ E1 implies (S1

t , λS
2
t , t) ∈ E1 for all 0 ≤ λ ≤ 1. (S1

t , S
2
t , t) ∈ E2 implies

(λS1
t , S

2
t , t) ∈ E2 for all 0 ≤ λ ≤ 1.

(4) (S1
t , 0, t) ∈ E1 implies S1

t ≥ B1
t . (0, S

2
t , t) ∈ E2 implies S2

t ≥ B2
t .

(5) (S1
t , S

2
t , t) ∈ Ej and (S̃1

t , S̃
2
t , t) ∈ Ej implies (S1

t (λ), S
2
t (λ), t) ∈ Ej for j=1,2 and all

0 ≤ λ ≤ 1, where Si
t(λ) = λSi

t + (1− λ)S̃i
t for i = 1, 2.

(6) The S1 intercept of the early exercise boundary at time t is (B1
t , 0). The S2 intercept

of the early exercise boundary at time t is (0, B2
t ) .And limt→T− Bi

t = max
(

r
qi
Ki, Ki

)
.

(7) When t→ T−, the early exercise boundary is given by

S1
T = max

(
max

(
r

q1
K1, K1

)
, S2

T

)
forE1,

S2
T = max

(
max

(
r

q2
K2, K2

)
, S1

T

)
forE2.

Our numerical results in Fig. 4.4 agree with the above theoretical properties. In addition,

we can observe that the early exercise boundaries of different times are more dispersive when

the correlation is negative.
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Figure 4.4: The early exercise boundaries of the maximum call option
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Fourthly, we consider the put option on the minimum. Define Ei = E∩Gi, i = 1, 2 where

Gi ≡ {(S1
t , S

2
t , t) : S

i
t = min(S1

t , S
2
t )}. We have the following observation from the Fig. 4.5:

(1) (S1
t , S

2
t , t) ∈ E implies (S1

t , S
2
t , s) ∈ E for all t ≤ s ≤ T .

(2) (S1
t , S

2
t , t) ∈ E1 implies (λS1

t , S
2
t , t) ∈ E1 for all 0 ≤ λ ≤ 1. (S1

t , S
2
t , t) ∈ E2 implies

(S1
t , λS

2
t , t) ∈ E2 for all 0 ≤ λ ≤ 1.

(3) (S1
t , S

2
t , t) ∈ E1 implies (S1

t , λS
2
t , t) ∈ E1 for all λ ≥ 1. (S1

t , S
2
t , t) ∈ E2 implies

(λS1
t , S

2
t , t) ∈ E2 for all λ ≥ 1.

(4) (S1
t , S

2
t , t) ∈ Ej and (S̃1

t , S̃
2
t , t) ∈ Ej implies (S1

t (λ), S
2
t (λ), t) ∈ Ej for j=1,2 and all

0 ≤ λ ≤ 1, where Si
t(λ) = λSi

t + (1− λ)S̃i
t for i = 1, 2.

(5) When t→ T−, the early exercise boundary is given by

S1
T = min

(
min

(
r

q1
K,K

)
, S2

T

)
forE1,

S2
T = min

(
min

(
r

q2
K,K

)
, S1

T

)
forE2.

(6) The early exercise boundaries of different times are more dispersive when the correla-

tion is negative.
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Figure 4.5: The early exercise boundaries of the put option on the minimum
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Finally, we consider the maximum put option. Without lose of generality, assume that

K1 < K2. Define Ei = E ∩ Gi, i = 1, 2 where Gi ≡ {(S1
t , S

2
t , t) : Ki − Si

t = max(K1 −

S1
t , K2 − S2

t )}. We have the following observation form the Fig. 4.6:

(1) (S1
t , S

2
t , t) ∈ E implies (S1

t , S
2
t , s) ∈ E for all t ≤ s ≤ T .

(2) (S1
t , S

2
t , t) ∈ E1 implies (λS1

t , S
2
t , t) ∈ E1 for all 0 ≤ λ ≤ 1. (S1

t , S
2
t , t) ∈ E2 implies

(S1
t , λS

2
t , t) ∈ E2 for all 0 ≤ λ ≤ 1.

(3) (S1
t , S

2
t , t) ∈ E1 implies (S1

t , λS
2
t , t) ∈ E1 for all λ ≥ 1. (S1

t , S
2
t , t) ∈ E2 implies

(λS1
t , S

2
t , t) ∈ E2 for all λ ≥ 1.

(4) (S1
t , S

2
t , t) ∈ Ej and (S̃1

t , S̃
2
t , t) ∈ Ej implies (S1

t (λ), S
2
t (λ), t) ∈ Ej for j=1,2 and all

0 ≤ λ ≤ 1, where Si
t(λ) = λSi

t + (1− λ)S̃i
t for i = 1, 2.

(5) When t→ T−, the early exercise boundary is given by

S1
T = min

(
min

(
r

q1
K1, K1

)
,max(S2

T −K2 +K1, 0)

)
forE1,

S2
T = min

(
min

(
r

q2
K2, K2

)
, S1

T +K2 −K1

)
forE2.

(6) The early exercise boundaries of different times are more dispersive when the correla-

tion is negative.
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Figure 4.6: The early exercise boundaries of the maximum put option
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Example 4.3. (The European option under the Vasicek model) In this example, we consider

the European call option under the Vasicek model using lattice method. The reference values

are computed using analytic formula in Fang’ paper [23]. The parameters are given in Table

4.8. Other parameters (ρ,θ) will be specified later.

Parameters Values
K 100
t0 0.0
T 1.0
q 0.05
σ 0.2
v 0.2
κ 1.0

Table 4.8: Parameters for the European call option: the Vasicek model

In order to examine the rate of convergence of our lattice method, we plot the max-

imum absolute errors (MAE) against the time step sizes in Figs. 4.7. The MAEs are

computed at the points S = 60 : 5 : 120 × r = 0.01 : 0.01 : 0.2 with different corre-

lations ρ = −0.8,−0.4, 0.4, 0.8 and different long-term expectations of interest rates θ =

0.04, 0.05, 0.06, 0.07, 0.08. We can observe that the rate of convergence of our lattice method

is about 1. For the accuracy of the lattice scheme, we display the option prices and the

absolute errors (AE) in Tables 4.9–4.12. We can see that the AEs is O (10−3) when the

number of time steps M = 1000. All of these numerical results are as expected since the

theoretical rate of convergence of the lattice method is O (M−1).
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Figure 4.7: The maximum absolute errors of the European nall of Vasicek

r 0.02 0.06 0.10
S LAT REF AE LAT REF AE LAT REF AE
85 0.7346 0.7344 0.0002 1.0113 1.0110 0.0003 1.3646 1.3641 0.0005
90 1.5569 1.5565 0.0003 2.0500 2.0494 0.0006 2.6492 2.6484 0.0008
95 2.8927 2.8923 0.0004 3.6626 3.6619 0.0007 4.5581 4.5571 0.0010
100 4.8262 4.8259 0.0003 5.9057 5.9051 0.0006 7.1146 7.1136 0.0009
105 7.3760 7.3757 0.0003 8.7644 8.7637 0.0007 10.2692 10.2682 0.0010
110 10.4972 10.4971 0.0001 12.1644 12.1639 0.0005 13.9232 13.9223 0.0009
115 14.1024 14.1026 0.0002 16.0007 16.0004 0.0003 17.9598 17.9590 0.0008

Table 4.9: The European call prices (Vasicek): θ = 0.05, ρ = −0.8
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r 0.02 0.06 0.10
S LAT REF AE LAT REF AE LAT REF AE
85 1.4073 1.4074 0.0001 1.7845 1.7845 0.0000 2.2338 2.2337 0.0001
90 2.5025 2.5025 0.0000 3.0838 3.0836 0.0002 3.7546 3.7542 0.0004
95 4.0684 4.0683 0.0001 4.8880 4.8877 0.0003 5.8071 5.8065 0.0006
100 6.1414 6.1414 0.0001 7.2156 7.2152 0.0004 8.3902 8.3895 0.0007
105 8.7188 8.7189 0.0000 10.0450 10.0447 0.0003 11.4636 11.4629 0.0008
110 11.7644 11.7646 0.0003 13.3242 13.3240 0.0002 14.9613 14.9606 0.0007
115 15.2194 15.2199 0.0005 16.9838 16.9837 0.0000 18.8061 18.8056 0.0006

Table 4.10: The European call prices (Vasicek): θ = 0.05, ρ = −0.4

r 0.02 0.06 0.10
S LAT REF AE LAT REF AE LAT REF AE
85 2.7313 2.7331 0.0018 3.2229 3.2248 0.0019 3.7749 3.7771 0.0022
90 4.1606 4.1625 0.0019 4.8295 4.8314 0.0019 5.5665 5.5686 0.0021
95 5.9893 5.9914 0.0021 6.8505 6.8524 0.0019 7.7837 7.7857 0.0020
100 8.2224 8.2247 0.0023 9.2816 9.2836 0.0020 10.4122 10.4141 0.0019
105 10.8463 10.8489 0.0026 12.1003 12.1025 0.0021 13.4211 13.4230 0.0019
110 13.8333 13.8361 0.0029 15.2717 15.2740 0.0023 16.7687 16.7706 0.0020
115 17.1459 17.1491 0.0032 18.7531 18.7556 0.0025 20.4083 20.4104 0.0020

Table 4.11: The European call prices (Vasicek): θ = 0.05, ρ = 0.4

r 0.02 0.06 0.10
S LAT REF AE LAT REF AE LAT REF AE
85 3.3544 3.3575 0.0031 3.8814 3.8847 0.0033 4.4637 4.4675 0.0039
90 4.8977 4.9010 0.0033 5.5910 5.5945 0.0034 6.3454 6.3493 0.0039
95 6.8137 6.8173 0.0036 7.6843 7.6879 0.0035 8.6185 8.6223 0.0038
100 9.1012 9.1053 0.0040 10.1527 10.1564 0.0038 11.2668 11.2707 0.0039
105 11.7455 11.7498 0.0043 12.9746 12.9784 0.0039 14.2624 14.2663 0.0039
110 14.7208 14.7255 0.0047 16.1189 16.1231 0.0041 17.5692 17.5732 0.0040
115 17.9953 18.0004 0.0051 19.5498 19.5542 0.0044 21.1480 21.1521 0.0041

Table 4.12: The European call prices (Vasicek): θ = 0.05, ρ = 0.8
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Example 4.4. (The early exercise boundaries of the American options under the Vasicek

model) In this example, we consider the early exercise boundaries of the American call and

put options under the Vasicek stochastic interest rate model with the following parameters:

K = 100, t = 0, T = 1, σ = 0.3, κ = 2.0, v = 0.2.

The other parameters (correlation ρ, dividend rate q, and long term mean θ) will be specified

later. All the early exercise boundaries are computed via bisection methods using Algorithm

4 in section 4.2 with number of time steps M = 500.

Firstly, we consider the call option. Figures 4.8 show the early exercise boundaries with

fixed q and changing θ, while figures 4.9 are with changing q and fixed θ. Figures 4.10 are

plotted with extreme case (r up to 1.0). Denote St, rt as the spot asset price and interest

rate at time t, and let E be the immediate exercise region. From the above figures, we have

the following observations:

(1) (St, rt, t) ∈ E implies St > K.

(2) (St, rt, t) ∈ E does not implies (St, rt, s) ∈ E for all t ≤ s ≤ T .

(3) (St, rt, t) ∈ E implies (λSt, rt, t) ∈ E for all λ ≥ 1.

(4) (St, rt, t) ∈ E implies (St, λrt, t) ∈ E for all 0 ≤ λ ≤ 1.

(5) (St, rt, t) ∈ E and (S̃t, r̃t, t) ∈ E does not implies (St(λ), rt(λ), t) ∈ E for some 0 ≤ λ ≤

1, where St(λ) = λSt + (1− λ)S̃t, rt(λ) = λrt + (1− λ)r̃t for i = 1, 2.

(6) When t→ T−, the early exercise boundary is given by ST = max
(

rT
q
K,K

)
.

(7) θ does not significantly change the shape of early exercise region.
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Figure 4.8: The early exercise boundaries of call option (Vasicek, ρ, θ)
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Figure 4.9: The early exercise boundaries of call option (Vasicek, ρ, q)
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Figure 4.10: The early exercise boundaries of call option with Vasicek (extreme)

Next, we consider the put option. Fig. 4.11 show the early exercise boundaries with fixed

q and changing θ, while Fig. 4.12 are with changing q and fixed θ. Denote St, rt as the spot

asset price and interest rate at time t, and let E be the immediate exercise region. From the

above figures, we have the following observations:

(1) (St, rt, t) ∈ E implies St < K.

(2) (St, rt, t) ∈ E implies (St, rt, s) ∈ E for all t ≤ s ≤ T .

(3) (St, rt, t) ∈ E implies (St, λrt, t) ∈ E for all λ ≥ 1.

(4) (St, rt, t) ∈ E implies (λSt, rt, t) ∈ E for all 0 ≤ λ ≤ 1.

(5) (St, rt, t) ∈ E and (S̃t, r̃t, t) ∈ E implies (St(λ), rt(λ), t) ∈ E for all 0 ≤ λ ≤ 1, where

St(λ) = λSt + (1− λ)S̃t, rt(λ) = λrt + (1− λ)r̃t for i = 1, 2.

(6) When t→ T−, the early exercise boundary is given by ST = min
(

rT
q
K,K

)
.
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(7) θ does not significantly change the shape of early exercise region.
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(a) ρ = 0.5, q = 0.04, θ = 0.02 (b) ρ = −0.5, q = 0.04, θ = 0.02
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(c) ρ = 0.5, q = 0.04, θ = 0.04 (d) ρ = −0.5, q = 0.04, θ = 0.04
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(e) ρ = 0.5, q = 0.04, θ = 0.06 (f) ρ = −0.5, q = 0.04, θ = 0.06

Figure 4.11: The early exercise boundaries of put option (Vasicek, ρ, θ)
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(a) ρ = 0.5, q = 0.02, θ = 0.04 (b) ρ = −0.5, q = 0.02, θ = 0.04
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(c) ρ = 0.5, q = 0.04, θ = 0.04 (d) ρ = −0.5, q = 0.04, θ = 0.04
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(e) ρ = 0.5, q = 0.06, θ = 0.04 (f) ρ = −0.5, q = 0.06, θ = 0.04

Figure 4.12: The early exercise boundaries of put option (Vasicek, ρ, q)
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Example 4.5. (The European options under the CIR model) In this example, we consider

the European call options under the CIR model using lattice method with the parameters

in table 4.13. Other parameters (ρ,θ) will be specified later. The parameters are chosen

to satisfy the Feller condition 2κθ > v2. Notice that there is no analytic solution for the

European options, we compute the result using mixed Monte Carlo method with the control

variates from previous chapter with M = 1000, N = 1000000 as reference values.

Parameters Values
K 100
t0 0.0
T 1.0
q 0.05
σ 0.2
v 0.2
κ 1.0

Table 4.13: Parameters for the European call option: the CIR model

In order to examine the rate of convergence of our lattice method, we plot the maximum

absolute errors (MAE) against the time step sizes in Figs. 4.13. Since there is no analytic

solutions, we investigating the rate of convergence by examining the errors between the ap-

proximate solutions for numbers of stepsM and 2M . The MAEs are computed at the points

S = 60 : 5 : 120× r = 0.01 : 0.01 : 0.2 with different correlations ρ = −0.8,−0.4, 0.4, 0.8 and

different long-term means of interest rates θ = 0.04, 0.05, 0.06, 0.07, 0.08. We can observe

that the rate of convergence of our lattice method is about 1. For the accuracy, we display

the option prices and the absolute errors (AE) in Tables 4.14–4.17. We can see that the AEs

is O (10−3) when the number of time steps M = 1000. All of these numerical results are as

expected since the theoretical rate of convergence of the lattice method is O (M−1).
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Figure 4.13: The maximum absolute errors of the European Call of CIR

r 0.02 0.06 0.10
S LAT MMC AE LAT MMC AE LAT MMC AE
85 1.5586 1.5666 0.0080 1.8590 1.8591 0.0001 2.2365 2.2397 0.0032
90 2.7038 2.7104 0.0067 3.1801 3.1862 0.0061 3.7605 3.7594 0.0012
95 4.3146 4.3214 0.0068 5.0054 5.0065 0.0011 5.8224 5.8269 0.0045
100 6.4232 6.4298 0.0067 7.3533 7.3515 0.0018 8.4223 8.4235 0.0012
105 9.0255 9.0225 0.0030 10.2026 10.2059 0.0033 11.5198 11.5221 0.0022
110 12.0858 12.0921 0.0063 13.5011 13.5089 0.0078 15.0469 15.0492 0.0022
115 15.5475 15.5506 0.0030 17.1797 17.1825 0.0029 18.9238 18.9306 0.0069

Table 4.14: The European call prices (CIR): θ = 0.05, ρ = −0.8
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r 0.02 0.06 0.10
S LAT MMC AE LAT MMC AE LAT MMC AE
85 1.6515 1.6526 0.0010 2.0163 2.0159 0.0004 2.4580 2.4581 0.0000
90 2.8314 2.8325 0.0011 3.3869 3.3866 0.0003 4.0394 4.0389 0.0005
95 4.4737 4.4731 0.0006 5.2520 5.2517 0.0003 6.1409 6.1400 0.0009
100 6.6056 6.6053 0.0003 7.6236 7.6234 0.0002 8.7568 8.7584 0.0015
105 9.2198 9.2207 0.0010 10.4779 10.4777 0.0001 11.8466 11.8484 0.0018
110 12.2800 12.2801 0.0001 13.7644 13.7644 0.0000 15.3468 15.3460 0.0008
115 15.7314 15.7322 0.0008 17.4179 17.4194 0.0015 19.1845 19.1836 0.0009

Table 4.15: The European call prices (CIR): θ = 0.05, ρ = −0.4

r 0.02 0.06 0.10
S LAT MMC AE LAT MMC AE LAT MMC AE
85 1.8771 1.8763 0.0009 2.3718 2.3731 0.0013 2.9283 2.9294 0.0010
90 3.1180 3.1199 0.0019 3.8228 3.8229 0.0001 4.5956 4.5944 0.0011
95 4.8073 4.8090 0.0017 5.7427 5.7421 0.0006 6.7462 6.7485 0.0023
100 6.9659 6.9668 0.0009 8.1371 8.1358 0.0013 9.3704 9.3702 0.0002
105 9.5846 9.5876 0.0030 10.9825 10.9864 0.0039 12.4316 12.4341 0.0025
110 12.6294 12.6312 0.0018 14.2341 14.2321 0.0020 15.8760 15.8765 0.0005
115 16.0501 16.0537 0.0035 17.8350 17.8357 0.0007 19.6416 19.6433 0.0017

Table 4.16: The European call prices (CIR): θ = 0.05, ρ = 0.4

r 0.02 0.06 0.10
S LAT MMC AE LAT MMC AE LAT MMC AE
85 2.0066 2.0153 0.0087 2.5638 2.5632 0.0006 3.1702 3.1722 0.0020
90 3.2731 3.2832 0.0101 4.0467 4.0501 0.0034 4.8695 4.8704 0.0009
95 4.9786 4.9766 0.0020 5.9847 5.9858 0.0010 7.0346 7.0339 0.0007
100 7.1423 7.1439 0.0016 8.3820 8.3856 0.0036 9.6554 9.6622 0.0068
105 9.7559 9.7610 0.0051 11.2168 11.2133 0.0035 12.6987 12.6985 0.0002
110 12.7871 12.7976 0.0105 14.4474 14.4473 0.0001 16.1146 16.1109 0.0037
115 16.1887 16.1944 0.0057 18.0209 18.0224 0.0015 19.8462 19.8538 0.0076

Table 4.17: The European call prices (CIR): θ = 0.05, ρ = 0.8

Example 4.6. (The American options under the CIR model) In this example, we consider

the early exercise boundaries (with respect to S and r) of the American call and put options
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under the CIR stochastic interest rate model with the following parameters:

K = 100, t = 0, T = 1, σ = 0.3, κ = 2.0, v = 0.2.

The other parameters (correlation ρ, dividend rate q, and long term mean θ) will be specified

later. All the early exercise boundaries are computed via bisection methods using Algorithm

4 in section 4.2 with number of time steps M = 500.

Firstly, we consider the call option. Fig. 4.14 show the early exercise boundaries with

fixed q and changing θ, while Fig. 4.15 are with changing q and fixed θ. Fig. 4.16 are plotted

with extreme case (r up to 1.0). Denote St, rt as the spot asset price and interest rate at

time t, and let E be the immediate exercise region. We have the following observations:

(1) (St, rt, t) ∈ E implies St > K.

(2) (St, rt, t) ∈ E does not implies (St, rt, s) ∈ E for all t ≤ s ≤ T .

(3) (St, rt, t) ∈ E implies (λSt, rt, t) ∈ E for all λ ≥ 1.

(4) (St, rt, t) ∈ E implies (St, λrt, t) ∈ E for all 0 ≤ λ ≤ 1.

(5) (St, rt, t) ∈ E and (S̃t, r̃t, t) ∈ E does not implies (St(λ), rt(λ), t) ∈ E for some 0 ≤ λ ≤

1, where St(λ) = λSt + (1− λ)S̃t, rt(λ) = λrt + (1− λ)r̃t for i = 1, 2.

(6) When t→ T−, the early exercise boundary is given by ST = max
(

rT
q
K,K

)
.

(7) θ does not significantly change the shape of early exercise region.

(8) The early exercise boundaries at different times in each case are closer to each other,

compare with Vasicek model.
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(c) ρ = 0.5, q = 0.04, θ = 0.04 (d) ρ = −0.5, q = 0.04, θ = 0.04
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(e) ρ = 0.5, q = 0.04, θ = 0.06 (f) ρ = −0.5, q = 0.04, θ = 0.06

Figure 4.14: The early exercise boundaries of call option (CIR, ρ, θ)
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(c) ρ = 0.5, q = 0.04, θ = 0.04 (d) ρ = −0.5, q = 0.04, θ = 0.04
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(e) ρ = 0.5, q = 0.06, θ = 0.04 (f) ρ = −0.5, q = 0.06, θ = 0.04

Figure 4.15: The early exercise boundaries of call option (CIR, ρ, q)
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(a) ρ = 0.5, q = 0.04, θ = 0.04 (b) ρ = −0.5, q = 0.04, θ = 0.04

Figure 4.16: The early exercise boundaries of call option with CIR (extreme)

Next, we consider the put option. Fig. 4.17 show the early exercise boundaries with fixed

q and changing θ, while Fig. 4.18 are with changing q and fixed θ. We have the following

observations:

(1) (St, rt, t) ∈ E implies St < K.

(2) (St, rt, t) ∈ E implies (St, rt, s) ∈ E for all t ≤ s ≤ T .

(3) (St, rt, t) ∈ E implies (St, λrt, t) ∈ E for all λ ≥ 1.

(4) (St, rt, t) ∈ E implies (λSt, rt, t) ∈ E for all 0 ≤ λ ≤ 1.

(5) (St, rt, t) ∈ E and (S̃t, r̃t, t) ∈ E implies (St(λ), rt(λ), t) ∈ E for all 0 ≤ λ ≤ 1, where

St(λ) = λSt + (1− λ)S̃t, rt(λ) = λrt + (1− λ)r̃t for i = 1, 2.

(6) When t→ T−, the early exercise boundary is given by ST = min
(

rT
q
K,K

)
.

(7) θ does not significantly change the shape of early exercise region.
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(8) The early exercise boundaries at different times in each case are closer to each other,

compare with Vasicek model.
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(c) ρ = 0.5, q = 0.04, θ = 0.04 (d) ρ = −0.5, q = 0.04, θ = 0.04
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(e) ρ = 0.5, q = 0.04, θ = 0.06 (f) ρ = −0.5, q = 0.04, θ = 0.06

Figure 4.17: The early exercise boundaries of put option (CIR, ρ, θ)
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(c) ρ = 0.5, q = 0.04, θ = 0.04 (d) ρ = −0.5, q = 0.04, θ = 0.04
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(e) ρ = 0.5, q = 0.06, θ = 0.04 (f) ρ = −0.5, q = 0.06, θ = 0.04

Figure 4.18: The early exercise boundaries of put option (CIR, ρ, q)
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CHAPTER 5

A FINITE VOLUME - ADI METHOD

The alternating direction implicit (ADI) method was first introduced by Peaceman and

Rachford in 1955[51]. It uses the idea of splitting the finite difference equations into two,

one taking x-derivative implicitly and the other taking y-derivative implicitly. We are referred

to the book from W. Hundsdorfer and J. Verwer [35].

For multi-asset options, Villeneuve and Zanette [61] performed a coordinate transfor-

mation to get an operator that is essentially the standard two-dimensional Laplacian, then

Peaceman-Rachford ADI scheme can be applied. Dang, Christara, and Jackson developed

an Alternating Direction Implicit Approximate Factorization (ADI-AF) techniques based

on Graphics Processing Units (GPUs) in 2010[18]. They used a combination of an efficient

GPU-based parallelization of ADI-AF techniques with a penalty approach for the pricing

of multi-asset American options in the Black-Scholes framework. For Stochastic Volatility

models (especially Heston model), Haentjens and in’t Hout [31] developed an effective adap-

tation of ADI time discretization schemes to the semi-discretized Heston partial differential

complementarity problem for American-style options in 2015. The method is applied to the

PDE directly without transformation of variables. For models with both stochastic volatili-

ty and stochastic interest rate, Haentjens and in in’t Hout [30] applied ADI for the Heston
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Hull White model. Grzelak and Oosterlee [29] applied ADI for the Heston-Hull-White and

Heston-CIR models, Donnelly, Jaimungal, and Rubisov[22] valued guaranteed withdrawal

benefits with stochastic interest rates and volatility. Since the the mixed partial derivatives

are not removed in these papers, the schemes are complicated and thus inefficient.

In this chapter, we applied the ADI method to the partial differential equations derived

under the uncorrelated processes in Chapter 2. The partial differential operator will be

discretized by a finite volume method and thus the Neumann boundary conditions can

be treated more accurately. Since there is not mixed partial derivatives, our scheme is

numerically simplest and very fast. Here we only consider the stochastic volatility model

(the Heston model) and it is not difficult to extend our method to the other models in

Chapter 2.

5.1 The Partial Differential Variational Inequalities

Consider the European contingent claim with expiration date T and payoff function Φ(S)

under the the Heston model (2.14)–(2.15). Its rational price at time t is given by

p(s, v, t) = E
[
e−r(T−t)Φ(S(T ))

∣∣S(t) = s, v(t) = v
]
.

Since e−rtp(S(t), v(t), t) is a martingale, it follows from Ito’s Lemma that function p(s, v, t)

solves the parabolic partial differential equation

∂p

∂t
+Kp = 0, (5.1)

where

Kp = 1

2
s2vpss + ρσsvpsv +

1

2
σ2vpvv + (r − q)sps + κ(η − v)pv − rV. (5.2)
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The rational price of the American contingent claim is given by

q(s, v, t) = sup
t≤t∗≤T

E
[
e−r(t∗−t)Φ(S(t∗))

∣∣S(t) = s, v(t) = v
]
,

where t∗ is the stopping time. It is known that function q(S, v, t) solves the parabolic partial

differential variational inequalities (PDVIs)

∂q

∂t
+Kq ≤ 0, q ≥ Φ, (q − Φ)

(
∂q

∂t
+Kq

)
= 0.

It should be pointed out that the operator K has a mixed partial derivative term. These

PDVIs are widely used by many papers, like Ikonen and Toivanen [36], Haentjens and in in’t

Hout [31].

Under the transformed processes Y1(t) and Y2(t) defined by the SDEs (2.18)–(2.19), the

rational price of the European contingent claim is given by

P (x, y, t) = E
[
e−r(T−t)Ψ(Y1(T ), Y2(T ))

∣∣Y1(t) = x, Y2(t) = y
]
,

where

Ψ(x, y) = Φ
(
Kex+

ρ
σ
y
)
.

Since e−rtP (Y1(t), Y2(t), t) is also a martingale, we have by Ito’s Lemma

∂P

∂t
+ LP = 0, (5.3)

where

LP =
1

2
λ2yPxx +

1

2
σ2yPyy + (a1 + b1y)Px + (a2 + b2y)Py − rP. (5.4)

For the American option, the price is given by

Q(x, y, t) = sup
t≤t∗≤T

E
[
e−r(t∗−t)Ψ(Y1(T ), Y2(T ))

∣∣Y1(t) = x, Y2(t) = y
]
,
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which satisfies the parabolic partial differential variational inequalities

∂Q

∂t
+ LQ ≤ 0, Q ≥ Ψ, (Q−Ψ)

(
∂Q

∂t
+ LQ

)
= 0. (5.5)

Now there is no mixed partial derivative term in the operator L.

Let

U(x, y, τ) =


P (x, y, T − τ), for the European contingent claim,

Q(x, y, T − τ), for the American contingent claim.

Then the backward partial differential equation (5.3) and variational inequalities (5.5) be-

comes

∂U

∂τ
− LU = 0, (5.6)

and

∂U

∂τ
− LU ≥ 0, U ≥ Ψ, (U −Ψ)

(
∂U

∂τ
− LU

)
= 0. (5.7)

The boundary conditions will be specified in the next section in order to solve the problems

on a bounded domain.

5.2 The Boundary Conditions

From now on, we only consider the put option with expiration date T and strike price K.

The call option can be evaluated according to the put-call parity or the put-call symmetry

([1][11][19][55]). The payoff function of the put is

Φ(S) = (K − S)+.

The partial differential equation (5.6) and the partial differential variational inequalities (5.7)

are posed on the unbounded domain (−∞,+∞)× (0,+∞)× (0, T ). We need to solve them
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numerically on a bounded domain (Xmin, Xmax) × (0, Ymax) × (0, T ) for sufficiently small

negative number Xmin and sufficiently large positive numbers Xmax and Ymax.

For the European put, when S = 0, we have from (5.1)

∂p

∂t
− rp = 0,

which means that

p(0, v, t) = p(0, v, T )e−r(T−t).

It is apparent that p(0, v, T ) = Φ(0) = K. Thus the boundary condition at S = 0 is

p(0, v, t) = Ke−r(T−t).

Notice that

U(x, y, τ) = p
(
Kex+

ρ
σ
y, y
)
→ p(0, y, t) = Ke−r(T−t), x→ −∞.

We set the boundary condition at x = Xmin for the European put option as

U (Xmin, y, τ) = Ke−rτ . (5.8)

It is known that the American put price is equal to its payoff when S is sufficiently small.

The boundary condition at x = Xmin for the American put option is naturally set as

U (Xmin, y, τ) = K −K exp
(
Xmin +

ρ

σ
y
)
. (5.9)

Since the put price goes to zero as S → ∞, we can set the boundary condition at x = Xmax

as follows:

U (Xmax, y, τ) = 0. (5.10)
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Since we have degenerate partial differential operator L with respect to v, the boundary

condition at v = 0 is the partial differential equation for the European put option and the

partial differential variational inequalities for the American put option obtained from (5.6)

and (5.7) by letting v = 0: for the European option

dU

dτ
− a1Ux − a2Uy + rU = 0,

and for the American option
dU

dτ
− a1Ux − a2Uy + rU ≥ 0, U ≥ Ψ,

(U −Ψ)

(
dU

dτ
− a1Ux − a2Uy + rU

)
= 0.

(5.11)

As pointed in [12], [36] and [62], the put price would be expected be insensitive to volatility

change as v → ∞. Hence, we use the following artificial Neumann boundary conditions:

∂p

∂v
= 0 and

∂q

∂v
= 0.

The above Neumann boundary conditions for U become

Uy −
ρ

σ
Ux = 0. (5.12)

5.3 The Semi-discretization by a Finite VolumeMethod

Let Xmin = x0 < x1 < x2 < · · · < xN1−1 < xN1 = Xmax and 0 = y0 < y1 < y2 < · · · <

yN2−1 < yN2 = Ymax be the partitions of intervals [Xmin, Xmax] and [0, Ymax], respectively.

The dual nodal points for the partitions are

xi− 1
2
=

1

2
(xi−1 + xi) , i = 1, . . . , N1,
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and

yj− 1
2
=

1

2
(yj−1 + yi) , j = 1, . . . , N2.

For a given positive integer M , let

τm = m∆τ, m = 0, 1, . . . ,M,

where ∆τ = T
M

is the step size in time. The approximation of U(xi, yj, τm) will be denoted

by Um
i,j. For simplicity, we shall drop the superscript m. In the following, we consider a finite

volume method to discretize the spatial differential operator L. The full discretization will

be given in the next section.

We first rewrite the spatial differential operator L in divergent form

LU =
∂

∂x
((a1 + b1y)U) +

∂

∂y

((
a2 −

1

2
σ2 + b2y

)
U

)
+

∂

∂x

(
1

2
λ2y

∂U

∂x

)
+

∂

∂y

(
1

2
σ2y

∂U

∂y

)
− (b2 + r)U

=
∂M1

∂x
− ∂L1

∂y
+
∂M2

∂x
− ∂L2

∂y
− (b2 + r)U, (5.13)

where

M1 = (a1 + b1y)U, L1 = −
(
a2 −

1

2
σ2 + b2y

)
U,

M2 =
1

2
λ2y

∂U

∂x
, L2 = −1

2
σ2y

∂U

∂y
.

5.3.1 The Interior Nodes

For an interior node (xi, yj) (1 ≤ i ≤ N1−1 and 1 ≤ j ≤ N2−1), let R be the dual rectangle

ABCD as shown in Fig. 5.1.
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(xi−1, yj) (xi+1, yj)

(xi, yj−1)

(xi, yj+1)

(xi, yj)

A B

D C

Figure 5.1: An interior node

By the Green’s formula, we have

∫∫
R

LUdxdy =

∫∫
R

∂M1

∂x
− ∂L1

∂y
+
∂M2

∂x
− ∂L2

∂y
− (b2 + r)U

=

∮
∂R

(L1dx+M1dy) +

∮
∂R

(L2dx+M2dy)−
∫∫
R

(b2 + r)Udxdy

=

∫
−→
AB

(L1 + L2)dx+

∫
−−→
BC

(M1 +M2)dy +

∫
−−→
CD

(L1 + L2)dx

+

∫
−−→
DA

(M1 +M2)dy −
∫∫
R

(b2 + r)Udxdy.

85



For the integrals in x direction, we have

∫
−−→
BC

M1dy =

∫ y
j+1

2

y
j− 1

2

(a1 + b1y)Udy ≈ 1

2

(
yj+ 1

2
− yj− 1

2

)
(a1 + b1yj)(Ui,j + Ui+1,j),

∫
−−→
DA

M1dy =

∫ y
j− 1

2

y
j+1

2

(a1 + b1y)Udy ≈ −1

2

(
yj+ 1

2
− yj− 1

2

)
(a1 + b1yj)(Ui−1,j + Ui,j),

∫
−−→
BC

M2dy =

∫ y
j+1

2

y
j− 1

2

1

2
λ2y

∂U

∂x
dy ≈ 1

2
λ2yj

(
yj+ 1

2
− yj− 1

2

) Ui+1,j − Ui,j

xi+1 − xi
,

∫
−−→
DA

M2dy =

∫ y
j− 1

2

y
j+1

2

1

2
λ2y

∂U

∂x
dy ≈ −1

2
λ2yj

(
yj+ 1

2
− yj− 1

2

) Ui,j − Ui−1,j

xi − xi−1

.

For the integrals in y direction, we have

∫
−→
AB

L1dx = −
∫ x

i+1
2

x
i− 1

2

(
a2 −

1

2
σ2 + b2yj− 1

2

)
Udx

≈ −1

2

(
xi+ 1

2
− xi− 1

2

)(
a2 −

1

2
σ2 + b2yj− 1

2

)
(Ui,j−1 + Ui,j) ,∫

−−→
CD

L1dx = −
∫ x

i− 1
2

x
i+1

2

(
a2 −

1

2
σ2 + b2yj+ 1

2

)
Udx

≈ 1

2

(
xi+ 1

2
− xi− 1

2

)(
a2 −

1

2
σ2 + b2yj+ 1

2

)
(Ui,j + Ui,j+1) ,

∫
−→
AB

L2dx = −
∫ x

i+1
2

x
i− 1

2

1

2
σ2yj− 1

2

∂U

∂y
dx ≈ −1

2
σ2yj− 1

2

(
xi+ 1

2
− xi− 1

2

) Ui,j − Ui,j−1

yj − yj−1

,

∫
−−→
CD

L2dx = −
∫ x

i− 1
2

x
i+1

2

1

2
σ2yj+ 1

2

∂U

∂y
dx ≈ 1

2
σ2yj+ 1

2

(
xi+ 1

2
− xi− 1

2

) Ui,j+1 − Ui,j

yj+1 − yj
.

For the last integral, we have

∫∫
R

(b2 + r)Udxdy ≈
(
xi+ 1

2
− xi− 1

2

)(
yj+ 1

2
− yj− 1

2

)
(b2 + r)Ui,j.

To sum up, we have for 1 ≤ i ≤ N1 − 1, 1 ≤ j ≤ N2 − 1,

LU (xi, yj, τm) ≈
1

m(R)

∫∫
R

LU(x, y, τm)dxdy ≈ AUi,j + BUi,j − rUi,j,
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where m(R) =
(
xi+ 1

2
− xi− 1

2

)(
yj+ 1

2
− yj− 1

2

)
is the area of the rectangle ABCD and

AUi,j = ai−1,jUi−1,j − ai,jUi,j + ai+1,jUi+1,j,

BUi,j = bi,j−1Ui,j−1 − bi,jUi,j + bi,j+1Ui,j+1,

ai−1,j =
1

∆xi +∆xi+1

[
λ2yj
∆xi

− (a1 + b1yj)

]
,

ai,j =
λ2yj

∆xi∆xi+1

,

ai+1,j =
1

∆xi +∆xi+1

[
λ2yj
∆xi+1

+ (a1 + b1yj)

]
,

bi,j−1 =
1

∆yj +∆yj+1

[
σ2yj
∆yj

− (a2 + b2yj) +
1

2
b2∆yj

]
,

bi,j =
σ2yj

∆yj∆yj+1

+
1

2
b2,

bi,j+1 =
1

∆yj +∆yj+1

[
σ2yj
∆yj+1

+ (a2 + b2yj) +
1

2
b2∆yj+1

]
.

5.3.2 The Nodes on the Boundary x = Xmin

For the boundary node (0, yj), 0 ≤ j ≤ N2, we have by the boundary conditions (5.8) and

(5.9)

Um
0,j =


Ke−rτ for European put options,

K −K exp
(
Xmin +

ρ

σ
yj

)
for American put options.

(5.14)

5.3.3 The Nodes on the Boundary x = Xmax

For the boundary node (xN1 , j), 1 ≤ j ≤ N2 − 1, we have by the boundary conditions (5.10)

Um
N1,j

= 0. (5.15)
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5.3.4 The Nodes on the Boundary y = 0

t t t

t

(xi−1, y0) (xi+1, y0)(xi, y0)

(xi, y1)

A B

CD

Figure 5.2: A node on the boundary y = 0

For the boundary node (xi, 0), 1 ≤ i ≤ N1 − 1, consider the dual rectangle ABCD,

denoted by R, as shown in Figure 5.2. We recall the boundary condition (5.11).

Using the same idea as section 5.3.1∫∫
R

LUdxdy =

∮
∂R

(L1dx+M1dy) +

∮
∂R

(L2dx+M2dy)−
∫∫
R

(b2 + r)Udxdy

=

∫
−→
AB

(L1 + L2)dx+

∫
−−→
BC

(M1 +M2)dy +

∫
−−→
CD

(L1 + L2)dx+

∫
−−→
DA

(M1 +M2)dy

−
∫∫
R

(b2 + r)Udxdy.

For the integrals in x direction, we have∫
−−→
BC

M1dy =

∫ y 1
2

y0

(a1 + b1y)Udy ≈ 1

2

(
y 1

2
− y0

)(
a1 + b1y 1

4

)
(Ui,0 + Ui+1,0),

∫
−−→
DA

M1dy =

∫ y0

y 1
2

(a1 + b1y)Udy ≈ −1

2

(
y 1

2
− y0

)(
a1 + b1y 1

4

)
(Ui−1,0 + Ui,0),

∫
−−→
BC

M2dy =

∫ y 1
2

y0

1

2
λ2y

∂U

∂x
dy ≈ 1

2
λ2y 1

4

(
y 1

2
− y0

) Ui+1,0 − Ui,0

xi+1 − xi
,

∫
−−→
DA

M2dy =

∫ y0

y 1
2

1

2
λ2y

∂U

∂x
dy ≈ −1

2
λ2y 1

4

(
y 1

2
− y0

) Ui,0 − Ui−1,0

xi − xi−1

.
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For the integrals in y direction, we have

∫
−→
AB

L1dx = −
∫ x

i+1
2

x
i− 1

2

(
a2 −

1

2
σ2 + b2y0

)
Udx ≈ −

(
xi+ 1

2
− xi− 1

2

)(
a2 −

1

2
σ2

)
Ui,0,

∫
−−→
CD

L1dx = −
∫ x

i− 1
2

x
i+1

2

(
a2 −

1

2
σ2 + b2y 1

2

)
Udx ≈ 1

2

(
xi+ 1

2
− xi− 1

2

)(
a2 −

1

2
σ2 + b2y 1

2

)
(Ui,0 + Ui,1),

∫
−→
AB

L2dx = −
∫ x

i+1
2

x
i− 1

2

(
1

2
σ2y0

)
∂U

∂y
dx = 0,

∫
−−→
CD

L2dx = −
∫ x

i− 1
2

x
i+1

2

(
1

2
σ2y 1

2

)
∂U

∂y
dx ≈ 1

2
σ2y 1

2

(
xi+ 1

2
− xi− 1

2

) Ui,1 − Ui,0

y1 − y0
.

For the last integral, we have

∫∫
R

(b2 + r)Udxdy ≈
(
xi+ 1

2
− xi− 1

2

)(
y 1

2
− y0

)
(b2 + r)Ui,0.

To sum up, we have for 1 ≤ i ≤ N1 − 1,

LU (xi, 0, τm) ≈
1

m(R)

∫∫
R

LU(x, y, τm)dxdy ≈ AUi,0 + BUi,0 − rUi,0,

where m(R) =
(
xi+ 1

2
− xi− 1

2

)(
y 1

2
− y0

)
is the area of the rectangle ABCD and

AUi,0 = ai−1,0Ui−1,0 − ai,0Ui,0 + ai+1,0Ui+1,0,

BUi,0 = bi,0Ui,0 + bi,1Ui,1,

ai−1,0 =
1

∆xi +∆xi+1

[
λ2∆y1
4∆xi

−
(
a1 + b1

∆y1
4

)]
,

ai,0 =
λ2∆y1

4∆xi∆xi+1

,

ai+1,0 =
1

∆xi +∆xi+1

[
λ2∆y1
4∆xi+1

+

(
a1 + b1

∆y1
4

)]
,

bi,0 =
1

∆y1

[
−a2 −

1

2
b2∆y1

]
,

bi,1 =
1

∆y1

[
a2 +

1

2
b2∆y1

]
.
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5.3.5 The Nodes on the Boundary y = Ymax

t t t

t

(xi−1, yN2) (xi+1, yN2)(xi, yN2)

(xi, yN2−1)

A B

CD

Figure 5.3: A node on the boundary y = Ymax

For boundary node (i, N2), 1 ≤ i ≤ N1 − 1, consider the dual rectangle ABCD, denoted

by R, as shown in Figure 5.3. By the boundary condition (5.12), on the side
−−→
CD, we have

∂U

∂y
=
ρ

σ

∂U

∂x
.

Using the same idea as section 5.3.1

∫∫
R

LUdxdy =

∮
∂R

(L1dx+M1dy) +

∮
∂R

(L2dx+M2dy)−
∫∫
R

(b2 + r)Udxdy

=

∫
−→
AB

(L1 + L2)dx+

∫
−−→
BC

(M1 +M2)dy +

∫
−−→
CD

(L1 + L2)dx+

∫
−−→
DA

(M1 +M2)dy

−
∫∫
R

(b2 + r)Udxdy.
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For the integrals in x direction, we have

∫
−−→
BC

M1dy =

∫ yN2

y
N2−

1
2

(a1 + b1y)Udy ≈ 1

2

(
yN2 − yN2− 1

2

)
(a1 + b1yN2)(Ui,N2 + Ui+1,N2),

∫
−−→
DA

M1dy =

∫ y
N2−

1
2

yN2

(a1 + b1y)Udy ≈ −1

2

(
yN2 − yN2− 1

2

)
(a1 + b1yN2)(Ui−1,N2 + Ui,N2),

∫
−−→
BC

M2dy =

∫ yN2

y
N2−

1
2

1

2
λ2y

∂U

∂x
dy ≈ 1

2
λ2yN2

(
yN2 − yN2− 1

2

) Ui+1,N2 − Ui,N2

xi+1 − xi
,

∫
−−→
DA

M2dy =

∫ y
N2−

1
2

yN2

1

2
λ2y

∂U

∂x
dy ≈ −1

2
λ2yN2

(
yN2 − yN2− 1

2

) Ui,N2 − Ui−1,N2

xi − xi−1

.

For the integrals in y direction, we have

∫
−→
AB

L1dx = −
∫ x

i+1
2

x
i− 1

2

(
a2 −

1

2
σ2 + b2yN2− 1

2

)
Udx

≈ −1

2

(
xi+ 1

2
− xi− 1

2

)(
a2 −

1

2
σ2 + b2yN2− 1

2

)
(Ui,N2−1 + Ui,N2),∫

−−→
CD

L1dx = −
∫ x

i− 1
2

x
i+1

2

(
a2 −

1

2
σ2 + b2yN2

)
Udx ≈

(
xi+ 1

2
− xi− 1

2

)(
a2 −

1

2
σ2 + b2yN2

)
Ui,N2 ,

∫
−→
AB

L2dx = −
∫ x

i+1
2

x
i− 1

2

(
1

2
σ2yN2− 1

2

)
∂U

∂y
dx ≈ −

(
xi+ 1

2
− xi− 1

2

)(1

2
σ2yN2− 1

2

)
Ui,N2 − Ui,N2−1

yN2 − yN2−1

,

∫
−−→
CD

L2dx = −
∫ x

i− 1
2

x
i+1

2

(
1

2
σ2yN2

)
∂U

∂y
dx = −

∫ x
i− 1

2

x
i+1

2

(
1

2
σ2yN2

)
ρ

σ

∂U

∂x
dx

≈
(
xi+ 1

2
− xi− 1

2

)(1

2
ρσyN2

)
Ui+1,N2 − Ui−1,N2

xi+1 − xi−1

.

For the last integral, we have

∫∫
R

(b2 + r)Udxdy ≈
(
xi+ 1

2
− xi− 1

2

)(
yN2 − yN2− 1

2

)
(b2 + r)Ui,N2 .

To sum up, we have for 1 ≤ i ≤ N1 − 1,

LU (xi, yN2 , τm) ≈
1

m(R)

∫∫
R

LU(x, y, τm)dxdy ≈ AUi,N2 + BUi,N2 − rUi,N2 ,
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where m(R) =
(
xi+ 1

2
− xi− 1

2

)(
yN2 − yN2− 1

2

)
is the area of the rectangle ABCD and

AUi,N2 = ai−1,N2Ui−1,N2 − ai,N2Ui,N2 + ai+1,N2Ui+1,N2 ,

BUi,N2 = bi,N2−1Ui,N2−1 + bi,N2Ui,N2 ,

ai−1,N2 =
1

∆xi +∆xi+1

[
λ2yN2

∆xi
− (a1 + b1yN2)−

ρσyN2

∆yN2

]
,

ai,N2 =
λ2yN2

∆xi∆xi+1

,

ai+1,N2 =
1

∆xi +∆xi+1

[
λ2yN2

∆xi+1

+ (a1 + b1yN2) +
ρσyN2

∆yN2

]
,

bi,N2−1 =
1

∆yN2

[
σ2yN2

∆yN2

− (a2 + b2yN2) +
1

2
b2∆yN2

]
,

bi,N2 =
1

∆yN2

[
−σ

2yN2

∆yN2

+ (a2 + b2yN2)−
1

2
b2∆yN2

]
.

5.3.6 Discretization of the Operator L

Combining the discretizations in the previous subsections, we have

LU(xi, yj) ≈ L∗Ui,j = AUi,j + BUi,j − rUi,j

for 1 ≤ i ≤ N1, 0 ≤ j ≤ N2, and

L∗Ui,j =

{
−rUi,j for European option,
0 for American option.

for i = 0, N1 and 0 ≤ j ≤ N2, where U0,j and UN1,j are given by (5.14) and (5.15). Let

A∗ = A− 1

2
rI, B∗ = B − 1

2
rI,

where I is the identity operator. Then

L∗ = A∗ + B∗. (5.16)
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For fixed 0 ≤ j ≤ N2, let U·,j = [U0,j, U1,j, U2,j, · · · , UN1,j]
T and A∗

j be the matrix such

that A∗U·,j = A∗
jU·,j . Then we have

A∗
j =



a∗ 0
a−1
0,j a01,j a+1

2,j

a−1
1,j a02,j a+1

3,j
. . . . . . . . .

a−1
i−1,j a0i,j a+1

i+1,j
. . . . . . . . .

a−1
N1−2,j a0N1−1,j a+1

N1,j

0 a∗


(N1+1)×(N1+1)

, (5.17)

where

a∗ =

{
−1

2
r for European option,

0 for American option.

a−1
i−1,j =



1
∆xi+∆xi+1

[
λ2∆y1
4∆xi

− (a1 + b1
∆y1
4
)
]

for 1 ≤ i ≤ N1 − 1, j = 0,

1
∆xi+∆xi+1

[
λ2yj
∆xi

− (a1 + b1yj)
]

for 1 ≤ i ≤ N1 − 1, 1 ≤ j ≤ N2 − 1,

1
∆xi+∆xi+1

[
λ2yN2

∆xi
− (a1 + b1yN2)−

ρσyN2

∆yN2

]
for 1 ≤ i ≤ N1 − 1, j = N2.

a0i,j =


− λ2∆y1

4∆xi∆xi+1
− 1

2
r for 1 ≤ i ≤ N1 − 1, j = 0,

− λ2yj
∆xi∆xi+1

− 1
2
r for 1 ≤ i ≤ N1 − 1, 1 ≤ j ≤ N2 − 1,

− λ2yN2

∆xi∆xi+1
− 1

2
r for 1 ≤ i ≤ N1 − 1, j = N2.

a+1
i+1,j =


1

∆xi+∆xi+1

[
λ2∆y1
4∆xi+1

+ (a1 + b1
∆y1
4
)
]

for 1 ≤ i ≤ N1 − 1, j = 0,

1
∆xi+∆xi+1

[
λ2yj
∆xi+1

+ (a1 + b1yj)
]

for 1 ≤ i ≤ N1 − 1, 1 ≤ j ≤ N2 − 1,

1
∆xi+∆xi+1

[
λ2yN2

∆xi+1
+ (a1 + b1yN2) +

ρσyN2

∆yN2

]
for 1 ≤ i ≤ N1 − 1, j = N2.

For fixed 0 ≤ i ≤ N1, let Ui,· = [Ui,0, Ui,1, Ui,2, · · · , Ui,N2 ]
T and B∗

i be the matrix such

that B∗Ui,· = B∗
i Ui,·. Then we have

B∗
i =



b0i,0 b+1
i,1

b−1
i,0 b0i,1 b+1

i,2

b−1
i,1 b0i,2 b+1

i,3
. . . . . . . . .

b−1
i,j−1 b0i,j b+1

i,j+1
. . . . . . . . .

b−1
i,N2−2 b0i,N2−1 b+1

i,N2

b−1
i,N2−1 b0i,N2


(N2+1)×(N2+1)

, (5.18)
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where

b0i,0 =

{
b∗ for i = 0, N1,
− 1

∆y1

[
a2 +

1
2
b2∆y1

]
− 1

2
r for 1 ≤ i ≤ N1 − 1.

b+1
i,1 =

{
0 for i = 0, N1,
1

∆y1

[
a2 +

1
2
b2∆y1

]
for 1 ≤ i ≤ N1 − 1.

b−1
i,j−1 =

{
0 for i = 0, N1,

1
∆yj+∆yj+1

[
σ2yj
∆yj

− (a2 + b2yj) +
1
2
b2∆yj

]
for 1 ≤ i ≤ N1 − 1, 1 ≤ j ≤ N2 − 1.

b0i,j =

{
b∗ for i = 0, N1,

−
[

σ2yj
∆yj∆yj+1

+ 1
2
b2

]
− 1

2
r for 1 ≤ i ≤ N1 − 1, 1 ≤ j ≤ N2 − 1.

b+1
i,j+1 =

{
0 for i = 0, N1,

1
∆yj+∆yj+1

[
σ2yj
∆yj+1

+ (a2 + b2yj) +
1
2
b2∆yj+1

]
for 1 ≤ i ≤ N1 − 1, 1 ≤ j ≤ N2 − 1.

b−1
i,N2−1 =

{
0 for i = 0, N1,

1
∆yN2

[
σ2yN2

∆yN2
− (a2 + b2yN2) +

1
2
b2∆yN2

]
for 1 ≤ i ≤ N1 − 1.

b0i,N2
=

{
b∗ for i = 0, N1,

1
∆yN2

[
−σ2yN2

∆yN2
+ (a2 + b2yN2)− 1

2
b2∆yN2

]
− 1

2
r for 1 ≤ i ≤ N1 − 1.

b∗ =

{
−1

2
r for European option,

0 for American option.

5.4 Time Discretization: an ADI method

Applying the Crank-Nicolson scheme and introducing an auxiliary vector λm as in [31], we

have the following full-discretization scheme

Um − Um−1

∆τ
=

1

2

(
L∗Um + L∗Um−1

)
+ λm, (5.19)

λm ≥ 0, Um ≥ G, (Um −G)λm = 0, (5.20)

where Um is the approximation of U(τm) and Gi,j = Ψ(xi, yj). The equation (5.19) can be

rewritten as (
I − 1

2
∆τL∗

)
Um =

(
I +

1

2
∆τL∗

)
Um−1 +∆τλm, (5.21)
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where I is the identity operator. In order to solve the above linear complementarity problem

(LCP) by an ADI method, we have the following approximate LCP by using the technique

introduced by Ikonen and Toivanen [36]

(
I − 1

2
∆τL∗

)
U

m
=

(
I +

1

2
∆τL∗

)
Um−1 +∆τλm−1, (5.22)

Um − U
m −∆τ(λm − λm−1) = 0, (5.23)

λm ≥ 0, Um ≥ G, (Um −G)λm = 0, (5.24)

where U
m

can be regarded as the prediction of the approximation to U(tm) and λ0 = 0.

Once U
m
is obtained by solving (5.22), we can easily solve (5.23)–(5.24) to get

Um = max
{
U

m −∆τλm−1, G
}
,

λm = max

{
λm−1 +

G− U
m

∆τ
, 0

}
.

By Theorem 1 in [36], the truncation errors for schemes (5.22)–(5.24) and (5.19)–(5.20) are

of the same order, which is at most O((∆τ)2). The possible irregularity of the solution with

respect to time might reduce the order of accuracy.

Next we consider how to solve (5.22) by an ADI method. Since L∗ = A∗ + B∗, equation

(5.22) becomes as

(
I − 1

2
∆τ(A∗ + B∗)

)
U

m
=

(
I +

1

2
∆τ(A∗ + B∗)

)
Um−1 +∆τλm−1.

By adding and subtracting the corresponding 1
4
(∆τ)2A∗B∗ term, we have

(
I − 1

2
∆τA∗

)(
I − 1

2
∆τB∗

)
U

m
=

(
I +

1

2
∆τA∗

)(
I +

1

2
∆τB∗

)
Um−1

+∆τλm−1 +
1

4
(∆τ)2A∗B∗ (Um − Um−1

)
.
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After dropping the last term, we get

(
I − 1

2
∆τA∗

)(
I − 1

2
∆τB∗

)
U

m
=

(
I +

1

2
∆τA∗

)(
I +

1

2
∆τB∗

)
Um−1 +∆τλm−1.

The above equation can be rewritten as

(
I − 1

2
∆τB∗

)
U

m
=

(
I +

1

2
∆τA∗

)(
I − 1

2
∆τA∗

)−1(
I +

1

2
∆τB∗

)
Um−1

+∆τ

(
I − 1

2
∆τA∗

)−1

λm−1.

Letting

U
m− 1

2 =

(
I − 1

2
∆τA∗

)−1(
I +

1

2
∆τB∗

)
Um−1,

we have the following ADI scheme to compute U
m
:

(
I − 1

2
∆τA∗

)
U

m− 1
2 =

(
I +

1

2
∆τB∗

)
Um−1, (5.25)(

I − 1

2
∆τB∗

)
U

m
=

(
I +

1

2
∆τA∗

)
U

m− 1
2 +∆τ

(
I − 1

2
∆τA∗

)−1

λm−1. (5.26)

To conclude this section, we formulate the following algorithm for our FV-ADI method,

which has been implemented by writing a C++ package.
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Algorithm 9. A FV-ADI method for the American put option under Heston model

1. Let

U0
i,j = Ψ(xi, yj), i = 0, . . . , N1, j = 0, . . . , N2.

Um
0,j = K −K exp

(
Xmin +

ρ

σ
yj

)
, m = 0, . . . ,M, j = 0, . . . , N2.

Um
N1,j

= 0, m = 0, . . . ,M, j = 0, . . . , N2.

λ0 = 0

2. For m = 1, . . . ,M , do

For i = 0, . . . , N1, do

– compute fi,· = Um−1
i,· (I + 1

2
∆τB∗)T to get the i−th row of f

End do

For j = 0, . . . , N2, do

– solve
(
I − 1

2
∆τA∗

j

)
U

m−1
2

·,j = f·,j to get U
m−1

2
·,j

– solve
(
I − 1

2
∆τA∗

j

)
γ·,j = λm−1

·,j to get the j-th column of γ

– compute g·,j = (I + 1
2
∆τA∗)U

m−1
2

·,j +∆τγ·,j to get the j−th column of g

End do

For i = 1, . . . , N1, do

– solve
(
I − 1

2
∆τB∗

i

)
(U

m

i,·)
T = gT

i,· to get U
m

End do

Let

Um
i,j = max{Um

i,j −∆τλm−1
i,j , U0}, λmi,j = max{λm−1

i,j +
U0
i,j − U

m

i,j

∆τ
, 0}.

for i = 0, . . . , N1, j = 0, . . . , N2.

End do
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5.5 Numerical Results

In this section, we present numerical results to validate our C++ codes to implement Algo-

rithm 9 and examine the rate of convergence and efficiency of our FV-ADI method.

We shall consider the options with strike price K = $100 and expiration date T = 1

year. The values of the parameters for the Heston model are specified in Table 5.1. The

six cases can be grouped according to 2κη > σ2 (Cases A and B), 2κη = σ2 (Cases C and

D), and 2κη < σ2 (Cases E and F). It should be pointed out that 2κη > σ2 is called the

Feller condition under which the volatility (the solution of the SDE (2.14)) is always positive

([13]). In addition, the correlations are positive for Cases A, C and E and negative for the

other cases.

Case A B C D E F
q 0.05 0.05 0.05 0.05 0.05 0.05
κ 1.00 1.00 1.00 1.00 1.00 1.00
η 0.2 0.2 0.2 0.2 0.2 0.2

σ 0.2 0.2
√
0.4

√
0.4

√
0.9

√
0.9

ρ 0.5 -0.5 0.5 -0.5 0.5 -0.5

Table 5.1: Parameters for the Heston model for put option

We want to obtain the approximate option prices on the domain that contains [Smin, Smax]×

[0, vmax] for stock price S and volatility v, where Smin, Smax and vmax will be set according

to the actual needs. It follows from the non-linear transformations in (2.17) that the com-

putational domain for the variational inequality problem (5.7) is [Xmin, Xmax]× [0, ymax],
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where ymax = vmax and

Xmin = floor

(
ln

(
Smin
K

)
−max

(
0,
ρ

σ
vmax

))
,

Xmax = ceil

(
ln

(
Smax

K

)
−min

(
0,
ρ

σ
vmax

))
.

In all numerical examples, we shall set Smin = 1, Smax = 1000 and vmax = 5.

The uniform partition is used in x by setting ∆x = ∆t. The graded mesh is employed

in y for interval [0, 1] with 32% of the total number of nodes and the uniform partition for

interval [1, 5] with 68% of the total number of nodes. We illustrate the partition of the

computational domain for Case A in Fig. 5.4.

−18 −15 −12 −9 −6 −3 0 3
0

1

2

3

4

5

x

y

Figure 5.4: Discretization mesh

We run our programs on a PC with Intel(R) Core(TM) i7-5820K CPU @3.3GHz and
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16G memory. The CPU times for Case A in Example 5.2 are given in the following table.

M N1 N2 step size CPU time
25 525 125 0.04000 0m1.858s
50 1050 250 0.02000 0m8.015s
100 2100 500 0.01000 0m41.500s
200 4200 1000 0.00500 4m9.328s
400 8400 2000 0.00250 29m4.656s
800 16800 4000 0.00125 260m27.656s

Table 5.2: The CPU times

Example 5.1. (Validation) In this example, we validate our C++ codes for our FV-ADI

method. It is well known that the values of American put option and European put option

are equal when the interest rate is zero (r = 0). We use our ADI method to compute

the American put prices while the European put prices are computed by using numerical

integration based on the Heston’s formula in [33].

We display the absolute errors between the reference values and the values computed by

our program for today’s option prices in Tables 5.3–5.8 for asset prices S = 80 : 5 : 120 while

the volatility is a typical value v = 0.16. We also plot the maximum absolute errors (MAE)

for S = 10 : 1 : 200 and v = [0 : 0.01 : 1, 1.25 : 0.25 : 2] in Fig. 5.5. It is shown that our

program produces convergent sequences of the approximate option prices as the time step

size decreases. We can also observe that the rate of convergence is 2 as expected and that

the super-convergence occurs at some points.
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S0 Ref M=25 M=50 M=100 M=200 M=400
80 29.85054 0.05120955 0.01269067 0.00318701 0.00079893 0.00019892
85 26.74502 0.04183880 0.01081631 0.00274977 0.00070083 0.00016184
90 23.87882 0.03817732 0.00950394 0.00242347 0.00054080 0.00014087
95 21.24947 0.03110983 0.00836335 0.00181905 0.00048654 0.00012918
100 18.85105 0.01865687 0.00493423 0.00120392 0.00029581 0.00007514
105 16.67483 0.01976479 0.00594802 0.00110563 0.00031791 0.00009123
110 14.70994 0.01841217 0.00424438 0.00122823 0.00016707 0.00005204
115 12.94395 0.01587990 0.00142789 0.00036469 0.00009805 0.00003384
120 11.36342 0.01331012 0.00183450 0.00067097 0.00021192 0.00001892

Table 5.3: The absolute errors: Case A

S0 Ref M=25 M=50 M=100 M=200 M=400
80 28.99942 0.08435909 0.02134354 0.00525510 0.00132428 0.00033168
85 25.94948 0.09337602 0.02274683 0.00557729 0.00138627 0.00036714
90 23.17441 0.09252513 0.02313850 0.00569280 0.00152574 0.00037244
95 20.66417 0.09627934 0.02331302 0.00614986 0.00150639 0.00036621
100 18.40459 0.10600380 0.02614307 0.00655431 0.00165116 0.00041078
105 16.37883 0.09946856 0.02370950 0.00633546 0.00154205 0.00037224
110 14.56866 0.09605189 0.02434278 0.00590746 0.00162415 0.00039523
115 12.95537 0.09400179 0.02600756 0.00649274 0.00161499 0.00039462
120 11.52050 0.09203324 0.02442909 0.00590676 0.00143069 0.00039053

Table 5.4: The absolute errors: Case B

S0 Ref M=25 M=50 M=100 M=200 M=400
80 30.35873 0.01146552 0.00286257 0.00074755 0.00018511 0.00004609
85 27.10850 0.00958386 0.00261187 0.00060518 0.00015687 0.00004129
90 24.06991 0.00807667 0.00234213 0.00050648 0.00014516 0.00003424
95 21.25083 0.00799582 0.00123010 0.00042663 0.00013264 0.00001971
100 18.65650 0.00326452 0.00161903 0.00044220 0.00009912 0.00002918
105 16.28917 0.00143776 0.00022331 0.00026266 0.00011091 0.00000071
110 14.14782 0.00282990 0.00168531 0.00001915 0.00005473 0.00002749
115 12.22805 0.00544611 0.00141071 0.00035889 0.00009391 0.00002089
120 10.52209 0.00723739 0.00067983 0.00049088 0.00002014 0.00002566

Table 5.5: The absolute errors: Case C
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S0 Ref M=25 M=50 M=100 M=200 M=400
80 27.85898 0.02777764 0.00756279 0.00174577 0.00043790 0.00010893
85 24.72579 0.03333746 0.00761086 0.00170611 0.00047349 0.00010618
90 21.93416 0.02665749 0.00890817 0.00208209 0.00046546 0.00010291
95 19.46937 0.03327126 0.00724237 0.00158146 0.00056782 0.00013470
100 17.30640 0.03056834 0.00644426 0.00157497 0.00040954 0.00009555
105 15.41497 0.02366643 0.00661857 0.00140930 0.00052111 0.00012007
110 13.76349 0.02148121 0.00755193 0.00165662 0.00034488 0.00009214
115 12.32153 0.02112664 0.00537457 0.00126829 0.00035586 0.00007612
120 11.06117 0.02083894 0.00460881 0.00157878 0.00033658 0.00007078

Table 5.6: The absolute errors: Case D

S0 Ref M=25 M=50 M=100 M=200 M=400
80 30.45936 0.00392613 0.00099924 0.00029043 0.00006599 0.00002427
85 27.07738 0.00221526 0.00069900 0.00019699 0.00005042 0.00001316
90 23.89063 0.00072293 0.00039320 0.00002659 0.00000052 0.00000282
95 20.91583 0.00086218 0.00036702 0.00002590 0.00003908 0.00000218
100 18.16891 0.00757869 0.00105941 0.00006331 0.00008200 0.00000860
105 15.66366 0.00995982 0.00141597 0.00010930 0.00013887 0.00001972
110 13.41003 0.00562558 0.00054272 0.00071235 0.00010537 0.00000580
115 11.41225 0.00207529 0.00150489 0.00000527 0.00018626 0.00002700
120 9.66736 0.00158195 0.00263193 0.00026566 0.00004216 0.00001374

Table 5.7: The absolute errors: Case E

S0 Ref M=25 M=50 M=100 M=200 M=400
80 27.15882 0.02023512 0.00641775 0.00149440 0.00033288 0.00007425
85 23.86274 0.03010901 0.00692433 0.00150614 0.00030779 0.00008202
90 20.96071 0.01963132 0.00796429 0.00179218 0.00037148 0.00007228
95 18.44960 0.02618924 0.00494498 0.00127605 0.00028369 0.00008891
100 16.30081 0.02794540 0.00556526 0.00103173 0.00039462 0.00007543
105 14.47135 0.01719641 0.00407220 0.00104849 0.00023544 0.00007080
110 12.91428 0.01323280 0.00685797 0.00162911 0.00037148 0.00007805
115 11.58531 0.01208901 0.00408051 0.00071725 0.00025836 0.00004534
120 10.44577 0.01151331 0.00285281 0.00069075 0.00017204 0.00004149

Table 5.8: The absolute errors: Case F
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Figure 5.5: The rates of convergence for maximum absolute errors (validation)
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Example 5.2. (The American put options) In this example, we consider the American put

option problems when r = 0.1 > 0. Since there is no analytic solutions, we investigate

the rate of convergence by examining the errors between the approximate solutions to the

variational inequality problem (5.7) when the number of time steps isM and 2M . The errors

are computed on the domain [Xmin + 1, Xmax − 1]× [0, 1]. We plot the maximum absolute

errors (MAE), root mean square errors (RMSE) and L2 errors (L2E) in Figs. 5.6–5.8 when

time t = T . We can observe that the RMSE and L2E rates of convergence are almost 2

for Cases A and B, while the MAE rates of convergence are 1.24 and 2.13, respectively. By

checking the data, we have found that the maximum absolute errors occur near the early

exercise boundary for Case A. Since the initial value as well as the constrain function (the

payoff function) is only in H1, we should not expect that the exact solution to the variational

inequality problem (5.7) would have the desired regularity for the MAE and RMSE estimates.

The same observations can be made for Cases C, D, E, and F when Feller condition is not

satisfied. We also notice that the convergency is better when the correlation is negative.

In fact, the correlation between stock price S and volatility v is also negative in the real

financial market ([14][43]).

We also plot the option prices as the functions of S and v when time t = 0, 0.5T, 0.75T, 0.99T

in Figs. 5.9–5.14. The payoff function is also plotted for comparison. Their joint part is the

exercise region. As shown in these figures, the surfaces of option prices will converge to the

payoff surface as time is approaching to T . In addition, the projections of the boundary lines

of the two surfaces on the Sv-plain are the early exercise boundaries, which are displayed in

Fig. 5.15.
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Figure 5.6: The rates of convergence for maximum absolute errors
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Figure 5.7: The rates of convergence for the root mean square errors
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Figure 5.8: The rates of convergence for the L2 errors
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Figure 5.9: The American put option prices: Case A
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Figure 5.10: The American put option prices: Case B
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Figure 5.11: The American put option prices: Case C
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Figure 5.12: The American put option prices: Case D
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Figure 5.13: The American put option prices: Case E
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Figure 5.14: The American put option prices: Case F
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Figure 5.15: The early exercise boundaries for the American put options
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Example 5.3. (Comparison) In this example, we compare the approximate option prices

computed by our method and the others in the literatures. We consider two sets of the

parameters in Table 5.9 as in [31]. The parameters of Case G satisfies the Feller condition

(2κη > σ2) while Case H fails the condition.

Case G H
K 10 100
r 0.10 0.04
q 0.0 0.0
T 0.25 0.25
κ 5.00 1.15
η 0.16 0.0348
σ 0.9 0.39
ρ 0.1 −0.64

Table 5.9: Parameters for the Heston model for comparison

Here we choose the number of the steps such that the mesh size is 0.01 which is compatible

to those in the reference papers. The approximate option prices are given in Tables 5.10–

5.11 and Tables 5.12. The values in the first row are obtained by our method (FVADI).

The other values are from Table 2-4 in [31] and the references therein. All the approximate

option prices are compatible. However, the validations of the schemes are not carried out

in the other papers as in our Example 5.1. Hence, we believe that our C++ codes should

provide more accurate results.
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S 8 9 10 11 12
FVADI 2.0000 1.1078 0.5200 0.2136 0.0821
Haentjens & Hout [31] 2.0000 1.1081 0.5204 0.2143 0.0827
Zvan, Forsyth & Vetzal [62] 2.0000 1.1076 0.5202 0.2138 0.0821
Ikonen & Toivanen [36] 2.0000 1.1076 0.5199 0.2135 0.0820
Persson & Von Sydow [52] 1.9998 1.1085 0.5195 0.2150 0.0822
Oosterlee [50] 2.00 1.107 0.517 0.212 0.0815
Clarke & Parrott [12] 2.0000 1.1080 0.5316 0.2261 0.0907
Vellekoop & Nieuwenhuis [59] 1.9968 1.1076 0.5202 0.2134 0.0815

Table 5.10: The American option prices for Case G: v = 0.0625

S 8 9 10 11 12
FVADI 2.0787 1.3339 0.7960 0.4483 0.2428
Haentjens & Hout [31] 2.0788 1.3339 0.7962 0.4486 0.2433
Zvan, Forsyth & Vetzal [62] 2.0784 1.3337 0.7961 0.4483 0.2428
Ikonen & Toivanen [36] 2.0785 1.3336 0.7959 0.4482 0.2427
Persson & Von Sydow [52] 2.0784 1.3333 0.7955 0.4479 0.2426
Oosterlee [50] 2.0790 1.3340 0.7960 0.4490 0.2430
Clarke & Parrott [12] 2.0733 1.3290 0.7992 0.4536 0.2502

Table 5.11: The American option prices for Case G: v = 0.25

S 90 100 110
FVADI 10.0042 3.2096 0.9288
Haentjens & Hout [31] 10.0039 3.2126 0.9305
Fang & Oosterlee [24] , 9.9958 3.2079 0.9280

Table 5.12: The American option prices for Case H: v = 0.0348
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CHAPTER 6

CONCLUSION

In this dissertation, we introduce a general transformation to decouple correlated stochastic

processes governed by a system of stochastic differential equations and apply the new trans-

formation to some popular two-factor models such as the two-asset model, the stochastic

volatility model, and the stochastic interest rate models. The transformed stochastic pro-

cesses are uncorrelated and result in simpler and more effective numerical implements. This

transformation can extended to higher dimensional cases.

In Chapter 3, we develop a mixed Monte Carlo/analytic method for the European options

under two-factor models (two-asset model, stochastic volatility model, stochastic interest rate

models). A control variates technique based on the formulation is also applied. Numerical

results show that the new method is very accurate and efficient.

In Chapter 4, we develop a lattice method for the European and American options under

the two-asset model and the stochastic interest rate models. The numerical results show

that the lattice method is convergent linearly as expected. We also examine the properties

of the early exercise regions for the American options numerically.

In chapter 5, we develop a finite volume - alternating direction implicit method for

American option under the Heston model (stochastic volatility). We validate the scheme,
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check the convergence and accuracy with several sets of parameters, and compare our result

with other researches. We can conclude that our method is accurate and efficient.

For the future work, we will focus on the following topics:

1. Study the finite volume-ADI method to the option problems under the other two-factor

models.

2. Apply the proposed methods in Chapters 3 and 4 to the stochastic volatility jump

model (the Bates model [3]):

dS(t)

S(t)
= (r − q)dt+

√
v(t)dW2(t) + dZ(t),

dv(t) = κ [η − v(t)] du+ σ
√
v(t)dW1(t).

3. Consider the following popular three-factor models:

• The Fong-Vasicek model:

dS(t)

S(t)
= (r(t)− q)dt+ σdW1(t),

dr(t) = κr(θr − r(t))dt+
√
v(t)dW2(t),

dv(t) = κv(θv − v(t))dt+ δ
√
v(t)dW3(t).

• The stochastic interest rate and volatility model:

dS(t)

S(t)
= (r(t)− q)dt+

√
v(t)dW1(t),

dv(t) = κ [η − v(t)] du+ σ
√
v(t)dW2(t),

dr(t) = κr(θr − r(t))dt+ δdW3(t).
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• The interest rate swap model:

drd = λd(θd − rd)dt+ σdr
α
d dW1(t),

drf = λf (θf − rf )dt+ σdr
β
f dW2(t),

dX

X
= (rd − rf )dt+ σXdW3(t).
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APPENDIX: THE ANALYTIC FORMULAS FOR Ṽ

We first consider the spread option. Its payoff function is

Φ (S1(T ), S2(T )) = (S1(T )− S2(T )−K)+.

Then (3.4) becomes

Ṽ
(
S̃2, z, t, T

)
= E

[
e−(T−t)r

(
z − zαS̃2(T )−K

)+∣∣∣∣ S̃2(t) = S̃2

]
= zαE

[
e−(T−t)r

(
z−α(z −K)− S̃2(T )

)+∣∣∣∣ S̃2(t) = S̃2

]

=

 0, if z −K < 0,

zαE
[
e−(T−t)r

(
K̃ − S̃2(T )

)+∣∣∣∣Y (t, T ),Ft

]
, if z −K ≥ 0,

=

{
0, if z −K < 0,

zαe−r(T−t)K̃N(−d2)− zαe−q(T−t)S̃2N(−d1), if z −K ≥ 0,
(6.1)

where

K̃ = z−α(z −K),

d1 =
ln( S̃2

K̃
) +

(
r − q̃ + 1

2
σ̃2
)
(T − t)

σ̃
√
T − t

,

d2 = d1 − σ̃
√
T − t.

It should be pointed out that the spread option becomes the exchange option when K = 0,

which can be evaluated by the Margrabe’s formula [46].

Next, we consider the classic two-assets call options. For the corresponding put options,

117



the put-call parity can be applied. We have the following four payoff functions

Call on max: Φ1(S1, S2) = (max(S1, S2)−K)+ .

Call on min: Φ2(S1, S2) = (min(S1, S2)−K)+ .

Maximum call: Φ3(S1, S2) = max
(
(S1 −K1)

+, (S2 −K2)
+
)
.

Minimum call: Φ4(S1, S2) = min
(
(S1 −K1)

+, (S2 −K2)
+
)
.

The first two options are just the special cases of the last two options. Indeed, we have

Φ1(S1, S2) = (max(S1, S2)−K)+ = max
(
(S1 −K)+, (S2 −K)+

)
,

Φ2(S1, S2) = (min(S1, S2)−K)+ = min
(
(S1 −K)+, (S2 −K)+

)
.

Notice that

Φ3(S1, S2) = max
(
(S1 −K1)

+, (S2 −K2)
)

=
(
S2 −K2 − (S1 −K1)

+
)+

+ (S1 −K1)
+.

We have for the maximum call option

Ṽ
(
S̃2, z, t, T

)
= E

[
e−(T−t)r

((
zαS̃2(T )−K2 − (z −K1)

+
)+

+ (z −K1)
+

)∣∣∣∣ S̃2(t) = S̃2

]
= zαE

[
e−(T−t)r

(
S̃2(T )− K̃

)+∣∣∣∣ S̃2(t) = S̃2

]
+ e−r(T−t)(z −K1)

+,

where

K̃ = z−α
(
K2 + (z −K1)

+
)
.

Hence, we have by the Black-Scholes formula

Ṽ
(
S̃2, z, t, T

)
= zαe−q(T−t)S̃2N(d1)− zαe−r(T−t)K̃N(d2) + e−r(T−t)(z −K1)

+,

where

d1 =
ln( S̃2

K̃
) +

(
r − q̃ + 1

2
σ̃2
)
(T − t)

σ̃
√
T − t

,

d2 = d1 − σ̃
√
T − t.
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Notice that

Φ4(S1, S2) = (S1 −K1)
+ + (S2 −K2)

+ − h3(S1, S2)

= (S2 −K2)
+ −

(
S2 −K2 − (S1 −K1)

+
)+
.

We have for the minimum call option

Ṽ
(
S̃2, z, t, T

)
=E

[
e−(T−t)r

((
zαS̃2(T )−K2

)+
−
(
zαS̃2(T )−K2 − (z −K1)

+
)+)∣∣∣∣ S̃2(t) = S̃2

]
=zα

(
E
[
e−(T−t)r

(
S̃2(T )− K̃2

)+∣∣∣∣ S̃2(t) = S̃2

]
− E

[
e−(T−t)r

(
S̃2(T )− K̃1

)+∣∣∣∣ S̃2(t) = S̃2

])
,

where

K̃1 = z−α
(
K2 + (z −K1)

+
)
, K̃2 = z−αK2.

Hence, we have by the Black-Scholes formula

Ṽ
(
S̃2, z, t, T

)
= zα

(
e−q(T−t)S̃2 (N(d1)−N(d3))− e−r(T−t)

(
K̃2N(d2)− K̃1N(d4)

))
,

where

d1 =
ln
(

S̃2

K̃2

)
+
(
r − q̃ + 1

2
σ̃2
)
(T − t)

σ̃
√
T − t

,

d2 = d1 − σ̃
√
T − t,

d3 =
ln
(

S̃2

K̃1

)
+
(
r − q̃ + 1

2
σ̃2
)
(T − t)

σ̃
√
T − t

,

d4 = d3 − σ̃
√
T − t.
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