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ABSTRACT 

 Vascular diseases such as atherosclerosis or aneurysmal disease preferentially 

affect different parts of the arterial system.  Despite this heterogeneous pattern of disease 

within the arterial system, the contribution of different smooth muscle cell phenotypes to 

this pattern has not been well studied.  We investigated aortic disease susceptibility and 

epigenetic differences within different regions of the murine aorta.  Quantitative analyses 

showed more numerous atherosclerotic plaques and larger aneurysms in the ascending 

aorta compared to the descending thoracic aorta in apoE–/– and fbn1C1039G/+ mice, 

respectively.  Interferon-γ and transforming growth factor-β responses, characteristic of 

these disease processes, were greater in the ascending vs. descending thoracic aorta.  

There was differential gene expression within the aorta and a “Hox code” was found for 

the murine arterial vasculature along the anterior–posterior axis.  Transplantation of 

ascending and descending thoracic aortic segments to the abdominal aorta of syngeneic 

recipients confirmed that the propensity for atherosclerotic disease and the expression of 

selective molecular markers were innate properties of the vessel wall and not dependent 

on regional hemodynamic factors or paracrine signals from surrounding tissues.  The 

epigenetic changes were also stable in cultured cells despite identical in vitro conditions.  

Our work supports the concept of intrinsic differences between vascular smooth muscle 

cells from various arteries that may play a role in disease pathogenesis. 
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INTRODUCTION 

 Vascular diseases such as atherosclerosis or aneurysms selectively affect different 

parts of the arterial system.  In humans, atherosclerosis involves the abdominal aorta 

much more than the thoracic aorta, and lesions tend to be much more prominent around 

the ostia of major branches (1-6).  Within the thoracic portion of the aorta, the descending 

aorta has more atherosclerosis than the ascending aorta.  In descending order after the 

lower abdominal aorta, the most extensively involved vessels are the coronary arteries, 

popliteal arteries, internal carotid arteries, and vessels of the circle of Willis (7).  

Similarly, aneurysmal disease in humans also show striking propensity for specific parts 

of the arterial vasculature, including the infrarenal abdominal aorta for atherosclerotic 

aneurysms and arterial bifurcations in the circle of Willis for saccular aneurysms (7).  

Aneurysms with a genetic inheritance show a striking predilection for different parts of 

the thoracic aorta.  Aneurysms associated with the FBN1 mutation of Marfan syndrome 

develop in the aortic root (8).  In contrast, other monogenic aneurysmal diseases spare the 

aortic root and affect the ascending aorta preferentially, such as mutations in MYH11 or 

ACTA2 (9, 10). 

 The topographical distribution of atherosclerotic and aneurysmal disease within 

the arterial vasculature has been well-described in the literature.  There is overwhelming 

consensus in the literature that points to hemodynamic factors in explaining this 

phenomenon.  For atherosclerosis and atherosclerotic aneurysms, studies have shown that 

they occur at sites with slow or disturbed blood flow and low wall sheer stresses (11-13).  

An initial injury that might result from excessive wall sheer stress on endothelial cells 

(ECs) followed by a progressive decrease of wall sheer stress appear to contribute to 
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intracranial aneurysm development and growth in computational models (14, 15).  Cyclic 

stresses along with increased flow wave velocity compared to control subjects are 

potential hemodynamic factors in the pathogenesis of aortic root aneurysms in Marfan 

syndrome (16, 17).  Compared to the amount of research that has looked at the 

mechanical factors contributing to this heterogeneous pattern of disease within the 

arterial system, there is a dearth of research that has looked at the contribution of 

different smooth muscle cell phenotypes to this pattern.  In order to better understand the 

contributions of factors that are intrinsic to vascular smooth muscle cells (VSMCs) in this 

topographical disease development, we focused on epigenetic differences present within 

the arterial vasculature, specifically with regards to Hox genes. 

 Hox genes are homeodomain-containing transcription factors that were first 

described in Drosophila for their ability to cause segmental homeotic transformations of 

the body plan, that is, the formation of body parts in inappropriate contexts or locations 

(18).  For example, ectopic expression of the antennapedia gene in Drosophila results in 

the formation of a complete set of middle legs in place of antennae (19).  Hox genes 

belong to a superfamily of homeobox genes that is defined by a conserved 61-amino acid 

DNA-binding motif known as the homeodomain (20).  As “master regulators” of 

development, the homeobox gene superfamily controls many cellular processes including 

proliferation, differentiation, apoptosis, cell shape, cell adhesion, and migration (21).  

Since its first discovery, homeobox genes have been identified in all eukaryotic species 

that have been investigated, with the human genome containing at least 200 homeobox 

genes. 
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 While flies have eight Hox genes located in a single cluster, mammals have 39 

Hox genes arranged in four clusters, labeled A through D (22).  Tandem duplications 

within the ancestral Hox cluster followed by genome duplication events have resulted in 

a relatively fixed arrangement in mammals within the four clusters, composed of 2 to 4 

members of 13 paralogous groups numbered 1 through 13.  In a wide variety of animals, 

ranging from nematodes to mice, mutations in Hox genes result in morphological defects 

that are restricted to discrete segmental zones along the anterior–posterior (AP) axis, and 

sometimes include homeotic transformations similar to those that are seen in Drosophila 

(23, 24).  Therefore, one conserved function of different members of the Hox gene family 

is to select one AP axial identity over another.  The most obvious read-out of AP 

patterning in vertebrates is the axial skeleton, with a cephalad to caudal progression of 

the Hox paralogues 1 through 13 as we progress from the cervical to the sacral spine (22). 

 Although homeoproteins were originally thought to act primarily as “high-level” 

regulators controlling expression of transcription factors and morphogen signals, there is 

mounting evidence that they directly regulate genes that mediate cell proliferation, 

apoptosis, adhesion, and migration (21).  However, despite the fact that homeoproteins 

were first identified in 1983, their transcriptional targets have remained elusive due to the 

fact that they display relatively promiscuous DNA-binding in vitro, making the 

identification of target genes difficult (25).  Furthermore, their functions in postnatal and 

adult tissues are largely subject to speculation (26).  This is true of the adult 

cardiovascular system as well despite Hox genes being a prime candidate for controlling 

VSMC and EC phenotype under both normal and pathologic states (27). 
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 Despite the documented expression of Hox genes in VSMCs and ECs, there is a 

lack of data addressing the differential expression of the Hox paralogues in the arterial 

vasculature (27).  Furthermore, there is a near-void of data concerning the phenotypic 

changes in the cardiovascular system of the numerous Hox gene-targeted and transgenic 

mice that have been described in the literature.  The only exception is the Hoxa3 

homozygous mutant mice, which develop malformations in the carotid artery system (28-

30).  In vitro studies of Hox gene expression in ECs seem to suggest a role in the 

regulation of angiogenesis in both physiological processes and pathological conditions 

(31-33).  Interestingly, HOXB7 has been found to be expressed in the media and 

neointima adjacent to calcifications in human atherosclerotic plaques and further in vitro 

studies seem to suggest a role in expansion of immature cell populations or 

dedifferentiation of mature cells, though in vivo evidence supporting this is lacking (34). 

 A prerequisite for defining the role of Hox genes in normal and pathological 

conditions and its underlying molecular mechanisms is information about Hox expression 

patterns in adult vasculature in vivo.  To this end, we characterized the heterogeneity of 

vascular diseases in mice, which differs than that of humans, and identified cytokine 

responses that may be responsible for these differences.  Furthermore, we defined a “Hox 

code” of the murine vasculature as well as associated molecular differences, specifically 

focusing on the ascending and descending thoracic aorta.  Finally, we utilized a murine 

transplant model to examine the effect of hemodynamic flow on vascular disease 

phenotype and epigenetic differences present in the arterial vasculature. 
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MATERIALS AND METHODS 

Mice 

 We purchased C57BL/6, apoE–/–, SM22-Cre, and mT/mG mice from The Jackson 

Laboratory (C57BL/6J, B6.129P2-Apoetm1Unc/J, Tg(Tagln-cre)1Her/J, and 

Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J respectively).  Fbn1C1039G/+ mice were obtained 

from H.C. Dietz (Johns Hopkins University School of Medicine, Baltimore, MD).  All 

experimental animal protocols were approved by the Yale University Institutional Animal 

Care and Use Committee. 

 

Atherosclerotic lesion analysis 

 The extent and distribution of atherosclerosis was examined in apoE–/– mice using 

a method described by Yang et al (35).  The animals were anesthetized and the aorta was 

perfused using normal saline.  The entire aorta was harvested ex vivo, cut open 

longitudinally, and pinned flat on a silicone-coated dissecting dish.  The aorta was fixed 

with 10% neutral buffered formalin for 24 hours.  After fixation, the aorta was washed 

with phosphate-buffered saline (PBS) for 1 hour and stained with oil red O solution 

(0.3% in isopropyl alcohol and then diluted with water, 3:2, vol/vol) for 50 minutes.  

Excess stain was washed off with 60% isopropyl alcohol.  Images were captured with a 

Carl Zeiss AxioCam MRc digital camera mounted on a Carl Zeiss Axioskop 2 FS plus 

microscope.  The atherosclerotic plaque areas were quantified using ImageJ software 

(National Institutes of Health). 
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Histology and morphometry 

 Microscopic morphometric evaluation was performed on Elastica–van Gieson 

(EVG)–stained 5-µm cross sections of aortic root, ascending, and descending thoracic 

aorta of C57BL/6 and fbn1C1039G/+ mice using ImageJ software (National Institutes of 

Health) and standard staining techniques.  The perimeters of the external elastic lamina 

(EEL) were outlined and area measurements were calculated (under the assumption that 

vessel cross sections were circular).  The vessel area (within the EEL) of five cross 

sections were assessed and averaged for each vessel segment. 

 

ApoE–/– arterial transplantation 
Transplantation procedures performed by Lingfeng Qin 

 Ascending and descending thoracic aortic segments, as defined from the 

myocardial junction to the origin of the brachiocephalic artery and a similar length of 

aorta from vertebral bodies T5 to T6, respectively, were harvested from male apoE–/– 

mice at 3 weeks of age.  These were then interposed into the infrarenal abdominal aortae 

of male apoE–/– mice at 10 weeks of age using an end-to-end microsurgical anastomotic 

technique as previously described (36, 37).  Under general anesthesia, midline 

laparotomy was used to obtain proximal and distal control of the mouse abdominal aorta, 

below the renal arteries and above the iliac arterial bifurcation.  Arterial anastomoses 

were performed using 18× magnification and 10-0 monofilament nylon suture.  The end 

of the donor aorta was anastomosed to the end of the mouse aorta distal to the renal 

vessels, and the other end to the mouse aorta just proximal to the iliac bifurcation.  Upon 

completing the distal anastomosis, vascular integrity was restored and hemostasis 

assured.  Flow through the grafted arterial segment was confirmed, and the abdomen was 
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flooded with warmed sterile saline before closure.  Anastomosis times varied between 15 

and 20 minutes.  After wound closure, animals were monitored under heating lights to 

avoid hypothermia.  Animals recovered quickly, and hind limb function was a reliable 

indicator of early graft patency.  Mice with hind limb paralysis were reanesthetized, then 

killed.  The mice were subsequently put on a “Western” diet (adjusted calories diet with 

42% from fat, Harlan Laboratories) and this high-fat diet was maintained for 24 weeks.  

The mice were subsequently sacrificed and the aortae were harvested ex vivo and 

analyzed for atherosclerosis development by oil red O staining as described above. 

 

Organ culture 

 Male C57BL/6 mice were anesthesized at 10 weeks of age and the arterial system 

was perfused with normal saline before the ascending aorta and descending thoracic aorta 

as defined above were excised.  The aortic segments were subsequently cultured on tissue 

culture-grade plastic in M199 media supplemented with 2 mmol/l L-glutamine, 100 

units/ml penicillin, and 100 µg/ml streptomycin (Invitrogen).  The aortic segments were 

treated with either recombinant mouse interferon (IFN)-γ (R&D Systems) at 10 ng/ml, 

recombinant human transforming growth factor (TGF)-β1 (R&D Systems) at 10 ng/ml, 

or vehicle control.  The aortic segments were flash frozen after 6 hours for further RNA 

analyses. 

 

Harvesting of arteries 

 Male C57BL/6 mice were anesthesized at 10 weeks of age and the arterial system 

was perfused with normal saline before the left common carotid artery, ascending aorta, 
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descending thoracic aorta, abdominal aorta, and the common femoral arteries were 

excised.  The ascending aorta was harvested from its junction with the myocardium to the 

origin of the brachiocephalic artery.  The descending aorta was harvested at the vertebral 

bodies from T5 to T6.  The abdominal aorta was harvested below the origins of the renal 

arteries to the ilial bifurcation.  The aorta immediately proximal and distal to the aortic 

isthmus was also harvested in 2-mm segments while the aortic isthmus, or that portion of 

the aorta from the left subclavian artery to the insertion of the ligamentum arteriosum, 

was discarded.  The segments were flash frozen for further RNA analyses. 

 

C57BL/6 arterial transplantation 
Transplantation procedures performed by Lingfeng Qin 

 Ascending and descending thoracic aortic segment transplants were performed as 

above using 3-week-old male C57BL/6 mice as the donors and 10-week-old male 

C57BL/6 mice as the recipients.  The transplanted arterial grafts were harvested after 24 

weeks.  The animals were anesthetized and arterial grafts were perfused and excised 

before death.  The recipient ascending and descending thoracic aortic segments and the 

abdominal aortae immediately distal to the arterial grafts were also harvested.  The aortic 

segments were flash frozen for further RNA analyses. 

 

Generation of mice with smooth muscle cell-specific expression of EGFP 

 Smooth muscle cell-specific expression of membrane-targeted EGFP (mG) was 

achieved by the breeding of homozygous floxed mT/mG mice with homozygous SM22-

Cre mice, resulting in SM22-mG/mT mice with smooth muscle cell-specific expression 

of mG while expressing membrane-targeted tandem dimer Tomato (mT) in all other 
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tissues due to the combination of a strong and ubiquitous CMV β-actin enhancer-

promoter and the ROSA26 targeting locus (38).  The Sm22-mG/mT mice were 

genotyped by PCR and its phenotype was confirmed by fluorescence microscopy.  

Vessels were embedded in Optimal Cutting Temperature medium and 5-µm cross 

sections were stained with 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) 

(Vector Laboratories) to assess for nuclear morphology and mG/mT signal strength. 

 

Isolation of ascending and descending VSMCs from SM22-mG/mT mice 

 SM22-mG/mT mice were anesthetized with ketamine and xylazine and sacrificed 

at 6 weeks of age.  The ascending and descending thoracic aortic segments were 

harvested as mentioned above.  The vessels were rinsed and digested in 1 mg/ml 

collagenase A (Roche Applied Science) in Hank's balanced salt solution (HBSS) for 10 

minutes at 37ºC.  The remaining adventitia was removed under a dissecting microscope 

and the vessels were cut into small pieces and incubated overnight at 37ºC in growth 

medium consisting of Dulbecco's Modified Eagle's Medium supplemented with 10% fetal 

bovine serum, 100 units/ml penicillin, and 100 µg/ml streptomycin (Invitrogen).  The 

vessels were then digested in 2 mg/ml collagenase A and 0.5 mg/ml elastase (Sigma-

Aldrich) in HBSS for 30 minutes, titurating the digest with a pipet every 5 minutes.  The 

remaining cell suspensions were grown in T25 tissue culture flasks in the aforementioned 

growth medium.  The cells were grown to confluence at P1 and selected for mG 

expression using a BD FACSAria cell sorter (BD Biosciences) under low-pressure 

settings.  These mG-positive cells remained in culture for 36 weeks and were frozen for 

further RNA analyses. 
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Phalloidin staining of actin filaments in ascending and descending VSMCs from 

C57BL/6 mice 

 Ascending and descending VSMCs were cultured from C57BL/6 mice in an 

analogous fashion to SM22-mG/mT mice as above.  The cells were subsequently allowed 

to expand on a sterilized cover slip in a 6-well culture plate.  After confluence, the cells 

were fixed for 5 minutes in 3.7% formaldehyde in PBS.  The cells were then 

permeabilized with 0.1% Triton X-100 in PBS for 1 minute and incubated with a 50 

µg/ml FITC-phalloidin (Sigma-Aldrich) solution in PBS for 40 minutes at room 

temperature.  The nuclei were stained with DAPI (Vector Laboratories) and the cells 

were examined by fluorescence microscopy.  In between each step, the cells were washed 

extensively in PBS. 

 

Quantitative RT-PCR 

 To isolate total RNA, the vessel segments were disrupted by a mortar and pestle 

and rapidly resuspended in RLT lysis buffer (QIAGEN).  The tissues were homogenized 

using a QIAshredder homogenizer (QIAGEN) and the RNA was isolated using RNeasy 

mini kits (QIAGEN) according to the manufacturer’s protocol.  Total RNA was also 

isolated from cells accordingly.  Reverse transcription with random hexamer and oligo-

dT primers was performed according to the Multiscribe RT system protocol (Applied 

Biosystems).  All RT-PCR reactions were prepared with TaqMan 2× PCR Master Mix 

and pre-developed assay reagents from Applied Biosystems.  Either an iCycler or iQ5 

and its system interface software (Bio-Rad Laboratories) were used to analyze the 
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samples and the data. All cDNA samples were run in duplicates and RNA samples 

processed without the reverse transcriptase enzyme were used as negative controls for all 

genes assayed.  The expression level of each target was normalized to that of Gapdh. 

 

Statistical analyses 

 Student's t test and one-way analysis of variance (ANOVA) were performed using 

the GraphPad Prism 4 software program (GraphPad Software).  Differences with P < 

0.05 were considered to indicate statistical significance. 
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RESULTS 

Differences in atherosclerotic and aneurysmal disease within the murine aorta 

 We studied the distribution of atherosclerotic lesions in apolipoprotein E-deficient 

(apoE–/–) mice in which severe hyperlipidemia leads to fat and leukocyte accumulation 

within the vessel wall.  Compared to a control C56BL/6 mice on a regular diet where the 

aorta was translucent and free of any atherosclerotic lesions, the apoE–/– mice had 

significant atherosclerosis in the ascending aorta and aortic arch (Fig. 1A).  To quantify 

the atherosclerosis development in the different parts of the aorta, the aortae from apoE–/– 

mice on a regular diet were harvested ex vivo and stained with oil red O solution (n = 9, 

Fig. 1B).  The aortic arch contained significantly more atherosclerotic lesions, followed 

by the ascending aorta, with the fewest lesions in the descending thoracic and abdominal 

aortae. 

 As with atherosclerotic disease, aneurysmal disease in the murine aorta also 

exhibits preferential development.  In order to study this, we used a murine model of 

Marfan syndrome with mice that have a heterozygous C1039G mutation in exon 25 of the 

fibrillin-1 gene, fbn1C1039G/+, analogous to the C1039Y mutation that causes classic 

Marfan syndrome in humans (39).  Comparing the aortic root and the ascending aorta of 

fbn1C1039G/+ mice to control C56BL/6 mice, we can appreciate that both of these are 

dilated grossly in fbn1C1039G/+ mice while the descending thoracic aortae appear 

comparable to that of wild-type controls (Fig. 1C).  This is confirmed when we assessed 

the vessel area quantitatively in which the aortic root and ascending aorta, but not the 

descending thoracic aorta, is significantly larger in fbn1C1039G/+ mice (n = 4–8, Fig. 1D). 
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Unchanged disease predilection of thoracic aorta transplanted to abdominal aorta 

Having established that there were differences in disease development within the 

murine aorta, we investigated the role of regional hemodynamic factors and paracrine 

signals on differential disease predilection of the murine aorta by a mouse transplant 

model.  Ascending and descending aortic segments from apoE–/– mice were transplanted 

into the infrarenal abdominal aortae of syngeneic apoE–/– mice.  The mice were 

subsequently fed a “Western” diet and the aortae including the grafts were harvested after 

24 weeks.  As seen with apoE–/– mice on a regular diet, the differential predilection for 

atherosclerosis to develop in the ascending aorta and aortic arch is preserved though we 

clearly see the accelerated atherogenic effects of a “Western” diet in these mice (Fig. 2A) 

(40, 41).  Remarkably, the transplanted aortic grafts maintained their native level of 

atherosclerosis development rather than that of the abdominal aorta, which is minimal 

(Fig. 2B).  Quantifying the degree of atherosclerosis in the ascending and the descending 

aortic grafts, there was significantly more atherosclerosis in the ascending aortic graft as 

compared to the descending aortic graft (39.6 ± 3.2% vs. 20.0 ± 5.4%, n = 4, P < 0.05) 

(Fig. 2C), suggesting that the atherosclerosis development in our apoE–/– mouse 

transplant model was independent of hemodynamic conditions or local context. 

 

Cytokine responses in ascending vs. descending thoracic aorta 

 A possible reason for intrinsic disease susceptibility of different aortic segments is 

regional variation to inflammatory signals.  To study the responses to IFN-γ and TGF-β 

signaling, key cytokines in the pathogenesis of atherosclerosis and aneurysms, 

respectively, we harvested ascending and descending thoracic aortic segments from 
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C57BL/6 mice and either treated them with IFN-γ, TGF-β, or vehicle control.  The aortic 

segments remained in culture for 6 hours and mRNA expression was analyzed (n = 4).  

The genes that we studied were chosen based on results from analogous microarray 

experiments performed on human aortic tissue (data not shown).  We see that IFN-γ 

robustly induced the expression of Cxcl10, Ddx58, Ido, and Socs1 in both the ascending 

and descending thoracic aortic segments, with a trend to greater induction of expression 

in the ascending aortic segments that reached statistical significance for Socs1 expression 

(Fig. 3A).  Compared to IFN-γ, TGF-β induction of mRNA expression was more 

selective and resulted in the upregulation of Serpine1, Ctgf, Il6, and Ccl20 in only the 

ascending aortic segments (Fig. 3B).  These results confirmed molecular differences 

between the ascending and descending aorta. 

 

Hox code of the vasculature 

Since Hox genes encode for positional identity along an AP direction, we 

investigated if they may represent stable molecular differences between aortic segments.  

We characterized the expression levels of the different Hox paralogues in the murine 

arterial vasculature by harvesting left common carotid arteries, ascending aortae, 

descending thoracic aortae, infrarenal abdominal aortae, and common femoral arteries 

from C57BL/6 mice and studied their “A” cluster expression (n = 4).  In the left common 

carotid artery, we see that there was expression of Hoxa1 through Hoxa5, with Hoxa3 

being the highest Hox cluster “A” paralogue being expressed (Fig. 4A).  The expression 

profile in the ascending aorta was quite similar to the left common carotid artery, with 

expression of Hoxa1 through Hoxa5 and Hoxa3 being the most abundant (Fig. 4B).  As 



 

 

19 

we progressed distally to the descending thoracic aorta, we see that there was a shift of 

the expression profile towards Hoxa5 through Hoxa7, with Hoxa7 having the highest 

expression, though there is still some expression of Hoxa1 through Hoxa4 (Fig. 4C).  In 

the infrarenal abdominal aorta, there was a further shift of the Hox expression profile, 

with more robust expression of Hoxa9 and Hoxa10 (Fig. 4D).  Finally, the Hox 

expression profile in the common femoral arteries was similar to the abdominal aorta, 

with Hoxa10 having the highest expression (Fig. 4E). 

 The most dramatic shift in the pattern of Hox expression was associated with the 

progression from the ascending to the descending thoracic aorta.  In order to examine this 

finding more closely, we specifically examined the expression of all Hox genes from the 

paralogues 5 through 8, designating these as the thoracic Hox paralogues, in the 

ascending, descending thoracic, and abdominal aortae (n = 4).  One can readily appreciate 

that in the ascending aorta, there was a near absence of all of these thoracic paralogues 

studied while in the descending thoracic and abdominal aortae, there was much higher 

levels of the Hox paralogues 5 through 8 (Fig. 5A, 5B, 5C).  In order to assess where this 

sharp transition occurs in the thoracic aorta, we harvested 2-mm aortic segments 

immediately proximal and distal to the aortic isthmus and we discarded the aortic isthmus 

that is less than 0.5 mm in size and extends from the left subclavian artery to the origin of 

the ligamentum arteriosum.  We studied the Hox paralogues 5 through 7 in these aortic 

segments.  With the exception of Hoxa5, all of the paralogue studied demonstrate at least 

a 2-fold difference when comparing proximal to the aortic isthmus versus distal to the 

aortic isthmus (Fig. 5D, 5E).  These findings demonstrated that the dramatic shift that 
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occurs in the Hox expression pattern from the ascending to the descending aorta occurs at 

the level of the aortic isthmus. 

 

Additional molecular differences between the ascending and descending thoracic aorta 

 Since Hox genes are known as master transcriptional regulators, we were 

interested in defining additional molecules with differential expression in the ascending 

vs. descending thoracic aorta that may represent potential downstream targets of the Hox 

genes.  We investigated the expression of particular molecules based on our findings 

from microarray experiments performed on human ascending and descending thoracic 

aorta (data not shown).  The most specific molecular signature of the ascending aorta we 

identified was Tcfap2a, or transcription factor activating protein (AP)-2α (Fig. 6A, P < 

0.001).  Though not achieving statistical significance, desmocollin (Dsc) 3 appeared to 

trend towards higher expression in the ascending aorta also (Fig. 6B).  Both Msx1 and 

Isl1 expression was also found to be higher in the ascending aorta compared to the 

descending aorta (Fig. 6C, 6D, P < 0.05).  Although neither achieved statistical 

significance in our limited sample sizes, Foxd1 and Skap2 both appeared to trend towards 

higher expression in the descending thoracic aorta (Fig. 6E, 6F) similar to our results in 

human specimens.  These data document expression differences within the thoracic aorta 

of additional molecules besides Hox genes. 

 

Expression of thoracic aortic segmental markers is context-independent 

 We next investigated whether the epigenetic differences between the ascending 

vs. descending thoracic aorta were stable.  We used a mouse transplant model to address 
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this question.  Ascending and descending aortic segments from C57BL/6 mice were 

transplanted into the infrarenal abdominal aortae of C57BL/6 mice.  The transplanted 

arterial grafts were harvested after 24 weeks along with the recipient ascending aorta, 

descending thoracic aorta, and abdominal aorta immediately distal to the graft.  The 

aortic segments were analyzed for expression of selective molecular markers of 

ascending, descending thoracic, and abdominal aortae (n = 5–6).  For the ascending aortic 

grafts, we see that the graft only expresses Tcfap2a and Hoxa3, with minimal levels of 

Hoxb7, Hoxb8, Hoxd8, and Hoxa10, which closely mimicked the expression profile of 

the recipient ascending aorta (Fig. 7A).  For the descending thoracic aortic grafts, there 

was high expression of Hoxa3, Hoxb7, and Hoxb8 with minimal levels of Tcfap2a, 

Hoxd8, and Hoxa10, again closely matching the expression profile of the recipient 

descending aorta (Fig. 7B).  Finally, despite the immediate proximity of the transplanted 

grafts to the recipient abdominal aorta, neither of the transplanted grafts expressed the 

abdominal aortic segmental markers Hoxd8 and Hoxa10.  These findings show that 

despite being transplanted to a new body cavity from the thorax to the peritoneum with a 

different hemodynamic profile, the aortic segmental markers we studied remained stable, 

suggesting that the epigenetic changes present in the aorta were context-independent. 

 

Stable expression differences in cultured VSMCs 

 To determine whether these epigenetic differences between aortic segments were 

persistent under identical cell culture conditions, we first generated pure smooth muscle 

cell populations using a genetic marker.  We used SM22-mG/mT mice which specifically 

expresses mG in smooth muscle cells while expressing mT in all other tissues including 
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the intima and adventitia (Fig. 8A).  Ascending and descending thoracic aortae were then 

harvested from these mice, digested into a cell suspension, and grown in cell culture.  The 

cells that were propagated had the morphological appearance of smooth muscle cells 

(Fig. 8B).  However, only 50% of the cultured cells were confirmed as smooth muscle 

cells by mG expression and these cells were purified using FACS sorting (Fig. 8C).  The 

mG+ ascending and descending thoracic aortic VSMCs were subsequently kept in culture 

for 36 weeks and then analyzed for the expression of the aortic segmental markers 

Hoxa2, Tcfap2a, Hoxb7, and Hoxb8 (n = 2).  Even though these cells were passaged 

multiple times and remained in culture for a prolonged period of time, the ascending and 

descending thoracic VSMCs still maintained epigenetic changes that are characteristic of 

the original aortic segment, that is, the ascending VSMCs had high expression of Hoxa2 

and Tcfap2a with low expression of Hoxb7 and Hoxb8 while the opposite was true in the 

descending thoracic VSMCs (Fig. 8D).  These results confirmed that the Hox genes, 

which encode for positional identity within the vasculature, have a stable expression 

pattern that was not dependent on regional hemodynamic effects or paracrine signals.
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DISCUSSION 

 We have quantified the differential atherosclerotic and aneurysmal disease 

development in the murine aorta in apoE–/– and fbn1C1039G/+ mice, respectively, which are 

commonly cited models of human vascular disease in the literature.  We also established 

that atherosclerosis development in apoE–/– mice was not dependent on hemodynamic 

conditions or local context and identified differential responses along the IFN-γ and TGF-

β cytokine axes that may explain this phenomenon as well as the selective aneurysmal 

pathology in fbn1C1039G/+ mice.  A Hox code of the murine arterial vasculature was 

described and its stable segmental expression and that of additional molecules not 

containing homeodomains was confirmed via transplantation models and cell culture. 

The apolipoprotein E-deficient mouse, or apoE–/–, has long been used as the gold 

standard for murine models of human atherosclerosis since its first description in 1992 

(42, 43).  Though the differential distribution of the atherosclerotic lesions in different 

vascular beds has been a well-recognized phenomenon, there has been no published 

report addressing this heterogeneity in the aorta to date.  Here, we show that the aortic 

arch and ascending aorta is the most heavily affected by atherosclerosis while the 

abdominal aorta remains relatively free of atherosclerotic disease.  This is in sharp 

contrast to human atherosclerosis distribution where the abdominal aorta contains the 

most atherosclerosis while the ascending aorta and the aortic arch are relatively free of 

atheromas (1-6).  Differences were also present when comparing the pattern of human 

aneurysmal disease to murine models of aneurysm development.  While Marfan 

syndrome in humans and fbn1C1039G/+ mice share aortic root involvement of the 

aneurysmal disease, ascending aorta involvement is less common in humans whereas it 
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appears to be the norm in fbn1C1039G/+ mice (8).  Our data is also the first description of 

quantitative differences in the diameter of different aortic segments in fbn1C1039G/+ mice. 

The predominant theory on human atherosclerosis distribution is that it is 

primarily a hemodynamic phenomenon, that is, it occurs at sites with slow or disturbed 

blood flow and low wall sheer stresses (11-13).  Though the dramatic differences 

between the atherosclerosis distribution in humans and mouse models of atherosclerosis 

has not been directly addressed in the literature, multiple studies have shown that 

reductions in heart rate beneficially affects atherogenesis, leading to speculation that the 

increased exposure of the more proximal vessels to the higher resting heart rate in mice 

may be responsible for the preferential atherosclerotic lesion formation in these 

proximally-located vessels (44-46).  Thus, hemodynamic factors have been invoked as 

the only explanation for the disparate distribution of atherosclerotic lesions in humans 

and mice.  However, we show that disease susceptibility in apoE–/– mice did not change 

when the ascending and descending thoracic aortae were transplanted to a more distal 

location, the abdominal aortae.  This suggests that intrinsic properties of the vessel wall 

that differ between aortic segments also contribute to the distribution of atherosclerosis, 

besides hemodynamic and mechanical parameters.  Similar findings have been previously 

documented in canine models of atherosclerosis (47, 48). 

 Atherosclerosis is not only merely a lipid disorder but also a chronic 

inflammatory disease.  Inflammation contributes to atherogenesis through adverse effects 

on lipoprotein metabolism and arterial wall biology, via both the innate and acquired 

immune systems (49, 50).  IFN-γ is a pleiotropic cytokine expressed at high levels in 

atherosclerotic lesions by monocytes/macrophages, Th1 cells, and natural killer T-cells 
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that is a key pro-inflammatory mediator in atherogenesis (51).  IFN-γ has been implicated 

in the atherosclerotic process through its direct effects and indirectly via interleukin (IL)-

12 and IL-18 (52-56).  IFN-γ also plays a detrimental role in post-transplant graft 

arteriosclerosis as well as abdominal aortic aneurysms, further highlighting its 

importance in cardiovascular disease (57-61). 

 Though IFN-γ has been implicated in abdominal aortic aneurysms, the aortic root 

aneurysms that develop in Marfan syndrome has been clearly linked to enhanced TGF-β 

signaling (62-64).  FBN1, the gene where the primary defect in Marfan syndrome lies, is 

a principal component of the 10- to 12-nm microfibrils that form the scaffold for elastin 

assembly within the extracellular matrix.  Mutations in FBN1 within the aorta result in 

weakened and disordered elastic fibers, as well as disruption of the microfibril network 

connecting the elastic lamellae to the adjacent interstitial cells (65, 66).  In addition to 

directing elastogenesis and providing structural integrity to the elastic lamellae, fibrillin-

rich microfibrils have also been shown to sequester TGF-β within the extracellular 

matrix.  Hence, FBN1 mutations also cause impaired sequestration of latent TGF-β 

complexes, thereby making more available for activation, leading to excessive TGF-β 

signaling.  It should be noted that abnormal TGF-β signaling is also implicated in 

atherosclerosis, primary pulmonary hypertension, hereditary hemorrhagic telangiectasia, 

Marfan syndrome type 2, familial thoracic aortic aneurysms and dissections, Loeys-Dietz 

syndrome, and Ehlers-Danlos syndrome type IV (67). 

 The critical roles played by IFN-γ and TGF-β in atherosclerotic and aortic 

aneurysmal disease has been well-elucidated as described above.  What is not evident is 

how these pathogenic mechanisms account for the preferential disease development in 
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certain parts of the aorta, i.e. atherosclerosis in the ascending aorta and aortic arch, and 

aneurysmal dilatation of the aortic root and ascending aorta in the murine models 

described above.  We propose that there is a differential response to the IFN-γ and TGF-β 

signaling axis in the ascending and descending thoracic aorta, thus accounting for the 

preferential disease phenotype in the aforementioned aortic diseases. 

IFN-γ-induction of Cxcl10, also known as IFN-γ-inducible protein of 10 kDa (IP-

10), expression from the C-X-C chemokine receptor 3 (CXCR3) axis was not surprising 

given that the CXCR3 ligands are strongly induced by IFN-γ, particularly in vascular 

cells (68).  CXCR3 is preferentially expressed by Th1 cells, further highlighting their role 

in atherogenesis (69).  Ddx58, or retinoic-acid-inducible gene I (RIG-I), is a cytoplasmic 

RNA helicase that recognizes RNA species produced in the cytoplasm (70).  Though 

RIG-I is classically thought to be involved in the recognition of viral nucleic acids, RIG-I 

is also highly expressed in intimal macrophages in atherosclerotic lesions, suggesting 

possible involvement of RIG-I in atherosclerosis (71).  Ido is an IFN-γ-inducible, 

intracellular enzyme that catalyzes the first and rate-limiting step in oxidative catabolism 

of the essential amino acid tryptophan along the kynurenine pathway (72).  Ido 

suppresses T-cell responses and promotes immune privilege of the media from leukocytic 

infiltration in atherosclerosis and graft arteriosclerosis, though these findings may not 

necessarily apply to murine systems due to species differences in vascular cell 

interactions with T cells (73).  Suppressors of cytokine signaling (Socs) proteins are 

intracellular regulators of receptor signal transduction, mainly Janus kinase/signal 

transducers and activators of transcription (74).  High expression of Socs1 has been found 

in the inflammatory region of the shoulders of atherosclerotic plaques in humans and 
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aortic plaques in apoE–/– mice, highlighting their role as key regulators of vascular cell 

responses (75).  Most intriguing is that for these four molecules, Cxcl10, Ddx58, Ido, and 

Socs1, that have been implicated as key regulators in atherogenesis, the ascending aortic 

segments showed a higher degree of induction of expression by IFN-γ compared to the 

descending thoracic aortic segments, concurrent with our observation that atherosclerosis 

in the murine aorta occurs in the ascending rather than the descending thoracic aorta. 

Serpine1, or plasminogen activator inhibitor type 1 (PAI-1), and connective tissue 

growth factor (Ctgf) are both molecules that are directly involved in TGF-β signaling.  

PAI-1 is a direct downstream target of the TGF-β type 1 receptor ALK5, which signals 

via Smad2 and Smad3, and generally inhibits cell proliferation and migration but favors 

vessel maturation.  Ctgf is a downstream mediator that is able to block the negative 

feedback loop provided by Smad7, thus allowing constitutive activation of the TGF-β 

signaling pathway (76).  Il6 and Ccl20 are both inflammatory molecules that can be 

induced by IL-17 in several human cell types in vitro (77).  Of note, Ccl20 is the only 

known ligand of CCR6, which is generally expressed only by IL-17–producing T cells, 

although not completely specific (78, 79).  Furthermore, the combination of TGF-β and 

Il6 is sufficient to induce Th17 differentiation in mouse naive T cells, possibly suggesting 

that the selective aortic aneurysm development in fbn1C1039G/+ mice may be due to 

exaggerated TGF-β responses in the ascending aorta leading to Th17 differentiation (80-

84). 

We have correlated stable molecular differences between the aortic segments with 

differing cytokine responses.  Although there have been papers published in the literature 

that have described the expression of certain Hox genes in specific parts of the adult 
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vasculature, there have been no published reports of the differential expression of the 

Hox paralogues in the arterial vasculature (30, 85-87).  To address this issue, we 

described a Hox code of the murine arterial vasculature.  The “A” cluster was chosen 

over the other Hox clusters because the “A” cluster has the greatest number of different 

paralogous groups preserved, with the absence of only paralogues 8 and 12 (22).  As 

expected, there was a cephalad to caudal progression of the Hox paralogues in the arterial 

vasculature.  This closely mimics that of the well-characterized Hox patterning in the 

axial skeleton, female reproductive system, and gastrointestinal tract, suggesting that the 

spatial-temporal relationship of the Hox paralogues is maintained in the arterial 

vasculature (22, 88, 89). 

 Based on our findings of the near absence of Hox paralogues 5 though 8 in the 

ascending aorta and its dramatic upregulation in the descending thoracic aorta, we 

suspected that there might be a “transition zone” where the Hox expression profile shifts 

from an ascending to a descending thoracic aorta-type pattern.  A logical candidate for 

this “transition zone” based on the ontogeny of VSMCs in the aorta is the aortic isthmus.  

Neural crest cells give rise to VSMCs in the cephalic and cardiac outflow region, 

extending to the ligamentum arteriosum (90, 91).  The developmental origin of the 

descending aorta distal to the ligamentum arteriosum is less clear.  Traditionally, it was 

assumed that splanchnic lateral plate mesoderm was the primary contributor to the 

development of descending aorta (92-95).  However, more recent studies have challenged 

this paradigm, suggesting that paraxial mesoderm contribute to VSMCs in the descending 

aorta and perhaps may be entirely somite-derived (87, 96, 97).  Regardless, it is clear that 

the developmental origin of the aorta differs proximal and distal to the ligamentum 
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arteriosum.  As expected, we saw a substantial difference in the expression of Hox 

paralogues 5 though 7 across the aortic isthmus, likely due to the differing embryological 

origins of the aorta proximal and distal to this region. 

 In attempt to gain mechanistic insight into how smooth muscle heterogeneity 

occurs on a molecular level, we identified further molecular differences between the 

ascending and descending thoracic aorta.  Tcfap2a, Dsc3, Msx1, and Isl1 were transcripts 

we identified that were expressed at higher levels in the ascending aorta compared to the 

descending thoracic aorta.  AP-2 transcription factors are localized predominantly in the 

nucleus, where they bind to target sequences and regulate transcription of target genes 

and modulate signal transduction pathways such as the Wnt developmental signaling 

pathway (98).  Tcfap2a is expressed in neural crest cells, the peripheral nervous system, 

facial and limb mesenchyme, and various epithelia of the developing embryo and the 

extraembryonic trophectoderm with mutations leading to disturbances of facial and limb 

development (99-101).  Dsc3 is part of the extracellular domain of desmosomes, which 

are adhesive intercellular junctions of epithelia and cardiac muscle.  Both Msx1 and Isl1 

contain the homeodomain and belong to the homeobox gene superfamily, though of 

different classes.  Hox genes and Msx1 both belong to the ANTP class whereas Isl1 

belongs to the LIM class of homeobox genes (102).  Msx1 is expressed during 

embryogenesis at many sites of epithelial-mesenchymal inductive interactions, such as 

limb and tooth buds, heart, branchial arches and craniofacial processes, but also in the 

roof plate and adjacent cells in the dorsal neural tube and neural crests (103).  

Interestingly, it is known that Msx genes are immediate effectors of bone morphogenetic 

protein (BMP) signaling, which are growth factors that are part of the TGF-β 
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superfamily, which would be consistent with our findings suggesting exaggerated TGF-β 

responses in the ascending aorta (104, 105).  Isl1 is implicated in the generation of 

pancreatic endocrine islet cells and motor neurons (106, 107). 

 Foxd1 and Skap2 were transcripts we identified that were expressed at higher 

levels in the descending thoracic aorta compared to the ascending aorta.  Interestingly, 

both Foxd1 and Skap2 are involved in T cell activation.  Foxd1 is part of the forkhead 

family of transcription factors that play critical roles in immune homeostasis (108, 109).  

Foxd1 appears to regulate inflammatory Th reactions by its direct effects on NF-AT and 

indirectly via Foxj1 antagonizing NF-κB, both key inflammatory transcription factors 

(110).  Ligation of CD4/CD8-p56lck and the T cell receptor complexes results in 

increased phosphorylation of FYB, which is implicated in the negative regulation of IL-2 

transcription, a key cytokine in the development of adaptive immune responses (111, 

112).  Skap2 is part of an interactive matrix for FYB along with Skap1 (113).  Taken 

together, these findings may help explain why the descending thoracic aorta is relatively 

free of atherosclerotic disease compared to the ascending aorta in mice due to higher 

expression of these immunoregulatory molecules. 

 If the epigenetic differences within the murine aorta account for the heterogeneity 

of the aforementioned vascular diseases, their stable expression pattern should be 

associated with persistent disease predilection irrespective of local hemodynamic 

conditions or paracrine signals from surrounding tissues.  Transplant experiments pointed 

to both stable epigenetic differences and disease susceptibility, though documenting this 

in cell culture proved to be more challenging.  Protocols to isolate VSMCs from murine 

aortic tissue usually involve denuding the intima and stripping the adventitia grossly 
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before enzymatic dissociation of the aortic tissue into a cell suspension or outgrowth 

from explants (114-116).  While conventional growth media used for culturing VSMCs 

does not support the growth of ECs from residual intimal tissue, fibroblasts from residual 

adventitial tissue are able to proliferate under these conditions.  Complicating this matter 

is that there are no specific cell surface markers that reliably distinguish fibroblasts from 

VSMCs.  To overcome this, we generated SM22-mG/mT mice that express mG in the 

media while expressing mT in the intima and adventitia, thus allowing both positive and 

negative selection by FACS cell sorting.  Note that only approximately 50% of the cells 

isolated from SM22-mG/mT aortae were mG+, suggesting significant fibroblast 

contamination of the cell colonies, though this could partially be explained with 

incomplete Cre-mediated DNA recombination (117).  Using this method, we were able to 

confirm stable expression differences in a pure population of VSMCs. 

 There have been multiple reports published in the literature supporting the 

interaction of homeoproteins with the TGF-β signaling axis (118-122).  The evidence 

ranges from collaboration with Smad proteins for downstream repression of target genes 

affected by the TGF-β to direct binding to the MH2 domain of Smad5.  Though there are 

no published reports that link homeoproteins to IFN-γ signaling to date, there is an 

emerging paradigm that at the molecular level, Hox proteins are not “master” regulatory 

proteins that dictate how target genes behave.  Rather, they may exert their great 

influence by virtue of their simple binding specificity, broad domains of expression, and 

versatile collaborative properties, thus leaving the possibility that homeoproteins do 

indeed interact with IFN-γ signaling molecules under the appropriate circumstances 

(121).  Future studies in our laboratory will address how Hox gene expression is linked to 
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differences in TGF-β and IFN-γ signaling in the ascending and descending thoracic aorta 

and will include transfection of cultured VSMCs with various different Hox plasmids for 

Hox overexpression, knockdown of Hox genes by siRNA, and generation of Hox 

knockout mice. 

 In conclusion, the topographical distribution of vascular diseases causing 

significant morbidity and mortality worldwide such as atherosclerosis and aneurysmal 

disease may not be a simple phenomenon due to mechanical or local contextual factors 

acting on the vessel wall.  We provide evidence that point to inherent phenotypic 

differences in the arterial vasculature, in the form of differential cytokine responses, and 

molecular differences, in the form of a Hox “code.”  We also developed transgenic mice 

that allows for further in vitro experiments utilizing pure populations of murine aortic 

VSMCs.  It is our hope that by better understanding phenotypic differences that are 

present in the arterial vasculature, we can better understand the pathogenic mechanisms 

underling these vascular diseases. 
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FIGURE REFERENCES AND LEGENDS 

 
 
Figure 1.  Histologic and morphometric evidence of differences in atherosclerotic and 
aneurysmal disease within the murine aorta.  (A) Gross appearance of the thoracic aorta 
of wildtype (WT) C57BL/6 mice versus apoE–/– mice on a “Western” diet for 16 weeks.  
The ascending aorta (Asc), aortic arch (Arch), and descending thoracic aorta (Desc) are 
labeled in the WT aorta as well as their boundaries of brachiocephalic artery (BA), left 
subclavian artery (LSA), and ligamentum arteriosum (LA), respectively.  The arrows 
indicate atherosclerotic plaques in the apoE–/– aorta.  (B) Quantitative analysis of 
atherogenesis in apoE–/– mice on a regular diet using oil red O+ area divided by the area 
of discrete aortic segments including the abdominal aorta (Abd) (n = 9).  (C) EVG–
stained 5-µm transverse sections of aortic root, ascending, and descending thoracic aorta 
from WT and fbn1C1039G/+ mice.  Bars represent 4 mm for all aortic segments.  (D) 
Quantitative analysis of the vessel areas in WT and fbn1C1039G/+ mice (n = 4–8).  Means ± 
SEM are shown, * P < 0.05 (ANOVA).
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Figure 2.  Unchanged atherosclerosis predilection of thoracic aorta transplanted to 
abdominal aorta.  (A) Oil red O staining of the aorta ex vivo from ascending to abdominal 
and descending to abdominal aortic transplants in apoE–/– mice on a “Western” diet for 
24 weeks.  (B) Higher magnification views of the oil red O staining of the ascending to 
abdominal and descending to abdominal aortic grafts.  (C) Degree of atherosclerosis in 
the transplanted grafts quantified by oil red O+ area (n = 4).  Means ± SEM are shown, * 
P < 0.05 (unpaired Student’s t test). 
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Figure 3.  Differential responses to IFN-γ and TGF-β in the ascending vs. descending 
thoracic aorta.  Equal length segments of ascending and descending thoracic aortic 
segments from C57BL/6 mice in organ culture were treated with rmIFN-γ (10 ng/ml), 
rhTGF-β1 (10 ng/ml), or left untreated for 6 hours.  RT-PCR results are grouped by 
molecules where expression was primarily (A) induced by IFN-γ or (B) induced by TGF-
β (n = 4).  Means ± SEM are shown, * P < 0.05 for treated vs. untreated, # P < 0.05 for 
ascending vs. descending (ANOVA).



 

 

 
Figure 4.  Hoxa “code” of the murine arterial vasculature.  Equal length segments of various arteries were harvested from C57BL/6 
mice and analyzed for their Hox “A” cluster expression.  RT-PCR results are shown from the (A) left common carotid arteries, (B) 
ascending aortae, (C) descending thoracic aortae, (D) abdominal aortae, and (E) common femoral arteries (n = 4).  Means ± SEM are 
shown. 
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Figure 5.  Transition of the Hox code at the aortic isthmus.  Equal length segments of (A) ascending, (B) descending thoracic, and (C) 
abdominal aortic segments from C57BL/6 mice were harvested and analyzed for their expression of Hox paralogues 5 through 8 (n = 
4).  Additionally, 2-mm segments of the aorta immediately (D) proximal and (E) distal to the aortic isthmus were also harvested while 
discarding the aortic isthmus and analyzed for their expression of Hox paralogues 5 through 7 (n = 4).  Means ± SEM are shown. 
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Figure 6.  Non-Hox molecular differences between the ascending and descending 
thoracic aorta.  Equal length segments of ascending and descending thoracic aortic 
segments from C57BL/6 mice were harvested and analyzed for their expression of (A) 
Tcfap2a, (B) Dsc3, (C) Msx1, (D) Isl1, (E) Foxd1, and (F) Skap2 (n = 4–12).  Means ± 
SEM are shown, * P < 0.05, ** P < 0.001 (unpaired Student’s t test). 



  

 
Figure 7.  Unchanged expression of segmental markers in thoracic aorta transplanted to abdominal aorta.  (A) RT-PCR analysis of the 
transplanted ascending aortic graft, recipient ascending, descending thoracic, and abdominal aorta in ascending to abdominal aortic 
transplanted C57BL/6 mice for Tcfap2a, Hoxa3, Hoxb7, Hoxb8, and Hoxa10 24 weeks after transplantation (n = 5–6).  (B) Analogous 
RT-PCR analysis in descending to abdominal aortic transplanted C57BL/6 mice (n = 5–6).  Means ± SEM are shown. 
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Figure 8.  Stable expression differences in VSMCs cultured from SM22-mG/mT mice.  
(A) Fluorescence microscopy of aorta from SM22-mG/mT mice with mG signal (green) 
in the media, mT signal (red) in the intima and adventitia, and DAPI signal (blue) of the 
nuclei.  The bar represents 100 µm.  (B) FITC-phalloidin (green) and DAPI (blue) 
staining of actin filaments and nuclei, respectively, in ascending and descending thoracic 
VSMCs cultured from C57BL/6 mice.  The bars represent 25 µm.  (C) FACS sort of 
ascending and descending thoracic VSMCs cultured from SM22-mG/mT mice.  43.5% of 
the ascending VSMCs exhibitied mG positivity while 56.5% of the descending thoracic 
VSMCs did so.  (D) RT-PCR analysis of Hoxa2, Tcfap2a, Hoxb7, and Hoxb8 expression 
in mG+ ascending and descending thoracic VSMCs after 36 weeks in culture (n = 2).  
Means ± SEM are shown. 
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