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ABSTRACT

Discontinuous Galerkin Finite Element Method (DG-FEM) has been further developed

in this dissertation. We give a complete proof of stability and error estimante for the DG-

FEM combined with Runge Kutta which is commonly used in different fields. The proved

error estimate matches those numerical results seen in technical papers. Numerical simu-

lations of metamaterials play a very important role in the design of invisibility cloak, and

sub-wavelength imaging. We propose a leap-frog discontinuous Galerkin Finite Element

Method to solve the time-dependent Maxwell’s equations in metamaterials. The stability

and error estimate are proved for this scheme. The proposed algorithm is implemented and

numerical results supporting the analysis are provided. The wave propagation simulation in

the double negative index metamaterials supplemented with perfectly matched layer(PML)

boundary is given with one discontinuous galerkin time difference method(DGTD), of which

the stability and error estimate are proved as well in this dissertation. To illustrate the effec-

tiveness of this DGTD, we present some numerical result tables which show the consistent

convergence rate and the simulation of PML in metamaterials is tested in this dissertation

as well. Also the wave propagation simulation in metamaterals by this DGTD scheme is

consistent with those seen in other papers. Several techniques have appeared for solving

the time-dependent Maxwell’s equations with periodically varying coefficients. For the first

time, I apply the discontinuous Galerkin (DG) method to this homogenization problem in

dispersive media. For simplicity, my focus is on obtaining a solution in two-dimensions

(2D) using 2D corrector equations. my numerical results show the DG method to be both

convergent and efficient. Furthermore, the solution is consistent with previous treatments

and theoretical expectations.
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for cv(
x
ε ) with ε = 2, µ = 1 inside the inclusion ( figure (4.4)). So c2v = 0.5

inside the inclusion.The host medium is free space. The mesh size is h0 = 1/27 96

4.6 The numerical electric fields E at time T = 1 obtained with τ = 0.02 and

different meshes: h = 1
8 , h = 1

16 , h = 1
32 . . . . . . . . . . . . . . . . . . . . 96

ix



Chapter 1

INTRODUCTION AND OUTLINE

1.1 INTRODUCTION

The modern theory of electromagnetism was founded in 1873 with the publication of

Maxwell’s treatise on Electricity and Magnetism. Maxwell’s equations consist of two pairs

of coupled partial differential equations relating six fields, two of which model sources of

electromagnetism. These equations are not sufficient to uniquely determine the electromag-

netic field in matter. However, additional relations, known as constitutive equations are

needed to model the way in which the fields interact with matter. There is considerable

flexibility in the constitutive equations. In general, we can distinguish three cases:

• Vacuum or free space

In free space the fields are related by the equations

D̂ = ε0Ê and B̂ = µ0Ĥ (1.1)

where the constants ε0 and µ0 are called, respectively, the electric permittivity and

magnetic permeability. The values of ε0 and µ0 depend on the system of units used.

In the standard SI or MKS units

µ0 = 4π × 10−7Hm−1

ε0 ≈ 8.854 × 10−12Fm−1.

Furthermore the speed of light in a vacuum, denoted by c0, is given by c0 = 1√
ε0µ0

(c0 ≈ 2.998 × 108ms−1).

• Inhomogeneous, isotropic materials

The most commonly occurring case in practice is that various different materials (e.g.

1



copper, air, etc.) occupy the domain of the electromagnetic field. The medium is

called inhomogeneous if the material properties do not depend on the direction of the

field and the material is linear. Then we have

D̂ = εÊ and B̂ = µĤ (1.2)

where ε and µ are positive, bounded, scalar functions of position.

• Inhomogeneous, anisotropic materials

In some materials the electric or magnetic properties of the constituent materials

depends on the direction of the field(e.g. in the macroscopic description of a finely

layered medium). In such cases ε and µ are 3 positive-definite matrix functions of

positive-definite matrix functions of position. Usually, the finite element method is

equally applicable to isotropic or anisotropic materials in that programs can be written

from the onset for the anisotropic case. The theoretical justification of the convergence

of the method is more difficult in these cases.

These are the classic media discussed in introductory graduate level textbooks. However,

there are more appropriate categories that can be used to classify the topics encountered in

this dissertation.

• dispersive media

In reality, the properties of most electromagnetic materials are wavelength dependent.

Such materials are generally called dispersive media, and examples include human

tissue, water, soil, snow, ice, plasma, optical fibers, and radar-absorbing materials.

• metamatrials

In recent years, double-negative (DNG) materials, in which both permittivity and

permeability are negative have become the subset of intense investigation. In this

case, the constitutive relations are given by

D = ε0E + P ≡ εE, B = µ0H +M ≡ µH, (1.3)

where P andM are the induced electric and magnetic polarizations, respectively. As

2



in [21, 61], lossy Drude polarization and magnetization models are used to simulate

the DNG medium. In the frequency domain, the permittivity and permeability are

described as [61, Eq. (7)]:

ε(ω) = ε0(1−
ω2
pe

ω(ω + iΓe)
), (1.4)

µ(ω) = µ0(1−
ω2
pm

ω(ω + iΓm)
), (1.5)

where ωpe and ωpm are the electric and magnetic plasma frequencies, and Γe and

Γm are the electric and magnetic damping frequencies.(we shall give a more careful

description of Maxwell’s equations in metamaterials in Chapter (3))

Finite element methods (FEM) represent a very general set of techniques to approximate

solu- tions of partial differential equations. Their main advantage lies in their ability to

handle arbitrary geometries via unstructured meshes of the domain of interest: The dis-

cretization of oblique geometric edges is natively built in. FEMs have been adopted by

engineers in the areas of structural mechanics and fuild dynamics for decades, but until

the early 1980’s, two major drawbacks prevented them from being used in electro-magnetic

problems. First, the nodal element basis used did not satisfy the physical(dis)continuity

of the vector fields components and led to spurious solutions [10]. Second, there was no

proper way to truncate unbounded regions in open wave problems. The first limitations

was overcome with the vector elements developed by Nedelec [52], while the second with the

discovery of Perfectly Matched Layers (PMLs), discovered by Berenger [9]. Since then, it

has been shown that PMLs could be described in the general framework of transformation

optics [1, 16, 56, 60].

We also consider, with the introduction of Discontinuous Galerkin finite element methods(DG-

FEM), the discontinuity problem that comes with the nodal element basis. It has been

established that DG-FEM is an overall better method for solving a partial differential equa-

tion computationally [28, 29]. The Discontinuous Galerkin (DG) method more generally

can be traced back to the paper of Reed and Hill (1973). It is important to note that it is

not a single method but rather an approach that uses approximating functions that have no

continuity constraints imposed on interelement boundaries. In recent years the DG method

3



is widely applicable for solving any types of PDEs, which explains its ever increasing pop-

ularity. It is especially advantageous for modeling extremely complex physics phenomena,

such as convection dominated flows (Cockburn, 1997; Cockburn and Shu, 1998) and wave

propagation through different materials (i.e. metamaterials), the latter being one of the

major focuses of this dissertation. The absence of continuity constraints on the interele-

ment boundaries implies that one has a great deal of flexibility to the method, at the cost of

increasing the number of degrees of freedom. This flexibility is the source of many but not

all of the advantages of the DG method over the Continuous Galerkin (CG) method, which

uses spaces of continuous piecewise polynomial functions and other less standard methods

such as nonconforming methods. One great advantage lies in the fact that one is able to

easily refine or coarsen the mesh locally or to vary the degree of the piecewise polynomials

across the mesh.

In 2008, Jan S. Hesthaven and Tim Warburton proposed an extensive introduction to

Discontinuous Galerkin Methods for the solution of partial differential equations in [29],

during which they gave a number of examples on how to implement these methods for a

variety of problems.

1.2 OUTLINE

This dissertation can be divided into four parts. In the first part, Chapter 2, we provide

a brief review of the DG method by specifically applying it to partial differential equations

written in conservation form.

Section 2.2 combines DG-FEM with a Runge Kutta algorithm for integrating in time.

The resulting RK-DG scheme is the most commonly used method for solving time-dependent

equations using DG-FEM. We conclude the second part by providing a detailed proof of

both the stability and error estimate of our RK-DG scheme.

The third part presents the use of DG-FEM to solve Maxwell’s equations in metama-

terials. After explaining the essential concepts underlying metamaterials in Section 3.1,

Section 3.2 introduces a leap-frog discontinuous Galerkin method for solving the time do-

main Maxwell’s equations in metamaterials. A complete proof of the stability and error

4



estimate follows, as well as numerical results supporting our analysis. In Section 3.3 an-

other DG time difference method for Maxwell’s equations in metamaterials is proposed

and similar proofs are given. The numerical results for this DGTD method utilize bound-

ary conditions known as perfectly matched layers (PML) to simulate wave propagation in

metamaterials.

The last part, Chapter 4, deals with what is known as a homogenization problem,

which involves an application of DG-FEM to Maxwell’s Equations in Dispersive Media

with periodically varying coefficients. We introduce the governing equation in dispersive

media and the general homogenization problem in Section 4.1. The fully discrete DG scheme

is given in Section 4.2, and examples are provided in Section 4.3 to support this scheme.

We conclude this dissertation in Chapter 5.
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Chapter 2

DG FINITE ELEMENT METHOD

2.1 INTRODUCTION TO THE DG FINITE ELEMENT METHOD

One of the most appealing aspects of finite difference method are their simplicity; the

discretization of general problems and operators is often intuitive and can lead to very

efficient schemes. Furthermore, the explicit semidiscrete form gives flexibility in the choice of

time-stepping methods if needed. However, it is ill-suited to deal with complex geometries.

A method closely related to the finite difference method, but with added geometric

flexibility, is the finite volume method. However, the need for a high-order reconstruction

reintroduces the need for a particular grid structure and thus destroys the geometric flexibil-

ity of the finite volume method in higher dimensions. The main limitation of finite volume

methods is found in its inability to extend to higher-order accuracy on general unstructured

grids.

With the classic continuous finite element, one can have different orders of approxi-

mation in each element, thereby enabling local changes in both size and order, known as

hp-adaptivity. However, the schemes result in the introduction of computationally expensive

matrices (the globally defined mass matrix and stiffness matrix), and because the semidis-

crete scheme is implicit, the mass matrix must be inverted. For time-dependent problems,

this is a clear disadvantage compared to finite difference and finite volume methods.

An intelligent combination of the finite element and the finite volume methods, utilizing

a space of basis and test functions that mimics the finite volume method, appears to offer

many of the desired properties. This combination is exactly what leads to the discontin-

uous Galerkin finite element method (DG-FEM). In [29], there is a table (Table 2.1) that

summarized generic properties of the most widely used methods for discretizing partial dif-

ferential equations [i.e., finite difference methods(FDM), finite volume methods(FVM), and

the finite element methods(FEM), as compared with the discontinuous Galerkin finite ele-

6



ment methods(DG-FEM)]. A X represents success, while × indicates a short-coming in the

method. Finally, a (X) reflects that the method, with modifications, is capable of solving

such problems but remains a less natural choice.

Table 2.1: Comparison of different methods for discretizing partial differential equations

Complex High-order accuracy Explicit semi- Conservation Elliptic
geometries and hp-adaptivity discrete form laws problems

FDM × X X X X
FVM X × X X X
FEM X X × (X) X

DG-FEM X X X X (X)

In DG-FEM, the information used to calculate the solution on each element only involves

communication with directly neighboring elements and not all elements in the mesh, unlike

classic continuous finite element methods. Each element shares flux information across the

connecting edge. This flux is continuous and can be extended to a continuous flux on the

entire domain. The great advantage of this approach is that with the proper choice of flux,

it is possible to arrive at a computationally inexpensive and easily parallelizable (i.e. local)

mass matrix. The following discussion closely parallels [29].

In order to understand the DG method, we consider the conservation laws.

∂u(x, t)

∂t
+∇ · f(u(x),x, t) = 0, x ∈ Ω ∈ R2 (2.1)

u(x, t) = g(x, t), x ∈ ∂Ω (2.2)

u(x, 0) = f(x). (2.3)

We assume that Ω can be triangulated using K elements,

Ω ≈ Ωh =

K⋃

k=1

Dk

where Dk is a straight-sided triangle and the triangulation is assumed to be geometrically

7



conforming. We can approximate u(x, t) using

u(x, t) ≈ uh(x, t) = ⊕K
k=1u

k
h(x, t) ∈ V h = ⊕K

k=1u
k
hψn(D

k)
Np

n=1

Here ψn(D
k) is a two-dimensional polynomial basis defined on element Dk and ⊕ denotes

adding all elements together. The local function,

ukh(x, t) =

Np∑

i=1

ukh(x
k
i , t)l

k
i (x),

where li(x) is the multidimensional Lagrange polynomial defined by some grid points, xi,

on the element Dk.

Introducing the test function, ψh ∈ V h, we get the local conditions

∫

Dk

[
∂ukh
∂t

lki (x)− fk
h · ∇lki (x)]dx = −

∫

∂Dk

n̂ · f∗lki (x)dx (2.4)

and ∫

Dk

[
∂ukh
∂t

+∇ · fk
h]l

k
i (x)dx =

∫

∂Dk

n̂ · [fk
h − f∗]lki (x)dx (2.5)

as the weak and strong form, respectively, of the nodal Discontinuous Galerkin method in

two spatial dimensions. We primarily consider the local Lax-Friedrich’s flux

f∗(a, b) =
f(a) + f(b)

2
+
C

2
n̂(a− b),

where (a, b) are the interior and exterior solution value, respectively and C is the local

maximum of the directional flux Jacobian; that is,

C = maxu∈[a,b]

∣∣∣∣n̂x
∂f1
∂u

+ n̂y
∂f2
∂u

∣∣∣∣ ,

where f = (f1, f2).

We define the following matrices:
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• Mass matrix:

Mk
ij =

∫

D
lki (x)l

k
j (x)dx = Jk

∫

I
li(r)lj(r)dr, (2.6)

where Jk is the transformation Jacobian;

• Differentiation matrix Dr:

Dr,(i,j) =
dlj
dr

|ri ,

where r ∈ I is the reference variable;

• Stiffness matrices:

Sr = M−1Dr, Ss = M−1Ds; (2.7)

• Edge-mass matrices:

Mk,e
ij =

∫

edge
lkj (x)l

k
i (x)dx.

The two Maxwell’s equations relevant are Ampere’s law and Faraday’s law:

ε0
∂E

∂t
= ∇×H , in Ω× (0, T ),

µ0
∂H

∂t
= −∇×E, in Ω× (0, T ), . (2.8)

We can express Maxwell’s equations in conservation form:

Q
∂q

∂t
+∇ · F (q) = S, (2.9)

where S = [SE ,SH ] represents body forces and the material matrix, Q(x), the state

vector, q, and the flux, F (q) = [F1(q), F2(q), F3(q)]
T , are

Q(x) =



εr(x) 0

0 µr(x)


 , q =



E

H


 ,F i(q) =




−ei ×H

ei ×E


 .

Here ei signifies the three Cartesian unit vectors.

Before we go any further, we will show how equation(2.9) is equivalent to equations(2.8) in

9



the case that S = 0. Note that

e1 ×H =

∣∣∣∣∣∣∣∣∣∣

~i ~j ~k

1 0 0

Hx Hy Hz

∣∣∣∣∣∣∣∣∣∣

= −Hz
~j +Hy

~k.

Similarly, we can show that

e2 ×H =Hz
~i−Hx

~k, e3 ×H =Hy
~i−Hy

~j.

Hence the first component of ∇ · F equals to

∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

=
∂

∂x
(e1 ×H) +

∂

∂y
(e2 ×H) +

∂

∂x
(e3 ×H)

=
∂

∂x
(Hz

~j −Hy
~k) +

∂

∂y
(−Hz

~i+Hx
~k) +

∂

∂z
(Hy

~i−Hx
~j)

=(
∂Hy

∂z
− ∂Hz

∂y
)~i+ (

∂Hz

∂x
− ∂Hx

∂z
)~j + (

∂Hx

∂y
− ∂Hy

∂x
)~k

=∇×H.

In the same fashion, we can prove that the second component of ∇ · F equals to −∇×E.

Therefore, we can conclude that (2.9) is equivalent to (2.8), with Q(x) = diag(ε0, µ0), and

no body forces.

To derive the DG-FEM scheme, we assume that Ω is decomposed into tetrahedral mesh

elements Th, i.e. Ω =
⋂

k∈Th
K. According to (2.5),the DG scheme of (2.9) should satisfy

element-wise the strong form

∫

K
(Q

∂qh
∂t

+∇ · F h − Sh)φ(x)dx =

∫

∂K
ψ(x)n̂ · (F h − F ∗

h]dx, (2.10)

here φ and ψ are test functions while n̂ is an outward normal vector, F ∗
h is a numerical flux

and the DG solution qh on each element K is represented as

qh(x, t) =

N∑

j=0

q(xj, t)Lj(x) =

N∑

j=0

qj(t)Lj(x).
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While there are many possibilities for the numerical flux, F ∗
h, the linearity of the problem

suggests that unwinding is a natural choice. To understand the form of this, it is helpful to

recall that

n̂ · F h =




−n̂×Hh

n̂×Eh


 .

Then the explicit form of the upwinded penalizing boundary term is

n̂ · (F h − F ∗
h) = {

Ẑ−1n̂× (Z+[Hh]− n̂× [Eh])

Ŷ −1n̂× (−n̂× [Hh]− Y +[Eh])
,

where

[Eh] = E
+
h −E−

h , [Hh] =H
+
h −H−

h ,

measures the jump across an interface, and

Z± = 1/Y ± =

√
µ±

ε±
,

Ẑ = Z+ + Z−, Ŷ = Y + + Y −.

Here, superscript “+” refers to field values from the neighbor element while superscript “−”

refers to field values inside the element. Now we get the nodal DG semi-discrete scheme of

(2.10) with the following element-wise expressions for the electric field components

N∑

j=0

(
M ε

ij

dEj

dt
− Sij ×Hj −M ijS

E
j

)
=
∑

l

F il

(
n̂l ×

Z+
l [H l]− n̂l × [E]

Z+
l + Z−

l

)
, (2.11)

and magnetic field components

N∑

j=0

(
Mµ

ij

dHj

dt
+ Sij ×Ej −M ijS

H
j

)
=
∑

l

F il

(
n̂l ×

−n̂l × [H l]− Y +
l [E]

Y +
l + Y −

l

)
. (2.12)

Here we have mass matrices

M ε
ij =

∫

K
Li(x)ε(x)Lj(x)dx,

11



Mµ
ij =

∫

K
Li(x)µ(x)Lj(x)dx,

and the face mass matrix

F ij =

∮

∂K
Li(x)Lj(x)ds.

Expressing Eqs.(2.11) and (2.12) in semi-discrete explicit form yields

dEh

dt
= (M ε)−1S ×Hh + (M ε)−1MSE + (M ε)−1F (n̂× Z+[Hh]− n̂× [Eh]

Z+
l + Z−

l

)|∂K

dHh

dt
= −(Mµ)−1S ×Eh + (Mµ)−1MSH − (Mµ)−1F (n̂× n̂× [Hh] + Y +[Eh]

Y +
l + Y −

l

)|∂K .

(2.13)

So far we have been only talking about the spatial dimension, and notice that (2.13) is in

the form of ordinary differential equations

duh

dt
= Lh(uh, t).

Therefore, we can just use some standard time discretization technique to arrive at the fully

time-dependent solutions. We will discuss the Runge-Kutta method in the next section.

2.2 DG FINITE ELEMENT METHOD COMBINED WITH RUNGE
KUTTA FOR MAXWELL’S EQUATIONS

In this section, we shall show how to treat the temporal aspect as solving PDEs. First

we consider the explicit Runge-Kutta(RK) methods for integration in the time dimension.

Since (2.13) is in the form of the ordinary differential equations

duh

dt
= Lh(uh, t),

12



we can use the standard fourth-order explicit RK method

un,1h = Lh(u
n
h)

un,2h = Lh(u
n
h +

1

2
∆tun,1h ),

un,3h = Lh(u
n
h +

1

2
∆tun,2h ),

un,4h = Lh(u
n
h +

1

2
∆tun,1h ),

un+1
h = unh +

1

6
∆t[un,1h + 2un,2h + 2un,3h + un,4h ].

to advance one time step ∆t from unh to un+1
h .

Now we will give the proofs of stability and error estimate for the fully discrete Runge

Kutta Discontinuous Galerkin method for Maxwell’s equations

2.2.1 THE STABILITY OF FULLY RK DISCRETIZATION OF DG
SCHEME

Recall that the Maxwell’s equations are

ε0
∂E

∂t
= ∇×H , in Ω× (0, T ), (2.14)

µ0
∂H

∂t
= −∇×E, in Ω× (0, T ). (2.15)

For simplicity, we assume that Ω is a bounded polyhedral domain of R3 (note that our

analysis holds true for R2 also) and the system (2.14)–(2.15) is supplemented with the

metallic boundary condition (referring to a perfectly conducting surface)

n×E = 0 on ∂Γm

and initial conditions

E(x, 0) = E0(x), H(x, 0) =H0(x), (2.16)

where n denotes the unit outward normal to ∂Ω, and E0, H0 are some given functions.

We assume that the domain Ω is partitioned into disjoint tetrahedral elements Ti such

13



that Ω̄ =
⋂

i Ti. For each internal face aik = Ti
⋂
Tk, we denote nik the unitary normal,

oriented from Ti towards Tk. We denote by νi the set of indices of the neighboring elements

of the Ti, and Fh the union of faces.

Furthermore, square brackets are used to signify the jump terms

[Ei] = E
+
i −E−

i , [H i] =H
+
i −H−

i ,

where superscripts “ + ” and “ − ” refer to field values from the neighbor element and the

local element, respectively.

We introduce the discontinuous finite element space:

Vh = {vh ∈ L2(Ω)3 : vh|Ti ∈ (Pk(Ti))
3, for ∀Ti ∈ Ω̄}. (2.17)

i.e. the basis function of discontinuous polynomial of degree k over each element.

To define a fully discrete scheme,we divide the time interval [0, T ] into M uniform subin-

tervals by points 0 = t0 < t1 < ... < tM = T , where tk = k∆t and ∆t is the time step size.

Moreover, we define En
i = E(·, tn) as the approximate field on element Ti, and Eh as the

global approximate field, i.e. Eh|Ti
= Ei.

With the above preparation, now we can construct the semi-discrete Discontinuous

Galerkin scheme. One seeks the semi-discrete solution Uh = (Hh,Eh) ∈ C1([0, T ],V2
h) as

a solution of the following weak formulation, ∀(uh, vh) ∈ V2
h, ∀t ∈ [0, T ]:

∫

Ti

ε0
∂Ei

∂t
· ui =

∫

Ti

∇×H i · ui +
∑

k∈νi

∫

aik

ui ·
1

2
nik × ([H i]− nik × [Ei]) (2.18)

∫

Ti

µ0
∂H i

∂t
· vi = −

∫

Ti

∇×Ei · vi −
∑

k∈νi

∫

aik

vi ·
1

2
nik × (nik × [H i] + [Ei]) (2.19)
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Letting uh = Eh and vh =Hh, we get

∫

Ω
ε0
∂

∂t
||Eh||2 +

∫

Ω
µ0

∂

∂t
||Hh||2 =− 1

2

∑

fi∈Fh

∫

fi

(nik × [Ei]) · (nik × [Ei]) (2.20)

− 1

2

∑

fi∈Fh

∫

fi

(nik × [H i]) · (nik × [H i])

Since d
dt ||Uh||2 < 0, it follows that (2.18) to (2.19) is a well-posed problem in the continuous

time.

On elements Tk, the numerical solution can be written as

uh(x, t) =

Np∑

i=1

uh(xi, t)li(x) =

Np∑

i=1

ui(t)li(x), x ∈ Tk (2.21)

where li(x) is the multivariate Lagrange interpolation polynomial of degree n. The local

mass, stiffness and face-based mass matrices are given respectively by

Mij = (li(x), lj(x))Tk
, Si,j = (li(x),∇lj(x))Tk

, Fij = (li(x), lj(x))∂Tk
. (2.22)

Letting uN = [u1, u2, · · · , uNp ], we realize that

MuN · uN =

∫

Tk

Np∑

i=1

uh(xi)li(x)

Np∑

i=1

uh(xi)li(x)dx = ||uh||2Tk
, (2.23)

which leads the semi-discrete Discontinuous Galerkin scheme:

ε0
dEN

dt
=M−1S ×HN +

1

2
M−1F (n × ([H i]− n× [Ei]))|∂Tk

µ0
dHN

dt
=−M−1S ×HN − 1

2
M−1F (n × (n× [H i] + [Ei]))|∂Tk

(2.24)

where

EN = [E1,E2, · · · ,ENp ]
T , HN = [H1,H2, · · · ,HNp ]

T . (2.25)

Here, Ei = Eh(xi) and H i =Hh(xi).
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We can recover the local energy

||Eh||2Tk
=

∫

Tk

Np∑

i=1

Eh(xi)li(x)

Np∑

i=1

Eh(xi)li(x)dx =MEN ·EN

||Hh||2Tk
=

∫

Tk

Np∑

i=1

Hh(xi)li(x)

Np∑

i=1

Hh(xi)li(x)dx =MHN ·EN

||Eh||2Tk
+ ||Hh||2Tk

=MEN ·EN +MHN ·HN (2.26)

We need to prove the following theorem.

Theorem 2.2.1. Under the CFL condition

∆t√
ε0µ0

≤ Csh, (2.27)

where Cs > 0 is the constant depending on the s-order RK discretization and the constant

from the inverse inequality

|u|0,∂T ≤ Cinvh
− 1

2
T ‖u‖T0 , |u|1,T ≤ Cinvh

−1
T ‖u‖0,T , ∀u ∈ Vh, (2.28)

the RK discretization of the DG scheme (2.18)-(2.19) (or (2.24)) is stable,

ε0 ‖Em
h ‖20 + µ0 ‖Hm

h ‖20 ≤ ε0
∥∥E0

h

∥∥2
0
+ µ0

∥∥H0
h

∥∥2
0
.

Before we prove the stability, we need some preparation.

We will consider the normalized system of equations form of (2.14)-(2.15)

∂E

∂t
= ∇×H , in Ω× (0, T ), (2.29)

∂H

∂t
= −∇×E, in Ω× (0, T ), (2.30)

where the dimensionless variables are defined as

t =
c0t̃

L
, x =

x̃

L
, H =

H̃

H0
, E = (Z0)

−1 Ẽ

H0
. (2.31)

Here, H0 is a unit magnetic filed strength, Z0 is the vacuum impedance, c0 is the speed of
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light, and L is some reference length, on the scale of the phenomena if interest.

We again apply the semidiscrete DG scheme of (2.18) and (2.19),

∫

Ti

∂Ei

∂t
· ui =

∫

Ti

∇×H i · ui +
∑

k∈νi

∫

aik

ui ·
1

2
nik × ([H i]− nik × [Ei]) (2.32)

∫

Ti

∂H i

∂t
· vi = −

∫

Ti

∇×Ei · vi −
∑

k∈νi

∫

aik

vi ·
1

2
nik × (nik × [H i] + [Ei]) (2.33)

In matrix form, the semidiscrete DG scheme is analogous to (2.24),

dEN

dt
=M−1S ×HN +

1

2
M−1F (n × ([H i]− n× [Ei]))|∂Tk

dHN

dt
=−M−1S ×EN − 1

2
M−1F (n × (n× [H i] + [Ei]))|∂Tk

(2.34)

Letting UN = (EN ,HN ), we can write the semidiscrete DG scheme as

∂UN

∂t
= LNUN . (2.35)

Furthermore, we define

||UN ||2 = ||Eh||2 + ||Hh||2

and

R(LNUN ,UN ) =S ×HN ·EN +
1

2
F (n × ([H i]− n× [Ei]))|∂Tk

·EN

− S ×EN ·HN − 1

2
F (n × (n× [H i] + [Ei]))|∂Tk

·HN

=

∫

Ω
∇×Hh ·Eh +

∑

Ti

∑

k∈νi

∫

aik

Ei ·
1

2
nik × ([H i]− nik × [Ei])

−
∫

Ω
∇×Eh ·Hh −

∑

Ti

∑

k∈νi

∫

aik

Hi ·
1

2
nik × (nik × [H i] + [Ei])

=− 1

2

∑

fi∈Fh

∫

fi

|nik × [Ei]|2 −
1

2

∑

fi∈Fh

∫

fi

|nik × [H i]|2.
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Thus

|R(LNUN ,UN )| = 1

4

∑

Ti

∫

∂Ti

|nik × [Ei]|2 +
1

4

∑

Ti

∫

∂Ti

|nik × [H i]|2 (2.36)

The following two lemmas are needed to prove the Theorem 2.2.1.

Lemma 2.2.1. Given that
∑

k∈νi

∫
aik

ui ·nik × [Hi] 6= 0 and
∑

k∈νi

∫
aik

ui ·nik × [Ei] 6= 0 for any

ui ∈ Vh, we obtain

|R(LNUN ,UN)| ≥ C

h
||UN ||2 (2.37)

where h = maxTi hi.

Proof. Since all norms are equivalent in the finite dimensional, the following must hold

on the reference element T̂ , for any v̂i ∈ Vh, where ||n̂× v̂i||∂T̂ 6= 0:

||n̂× v̂i||∂T̂ ≥ C||v̂i||T̂ , (2.38)

where C is a positive constant. Letting F : T̂ → Ti

∫

∂T̂
|(ni ◦ F)× (vi ◦ F)|2

dŝ

dsi
dsi ≥ C

∫

T̂
|vi ◦ F|2

dT̂

dTi
dTi

∫

∂Ti

|vi|2
1

hi
dsi ≥ C

∫

Ti

|vi|2
1

Ai
dTi (2.39)

where hi is the side for 2D and the area for 3D, while Ai is the area for 2D and the volume

for 3D. Making the approximation that hi
Ai

≈ 1
hi
, (2.39) becomes

||ni × vi||2∂Ti
≥ C

hi
||vi||2Ti

for any vi ∈ Vh.

Therefore

∫

∂Ti

|nik × [Ei]|2 +
∫

∂Ti

|nik × [H i]|2 ≥
C

hi
(||[H i]||2Ti

+ ||[Ei]||2Ti
).
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Adding all elements together for (2.36), we get

|R(LNUN ,UN )| ≥ C

h
||UN ||2, (2.40)

which concludes the proof.

Lemma 2.2.2. Given that

||LNUN ||2 =M(M−1S ×HN +
1

2
F (n× ([H i]− n× [Ei]))|∂Tk

)·

(M−1S ×HN +
1

2
M−1F (n× ([H i]− n× [Ei]))|∂Tk

)

+M(−M−1S ×EN − 1

2
F (n× (n× [H i] + [Ei]))|∂Tk

)·

(−M−1S ×EN − 1

2
M−1F (n× (n× [H i] + [Ei]))|∂Tk

),

it follows that

||LNUN ||2 ≤ Ch

h2
||Uh||2, (2.41)

where Ch is a constant.

Proof. We have

||LNUN ||2 = (S ×HN +
1

2
F (n × ([H i]− n× [Ei]))|∂Tk

)·

(M−1S ×HN +
1

2
M−1F (n× ([H i]− n× [Ei]))|∂Tk

)

+ (−S ×EN − 1

2
F (n× (n× [H i] + [Ei]))|∂Tk

)·

(−M−1S ×EN − 1

2
M−1F (n × (n× [H i] + [Ei]))|∂Tk

)

=S ×HN ·M−1S ×HN +
1

2
F (n× ([H i]− n× [Ei]))|∂Tk

·M−1S ×HN

+ S ×HN · 1
2
M−1F (n× ([H i]− n× [Ei]))|∂Tk

+
1

4
F (n × ([H i]− n× [Ei]))|∂Tk

·M−1F (n× ([H i]− n× [Ei]))|∂Tk

+ S ×EN ·M−1S ×EN +
1

2
F (n× (n× [H i] + [Ei]))|∂Tk

·M−1S ×EN

+ S ×EN · 1
2
M−1F (n × (n× [H i] + [Ei]))|∂Tk

+
1

4
F (n × (n× [H i] + [Ei]))|∂Tk

·M−1F (n× (n× [H i] + [Ei]))|∂Tk
(2.42)
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Based on (2.22), we can arrive at a simple inequality:

|1
2
F (n× ([H i]− n× [Ei]))|∂Tk

·M−1S ×HN | (2.43)

≤ 1

4δ
||1
2
F (n × ([H i]− n× [Ei]))|∂Tk

||2 + δ||M−1S ×HN ||2

≤ 1

4δ

∑

Ti

Np∑

j=1

|
∑

k∈νi

∫

aik

nik × ([H i]− nik × [Ei]) · lj(x)|2

+ δC
∑

Ti

Np∑

j=1

|
∫

Ti

∇× [H i] · lj(x)|2

≤C1

h2
(||Hh||2 + ||Eh||2) (2.44)

Similarly,

|S ×HN · 1
2
M−1F (n× ([H i]− n× [Ei]))|∂Tk

|

≤C

4δ

∑

Ti

Np∑

j=1

|
∫

Ti

∇× [H i] · lj(x)|2

+ δC
∑

Ti

Np∑

j=1

|
∑

k∈νi

∫

aik

nik × ([H i]− nik × [Ei]) · lj(x)|2

≤C2

h2
(||Hh||2 + ||Eh||2) (2.45)

and

|1
4
F (n × ([H i]− n× [Ei]))|∂Tk

·M−1F (n× ([H i]− n× [Ei]))|∂Tk
|

≤ C3

∑

Ti

Np∑

j=1

∑

k∈νi
|
∫

aik

nik × ([H i]− nik × [Ei]) · lj(x)|2

≤ C3

h2
(||Hh||2 + ||Eh||2). (2.46)

Thus,

||LNUN ||2 ≤
∫

Ω
∇×Hh · ∇ ×Hh +

∫

Ω
∇×Eh · ∇ ×Eh +

C4

h2
(||Hh||2 + ||Eh||2)

≤ Ch

h2
(||Eh||2 + ||Hh||2) =

Ch

h2
||Uh||2 (2.47)
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Now we can prove the Theorem 2.2.1:

Proof. From Lemma 2.2.1 and 2.2.2,

h2

C1
||LNUN ||2 ≤ ||UN ||2 ≤ h

C
|R(LNUN ,UN )|.

Then we obtain

h ≤ Cs
|R(LNUN ,UN )|

||LNUN ||2 . (2.48)

According to Theorem 3.1, Theorem 3.2 and 3.3 in [42], the s-order RK discretization of

the DG scheme, (2.35) , is strongly stable, provided ∆t satisfies for the appropriate Cs,

∆t ≤ Csη, η := inf||u||=1
|R(Lu, u)|
||Lu||2 . (2.49)

From (2.48), we can get the CFL condition

∆t ≤ Csh.

According to (2.31), the s-order RK discretization of the DG scheme, (2.18) to (2.19) , is

also strongly stable, provided ∆t satisfies the CFL condition

∆t√
ε0µo

≤ Csh. (2.50)

2.2.2 ERROR ESTIMATE

Here we give the error estimate of a fully discrete RK4 DG scheme. The error estimate

of any other orders can be developed in the same way.

Consider

ut = F (u), (2.51)

subject to the given initial value

u(0) = u0. (2.52)
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The RK4 approximation of (2.51) is :

un,1 = F (un)

un,2 = F (un + 1/2∆tun,1),

un,3 = F (un + 1/2∆tun,2),

un,4 = F (un + 1/2∆tun,1),

un+1 = un + 1/6∆t[un,1 + 2un,2 + 2un,3 + un,4].

We will apply the above RK4 scheme to Maxwell’s equations for the case of linear, constant-

coefficients. Recalling the semidiscrete problem, as in (2.24), these equations are

dEN

dt
=M−1S ×HN +

1

2
M−1F (n× ([H i]− n× [Ei]))|∂Tk

dHN

dt
=−M−1S ×HN − 1

2
M−1F (n× (n× [H i] + [Ei]))|∂Tk

. (2.53)

This system is in the form

∂UN

∂t
= LNUN . (2.54)

Applying RK4 to (2.54) gives

Un+1
N = Un

N + L̃NU
n
N +

1

2
L̃2
NU

n
N +

1

6
L̃3
NU

n
N +

1

24
L̃4
NU

n
N , (2.55)

where L̃N = ∆tLN .

In the previous section , we have proved (2.55) is stable under the CFL condition,

‖Em
h ‖20 + ‖Hm

h ‖20 ≤
∥∥E0

h

∥∥2
0
+
∥∥H0

h

∥∥2
0
.

Before we can prove the optimal error estimate, we need another two lemmas.

Lemma 2.2.3. Under the CFL condition ∆t√
ε0µ0

≤ Csh,

(ε0||En
h −Eh(tn)||2 + µ0||Hn

h −Hh(tn)||2)
1
2 ≤ C(∆t)4||(H ,E)||C5[0,T ],L2(Ω) (2.56)

Proof. Define uN (tn) = [uh(x1, tn),uh(x2, tn), · · · ,uh(xNp , tn)]
T for any uh ∈ Vh.
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Introduce Ũ
n+1

N = (Ẽ
n+1

N , H̃
n+1

N ) as

Ũ
n+1

N = UN (tn) + L̃NUN (tn) +
1

2
L̃2
NUN (tn) +

1

6
L̃3
NUN (tn) +

1

24
L̃4
NUN (tn) (2.57)

By a Taylor expansion, we get:

UN (tn+1) =UN (tn) + L̃NUN (tn) +
1

2
L̃2
NUN (tn) +

1

6
L̃3
NUN (tn)

+
1

24
L̃4
NUN (tn) +

(∆t)5

5!

∂5Uh

∂t5
+ · · · . (2.58)

Subtracting (2.58) from (2.57), we find

Ũ
n+1

N −UN (tn+1) = −(∆t)5

5!

∂5Uh

∂t5
. (2.59)

Squaring both sides and using (2.23) gives

||Ũn+1

h −Uh(tn+1)|| ≤ C∆t5|| ∂
5

∂t5
Uh||

(||Ẽn+1

h −Eh(tn+1)||2 + ||H̃n+1

h −H(
htn+1)||2)

1
2 ≤ C∆t5||(H ,E)||C5([0,T ],L2(Ω)) (2.60)

Subtracting (2.57) from (2.55), we have

Un+1
N −UN (tn+1) = U

n
N −UN (tn) + L̃N (Un

N −UN (tn)) +
1

2
L̃2
N (Un

N −UN (tn))

+
1

6
L̃3
N (Un

N −UN (tn)) +
1

24
L̃4
N (Un

N −UN (tn)) + Ũ
n+1

N −UN (tn+1). (2.61)

Now Let ξnh = En
h − Eh(tn), η

n
h = Hn

h −Hh(tn), and ςnh = (ξnh , η
n
h). Then ξnN = En

N −

EN(tn), η
n
N =Hn

N −HN(tn), and ς
n
N = (ξnN, η

n
N), so that (2.61) becomes

ςn+1
N = ςnN + L̃N ς

n
N +

1

2
L̃2
N ς

n
N +

1

6
L̃3
N ς

n
N +

1

24
L̃4
N ς

n
N + Ũ

n+1

N −UN (tn+1). (2.62)

This is similar to (2.55). Along with the stability of (2.55), squaring both sides of the above
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equations and using(2.23) gives

||ξn+1
h ||2 + ||ηn+1

h ||2 ≤ ||ξnh ||2 + ||ηnh ||2

+ ||Ẽn+1

h −Eh(tn+1)||2 + ||H̃n+1

h −Hh(tn+1)||2

+M(Ũ
n+1

N −UN (tn+1)) · (ςnN + L̃N ς
n
N +

1

2
L̃2
N ς

n
N +

1

6
L̃3
N ς

n
N +

1

24
L̃4
N ς

n
N ). (2.63)

Multiplying (2.59) by any φh ∈ Vh, and integrating over Ωh, we arrive at

M(Ũ
n+1

N −UN (tn+1)) · φN =

∫

Ω
(Ũ

n+1

h −Uh(tn+1)) · φh

=

∫

Ω
−(∆t)5

5!

∂5Uh

∂t5
· φh ≤ ||(∆t)

5

5!

∂5Uh

∂t5
|| ||φh||,

so that if one defines:

ψn
h(φN ) =M(Ũ

n+1

N −UN (tn+1)) · φN =

∫

Ω
Ũ

n+1

h −Uh(tn+1) · φh,

and

|ψn
h(φN )| ≤ ||(∆t)

5

5!

∂5Uh

∂t5
|| ||φh||

then

|||ψn
h(φN )||| ≤ C(∆t)5||(H ,E)||C5([0,T ],L2(Ω)), (2.64)

where ||| · ||| denotes a linear norm if one considers the linear form on L2(Ω).

Therefore, we can write (2.63) as

||ξn+1
h ||2 + ||ηn+1

h ||2 ≤ ||ξnh ||2 + ||ηnh ||2

+ ||Ẽn+1

h −Eh(tn+1)||2 + ||H̃n+1

h −Hh(tn+1)||2

+ ψn−1
h (ςnN + L̃N ς

n
N +

1

2
L̃2
N ς

n
N +

1

6
L̃3
N ς

n
N +

1

24
L̃4
N ς

n
N ).

Using (2.64) and (2.60), we finally obtain

||ξn+1
h ||2 + ||ηn+1

h ||2 ≤ ||ξnh ||2 + ||ηnh ||2 +C(∆t)5||(H ,E)||C5([0,T],L2(Ω)) (2.65)
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Adding from n = 0 to n− 1, we obtain the result in Lemma 2.2.3.

Lemma 2.2.4. Let Ph denote the standard L2-projection onto Vh or V0
h, which is the

subspace of Vh with the boundary condition n × E = 0 imposed. It is known that the

projection error estimate

‖u− Phu‖0,T ≤ Ch
min{s,k}+1
T ‖u‖s+1,T , (2.66)

holds true for any element T,and u ∈ Hs+1(T ). Let (Eh,Hh) be the weak solution of (2.18)-

(2.19), and (E,H) be the solution of (2.14)-(2.15). Then

(ε0||PhE −Eh||2 + µ0||PhH −Hh||2)
1
2 ≤ Chmin{s,k}||(H,E)||C0([0,T ],Hs+1(Ω)). (2.67)

Proof. Multiply (2.14) by uh ∈ Vh, (2.15) by vh ∈ Vh, and integrate them over Ti.

Adding all elements together gives

∫

Ti

ε0
∂E

∂t
· ui =

∫

Ti

∇×H · ui +
∑

k∈νi

∫

aik

ui ·
1

2
nik × ([H ]− nik × [E]) (2.68)

∫

Ti

µ0
∂H

∂t
· vi = −

∫

Ti

∇×E · vi −
∑

k∈νi

∫

aik

vi ·
1

2
nik × (nik × [H ] + [E]) (2.69)

Let ξh = PhE −Eh and ηh = PhH −Hh. Then from(2.18)-(2.19) and (2.68)-(2.69),

ε0(
∂

∂t
ξh, uh)− (∇× ηh, uh)−

∑

Ti

∑

k∈νi

∫

aik

ui ·
1

2
nik × ([ηi]− nik × [ξi])

=ε0(
∂

∂t
(PhE −E), uh)− (∇× (PhH −H), uh)

−
∑

Ti

∑

k∈νi

∫

aik

ui ·
1

2
nik × ([(PhH −H)]− nik × [(PhE −E)])

µ0(
∂

∂t
ηh, vh) + (∇× ξh, vh) +

∑

Ti

∑

k∈νi

∫

aik

vi ·
1

2
nik × (nik × [ηi] + [ξi])

=µ0(
∂

∂t
(PhH −H), vh) + (∇× (PhE −E), vh)

+
∑

Ti

∑

k∈νi

∫

aik

vi ·
1

2
nik × (nik × [(PhH −H)] + [(PhE −E)]). (2.70)
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Further Letting uh = ξh and vh = ηh,

ε0(
∂

∂t
ξh, ξh) + µ0(

∂

∂t
ηh, ηh)

=−
∑

fi∈Fh

∫

fi

1

2
nik × [ξi] · nik × [ξi]−

∑

fi∈Fh

∫

fi

1

2
nik × [ηi] · nik × [ηi]

+ ε0(
∂

∂t
(PhE −E), ξh)− (∇× (PhH −H), ξh)

−
∑

Ti

∑

k∈νi

∫

aik

ξi ·
1

2
nik × ([(PhH −H)]− nik × [(PhE −E)])

+ µ0(
∂

∂t
(PhH −H), ηh) + (∇× (PhE −E), ηh)

+
∑

Ti

∑

k∈νi

∫

aik

ηi ·
1

2
nik × (nik × [(PhH −H)] + [(PhE −E)])

≤ε0(
∂

∂t
(PhE −E), ξh)− (∇× (PhH −H), ξh)

−
∑

Ti

∑

k∈νi

∫

aik

ξi ·
1

2
nik × ([(PhH −H)]− nik × [(PhE −E)])

+ µ0(
∂

∂t
(PhH −H), ηh) + (∇× (PhE −E), ηh)

+
∑

Ti

∑

k∈νi

∫

aik

ηi ·
1

2
nik × (nik × [(PhH −H)] + [(PhE −E)])

=
6∑

i=1

Erri. (2.71)

We see that Err1 = 0, Err2 = 0, Err4 = 0 and Err5 = 0 by the property of L2 projections.

Hence,

Err3 ≤
Cinv

h
||ξh|| · (||PhH −H ||+ ||PhE −E||). (2.72)

Similarly,

Err6 ≤
Cinv

h
||ηh|| · (||PhH −H ||+ ||PhE −E||) (2.73)

and so,

ε0(
∂

∂t
ξh, ξh) + µ0(

∂

∂t
ηh, ηh) ≤

Cinv

h
(||ξh||+ ||ηh||) · (||PhE −E||+ ||PhH −H||). (2.74)
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Since

ε0(ξh, ξh)+µ0(ηh, ηh) =

∫ t

0
(ε0(

∂

∂s
ξh, ξh)+µ0(

∂

∂s
ηh, ηh))ds+ ε0(ξ

0
h, ξ

0
h)+µ0(η

0
h, η

0
h), (2.75)

we must have that

ε0(ξh, ξh) + µ0(ηh, ηh)− (ε0(ξ
0
h, ξ

0
h) + µ0(η

0
h, η

0
h))

≤
∫ t

0

1

2δ
(||ξh||2 + ||ηh||2) + 2δ

C2
inv

h2
(||PhE −E||2 + ||PhH −H ||2). (2.76)

Finally, let λ = max[0,T ](||ξh(t)||2 + ||ηh(t)||2).

Since λ is well defined due to the regularity hypotheses on the solution (H ,E) and (Hh,Eh),

it follows that

ε0(ξh, ξh) + µ0(ηh, ηh) ≤ TC2
invδh

2min{s,k}||(H,E)||2C0([0,T ],Hs+1(Ω)) + Tλ
1

2δ
.

which concludes the proof.

Theorem 2.2.2. Under the assumption that the time step ∆t satisfies a CFL condition, we have

the following error estimate

max
1≤n

(||En −En
h||0 + ||Hn −Hn

h||0

≤C((∆t)4 + Thmin{s,k})(||(H ,E)||C5([0,T ],L2(Ω)) + ||(H,E)||C0([0,T ],Hs+1(Ω)))

where k is the degree of the basis function in the finite element space (2.17)

Proof. From Lemma(2.2.3), Lemma(2.2.4) and(2.66), using the triangle inequality, we

can get the above error estimate.

For the numerical results to support the error estimate, we can refer to [29, 44].
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Chapter 3

DG METHODS FOR MAXWELL’S EQUATIONS IN

METAMATERIALS

3.1 INTRODUCTION OF METAMATERIALS

A metamaterial refers to any material that gains its properties from its structure rather

than from its composition. (They are often associated with electromagnetic materials whose

refractive index is negative). The quantitative statement of refraction is embodied in Snell’s

law, which relates the exit angle of a light ray, θ2, as measured with respect to a line drawn

perpendicular to the interface of the material, to the ray’s angle of incidence, θ1, by the

formula

sin(θ1) = n sin(θ2)

Here, n is the ratio of the exit medium’s refractive index to the that of the entrance material.

The refractive index therefore determines the amount by which the beam is deflected. If the

index is positive, the exiting beam is deflected to the opposite side of the surface normal,

whereas if the index is negative, the exiting beam is deflected to the same side of the normal.

Fig.3.1

Maxwell’s equations determine how electromagnetic waves propagate within a medium,

and in special cases, can be reduced to a wave equation of the form,

∂2E(x, t)

∂x2
= εµ

∂2E(x, t)

∂t2
,

where ε is the ratio of the electric permitivity in the material to its free space value and

µ is the ratio of the magnetic permeability in the material to its free space value. Indeed,

solutions of the wave equation have the form exp[i(kx − ωt)] where k = nω and n =

√
εµ is another way to express the refractive index. Propagating solutions exist in the

material whether ε and µ are both positive or are both negative. We need to be careful
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Figure 3.1: Negative refraction index. The direction of the light ray is mirror-imaged
about the normal to the surface when the refraction index is negative (From:Metallurgy for
skullsinthestars.com)

in taking the square root, as ε and µ are analytic functions that are generally complex

valued. There is an ambiguity in the sign of the square root that can be resolved by a

proper analysis. Since ε and µ are both negative, we need to obey the left-handed law.

When we take the square root, we need to add a negative sign in the front of n. Hence,

n = −√
εµ for left handed metamaterials. The critical requirement is that mathematically

the square root of product of ε and µmust take the negative sign in the left handed materials.

In negative index metamaterials (NIM), both permittivity and permeability are negative

resulting in a negative index of refraction. Because of these double negative parameters,

some materials are classified as Double Negative Metamaterials or double negative materials

(DNG). Other terminologies for NIMs are “left-handed media”, “media with a negative

refractive index”, and “backward-wave media”. In optical materials (i,e materials that

are transparent to electro-magnetic waves), if both permittivity ε and permeability µ are

positive, wave propagation in the forward direction results. If both ε and µ are negative,

a backward wave is produced. If ε and µ have different polarities, then there is no wave

propagation permitted.
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Left-handed materials were first described theoretically by Victor Veselago in 1967.John

Pendry was the first to theorize a practical way to make a left-handed metamaterial.

Pendry’s initial idea was that metallic wires aligned along the direction of propagation

could provide a metamaterial with negative permittivity (ε < 0). Note however that natu-

ral materials (such as ferroelectrics) were already known to exist with negative permittivity;

the challenge was to construct a material which also showed negative permeability (µ < 0).

In 1999 Pendry demonstrated that a split ring resonator (SRR) with its axis placed along

the direction of wave propagation could provide a negative permeability. The SRR consists

of a planar set of concentric rings, each ring with a gap. Because the SRR is planar, it is

easily fabricated by lithographic methods at scales appropriate for low frequencies to opti-

cal frequencies. Fig.3.2. In the same paper, he showed that a periodic array of wires and

ring could give rise to a negative refractive index. A related negative-permeability particle,

which was also proposed by Pendry, is the Swiss roll. The Swiss roll was claimed to be the

most suited to MRI applications, Fig.3.3.

Figure 3.2: Structure of square split ring resonator from ’Metamaterial-based Compact
Multilayer Filter with Skew-symmetric Feeds’ on microwavejournal.com

The SRR, shown in Fig.3.2, is made of two concentric rings separated by a gap, both

having splits at opposite sides. The geometrical parameters, such as the split gap width,
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gap distance, metal width and radius are respectively represented by d, t, w and r. The

subscripts i and o denote the inner and outer rings. Besides the electric and magnetic cou-

pling, the incident field also induces the magnetoelectric coupling. The SRR not only has

an electric resonance, but also a magnetic resonance. Moreover, the magnetic resonance

frequency is lower than the electric resonance frequency. Using the magnetic resonance of

the SRR in the filter design, a significant size reduction can be obtained.

Figure 3.3: Structure of swissroll (from http://www.sciencemag.org)

In 2000, Smith et. al. successfully introduced a composite structure based on SRRs,

which was shown to have a frequency band over which ε and µ were both negative. The

negative µ occurred at frequencies above the resonant frequency of SRR structure. The

negative ε was introduced by interleaving the SRR lattice with a lattice of conducting

wires. Fig.3.4

Metamaterials applications in various fields such as design of invisibility cloak, sub-

wavelength imaging, antenna and radar technology Figs.3.5-3.8.

Due to many potential interesting applications in various fields such as design of invis-

ibility cloak, sub-wavelength imaging, antenna and radar technology, the study of meta-

materials has attracted a great attention of scientists and engineers since 2000. Numerical

simulation plays a very important role in the study of metamaterial and its applications due

to its cost effectiveness compared to the physical experiments. However, simulations are

mostly restricted to either the classic finite-difference time-domain (FDTD) method [27] or

commercial packages such as COMSOL Multiphysics Finite Element Analysis Software. It

is known that the FDTD method has a big disadvantage for solving problems with complex
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Figure 3.4: A split ring etched into a copper circuit board combined with copper wires leads
to a material with negative µ and negative ε. From: http://en.wikipedia.org

geometries.Hence it would be quite interesting and useful to develop efficient and robust

finite element methods for modeling metamaterials.

The discontinuous Galerkin (DG) method, originally introduced by Reed and Hill back

in 1973, has become one of the most popular methods used for solving various differential

equations (e.g., [2, 4, 19, 22, 32, 33, 36, 41, 50, 53, 63]). The DGmethod has a great flexibility

in mesh construction by allowing conforming or non-conforming meshes and using different

orders of basis functions in different elements.In the past decade, there has been a growing

interest in developing DG methods for solving Maxwell’s equations in free space [13, 20, 23,

24, 26, 28, 31, 51]. Very recently, there were some DG investigations [35, 45, 49, 58] carried

out for Maxwell’s equations in dispersive media, whose permittivity depends on the wave

frequency. However, to our best knowledge, the study of DG methods for solving Maxwell’s

equations in metamaterials is quite limited.
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Figure 3.5: invisibility cloak (From:Metallurgy for Dummies.com /futuristic-materials)

3.2 LEAP-FROG DISCONTINUOUS GALERKIN METHOD FOR
THE TIME DOMAIN MAXWELL’S EQUATIONS IN

METAMATERIALS

This section is mainly based on our published work [47].1 It continues our recent initial

effort [44] on developing DG methods for solving Maxwell’s equations in metamaterials.

In [44], we extended the DG method developed by Hesthaven and Warburton [28, 29] for

Maxwell’s equations in free space to metamaterials. Preliminary numerical results were

performed and good convergence rates were observed, but detailed theoretical analysis was

not carried out. Here we extend the framework of [28, 29] to develop a leap-frog type

DG method for solving the time-domain Maxwell’s equations in metamaterials and provide

detailed stability results and error estimates for the scheme. Numerical results consistent

with the theoretical analysis are also presented.

The governing equations for modeling wave propagation in metamaterials described by

1Reprinted from Computer Methods in Applied Mechanics and Engineering, 223-224(0), J. Li and J.
Waters and E. A. Machorro, An implicit leap-frog discontinuous Galerkin method for the time-domain
Maxwell’s equations in metamaterials, 43-54, Copyright (2012), with permission from Elsevier.
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Figure 3.6: Light rays could in theory be bent around an object inside the cloak, making it
seem invisible. From: livescience.com

the Drude model has been derived in our earlier work [48]:

ε0
∂E

∂t
= ∇×H − J , in Ω× (0, T ), (3.1)

µ0
∂H

∂t
= −∇×E −K, in Ω× (0, T ), (3.2)

∂J

∂t
+ ΓeJ = ε0ω

2
peE, in Ω× (0, T ), (3.3)

∂K

∂t
+ ΓmK = µ0ω

2
pmH , in Ω× (0, T ), (3.4)

where E(x, t) and H(x, t) are the electric and magnetic fields, J(x, t) and K(x, t) are the

induced electric and magnetic currents, ε0 and µ0 are the permittivity and permeability

in free space, respectively, ωpe and ωpm are the electric and magnetic plasma frequencies,

respectively, and Γe and Γm are the electric and magnetic damping frequencies, respectively.

For simplicity, we assume that Ω is a bounded polyhedral domain of R3 (note that our

analysis below holds true for R2 also), and the system (3.1)-(3.4) is supplemented with
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Figure 3.7: This Z antenna tested at the National Institute of Standards and Technology is
smaller than a standard antenna with comparable properties. Its high efficiency is derived
from the ”Z element” inside the square that acts as a metamaterial, greatly boosting the
signal sent over the air. The square is 30 millimeters on a side.(From:nextbigfuture.com)

metallic boundary conditions (i.e. a perfectly conducting surface), in which

n×E = 0 on ∂Ωm, (3.5)

and initial conditions

E(x, 0) = E0(x), H(x, 0) =H0(x),J(x, 0) = J0(x), K(x, 0) =K0(x), (3.6)

where n denotes the unit outward normal to ∂Ω, and E0,H0,J0,K0 are some given func-

tions.

3.2.1 NOTATION AND THE DG SCHEME

We assume that the bounded Lipschitz polyhedral domain Ω is partitioned into disjoint

tetrahedral elements Ti such that Ω = ∪iTi. For each internal face aik = Ti
⋂
Tk, we denote

nik the unit normal, oriented from Ti towards Tk. We denote h the maximum mesh size,

νi the set of indices of the neighboring elements of the Ti, F
int
h the union of internal faces,

and ∂Ωm the set of metallic boundaries.
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Figure 3.8: LG Chocolate BL40, the first cellphone to use a metamaterial antenna.
(From:nextbigfuture.com)

Furthermore, we denote the jump terms by

[Ei] = E
+
i −E−

i , [H i] =H
+
i −H−

i ,

where superscripts “ + ” and “ − ” refer to field values from the neighbor element and the

local element itself, respectively.

We introduce the discontinuous finite element space:

Vh = {vh ∈ L2(Ω)3 : vh|Ti ∈ (Pk(Ti))
3 for any Ti ∈ Ω}, (3.7)

i.e., the basis function is a discontinuous polynomial of degree k over each element.

To define a fully discrete scheme, we divide the time interval (0, T ) into M uniform

subintervals by points 0 = t0 < t1 < · · · < tM = T, where tk = kτ and τ is the time step

size. Moreover, we define En
i = E(·, tn) as the approximate field on element Ti, and Eh

as the global approximate field, i.e., Eh|Ti = Ei. Similar notation holds for other fields

Hh,Jh and Kh. Below we also use the average notation

E
[n+ 1

2
]

i = (En
i +En+1

i )/2, H
[n+1]
i = (H

n+ 1
2

i +H
n+ 3

2
i )/2.

With the above preparation, now we can construct our leap-frog DG method. Multiply-

ing (3.1)-(3.4) by test functions ui,vi,φi,ψi respectively, integrating the resultants over each
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element Ti, and choosing the upwind flux for the first two equations, we obtain the following

leap-frog DG scheme: given initial approximations E0
i ,K

0
i ,H

1
2
i ,J

1
2
i , for n = 0, 1, · · · , find

En+1
i ,Kn+1

i ,H
n+ 3

2
i ,J

n+ 3
2

i ∈ Vh such that

∫

Ti

ε0
En+1

i −En
i

τ
· ui =

∫

Ti

ui · ∇ ×Hn+ 1
2

i −
∫

Ti

J
n+ 1

2
i · ui

+
∑

k∈νi

∫

aik

ui ·
1

2
nik × ([H

n+ 1
2

i ]− nik × [E
[n+ 1

2
]

i ]), (3.8)

∫

Ti

µ0
H

n+ 3
2

i −Hn+ 1
2

i

τ
· vi = −

∫

Ti

vi · ∇ ×En+1
i −

∫

Ti

Kn+1
i · vi

−
∑

k∈νi

∫

aik

vi ·
1

2
nik × (nik × [H

[n+1]
i ] + [En+1

i ]), (3.9)

1

ε0ω2
pe

∫

Ti

J
n+ 3

2
i − Jn+ 1

2
i

τ
· φi +

Γe

ε0ω2
pe

∫

Ti

J
n+ 3

2
i + J

n+ 1
2

i

2
· φi =

∫

Ti

En+1
i · φi, (3.10)

1

µ0ω2
pm

∫

Ti

Kn+1
i −Kn

i

τ
·ψi +

Γm

µ0ω2
pm

∫

Ti

Kn+1
i +Kn

i

2
·ψi =

∫

Ti

H
n+ 1

2
i · ψi. (3.11)

For a metallic boundary face aik, the boundary condition nik ×E|aik= 0 is implemented as

En
k |aik= −En

i |aik , (3.12)

H
n+ 1

2
k |aik=H

n+ 1
2

i |aik . (3.13)

For our scheme (3.8)-(3.11), we can prove the following conditional stability.

Theorem 3.2.1. Denote Cv = 1/
√
ε0µ0 for the wave propagation speed in free space. Under

the CFL condition

τ ≤ min{1
8
,

h

5C2
invCv

,
h

5CinvCv
,

1

2ωpm
,

1

2ωpe
}, (3.14)

where Cinv > 0 is the constant appearing in the standard inverse estimates [14]:

|u|0,∂Ti
≤ Cinvh

− 1
2

Ti
‖u‖0,Ti

, |u|1,Ti
≤ Cinvh

−1
Ti

‖u‖0,Ti
, ∀ u ∈ Vh. (3.15)
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Here and below |u|k,Ti
and ||u||k,Ti

denote the semi-norm and norm for a function u in the

Sobolev space Hk(Ti), respectively. The scheme (3.8)-(3.11) is stable and has the following

stability:

ε0 ‖En
h‖20,Ω + µ0

∥∥∥∥H
n+ 1

2
h

∥∥∥∥
2

0,Ω

+
1

ε0ω2
pe

∥∥∥∥J
n+ 1

2
h

∥∥∥∥
2

0,Ω

+
1

µ0ω2
pm

‖Kn
h‖20,Ω

≤ C

(
∥∥E0

h

∥∥2
0,Ω

+

∥∥∥∥H
1
2
h

∥∥∥∥
2

0,Ω

+

∥∥∥∥J
1
2
h

∥∥∥∥
2

0,Ω

+
∥∥K0

h

∥∥2
0,Ω

)
,

where the constant C > 0 depends on the physical parameters ε0, µ0, ωpe, ωpm,Γe and Γm,

but is independent of the time step size τ and mesh size h.

Proof. Let us denote EGY n
i = EGY n

i1 + EGY n
i2 , where

EGY n
i1 =

1

2

∫

Ti

ε0E
n
i ·En

i +
1

2

∫

Ti

µ0H
n+ 1

2
i ·Hn+ 1

2
i , (3.16)

EGY n
i2 =

1

2

∫

Ti

1

ε0ω2
pe

J
n+ 1

2
i · Jn+ 1

2
i +

1

2

∫

Ti

1

µ0ω2
pm

Kn
i ·Kn

i . (3.17)

Choosing ui = τE
[n+ 1

2
]

i in (3.8) and vi = τH
[n+1]
i in (3.9), and adding the resultants

together, we have

EGY n+1
i1 = EGY n

i1 − τ

∫

Ti

H
n+ 3

2
i +H

n+ 1
2

i

2
· ∇ ×En+1

i − τ

∫

Ti

H
n+ 3

2
i +H

n+ 1
2

i

2
·Kn+1

i

−
∑

k∈νi

τ

2

∫

aik

H
[n+1]
i · nik × (nik × [H

[n+1]
i ] + [En+1

i ])

+τ

∫

Ti

En
i +En+1

i

2
· ∇ ×Hn+ 1

2
i − τ

∫

Ti

J
n+ 1

2
i ·E[n+ 1

2
]

i

+
∑

k∈νi

τ

2

∫

aik

E
[n+ 1

2
]

i · nik × ([H
n+ 1

2
i ]− nik × [E

[n+ 1
2
]

i ]). (3.18)

Using the identity

∫

Ti

H
n+ 1

2
i · ∇ ×En+1

i =

∫

Ti

∇×Hn+ 1
2

i ·En+1
i +

∫

∂Ti

En+1
i · (Hn+ 1

2
i × ni)

and the jump definition [Ei] = E+
i − E−

i = Ek − Ei, [H i] = H+
i −H−

i = Hk −H i in
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(3.18), we have

EGY n+1
i1 = EGY n

i1 −
τ

2

∫

Ti

H
n+ 3

2
i · ∇ ×En+1

i − τ

2

∫

∂Ti

En+1
i · (Hn+ 1

2
i × ni)

−τ
∫

Ti

H
[n+1]
i ·Kn+1

i −
∑

k∈νi

τ

2

∫

aik

H
[n+1]
i · nik ×En+1

k

+
∑

k∈νi

τ

2

∫

aik

H
[n+1]
i · nik ×En+1

i −
∑

k∈νi

τ

2

∫

aik

H
[n+1]
i · nik × (nik × [H

[n+1]
i ])

+
τ

2

∫

Ti

En
i · ∇ ×Hn+ 1

2
i − τ

∫

Ti

J
n+ 1

2
i ·E[n+ 1

2
]

i +
∑

k∈νi

τ

2

∫

aik

E
[n+ 1

2
]

i · nik ×H
n+ 1

2
k

−
∑

k∈νi

τ

2

∫

aik

E
[n+ 1

2
]

i · nik ×H
n+ 1

2
i −

∑

k∈νi

τ

2

∫

aik

E
[n+ 1

2
]

i · nik × (nik × [E
[n+ 1

2
]

i ])

= EGY n
i1 −

τ

2

∫

Ti

H
n+ 3

2
i · ∇ ×En+1

i − τ

2

∫

∂Ti

En+1
i · (Hn+ 1

2
i × ni)

−τ
∫

Ti

H
[n+1]
i ·Kn+1

i −
∑

k∈νi

τ

4

∫

aik

H
n+ 3

2
i · nik ×En+1

k

−
∑

k∈νi

τ

4

∫

aik

H
n+ 1

2
i · nik ×En+1

k +
∑

k∈νi

τ

4

∫

aik

H
n+ 3

2
i · nik ×En+1

i

+
∑

k∈νi

τ

4

∫

aik

H
n+ 1

2
i · nik ×E

n+1−∑
k∈νi

τ
2

∫
aik
H [n+1]

i ·nik×(nik×[H [n+1]
i ])

i

+
τ

2

∫

Ti

En
i · ∇ ×Hn+ 1

2
i − τ

∫

Ti

J
n+ 1

2
i ·E[n+ 1

2
]

i +
∑

k∈νi

τ

4

∫

aik

En+1
i · nik ×H

n+ 1
2

k

+
∑

k∈νi

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

k −
∑

k∈νi

τ

4

∫

aik

En+1
i · nik ×H

n+ 1
2

i

−
∑

k∈νi

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

i −
∑

k∈νi

τ

2

∫

aik

E
[n+ 1

2
]

i · nik × (nik × [E
[n+ 1

2
]

i ]). (3.19)

Using the identity

τ

2

∫

∂Ti

En+1
i · (Hn+ 1

2
i ×ni) =

∑

k∈νi

τ

4

∫

aik

H
n+ 1

2
i ·nik ×En+1

i −
∑

k∈νi

τ

4

∫

aik

En+1
i ·nik ×H

n+ 1
2

i

in (3.19), and moving the 6th term to the last and the 12th term to the second last, we

obtain
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EGY n+1
i1 = EGY n

i1 −
τ

2

∫

Ti

H
n+ 3

2
i · ∇ ×En+1

i − τ

∫

Ti

H
[n+1]
i ·Kn+1

i

−
∑

k∈νi

τ

4

∫

aik

H
n+ 3

2
i · nik ×En+1

k +
∑

k∈νi

τ

4

∫

aik

H
n+ 3

2
i · nik ×En+1

i

−
∑

k∈νi

τ

2

∫

aik

H
[n+1]
i · nik × (nik × [H

[n+1]
i ]) +

τ

2

∫

Ti

En
i · ∇ ×Hn+ 1

2
i

−τ
∫

Ti

J
n+ 1

2
i ·E[n+ 1

2
]

i +
∑

k∈νi

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

k

−
∑

k∈νi

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

i −
∑

k∈νi

τ

2

∫

aik

E
[n+ 1

2
]

i · nik × (nik × [E
[n+ 1

2
]

i ])

+
∑

k∈νi

τ

4

∫

aik

En+1
i · nik ×H

n+ 1
2

k −
∑

k∈νi

τ

4

∫

aik

H
n+ 1

2
i · nik ×En+1

k . (3.20)

Choosing φi =
τ
2 (J

n+ 3
2

i +J
n+ 1

2
i ) in (3.10) and ψi =

τ
2 (K

n+1
i +Kn

i ) in (3.11), and adding

the resultants, we obtain

EGY n+1
i2 = EGY n

i2 −
Γeτ

ε0ω2
pe

∫

Ti

J
[n+1]
i · J [n+1]

i +
τ

2

∫

Ti

En+1
i · Jn+ 3

2
i +

τ

2

∫

Ti

En+1
i · Jn+ 1

2
i

− Γmτ

µ0ω2
pm

∫

Ti

K
[n+ 1

2
]

i ·K [n+ 1
2
]

i +
τ

2

∫

Ti

H
n+ 1

2
i ·Kn+1

i +
τ

2

∫

Ti

H
n+ 1

2
i ·Kn

i .(3.21)
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Adding (3.20) to (3.21), expanding H
[n+1]
i ,E

[n+ 1
2
]

i and simplifying the results, we have

EGY n+1
i = EGY n+1

i1 + EGY n+1
i2

= EGY n
i − τ

2

∫

Ti

H
n+ 3

2
i · ∇ ×En+1

i − τ

2

∫

Ti

H
n+ 3

2
i ·Kn+1

i −
∑

k∈νi

τ

4

∫

aik

H
n+ 3

2
i · nik ×En+1

k

+
∑

k∈νi

τ

4

∫

aik

H
n+ 3

2
i · nik ×En+1

i −
∑

k∈νi

τ

2

∫

aik

H
[n+1]
i · nik × (nik × [H

[n+1]
i ])

+
τ

2

∫

Ti

En
i · ∇ ×Hn+ 1

2
i − τ

2

∫

Ti

J
n+ 1

2
i ·En

i +
∑

k∈νi

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

k

−
∑

k∈νi

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

i −
∑

k∈νi

τ

2

∫

aik

E
[n+ 1

2
]

i · nik × (nik × [E
[n+ 1

2
]

i ])

+
∑

k∈νi

τ

4

∫

aik

En+1
i · nik ×H

n+ 1
2

k +
∑

k∈νi

τ

4

∫

aik

En+1
k · nik ×H

n+ 1
2

i

− Γeτ

ε0ω2
pe

∫

Ti

J
[n+1]
i · J [n+1]

i +
τ

2

∫

Ti

En+1
i · Jn+ 3

2
i

− Γmτ

µ0ω2
pm

∫

Ti

K
[n+ 1

2
]

i ·K [n+ 1
2
]

i +
τ

2

∫

Ti

H
n+ 1

2
i ·Kn

i . (3.22)

Substituting the identity

−τ
2

∫

Ti

H
n+ 3

2
i · ∇ ×En+1

i = −τ
2

∫

Ti

En+1
i · ∇ ×Hn+ 3

2
i −

∑

k∈νi

τ

2

∫

aik

H
n+ 3

2
i · nik ×En+1

i

into (3.22), we can rewrite (3.22) as

EGY n+1
i +

τ

2

∫

Ti

En+1
i · ∇ ×Hn+ 3

2
i −

∑

k∈νi

τ

4

∫

aik

En+1
i · nik ×H

n+ 3
2

i

+
τ

2

∫

Ti

H
n+ 3

2
i ·Kn+1

i − τ

2

∫

Ti

En+1
i · Jn+ 3

2
i

= EGY n
i +

τ

2

∫

Ti

En
i · ∇ ×Hn+ 1

2
i −

∑

k∈νi

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

i
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+
τ

2

∫

Ti

H
n+ 1

2
i ·Kn

i − τ

2

∫

Ti

J
n+ 1

2
i ·En

i

−
∑

k∈νi

τ

4

∫

aik

H
n+ 3

2
i · nik ×En+1

k −
∑

k∈νi

τ

2

∫

aik

H
[n+1]
i · nik × (nik × [H

[n+1]
i ])

+
∑

k∈νi

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

k −
∑

k∈νi

τ

2

∫

aik

E
[n+ 1

2
]

i · nik × (nik × [E
[n+ 1

2
]

i ])

+
∑

k∈νi

τ

4

∫

aik

En+1
i · nik ×H

n+ 1
2

k +
∑

k∈νi

τ

4

∫

aik

En+1
k · nik ×H

n+ 1
2

i

− Γeτ

ε0ω2
pe

∫

Ti

J
[n+1]
i · J [n+1]

i − Γmτ

µ0ω2
pm

∫

Ti

K
[n+ 1

2
]

i ·K [n+ 1
2
]

i . (3.23)

Let us denote

F1ni =EGY n
i +

τ

2

∫

Ti

En
i · ∇ ×Hn+ 1

2
i −

∑

k∈νi

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

i

+
τ

2

∫

Ti

H
n+ 1

2
i ·Kn

i − τ

2

∫

Ti

J
n+ 1

2
i ·En

i .

Then we can rewrite (3.23) as

F1n+1
i = F1ni −

∑

k∈νi

τ

4

∫

aik

H
n+ 3

2
i · nik ×En+1

k +
∑

k∈νi

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

k

−
∑

k∈νi

τ

2

∫

aik

H
[n+1]
i · nik × (nik × [H

[n+1]
i ])

−
∑

k∈νi

τ

2

∫

aik

E
[n+ 1

2
]

i · nik × (nik × [E
[n+ 1

2
]

i ])

+
∑

k∈νi

τ

4

∫

aik

En+1
i · nik ×H

n+ 1
2

k +
∑

k∈νi

τ

4

∫

aik

En+1
k · nik ×H

n+ 1
2

i

− τeτ

ε0ω2
pe

∫

Ti

J
[n+1]
i · J [n+1]

i − Γmτ

µ0ω2
pm

∫

Ti

K
[n+ 1

2
]

i ·K[n+ 1
2
]

i . (3.24)

Now summing up (3.24) over all elements Ti of Ω, and noting that all terms of

∑

k∈νi

τ

4

∫

aik

En+1
i · nik ×H

n+ 1
2

k +
∑

k∈νi

τ

4

∫

aik

En+1
k · nik ×H

n+ 1
2

i
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vanish on the internal faces Fint
h and metallic boundaries ∂Ωm, we obtain

F1n+1
Ωh

= F1nΩh
+

∑

aik∈∂Ωm
h

τ

4

∫

aik

H
n+ 3

2
i · nik ×En+1

i +
∑

aik∈∂Ωm
h

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

i

−
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

H
n+ 3

2
i · nik ×En+1

k +
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

En
i · nik ×H

n+ 1
2

k

−
∑

fi∈Fint
h

τ

2

∫

fi

(nik × [H
[n+1]
i ]) · (nik × [H

[n+1]
i ])

−
∑

fi∈Fint
h

τ

2

∫

fi

(nik × [E
[n+ 1

2
]

i ]) · (nik × [E
[n+ 1

2
]

i ])

−
∑

aik∈∂Ωm
h

τ

∫

aik

(nik × [E
[n+ 1

2
]

i ]) · (nik × [E
[n+ 1

2
]

i ])

− Γeτ

ε0ω2
pe

∥∥∥J [n+1]
i

∥∥∥
2

0,Ω
− Γmτ

µ0ω2
pm

∥∥∥∥K
[n+ 1

2
]

i

∥∥∥∥
2

0,Ω

. (3.25)

Denote

Fn
Ωh

= F1nΩh
+

∑

aik∈∂Ωm
h

τ

4

∫

aik

En
i · nik ×H

n+ 1
2

i .

Then we can rewrite (3.25) as

Fn+1
Ωh

= Fn
Ωh

−
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

H
n+ 3

2
i · nik ×En+1

k

+
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

En
i · nik ×H

n+ 1
2

k

−
∑

fi∈Fint
h

τ

2

∫

fi

(nik × [H
[n+1]
i ]) · (nik × [H

[n+1]
i ])

−
∑

fi∈Fint
h

τ

2

∫

fi

(nik × [E
[n+ 1

2
]

i ]) · (nik × [E
[n+ 1

2
]

i ])

−
∑

aik∈∂Ωm
h

τ

∫

aik

(nik × [E
[n+ 1

2
]

i ]) · (nik × [E
[n+ 1

2
]

i ])

− Γeτ

ε0ω2
pe

∥∥∥J [n+1]
h

∥∥∥
0,Ω

− Γmτ

µ0ω2
pm

∥∥∥∥K
[n+ 1

2
]

h

∥∥∥∥
2

0,Ω

. (3.26)
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Summing (3.26) from n = 0 to m− 1 (for any m ≥ 1), we obtain

Fm
Ωh

= F0
Ωh

−
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

H
m+ 1

2
i · nik ×Em

k

+
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

E0
i · nik ×H

1
2
k

−
m∑

j=0

∑

fi∈Fint
h

τ

2

∫

fi

(nik × [H
[j]
i ]) · (nik × [H

[j]
i ])

−
m∑

j=0

∑

fi∈Fint
h

τ

2

∫

fi

(nik × [E
j− 1

2
i ]) · (nik × [E

j− 1
2

i ])

−
m∑

j=0

∑

aik∈∂Ωm
h

τ

∫

aik

(nik × [E
j− 1

2
i ]) · (nik × [E

j− 1
2

i ])

−
m∑

j=0

Γeτ

ε0ω2
pe

∥∥∥J [j]
i

∥∥∥
2

0,Ω
−

m∑

j=0

Γmτ

µ0ω2
pm

∥∥∥∥K
[j− 1

2
]

i

∥∥∥∥
2

0,Ω

, (3.27)

which leads to

Fm
Ωh

≤ F0
Ωh

−
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

H
m+ 1

2
i · nik ×Em

k +
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

E0
i · nik ×H

1
2
k .
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Recalling the definition of Fm
Ωh

, we obtain

Fm
Ωh

≡ 1

2
ε0 ‖Em‖20,Ω +

1

2
µ0

∥∥∥Hm+ 1
2

∥∥∥
2

0,Ω
+

1

2ε0ω2
pe

∥∥∥Jm+ 1
2

∥∥∥
2

0,Ω

+
1

2µ0ω2
pm

‖Km‖20,Ω +
τ

2

∫

Ωh

Em · ∇ ×Hm+ 1
2 − τ

4

∑

Ti

∫

∂Ti

Em
i · ni ×H

m+ 1
2

i

+
τ

2

∫

Ωh

Hm+ 1
2 ·Km − τ

2

∫

Ωh

Jm+ 1
2 ·Em +

∑

aik∈∂Ωm
h

τ

4

∫

aik

Em
i · nik ×H

m+ 1
2

i

≤ F0
Ωh

−
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

H
m+ 1

2
i · nik ×Em

k +
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

E0
i · nik ×H

1
2
k

≡ 1

2
ε0
∥∥E0

∥∥2
0,Ω

+
1

2
µ0

∥∥∥H 1
2

∥∥∥
2

0,Ω
+

1

2ε0ω2
pe

∥∥∥J 1
2

∥∥∥
2

0,Ω

+
1

2µ0ω2
pm

∥∥K0
∥∥2
0,Ω

+
τ

2

∫

Ωh

E0 · ∇ ×H 1
2 − τ

4

∑

Ti

∫

∂Ti

E0
i · ni ×H

1
2
i

+
τ

2

∫

Ωh

H
1
2 ·K0 − τ

2

∫

Ωh

J
1
2 ·E0 +

∑

aik∈∂Ωm
h

τ

4

∫

aik

E0
i · nik ×H

1
2
i

−
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

H
m+ 1

2
i · nik ×Em

k +
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

E0
i · nik ×H

1
2
k . (3.28)

Simplifying the above equation, we obtain

1

2
ε0 ‖Em‖20,Ω +

1

2
µ0

∥∥∥Hm+ 1
2

∥∥∥
2

0,Ω
+

1

2ε0ω2
pe

∥∥∥Jm+ 1
2

∥∥∥
2

0,Ω
+

1

2µ0ω2
pm

‖Km‖20,Ω

≤ 1

2
ε0
∥∥E0

∥∥2
0,Ω

+
1

2
µ0

∥∥∥H 1
2

∥∥∥
2

0,Ω
+

1

2ε0ω2
pe

∥∥∥J 1
2

∥∥∥
2

0,Ω
+

1

2µ0ω2
pm

∥∥K0
∥∥2
0,Ω

− τ

2

∫

Ωh

Em · ∇ ×Hm+ 1
2 +

τ

4

∑

Ti

∫

∂Ti

Em
i · ni ×H

m+ 1
2

i

− τ

2

∫

Ωh

Hm+ 1
2 ·Km +

τ

2

∫

Ωh

Jm+ 1
2 ·Em −

∑

aik∈∂Ωm
h

τ

4

∫

aik

Em
i · nik ×H

m+ 1
2

i

+
τ

2

∫

Ωh

E0 · ∇ ×H 1
2 − τ

4

∑

Ti

∫

∂Ti

E0
i · ni ×H

1
2
i

+
τ

2

∫

Ωh

H
1
2 ·K0 − τ

2

∫

Ωh

J
1
2 ·E0 +

∑

aik∈∂Ωm
h

τ

4

∫

aik

E0
i · nik ×H

1
2
i

−
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

H
m+ 1

2
i · nik ×Em

k +
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

E0
i · nik ×H

1
2
k . (3.29)
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By the standard inverse estimates (3.15), we have

∣∣∣∣
τ

2

∫

Ωh

Em · ∇ ×Hm+ 1
2

∣∣∣∣ ≤
Cinvτh

−1

4
√
ε0µ0

(ε0 ‖Em‖20,Ω + µ0

∥∥∥Hm+ 1
2

∥∥∥
2

0,Ω
),

∣∣∣∣∣∣
τ

4

∑

Ti

∫

∂Ti

Em
i · ni ×H

m+ 1
2

i

∣∣∣∣∣∣
≤ C2

invτh
−1

8
√
ε0µ0

(ε0 ‖Em|20,Ω + µ0

∥∥∥Hm+ 1
2

∥∥∥
2

0,Ω
),

∣∣∣∣
τ

2

∫

Ωh

Hm+ 1
2 ·Km

∣∣∣∣ ≤
ωpmτ

4
(µ0

∥∥∥Hm+ 1
2

∥∥∥
2

0,Ω
+

1

µ0ω2
pm

‖Km|20,Ω),
∣∣∣∣
τ

2

∫

Ωh

Jm+ 1
2 ·Em

∣∣∣∣ ≤
ωpeτ

4
(ε0 ‖Em‖20,Ω +

1

ε0ω2
pe

∥∥∥Jm+ 1
2

∣∣∣
2

0,Ω
),

∣∣∣∣∣∣
∑

aik∈∂Ωm
h

τ

4

∫

aik

Em
i · nik ×H

m+ 1
2

i

∣∣∣∣∣∣
≤ C2

invτh
−1

8
√
ε0µ0

(ε0 ‖Em‖20,Ω + µ0

∥∥∥Hm+ 1
2

∥∥∥
2

0,Ω
),

∣∣∣∣∣∣
∑

Ti

∑

k∈νi

τ

4

∫

aik∈Fint
h

H
m+ 1

2
i · nik ×Em

k

∣∣∣∣∣∣
≤ C2

invτh
−1

8
√
ε0µ0

(ε0 ‖Em‖20,Ω + µ0

∥∥∥Hm+ 1
2

∥∥∥
2

0,Ω
).

By choosing the time step τ small enough so that the right hand side terms can be

controlled by the corresponding terms on the left hand side of (3.29), we can obtain a

stability result. An exemplary choice is

τ ≤ min{1
8
,

h

5C2
invCv

,
h

5CinvCv
,

1

2ωpm
,

1

2ωpe
},

and substituting all above estimates into (3.29), we have

ε0 ‖En‖20,Ω + µ0

∥∥∥Hn+ 1
2

∥∥∥
2

0,Ω
+

1

ε0ω2
pe

∥∥∥Jn+ 1
2

∥∥∥
2

0,Ω
+

1

µ0ω2
pm

‖Kn‖20,Ω

≤ C[
∥∥E0

∥∥2
0,Ω

+
∥∥∥H 1

2

∥∥∥
2

0,Ω
+
∥∥∥J 1

2

∥∥∥
2

0,Ω
+
∥∥K0

∥∥2
0,Ω

],

where the physical parameters ε0, µ0, ωpe, ωpm,Γe and Γm have been absorbed into the

generic constant C.

3.2.2 THE ERROR ESTIMATE

Before we prove the error estimate, we need the following two lemmas.
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Lemma 3.2.1. [43, Lemma 5.1] Denote uj = u(., jτ). For any u ∈ H2(0, T ;L2(Ω)), we

have

(i)

∥∥∥∥∥∥
uj − 1

τ

∫ t
j− 1

2

t
j− 1

2

u(s)ds

∥∥∥∥∥∥

2

0

≤ τ3

4

∫ t
j− 1

2

t
j− 1

2

‖utt(s)‖20 ds,

(ii)

∥∥∥∥∥u
j− 1

2 − 1

τ

∫ tj

tj−1

u(s)ds

∥∥∥∥∥

2

0

≤ τ3

4

∫ tj

tj−1

‖utt(s)‖20 ds,

(iii)

∥∥∥∥∥
1

2
(uj + uj+1)− 1

τ

∫ tj+1

tj

u(s)ds

∥∥∥∥∥

2

0

≤ τ3

4

∫ tj+1

tj

‖utt(s)‖20 ds,

(iv)

∥∥∥∥∥∥
1

2
(uj−

1
2 + uj+

1
2 )− 1

τ

∫ t
j+1

2

t
j− 1

2

u(s)ds

∥∥∥∥∥∥

2

0

≤ τ3

4

∫ t
j+1

2

t
j− 1

2

‖utt(s)‖20 ds.

Let Ph denote the standard L2-projection onto Vh or V0
h, which is the subspace of Vh

with the boundary condition n × E = 0 imposed. It is known that the projection error

estimate

‖u− Phu‖0,T ≤ Ch
min{s,k}+1
T ‖u‖s+1,T , (3.30)

holds true for any element T , and u ∈ Hs+1(T ).
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Lemma 3.2.2. For any functions η
j− 1

2
i , η

j+ 1
2

i , ξji , ξ
j−1
i ∈ Vh, we have

−
∑

i

∫

∂Ti

ni × η
j− 1

2
i · (ξji + ξj−1

i )

−
∑

Ti

∑

k∈νi

∫

aik

(ξji + ξj−1
i ) · 1

2
nik × ([η

j− 1
2

i ]− nik × [
ξji + ξj−1

i

2
])

+
∑

Ti

∑

k∈νi

∫

aik

(η
j+ 1

2
i + η

j− 1
2

i ) · 1
2
nik × (nik × [

η
j+ 1

2
i + η

j− 1
2

i

2
] + [ξji ])

=
∑

i

∫

∂Ti

1

2
ni × ξj−1

i · ηj−
1
2

i −
∑

Ti

∑

k∈νi

∫

aik

ξj−1
i · 1

2
nik × η

j− 1
2

k

+
∑

Ti

∑

k∈νi

∫

aik

η
j+ 1

2
i · 1

2
nik × ξjk −

∑

Ti

∑

k∈νi

∫

aik

η
j+ 1

2
i · 1

2
nik × ξji

+
∑

Ti

∑

k∈νi

∫

aik

ξji + ξj−1
i

2
· nik × (nik × [

ξji + ξj−1
i

2
])

+
∑

Ti

∑

k∈νi

∫

aik

η
j+ 1

2
i + η

j− 1
2

i

2
· nik × (nik × [

η
j+ 1

2
i + η

j− 1
2

i

2
]). (3.31)

Proof. Using the jump definition

[η
j− 1

2
i ] = η

j− 1
2

k − η
j− 1

2
i , [ξji ] = ξjk − ξji

in the left hand-side (LHS) of (3.31), we have

LHS = −
∑

i

∫

∂Ti

ni × η
j− 1

2
i · (ξji + ξj−1

i )−
∑

Ti

∑

k∈νi

∫

aik

(ξji + ξj−1
i ) · 1

2
nik × η

j− 1
2

k

+
∑

Ti

∑

k∈νi

∫

aik

(ξji + ξj−1
i ) · 1

2
nik × η

j− 1
2

i

+
∑

Ti

∑

k∈νi

∫

aik

ξji + ξj−1
i

2
· nik × (nik × [

ξji + ξj−1
i

2
])

+
∑

Ti

∑

k∈νi

∫

aik

(η
j+ 1

2
i + η

j− 1
2

i ) · 1
2
nik × ξjk −

∑

Ti

∑

k∈νi

∫

aik

(η
j+ 1

2
i + η

j− 1
2

i ) · 1
2
nik × ξji

+
∑

Ti

∑

k∈νi

∫

aik

η
j+ 1

2
i + η

j− 1
2

i

2
· nik × (nik × [

η
j+ 1

2
i + η

j− 1
2

i

2
])
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=
∑

i

∫

∂Ti

1

2
ni × ξj−1

i · ηj−
1
2

i −
∑

Ti

∑

k∈νi

∫

aik

ξji ·
1

2
nik × η

j− 1
2

k

−
∑

Ti

∑

k∈νi

∫

aik

ξj−1
i · 1

2
nik × η

j− 1
2

k +
∑

Ti

∑

k∈νi

∫

aik

η
j+ 1

2
i · 1

2
nik × ξjk

+
∑

Ti

∑

k∈νi

∫

aik

η
j− 1

2
i · 1

2
nik × ξjk −

∑

Ti

∑

k∈νi

∫

aik

η
j+ 1

2
i · 1

2
nik × ξji

+
∑

Ti

∑

k∈νi

∫

aik

ξji + ξj−1
i

2
· nik × (nik × [

ξji + ξj−1
i

2
])

+
∑

Ti

∑

k∈νi

∫

aik

η
j+ 1

2
i + η

j− 1
2

i

2
· nik × (nik × [

η
j+ 1

2
i + η

j− 1
2

i

2
])

=
∑

i

∫

∂Ti

1

2
ni × ξj−1

i · ηj−
1
2

i −
∑

Ti

∑

k∈νi

∫

aik

ξj−1
i · 1

2
nik × η

j− 1
2

k

+
∑

Ti

∑

k∈νi

∫

aik

η
j+ 1

2
i · 1

2
nik × ξjk −

∑

Ti

∑

k∈νi

∫

aik

η
j+ 1

2
i · 1

2
nik × ξji

+
∑

Ti

∑

k∈νi

∫

aik

ξji + ξj−1
i

2
· nik × (nik × [

ξji + ξj−1
i

2
])

+
∑

Ti

∑

k∈νi

∫

aik

η
j+ 1

2
i + η

j− 1
2

i

2
· nik × (nik × [

η
j+ 1

2
i + η

j− 1
2

i

2
]),

which concludes the proof.

Theorem 3.2.2. Under the assumptions that the time step τ satisfies a CFL condition

such as:

τ = min

{
1

8
,

1

2ωpe
,

1

2ωpm
,

1

10Γe
,

1

10Γm
,

h

5CinvCv
,

h

5C2
invCv

}
, (3.32)

and that the solution of (3.1)-(3.4) has the following regularity:

Ett,H tt,J tt,Ktt,∇×Ett,∇×H tt ∈ L2(0, T ;L2(Ω)3),

E,H ∈ L∞(0, T ;Hs+1(Ω)3), ∀ s ≥ 0,

we have the following error estimate

max
1≤n

(||En −En
h||0 + ||Hn+ 1

2 −Hn+ 1
2

h ||0 + ||Jn+ 1
2 − Jn+ 1

2
h ||0 + ||Kn −Kn

h||0)

≤ C(τ2 + Thmin{s,k}) +C
(
||E0 −E0

h||0 + ||H 1
2 −H

1
2
h ||0 + ||J 1

2 − J
1
2
h ||0 + ||K0 −K0

h||0
)
,
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where k is the degree of the basis function in the finite element space (3.7), and the constant

C = C(ε0, µ0, ωpe, ωpm,Γe,Γm,E,H ,J ,K)

is independent of both the time step τ and the mesh size h.

Remark 3.2.1. When the initial approximations are accurate enough, such as

||E0 −E0
h||0 + ||H 1

2 −H
1
2
h ||0 + ||J 1

2 − J
1
2
h ||0 + ||K0 −K0

h||0 ≤ C(τ2 + hmin{s,k}),

then the error estimate of Theorem 3.2.2 becomes

max
1≤n

(||En −En
h||0 + ||Hn+ 1

2 −Hn+ 1
2

h ||0 + ||Jn+ 1
2 − Jn+ 1

2
h ||0 + ||Kn −Kn

h||0)

≤ C(τ2 + Thmin{s,k}),

which shows that the error grows linearly with time.

3.2.3 PROOF OF THEOREM 3.2.2

Integrating the governing equations (3.1) and (3.4) from tj−1 to tj , and (3.2) and (3.3)

from tj− 1
2
to tj+ 1

2
, then multiplying the respective resultants by uh

τ ,vh
τ ,
φh
τ ,
ψh
τ and inte-

grating over Ω, we obtain

ε0(
Ej −Ej−1

τ
,uh)− (

1

τ

∫ tj

tj−1

∇×H(s)ds,uh) + (
1

τ

∫ tj

tj−1

J(s)ds,uh) = 0, (3.33)

µ0(
Hj+ 1

2 −Hj− 1
2

τ
,vh) + (

1

τ

∫ t
j+1

2

t
j− 1

2

∇×E(s)ds,vh) + (
1

τ

∫ t
j+1

2

t
j− 1

2

K(s)ds,vh) = 0, (3.34)

1

ε0ω2
pe

(
J j+ 1

2 − J j− 1
2

τ
,φh) +

Γe

ε0ω2
pe

(
1

τ

∫ t
j+1

2

t
j− 1

2

J(s)ds,φh) = (
1

τ

∫ t
j+1

2

t
j− 1

2

E(s)ds,φh), (3.35)

1

µ0ω2
pm

(
Kj −Kj−1

τ
,ψh) +

Γm

µ0ω2
pm

(
1

τ

∫ tj

tj−1

K(s)ds,ψh) = (
1

τ

∫ tj

tj−1

H(s)ds,ψh). (3.36)
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Summing all elements together for (3.8)-(3.11) with n = j − 1, we have

(ε0
Ej

h −E
j−1
h

τ
,uh)− (∇×Hj− 1

2
h ,uh) + (J

j− 1
2

h ,uh)

−
∑

Ti

∑

k∈νi

∫

aik

ui ·
1

2
nik × ([H

j− 1
2

i ]− nik × [E
[j− 1

2
]

i ]) = 0, (3.37)

(µ0
H

j+ 1
2

h −Hj− 1
2

h

τ
,vh) + (∇×Ej

h,vh) + (Kj
h,vh)

+
∑

Ti

∑

k∈νi

∫

aik

vi ·
1

2
nik × (nik × [H

[j]
i ] + [Ej

i ]) = 0, (3.38)

1

ε0ω2
pe

(
J

j+ 1
2

h − J j− 1
2

h

τ
,φh) +

Γe

ε0ω2
pe

(
J
j+ 1

2
h + J

j− 1
2

h

2
,φh) = (Ej

h,φh), (3.39)

1

µ0ω2
pm

(
Kj

h −K
j−1
h

τ
,ψh) +

Γm

µ0ω2
pm

(
Kj

h +K
j−1
h

2
,ψh) = (H

j− 1
2

h ,ψh). (3.40)

Denote ξjh = PhE
j −Ej

h, η
j
h = PhH

j −Hj
h, ξ̃

j
h = PhJ

j − J j
h, η̃

j
h = PhK

j −Kj
h, and the

backward operator δτu
j = (uj − uj−1)/τ.

Subtracting (3.37)-(3.40) from (3.33)-(3.36) with the corresponding flux terms added,

and using the identity

(∇× η
j− 1

2
h ,uh) = (η

j− 1
2

h ,∇× uh) +
∑

i

∫

∂Ti

ni × η
j− 1

2
i · ui,
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we can obtain the following error equations:

(i) ε0(
ξjh − ξj−1

h

τ
,uh)− (η

j− 1
2

h ,∇× uh)−
∑

i

∫

∂Ti

ni × η
j− 1

2
i · ui

−
∑

Ti

∑

k∈νi

∫

aik

ui ·
1

2
nik × ([η

j− 1
2

i ]− nik × [
ξjh + ξj−1

h

2
])

= ε0(δt(PhE
j −Ej),uh)− (∇× (PhH

j− 1
2 − 1

τ

∫ tj

tj−1

H(s)ds),uh)

+ (−ξ̃j−
1
2

h + PhJ
j− 1

2 − 1

τ

∫ tj

tj−1

J(s)ds,uh)

−
∑

Ti

∑

k∈νi

∫

aik

ui ·
1

2
nik × ([PhH

j− 1
2 −Hj− 1

2 ]− nik × [
PhE

j −Ej + PhE
j−1 −Ej−1

2
]),

(3.41)

(ii) µ0(
η
j+ 1

2
h − η

j− 1
2

h

τ
,vh) + (∇× ξjh,vh)

+
∑

Ti

∑

k∈νi

∫

aik

vi ·
1

2
nik × (nik × [

η
j+ 1

2
i + η

j− 1
2

i

2
] + [ξji ])

= µ0(δt(PhH
j+ 1

2 −Hj+ 1
2 ),vh) + (∇× (PhE

j − 1

τ

∫ t
j+1

2

t
j− 1

2

E(s)ds,vh)

+ (−η̃jh + PhK
j − 1

τ

∫ t
j+1

2

t
j− 1

2

K(s)ds,vh)

+
∑

Ti

∑

k∈νi

∫

aik

vi ·
1

2
nik × (nik × [

PhH
j+ 1

2 −Hj+ 1
2 + PhH

j− 1
2 −Hj− 1

2

2
] + [PhE

j −Ej ]),

(3.42)

(iii)
1

ε0ω2
pe

(
ξ̃
j+ 1

2
h − ξ̃

j− 1
2

h

τ
,φh) +

Γe

ε0ω2
pe

(
ξ̃
j+ 1

2
h + ξ̃

j− 1
2

h

2
,φh) =

1

ε0ω2
pe

(δτ (PhJ
j+ 1

2 − J j− 1
2 ),φh)

+
Γe

ε0ω2
pe

(
PhJ

j+ 1
2 + PhJ

j− 1
2

2
− 1

τ

∫ t
j+1

2

t
j− 1

2

J(s)ds,φh)

+ (
1

τ

∫ t
j+1

2

t
j− 1

2

E(s)ds− PhE
j + ξjh,φh), (3.43)
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(iv)
1

µ0ω2
pm

(
η̃jh − η̃j−1

h

τ
,ψh) +

Γm

µ0ω2
pm

(
η̃jh + η̃j−1

h

2
,ψh) =

1

µ0ω2
pm

(δτ (PhK
j −Kj),ψh)

+
Γm

µ0ω2
pm

(
PhK

j + PhK
j+1

2
− 1

τ

∫ tj

tj−1

K(s)ds,ψh)

+ (
1

τ

∫ tj

tj−1

H(s)ds− PhH
j− 1

2 + η
j− 1

2
h ,ψh). (3.44)

Choosing uh = τ(ξjh + ξj−1
h ),vh = τ(η

j+ 1
2

h + η
j− 1

2
h ), φh = τ(ξ̃

j+ 1
2

h + ξ̃
j− 1

2
h ) , ψh =

τ(η̃jh + η̃j−1
h ) in (3.41)-(3.44), respectively, then summing up the resultants from j = 1 to

j = n, dropping those zero terms by the projection property of Ph, and using (3.31) and

the following identities:

(∇× ξjh, η
j+ 1

2
h + η

j− 1
2

h )− (η
j− 1

2
h ,∇× (ξjh + ξj−1

h ))

= (∇× ξjh, η
j+ 1

2
h )− (∇× ξj−1

h , η
j− 1

2
h ),

and

−(ξ̃
j− 1

2
h , ξjh + ξj−1

h )− (η̃jh, η
j+ 1

2
h + η

j− 1
2

h ) + (ξjh, ξ̃
j+ 1

2
h + ξ̃

j− 1
2

h ) + (η
j− 1

2
h , η̃jh + η̃j−1

h )

= [(ξ̃
j+ 1

2
h , ξjh)− (ξ̃

j− 1
2

h , ξj−1
h )]− [(η̃jh, η

j+ 1
2

h )− (η̃j−1
h , η

j− 1
2

h )],

we obtain

ε0(||ξnh ||20 − ||ξ0h||20) + µ0(||η
n+ 1

2
h ||20 − ||η

1
2
h ||20)

+
1

ε0ω2
pe

(||ξ̃n+
1
2

h ||20 − ||ξ̃
1
2
h ||20) +

1

µ0ω2
pm

(||η̃nh ||20 − ||η̃0h||20)

≤ −τ
n∑

j=1

(∇× (PhH
j− 1

2 − 1

τ

∫ tj

tj−1

H(s)ds), ξjh + ξj−1
h )

+ τ

n∑

j=1

(PhJ
j− 1

2 − 1

τ

∫ tj

tj−1

J(s)ds, ξjh + ξj−1
h )

+ τ
n∑

j=1

(∇× (PhE
j − 1

τ

∫ t
j+1

2

t
j− 1

2

E(s)ds), η
j+ 1

2
h + η

j− 1
2

h )
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+ τ
n∑

j=1

(PhK
j − 1

τ

∫ t
j+1

2

t
j− 1

2

K(s)ds, η
j+ 1

2
h + η

j− 1
2

h )

+
τΓe

ε0ω2
pe

n∑

j=1

(
1

2
(PhJ

j+ 1
2 + PhJ

j− 1
2 )− 1

τ

∫ t
j+1

2

t
j− 1

2

J(s)ds, ξ̃
j+ 1

2
h + ξ̃

j− 1
2

h )

+ τ
n∑

j=1

(
1

τ

∫ t
j+1

2

t
j− 1

2

E(s)ds− PhE
j, ξ̃

j+ 1
2

h + ξ̃
j− 1

2
h )

+
τΓm

µ0ω2
pm

n∑

j=1

(
1

2
(PhK

j + PhK
j−1)− 1

τ

∫ tj

tj−1

K(s)ds, η̃jh + η̃j−1
h )

+ τ

n∑

j=1

(
1

τ

∫ tj

tj−1

H(s)ds− PhH
j− 1

2 , η̃jh + η̃j−1
h )

+ τ(ξ̃
n+ 1

2
h , ξnh )− τ(ξ̃

1
2
h , ξ

0
h)− τ(η̃nh , η

n+ 1
2

h ) + τ(η̃0h, η
1
2
h )

+ τ(∇× ξ0h, η
1
2
h )− τ(∇× ξnh , η

n+ 1
2

h )

+
∑

i

τ

2

∫

∂Ti

η
n+ 1

2
i · nik × ξni −

∑

i

τ

2

∫

∂Ti

ni × ξ0i · η
1
2
i

−
∑

Ti

∑

k∈νi

τ

2

∫

aik

η
n+ 1

2
i · nik × ξnk +

∑

Ti

∑

k∈νi

τ

2

∫

aik

ξ0i · nik × η
1
2
k

−
n∑

j=1

∑

Ti

∑

k∈νi

τ

2

∫

aik

(ξji + ξj−1
i ) · nik × ([PhH

j− 1
2 −Hj− 1

2 ]

− nik × [
PhE

j −Ej + PhE
j−1 −Ej−1

2
])

+

n∑

j=1

∑

Ti

∑

k∈νi

τ

2

∫

aik

(η
j+ 1

2
i + η

j− 1
2

i ) · nik × (nik × [
PhH

j+ 1
2 −Hj+ 1

2 + PhH
j− 1

2 −Hj− 1
2

2
]

+ [PhE
j −Ej ])

=
20∑

i=1

Erri. (3.45)

Below we will estimate each term Erri. During the proof, we frequently use the arithmetic-

geometric mean inequality

(a, b) ≤ δ

2
||a||20 +

1

2δ
||b||20, (3.46)

where δ is an arbitrary positive constant.
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Using integration by parts, the projection property, and Lemma 3.2.1 (ii), we obtain

Err1 ≤ τδ1

n∑

j=1

(||ξjh||20 + ||ξj−1
h ||20) +

τ

2δ1

n∑

j=1

||∇ ×Hj− 1
2 − 1

τ

∫ tj

tj−1

∇×H(s)ds||20

≤ τδ1 · 2
n∑

j=1

||ξh||2l∞(L2) + τδ1||ξ0h||20 +
τ

2δ1

n∑

j=1

τ3

4

∫ tj

tj−1

||∇ ×H tt(s)||20ds

≤ 2Tδ1||ξh||2l∞(L2) + τδ1||ξ0h||20 +
τ4

8δ1
||∇ ×H tt||L2(0,T ;L2(Ω)3),

where we introduced the notation ||ξh||l∞(L2) = maxj≥1 ||ξjh||0.

Similarly, we can obtain

Err2 = τ

n∑

j=1

(J j− 1
2 − 1

τ

∫ tj

tj−1

J(s)ds, ξjh + ξj−1
h )

≤ 2Tδ2||ξh||2l∞(L2) + τδ2||ξ0h||20 +
τ4

8δ2
||J tt||L2(0,T ;L2(Ω)3).

Using integration by parts, the projection property, and Lemma 3.2.1 (i), we have

Err3 = τ

n∑

j=1

(∇×Ej − 1

τ

∫ t
j+1

2

t
j− 1

2

∇×E(s)ds, η
j+ 1

2
h + η

j− 1
2

h )

≤ τ

n∑

j=1

δ3(||η
j+ 1

2
h ||20 + ||ηj−

1
2

h ||20) +
τ

2δ3

n∑

j=1

τ3

4

∫ t
j+1

2

t
j− 1

2

||∇ ×Ett(s)||20ds

≤ 2Tδ3||ηh||2l∞(L2) + τδ3||η
1
2
h ||20 +

τ4

8δ3

∫ t
n+1

2

t 1
2

||∇ ×Ett(s)||20ds.

By similar arguments, we have

Err4 ≤ 2Tδ4||ηh||2l∞(L2) + τδ4||η
1
2
h ||20 +

τ4

8δ4

∫ t
n+1

2

t 1
2

||Ktt(s)||20ds;

Err5 ≤ τΓe

ε0ω2
pe

[

n∑

j=1

δ5(||ξ̃
j+ 1

2
h ||20 + ||ξ̃j−

1
2

h ||20) +
n∑

j=1

1

2δ5
||1
2
(J j+ 1

2 + J j− 1
2 )− 1

τ

∫ t
j+1

2

t
j− 1

2

J(s)ds||20]

≤ Γe

ε0ω2
pe


2Tδ5||ξ̃h||2l∞(L2) + τδ5||ξ̃

1
2
h ||20 +

τ4

8δ5

∫ t
n+1

2

t 1
2

||J tt(s)||20ds


 ;
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Err6 ≤ 2Tδ6||ξ̃h||2l∞(L2) + τδ6||ξ̃
1
2
h ||20 +

τ4

8δ6

∫ t
n+1

2

t 1
2

||Ett(s)||20ds;

Err7 ≤
Γm

µ0ω2
pm

[
2Tδ7||η̃h||2l∞(L2) + τδ7||η̃0h||20 +

τ4

8δ7

∫ tn

t0

||Ktt(s)||20ds
]
;

and

Err8 ≤ 2Tδ8||η̃h||2l∞(L2) + τδ8||η̃0h||20 +
τ4

8δ8

∫ tn

t0

||H tt(s)||20ds.

Using the Cauchy-Schwartz inequality, we obtain

Err9 = τ(ξ̃
n+ 1

2
h , ξnh) ≤

ε0ω
2
peτ

2

2
||ξnh ||20 +

1

2ε0ω2
pe

||ξ̃n+
1
2

h ||20, (3.47)

Err10 = τ(ξ̃
1
2
h , ξ

0
h) ≤

ε0ω
2
peτ

2

2
||ξ0h||20 +

1

2ε0ω2
pe

||ξ̃
1
2
h ||20, (3.48)

Err11 = τ(η̃nh , η
n+ 1

2
h ) ≤

µ0ω
2
pmτ

2

2
||ηn+

1
2

h ||20 +
1

2µ0ω2
pm

||η̃nh ||20, (3.49)

Err12 = τ(η̃0h, η
1
2
h ) ≤

µ0ω
2
pmτ

2

2
||η

1
2
h ||20 +

1

2µ0ω2
pm

||η̃0h||20. (3.50)

By the Cauchy-Schwartz inequality and the inverse estimate (3.15), and recalling the

notation Cv = 1/
√
µ0ε0, we have

Err13 ≤ τ · Cinvh
−1||ξ0h||0||η

1
2
h ||0 = τCinvh

−1Cv
√
ε0||ξ0h||0 ·

√
µ0||η

1
2
h ||0

≤ CinvCvτ

2h

[
ε0||ξ0h||20 + µ0||η

1
2
h ||20

]
,

Err14 ≤ τ · Cinvh
−1||ξnh ||0||η

n+ 1
2

h ||0 = τCinvh
−1Cv

√
ε0||ξnh ||0 ·

√
µ0||η

n+ 1
2

h ||0

≤ CinvCvτ

2h

[
ε0||ξnh ||20 + µ0||η

n+ 1
2

h ||20
]
,

Err15 =
∑

i

τ

2

∫

∂Ti

η
n+ 1

2
i · nik × ξni ≤ τ

2
C2
invh

−1cv
∑

i

√
ε0 ‖ξni ‖0,Ti

√
µ0

∥∥∥∥η
n+ 1

2
i

∥∥∥∥
0,Ti

≤ τC2
invCv

4h

[
ε0 ‖ξnh‖20 + µ0

∥∥∥∥η
n+ 1

2
h

∥∥∥∥
2

0

]
.
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Similar to Err15, we have

Err16 ≤
τC2

invCv

4h
(ε0
∥∥ξ0h
∥∥2
0
+ µ0

∥∥∥∥η
1
2
h

∥∥∥∥
2

0

),

Err17 ≤
τC2

invCv

4h
(ε0 ‖ξnh‖20 + µ0

∥∥∥∥η
n+ 1

2
h

∥∥∥∥
2

0

),

Err18 ≤
τC2

invCv

4h
(
∥∥ξ0h
∥∥2
0
+

∥∥∥∥η
1
2
h

∥∥∥∥
2

0

).

By the Cauchy-Schwartz inequality, the inverse estimate (3.15) and the projection error

estimate (3.30), we have

Err19 ≤
n∑

j=1

τ

2
C2

invh
−1
∑

Ti

∥∥∥ξji + ξj−1
i

∥∥∥
0,Ti

· Chmin(s,k)+1(||H ||L∞(0,T ;Hs+1(Ω)) + ||E||L∞(0,T ;Hs+1(Ω)))

≤ τ
n∑

j=1

[δ19
∑

Ti

(
∥∥∥ξjh
∥∥∥
2

0
+
∥∥∥ξj−1

h

∥∥∥
2

0
) +

C4
inv

2δ19
· Ch2min(s,k)]

≤ 2Tδ19 ‖ξh‖2l∞(L2) + τδ19
∥∥ξ0h
∥∥2
0
+
TC4

inv

2δ19
· Ch2min(s,k).

By the same arguments, we have

Err20 ≤ 2Tδ20 ‖ηh‖2l∞(L2) + τδ20
∥∥η0h
∥∥2
0
+
TC2

inv

2δ20
· Ch2min(s,k).

Substituting the above estimates Erri into (3.45) by first choosing τ small enough (such

as (3.32)) so that those terms ||ξnh ||20, ||η
n+ 1

2
h ||20, ||ξ̃

n+ 1
2

h ||20 and ||η̃nh ||20 on the right-hand sides

of Erri, i = 9, · · · , 18, can be controlled by the corresponding terms on the left-hand side

of (3.45), and then taking the maximum of the resultant for n and choosing parameters δi

small enough such as

δ1 = δ2 = δ19 =
ε0
8T

, δ3 = δ4 = δ20 =
µ0
8T

, (3.51)

δ5 = δ7 =
1

10TΓe
, δ6 =

1

10Tε0ω2
pe

, δ8 =
1

10Tµ0ω2
pm

, (3.52)
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we obtain

ε0||ξnh ||20 + µ0||η
n+ 1

2
h ||20 +

1

ε0ω2
pe

||ξ̃n+
1
2

h ||20 +
1

µ0ω2
pm

||η̃nh ||20

≤ C(τ4 + T 2hmin{s,k}) + C
(
ε0||ξ0h||20 + µ0||η

1
2
h ||20 +

1

ε0ω2
pe

||ξ̃
1
2
h ||20 +

1

µ0ω2
pm

||η̃0h||20
)
.(3.53)

Using the triangle inequality, (3.53), and the estimates (3.30), we get

max
1≤n

(||En −En
h||0 + ||Hn+ 1

2 −Hn+ 1
2

h ||0 + ||Jn+ 1
2 − Jn+ 1

2
h ||0 + ||Kn −Kn

h||0)

≤ C(τ2 + Thmin{s,k}) +C
(
||E0 −E0

h||0 + ||H 1
2 −H

1
2
h ||0 + ||J 1

2 − J
1
2
h ||0 + ||K0 −K0

h||0
)
,

which completes the proof.

3.2.4 NUMERICAL RESULTS

In this section, we present 2D numerical results supporting our prior theoretical analysis.

Recall that our prior 3D analysis holds true for 2D problems, in which case the scalar and

vector curl operators are

∇×H =
∂Hy

∂x
− ∂Hx

∂y
, ∇×E = (

∂E

∂y
,−∂E

∂x
)′,

where we consider the TMz mode, which involves a vector magnetic field H = (Hx,Hy)

and a scalar electric field E.

Example 3.2.1. In the first example, we create an exact solution to check the optimal

order convergence rate. For simplicity, we assume that Ω = [0, 1]2, ε0 = µ0 = 1, ωpe =

ωpm = Γm = Γe = π, and the exact solution to (3.1)-(3.4) with added right-hand side
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source terms f and g is given by

Hx(x, y, t) = sin(πx) · cos(πy)e−πt,

Hy(x, y, t) = − cos(πx) · sin(πy)e−πt,

E(x, y, t) = sin(πx) · sin(πy)e−πt,

Kx(x, y, t) = π2t · sin(πx) · cos(πy)e−πt,

Ky(x, y, t) = −π2t · cos(πx) · sin(πy)e−πt,

J(x, y, t) = π2t sin(πx) · sin(πy)e−πt,

where the source terms

f(x, y, t) = (−3π + π2t)e−πt sin(πx) · sin(πy),

gx(x, y, t) = π2te−πt sin(πx) · cos(πy),

gy(x, y, t) = −π2te−πt cos(πx) · sin(πy),

are added to the right-hand sides of (3.1) and (3.2), respectively. In our implementation,

we have to add a term
∫
Ti
fn+

1
2 · ui and a term

∫
Ti
gn+1 · vi to the right-hand sides of (3.8)

and (3.9), respectively.

We solved the problem using various time step sizes τ and mesh sizes with different

orders of basis functions. For a fixed small time step τ and smooth solutions, our numerical

results showed that the error estimate is as follows:

max
1≤n

(||En −En
h||0 + ||Hn+ 1

2 −Hn+ 1
2

h ||0 + ||Jn+ 1
2 − Jn+ 1

2
h ||0 + ||Kn −Kn

h||0) ≤ CThk+1,

which has one order higher convergence rate than that proved in Theorem 3.2.2. Recall

that k denotes the order of the basis function. This occurrence, which happened for the

upwind flux, was already mentioned in [29, p.205]. In fact, the rigorous proof of O(hk+1)

for the upwind flux case is still open.

In Tables 3.1-3.3, we present the numerical results obtained using a fixed τ = 10−6 on

uniformly refined triangular meshes. The results show the convergence rate O(hk+1) clearly.
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Table 3.1: The L2 errors obtained after 100 steps on uniform triangular meshes with τ =
10−6 and k = 1.

Meshes h = 1
4

h = 1
8

rate h = 1
16

rate h = 1
32

rate h = 1
64

rate

Hx 0.0455 0.0118 1.9471 0.0030 1.9758 7.5453e-4 1.9913 1.8875e-4 1.9991
Hy 0.0517 0.0128 2.0140 0.0032 2.0000 7.9346e-4 2.0118 1.9849e-4 1.9991
E 0.0486 0.0123 1.9823 0.0031 1.9883 7.7451e-4 2.0009 1.9370e-4 1.9995
Kx 4.4914e-5 1.1673e-5 1.9440 2.9630e-6 1.9780 7.4472e-7 1.9923 1.8634e-7 1.9988
Ky 5.1037e-5 1.2628e-5 2.0149 3.1376e-6 2.0089 7.8287e-7 2.0028 1.9582e-7 1.9992
J 4.8251e-5 1.2236e-5 1.9794 3.0708e-6 1.9944 7.6850e-7 1.9985 1.9217e-7 1.9997

Table 3.2: The L2 errors obtained after 100 steps on uniform triangular meshes with τ =
10−6 and k = 2.

Meshes h = 1
4

h = 1
8

rate h = 1
16

rate h = 1
32

rate h = 1
64

rate

Hx 0.0047 6.4854e-4 2.8574 8.6694e-5 2.9032 1.1357e-5 2.9324 1.4646e-6 2.9550
Hy 0.0047 6.4894e-4 2.8565 8.7021e-5 2.8986 1.1404e-5 2.9318 1.4699e-6 2.9558
E 0.0047 6.5112e-4 2.8517 8.6896e-5 2.9056 1.1322e-5 2.9402 1.4544e-6 2.9606
Kx 4.6862e-6 6.4001e-7 2.8723 8.5541e-8 2.9034 1.1202e-8 2.9329 1.4434e-9 2.9562
Ky 4.6398e-6 6.4030e-7 2.8572 8.5847e-8 2.8989 1.1245e-8 2.9325 1.4481e-9 2.9571
J 4.6696e-6 6.4594e-7 2.8538 8.6171e-8 2.9061 1.1216e-8 2.9416 1.4370e-9 2.9644

Table 3.3: The L2 errors obtained after 100 steps on uniform triangular meshes with τ =
10−6 and k = 3.

Meshes h = 1
4

h = 1
8

rate h = 1
16

rate h = 1
32

rate h = 1
64

rate

Hx 7.3281e-4 5.3071e-5 3.7874 3.6439e-6 3.8644 2.4100e-7 3.9184 1.5618e-8 3.9478
Hy 7.5179e-4 5.5864e-5 3.7503 3.8611e-6 3.8548 2.5572e-7 3.9164 1.6659e-8 3.9402
E 6.4847e-4 4.9042e-5 3.7250 3.4892e-6 3.8130 2.3667e-7 3.8819 1.5848e-8 3.9005
Kx 7.2325e-7 5.2389e-8 3.7872 3.5986e-9 3.8638 2.3817e-10 3.9174 1.5410e-11 3.9501
Ky 7.4200e-7 5.5150e-8 3.7500 3.8135e-9 3.8542 2.5272e-10 3.9155 1.6391e-11 3.9466
J 6.4357e-7 4.8697e-8 3.7242 3.4676e-9 3.8118 2.3542e-10 3.8806 1.5601e-11 3.9155

A linear growth of errors is also observed in our numerical tests. In Tables 3.4-3.5, we

present the numerical results obtained with the same conditions as used for Tables 3.1-3.2

except the errors are recorded after 10 time steps. Comparing Tables 3.4-3.5 with Tables

3.1-3.2, we can see that the errors of Kx,Ky, J in Tables 3.1-3.2 are almost 10 times larger

than those in Tables 3.4-3.5. The errors for the first three solutions do not change that much

with the number of time steps. This is due to the fact that the exact solutions (Hx,Hy, E)

change very little with respect to time since e−πt ≈ 1. We should mention that O(τ2) could

not be observed due to the CFL condition τ = O(h), since O(τ2+hk+1) is always dominated
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by O(τ2).

Table 3.4: The L2 errors obtained after 10 steps on uniform triangular meshes with τ = 10−6

and k = 1.

Meshes h = 1
4

h = 1
8

rate h = 1
16

rate h = 1
32

rate h = 1
64

rate

Hx 0.0455 0.0118 1.9471 0.0030 1.9758 7.5479e-4 1.9908 1.8890e-4 1.9985
Hy 0.0517 0.0128 2.0140 0.0032 2.0000 7.9325e-4 2.0122 1.9840e-4 1.9994
Ez 0.0487 0.0123 1.9853 0.0031 1.9883 7.7529e-4 1.9995 1.9388e-4 1.9996
Kx 4.4922e-6 1.1675e-6 1.9440 2.9636e-7 1.9780 7.4496e-8 1.9921 1.8644e-8 1.9985
Ky 5.1046e-6 1.2630e-6 2.0149 3.1378e-7 2.0090 7.8288e-8 2.0029 1.9580e-8 1.9994
Jz 5.0436e-6 1.2790e-6 1.9794 3.2102e-7 1.9943 8.0347e-8 1.9983 2.0093e-8 1.9996

Example 3.2.2. We use this example to demonstrate the effectiveness of our DG method

in solving discontinuous media problems. For simplicity, we consider a case when the

permittivity is discontinuous: ε0 = 1 in a subdomain [0.25 0.75]× [0.25 0.75] and ε0 = 100

in other area, µ0 = 1, ωpe = π, ωpm = π, Γm = π, Γe = π. The order of the basis function

is 2.

The source functions:

f = (−3π + π2t)e−πtsin(πx) · sin(πy);

gx = π2te−πtsin(πx) · cos(πy);

gy = −π2te−πtcos(πx) · sin(πy).

Table 3.5: The L2 errors obtained after 10 steps on uniform triangular meshes with τ = 10−6

and k = 2.

Meshes h = 1
4

h = 1
8

rate h = 1
16

rate h = 1
32

rate h = 1
64

rate

Hx 0.0047 6.4858e-4 2.8573 8.6680e-5 2.9035 1.1349e-5 2.9331 1.4616e-6 2.9569
Hy 0.0047 6.4881e-4 2.8568 8.6976e-5 2.8991 1.1390e-5 2.9328 1.4659e-6 2.9579
Ez 0.0047 6.5149e-4 2.8508 8.6889e-5 2.9065 1.1302e-5 2.9426 1.4459e-6 2.9665
Kx 4.6873e-7 6.4012e-8 2.8723 8.5547e-9 2.9036 1.1200e-9 2.9332 1.4424e-10 2.9570
Ky 4.6404e-7 6.4033e-8 2.8574 8.5838e-9 2.8991 1.1241e-9 2.9328 1.4466e-10 2.9580
Jz 4.8815e-7 6.7516e-8 2.8540 9.0042e-9 2.9066 1.1712e-9 2.9426 1.4981e-10 2.9668
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And the initial condition is

Hx = sin(π
x

4
) · cos(πy

4
)e−πdt/2;Hy = −cos(πx

4
) · sin(πy

4
)e−πdt/2;

E = sin(πx) · sin(πy);

Kx = 0;Ky = 0;

J = ω2
pe

dt

2
sin(πx) · sin(πy)e−Γedt/2.

Since the exact solution to this problem is unknown, we just plot the numerical solutions

obtained on different meshes. To verify the long term stability, we solved this example to

10000 time steps with dt = 10−5 . The resulting numerical magnetic field H = (Hx , Hy

) and electric field E on various uniform triangular meshes are presented in Figures (3.9)-

(3.12), Convergence was verified for the following different sizes n = 4, 8, 16, 32.
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Figure 3.9: Numerical solutions after 10000 time steps with h = 1/4: (Left) The magnetic
field H = (Hx, Hy); (Right) The electric field E.
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Figure 3.10: Numerical solutions after 10000 time steps with h = 1/8: (Left) The magnetic
field H = (Hx, Hy); (Right) The electric field E.

3.3 ANOTHER DGTD METHOD FOR MAXWELL’S EQUATIONS
IN METAMATERIALS

For the same governing equations for modeling wave propagation in metamaterials (3.1-

3.4), we also developed the following DGTD method:

∫

Ti

ε0
En+1

i −En
i

τ
· ui =

∫

Ti

∇× ui ·H
n+ 1

2
i −

∫

Ti

J
n+ 1

2
i · ui

−
∑

k∈νi

∫

aik

ui · ({H
n+ 1

2
h }ik × nik) (3.54)

∫

Ti

µ0
H

n+ 3
2

i −Hn+ 1
2

i

τ
· vi = −

∫

Ti

∇× vi ·En+1
i −

∫

Ti

Kn+1
i · vi

+
∑

k∈νi

∫

aik

vi · ({En+1
h }ik × nik) (3.55)

1

ε0ω2
pe

∫

Ti

J
n+ 3

2
i − Jn+ 1

2
i

τ
· φi +

Γe

ε0ω2
pe

∫

Ti

J
n+ 3

2
i + J

n+ 1
2

i

2
· φi =

∫

Ti

En+1
i · φi (3.56)
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Figure 3.11: Numerical solutions after 10000 time steps with h = 1/16: (Left) The magnetic
field H = (Hx, Hy); (Right) The electric field E.
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Figure 3.12: magnetic field [Hx,Hy](left),electric field E(right),mesh size 1/32, time step
10000

1

µ0ω2
pm

∫

Ti

Kn+1
i −Kn

i

τ
·ψi +

Γm

µ0ω2
pm

∫

Ti

Kn+1
i +Kn

i

2
·ψi =

∫

Ti

H
n+ 1

2
i · ψi. (3.57)

Here we prove that the order of the convergence of the scheme is O(∆t2 + hmin(s,k)).

3.3.1 DISCRETE ENERGY

One defines the discrete energy at some time step n as:

εn =
∑

Ti∈Ω
εni ,
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where

εni =
1

2
ε0〈En

i ,E
n
i 〉+

1

2
µ0〈H

n− 1
2

i ,H
n+ 1

2
i 〉+ 1

2µ0ω2
pm

〈Kn
i ,K

n
i 〉+

1

2ε0ω2
pe

〈Jn− 1
2

i ,J
n+ 1

2
i 〉. (3.58)

Lemma 3.3.1. (CFL condition) The discrete energy (3.58) defines a quadratic form of the

unknowns En, Hn− 1
2 , Kn and Jn− 1

2 if:

1√
ε0µ0

τ < Ch. (3.59)

where C > 0 is the constant.

Lemma 3.3.2. Under the CFL condition Lemma(3.3.1) the DGTD (3.54)-(3.57) is stable

in the sense of the discrete energy (3.58):

εn ≤ ε0

Proof. Denote E[n+ 1
2
] = En

+En+1

2 and K [n+ 1
2
] = Kn

+Kn+1

2 . Let ui be E
[n+ 1

2
]

i in

equation(3.54) and ψi be K
[n+ 1

2
]

i in equation (3.57). Equations (3.55) and (3.56) are used

at time steps n+ 3
2 and at time step n+ 1

2 with vi as H
n+ 1

2
i /2 in equation(3.55) and φi as

J
n+ 1

2
i /2 in equation(3.56). This yields the following relations:
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∫

Ti

ε0
En+1

i −En
i

τ
·E[n+ 1

2
] =

∫

Ti

∇×E[n+ 1
2
] ·Hn+ 1

2
i −

∫

Ti

J
n+ 1

2
i ·E[n+ 1

2
]

−
∑

k∈νi

∫

aik

E[n+ 1
2
] · ({Hn+ 1

2
h }ik × nik) (3.60)

∫

Ti

µ0
H

n+ 3
2

i −Hn+ 1
2

i

τ
·Hn+ 1

2 /2 = −
∫

Ti

∇×Hn+ 1
2 /2 ·En+1

i −
∫

Ti

Kn+1
i ·Hn+ 1

2 /2

+
∑

k∈νi

∫

aik

Hn+ 1
2/2 · ({En+1

h }ik × nik) (3.61)

∫

Ti

µ0
H

n+ 1
2

i −Hn− 1
2

i

τ
·Hn+ 1

2 /2 = −
∫

Ti

∇×Hn+ 1
2 /2 ·En

i −
∫

Ti

Kn
i ·Hn+ 1

2 /2

+
∑

k∈νi

∫

aik

Hn+ 1
2/2 · ({En

h}ik × nik) (3.62)

1

ε0ω2
pe

∫

Ti

J
n+ 3

2
i − Jn+ 1

2
i

τ
· Jn+ 1

2 /2 +
Γe

ε0ω2
pe

∫

Ti

J
n+ 3

2
i + J

n+ 1
2

i

2
· Jn+ 1

2/2

=

∫

Ti

En+1
i · Jn+ 1

2/2 (3.63)

1

ε0ω2
pe

∫

Ti

J
n+ 1

2
i − Jn− 1

2
i

τ
· Jn+ 1

2 /2 +
Γe

ε0ω2
pe

∫

Ti

J
n+ 1

2
i + J

n− 1
2

i

2
· Jn+ 1

2/2

=

∫

Ti

En
i · Jn+ 1

2/2 (3.64)

1

µ0ω2
pm

∫

Ti

Kn+1
i −Kn

i

τ
·K[n+ 1

2
] +

Γm

µ0ω2
pm

∫

Ti

Kn+1
i +Kn

i

2
·K [n+ 1

2
]

=

∫

Ti

H
n+ 1

2
i ·K[n+ 1

2
]. (3.65)
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Adding equations(3.60)-(3.65), and rearranging, we find:

1

2

∫

Ti

ε0E
n+1
i ·En+1

i +
1

2

∫

Ti

µ0H
n+ 3

2
i ·Hn+ 1

2
i

+
1

µ0ω2
pm

∫

Ti

Kn+1
i ·Kn+1

i +
2 + τΓe

4ε0ω2
pe

∫

Ti

J
n+ 3

2
i · Jn+ 1

2
i

=
1

2

∫

Ti

ε0E
n
i ·En

i +
1

2

∫

Ti

µ0H
n+ 1

2
i ·Hn− 1

2
i

+
1

µ0ω2
pm

∫

Ti

Kn
i ·Kn

i − 2 + τΓe

4ε0ω2
pe

∫

Ti

J
n+ 1

2
i · Jn− 1

2
i

+τ

∫

Ti

∇×E[n+ 1
2
] ·Hn+ 1

2
i − τ

∫

Ti

∇×Hn+ 1
2 ·E[n+ 1

2
]

i

−
∑

k∈νi

∫

aik

τE[n+ 1
2
] · ({Hn+ 1

2
h }ik × nik) +

∑

k∈νi

∫

aik

τHn+ 1
2 · ({E[n+ 1

2
]

h }ik × nik)

− Γeτ

2ε0ω2
pe

∫

Ti

J
n+ 1

2
i · Jn+ 1

2
i − Γmτ

µ0ω2
pm

∫

Ti

Kn+1
i +Kn

i

2
·K [n+ 1

2
]

Integrating by parts yields:

εn+1
i =εni − τΓe

4ε0ω2
pe

∫

Ti

J
n+ 3

2
i · Jn+ 1

2
i − τΓe

4ε0ω2
pe

∫

Ti

J
n+ 1

2
i · Jn− 1

2
i

−τ
2

∑

k∈νi

∫

aik

(E
[n+ 1

2
]

i ×Hn+ 1
2

k +E
[n+ 1

2
]

k ×Hn+ 1
2

i ) · nik

− Γeτ

2ε0ω2
pe

∫

Ti

J
n+ 1

2
i · Jn+ 1

2
i − τΓm

µ0ω2
pm

∫

Ti

Kn+1
i +Kn

i

2
·K [n+ 1

2
]

We see that the term involving the sum over k vanished because interface contributions

cancel out when adding all of the elements together, leaving only the boundary, which is 0

by the metallic boundary condition. Next, adding from n = 0 to n = m− 1, we obtain:

εm ≤ ε0 (3.66)

3.3.2 ERROR ESTIMATE OF THE FULLY DISCRETE SCHEME

Before we give the proof for the error estimate, let us prepare two lemmas.

Lemma 3.3.3. Let (E,H ,J ,K) ∈ C3([0, T ], L(Ω)) ∩ C0([0, T ], (Hs+1(Ω))3). Under the

67



CFL condition Lemma(3.3.1), the following error estimate holds:

maxn=0,...,N(||Eh(tn)−En
h||2 + ||Hh(tn+ 1

2
)−Hn+ 1

2

h ||2 + ||Jh(tn+ 1
2
)− Jn+ 1

2

h ||2 + ||Kh(tn)−Kn
h||2)

1
2

≤Cτ2||(E,H,J ,K)||C3([0,T ],L2(Ω)).

Proof. The proof is developed in a manner similar to that given in [40].

Define Ẽ
n+1
h , H̃

n+ 3
2

h , J̃
n+ 3

2
h and K̃

n+1
h such that

∫

Ti

ε0
Ẽ

n+1
i −Ei(tn)

τ
· ui =

∫

Ti

∇× ui ·H i(tn+ 1
2
)−

∫

Ti

J i(tn+ 1
2
) · ui

−
∑

k∈νi

∫

aik

ui · ({Hh(tn+ 1
2
)}ik ×nik) (3.67)

∫

Ti

µ0
H̃

n+ 3
2

i −H i(tn+ 1
2
)

τ
· vi = −

∫

Ti

∇× vi ·Ei(tn+1)−
∫

Ti

Ki(tn+1) · vi

+
∑

k∈νi

∫

aik

vi · ({Eh(tn+1)}ik × nik) (3.68)

1

ε0ω2
pe

∫

Ti

J̃
n+ 3

2
i − J i(tn+ 1

2
)

τ
· φi +

Γe

ε0ω2
pe

∫

Ti

J i(tn+ 3
2
) + J i(tn+ 1

2
)

2
· φi =

∫

Ti

Ei(tn+1) · φi

(3.69)

1

µ0ω2
pm

∫

Ti

K̃
n+1
i −Ki(tn)

τ
·ψi +

Γm

µ0ω2
pm

∫

Ti

Ki(tn+1) +Ki(tn)

2
· ψi =

∫

Ti

Hi(tn+ 1
2
) ·ψi.

(3.70)

Using Taylor’s formula gives:

Eh(tn+1)−Eh(tn) = τ
∂

∂t
Eh(tn+ 1

2
) +

τ3

28
(
∂3

∂t3
Eh(cn+1) +

∂3

∂t3
Eh(cn))

where (cn+1, cn) ∈ [tn+ 1
2
, tn+1]× [tn, tn+ 1

2
]. This leads to the estimate:

(||Eh(tn+1)− Ẽ
n+1

h ||2 + ||Hh(tn+ 3
2
)− H̃n+ 3

2

h ||2 + ||Kh(tn+1)− K̃
n+1

h ||2 + ||Jh(tn+ 3
2
)− J̃n+ 3

2

h ||2) 1
2

≤ Cτ3(|| ∂
3

∂t3
Eh||+ || ∂

3

∂t3
Hh||+ || ∂

2

∂t2
Jh||+ || ∂

2

∂t2
Kh||)

≤ Cτ3||(E,H,J ,K)||C3([0,T ],L2(Ω)) (3.71)
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Thus we can get

∫

Ti

ε0
Ei(tn+1)−Ei(tn)

τ
· ui =

∫

Ti

∇× ui ·H i(tn+ 1
2
)−

∫

Ti

J i(tn+ 1
2
) · ui

−
∑

k∈νi

∫

aik

ui · ({Hh(tn+ 1
2
)}ik × nik) +

∫

Ti

ε0
Ei(tn+1)− Ẽ

n+1
i

τ
· ui

∫

Ti

µ0
H i(tn+ 3

2
)−H i(tn+ 1

2
)

τ
· vi = −

∫

Ti

∇× vi ·Ei(tn+1)−
∫

Ti

Ki(tn+1) · vi

+
∑

k∈νi

∫

aik

vi · ({Eh(tn+1)}ik × nik) +

∫

Ti

µ0
H i(tn+ 3

2
)− H̃n+ 3

2
i

τ
· vi

1

ε0ω2
pe

∫

Ti

J i(tn+ 3
2
)− J i(tn+ 1

2
)

τ
· φi +

Γe

ε0ω2
pe

∫

Ti

J i(tn+ 3
2
) + J i(tn+ 1

2
)

2
· φi

=

∫

Ti

Ei(tn+1) · φi +
1

ε0ω2
pe

∫

Ti

J i(tn+ 3
2
)− J̃n+ 3

2
i

τ
· φi

1

µ0ω2
pm

∫

Ti

Ki(tn+1)−Ki(tn)

τ
·ψi +

Γm

µ0ω2
pm

∫

Ti

Ki(tn+1) +Ki(tn)

2
· ψi

=

∫

Ti

H i(tn+ 1
2
) ·ψi +

1

µ0ω2
pm

∫

Ti

Ki(tn+1)− K̃
n+1
i

τ
·ψi.

Now, if one defines,

ξni (ui) =

∫

Ti

ε0
Ei(tn+1)− Ẽ

n+1
i

τ
· ui,

ηni (vi) =

∫

Ti

µ0
H i(tn+ 3

2
)− H̃n+ 3

2
i

τ
· vi,

ζni (φi) =
1

ε0ω2
pe

∫

Ti

J i(tn+ 3
2
)− J̃n+ 3

2
i

τ
· φi,

χn
i (ψi) =

1

µ0ω2
pm

∫

Ti

Ki(tn+1)− K̃
n+1
i

τ
· ψi,
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then one has:

∫

Ti

ε0
Ei(tn+1)−Ei(tn)

τ
· ui =

∫

Ti

∇× ui ·H i(tn+ 1
2
)−

∫

Ti

J i(tn+ 1
2
) · ui

−
∑

k∈νi

∫

aik

ui · ({Hh(tn+ 1
2
)}ik × nik) + ξni (ui) (3.72)

∫

Ti

µ0
H i(tn+ 3

2
)−H i(tn+ 1

2
)

τ
· vi = −

∫

Ti

∇× vi ·Ei(tn+1)−
∫

Ti

Ki(tn+1) · vi

+
∑

k∈νi

∫

aik

vi · ({Eh(tn+1)}ik × nik) + ηni (vi) (3.73)

1

ε0ω2
pe

∫

Ti

J i(tn+ 3
2
)− J i(tn+ 1

2
)

τ
· φi +

Γe

ε0ω2
pe

∫

Ti

J i(tn+ 3
2
) + J i(tn+ 1

2
)

2
· φi

=

∫

Ti

Ei(tn+1) · φi + ζni (φi) (3.74)

1

µ0ω2
pm

∫

Ti

Ki(tn+1)−Ki(tn)

τ
·ψi +

Γm

µ0ω2
pm

∫

Ti

Ki(tn+1) +Ki(tn)

2
· ψi

=

∫

Ti

H i(tn+ 1
2
) ·ψi + χn

i (ψi). (3.75)

When considering the whole domain, we get

ξnh(uh) =

∫

Ω
ε0
Eh(tn+1)− Ẽ

n+1
h

τ
· uh,

ηnh(vh) =

∫

Ω
µ0
Hh(tn+ 3

2
)− H̃n+ 3

2
h

τ
· vh,

ζnh (φh) =
1

ε0ω2
pe

∫

Ω

Jh(tn+ 3
2
)− J̃n+ 3

2
h

τ
· φh,

χn
h(ψh) =

1

µ0ω2
pm

∫

Ω

Kh(tn+1)− K̃
n+1
h

τ
· ψh,

and

|ξnh(uh)| ≤
C

τ
||Eh(tn+1)− Ẽ

n+1
h || ||uh||,

|ηnh(vh)| ≤
C

τ
||Hh(tn+ 3

2
)− H̃n+ 3

2
h || ||vh||,

|ζnh (φh)| ≤
C

τ
||Jh(tn+ 3

2
)− J̃n+ 3

2
h || ||φh||,

|χn
h(ψh)| ≤

C

τ
||Kh(tn+1)− K̃

n+1
h || ||ψh||,
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By the estimate (3.71),

|||ξnh |||+ |||ηnh ||||+ |ζnh |||+ |||χn
h||| (3.76)

≤ Cτ2||(E,H ,J ,K)||C3([0,T ],L2(Ω)) (3.77)

Next define the error terms as:

anh = Eh(tn)−En
h, b

n+ 1
2

h =Hh(tn+ 1
2
)−Hn+ 1

2
h ,

c
n+ 1

2
h = Jh(tn+ 1

2
)− Jn+ 1

2
h , dnh =Kh(tn)−Kn

h.

Subtracting equations(3.54)-(3.57) from equations (3.72)-(3.75), we find:

∫

Ti

ε0
an+1
i − ani

τ
· ui =

∫

Ti

∇× ui · b
n+ 1

2
i −

∫

Ti

c
n+ 1

2
i · ui

−
∑

k∈νi

∫

aik

ui · ({b
n+ 1

2
h }ik × nik) + ξni (ui)

∫

Ti

µ0
b
n+ 3

2
i − b

n+ 1
2

i

τ
· vi = −

∫

Ti

∇× vi · an+1
i −

∫

Ti

dn+1
i · vi

+
∑

k∈νi

∫

aik

vi · ({an+1
h }ik × nik) + ηni (vi)

1

ε0ω2
pe

∫

Ti

c
n+ 3

2
i − c

n+ 1
2

i

τ
· φi +

Γe

ε0ω2
pe

∫

Ti

c
n+ 3

2
i + c

n+ 1
2

i

2
· φi

=

∫

Ti

an+1
i · φi + ζni (φi)

1

µ0ω2
pm

∫

Ti

dn+1
i − dni

τ
·ψi +

Γm

µ0ω2
pm

∫

Ti

dn+1
i + dni

2
· ψi

=

∫

Ti

b
n+ 1

2
i · ψi + χn

i (ψi).
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Similar to the proof of stability in the sense of discrete energy (3.3.2), we get:

1

2
ε0〈an+1

i , an+1
i 〉+ 1

2
µ0〈b

n+ 3
2

i , b
n+ 1

2
i 〉+ 1

2ε0ω2
pe

〈cn+
3
2

i , c
n+ 1

2
i 〉

+
1

2µ0ωpm
〈dn+1

i , dn+1
i 〉+ τΓe

4ε0ω2
pe

∫

Ti

c
n+ 3

2
i · cn+

1
2

i

=
1

2
ε0〈ani , ani 〉+

1

2
µ0〈b

n− 1
2

i , b
n+ 1

2
i 〉+ 1

2ε0ω2
pe

〈cn−
1
2

i , c
n+ 1

2
i 〉

+
1

2µ0ωpm
〈dni , dni 〉 −

τΓe

4ε0ω2
pe

∫

Ti

c
n+ 1

2
i · cn−

1
2

i

−τ
2

∑

k∈νi

∫

aik

(a
[n+ 1

2
]

i × b
n+ 1

2
k + a

[n+ 1
2
]

k × b
n+ 1

2
i ) · nik

− τΓe

2ε0ω2
pe

∫

Ti

c
n+ 1

2
i · cn+

1
2

i − τΓm

µ0ω2
pm

∫

Ti

dn+1
i + dni

2
· d[n+ 1

2
]

+
τ

2
(ξni (a

[n+ 1
2
]

i ) + ηni (b
n+ 1

2
i ) + ηn+1

i (b
n+ 1

2
i ) + ζni (c

n+ 1
2

i ) + ζn+1
i (c

n+ 1
2

i ) + χn
h(d

[n+ 1
2
]

i )).

Again, the term involving a sum over k will vanish due to canceling interface contributions

and the metallic boundary condition when adding all elements together, leaving

1

2
ε0〈an+1

h , an+1
h 〉+ 1

2
µ0〈b

n+ 3
2

h , b
n+ 1

2
h 〉+ 1

2ε0ω2
pe

〈cn+
3
2

h , c
n+ 1

2
h 〉+ 1

2µ0ω2
pm

〈dn+1
h , dn+1

h 〉

=
1

2
ε0〈anh, anh〉+

1

2
µ0〈b

n− 1
2

h , b
n+ 1

2
h 〉+ 1

2ε0ω2
pe

〈cn−
1
2

h , c
n+ 1

2
h 〉

+
1

2µ0ω2
pm

〈dnh, dnh〉 −
τΓe

4ε0ω2
pe

∑

Ti

∫

Ti

c
n+ 1

2
i · cn−

1
2

i

− τΓe

4ε0ω2
pe

∑

Ti

∫

Ti

c
n+ 3

2
i · cn+

1
2

i − τΓe

2ε0ω2
pe

∑

Ti

∫

Ti

c
n+ 1

2
i · cn+

1
2

i − τΓm

µ0ω2
pm

∑

Ti

∫

Ti

dn+1
i + dni

2
· d[n+

1
2
]

i

+
τ

2
(ξnh(a

[n+ 1
2
]

h ) + ηnh(b
n+ 1

2
h ) + ηn+1

h (b
n+ 1

2
h ) + ζnh (c

n+ 1
2

h ) + ζn+1
h (c

n+ 1
2

h ) + χn
h(d

[n+ 1
2
]

i )).

Using (3.77) and adding from n = 1 to n = m− 1, we get

(
1

2
ε0〈amh , amh 〉+ 1

2
µ0〈b

m+ 1
2

h , b
m− 1

2
h 〉+ 1

2ε0ω2
pe

〈cm+ 1
2

h , c
m− 1

2
h 〉+ 1

2µ0ω2
pm

〈dmh , dmh 〉) 1
2

≤(
1

2
ε0〈a0h, a0h〉+

1

2
µ0〈b

− 1
2

h , b
1
2
h 〉+

1

2ε0ω2
pe

〈c−
1
2

h , c
1
2
h 〉+

1

2µ0ω2
pm

〈d0h, d0h〉)
1
2

≤Cτ2||(E,H ,J ,K)||C3([0,T ],L2(Ω))
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Therefore,

maxn=0,...,N(||Eh(tn)−En
h||2 + ||Hh(tn+ 1

2
)−Hn+ 1

2

h ||2 + ||Jh(tn+ 1
2
)− Jn+ 1

2

h ||2 + ||Kh(tn)−Kn
h||2)

1
2

≤Cτ2||(E,H,J ,K)||C3([0,T ],L2(Ω)).

Lemma 3.3.4. Let Ph denote the standard L2-projection onto Vh or V0
h, which is the

subspace of Vh with the boundary condition n × E = 0 imposed. It is known that the

projection error estimate

‖u− Phu‖0,T ≤ Ch
min{s,k}+1
T ‖u‖s+1,T , (3.78)

holds true for any element T, and that u ∈ Hs+1(T ).

Let (Eh,Hh,J ,K) be the weak solution of (3.54)-(3.57), and (E,H,J ,K) be the solution of

(3.1)-(3.4).

(ε0||PhE −Eh||2 + µ0||PhH −Hh||2 +
1

ε0ω2
pe

||PhJ − Jh||2 +
1

µ0ω2
pm

||PhK −Kh||2)
1
2

≤Chmin{s,k}||(H,E, J,K)||C0([0,T ],Hs+1(Ω))

where k is the degree of the basis function.

Proof. We proceed in the same fashion as in Lemma(2.2.4). The semidiscrete scheme

for (3.54)-(3.57) is:

∫

Ti

ε0
∂Ei

∂t
· ui =

∫

Ti

∇× ui ·H i −
∫

Ti

J i · ui

−
∑

k∈νi

∫

aik

ui · ({Hh}ik × nik) (3.79)

∫

Ti

µ0
∂H i

∂t
· vi = −

∫

Ti

∇× vi ·Ei −
∫

Ti

Ki · vi

+
∑

k∈νi

∫

aik

vi · ({Eh}ik × nik) (3.80)

1

ε0ω2
pe

∫

Ti

∂J i

∂t
· φi +

Γe

ε0ω2
pe

∫

Ti

J i · φi =

∫

Ti

Ei · φi (3.81)

1

µ0ω2
pm

∫

Ti

∂Ki

∂t
·ψi +

Γm

µ0ω2
pm

∫

Ti

Ki ·ψi =

∫

Ti

H i ·ψi. (3.82)
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Multiplying (3.1) by uh ∈ Vh, (3.2) by vh ∈ Vh, (3.3) by φh ∈ Vh, and (3.4) by ψh ∈ Vh,

and then integrating each over Ti, we get

∫

Ti

ε0
∂E

∂t
· ui =

∫

Ti

∇×H · ui −
∫

Ti

J · ui

=

∫

Ti

∇× ui ·H −
∫

Ti

J · ui

−
∑

k∈νi

∫

aik

ui · ({H}ik × nik) (3.83)

∫

Ti

µ0
∂H

∂t
· vi =−

∫

Ti

∇×E · vi −
∫

Ti

K · vi

=−
∫

Ti

∇× vi ·E −
∫

Ti

K · vi

+
∑

k∈νi

∫

aik

vi · ({E}ik × nik) (3.84)

1

ε0ω2
pe

∫

Ti

∂J

∂t
· φi +

Γe

ε0ω2
pe

∫

Ti

J · φi =

∫

Ti

E · φi (3.85)

1

µ0ω2
pm

∫

Ti

∂K

∂t
·ψi +

Γm

µ0ω2
pm

∫

Ti

K ·ψi =

∫

Ti

H · ψi. (3.86)

To simplify matters,Let ξh = PhE−Eh, ηh = PhH−Hh, ξ̃h = PhJ −Jh, η̃h = PhK−Kh.

Subtracting(3.79)-(3.82) from (3.83)-(3.86), and adding all elements together, we find

ε0(
∂

∂t
ξh,uh)− (ηh,∇× uh) + (ξ̃h,uh) +

∑

Ti

∑

k∈νi

∫

aik

ui · ({ηh}ik × nik)

=ε0(
∂

∂t
(PhE −E),uh)− ((PhH −H),∇× uh)

+ (PhJ − J ,uh) +
∑

Ti

∑

k∈νi

∫

aik

ui · ({PhH −H}ik ×nik) (3.87)

µ0(
∂

∂t
ηh,vh) + (ξh,∇× vh) + (η̃h,vh)−

∑

Ti

∑

k∈νi

∫

aik

vi · ({ξh}ik × nik)

=µ0(
∂

∂t
(PhH −H),vh) + (PhE −E,∇× vh)

+ (PhK −K,vh)−
∑

Ti

∑

k∈νi

∫

aik

vi · ({PhE −E}ik × nik) (3.88)
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1

ε0ω2
pe

(
∂ξ̃h
∂t

,φh) +
Γe

ε0ω2
pe

(ξ̃h,φh)− (ξh,φh)

=
1

ε0ω2
pe

)(
∂

∂t
(PhJ − J),φh) +

Γe

ε0ω2
pe

(PhJ − J ,φh)− (PhE −E,φh) (3.89)

1

µ0ω2
pm

(
∂η̃h
∂t

,ψh) +
Γm

µ0ω2
pm

(η̃h,ψh)− (ηh,ψh)

=
1

ε0ω2
pm

)(
∂

∂t
(PhK −K),ψh) +

Γm

ε0ω2
pm

(PhK −K,ψh)− (PhH −H ,ψh). (3.90)

Letting uh = ξh, vh = ηh, φh = ξ̃h and ψh = η̃h, and adding equations (3.87), (3.88), (3.89)

and (3.90)together, we can get

ε0(
∂

∂t
ξh, ξh) + µ0(

∂

∂t
ηh, ηh) +

1

ε0ω2
pe

(
∂

∂t
ξ̃h, ξ̃h) +

1

µ0ω2
pe

(
∂

∂t
η̃h, η̃h)

=− 1

2

∑

Ti

∑

k∈νi

∫

aik

(ξi × ηk + ξk × ηi) · nik)−
Γe

ε0ω2
pe

(ξ̃h, ξ̃h)−
Γm

µ0ω2
pm

(η̃h, η̃h)

+ ε0(
∂

∂t
(PhE −E), ξh)− (PhH −H,∇× ξh) +

∑

Ti

∑

k∈νi

∫

aik

ξi · {PhH −H} × nik

+ µ0(
∂

∂t
(PhH −H), ηh) + (PhE −E,∇× ηh)−

∑

Ti

∑

k∈νi

∫

aik

ηi · {PhE −E} × nik

+
1

ε0ω2
pe

(
∂

∂t
(PhJ − J), ξ̃h)−

Γe

ε0ω2
pe

(ξ̃h, ξ̃h) +
1

µ0ω2
pm

(
∂

∂t
(PhK −K), η̃h)−

Γm

µ0ω2
pm

(η̃h, η̃h)

≤ε0(
∂

∂t
(PhE −E), ξh)− (PhH −H,∇× ξh) +

∑

Ti

∑

k∈νi

∫

aik

ξi · {PhH −H} × nik

+ µ0(
∂

∂t
(PhH −H), ηh) + (PhE −E,∇× ηh)−

∑

Ti

∑

k∈νi

∫

aik

ηi · {PhE −E} × nik

+
1

ε0ω2
pe

(
∂

∂t
(PhJ − J), ξ̃h) +

1

µ0ω2
pm

(
∂

∂t
(PhK −K), η̃h) (3.91)

=

8∑

i=1

Erri, (3.92)

where Err1 = 0, Err2 = 0, Err4 = 0, Err5 = 0, Err7 = 0, Err8 = 0 by the property of L2

projection. Further,

Err3 ≤
Cinv

h
||ξh|| · ||PhH −H || (3.93)

and

Err6 ≤
Cinv

h
||ηh|| · ||PhE −E||. (3.94)
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Thus,

ε0(
∂

∂t
ξh, ξh) + µ0(

∂

∂t
ηh, ηh) +

1

ε0ω2
pe

(
∂

∂t
ξ̃h, ξ̃h) +

1

µ0ω2
pe

(
∂

∂t
η̃h, η̃h)

≤Cinv

h
(||ξh||+ ||ηh||) · (||PhE −E||+ ||PhH −H ||). (3.95)

Since

ε0(ξh, ξh) + µ0(ηh, ηh) +
1

ε0ω2
pe

(ξ̃h, ξ̃h) +
1

µ0ω2
pe

(η̃h, η̃h)

=

∫ t

0
(ε0(

∂

∂s
ξh, ξh) + µ0(

∂

∂s
ηh, ηh) +

1

ε0ω2
pe

(
∂

∂t
ξ̃h, ξ̃h) +

1

µ0ω2
pe

(
∂

∂t
η̃h, η̃h))ds

+ ε0(ξ
0
h, ξ

0
h) + µ0(η

0
h, η

0
h) +

1

ε0ω2
pe

(ξ̃0h, ξ̃
0
h) +

1

µ0ω2
pe

(η̃0h, η̃
0
h),

with inequality (3.95), we obtain

ε0(ξh, ξh) + µ0(ηh, ηh) +
1

ε0ω2
pe

(ξ̃h, ξ̃h) +
1

µ0ω2
pe

(η̃h, η̃h) (3.96)

−(ε0(ξ
0
h, ξ

0
h) + µ0(η

0
h, η

0
h) +

1

ε0ω2
pe

(ξ̃0h, ξ̃
0
h) +

1

µ0ω2
pe

(η̃0h, η̃
0
h))

≤
∫ t

0

1

2δ
(||ξh||2 + ||ηh||2) + 2δ

C2
inv

h2
(||PhE −E||2 + ||PhH −H ||2) (3.97)

Let λ = max[0,T ](||ξh(t)||2 + ||ηh(t)||2).

Since λ is well defined due to the regularity hypotheses on the solution (H ,E) and (Hh,Eh),

ε0(ξh, ξh) + µ0(ηh, ηh) + +
1

ε0ω2
pe

(ξ̃h, ξ̃h) +
1

µ0ω2
pe

(η̃h, η̃h)

≤TC2
invδh

2min{s,k}||(H,E, J,K)||2C0([0,T ],Hs+1(Ω)) + Tλ
1

2δ

which concludes the proof.

Theorem 3.3.1. Let (E,H ,J ,K) ∈ C3([0, T ], L(Ω)) ∩C0([0, T ], (Hs+1(Ω))3). Under the

CFL condition Lemma(3.3.1), the following error estimate holds:

maxn=0,...,N(||E(tn)−En
h||2 + ||H(tn+ 1

2
)−Hn+ 1

2

h ||2 + ||J(tn+ 1
2
)− Jn+ 1

2

h ||2 + ||K(tn)−Kn
h ||2)

1
2 )

≤C(τ2||(E,H ,J ,K)||C3([0,T ],L2(Ω)) + hmin{s,k}||(H ,E,J ,K)||C0([0,T ],Hs+1(Ω))).
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Proof.

Using the triangle inequality and Lemma(3.3.3) and (3.3.4), we can easily get the error

estimate.

3.3.3 EXTENSIONS OF THE DG METHOD TO A PML MODEL

In this section, we extend the above DG method developed for a metamaterial model

to a perfectly matched layer (PML) model developed in 1997 [62]. Following the notation

of [62], we assume that the PML is a cubical simulation domain, with face regions having

absorbing layers with only one normal direction, edge regions being intersection of two

face regions, and the corners representing the overlapping parts of three face regions. The

complete PML governing equations for the corner region are [62, Eq. (B.4)],

∂E

∂t
+D1E =

1

ε0
∇×H − 1

ε0
J (3.98)

∂J

∂t
+D2J = ε0D3E (3.99)

∂H

∂t
+D1H = − 1

ε0
∇×E − 1

ε0
K (3.100)

∂K

∂t
+D2K = µ0D3H (3.101)

where we denote the 3×3 diagonal matrices D1 = diag(δy+δz−δx, δz+δx−δy, δx+δy−δz),

D2 = diag(δx, δy, δz), D3 = diag((δx − δy)(δx − δz), (δy − δx)(δy − δz), (δz − δx)(δz − δy)).

Here δx, δy and δz are nonnegative functions and represent the damping variations along

the x, y and z directions, respectively. Usually, quadratic profiles are chosen for δx, δy and

δz [57]. Note that the model (3.98)-(3.101) is the same as (5.12) of Turkel and Yefet [57]

(with the assumption that ε0 = µ0 = 1) and is well posed mathematically because it is a

symmetric hyperbolic system (i.e., the standard Maxwell equations) plus lower order terms

[57, p. 545]. Through a simple modification of (3.54), we can obtain the following fully
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discontinuous Galerkin scheme for the PML model (3.98)-(3.101):

∫

Ti

En+1
i −En

i

τ
· ui =

1

ε0

∫

Ti

∇× ui ·H
n+ 1

2
i − 1

ε0

∫

Ti

J
n+ 1

2
i · ui (3.102)

− 1

ε0

∑

k∈νi

∫

aik

ui · ({H
n+ 1

2
h }ik × nik)−

∫

Ti

D1
En+1

i +En
i

2
· ui

(3.103)

∫

Ti

H
n+ 3

2
i −Hn+ 1

2
i

τ
· vi = − 1

µ0

∫

Ti

∇× vi ·En+1
i − 1

µ0

∫

Ti

Kn+1
i · vi (3.104)

+
1

µ0

∑

k∈νi

∫

aik

vi · ({En+1
h }ik × nik)−D1

∫

Ti

H
n+ 3

2
i +H

n+ 1
2

i

2
· vi

(3.105)

∫

Ti

J
n+ 3

2
i − Jn+ 1

2
i

τ
· φi +D2

∫

Ti

J
n+ 3

2
i + J

n+ 1
2

i

2
· φi = ε0D3

∫

Ti

En+1
i · φi (3.106)

∫

Ti

Kn+1
i −Kn

i

τ
·ψi +D2

∫

Ti

Kn+1
i +Kn

i

2
·ψi = µ0D3

∫

Ti

H
n+ 1

2
i · ψi (3.107)

(3.108)

3.3.4 NUMERICAL RESULTS

For simplicity, here we only consider the 2D implementation, although the 3D case is

quite similar (yet it requires much longer run time). The first two examples reproduce

simulations performed in [44] by a different method.

Example 3.3.1. In this example, we will check the convergence rate O(τ2+hmin(s,k)) of this

DGTD method for Maxwell’s equations in Metamaterials. We will use the same set up as

example(3.2.1). We solved this example with various time step sizes τ and uniformly refined

meshes. In our experiments, we tested basis functions of order N = 1, 2 and 3. Selected

numerical results are presented in Tables (3.6)-(3.8). Many numerical tests suggest that our

scheme has the following error estimate:

maxm≥1(||Hm−Hm
h ||L∞(Ω)+||Em−Em

h ||L∞(Ω)+||Jm−Jm
h ||L∞(Ω)+||Km−Km

h ||L∞(Ω)) ≤ Chk,

whereHm andHh denote the analytic and numerical solutions at time step m, respectively,
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and k ≥ 1 is the order of the polynomial basis function. Note that in Table 3.8 the

convergence rates degenerate when the meshes become finer. We believe that this is caused

by the violation of the CFL condition for finer meshes 1√
ε0µ0

τ ≤ Ch. To confirm this

argument and the long time stability of our scheme, we increased the resolution of this

example to order N = 3 and used the smaller time step τ = 10−8 for 1000 time steps so

that we can compare the results obtained in Table 3.8 at the same ending time. Results

obtained with order N = 3, and τ = 10−8 are shown in Table 3.9.

Table 3.6: The L2 errors obtained after 10 steps with τ = 10−6 and k = 1.

Meshes h = 1
4

h = 1
8

rate h = 1
16

rate h = 1
32

rate h = 1
64

rate

Hx 3.5601e-6 1.7805e-6 0.9996 8.9024e-7 1.0000 4.4512e-7 1.0000 2.2256e-7 1.0000
Hy 3.5601e-6 1.7805e-6 0.9996 8.9024e-7 1.0000 4.4512e-7 1.0000 2.2256e-7 1.0000
Ez 7.1211e-6 3.5614e-6 0.9997 1.7807e-6 1.0000 8.9037e-7 1.0000 4.4518e-7 1.0000
Kx 1.5812e-10 7.9078e-11 0.9997 3.9540e-11 1.0000 1.9770e-11 1.0000 9.8849e-12 1.0000
Ky 1.5812e-10 7.9078e-11 0.9997 3.9540e-11 1.0000 1.9770e-11 1.0000 9.8849e-12 1.0000
Jz 3.8655e-10 1.9332e-10 0.9997 9.6662e-11 1.0000 4.8331e-11 1.0000 2.4165e-11 1.0000

Table 3.7: The L2 errors obtained after 10 steps with τ = 10−6 and k = 2.

Meshes h = 1
4

h = 1
8

rate h = 1
16

rate h = 1
32

rate h = 1
64

rate

Hx 3.5938e-7 9.0173e-8 1.9947 2.2564e-8 1.9987 5.6425e-9 1.9996 1.4115e-9 1.9991
Hy 3.5938e-7 9.0173e-8 1.9947 2.2564e-8 1.9987 5.6425e-9 1.9996 1.4115e-9 1.9991
Ez 7.1869e-7 1.8033e-7 1.9947 4.5122e-8 1.9987 1.1284e-8 1.9996 2.8226e-9 1.9992
Kx 1.5961e-11 4.0048e-12 1.9947 1.0021e-12 1.9987 2.5059e-13 1.9996 6.2685e-14 1.9991
Ky 1.5961e-11 4.0048e-12 1.9947 1.0021e-12 1.9987 2.5059e-13 1.9996 6.2685e-14 1.9991
Jz 3.9013e-11 9.7886e-12 1.9948 2.4494e-12 1.9987 6.1250e-13 1.9996 1.5322e-13 1.9991

Table 3.8: The L2 errors obtained after 10 steps with τ = 10−6 and k = 3.

Meshes h = 1
4

h = 1
8

rate h = 1
16

rate h = 1
32

rate h = 1
64

rate

Hx 2.5657e-8 3.2197e-9 2.9944 4.0580e-10 2.9881 7.0506e-11 2.5250 4.9745e-11 0.5032
Hy 2.5657e-8 3.2197e-9 2.9944 4.0580e-10 2.9881 7.0506e-11 2.5250 4.9745e-11 0.5032
Ez 5.0887e-8 6.3846e-9 2.9946 8.0478e-10 2.9879 1.4040e-10 2.5191 9.9482e-11 0.4970
Kx 1.1396e-12 1.4301e-13 2.9943 1.8017e-14 2.9887 3.0893e-15 2.5440 2.1490e-15 0.5236
Ky 1.1396e-12 1.4301e-13 2.9943 1.8017e-14 2.9887 3.0893e-15 2.5440 2.1490e-15 0.5236
Jz 2.7622e-12 3.4656e-13 2.9946 4.3677e-14 2.9882 7.5786e-15 2.5269 5.3397e-15 0.5052

Comparing Table 3.9 with Table 3.8, we see that the results obtained with the smaller

time step τ = 10−8 show O(h3) convergence rate very well, and the errors are more accurate

(about one order of magnitude) than those obtained with τ = 10−6 . To check the long
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Table 3.9: The L2 errors obtained after 1000 steps with τ = 10−8 and k = 3.

Meshes h = 1
4

h = 1
8

rate h = 1
16

rate h = 1
32

rate h = 1
64

rate

Hx 2.5657e-8 3.2194e-9 2.9945 4.0280e-10 2.9987 5.0365e-11 2.9996 6.3150e-12 2.9956
Hy 2.5657e-8 3.2194e-9 2.9945 4.0280e-10 2.9987 5.0365e-11 2.9996 6.3150e-12 2.9956
Ez 5.0887e-8 6.3839e-9 2.9948 7.9872e-10 2.9987 9.9867e-11 2.9996 1.2522e-11 2.9955
Kx 1.2650e-12 1.5872e-13 2.9946 1.9859e-14 2.9986 2.4831e-15 2.9996 3.1162e-16 2.9943
Ky 1.2650e-12 1.5872e-13 2.9946 1.9859e-14 2.9986 2.4831e-15 2.9996 3.1162e-16 2.9943
Jz 2.5136e-12 3.1534e-13 2.9948 3.9453e-14 2.9987 4.9330e-15 2.9996 6.1881e-16 2.9949

CPU(s) 6.357308 8.910876 12.230510 38.56634 140.381352

Table 3.10: The L2 errors obtained after 100,000 steps with τ = 10−8 and k = 3.

Meshes h = 1
4

h = 1
8

rate h = 1
16

rate h = 1
32

rate h = 1
64

rate

Hx 2.5058e-6 3.1444e-7 2.9944 3.9507e-8 2.9926 5.0192e-9 2.9766 6.5589e-10 2.9359
Hy 2.5058e-6 3.1444e-7 2.9944 3.9507e-8 2.9926 5.0192e-9 2.9766 6.5589e-10 2.9359
Ez 5.1349e-6 6.4365e-7 2.9960 8.0113e-8 3.0063 9.8104e-9 3.0297 1.1392e-9 3.1063
Kx 1.2451e-8 1.5618e-9 2.9950 1.9565e-10 2.9969 2.4595e-11 2.9918 3.1372e-12 2.9708
Ky 1.2451e-8 1.5618e-9 2.9950 1.9565e-10 2.9969 2.4595e-11 2.9918 3.1372e-12 2.9708
Jz 2.5239e-8 3.1651e-9 2.9953 3.9491e-10 3.0027 4.8830e-11 3.0157 5.8722e-12 3.0558

time stability, we run the scheme with order N = 3, and τ = 10−8 for 100,000 time

steps. The errors obtained are presented in Table 3.10, which still shows O(h3) convergence

rate very well. The comparison between Tables 3.9 and 3.10 shows that the errors of all

fields grow linearly in time: Hx , Hy and Ez exhibit this property quite clearly, but the

induced currentsKx and Jz do not. Still, the latter have to be considered to have solutions

proportional to τ . Furthermore, our results show that the algorithm is quite efficient by

considering the CPU time (in seconds) recorded in Table 3.9. Exemplary solutions for Ez

and the corresponding pointwise errors obtained with order N = 3, and τ = 10−8 at the

end of 100,000 time steps are presented in Fig(3.13).

Example 3.3.2. Here we consider the 2D transverse magnetic PML model obtained from
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Figure 3.13: Results obtained with order N = 3, and τ = 10−8 after 100,000 time steps.
Top row (with h = 1

16): Ez (left) and its pointwise error (right); bottom row (with h = 1
32):

Ez (left) and its pointwise error (right)

(3.98)-(3.101):

∂Hx

∂t
= − 1

µ0

∂Ez

∂y
− 1

µ0
Kx + (δx − δy)Hx

∂Hy

∂t
=

1

µ0

∂Ez

∂x
− 1

µ0
Ky − (δx − δy)Hy

∂Ez

∂t
=

1

ε0
(
∂Hy

∂x
− ∂Hx

∂y
)− 1

ε0
Jz − (δx + δy)Ez

∂Jz
∂t

= ε0δxδyEz

∂Kx

∂t
= −δxKx + µ0(δx − δy)δxHx

∂Ky

∂t
= −δyKy − µ0(δx − δy)δyHy,
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where the subscripts x, y and z denote the corresponding components.

For this model, we assume that the physical domain Ω = (−0.1, 0.1)2 is surrounded

by a perfectly matched layer of thickness of 0.05, i.e., the real computational domain is

(−0.15, 0.15)2 . To test the effectiveness of the PML, we assume that there exists an initial

electric source

Ez(x, y, 0) =





cos8( πr
2r0

) if r ≤ r0;

0 if r ≥ r0.

where r0 = 0.05, r =
√
x2 + y2.

The damping function δx is chosen as:

δx(x, y) =





δ0(x− 0.1)2 if x ≥ 0.1;

δ0(x+ 0.1)2 if x ≤ −0.1;

0 elsewhere.

Function δy has the same form but varies with respect to the y variable.

In our test, we choose the time step 1
6 × 10−12, the damping constant δ0 = 1, the basis

function order N = 2 on all elements, and the simulation time τ ∈ (0, 3000τ) such that the

wave front has reached the simulation boundary. Some snapshots at various time steps are

presented in Figs. (3.14) and (3.15), which shows that the PML absorbs the wave reflections

at the interfaces very well.

Example 3.3.3. In [61], simulations are performed for double negative (DNG) metama-

terial for two cases: (1) when the index of refraction n ≈ −1 and (2) when n ≈ −6. The

general index of refraction, ni, where i stands for the index tracking the medium the wave

is propagating through, is given by the expression

ni =

√
εi
ε0

√
µi
µ0

=
√
εr
√
µr.

Since both εr and µr are negative, ni is negative as well. Also, [61] adopted two lossy
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Figure 3.14: Top row: contour plot of Ez (left) and H field (right) at time step 500 in
metamaterials with PML boundary conditions; bottom row: the same plots at time step
1000.

Drude polarization and magnetization models:

ε(ω) = ε0(1−
ω2
pe

ω(ω − jγe)
) (3.109)

µ(ω) = µ0(1−
ω2
pm

ω(ω − jγm)
). (3.110)

In our simulations, we chose a TE wave which consists of the field components Hx , Hy

, and Ez. Wave impedance is given by ηi =
√
µi√
εi
. If we let ‘trans’ mean transmitted and

‘inc’ means incident, a matched slab is defined by ηtrans = ηinc . For simulations of both

cases,n ≈ −1 and n ≈ −6, matched slabs are considered, in which case ωpe = ωpm = ωp
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Figure 3.15: Top row: contour plot of Ez (left) and H field (right) at time step 2000 in
metamaterials with PML boundary conditions; bottom row: the same plots at time step
3000.

and Γe = Γm = Γ. In all cases, Γ = 108 s−1 , frequency is f0 = 30GHz, the time step,

∆t = 1
6 × 10−12 s, and the simulation domain is [0, 0.083] × [0, 0.06]. The boundary is a

PML with a thickness of 0.0008. Also, for both cases, multiple cycle m−n−m pulses were

used to generate the smooth source, thereby producing minimal noise.
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These pulses are given by

f(t) =





0 for t < 0

gon(t)sin(ωt) for 0 < t < mTp

sin(ωt) for mTp < t < (m+ n)Tp

goff (t)sin(ωt) for (m+ n)Tp < t < (m+ n+m)Tp

0 for (m+ n+m)Tp < t

where xon(t) =
t

mTp
, xoff =

t−(m+n)Tp

mTp
, and the continuous functions in C2 are

gon = 10x3on(t)− 15x4on(t) + 6x5on(t)

goff = 1− [10x3off (t)− 15x4off (t) + 6x5off (t)].

For the case when n ≈ −1, ωp = 2π
√
2f0 ≈ 2.66573 × 1011 rad/s, so Γ = 3.75 × 10−4.

One can easily see that given this value of ωp, the real part of both εr and µr is −1, and

thus n ≈ −1 since n =
√
εr
√
µr. Similarly, when n ≈ −6, ωp = 2π

√
7f0 ≈ 4.98712 × 1011

rad/s, so Γ = 2.01×10−4ωp. The Gaussian beam varies spatially as exp(−x2/ω2
0), where ω0

is the “waist”. The single slab has a dimension of [0.024, 0.044]× [0.006, 0.058]. The source

is placed at x = 0.004.
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(a) Ez at time step=500 (b) Ez at time step=1000

(c) Ez at time step=1500 (d) Ez at time step=2000

(e) Ez at time step=2500 (f) Ez at time step=3000

Figure 3.16: Single slab metamaterial with n ≈ −1
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(a) Ez at time step=500 (b) Ez at time step=1000

(c) Ez at time step=1500 (d) Ez at time step=2000

(e) Ez at time step=2500 (f) Ez at time step=3000

Figure 3.17: Single slab metamaterial with n ≈ −6
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Chapter 4

HOMOGENIZATION OF MAXWELL’S EQUATIONS IN

DISPERSIVE MEDIA BY DG

In this dissertation, we talk about the homogenization of Periodically varying coefficients

for Maxwell’s equations in dispersive media by the Discontinuous Galerkin Method. This

section is based on our work [46]. Several techniques have appeared for solving the time-

dependent Maxwell’s equations with periodically varying coefficients. For the first time, we

apply the discontinuous Galerkin (DG) method to this homogenization problem in dispersive

media. For simplicity, our focus is obtaining a solution in two-dimensions (2D) using 2D

corrector equations. Our numerical results show the DG method to be both convergent and

efficient. Furthermore, our solution is consistent with previous treatments and theoretical

expectations.

We study the periodic homogenization of Maxwell’s equations for dispersive media in the

time domain, in a material presenting heterogeneous micro structures (composite materials).

We shall first note that the study of the DG method for Maxwell’s equations in dispersive

media(whose physical parameters such as permitivity and/or permeability are wavelength

dependent) is limited. It just has been developed recently[34, 35, 37, 49, 58]. In [35], a fully

implicit DG method for solving dispersive media and its convergence rate are given, but

the governing function doesn’t have a rapidly oscillating coefficient. This is the first work

to combine both of these properties using DG-FEM.

When the period of the structure is small compared to the wavelength, the coefficients

in Maxwell’s equations oscillate rapidly. These oscillating coefficients are difficult to treat

numerically in simulations. Homogenization is a process in which the composite material

having a microscopic structure is replaced with an equivalent material having macroscopic,

homogeneous properties. The fields are computed only in the unit cell and then generalized

over the whole domain. Therefore, given a large finite lattice of heterogeneous composites,

the time of computation and the memory requirement can be greatly reduced without the
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loss of accuracy.

Bensoussan, Lions, and Papanicolaou [8] studied the homogenization method applied to

Maxwell’s type equations with rapidly oscillating coefficients early on and derived conver-

gence results. The mathematical literature on electromagnetics in complex media is not, as

yet, very extensive. The bigger part deals with the study of time-harmonic waves in chiral

media or elliptic problems. See [5, 15, 30, 38, 54]for a comprehensive account of research ac-

tivities in this direction. The literature in the time domain is even more restricted. We refer

to [7, 25] and references therein. In [7], Barbatis and Stratis studied the periodic homoge-

nization of Maxwell’s equations for dissipative bianisotropic media in the time domain, both

in R3 and in a bounded domain with the perfect conductor boundary condition, but they

did not show any numerical results to support their analysis. Furthermore, Bossavit, Griso,

and Miara [11] studied the behavior of the electromagnetic field of a medium presenting

periodic microstructures made of a bianisotropic material by the periodic unfolding method

introduced by D. Cioranescu, A. Damlamian and G. Griso in the abstract framework of

stationary elliptic equations [17]. They talked about the treatment of time-dependent coef-

ficients (nonstationary) which yields a limit constitutive law different from the original one,

in particular the convolution operator that accounts for memory effects. Wellander [59]

used the two-scale convergence method (see, [3]) to obtain convergence results for the ho-

mogenization method for the time-dependent Maxwell’s equations with linear constitutive

relations in a heterogeneous medium. He further expanded them to treat cases in which the

material possesses a nonlinear conductivity, or is possibly nonperiodic. Banks et al. [6] used

the periodic unfolding method presented in [17, 18] in the abstract framework of stationary

elliptic equations to simulate the electromagnetic field in a composite material exhibiting

heterogeneous microstructures. In [15], they discussed the multiscale analysis of Maxwell’s

equations in composite materials with a periodic microstructure, and they showed that

higher-order correctors are essential for solving Maxwell’s equations in composite materials

when ε is not sufficiently small. However, they only dealt with a time-harmonic problem

by the edge element method. The engineering literature is dominated by the simple mix-

ture formulae, which are derived using physical arguments. For an excellent overview and

history of the mixture formulae, see [54, 55].
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Our effort here is motivated by the homogenization of time-harmonic Maxwell’s equa-

tions or boundary value problems. This topic has not been studied when the time domain

and the dispersive media are involved in the Maxwell’s equations in a heterogeneous mate-

rial. we thus need to consider two factors: one is the homogenization of rapidly oscillating

coefficients, and one is the fully DG scheme to solve the corrector function in the unit cell

and the homogenized Maxwell’s equations in the whole domain. Our method is based on

homogenization of equations of maxwell’s type from [8, 15] to simulate the periodic ho-

mogenization of Maxwell’s equations for dispersive media in the time domain, in a material

presenting heterogeneous microstructures by DG finite element method. We use the first

order corrector because we assume ε is small enough. Refer to [15] for a comparison between

the first order and the second order corrector functions. To our best knowledge, this is the

first time using DG finite element method to solve the homogenization of periodically vary-

ing coefficients for Maxwell’s equations in dispersive media in time domain. We are able to

obtain the convergence rate for the fully DG scheme of the Homogenization method. We

could not test the convergence rate numerically due to the difficulties of finding the exact

solution to the Maxwell’s equations in heterogeneous materials, and multiple factors of the

convergence rate. However, we can test the schemes stability and convergence. Also a com-

parison is made between the effective coefficients obtained by the homogenization method

presented here and those computed by the traditional Maxwell Garnett mixture formula

in different shapes of inclusions while [6] only compares them in the circular inclusion. A

comparison between the asymptotic homogenization approach and the M-G formula for 3-D

periodic lattices featuring complex-media inclusions with bianisotropic properties is given

in [54].

4.1 THE HOMOGENIZATION BY DG METHOD

4.1.1 THE GOVERNING EQUATIONS

The governing equations for the isotropic homogeneous microstructures [35] are

Ett +∇× (c2v∇×E) + ω2
pE − J(E) = f in Ω× (0, T ), (4.1)
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where E is the electric field, cv is the speed of light, ωp is the plasma frequency, f is an

added source term, and J is the polarization current density represented as

J(E) ≡ J(x, t;E) = νω2
p

∫ t

0
e−ν(t−s)E(x, s)ds. (4.2)

Here ν ≥ 0 is the electron-neutron collision frequency. It is to be emphasized that cv

is constant in (4.1). In this paper we examine the case that cv = 1/
√
εµ is a periodic

function of position, where ε and µ are the permitivity and permeability of the composite

material. Specifically, we consider cv = cv(
x
ε ) to be rapidly oscillating spatial functions,

where ε > 0 denotes the relative size of a periodic microstructure of the composite material.

Our governing equations now model isotropic heterogeneous microstructures (composite

materials):

Ett +∇× (c2v(
x

ε
)∇×E) + ω2

pE − J(E) = f in Ω× (0, T ), (4.3)

Here Ω is a bounded Lipschitz polyhedron in Rd(d = 2, 3). Moreover, we assume that the

boundary ∂Ω of Ω is a prefect conductor so that

n×E = 0 on ∂Ω× (0, T )

Where n denotes the unit outward normal of ∂Ω. Furthermore, we assume the initial

conditions for (4.3) are given as

E(x, 0) = E0(x) and Et(x, 0) = E1(x),

where E0(x) and E1(x) are some given functions.

4.1.2 THE HOMOGENIZED PROBLEM

Before we homogenize the governing equations, we treat a simpler problem for the

purpose of introducing the homogenization technique. Consider the following equations
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with rapidly oscillating coefficients (from [15]):

∇× (Aε∇× uε)− ω2uε = f(x), x ∈ Ω,

∇ · uε = 0, x ∈ Ω, (4.4)

uε × n = 0, x ∈ ∂Ω

where Aε(x) = (aεij(x)) = (aij(
x
ε )) for the 1-periodic functions aij(

x
ε ), and Ω ∈ R3 is a

bounded Lipschitz polygonal convex domain or a smooth domain with a microstructure.

For the requirements and properties of a coefficient matrix Aε, refer to [15]. Letting ξ = x
ε ,

the reference periodic cell Q is, without loss of generality, defined as Q = {ξ = {ξ1, ξ2, ξ3} :

0 < ξi < 1, i = 1, 2, 3}. The construction of the homogenized problem requires solving for

the matrix valued function θ(ξ) = {θ1,θ2,θ3}. The corrector subterms θp are solutions to

the corrector equations

∇ξ × (A(ξ)∇ξ × θp(ξ)) = −∇ξ × (A(ξ)ep), ξ ∈ Q,

∇ξ · θp(ξ) = 0, ξ ∈ Q, (4.5)

θp(ξ)× n = 0, ξ ∈ ∂Q,

where ep denotes any of e1 = {1, 0, 0}, e2 = {0, 1, 0}, e3 = {0, 0, 1}.

There are two methods for obtaining the homogenized coefficients matrix Â:

1. The first method is to solve for the components χj(ξ) of the matrix-valued function

χ(ξ) = (χ1(ξ),χ2(ξ),χ3(ξ)) from the equation

∇ξ · (A−1(ξ)∇ξχ
j(ξ)) = −∇ξ · (A−1(ξ)ej), (4.6)

We then define

Â = (M(A−1(ξ)(I3 +∇ξχ(ξ)))
−1,

where Mv =
∫
Q v(ξ) dξ.
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2. The second method is to set

Â = M(A(ξ) +A(ξ)∇ξ × θ(ξ)). (4.7)

Now we can define the solution u0(x) of the homogenized equations for (4.4) as

∇× (Â∇× u0)− ω2u0 = f(x), x ∈ Ω,

∇ · u0 = 0, x ∈ Ω, (4.8)

u0 × n = 0, x ∈ ∂Ω.

The first order multiscale asymptotic expansion for problem (4.4):

uε(x) = u
0(x) + εθ(ξ)∇× u0(x), (4.9)

4.1.3 REDUCTION TO TWO SPATIAL DIMENSIONS

When dealing with 2D problems, some changes need to be made to the corrector func-

tion.

In a similar manner to the three-dimensional case, we may construct the corrector function

for 2D, which involves solving for the corrector W (ξ), a vector function in 2D.

∇ξ × (a(ξ)∇ξ ×W (ξ)) = −∇ξ × a(ξ), ξ ∈ Q,

∇ξ ·W (ξ) = 0, ξ ∈ Q, (4.10)

W (ξ)× n = 0, ξ ∈ ∂Q,

Here, a(ξ) is the coefficient, a scalar function, and Q is the reference cell of the periodic

structure that occupies Ω ∈ R2. Then the homogenized coefficient â is

â =

∫

Q
a(ξ) + a(ξ)∇ξ ×W (ξ)dξ (4.11)
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and the corresponding homogenized equations are:

∇× (â∇× u0)− ω2u0 = f(x), x ∈ Ω,

∇ · u0 = 0, x ∈ Ω, (4.12)

u0 × n = 0, x ∈ ∂Ω.

The first order multiscale asymptotic expansion for problem (4.4) in 2D is

uε(x) = u
0(x) + εW (ξ)∇× u0(x). (4.13)

For proofs of the above homogenization, refer to [8].

4.2 A FULLY DISCRETE DG SCHEME

Now we can proceed to construct the DG finite element scheme for this homogenization

method. Notice that there are two types of equations to solve for. One is the corrector

function in the unit cell, and the other is the homogenized Maxwell’s equation over the

whole domain.

1. A DG finite element of scheme for the corrector functions in unit cell Q.

We consider a shape-regular mesh Th0 that partitions the unit cell Q into disjoint

tetrahedral (or other types, e.g., triangular) elements {K}, such that Q =
⋃

K∈Th0
K.

We denote the diameter of K by hK , and the mesh size h0 by h0 = maxK∈Th0
hK .

Furthermore, we denote the set of all interior faces by F I
h0
, the set of all boundary

faces by FB
h0
, and the set of all faces by Fh0 = F I

h0

⋃
FB
h0
.

We assume that the finite element space V h0 is given by

V h0 = {v ∈ L2(Ω) : v|K ∈ (Pl(K))d,K ∈ Th0}, d = 2, 3, l ≥ 1,

where Pl(K) denotes the space of polynomials of total degree at most l on K. To
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construct the DG scheme, we need a bilinear form ah0 defined on V h0×V h0 as follows:

ah0(u,v) =
∑

K∈Th0

∫

K
A(ξ)∇× u · ∇ × vdx−

∑

f∈Fh0

∫

f
[[u]]T · {{A(ξ)∇× v}}dA

−
∑

f∈Fh0

∫

f
[[v]]T · {{A(ξ)∇× u}}dA+

∑

f∈Fh0

∫

f
a[[u]]T · [[v]]TdA.

Here [[v]]T and {{v}} are the standard notation for the tangential jumps and averages

of v across an interior face f = ∂K+
⋂
∂K− between two neighboring elements K+

and K−:

[[v]]T = n+ × v+ + n− × v−, {{v}} = (v+ + v−)/2,

where v± denotes the traces of v from within K±, and n± denote the unit outward

normal vectors on the boundaries ∂K±, respectively. While on a boundary face f =

∂K
⋂
∂Ω, we define [[v]]T = n × v and {{v}} = v. Finally, a is a penalty function,

which is defined on each face f ∈ Fh0 as:

a|f = γA(ξ)h−1
0

where h0|f = min{hK+ , hK−} for an interior face f = ∂K+
⋂
∂K−, and h0|f = hk

for a boundary face f = ∂K
⋂
∂Q. The penalty parameter γ is a positive constant

and has to be chosen sufficiently large to guarantee the coercivity of ah0(·, ·).

For the corrector equation:

∇ξ × (A(ξ)∇ξ × θp(ξ)) = −∇ξ × (A(ξ)ep), ξ ∈ Q,

∇ξ · θp(ξ) = 0, ξ ∈ Q, (4.14)

θp(ξ)× n = 0, ξ ∈ ∂Q,

Multiplying both sides of the above equation by v ∈ V h0 and integrating over Q leads
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to the discrete DG scheme for the corrector equation:

∑

K∈Th0

∫

K

A(ξ)∇ξ × θph0
(ξ) · ∇ξ × vdξ −

∑

f∈Fh0

∫

f

[[θph0
(ξ)]]T · {{A(ξ)∇ξ × v}}dA

−
∑

f∈Fh0

∫

f

[[v]]T · {{A)(ξ)∇ξ × θph0
(ξ)}}dA+

∑

f∈Fh0

∫

f

a[[θph0
(ξ)]]T · [[v]]dA (4.15)

= −
∑

K∈Th0

∫

K

(A(ξ)ep) · ∇ξ × v.

Similarly, we get the discrete DG scheme for the corrector equation for 2D:

∑

K∈Th0

∫

K

A(ξ)∇ξ ×W p
h0
(ξ) · ∇ξ × vdξ −

∑

f∈Fh0

∫

f

[[W p
h0
(ξ)]]T · {{A(ξ)∇ξ × v}}dA

−
∑

f∈Fh0

∫

f

[[v]]T · {{A)(ξ)∇ξ × θph0
(ξ)}}dA+

∑

f∈Fh0

∫

f

a[[W p
h0
(ξ)]]T · [[v]]dA (4.16)

= −
∑

K∈Th0

∫

K

(A(ξ)ep) · ∇ξ × v.

2. DG finite element for the homogenized Maxwell’s equations.

We consider a shape-regular mesh Th that partitions the domain Ω into disjoint tetra-

hedral (or other types, e.g., triangular) elements {K}, such that Ω =
⋃

K∈Th
K. We

denote the diameter of K by hK , and the mesh size h by h = maxK∈Th
hK . Further-

more, we denote the set of all interior faces by F I
h , the set of all boundary faces by

FB
h , and the set of all faces by Fh = F I

h

⋃
FB
h .

We assume that the finite element space V h is given by

V h = {v ∈ L2(Ω) : v|K ∈ (Pl(K))d,K ∈ Th}, d = 2, 3, l ≥ 1,

As usual, we can define the solution E0 of the homogenized Maxwell equation for

(4.3) as

E0
tt +∇× (Â∇×E0) + ω2

pE
0 − J(E0) = f in Ω× (0, T ), (4.17)

n×E = 0 on ∂Ω× (0, T )

Here, Â is the homogenized coefficient matrix of c2v(
x
ε ) (for 2D, we use the scalar â

instead).
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Using the above homogenization method, we get the numerical homogenized coefficient

Âh0 or âh0 of c2v(
x
ε ) for 3D and 2D respectively,

Âh0 =

∫

Q
[A(ξ) +A(ξ)∇ξ × θh0(ξ)]dξ (4.18)

âh0 =

∫

Q
[a(ξ) + a(ξ)∇ξ ×W h0(ξ)]dξ.

To define a fully discrete scheme of the homogenized Maxwell equation, we divide

the time interval (0, T ) into M uniform subintervals by points 0 = t0 < t1 < t2 <

... < tM = T , where tk = kτ , and denote Ik = [tk−1, tk+1]. Moreover, we define

uk = u(., tk) for 0 ≤ k ≤M , and denote the difference operators:

uk = (uk+1 + uk−1)/2 δ2τu
k = (uk+1 − 2uk + uk−1)/τ2.

Now we can formulate an implicit scheme for (4.17): for any 1 ≤ k ≤ M − 1, find

E0,k+1
h ∈ V h such that

(δ2τE
0,k
h ,v) + ah(E

0,k
h ,v) + ω2

p(E
0,k
h ,v)− (J0,k

h ,v) = (f
k
,v), ∀v ∈ V h. (4.19)

Similarly, we define the bilinear form ah on V h × V h as follows (use âh0 for 2D):

ah(u,v) =
∑

K∈Th

∫

K
Âh0∇× u · ∇ × vdx−

∑

f∈Fh

∫

f
[[u]]T · {{Âh0∇× v}}dA

−
∑

f∈Fh

∫

f
[[v]]T · {{Âh0∇× u}}dA+

∑

f∈Fh

∫

f
a[[u]]T · [[v]]dA.

Here a is a penalty function, which is defined on each face f ∈ Fh as

a|f = γÂh0h
−1,

where h|f = min{hK+ , hK−} for an interior face f = ∂K+
⋂
∂K−, and h|f = hk for

a boundary face f = ∂K
⋂
∂Ω. The penalty parameter γ is a positive constant and

has to be chosen sufficiently large to guarantee the coercivity of ah(·, ·).

The initial approximation is

E0,0
h =

∏

h

E0
0, E0,1

h =
∏

h

(E0
0 + τE0

1 +
τ2

2
E0

tt(0)), (4.20)
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where J0,k
h is defined by the recursive formula:

J0,0
h = 0, J0,k

h = e−ντJ0,k−1
h +

νω2
p

2
τ(e−ντE0,k−1

h +E0,k
h ), k ≥ 1. (4.21)

In (4.20), E0
tt(0) can be obtained by setting t = 0 in (4.17). With the corrector θh0 and

the homogenized solution E0,k+1
h , we can use the multiscale asymptotic expansions to

get Ek+1
h :

Ek+1
h,h0

(x) = E0,k+1
h (x) + εθh0(ξ)∇×E0,k+1

h (x) + ... (4.22)

For 2D, we use W h0(ξ) instead of θh0(ξ) in (4.22).

We now provide some numerical results to support our DG finite element homogenization

method. The first and second examples are used to test the homogenization method. In

the first example, we used the time-harmonic Maxwell’s equations with rapidly oscillating

coefficients to test if our DG finite element homogenization is convergent and stable. The

second example is to compare our method to the theoretical M-G method in different kinds

of inclusions, in which we will see the similarities and differences between our method and

the M-G method. Example 3 is focused on solving our governing equations in a periodic

heterogeneous medium. For simplicity, all of our problems are based on 2D (Ω = (0, 1) ×

(0, 1)). The basis function for all problems is composed of a discontinuous linear finite

element, and the mesh is uniformly refined triangular elements.

The implementation of the Multiscale DG finite element method for solving the Maxwell’s

equations (4.3) in composite materials consists of the following parts,

• Part I. Compute the cell functions (4.15) ((4.16) for 2D) for the corrector θh0 (W h0

for 2D) on a reference cell Q = (0, 1)2.

• Part II. After solving (4.18) for the homogenized coefficient Âh0 (âh0 for 2D), solve the

implicit DG finite scheme for modified homogenized Maxwell’s equations (4.19)-(4.21)

over the whole domain Ω.

• Part III. Calculate numerically the multiscale asymptotic expansions (4.22).
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4.3 NUMERICAL RESULTS

Example 4.3.1. To validate the homogenization method, we first test on the homogenized

problem. Comparing to [[15] example 5.1], we use the DG method to test the stability of

the DG homogenization method. We consider the same time-harmonic Maxwell’s equations

with rapidly oscillating coefficients given by

∇× (a(
x

ε
)∇× uε)− ω2uε = f(x), x ∈ Ω,

∇ · uε = 0, x ∈ Ω, (4.23)

uε × n = 0, x ∈ ∂Ω.

We assume that Ω = (0, 1)2 is a periodic structure, where ε = 1
100 , ω

2 = 1. The

coefficient a(xε ) is a continuous and rapidly oscillating periodic function, as in the following:

a(
x

ε
) =

20

(2 + 1.5sin(2π(xε ) + 0.75))(2 + 1.5sin(2π(yε ) + 0.75))

Let x = (x, y), and E1 be the multiscale DG finite element solution based on (4.13), with

f = (30, 30)T .

These figures ((4.1)-(4.3)) clearly show that our DG finite element homogenization method

is stable and convergent for time-harmonic Maxwell’s equations with rapidly oscillating

coefficients as the mesh size becomes smaller.

Example 4.3.2. The second example is to verify our method of finding homogenized co-

efficients. We will compare our numerical DG finite element method discussed here to the

theoretical mixture models, the Maxwell-Garnett formula. Here we will only show the result

from method 2 ((4.7) for 3D, (4.11) for 2D).

In Figure (4.5), we present a comparison of the homogenized coefficients in differently

shaped inclusions. We find that for a square or circle inclusion, our numerical method

produces almost the same coefficient as M-G formulas, which is best suited for smooth

canonical shapes(i.e., ellipses). When the shape is not smooth, the result produced by our
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Figure 4.1: unit cell mesh size 1/27, domain mesh size 1/23 for example (4.3.1)

method is bigger than the M-G result. In general, if you want to have a higher effective

coefficient, complex shaped inclusions should be used.

Example 4.3.3. In this problem we choose the material parameters ε = 2, µ = 1 inside

the inclusion. So c2v = 0.5 here inside the inclusion. The host medium is free space, and

the volume fraction is 0.4, with ωp = ν = 1. The source term f = 0 in Ω. We solve a
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Figure 4.2: unit cell mesh size 1/27, domain mesh size 1/24 for example (4.3.1)

two-dimensional version of (4.1) with initial conditions

E0 = E(x, y, 0) = (cos(πx)sin(πy), sin(πx)cos(πy))T

E1 = Et(x, y, 0) = e−τ (cos(πx)sin(πy), sin(πx)cos(πy))T

Note that ∇ ·Ei = 0 in Ω and n×Ei = 0 on ∂Ω, i = 0, 1. The time step size is chosen as

τ = 0.02. Since the exact solution is unknown, we just plot the numerical solution E at the

final time T = 1 obtained with h = 1
8 ,

1
16 ,

1
32 , ε = 10−5 and the unit cell mesh size h0 =

1
27
.

From these figures (4.6), we can clearly say that the numerical solution is convergent to
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Figure 4.3: unit cell mesh size 1/27, domain mesh size 1/25 for example (4.3.1)

the same solution for different meshes. This example illustrates that our DG homogenization

scheme is quite effective for heterogeneous periodic materials.
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inclusion.The host medium is free space. The mesh size is h0 = 1/27
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 SUMMARY

This dissertation further developed DG-FEM for solving Maxwell’s equations based

on the nodal discontinuous Galerkin method introduced by Hesthaven and Warburton in

([28, 29]). Prior to the present work, DG-FEM combined with RK schemes was used to solve

time difference problems, but a rigorous proof establishing the stability and convergence

rate of the fully discrete DG-FEM RK scheme was lacking. In chapter 3, such a proof was

presented. The analytic error estimate, O(hmin{s,k} + τ2), is consistent with the numerical

results previously found by J. Li [44]. It was further pointed out that this method of

proof works for any order RK scheme, which has important implications in any engineering

context that makes use of similar schemes. For example, the explicit low-storage version of

RK (LSERK) methods are widely used by engineers because of the significant reduction in

memory demands. These engineers typically solve PDEs in the element-wise semi-discrete

form using LSERK and DG-FEM without having established that their methods are actually

stable and convergent. In the case of Maxwell’s equations, this dissertation has justified

the use of these methods by providing a versatile way to prove that these schemes are

convergent.

In chapter 4, the DG-FEM was applied to solve Maxwell’s equations in metamaterials.

A new DG scheme was developed that uses a leap-frog time step in order to solve the

time domain Maxwell’s equations in metamaterials, as given in ([48]). A rigorous stability

proof and error estimates were provided. Although this scheme is implicit and is more

computationally expensive than RK-FEM, the numerical results show that its convergence

rate is CThk+1 due to the upwind flux, which is one order higher than the convergence rate

of RK-FEM. This is consistent with the results in other published works.

Chapter 4 also presented a second DG time difference DG-FEM for solving Maxwell’s
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equation in metamaterials. This method has an error estimate of O(hmin{s,k} + τ2) with

the use of a central flux and numerical results were provided to support the analytic error

estimate. Numerical simulations of wave propagation in double negative (DNG) metamate-

rials supplemented with PML boundary conditions were carried out using this method. The

simulations were designed to model the exotic phenomenon of backward wave propagation,

as discovered by previous investigators, and are the first to model this phenomenon using

DG-FEM.

In chapter 5, the homogenization multi-scale DG-FEM was developed for the first time.

Specifically, a solution to the time-dependent Maxwell’s equations with periodically varying

coefficients in dispersive media is found by the DG method. We carried out the fully DG

scheme for the homogenization method and were able to obtain its convergence rate. The

latter could not be tested numerically due to the lack of a known exact solution to Maxwell’s

equations in heterogeneous materials, as well as to the presence of multiple factors affecting

the convergence rate. However, we did show that our solution is convergent in (4.3.1)

and in (4.3.3). The comparison we made for the effective coefficients obtained by the

homogenization method versus those computed by the MG mixture formula both affirms

the correctness of our code and shows that we can solve Maxwell’s equations in arbitrarily

complicated shapes of inclusions. There are several follow-up works planned, including

more detailed simulations dealing with non-stationary coefficients as well as adding varying

coefficients in the convolution term of our governing equations.

5.2 FUTURE WORK

Since metamaterials are an extremely rich and exciting area for applying the DG-FEM,

with notable applications including invisibility cloaks, sub-wavelength imaging, and novel

antenna designs, most of the examples given in this dissertation can be considered a start-

ing point mainly aimed at reproducing simulation results already obtained using simpler

methods. The real power of DG-FEM will reveal itself when simulating realistic phenomena

with complicated geometries and material properties. For example, the DG homogenization

method can be used to simulate wave propagation in metamaterials constructed from peri-
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odic microstructures [12, 39], which could be used to both help build and understand actual

metamaterial devices. Experience has shown that applications such as this are computa-

tionally expensive, taking many days to run, especially if performed in 3D. The algorithms

underlying the implementation of DG-FEM are highly parallelizable, so another line of

future work involves writing a parallel version of my code to allow it to run on graphics

processing units.
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