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ABSTRACT

MESHLESS METHODS FOR NUMERICALLY SOLVING BOUNDARY
VALUE PROBLEMS OF ELLIPTIC TYPE PARTIAL DIFFERENTIAL

EQUATIONS

by

Minhwa Choi

Dr. Xin Li, Examination Committee Chair
Associate Professor of Mathematics

University of Nevada, Las Vegas, USA

In this dissertation we propose and examine numerical methods for solving the boundary

value problems of partial differential equations (PDEs) by meshless methods. Typically, such

a problem is described as

Lu(x) = f(x), x ∈ Ω, (0.1)

Bu(x) = g(x), x ∈ ∂Ω, (0.2)

where Ω is a domain in Rs, s ≥ 2, L a linear partial differential operator, and B a linear

operator for the boundary conditions.

First we aim at getting approximate particular solutions up of a nonhomogeneous equa-

tion (0.1) by radial basis methods. For instance, the collocation method by radial basis

functions for finding particular solutions up of (0.1) is very popular in the literature. Now

the particular solutions of certain important PDEs by RBF approximation are available,

with the order of convergence to the exact solutions provided. Here we explore and examine

the numerical performances of these particular solutions in various examples.

Once up is available, we then consider and solve the following boundary value problems
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of the homogeneous equation

Lv(x) = 0, x ∈ Ω, (0.3)

Bv(x) = g(x)− Bup(x), x ∈ ∂Ω, (0.4)

by the methods of fundamental solutions (MFS). To be precise, let Γ be the fundamental

solution of the differential operator L. Choose a fictitious domain in ∂Ω̃ such that ∂Ω ⊂

∂Ω̃, and choose some collocation points x1, x2, ..., xM on ∂Ω and some source points

x̃1, x̃2, ..., x̃M, on ∂Ω̃. Then an approximate solution of (0.3) and (0.4) by MFS is given

by

vM(x) =
M∑
k=1

ckΓ(x,xk), (0.5)

where the coefficients {ck} can be determined by the boundary condition (0.4) and the

collocation points x1, x2, ..., xM on ∂Ω. Hence

u(x) = up(x) + vM(x)

is considered as the numerical solution of our original problem (0.1) and (0.2).

In this dissertation, we present various examples to show the efficiencies of the above

mentioned methods, especially for Poisson’s, Helmholtz, and biharmonic equations of Dirich-

let, or Newmann, or Robin (Mixed) boundary conditions, with numerical results provided

correspondingly in tables and graphs.
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CHAPTER 1

METHOD OF FUNDAMENTAL SOLUTIONS (MFS)
FOR THE LAPLACE EQUATIONS WITH
BOUNDARY VALUE PROBLEMS

1.1 Description of MFS for Laplace equations

For a general linear partial differential operator L =
∑

|α|≤m aαD
α of order m with constant

coefficients, its fundamental solution with singularity at y is a distribution Γ(x,y) satisfying

L(Γ(x,y)) = δ((x− y), where δ is the Dirac delta function.

Consider the Dirichlet boundary problem for the Laplace equation

∆u(x) = 0, x ∈ Ω, (1.1)

u(x) = f(x), x ∈ ∂Ω, (1.2)

where Ω is a domain in R2 or R3. The fundamental solution for L = −∆, where ∆ =

∂2

∂x2
1
+ ∂2

∂x2
2
in R2 or ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
in R3 is given by

Γ(x,y) =

{
− 1

2π
log ||x− y||, for all x, y ∈ R2,

1
4π

1
||x−y|| , for all x, y ∈ R3.

(1.3)

To use the method of fundamental solutions (MFS), we choose a fictitious domain ∂Ω̃ such

that Ω ⊂ Ω̃. Then choose N points on ∂Ω̃ listed as x̃1,x̃2, ... , x̃N, and form

uN(x) =
N∑
k=1

ckΓ(x, x̃k). (1.4)
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Figure 1.1: N collocation points on ∂Ω and N source points on ∂Ω̃

Clearly, uN(x) satisfies the Laplace equation (1.1) since Γ(x, x̃k) is the fundamental

solution. For uN(x) to satisfy the Dirichlet boundary condition (1.2) as much as possible,

we choose N points x1,x2, ...,xN on ∂Ω and set up

uN(xk) = f(xk), 1 ≤ k ≤ N,

namely,
N∑
k=1

ckΓ(xm, x̃k) = f(xm), 1 ≤ m ≤ N,

which leads to the following system
Γ(x1, x̃1) Γ(x1, x̃2) Γ(x1, x̃3) . . . Γ(x1, x̃N)
Γ(x2, x̃1) Γ(x2, x̃2) Γ(x2, x̃3) . . . Γ(x2, x̃N)

... ... ... . . . ...
Γ(xN, x̃1) Γ(xN, x̃1) Γ(xN, x̃1) . . . Γ(xN, x̃N)



c1
c2
...
cN

 =


f(x1)
f(x2)

...
f(xN)

 . (1.5)

Once the coefficient matrix is invertible, the coefficients ck, 1 ≤ m ≤ N, can be deter-

2



mined by the above system (1.5) and uN(x) in (1.4) is considered as an approximate solution

of the Dirichlet boundary value problem (1.1)-(1.2).

To show the efficiency of such a numerical method, we let uexact be the exact solution

of (1.1)-(1.2), and calculate the approximation error |uexact(x) − uN(x)|, x ∈ Ω. From the

maximal principal for Laplace equation

max
x∈Ω̄

|uexact(x)− uN(x)| = max
x∈∂Ω

|uexact(x)− uN(x)|, (1.6)

we only need to consider the approximation error on ∂Ω.

1.2 Numerical Examples by using MFS

In this section we present some numerical examples in which fictitious domains are chosen

arbitrarily and we compare the numerical results by using MFS in various situations.

Example 1.1. Consider the Dirichlet boundary problem for the Laplace equation

∆u(x, y) = 0, (x, y) ∈ Ω,

u(x, y) = ex cos(y), (x, y) ∈ ∂Ω,

where Ω = {(x, y) : x2 + y2 ≤ 1} is the unit disc. The exact solution of the above

problem is uexact = ex cos(y). To use the MFS, we choose N points equally distributed

on ∂Ω, namely: xk = (cos 2πk
N
, sin 2πk

N
), 0 ≤ k ≤ N − 1.

a) First, we use a fictitious domain Ω̃ = {(x, y) : x2 + y2 ≤ r2}, where r = 1.5, 3, 10,

respectively, as shown in Figure 1.2 for r = 1.5. Choose x̃k = r(cos 2πk
N
, sin 2πk

N
), 0 ≤ k ≤ N−

1 on ∂Ω̃. Then the approximate solution can be obtained through (1.3)-(1.4). To estimate
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the maximum error (1.5), we use equally spaced N = 100 points zk, 1 ≤ k ≤ 100, on ∂Ω to

get the numerical infinity norm

max
1≤k≤100

|uexact(zk)− uN(zk)|.

Then our numerical approximation errors are presented in the following table with various r

and N:

Figure 1.2: Graph of ∂Ω, ∂Ω̃ with r = 1.5 and N = 20 collocation points

Table 1.1: Maximum Error ||uexact − uN ||C(∂Ω)

N = 40 N = 60 N = 80 N = 100

r = 1.5 5.2904e-08 1.0313e-11 1.7764e-15 1.7764e-15

r = 3.0 1.5543e-15 1.5543e-15 1.5543e-15 3.4861e-14

r = 10.0 9.1854e-10 9.1854e-10 9.1854e-10 2.3353e-11
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b) Next we use a fictitious domain Ω̃ = {(x, y) : x2

a2
+ y2

b2
≤ 1}, where a = 7, 2, 10, 3 and

b = 2, 7, 3, 10, respectively. We choose x̃k = (a cos 2πk
N
, b sin 2πk

N
), 0 ≤ k ≤ N − 1 on ∂Ω̃,

(see Figure 1.3). Then we have the following numerical results with various a and b:

Figure 1.3: Graph of ∂Ω, ∂Ω̃ with a = 3, b = 1.5 and N = 20 collocation points

Table 1.2: Maximum Error ||uexact − uN ||C(∂Ω)

N = 20 N = 50 N = 100

a = 7, b = 2 4.9695e-06 1.9748e-09 9.4712e-11

a = 2, b = 7 4.7048e-05 9.1681e-09 5.8001e-10

a = 10, b = 3 5.8001e-10 7.0755e-11 9.5451e-13

a = 3, b = 10 6.0709e-06 4.5870e-09 5.8106e-12
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c) Finally, we use an arbitrarily fictitious domain Ω̃ = {(x, y) : x = a sin t+b cos t−3, y =

c (cos t)2 − 2, 0 ≤ t ≤ 2π}, where a = 4, 7, 10, b = 3, 4, 7, and c = 4, 5, 6, respectively. We

choose x̃k = (a sin 2πk
N

+ b cos 2πk
N

− 3, c (cos 2πk
N

)2 − 2), 0 ≤ k ≤ N − 1 on ∂Ω̃, (see Figure

1.4). Then we have the following numerical results:

Figure 1.4: Choose M=20 collocation points on the ∂Ω, and N=20 source points on the ∂Ω̃

Table 1.3: Maximum Error ||uexact − uN ||C(∂Ω)

N = 20 N = 50 N = 100

a = 4, b = 3, c = 4 0.0079 1.0900e-05 2.6453e-08

a = 7, b = 4, c = 5 1.8106e-04 1.0849e-09 2.1551e-10

a = 10, b = 7, c = 6 1.0123e-05 1.7959e-08 2.4932e-10
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Next, we present examples about an arbitrary domain Ω ⊂ R2 and a three-dimensional

domain Ω ⊂ R3.

Example 1.2. Consider the Dirichlet boundary problem for the Laplace equation

∆u(x, y) = 0, (x, y) ∈ Ω,

u(x, y) = ex cos(y), (x, y) ∈ ∂Ω,

where Ω = {(x, y) : x = sin(t + sin t), y = cos(t + cos t), 0 ≤ t ≤ 2π}. The exact solution

of the above problem is uexact = ex cos(y). We use a fictitious domain Ω̃ = {(x, y) : x =

a cos t, y = b sin(t + cos t), 0 ≤ t ≤ 2π}, where a = 2, 3, 2 and b = 1.5, 4, 2, respectively.

We choose x̃k = (a cos 2πk
N
, b sin(2πk

N
+ cos 2πk

N
)), 0 ≤ k ≤ N − 1 on ∂Ω̃. To use the MFS, we

choose N points on ∂Ω corresponding to tk = 2πk
N
, 0 ≤ k ≤ N − 1, (see Figure 1.5). Then

the approximate solution can be obtained through (1.3)-(1.4). Our maximum error is also

estimated by using points on ∂Ω corresponding to 100 even spaced points in [0, 2π]. We

have the following numerical results:

Figure 1.5: Choose N=20 collocation points on the ∂Ω, and N=20 source points on the ∂Ω̃
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Table 1.4: Maximum Error ||uexact − uN ||C(∂Ω)

N = 20 N = 50 N = 100

a = 2.0, b = 1.5 0.0011 2.1269e-08 9.4311e-12

a = 3.0, b = 4.0 3.5269e-05 8.0126e-10 3.3815e-12

a = 2.0, b = 2.0 4.9950e-04 2.7468e-08 6.0702e-11

Example 1.3. Consider the Dirichlet boundary problem for the Laplace equation

∆u(x, y, z) = 0, (x, y, z) ∈ Ω,

u(x, y, z) = x ey cos(z), (x, y, z) ∈ ∂Ω,

where Ω = {(x, y, z) : x2 + y2 + z2 < 1} is the unit ball. The exact solution of the above

problem is uexact = xey cos(z). To use the MFS, we choose N points on ∂Ω corresponding to

tk =
2πk
N
, sk =

πk
N
, 0 ≤ k ≤ N − 1. We use a fictitious domain Ω̃ = {(x, y, z) : x2 + y2 + z2 ≤

r2}, where r = 1.5, 2, 3. We choose x̃k = (r cos 2πk
N

sin πk
N
, r sin 2πk

N
sin πk

N
, r cos πk

N
), 0 ≤

k ≤ N − 1, r = 1.5, 2, 3 on ∂Ω̃, (see Figure 1.6). Then the approximate solution can

be obtained through (1.3)-(1.4). Our maximum error is also estimated by using points on

∂Ω corresponding to 100 evenly spaced points in [0, 2π]. We have the following numerical

results:
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Figure 1.6: Choose N = 20 collocation points on ∂Ω, and N = 20 source points on ∂Ω̃, and
r = 3.0

Table 1.5: Maximum Error ||uexact − uN ||C(∂Ω)

N = 20 N = 50 N = 70

r = 1.5 3.3959e-14 1.1642e-10 3.8503e-06

r = 2.0 1.1007e-12 1.0357e-07 2.4414e-05

r = 3.0 5.8208e-11 6.5000e-06 1.0138e-05
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1.3 MFS for Other Boundary Conditions

Similarly the MFS can be applied to the Newmann boundary problem as follows:

∆u(x) = 0, x ∈ Ω, (1.7)

∂u

∂n
(x) = g(x), x ∈ ∂Ω, (1.8)

where Ω is a domain in R2 and n = (n1, n2) is the unit exterior normal vector on ∂Ω. As in

Section 1, an approximate solution is formed in (1.4). For the Newmann boundary condition

(1.8), we use the collocation method, namely, choose N points x1,x2, ...,xN on ∂Ω and set

up

∇u·n =
∂uN
∂n

(xk) = g(xk), 1 ≤ k ≤ N.

Or
N∑

m=1

ck
∂Γ

∂n
(xk, x̃m) = g(xk), 1 ≤ k ≤ N,

which can be expressed as
∂Γ
∂n
(x1, x̃1)

∂Γ
∂n
(x1, x̃2)

∂Γ
∂n
(x1, x̃3) . . . ∂Γ

∂n
(x1, x̃N)

∂Γ
∂n
(x2, x̃1)

∂Γ
∂n
(x2, x̃2)

∂Γ
∂n
(x2, x̃3) . . . ∂Γ

∂n
(x2, x̃N)

... ... ... . . . ...
∂Γ
∂n
(xN, x̃1)

∂Γ
∂n
(xN, x̃2)

∂Γ
∂n
(xN, x̃3) . . . ∂Γ

∂n
(xN, x̃N)



c1

c2
...
cN

 =


g(x1)

g(x2)

...
g(xN)

 . (1.9)

The coefficients ck, 1 ≤ m ≤ N, can then be determined by the above system (1.9) and

uN(x) in (1.4) is considered as an approximate solution of the Newmann boundary value

problem (1.7)-(1.8).

Below we present some examples to solve the Newmann boundary value problems by

MFS.
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Example 1.4. Consider the Newmann boundary problem for the Laplace equation

∆u(x, y) = 0, (x, y) ∈ Ω,

∂u

∂n
(x, y) = 3x3 − 9xy2, (x, y) ∈ ∂Ω,

where Ω = {(x, y) : x2 + y2 < 1}. The exact solution of the above problem is uexact =

x3−3xy2. To use the MFS, we choose M points on ∂Ω as in Example 1.2. We use a fictitious

domain Ω̃ = {(x, y) : x = a cos t, y = b sin(t + cos t), 0 ≤ t ≤ 2π}, where a = 2, 3, 4, 4

and b = 2, 4, 2, 3, respectively. We choose x̃k = (a cos 2πk
N
, b sin(2πk

N
+ cos 2πk

N
)), 0 ≤ k ≤

N − 1 on ∂Ω̃, (see Figure 1.7). Then we have the following numerical results:

Figure 1.7: Choose M = 20 collocation points on ∂Ω, and N = 20 source points on ∂Ω̃
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Table 1.6: Maximum Error ||uexact − uN ||C(∂Ω)

N = 120 N = 140 N = 160 N = 180

a = 2, b = 2 2.6338e-08 9.9064e-08 7.8426e-08 8.8402e-08

a = 3, b = 4 4.3082e-09 2.5001e-09 1.5980e-09 3.3865e-10

a = 4, b = 2 3.0100e-10 3.1147e-10 9.5455e-11 3.9710e-10

a = 4, b = 3 2.4490e-10 2.7728e-10 3.5139e-10 3.0854e-10

Next we consider the Robin boundary problem

∆u(x) = 0, x ∈ Ω, (1.10)

u(x) = f(x), x ∈ ∂Ω1, (1.11)

∂u

∂n
(x) = g(x), x ∈ ∂Ω2, (1.12)

where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n = (n1, n2) is the unit exterior normal vector on ∂Ω2. As

in Section 1, an approximate solution is formed in (1.4). For the Robin (Mixed) boundary

condition (1.11)-(1.12), we choose M points x1,x2, ...,xM on ∂Ω1 and N-M points xM+1,xM+2,

...,xN on ∂Ω2 and set up

uN(xk) = f(xk), 1 ≤ k ≤M,

12



and

∇u·n =
∂uN
∂n

(x̃k) = g(x̃k), M + 1 ≤ k ≤ N.

Or
N∑

m=1

ckΓ(xk, x̃m) = f(xk), 1 ≤ k ≤M,

and
N∑

m=1

ck
∂Γ

∂n
(xk, x̃m) = g(xk), M + 1 ≤ k ≤ N.

It is expressed as follows:

Γ(x1, x̃1) . . . Γ(x1, x̃M) . . . Γ(x1, x̃N)
Γ(x2, x̃1) . . . Γ(x2, x̃M) . . . Γ(x2, x̃N)

... . . . ... . . . ...
Γ(xM, x̃1) . . . Γ(xM, x̃M) . . . Γ(xM, x̃N)

∂Γ
∂n
(xM+1, x̃1) . . . ∂Γ

∂n
(xM+1, x̃M) . . . ∂Γ

∂n
(xM+1, x̃N)

... . . . ... . . . ...
∂Γ
∂n
(xN, x̃1) . . . ∂Γ

∂n
(xN, x̃M) . . . ∂Γ

∂n
(xN, x̃N)





c1
c2
...
cM

cM+1

...
cN


=



f(x1)
f(x2)

...
f(xM)

g(xM+1)

...
g(xN)


. (1.13)

Hence, the coefficients ck, 1 ≤ m ≤ N, can be determined by the above system (1.13)

and an approximate solution uN(x) in (1.4) can be obtained.
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Example 1.5. Consider the Robin (Mixed) boundary problem for the Laplace equation

∆u(x, y) = 0, (x, y) ∈ Ω,

u(x, y) = ln(x2 + y2), (x, y) ∈ ∂Ω1,

∂u

∂n
(x, y) = − 2y

x2 + y2
, (x, y) ∈ ∂Ω2,

where ∂Ω = ∂Ω1 ∪ ∂Ω2 such that ∂Ω1 = {(x, y) : x = cos(t), y = 1
8
+ sin(t), 0 ≤ t <

π} and ∂Ω2 = {(x, 1
8
) : x = t, −1 ≤ t ≤ 1}. The exact solution of the above problem is

uexact = ln(x2 + y2). To use the MFS, we choose N points on ∂Ω = ∂Ω1 ∪ ∂Ω2, where xk =

(cos(2πk
N

), sin(2πk
N

)), 0 ≤ k ≤ N − 1. We use a fictitious domain Ω̃ = {(x, y) : x = a sin(t +

sin t), y = b cos(t+ cos t), 0 ≤ t ≤ 2π}, where a = 3, 4, 4, 5 and b = 3, 3, 4, 4, respectively.

We choose x̃k = (a sin(2πk
N

+ cos 2πk
N

), b cos 2πk
N

), 0 ≤ k ≤ N − 1 on ∂Ω̃ corresponding to

N equally spaced points in [0, 2π], (see Figure 1.8). Then the approximate solution can

be obtained by (1.4) and (1.13). To estimate the maximum error (1.6), we choose equally

spaced M = 50 points zk, 1 ≤ k ≤ 50, on ∂Ω1 and N-M = 50 points zk, 51 ≤ k ≤

100, on ∂Ω2 which implies that zk, 1 ≤ k ≤ 100, on ∂Ω = ∂Ω1 ∪ ∂Ω2 to get the numerical

infinity norm

max
1≤k≤100

|uexact(zk)− uN(zk)|.

Then we have the following numerical results:
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Figure 1.8: Choose M = 20 collocation points on ∂Ω = ∂Ω1∪∂Ω2, and N = 20 source points
on ∂Ω̃ = {(x, y) : x = 3 sin(t+ sin t), y = 3 cos(t+ cos t), 0 ≤ t ≤ 2π}

Table 1.7: Maximum Error ||uexact − uN ||C(∂Ω)

N = 120 N = 140 N = 160 N = 180

a = 3, b = 3 1.7955e-10 2.4638e-10 4.6182e-10 6.1806e-10

a = 4, b = 3 3.1412e-10 3.2222e-10 7.3061e-10 4.5347e-10

a = 4, b = 4 5.3191e-10 6.5618e-10 1.3543e-09 6.7015e-10

a = 5, b = 4 1.8034e-10 1.6841e-10 1.0995e-10 1.4699e-10
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1.4 Convergence of the method of fundamental solu-
tions (MFS)

The numerical efficiency of MFS has been well reported in the literature (cf. [10]). However,

the convergence rates of MFS with respect to arbitrary domains and fictitious domains, and

arbitrary choices of source and collocation points, largely remain unanswered. In certain

special cases that ∂Ω and ∂Ω̃ are concentric circles, the rates of convergence of MFS are de-

rived by several authors (cf. [23]). Here we quote a constructive method by the fundamental

solution and a result of the rate of convergence derived in [23].

For a 2π-periodic function f(t) ∈ L2([−π, π]), its Fourier series expansion is given by

f(t) =
∞∑

n=−∞

cn(f)e
int, (1.14)

where

cn(f) :=
1

2π

∫ 2π

0

f(t)e−int dt, n ∈ Z.

For the sake of argument, we identify R2 with a complex plane C, and write

∂Ω := {reit : −π ≤ t < π} and ∂Ω̃ := {Reit : −π ≤ t < π},

where R > r. Associated with the fundamental solution Γ, we introduce

g(t) = − 1

4π
ln ||reit −R||2.

It is known from [11] (formula 1.514, p.45) that

g(t) = − 1

4π
ln[r2 − 2rR cos t+R2]

= − 1

2π
lnR +

1

4π

∑
n∈Z\{0}

1

|n|

( r
R

)|n|
eint,
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namely:

cn(g) =

{
− 1

2π
lnR, n = 0,

1
4π|n|

(
r
R

)|n|
, n ̸= 0.

(1.15)

Assume R ̸= 1 so that cn(g) ̸= 0. Since ∂Ω̃ is a fictitious boundary, it would not impose any

practical difficulty.

Now for the boundary value problem (1.1)-(1.2), we let

f(t) = f(reit), −π ≤ t < π.

Denote by Cj([−π, π]) the set of all functions with jth order continuous derivatives in [−π, π].

Assume f(t) ∈ Cj([−π, π]) for some j ≥ 2. With x̃k = Reikπ/N , −N ≤ k ≤ N − 1, we

introduce

uN,k(x) =
N−1∑
l=−N

al(k) Γ(x, x̃k), (1.16)

where

al(k) :=
k∑

n=−k

cn(f)

2Ncn(g)
ei

lnπ
N , −N ≤ l ≤ N − 1.

Then the following theorem is derived in [23].

Theorem 1.1. Suppose that u is the exact solution of (1.1) and (1.2), and f(t) = f(reit) ∈

Cj([−π, π]) for some j ≥ 2. Let uN,k be constructed above in (1.16), where R > r and R ̸= 1.

Then

||u− uN,k||L∞(Ω) ≤ c||f (j)||L∞([−π,π])

(
1

kj−1
+

(r/R)2(N−k)

1− (r/R)2N

)
,

where c is a constant independent of f(t), k, and N.
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CHAPTER 2

DUAL RECIPROCITY METHODS (DRM) FOR
THE POISSON’S EQUATIONS

2.1 Method of Particular Solutions (MPS) and DRM

First we describe the method of particular solutions to find an approximate particular solu-

tion of a Poisson’s equation

∆u(x) = f(x) in Ω. (2.1)

For this purpose, we use a radial basis functions (RBF)

ϕ(x) = ϕ(||x||),

where ϕ(·) is a univariate function. Approximate f(x) by the collocation method. To be

specific, we choose x1,x2, ...,xM in Ω, (see Figure 2.1) and consider a linear combination of

ϕ(||x− xk||), 1 ≤ k ≤M, or
M∑
k=1

ckϕ(||x− xk||),

where ck, 1 ≤ k ≤M, so chosen that

M∑
k=1

ckϕ(||xm − xk||) = f(xm), 1 ≤ m ≤M.

18



Figure 2.1: M points in Ω

The above equation yields
ϕ(0) ϕ(||x1 − x2||) . . . ϕ(||x1 − xM||)

ϕ(||x2 − x1||) ϕ(0) . . . ϕ(||x2 − xM||)
... ... . . . ...

ϕ(||xM − x1||) ϕ(||xM − x2||) . . . ϕ(0)



c1
c2
...
cM

 =


f(x1)
f(x2)

...
f(xM)

 . (2.2)

It is known in [25] that for Gaussian e−c||x||2 , or multiquadratic
√
||x||2 + c2, where c > 0

is a constant, the above coefficient matrix is always invertible. Hence {ck}Mk=1 can be found.

However, the above matrix may not be invertible for other RBFs, e.g. ϕ(x) = ||x||2 ln ||x||,

thin plate splines.

Suppose that {ck}Mk=1 is determined (e.g. using e−c||x||2 or
√

||x||2 + c2). Then
M∑
k=1

ckϕ(||x− xk||)

is considered as an approximation of f(x), and hence we turn to study the following Poisson’s

equation

∆u(x) =
M∑
k=1

ckϕ(||x− xk||), x ∈ Ω.
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If ψ is a RBF solution of ∆ψ(||x||) = ϕ(||x||), then

u(x) =
M∑
k=1

ckψ(||x− xk||)

is an approximate solution of the Poisson’s equation (2.1).

For Ω ∈ R2, it follows from Lemma 2.1 in Section 2.3 that

ψ(r) =

(∫ r

0

t ϕ(t) dt

)
ln r −

∫ r

0

t ϕ(t) ln t dt, (2.3)

where we choose A = B = 0. Let ϕ(r) = e−cr2or
√
r2 + c2, then substitute ϕ(r) into (1.15)

to get ψ(r) as follows:

ψ(r) =

(∫ r

0

t e−ct2 dt

)
ln r −

∫ r

0

t e−ct2 ln t dt,

or

ψ(r) =

(∫ r

0

t
√
t2 + c2 dt

)
ln r −

∫ r

0

t
√
t2 + c2 ln t dt,

respectively.

Hence, the numerical particular solution of the Poisson’s equation (2.1) is

up(x) =
M∑
k=1

ck

[(∫ ||x−xk||

0

t ϕ(t) dt

)
ln ||x− xk|| −

∫ ||x−xk||

0

t ϕ(t) ln t dt

]
. (2.4)

Now for a Dirichlet problem of the Poisson’s equation

∆u(x) = f(x), x ∈ Ω, (2.5)

u(x) = h(x), x ∈ ∂Ω, (2.6)
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first, we use the MPS to get an approximate solution of the Poisson’s equations. Namely,

choose a RBF ϕ(r) to interpolate f on Ω. Then we get an approximate solution up of

∆u(x) = f(x), as discussed above in (2.5). Next we consider the Dirichlet boundary problem

of the Laplace equation

∆u(x) = 0, x ∈ Ω, (2.7)

u(x) = h(x)− up(x), x ∈ ∂Ω. (2.8)

The MFS can be applied to obtain an approximate solution uN of (2.7)-(2.8). Then

uA(x) = uN(x) + up(x).

is considered as an approximate solution of (2.5)-(2.6). Such a combination of MPS and

MFS is called the dual reciprocity method (DRM).

2.2 Numerical Examples by DRM

Example 2.1. Consider the Dirichlet boundary problem for the Poisson’s equation

∆u(x, y) = 4e2x + 6y, (x, y) ∈ Ω,

u(x, y) = e2x + y3, (x, y) ∈ ∂Ω,

where Ω = {(x, y) : x2 + y2 ≤ 1} is the unit disc. The exact solution of the above problem is

uexact = e2x+y3. Choose ϕ(r) =
√
r2 + c2, where r = ||x|| and c = 0.5, 1, 2, respectively, and

use xk = (rk cos 2πk
M
, rk sin 2πk

M
), rk =

k
M
, 1 ≤ k ≤M, in Ω to get up in (2.4). Next, we use

the MFS to obtain uN , as discussed in section by using N points equally spaced on ∂Ω and

choosing a fictitious domain Ω̃ = {(x, y) : x2 + y2 ≤ 32}. Let x̃k = 3(cos 2πk
N
, sin 2πk

N
), 0 ≤
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k ≤ N−1on∂Ω̃. Then the approximate solution uN of the BVP (2.7)-(2.8) can be obtained.

To estimate the maximum error (1.6), we useM2 points zk,m = (rk cos
2πm
M
, rk sin

2πm
M

), rk =

k
M
, 1 ≤ k, m ≤M, in Ω and zk = (cos 2πk

N
, sin 2πk

N
), 0 ≤ k ≤ N−1on∂Ω, where Ω = Ω∪∂Ω,

to get the numerical estimate for

max |uexact(zk)− uA(zk)|C(Ω).

Then our numerical approximation errors are presented in the following table with various

c, M, and N:

Figure 2.2: M = 10, 110 points in Ω = Ω ∪ ∂Ω and N = 10 points on ∂Ω̃ with r = 1.5
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Table 2.1: Maximum Error ||uexact − uA||C(Ω)

M = 70 M = 100 M = 150
N = 30 N = 50 N = 50

r = 3, c = 0.5 1.3281e-12 2.6550e-12 1.3975e-11

r = 3, c = 1.0 5.9295e-12 1.2833e-11 5.8940e-11

r = 3, c = 2.0 3.8501e-11 9.4205e-11 2.0234e-10

Example 2.2. Consider the Dirichlet boundary problem for the Poisson’s equation

∆u(x, y) = ex tan(y)(1 + 2 sec2(y)), (x, y) ∈ Ω,

u(x, y) = ex tan(y), (x, y) ∈ ∂Ω,

where ∂Ω = {(x, y) : x = cos(t+sin t), y = sin(t+cos t), 0 ≤ t ≤ 2π}. The exact solution of

the above problem is uexact = ex tan(y). Choose ϕ(r) =
√
r2 + c2, where r = ||x|| and c = 0.5,

1, 2, respectively, and use xk = (rk cos(2πk
M

+ sin 2πk
M

), rk sin(2πk
M

+ cos 2πk
M

)), rk = k
M
, 1 ≤

k ≤ M, in Ω to get up in (2.4). Then the approximate solution uN of the BVP (2.7)-(2.8)

can be obtained and our maximum error is also estimated as in Example 2.1. We use a

fictitious domain Ω̃ = {(x, y) : x = 2 cos t, y = 2 sin(t + cos t), 0 ≤ t ≤ 2π}. We choose

x̃k = (2 cos 2πk
N
, 2 sin(2πk

N
+ cos 2πk

N
)), 0 ≤ k ≤ N−1 on ∂Ω̃. To estimate the maximum error

(1.6), we use M2 points zk,m = (rk cos(2πm
M

+ sin 2πm
M

), rk sin(2πm
M

+ cos 2πm
M

)), rk =
k
M
, 1 ≤

k, m ≤ M, in Ω and zk = (cos(2πk
N

+ sin 2πk
N

), sin(2πk
N

+ cos 2πk
N

)), 0 ≤ k ≤ N − 1 on ∂Ω,
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where Ω = Ω∪∂Ω, to get the numerical infinity norm as in Example 2.1. Then our numerical

approximation errors are presented in the following table with various c, M, and N:

Figure 2.3: M = 10, 110 points in Ω = Ω ∪ ∂Ω and N = 10 points on ∂Ω̃ with r = 2

Table 2.2: Maximum Error ||uexact − uA||C(Ω)

M = 70 M = 140 M = 150
N = 30 N = 60 N = 100

c = 0.5 6.4842e-06 8.8665e-05 5.2443e-12

c = 1.0 6.4842e-06 8.8665e-05 3.1248e-10

c = 2.0 6.4842e-06 8.8665e-05 7.4231e-09
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Example 2.3. Consider the Dirichlet boundary problem for the Poisson’s equation

∆u(x, y, z) = ex−y cos(z), (x, y, z) ∈ Ω,

u(x, y, z) = ex−y cos(z), (x, y, z) ∈ ∂Ω,

where Ω = {(x, y, z) : x2 + y2 + z2 ≤ 1}. The exact solution of the above problem is

uexact = ex−y cos(z). Choose ϕ(r) =
√
r2 + c2, where r = ||x|| and c = 0.5, 1, 2, respectively,

and use xk = (rk cos 2πk
M

sin πk
M
, rk sin 2πk

M
sin πk

M
, rk cos πk

M
), rk = k

M
, 1 ≤ k ≤ M, in Ω

to get up in (2.4). Then the approximate solution uN of the BVP (2.7)-(2.8) can be ob-

tained and our maximum error is also estimated as in Example 2.1. We use a fictitious

domain Ω̃ = {(x, y, z) : x2 + y2 + z2 ≤ R2}, where R = 1.5, 2, 3, 3.5. We choose x̃k =

(R cos 2πk
M

sin πk
M
, R sin 2πk

M
sin πk

M
, R cos πk

M
), R = {1.5, 2, 3, 3.5}, 1 ≤ k ≤M, on ∂Ω̃. To es-

timate the maximum error (1.6), we useM3 points zk,l,m = (rk cos 2πl
M

sin πm
M
, rk sin 2πl

M
sin πm

M
,

rk cos πm
M

), rk =
k
M
, 1 ≤ k, l, m ≤M, in Ω and zk = (cos 2πk

N
sin πk

N
, sin 2πk

N
sin πk

N
, cos πk

N
),

0 ≤ k ≤ N −1 on ∂Ω, where Ω = Ω∪∂Ω, to get the numerical infinity norm in Example 2.1.

Then our numerical approximation errors are presented in the following table with various

R, c, M, and N:
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Figure 2.4: M = 10, 1,010 points in Ω = Ω ∪ ∂Ω and N = 10 points on ∂Ω̃ with R = 2
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Table 2.3: Maximum Error ||uexact − uA||C(Ω)

M = 70 M = 90 M = 120
N = 30 N = 60 N = 80

R = 1.5, c = 0.5 3.1612e-12 1.8190e-12 7.7796e-09

R = 1.5, c = 1.0 3.1612e-12 1.8190e-12 7.7796e-09

R = 1.5, c = 2.0 3.8769e-12 2.8000e-12 7.7796e-09

R = 2.0, c = 0.5 3.1446e-11 4.2837e-08 1.3402e-06

R = 2.0, c = 1.0 3.1446e-11 4.2837e-08 1.3402e-06

R = 2.0, c = 2.0 3.1446e-11 4.2837e-08 1.3402e-06

R = 3.0, c = 0.5 4.9695e-11 1.4119e-04 6.4563e-05

R = 3.0, c = 1.0 4.9695e-11 1.4119e-04 6.4563e-05

R = 3.0, c = 2.0 4.9695e-11 1.4119e-04 6.4563e-05

R = 3.5, c = 0.5 3.3019e-10 6.6754e-05 6.8057e-06

R = 3.5, c = 1.0 3.3019e-10 6.6754e-05 6.8057e-06

R = 3.5, c = 2.0 3.3019e-10 6.6754e-05 6.8057e-06
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Figure 2.5: Maximum errors with c = 0.5 (�), c = 1.0 (◦), c = 2.0 (△), respectively
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2.3 On Convergence of DRM in R2

The convergence of DRM was discussed in [25], where the boundary value problems are

solved by integral equations with double layer potentials. Here by using the convergence

results of MFS described in section 1.4, we will describe the rate of convergence of DRM by

using RBF approximation in [16].

For δ > 0, let Ωδ = Ω + δI := {x + y : x ∈ Ω, y ∈ δI}, where I = [−1, 1]s. For any

integer n, set

In(Ωδ) =

{
j ∈ Zs :

[
j

n
,
j+ 1

n

]s
∩ Ωδ ̸= ∅

}
,

where 1 = (1, · · · , 1) ∈ Zs. For 1 ≤ p ≤ ∞, denote by W1,p(Ω) the space of all functions f

whose gradient is in Lp(Ω) with the usual Sobolev norm

||f ||W1,p(Ω) = ||f ||Lp(Ω) +
s∑

k=1

∣∣∣∣| ∂f∂xk
∣∣∣∣ |Lp(Ω).

For a function f ∈ W1,p(Ωδ), one can choose a smooth function χ such that χ is identical

to 1 on the closure Ω, and vanishes outside of Ωδ. Let fχ = f · χ, then fχ ∈ W1,p(Rs) and

it is compactly supported in Ωδ. Denote by W1,p
0 (Ωδ) the subspace of functions in W1,p(Rs)

which vanish outside of Ωδ. We then consider the approximation of functions in W1,p
0 (Ωδ)

over the domain Ω. Suppose that ϕ ∈ L1(Rs) is given with the property

∫
Rs

ϕ(x) dx = 1. (2.9)

Choose γ such that 0 < γ ≤ 1. For every f ∈ W1,p
0 (Ωδ) and an integer n ≥ 1, let

Bn,γf(x) =
1

ns(1−γ)

∑
j∈In(Ωδ)

f

(
j

n

)
ϕ(nγx− jnγ−1). (2.10)
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Let q satisfy 1
p
+ 1

q
= 1. If p = ∞, we consider q = 1. For α > 0, let Sα(Rs) be the set

consisting of all functions ϕ satisfying

|ϕ(x)| ≤ c(1 + ||x||)−α. (2.11)

The following result holds and a more general result can be found in [17].

Theorem 2.1. Let m ≥ 0. Suppose that ϕ ∈ Sm+1,α(Rs) for some α > s + 1. Then for

any f ∈ Cm+1
0 (Ωδ), and an integer n, the inequality

||Bn, 1
m+2

f − f ||Cm(Ω) ≤
c

m+2
√
n
||f ||Cm+1(Ωδ),

holds and when α = s+ 1,

||Bn, 1
m+2

f − f ||Cm(Ω) ≤
c lnn
m+2
√
n
||f ||Cm+1(Ωδ).

Choose ϕ to be a radial basis function, i.e. ϕ(x) = ϕ(r), where r = ||x||. Then the

condition (2.9) becomes ∫ ∞

0

rs−1ϕ(r) dr =
1

ωs

, s ≥ 2, (2.12)

where ωs =
2πs/2

Γ(s/2)
is the surface area of the unit sphere in Rs.

Lemma 2.1. For a RBF ϕ(r), a radially particular solution of ∆ψ = ϕ is given by

ψ(r) = − 1

(s− 2)rs−2

∫ r

0

ts−1ϕ(t) dt+
1

s− 2

∫ r

0

tϕ(t) dt+
A

rs−2
+B, s ≥ 3, (2.13)

or

ψ(r) =

(∫ r

0

t ϕ(t) dt

)
ln r −

∫ r

0

t ϕ(t) ln t dt+ A ln r +B, s = 2, (2.14)

where A and B are constants.
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For clarity, we present the proof in the following.

Proof. A radial solution of ∆ψ = ϕ satisfies

∂2ψ

∂r2
+
s− 1

r

∂ψ

∂r
= ϕ(r),

which can be written as
1

rs−1

∂

∂r

(
rs−1∂ψ

∂r

)
= ϕ(r).

Hence,
∂ψ

∂r
=

1

rs−1

∫ r

0

ts−1 ϕ(t) dt+
c1
rs−1

.

For s ≥ 3, we have

ψ(r) =

∫ r

1

(
1

τ s−1

∫ τ

0

ts−1ϕ(t) dt

)
dτ +

c2
rs−2

+ c3

=

∫ r

1

(
d

dτ

(
− 1

(s− 2)τ s−2

)∫ τ

0

ts−1ϕ(t) dt

)
dτ +

c2
rs−2

+ c3

= − 1

(s− 2)rs−2

∫ r

0

ts−1ϕ(t) dt+
1

s− 2

∫ r

1

τϕ(τ) dτ +
c2
rs−2

+ c4

= − 1

(s− 2)rs−2

∫ r

0

ts−1ϕ(t) dt+
1

s− 2

∫ r

0

tϕ(t) dt+
A

rs−2
+B.

If s = 2, then

ψ(r) =

∫ r

1

(
1

r

∫ r

0

t ϕ(t) dt+
A

r

)
dr + c

=

(∫ r

0

t ϕ(t) dt

)
ln r −

∫ r

0

t ϕ(t) ln t dt+ A ln r +B.

This lemma is proved. �

To ensure that ψ is differentiable at 0, we choose A = 0, and also set B = 0 for the

simplicity of discussion. Assume that f is compactly supported in Ωδ. Choose a radial basis
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ϕ satisfying the conditions in Theorem 2.1, and let ψ be the corresponding solution given by

(2.13) or (2.14). Set

ũn(x) =
1

ns(1−γ)

∑
j∈In(Ωδ)

f

(
j

n

)
n2γψ(nγ(x− j/n)). (2.15)

Then

∆ũn(x) = Bn,γf(x).

The following result is shown in [16].

Proposition 2.1. Suppose that a radial basis function ϕ ∈ W1,p(Rs) ∩ Sα(Rs) where

α > s. Let ũn be given by (2.15). Then, for any f ∈ W1,p
0 (Ωδ) and large n,

||∆ũn − f ||Lp(Rs) ≤
c

nτ
||f ||W1,p(Ωδ), (2.16)

where τ = min{γ(α− s), γ}. Moreover, for sufficiently large x,

|∆ũn(x)| ≤
c

||x||α
||f ||L∞(Ωδ).

For a given bounded domain Ω in R2, choose x0 such that B(x0, δ) ∩ Ωδ = ∅, where

B(x0, δ) = {x ∈ R2, ||x− x0|| < δ}. Let ũn be given by (2.15), which is expressed as

ũn(x) =
1

n2

∑
j∈In(Ωδ)

f

(
j

n

)[(∫ nγ ||x−j/n||

0

tϕ(t) dt

)
ln(nγ||x− j/n||)−

∫ nγ ||x−j/n||

0

tϕ(t) ln(t) dt

]
.

Set

an :=

 1

n2

∑
j∈In(Ωδ)

f

(
j

n

)∫ ∞

0

tϕ(t) dt,

bn :=

 1

n2

∑
j∈In(Ωδ)

f

(
j

n

)∫ ∞

0

tϕ(t) ln(t) dt.
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Let

ūn(x) = an ln(nγ||x− x0||)− bn,

and

un(x) = ũn(x)− ūn(x). (2.17)

A particular solution of (2.5) is known and given by the classical Newtonian potential

u(x) =
1

2π

∫
Ω

f(y) ln ||x− y|| dy, (2.18)

in R2 and in view of (2.18), we define

up(x) =
1

2π

∫
Ωδ

f(y) ln ||x− y|| dy − a0 ln(||x− x0||), (2.19)

where

a0 =
1

2π

∫
Ωδ

f(y) dy.

Then obviously up(x) satisfies ∆up(x) = f(x) in Ω. And for sufficiently large x we have

|up(x)| =
1

2π

∣∣∣∣∫
Ωδ

f(y) ln
||x− y||
||x− x0||

dy

∣∣∣∣
≤ 1

2π

∫
Ωδ

|f(y)| ln ||x||+ ρ

||x|| − ρ
dy

≤ 1

2π

∫
Ωδ

|f(y)| ln
(
1 +

2ρ

||x|| − ρ

)
dy

≤
(

1

2π

∫
Ωδ

|f(y)| dy
)

2ρ

||x|| − ρ

≤ c

||x||
||f ||L1(Ωδ).
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Let D = B(x0, δ)
c, the complement of B(x0, δ), and

Os,α(n) :=

{
1
nτ , α ̸= s+ 2,
lnn
nτ , α = s+ 2.

(2.20)

where τ := min{γ(α− s), 2γ}.

The following result is derived in [16].

Theorem 2.2. Suppose that a radial basis function ϕ ∈ W1,∞(R2) ∩ Sα(R2) for some

α > 2. Let un, up be given by (2.17) and (2.19), respectively. Then

||un − up||L∞(D) ≤ cO2,α(n) ln(n) ||f ||L∞(Ωδ) +
c

n
||f ||W1,∞

0 (Ωδ)
,

where O2,α(n) is given by (2.20) with s = 2. And moreover for sufficiently large x,

|un(x)| ≤
c ln ||x||
||x||β

||f ||W1,∞
0 (Ωδ)

,

where β := min{α− 2, 1}.

Now we consider the approximation for the Newtonian potentials in Rs, s ≥ 3. Let ũn

be given by (2.15). From Lemma 2.1, we have

ũn(x) = − 1

ns(1−γ)+2γ

∑
j∈In(Ωδ)

f

(
j

n

)
1

(s− 2)(nγ||x− j/n||)s−2

∫ nγ ||x−j/n||

0

ts−1ϕ(t) dt

+
1

ns(1−γ)+2γ

∑
j∈In(Ωδ)

f

(
j

n

)
1

s− 2

∫ nγ ||x−j/n||

0

tϕ(t) dt (2.21)

Introduce a constant

Cn =
1

(s− 2)ns(1−γ)+2γ

∑
j∈In(Ωδ)

f

(
j

n

)∫ ∞

0

tϕ(t) dt. (2.22)
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Set

un(x) = ũn(x)− Cn. (2.23)

Denote by up the Newtonian potential of f over Ωδ, i.e.

up(x) = − 1

(s− 2)ωs

∫
Ωδ

f(y)
1

||x− y||(s−2)
dy. (2.24)

As before assume that Ω is bounded. Then the next result is shown in [16].

Theorem 2.3. Suppose that ϕ ∈ W1,∞(Rs)∩ Sα(Rs) for some α > s and f ∈ W1,∞
0 (Ωδ).

Let un, up be given by (2.23), (2.24), respectively. Then

||un − up||L∞(Rs) ≤ cOs,α(n)||f ||L∞(Ωδ) +
c

n
||f ||W1,∞

0 (Ωδ)
,

And for sufficiently large x,

|un(x)| ≤
c

||x||s−2
||f ||L∞(Ωδ). (2.25)

For the sake of discussion, we consider radial basis functions of the form ϕ(r2) with the

property that

∫
Rs

ϕ(r2) dx = 1, (2.26)

and moreover we require that ϕ is l times continuously differentiable and its derivatives decay

in the following order

diϕ

dxi
(r2) = O(x−i), x→ ∞, (2.27)

for 0 ≤ i ≤ l. The following example shows that several commonly used radial basis functions

satisfy the conditions (2.26) and (2.27).
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Example 2.4. 1: The Gaussian function

ϕ(r2) =
( c
π

)s/2
e−cr2 , c > 0.

2: The following compactly supported radial basis functions

ϕ(r2) =

{
(k + 1)(1− r2)k/π, 0 ≤ r ≤ 1,
0, r > 1,

for k ≥ l + 1 in R2, or

ϕ(r2) =

{
((2n+ 3)!!)(1− r2)n/(4π(2n)!!), 0 ≤ r ≤ 1,
0, r > 1,

in R3, where

n!! =

{
1 · 3 · · · · · ·n, if n is an odd number,
2 · 4 · · · · · ·n, if n is an even number.

3: The inverse multiquadratics

ϕ(r2) =
k − 1

π(r2 + 1)k
, k > 2,

in R2, or

ϕ(r2) =
1

2π2

(2n− 2)!!

(2n− 5)!!

1

(r2 + 1)n
, n ≥ 3

in R3.

Suppose that ϕ satisfies (2.26) and (2.27), and ψ is the solution of ∆ψ = ϕ. Let ũn

be the approximate particular solution given by (2.15) or (2.21). Then it is shown in the

Proposition 4.4 of [25] that

||ũn||Wl,p(∂Ω) ≤ c n(l+s)τ , (2.28)

for any p, 1 ≤ p ≤ ∞. Now if un is given by (2.15) or (2.21), then obviously

||un||Wl,p(∂Ω) ≤ c n(l+s)τ . (2.29)
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Next we establish the convergent result of MPS and MFS for solving the Dirichlet problem

of Poisson’s equation in R2.

Assume Ω = {x ∈ R2 : ||x||2 < r}. Without loss of generality, assume r < π, otherwise a

simple scaling transformation can be used to transform Ω inside [−π, π]2.

Theorem 2.4. Let u be the exact solution of

∆u(x) = f(x), x ∈ Ω,

u(x) = h(x), x ∈ ∂Ω,

where Ω = {x ∈ R2 : ||x||2 < r}. Suppose h(t) := h(r cos t, r sin t) ∈ Cj([−π, π]) for some j, 2 ≤

j ≤ l−1. Let up be an approximate particular solution given in (2.4) and vn,N,k the numerical

solution of

∆v(x) = 0, ||x||2 < r,

v(x) = h(x)− up(x), ||x||2 = r,

given by MFS (cf. (1.16)). Let

un,N,k = up + vn,N,k

then

||un,N,k − u||L2(Ω) ≤
c

nτ
||f ||W1,2(Ωδ) + c n(j+2)γ

(
1

kj−1
+

(r/R)2(N−k)

1− (r/R)2N

)
,

for any R > r and R ̸= 1, where k < N − 1, τ := min{γ(α − s), 2γ}, and c is a constant

independent of f, N, n, k.
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Proof. Let vn be the exact solution of

∆v(x) = 0, x ∈ Ω,

v(x) = h(x)− up(x), x ∈ ∂Ω.

Set

ũn(x) = up(x) + vn(x).

Then

||un,N,k − u||L2(Ω) ≤ ||un,N,k − ũn||L2(Ω) + ||ũn − u||L2(Ω). (2.30)

From Theorem 1.1 and (2.29),

||un,N,k − ũn||L2(Ω) = ||vn − vn,N,k||L2(Ω)

≤ c ||(h− up)
(j)||L∞([−π,π])

(
1

kj−1
+

(r/R)2(N−k)

1− (r/R)2N

)

≤ c n(j+2)γ

(
1

kj−1
+

(r/R)2(N−k)

1− (r/R)2N

)
. (2.31)

Note that for x ∈ Ω,

∆(ũn − u) = ∆up +∆vn −∆u = Bn,γf − f,

and thus from Proposition 2.1,

||∆(ũn − u)||L2(Ω) ≤
c

nτ
||f ||W1,2(Ωδ), (2.32)

When x ∈ ∂Ω,

ũn(x)− u(x) = up(x) + h(x)− up(x)− h(x) = 0. (2.33)
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It follows from (2.32) and (2.33) and a-priori estimate (cf. [29]) that

||ũn − u||L2(Ω) ≤
c

nτ
||f ||W1,2(Ωδ). (2.34)

Hence the conclusion of the theorem follows from (2.30), (2.31) and (2.34).

2.4 Numerical Examples

In this section, we use the approximate particular solutions described in section 2.3 with

MFS to present some numerical examples.

Example 2.5. Consider the Dirichlet boundary problem for the Poisson’s equation

∆u(x, y) = ex + 2, (x, y) ∈ Ω,

u(x, y) = ex + y2, (x, y) ∈ ∂Ω,

where Ω = {(x, y) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 0 or − 1 ≤ x ≤ 0, 0 ≤ y ≤ 1} is the L-shaped

domain. The exact solution of the above problem is uexact = ex + y2. Choose three different

radial basis functions in Example 2.4:

(a) ϕ(r2) = c
π
e−c r2 , where r = ||x|| and c = 1, 3, 5, respectively,

(b) ϕ(r2) =

{
(c+ 1)(1− r2)c/π, 0 ≤ r ≤ 1,
0, r > 1,

for c = 3, 4, 5, respectively,

(c) ϕ(r2) = c−1
π(r2+1)c

, for c = 3, 4, 5, respectively,

and use x0 = (1, 1) and xk,m = ( k
n
, m

n
), −1.1n ≤ k ≤ 1.1n and − 1.1n ≤ m ≤ 0.1n, or −

1.1n ≤ k ≤ 0.1n and − 0.1n ≤ m ≤ 1.1n, in Ωδ with δ = 0.1 to get un in (2.17). Next, we

use the MFS to obtain uN , as discussed in section by using N points equally spaced on ∂Ω
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and choosing a fictitious domain Ω̃ = {(x, y) : x2+ y2 ≤ R2}, where R = 1.5, 3, respectively.

Let x̃k = (R cos 2πk
N
, R sin 2πk

N
), R = 1.5, 3, 0 ≤ k ≤ N − 1 on ∂Ω̃. Then the approximate

solution uN of the BVP (2.7)-(2.8) can be obtained. To estimate the maximum error (1.6),

we use M2 points zk,m = ( k
M
, m

M
), 1 ≤ k, m ≤M, with M = 100 in Ω = Ω ∪ ∂Ω to get the

numerical infinity norm

max
Ω

|uexact(zk,m)− uA(zk,m)|.

Then our numerical approximation errors are presented in the following table with various

R, c, n, and N:

Figure 2.6: n = 10, 100 points (•) in Ω, 40 points (•) on ∂Ω and (+) on ∂Ωδ, respectively,
and N = 20 points (*) on ∂Ω̃ with r = 2
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Table 2.4: Maximum Error ||uexact − uA||C(Ω) with (a) the Gaussian RBFs ϕ(r2) = c
π
e−c r2

n = 40 n = 100 n = 120
N = 30 N = 50 N = 80

R = 1.5, c = 1 7.3348e-08 3.6730e-07 4.8013e-07

R = 1.5, c = 3 2.5898e-05 7.7863e-06 5.3581e-06

R = 1.5, c = 5 2.2344e-05 1.3413e-05 1.6347e-05

R = 3.0, c = 1 7.3348e-08 3.6730e-07 4.8013e-07

R = 3.0, c = 3 2.5898e-05 7.7863e-06 5.3581e-06

R = 3.0, c = 5 2.2344e-05 1.3413e-05 1.6347e-05

Figure 2.7: Maximum errors with c = 1 (�), c = 3 (◦), c = 5 (△), respectively
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Table 2.5: Maximum Error ||uexact−uA||C(Ω) with (b) the compactly supported RBFs ϕ(r2) =
(c+ 1)(1− r2)c/π, 0 ≤ r ≤ 1, for c = 3, 4, 5.

n = 40 n = 50 n = 40
N = 30 N = 50 N = 80

R = 1.5, c = 3 3.7748e-15 7.5495e-15 1.2212e-14

R = 1.5, c = 4 2.6645e-15 6.6613e-15 1.8430e-14

R = 1.5, c = 5 1.3323e-15 9.1038e-15 1.7097e-14

R = 3.0, c = 3 3.7748e-15 3.3529e-14 3.4417e-14

R = 3.0, c = 4 3.1086e-15 3.3529e-14 3.4417e-14

R = 3.0, c = 5 3.1086e-15 3.3529e-14 3.4417e-14

Figure 2.8: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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Table 2.6: Maximum Error ||uexact − uA||C(Ω) with (c) the inverse multiquadratics RBFs
ϕ(r2) = c−1

π(r2+1)c
, for c = 3, 4, 5.

n = 40 n = 50 n = 40
N = 30 N = 50 N = 80

R = 1.5, c = 3 9.2459e-08 2.5582e-08 5.6170e-08

R = 1.5, c = 4 1.2439e-07 3.2560e-08 2.9810e-08

R = 1.5, c = 5 4.0713e-08 1.4644e-08 1.5542e-07

R = 3.0, c = 3 9.2459e-08 2.5582e-08 5.6170e-08

R = 3.0, c = 4 1.2439e-07 3.2560e-08 2.9810e-08

R = 3.0, c = 5 4.0713e-08 1.4644e-08 1.5542e-07

Figure 2.9: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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Example 2.6. Consider the Dirichlet boundary problem on a L-shaped domain with a

gear-shaped fictitious domain for the Poisson’s equation

∆u(x, y) = (x2 + 2) ey, (x, y) ∈ Ω,

u(x, y) = (sin x+ x2) ey, (x, y) ∈ ∂Ω,

where Ω = {(x, y) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 0 or − 1 ≤ x ≤ 0, 0 ≤ y ≤ 1} is the

L-shaped domain. The exact solution of the above problem is uexact = (sin x+x2) ey. Choose

three different radial basis functions as in Example 2.4 and use x0 = (1, 1) and xk,m =

( k
n
, m

n
), −1.1n ≤ k ≤ 1.1n and − 1.1n ≤ m ≤ 0.1n, or − 1.1n ≤ k ≤ 0.1n and − 0.1n ≤

m ≤ 1.1n, in Ωδ with δ = 0.1 to get un in (2.17). Next, we use the MFS to obtain uN ,

as discussed in section by using N points equally spaced on ∂Ω and choosing a gear-shaped

fictitious domain Ω̃ = {(x, y) : x = (R+1
2
sin(7t)) cos(t+1

2
sin(7t)), y = (R+1

2
sin(7t)) cos(t+

1
2
sin(7t)), 0 ≤ t < 2π}, R = 2, 3, respectively. Let x̃k = ((R + 1

2
sin(72πk

N
)) cos(2πk

N
+

1
2
sin(72πk

N
)), (R + 1

2
sin(72πk

N
)) sin(2πk

N
+ 1

2
sin(72πk

N
))), 0 ≤ k ≤ N − 1 on ∂Ω̃. Then the

approximate solution uN of the BVP (2.7)-(2.8) can be obtained. To estimate the maximum

error (1.6), we use M2 points zk,m = ( k
M
, m

M
), −M ≤ k ≤M and −M ≤ m ≤ 0 or −M ≤

k ≤ 0 and 0 ≤ m ≤ M with M = 100 in Ω = Ω ∪ ∂Ω to get the numerical infinity norm in

Example 2.4. Then our numerical approximation errors are presented in the following table

with various R, c, n, and N:
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Figure 2.10: n = 20, 300 points (•) in Ω, 60 points (•) on ∂Ω and 35 points (+) on ∂Ωδ,

respectively, and N = 20 points (*) on ∂Ω̃ with R = 2.5
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Table 2.7: Maximum Error ||uexact − uA||C(Ω) with (a) the Gaussian RBFs ϕ(r2) = c
π
e−c r2

n = 20 n = 40 n = 50
N = 30 N = 40 N = 50

R = 2, c = 1 6.1979e-06 4.2870e-07 6.1780e-06

R = 2, c = 3 3.7903e-05 1.8962e-06 2.0928e-06

R = 2, c = 5 2.9046e-08 1.3116e-06 9.2832e-07

R = 3, c = 1 6.1979e-06 4.2870e-07 6.1780e-06

R = 3, c = 3 3.7903e-05 1.8962e-06 2.0928e-06

R = 3, c = 5 2.9046e-08 1.3116e-06 9.2832e-07

Figure 2.11: Maximum errors with c = 1 (�), c = 3 (◦), c = 5 (△), respectively
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Table 2.8: Maximum Error ||uexact−uA||C(Ω) with (b) the compactly supported RBFs ϕ(r2) =
(c+ 1)(1− r2)c/π, 0 ≤ r ≤ 1, for c = 3, 4, 5.

n = 20 n = 40 n = 50
N = 30 N = 40 N = 50

R = 2, c = 3 2.2204e-15 5.0238e-15 1.1248e-14

R = 2, c = 4 2.2204e-15 5.0238e-15 1.1248e-14

R = 2, c = 5 2.2204e-15 5.0238e-15 1.1248e-14

R = 3, c = 3 3.9094e-14 2.7686e-14 1.3536e-13

R = 3, c = 4 3.9094e-14 2.7686e-14 1.3536e-13

R = 3, c = 5 3.9094e-14 2.7686e-14 1.3536e-13

Figure 2.12: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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Table 2.9: Maximum Error ||uexact − uA||C(Ω) with (c) the inverse multiquadratics RBFs
ϕ(r2) = c−1

π(r2+1)c
, for c = 3, 4, 5.

n = 20 n = 40 n = 50
N = 30 N = 40 N = 50

R = 2, c = 3 1.2424e-05 7.0323e-06 1.3949e-06

R = 2, c = 4 2.9106e-06 7.7640e-06 6.7156e-07

R = 2, c = 5 5.1589e-06 2.4789e-05 1.0574e-06

R = 3, c = 3 1.2424e-05 7.0323e-06 1.3949e-06

R = 3, c = 4 2.9106e-06 7.7640e-06 6.7156e-07

R = 3, c = 5 5.1589e-06 2.4789e-05 1.0574e-06

Figure 2.13: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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Example 2.7. Consider the Dirichlet boundary problem for the Poisson’s equation

∆u(x, y) = −17

16
sin(x+

y

4
)− y2ex sin(ex) + (2− y2e2x) cos(ex), (x, y) ∈ Ω,

u(x, y) = sin(x+
y

4
) + y2 cos(ex), (x, y) ∈ ∂Ω,

where Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 0.5 or 0 ≤ x ≤ 0.5, 0.5 ≤ y ≤ 1} is the L-shaped

domain. The exact solution of the above problem is uexact = sin(x+ y
4
) + y2 cos(ex). Choose

three different radial basis functions as in Example 2.4 and use x0 = (1, 1) and xk,m =

( k
n
, m

n
), −1.1n ≤ k ≤ 1.1n and − 1.1n ≤ m ≤ 0.1n, or − 1.1n ≤ k ≤ 0.1n and − 0.1n ≤

m ≤ 1.1n, in Ωδ with δ = 0.1 to get un in (2.17). Next, we use the MFS to obtain uN , as

discussed in section by using N points equally spaced on ∂Ω and choosing an amoeba-like

fictitious domain Ω̃ = {(x, y) : x = r(t) cos(t), y = r(t) sin(t), where r(t) = Resin(t) sin2(2t)+

Recos(t) cos2(2t), 0 ≤ t < 2π, R = 3, 5, respectively. Let x̃k = ((Resin(
2πk
N

) sin2(22πk
N

) +

Recos(
2πk
N

) cos2(22πk
N

)) cos(2πk
N

), (Resin(
2πk
N

) sin2(22πk
N

) + Recos(
2πk
N

) cos2(22πk
N

)) sin(2πk
N

)), 0 ≤

t < 2π, 0 ≤ k ≤ N−1 on ∂Ω̃. Then the approximate solution uN of the BVP (2.7)-(2.8) can

be obtained. To estimate the maximum error (1.6), we useM2 points zk,m = ( k
M
, m

M
), −M ≤

k ≤ M and −M ≤ m ≤ 0 or −M ≤ k ≤ 0 and 0 ≤ m ≤ M with M = 100 in Ω = Ω ∪ ∂Ω

to get the numerical infinity norm in Example 2.4. Then our numerical approximation errors

are presented in the following table with various R, c, n, and N:
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Figure 2.14: n = 20, 300 points (•) in Ω, 80 points (•) on ∂Ω and 40 points (+) on ∂Ωδ,

respectively, and N = 20 points (*) on ∂Ω̃ with R = 2.5
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Table 2.10: Maximum Error ||uexact − uA||C(Ω) with (a) the Gaussian RBFs ϕ(r2) = c
π
e−c r2

n = 20 n = 40 n = 50
N = 30 N = 40 N = 50

R = 3, c = 1 0.0167 0.0131 0.0146

R = 3, c = 3 0.0160 0.0114 0.0071

R = 3, c = 5 0.0206 0.0045 0.0123

R = 5, c = 1 0.0167 0.0131 0.0146

R = 5, c = 3 0.0160 0.0114 0.0071

R = 5, c = 5 0.0206 0.0045 0.0123

Figure 2.15: Maximum errors with c = 1 (�), c = 3 (◦), c = 5 (△), respectively
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Table 2.11: Maximum Error ||uexact − uA||C(Ω) with (b) the compactly supported RBFs
ϕ(r2) = (c+ 1)(1− r2)c/π, 0 ≤ r ≤ 1, for c = 3, 4, 5.

n = 20 n = 40 n = 50
N = 30 N = 40 N = 50

R = 3, c = 3 7.4094e-14 4.0935e-13 1.4341e-13

R = 3, c = 4 7.4094e-14 4.0935e-13 1.4341e-13

R = 3, c = 5 7.4094e-14 4.0935e-13 1.4341e-13

R = 5, c = 3 7.6299e-13 4.8181e-13 1.1156e-12

R = 5, c = 4 7.6299e-13 4.8181e-13 1.1156e-12

R = 5, c = 5 7.6299e-13 4.8181e-13 1.1156e-12

Figure 2.16: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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Table 2.12: Maximum Error ||uexact − uA||C(Ω) with (c) the inverse multiquadratics RBFs
ϕ(r2) = c−1

π(r2+1)c
, for c = 3, 4, 5.

n = 20 n = 40 n = 50
N = 30 N = 40 N = 50

R = 3, c = 3 0.0135 0.0088 0.0107

R = 3, c = 4 0.0160 0.0114 0.0071

R = 3, c = 5 0.0167 0.0131 0.0146

R = 5, c = 3 0.0135 0.0088 0.0107

R = 5, c = 4 0.0160 0.0114 0.0071

R = 5, c = 5 0.0167 0.0131 0.0146

Figure 2.17: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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Example 2.8. Consider the Dirichlet boundary problem for the Poisson’s equation

∆u(x, y, z) = ex−y cos(z), (x, y, z) ∈ Ω,

u(x, y, z) = ex−y cos(z), (x, y, z) ∈ ∂Ω,

where Ω = {(x, y, z) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1}. The exact solution of

the above problem is uexact = ex−y cos(z). Choose three different radial basis functions in

Example 2.4:

(a) ϕ(r2) = c
π
e−c r2 , where r = |0x|0 and c = 1, 3, 5, respectively,

(b) ϕ(r2) =

{
((2c+ 3)!!)(1− r2)c/(4π(2c)!!), 0 ≤ r ≤ 1,
0, r > 1,

for c = 3, 4, 5, respectively,

(c) ϕ(r2) = 1
2π2

(2c−2)!!
(2c−5)!!

1
(r2+1)c

, for c = 3, 4, 5, respectively,

where n!! =
{

1 · 3 · · · · · ·n, if n is an odd number,
2 · 4 · · · · · ·n, if n is an even number,

and use x0 = (−1.5, −1.5, −1.5) and xk,l,m = ( k
n
, l

n
, m

n
), −1.1n ≤ k, l, m ≤ 1.1n, in Ωδ =

[−1.1, 1.1]3 to get un in (2.21). Then the approximate solution uN of the BVP (2.7)-(2.8)

can be obtained and our maximum error is also estimated as in Example 2.4. We use

a fictitious domain Ω̃ = {(x, y, z) : x2 + y2 + z2 ≤ R2}, where R = 3, 5. We choose

x̃k = (R cos 2πk
M

sin πk
M
, R sin 2πk

M
sin πk

M
, R cos πk

M
), R = 3, 5, 1 ≤ k ≤ M, on ∂Ω̃. To

estimate the maximum error (1.6), we useM3 points zk,l,m = ( k
M
, l

M
, m

M
), −M ≤ k, l, m ≤

M, with M = 40 in Ω = Ω ∪ ∂Ω, to get the numerical infinity norm in Example 2.4. Then

our numerical approximation errors are presented in the following table with various R, c,

n, and N:
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Figure 2.18: n = 10, 1000 points (•) in Ω, 240 points (•) on ∂Ω, and N = 20 points (*) on
∂Ω̃ with R = 2
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Table 2.13: Maximum Error ||uexact − uA||C(Ω) with (a) the Gaussian RBFs ϕ(r2) = c
π
e−c r2

n = 10 n = 20 n = 30
N = 20 N = 30 N = 50

R = 3, c = 1 2.4676e-04 0.0020 1.7414e-04

R = 3, c = 3 9.8249e-04 5.5944e-04 8.7610e-05

R = 3, c = 5 1.3205e-04 2.6556e-05 5.2635e-05

R = 5, c = 1 2.4676e-04 0.0020 1.7414e-04

R = 5, c = 3 9.8249e-04 5.5944e-04 8.7610e-05

R = 5, c = 5 1.3205e-04 2.6556e-05 5.2635e-05

Figure 2.19: Maximum errors with c = 1 (�), c = 3 (◦), c = 5 (△), respectively
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Table 2.14: Maximum Error ||uexact − uA||C(Ω) with (b) the compactly supported RBFs
ϕ(r2) = ((2c+ 3)!!)(1− r2)c/(4π(2c)!!), 0 ≤ r ≤ 1, for c = 3, 4, 5.

n = 10 n = 20 n = 30
N = 20 N = 30 N = 50

R = 3, c = 3 1.6653e-15 1.9984e-15 6.9944e-15

R = 3, c = 4 1.6653e-15 1.9984e-15 2.5535e-15

R = 3, c = 5 1.6653e-15 1.9984e-15 8.7708e-15

R = 5, c = 3 9.9920e-16 7.7716e-16 6.9944e-15

R = 5, c = 4 9.9920e-16 6.6613e-16 2.5535e-15

R = 5, c = 5 9.9920e-16 4.4409e-16 8.7708e-15

Figure 2.20: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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Table 2.15: Maximum Error ||uexact − uA||C(Ω) with (c) the inverse multiquadratics RBFs
ϕ(r2) = 1

2π2

(2c−2)!!
(2c−5)!!

1
(r2+1)c

, for c = 3, 4, 5.

n = 10 n = 20 n = 30
N = 20 N = 30 N = 50

R = 3, c = 3 7.3079e-06 2.9932e-04 5.8447e-04

R = 3, c = 4 2.1399e-04 2.5427e-04 3.0569e-04

R = 3, c = 5 1.2014e-04 8.1775e-05 0.0032

R = 5, c = 3 7.3079e-06 2.9932e-04 5.8447e-04

R = 5, c = 4 2.1399e-04 2.5427e-04 3.0569e-04

R = 5, c = 5 1.2014e-04 8.1775e-05 0.0032

Figure 2.21: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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CHAPTER 3

DUAL RECIPROCITY METHODS FOR THE
BOUNDARY VALUE PROBLEMS OF HELMHOLTZ
EQUATIONS

3.1 Description of MFS for Helmholtz equations

Consider the Dirichlet boundary problem for a homogeneous Helmholtz equation

∆u(x) + κ2u(x) = 0, x ∈ Ω, (3.1)

u(x) = h(x), x ∈ ∂Ω, (3.2)

where Ω is a bounded domain in Rs, s ≥ 2 and κ = a + b i is a complex number with b =

Im(κ) ≥ 0. The fundamental solution of the Helmholtz equation (3.1) with the differential

operator, L = −(∆ + κ2 I), is given by

Γ(x) =
i

4

( κ

2πr

)s/2−1

H
(1)
s/2−1(κr), s ≥ 2, (3.3)

where r = ||x|| and H(1)
s/2−1 is a Hankel function (cf. [18]). Especially, when s = 3, 2,

H
(1)
1/2(z) = −i

(
2

πz

)1/2

eiz, H
(1)
0 (z) = J0(z) + iY0(z), (3.4)

where Jk is the Bessel functions of the first kind of order k and Yk is the Bessel functions of

the second kind of order k.
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The method of fundamental solutions (MFS) for the boundary value problems of Helmholtz

equations is similar to the MFS for the Laplace equation. Namely, we choose a fictitious

domain ∂Ω̃ such that Ω ⊂ Ω̃. Then choose N points on ∂Ω̃ listed as x̃1,x̃2, ... , x̃N, and form

uN(x) =
N∑
k=1

ckΓ(x, x̃k). (3.5)

Clearly, uN(x) satisfies the Helmholtz equation (3.1) since Γ(x, x̃k) is the fundamental

solution. For uN(x) to satisfy the Dirichlet boundary condition as much as possible, we

choose N points x1,x2, ...,xN on ∂Ω and set up

uN(xk) = f(xk), 1 ≤ k ≤ N,

namely,
N∑
k=1

ckΓ(xm, x̃k) = f(xm), 1 ≤ m ≤ N,

which leads to the following system
Γ(x1, x̃1) Γ(x1, x̃2) Γ(x1, x̃3) . . . Γ(x1, x̃N)
Γ(x2, x̃1) Γ(x2, x̃2) Γ(x2, x̃3) . . . Γ(x2, x̃N)

... ... ... . . . ...
Γ(xN, x̃1) Γ(xN, x̃1) Γ(xN, x̃1) . . . Γ(xN, x̃N)



c1
c2
...
cN

 =


f(x1)
f(x2)

...
f(xN)

 . (3.6)

Once the coefficient matrix is invertible, the coefficients ck, 1 ≤ m ≤ N, can be deter-

mined by the above system (3.6) and uN(x) in (3.5) is considered as an approximate solution

of the Dirichlet boundary value problem (3.1)-(3.2).

However, where N is very large, the system (3.6) may be ill-conditioned, or finding the

inverse of the coefficient matrix could be numerically unstable.

Furthermore, we may choose a different number of collocation points, say xm, 1 ≤ m ≤

M. In this case, the coefficients {ck} in (3.5) can not be determined by solving (3.6). Instead,
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we let

A =


Γ(x1, x̃1) Γ(x1, x̃2) Γ(x1, x̃3) . . . Γ(x1, x̃N)
Γ(x2, x̃1) Γ(x2, x̃2) Γ(x2, x̃3) . . . Γ(x2, x̃N)

... ... ... . . . ...
Γ(xM, x̃1) Γ(xM, x̃1) Γ(xM, x̃1) . . . Γ(xM, x̃N)

 , b =


f(x1)
f(x2)

...
f(xM)

 ,
where A is an M × N matrix. And we choose or determine c = [c1 c2 · · · cN ]T to be the

solution of the following minimization problem

min
x∈RN

||Ax− b||. (3.7)

To overcome the ill-conditioning issue or find the stable solution of the minimization

problem, we sometimes need to use the singular value decomposition of a matrix or regular-

ization, described below (cf. [2]).

3.1.1 Truncated Singular Value Decomposition (TSVD)

The singular value decomposition (SVD) of an M ×N matrix A is given by

A = USV T (3.8)

where U = [u1,u2, · · · ,uM ] ∈ RM×M and V = [v1,v2, · · · ,vN ] ∈ RN×N are orthogonal

matrices, and S is a diagonal matrix containing the singular values (si)Ni=1 such that

s1 ≥ s2 ≥ · · · ≥ sN > 0.

Let A be of rank l. Then (3.8) can be expressed as

A =
l∑

j=1

sjujv
T
j (3.9)
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with s1 ≥ s2 ≥ · · · ≥ sl > 0. Now, we consider the Moore-Penrose pseudoinverse of A, given

by

A+ =
l∑

j=1

s−1
j vju

T
j . (3.10)

The small positive singular values of the matrix A may cause the numerical unstability in

finding the solution of the minimization problem (3.7). In order to overcome the difficulty, we

use the truncated singular value decomposition (TSVD) or ignore the small singular values

of A. Namely, we use

Aϵ =
k∑

j=1

sjujv
T
j ,

for some preassigned ϵ > 0, where sk > ϵ ≥ sk+1, with Moore-Penrose pseudoinverse

A+
ϵ =

k∑
j=1

s−1
j vju

T
j .

Using the TSVD method we get approximate solutions of (3.10) of the form

xϵ = A+
ϵ b =

k∑
j=1

uT
j b

sj
vj, k = 1, 2, . . . , l. (3.11)

It is easy to apply the quantities

x̃ϵ = V Txϵ, b̃ = [b̃1, b̃2, · · · , b̃m]T = UTb.

Thus, we get

x̃ϵ =

[
b̃1
s1
,
b̃2
s2
, · · · , b̃k

sk
, 0, · · · , 0

]T
(3.12)

for 1 ≤ k ≤ l and then determine the approximate solution xϵ = V x̃ϵ of (3.10).
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3.1.2 Tikhonov Regularization Method

The details of the Tikhonov regularization theory can be formed in [8]. Here we just quote

the procedure for the purposes of numerical computations. The solution of the system of

Ax = b by the regularization method with respect to a parameter µ is denoted by xµ, which

solves the following minimization problem

min
x∈RN

{||Ax− b||2 + µ||Tkx||2}, (3.13)

where the matrix Tk ∈ R(N−k)×N , k = 0, 1, 2, induces a Ck-constraint on the solution x and

the scalar µ > 0 is known as the regularization parameter. If µ = 0 in (3.13), then it reduces

to the ordinary least-squares method which is usually unstable. The matrix Tk, k = 0, 1, 2,

is given by (cf. [2]),

T0 = I ∈ RN×N ,

T1 =


−1 1 0 . . . 0
0 −1 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

 ∈ R(N−1)×N ,

T2 =


1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
... ... ... ... . . . ...
0 0 0 0 . . . 1

 ∈ R(N−2)×N .

For the minimization of ||Ax− b||2 + µ||x||2, the solution (3.13) becomes

xµ = (ATA+ µT T
k Tk)

−1ATb. (3.14)

The applications of TSVD and Tikhonov regularization methods will be illustrated in

the examples presented in the next section.
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3.2 Numerical Examples by using MFS for Helmholtz
equations

Example 3.1. Consider the Dirichlet boundary problem for the following so-called mod-

ified Helmholtz equation

∆u(x, y)− 5u(x, y) = 0, (x, y) ∈ Ω,

u(x, y) = e3x cos(2y), (x, y) ∈ ∂Ω,

where κ =
√
5 and Ω = {(x, y) : x2 + y2 ≤ 1} is the unit disc. The exact solution of

the above problem is uexact = e3x cos(2y). To use the MFS, we choose M points equally

distributed on ∂Ω, namely: xk = (cos 2πk
M
, sin 2πk

M
), 0 ≤ k ≤ M − 1. We use a fictitious

domain Ω̃ = {(x, y) : x2 + y2 ≤ r2}, where r = 1.2, 1.4, 1.6, 1.8, respectively, as shown

in Figure 3.1 for r = 1.5. Choose equally distributed N = {100, 150, 200, 250} points

x̃k = R(cos 2πk
N
, sin 2πk

N
), 0 ≤ k ≤ N − 1 on ∂Ω̃. Then the varying number of collocation

points on ∂Ω and source points on ∂Ω̃ cause the ill-condition system (3.6) and hence in

order to resolve the unstable results, we use the Tikhonov regularization with regularization

parameters, µ = {10−3, 10−5, 10−7, 10−8}, respectively to obtain the approximate solution

through (3.13)-(3.14). To estimate the maximum error, we use equally spaced N = 100

points zk, 1 ≤ k ≤ 100, on ∂Ω to get the numerical infinity norm

max
1≤k≤100

|uexact(zk)− uN(zk)|,

since the maximal principal holds for the modified Helmoltz equation. Then our numerical

approximation errors are presented in the following table with various r and N:
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Figure 3.1: Choose M = 20 collocation points (*) on the ∂Ω, and N = 20 source points (o)
on the ∂Ω̃ with r = 1.5
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Table 3.1: Maximum Error ||uexact − uN ||C(∂Ω)

M = 300 M = 300 M = 300 M = 300
N = 100 N = 150 N = 200 N = 250

r = 1.2, µ = 10−3 2.5252e-04 1.6834e-04 1.2626e-04 1.0101e-04

r = 1.2, µ = 10−5 2.5262e-05 1.6835e-05 1.2626e-05 1.0101e-05

r = 1.2, µ = 10−7 2.6218e-07 1.6835e-07 1.2626e-07 1.0102e-07

r = 1.2, µ = 10−8 3.4904e-08 1.6847e-08 1.2663e-08 1.0157e-08

r = 1.4, µ = 10−3 2.1389e-04 1.4253e-04 1.0687e-04 8.5481e-05

r = 1.4, µ = 10−5 2.1360e-05 1.4239e-05 1.0679e-05 8.5433e-06

r = 1.4, µ = 10−7 2.1357e-06 1.4238e-06 1.0679e-06 8.5429e-07

r = 1.4, µ = 10−8 2.1357e-07 1.4238e-07 1.0680e-07 8.5447e-08

r = 1.6, µ = 10−3 0.0019 0.0013 9.6849e-04 7.7560e-04

r = 1.6, µ = 10−5 1.9332e-04 1.2859e-04 9.6335e-05 7.7020e-05

r = 1.6, µ = 10−7 1.9177e-05 1.2772e-05 9.5736e-06 7.6557e-06

r = 1.6, µ = 10−8 1.9108e-06 1.2736e-06 9.5503e-07 7.6396e-07

r = 1.8, µ = 10−3 0.0017 0.0011 8.7517e-04 7.0747e-04

r = 1.8, µ = 10−5 1.8555e-04 1.2482e-04 9.4055e-05 7.5455e-05

r = 1.8, µ = 10−7 1.8969e-05 1.2648e-05 9.4938e-06 7.5977e-06

r = 1.8, µ = 10−8 1.8969e-06 1.2633e-06 9.4680e-07 7.5702e-07
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Figure 3.2: Maximum errors on fictitious domains ∂Ω̃ = {(x, y) : x2 + y2 = r2, r =
1.2, 1.4, 1.6, 1.8} with regularization parameters, µ = 10−3 (�), µ = 10−5 (◦), µ =
10−7 (△), µ = 10−8 (⋄), respectively
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Example 3.2. Consider the Dirichlet boundary problem for the Helmholtz equation

∆u(x, y) + 3u(x, y) = 0, (x, y) ∈ Ω,

u(x, y) = ex sin(2y), (x, y) ∈ ∂Ω,

where κ =
√
3 and Ω = {(x, y) : x = sin(t + sin t), y = cos(t + cos t), 0 ≤ t ≤ 2π}.

The exact solution of the above problem is uexact = ex sin(2y). We use a fictitious domain

Ω̃ = {(x, y) : x = a cos t, y = b sin(t + cos t), 0 ≤ t ≤ 2π}, where a = 2, 3, 4 and b = 2,

4, 2, respectively. We choose x̃k = (a cos 2πk
N
, b sin(2πk

N
+ cos 2πk

N
)), 0 ≤ k ≤ N − 1 on ∂Ω̃.

To use the MFS, we choose N points on ∂Ω corresponding to tk = 2πk
N
, 0 ≤ k ≤ N − 1, (see

Figure 3.3). Here we test our numerical results for points (0.25, 0.25), (-0.1, 0.3), and (-0.3,

0.5) inside Ω with N = 150, 200, 250, 300 and a = 2, 3, 4 and b = 2, 4, 2, respectively. Then

in order to resolve the difficulty due to the unstable result, we use the TSVD with singular

value tolerances, ϵ = {10−1, 10−3, 10−7}, respectively to obtain the approximate solution

through (3.5)-(3.6). The results are presented in the following tables:
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Figure 3.3: Choose N=20 collocation points (*) on the ∂Ω, and N=20 source points (o) on
the ∂Ω̃, and three tested points (0.25, 0.25), (-0.1, 0.3), and (-0.3, 0.5)
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Table 3.2: Maximum Error for u(0.25, 0.25)

M = 300 M = 300 M = 300 M = 300
N = 150 N = 200 N = 250 N = 300

a = 2, b = 2 2.1438e-15 1.2718e-15 1.9754e-15 1.5079e-16
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 2, b = 2 2.1438e-15 1.2652e-15 1.9795e-15 1.5536e-16
ϵ = 10−3 (k = 7) (k = 7) (k = 7) (k = 7)

a = 2, b = 2 2.1334e-15 1.2678e-15 1.9951e-15 1.5908e-16
ϵ = 10−7 (k = 150) (k = 199) (k = 249) (k = 299)

a = 3, b = 4 2.7566e-15 5.8370e-16 8.1430e-16 1.2429e-15
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 3, b = 4 1.5400e-13 3.4410e-14 4.6313e-14 7.0444e-14
ϵ = 10−3 (k = 1) (k = 6) (k = 6) (k = 7)

a = 3, b = 4 1.5369e-13 3.2953e-14 4.4814e-14 7.0064e-14
ϵ = 10−7 (k = 149) (k = 199) (k = 249) (k = 299)

a = 4, b = 2 3.4914e-15 8.1888e-16 1.0354e-15 1.8038e-15
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 4, b = 2 1.9322e-13 4.4064e-14 5.7993e-14 1.0079e-13
ϵ = 10−3 (k = 1) (k = 6) (k = 7) (k = 7)

a = 4, b = 2 1.9371e-13 4.4462e-14 5.7653e-14 1.0178e-13
ϵ = 10−7 (k = 149) (k = 199) (k = 249) (k = 299)

a = 4, b = 3 2.7766e-15 1.4698e-15 5.5405e-16 1.4090e-15
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 4, b = 3 1.5407e-13 8.0714e-14 3.0036e-14 7.8086e-14
ϵ = 10−3 (k = 1) (k = 6) (k = 6) (k = 7)

a = 4, b = 3 1.5399e-13 8.1380e-14 3.1246e-14 7.6771e-14
ϵ = 10−7 (k = 149) (k = 199) (k = 249) (k = 299)
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Figure 3.4: Maximum errors at a tested point (0.25, 0.25) inside Ω with singular value
tolerances, ϵ = 10−1 (�), ϵ = 10−3 (◦), ϵ = 10−7 (△), respectively
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Table 3.3: Maximum Error for u(-0.1, 0.3)

M = 300 M = 300 M = 300 M = 300
N = 150 N = 200 N = 250 N = 300

a = 2, b = 2 5.6286e-16 2.2879e-16 3.2760e-16 3.3526e-16
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 2, b = 2 9.7318e-14 3.8999e-14 5.7074e-14 5.7684e-14
ϵ = 10−3 (k = 2) (k = 7) (k = 7) (k = 7)

a = 2, b = 2 9.7058e-14 3.9054e-14 5.6641e-14 5.7924e-14
ϵ = 10−7 (k = 149) (k = 199) (k = 249) (k = 299)

a = 3, b = 4 8.3914e-14 3.9264e-14 3.2507e-14 4.2169e-14
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 3, b = 4 8.3914e-14 3.8853e-14 3.3487e-14 4.2086e-14
ϵ = 10−3 (k = 6) (k = 6) (k = 6) (k = 6)

a = 3, b = 4 8.3877e-14 3.9159e-14 3.3151e-14 4.2390e-14
ϵ = 10−7 (k = 149) (k = 199) (k = 249) (k = 299)

a = 4, b = 2 7.3569e-14 2.0651e-14 1.4421e-15 3.8017e-14
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 4, b = 2 7.3569e-14 2.0539e-14 1.0965e-15 3.6803e-14
ϵ = 10−3 (k = 1) (k = 6) (k = 7) (k = 7)

a = 4, b = 2 7.3906e-14 2.0652e-14 1.0774e-15 3.7358e-14
ϵ = 10−7 (k = 149) (k = 199) (k = 249) (k = 299)

a = 4, b = 3 9.4201e-14 1.0281e-14 4.0873e-14 6.0280e-14
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 4, b = 3 9.4201e-14 9.1901e-15 4.0774e-14 6.1221e-14
ϵ = 10−3 (k = 6) (k = 6) (k = 6) (k = 7)

a = 4, b = 3 9.4384e-14 1.0817e-14 4.1577e-14 6.1424e-14
ϵ = 10−7 (k = 149) (k = 199) (k = 249) (k = 299)
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Figure 3.5: Maximum errors at a tested point (-0.1, 0.3) inside Ω with singular value toler-
ances, ϵ = 10−1 (�), ϵ = 10−3 (◦), ϵ = 10−7 (△), respectively
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Table 3.4: Maximum Error for u(-0.3, 0.4)

M = 300 M = 300 M = 300 M = 300
N = 150 N = 200 N = 250 N = 300

a = 2, b = 2 1.0213e-13 4.6447e-14 5.0229e-15 2.6757e-15
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 2, b = 2 1.0213e-13 4.6062e-14 4.0722e-14 5.1481e-15
ϵ = 10−3 (k = 1) (k = 7) (k = 7) (k = 7)

a = 2, b = 2 1.0284e-13 2.5439e-14 2.2066e-14 2.7971e-15
ϵ = 10−7 (k = 149) (k = 199) (k = 249) (k = 299)

a = 3, b = 4 9.0552e-14 1.2859e-14 3.4508e-14 4.9189e-14
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 3, b = 4 9.0552e-14 1.2628e-14 3.5696e-14 4.9667e-14
ϵ = 10−3 (k = 1) (k = 6) (k = 7) (k = 7)

a = 3, b = 4 9.0738e-14 1.2865e-14 3.4968e-14 4.9233e-14
ϵ = 10−7 (k = 149) (k = 199) (k = 249) (k = 299)

a = 4, b = 2 7.9908e-14 9.0141e-15 3.7597e-14 3.7726e-15
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 4, b = 2 7.9908e-14 8.8085e-15 3.7504e-14 2.9795e-15
ϵ = 10−3 (k = 1) (k = 6) (k = 7) (k = 7)

a = 4, b = 2 7.9237e-14 9.3523e-15 3.7836e-14 3.3494e-15
ϵ = 10−7 (k = 149) (k = 199) (k = 249) (k = 299)

a = 4, b = 3 8.0163e-14 3.1870e-14 1.4948e-14 1.4347e-14
ϵ = 10−1 (k = 1) (k = 1) (k = 1) (k = 1)

a = 4, b = 3 8.0163e-14 3.1662e-14 1.4907e-14 1.3900e-14
ϵ = 10−3 (k = 1) (k = 6) (k = 7) (k = 7)

a = 4, b = 3 7.9556e-14 3.1604e-14 1.4264e-14 1.3986e-14
ϵ = 10−7 (k = 149) (k = 199) (k = 249) (k = 299)
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Figure 3.6: Maximum errors at a tested point (-0.3, 0.4) inside Ω with singular value toler-
ances, ϵ = 10−1 (�), ϵ = 10−3 (◦), ϵ = 10−7 (△), respectively
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Example 3.3. Consider the Dirichlet boundary problem for the Helmholtz equation

∆u(x, y, z) + 3u(x, y, z) = 0, (x, y, z) ∈ Ω,

u(x, y, z) = x ey cos(2z), (x, y, z) ∈ ∂Ω,

where κ =
√
3 and Ω = {(x, y, z) : x2 + y2 + z2 < 1} is the unit ball. The exact solution

of the above problem is uexact = x ey cos(2z). To use the MFS, we choose N points on ∂Ω

corresponding to spherical coordinates x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, where

0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, with respect to θk = π(k+0.5)
Mθ

, 0 ≤ k ≤ Mθ − 1, with Mθ =
√
πN
2r

(r = 1 for the unit sphere), and ϕk,m = 2πm
Mk

, 0 ≤ m ≤ Mk − 1, with Mk =
√
πN sin θk.

We use a fictitious domain Ω̃ = {(x, y, z) : x2 + y2 + z2 ≤ r2}, where r = 1.5, 2, 3. We

choose x̃k,m = (sin θk cosϕk,m, sin θk sinϕk,m, cosϕk,m) , 0 ≤ k ≤ Mθ − 1, 0 ≤ m ≤ Mk −

1, whereMθ =
√
πN
2r

andMk =
√
πN sin θk

r
with r = 1.5, 2, 3 on ∂Ω̃, (cf. [3]), (see Figure 3.7).

Then the approximate solution for u(0.5, 0.5, 0.5), u(0.1, 0.5, 0.8), and u(0.3, 0.9, 0.4) in

Ω can be obtained with N = 150, 200, 250, 300 and r = 1.5, 2, 3 in Table 27, 28, and 29,

respectively. We have the following numerical results:
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Figure 3.7: Choose N = 300 collocation points on the ∂Ω, and N = 300 source points on the
∂Ω̃, and r = 2.0

Table 3.5: Maximum Error for u(0.5, 0.5, 0.5)

N = 150 N = 200 N = 250 N = 300

r = 1.5 7.3608e-14 9.8477e-14 4.5519e-15 4.1633e-14

r = 2.0 3.6796e-12 4.9638e-13 3.6796e-12 4.1633e-14

r = 3.0 7.2053e-14 1.5532e-13 1.8574e-13 4.4642e-13
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Table 3.6: Maximum Error for u(0.1, 0.5, 0.8)

N = 150 N = 200 N = 250 N = 300

r = 1.5 1.1935e-15 8.4127e-14 3.4592e-13 3.4592e-13

r = 2.0 1.3461e-14 3.0423e-13 1.3988e-11 6.7124e-12

r = 3.0 8.0408e-14 6.1062e-10 9.4327e-10 1.7090e-10

Table 3.7: Maximum Error for u(0.3, 0.9, 0.4)

N = 150 N = 200 N = 250 N = 300

r = 1.5 2.2204e-15 4.7740e-15 4.5519e-15 8.9928e-15

r = 2.0 2.5868e-14 6.3283e-15 1.6098e-14 4.6962e-14

r = 3.0 2.4956e-10 1.5210e-14 1.1257e-10 2.6547e-11
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Similarly, the MFS can be applied to other boundary value problems for Helmholtz

equations. Below we present the examples for Newmann and Robin (Mixed) conditions.

Example 3.4. Consider the Newmann boundary problem for the Helmholtz equation

∆u(x, y) + 6u(x, y) = 0, (x, y) ∈ Ω,

∂u

∂n
(x, y) = (x+ y) ex+y cos(2x− 2y)− 2(x− y) ex+y sin(2x− 2y), (x, y) ∈ ∂Ω,

where κ =
√
6 and Ω = {(x, y) : x2 + y2 < 1}. The exact solution of the above problem

is uexact = ex+y cos(2x − 2y). We use a fictitious domain Ω̃ = {(x, y) : x = a cos t, y =

b sin(t+cos t), 0 ≤ t ≤ 2π}, where a = 2, 3, 3, 4 and b = 2, 4, 3, 3, respectively. We choose

N = {120, 140, 160, 180} points x̃k = (a cos 2πk
N
, b sin(2πk

N
+ cos 2πk

N
)), 0 ≤ k ≤ N − 1 on ∂Ω̃.

To use the MFS, we choose M points on ∂Ω corresponding to tk = 2πk
M
, 0 ≤ k ≤ M − 1,

(see Figure 3.8). Here we test our numerical results for points (0, -0.5), (-0.5, 0.5), and

(0.5, 0.5) inside Ω with N = 120, 140, 160, 180 and a = 2, 3, 3, 4 and b = 2, 4, 3, 3,

respectively. Then the varying number of collocation points on ∂Ω and source points on ∂Ω̃

cause the ill-condition system (3.6) and hence in order to resolve the unstable results, we

use the Tikhonov regularization with regularization parameters, µ = {10−1, 10−3, 10−5},

respectively to obtain the approximate solution through (3.5)-(3.6). The results are presented

in the following tables:

80



Figure 3.8: Choose M=20 collocation points (*) on the ∂Ω, and N=20 source points (o) on
the ∂Ω̃
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Table 3.8: Maximum Error for u(0, -0.5)

M = 200 M = 200 M = 200 M = 200
N = 120 N = 140 N = 160 N = 180

a = 2, b = 2, µ = 10−1 2.3472e-04 2.0117e-04 1.7601e-04 1.5645e-04

a = 2, b = 2, µ = 10−3 2.3457e-06 2.0106e-06 1.7593e-06 1.5638e-06

a = 2, b = 2, µ = 10−5 2.3457e-08 2.0106e-08 1.7593e-08 1.5638e-08

a = 3, b = 4, µ = 10−1 3.2508e-04 2.7861e-04 2.4376e-04 2.1666e-04

a = 3, b = 4, µ = 10−3 3.2480e-06 2.7840e-06 2.4360e-06 2.1653e-06

a = 3, b = 4, µ = 10−5 3.2480e-08 2.7840e-08 2.4360e-08 2.1653e-08

a = 3, b = 3, µ = 10−1 0.0011 9.2497e-04 8.0927e-04 7.1930e-04

a = 3, b = 3, µ = 10−3 1.0783e-05 9.2426e-06 8.0873e-06 7.1887e-06

a = 3, b = 3, µ = 10−5 1.0783e-07 9.2425e-08 8.0872e-08 7.1886e-08

a = 4, b = 3, µ = 10−1 6.4393e-04 5.5179e-04 4.8272e-04 4.2901e-04

a = 4, b = 3, µ = 10−3 6.4271e-06 5.5089e-06 4.8203e-06 4.2847e-06

a = 4, b = 3, µ = 10−5 6.4270e-08 5.5088e-08 4.8202e-08 4.2847e-08
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Figure 3.9: Maximum errors on fictitious domains, ∂Ω̃ = {(x, y) : x = a cos t, y = b sin(t+
cos t), 0 ≤ t ≤ 2π}, where a = 2, 3, 3, 4 and b = 2, 4, 3, 3 with regularization parameters,
µ = 10−1 (�), µ = 10−3 (◦), µ = 10−5 (△), respectively
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Table 3.9: Maximum Error for u(-0.5, 0.5)

M = 200 M = 200 M = 200 M = 200
N = 120 N = 140 N = 160 N = 180

a = 2, b = 2, µ = 10−1 1.1169e-04 9.5733e-05 8.3765e-05 7.4456e-05

a = 2, b = 2, µ = 10−3 1.1167e-06 9.5715e-07 8.3751e-07 7.4445e-07

a = 2, b = 2, µ = 10−5 1.1167e-08 9.5715e-09 8.3750e-09 7.4445e-09

a = 3, b = 4, µ = 10−1 4.8254e-04 4.1367e-04 3.6201e-04 3.2182e-04

a = 3, b = 4, µ = 10−3 4.8309e-06 4.1408e-06 3.6232e-06 3.2206e-06

a = 3, b = 4, µ = 10−5 4.8310e-08 4.1409e-08 3.6233e-08 3.2207e-08

a = 3, b = 3, µ = 10−1 2.4509e-04 2.1008e-04 1.8381e-04 1.6339e-04

a = 3, b = 3, µ = 10−3 2.4507e-06 2.1006e-06 1.8380e-06 1.6338e-06

a = 3, b = 3, µ = 10−5 2.4507e-08 2.1006e-08 1.8380e-08 1.6338e-08

a = 4, b = 3, µ = 10−1 3.9661e-04 3.3997e-04 2.9748e-04 2.6444e-04

a = 4, b = 3, µ = 10−3 3.9675e-06 3.4007e-06 2.9756e-06 2.6450e-06

a = 4, b = 3, µ = 10−5 3.9675e-08 3.4007e-08 2.9756e-08 2.6450e-08
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Figure 3.10: Maximum errors on fictitious domains, ∂Ω̃ = {(x, y) : x = a cos t, y = b sin(t+
cos t), 0 ≤ t ≤ 2π}, where a = 2, 3, 3, 4 and b = 2, 4, 3, 3 with regularization parameters,
µ = 10−1 (�), µ = 10−3 (◦), µ = 10−5 (△), respectively
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Table 3.10: Maximum Error for u(0.5, 0.5)

M = 200 M = 200 M = 200 M = 200
N = 120 N = 140 N = 160 N = 180

a = 2, b = 2, µ = 10−1 7.2958e-04 6.2533e-04 5.4715e-04 4.8635e-04

a = 2, b = 2, µ = 10−3 7.2941e-06 6.2521e-06 5.4706e-06 4.8628e-06

a = 2, b = 2, µ = 10−5 7.2941e-08 6.2521e-08 5.4706e-08 4.8628e-08

a = 3, b = 4, µ = 10−1 0.0032 0.0027 0.0024 0.0021

a = 3, b = 4, µ = 10−3 3.1556e-05 2.7048e-05 2.3667e-05 2.1037e-05

a = 3, b = 4, µ = 10−5 3.1556e-07 2.7048e-07 2.3667e-07 2.1037e-07

a = 3, b = 3, µ = 10−1 0.0016 0.0014 0.0012 0.0011

a = 3, b = 3, µ = 10−3 1.6008e-05 1.3721e-05 1.2006e-05 1.0672e-05

a = 3, b = 3, µ = 10−5 1.6008e-07 1.3721e-07 1.2006e-07 1.0672e-07

a = 4, b = 3, µ = 10−1 0.0026 0.0022 0.0019 0.0017

a = 4, b = 3, µ = 10−3 2.5916e-05 2.2214e-05 1.9437e-05 1.7277e-05

a = 4, b = 3, µ = 10−5 2.5916e-07 2.2214e-07 1.9437e-07 1.7277e-07
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Figure 3.11: Maximum errors on fictitious domains, ∂Ω̃ = {(x, y) : x = a cos t, y = b sin(t+
cos t), 0 ≤ t ≤ 2π}, where a = 2, 3, 3, 4 and b = 2, 4, 3, 3 with regularization parameters,
µ = 10−1 (�), µ = 10−3 (◦), µ = 10−5 (△), respectively

87



Example 3.5. Consider the Robin (Mixed) boundary problem for the modified Helmholtz

equation

∆u(x, y)− 3u(x, y) = 0, (x, y) ∈ Ω,

u(x, y) = e2x cos(y), (x, y) ∈ ∂Ω1,

∂u

∂n
(x, y) = e2x sin(y), (x, y) ∈ ∂Ω2,

where κ =
√
3 and ∂Ω = ∂Ω1 ∪ ∂Ω2 such that ∂Ω1 = {(x, y) : x = cos(t), y = sin(t), 0 ≤

t < π} and ∂Ω2 = {(x, 0) : x = t, −1 ≤ t ≤ 1}. The exact solution of the above problem

is uexact = e2x cos(y). To use the MFS, we choose N points on ∂Ω = ∂Ω1 ∪ ∂Ω2,where xk =

(cos(2πk
N

+ cos 2πk
N

), sin(2πk
N

+ sin 2πk
N

)), 0 ≤ k ≤ N − 1. We use a fictitious domain Ω̃ =

{(x, y) : x = a sin(t + cos t), y = b cos t, 0 ≤ t ≤ 2π}, where a = 2, 3, 4, 5 and b = 5, 4,

3, 3, respectively. We choose x̃k = (a sin(2πk
N

+ cos 2πk
N

), b cos 2πk
N

), 0 ≤ k ≤ N − 1 on ∂Ω̃

corresponding to N equally spaced points in [0, 2π], (see Figure 3.12). Then in order to resolve

the difficulty due to the unstable result as example 3.2, we apply the TSVD with singular

value tolerances, ϵ = {10−1, 10−3, 10−7}, respectively to obtain the approximate solution by

the system (1.13) in section 1.3 and uN (3.5) in section 3.1. To estimate the maximum error

(1.6), we choose equally spaced L = 50 points zk, 1 ≤ k ≤ 50, on ∂Ω1 and M = 50 points

zk, 51 ≤ k ≤ 100, on ∂Ω2 which implies that zk, 1 ≤ k ≤ 100, on ∂Ω = ∂Ω1 ∪ ∂Ω2 to get

the numerical infinity norm in example 3.4. Then we have the following numerical results:
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Figure 3.12: Choose L = 10 collocation points (x) on the ∂Ω1, M = 10 collocation points
(o) on the ∂Ω2 (∂Ω = ∂Ω1 ∪ ∂Ω2), and N = 20 source points (*) on the ∂Ω̃
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Table 3.11: Maximum Error ||uexact − uN ||C(∂Ω)

L = 100 L = 100 L = 100 L = 100
M = 100 M = 100 M = 100 M = 100
N = 120 N = 140 N = 160 N = 180

a = 2, b = 5 6.9162e-05 9.7574e-05 6.6513e-05 6.6813e-05
ϵ = 10−1 (k = 19) (k = 19) (k = 19) (k = 19)

a = 2, b = 5 1.2879e-05 8.5751e-05 5.1969e-05 8.6498e-05
ϵ = 10−3 (k = 198) (k = 198) (k = 198) (k = 198)

a = 2, b = 5 1.7120e-05 3.9487e-05 5.7199e-05 8.8919e-04
ϵ = 10−7 (k = 200) (k = 200) (k = 200) (k = 200)

a = 3, b = 4 3.3653e-05 3.4899e-05 3.6728e-05 3.6190e-05
ϵ = 10−1 (k = 19) (k = 19) (k = 19) (k = 19)

a = 3, b = 4 5.0181e-04 1.5255e-04 1.9149e-04 6.9974e-05
ϵ = 10−3 (k = 198) (k = 198) (k = 198) (k = 198)

a = 3, b = 4 1.6378e-04 9.9596e-05 2.1852e-04 1.3058e-04
ϵ = 10−7 (k = 200) (k = 200) (k = 200) (k = 200)

a = 4, b = 3 9.7282e-05 1.0810e-04 9.3353e-05 8.1409e-05
ϵ = 10−1 (k = 19) (k = 19) (k = 19) (k = 19)

a = 4, b = 3 6.2492e-05 1.0862e-04 2.0962e-04 9.2714e-05
ϵ = 10−3 (k = 198) (k = 198) (k = 198) (k = 198)

a = 4, b = 3 3.5619e-05 8.8765e-05 2.1796e-05 6.7458e-05
ϵ = 10−7 (k = 200) (k = 200) (k = 200) (k = 200)

a = 5, b = 3 2.1821e-04 1.2450e-04 1.0570e-04 1.2215e-04
ϵ = 10−1 (k = 50) (k = 52) (k = 54) (k = 55)

a = 5, b = 3 1.2656e-04 8.3628e-05 4.1858e-05 1.7004e-04
ϵ = 10−3 (k = 198) (k = 198) (k = 198) (k = 198)

a = 5, b = 3 2.7168e-05 2.2366e-05 6.5958e-05 3.0312e-05
ϵ = 10−7 (k = 200) (k = 200) (k = 200) (k = 200)
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Figure 3.13: Maximum errors on fictitious domains, ∂Ω̃ = {(x, y) : x = a sin(t+ cos t), y =
b cos t, 0 ≤ t ≤ 2π}, where a = 2, 3, 4, 5 and b = 5, 4, 3, 3 with singular value tolerances,
ϵ = 10−1 (�), ϵ = 10−3 (◦), ϵ = 10−7 (△), respectively

Remark 3.1. It is worthy to mention that the convergence of the MFS for the modified

Helmholtz equations has been discussed in [24].

91



3.3 DRM for boundary value problems of Helmholtz
Equations

Consider the Dirichlet problem of a non-homogeneous Helmholtz equation

∆u(x) + κ2u(x) = f(x) x ∈ Ω, (3.15)

u(x) = h(x) x ∈ ∂Ω, (3.16)

where Ω is a bounded domain in Rs, s ≥ 2. To use the DRM for the above problem, we first

find a particular solution up of (3.15), namely

∆up(x) + κ2up(x) = f(x) x ∈ Ω. (3.17)

Then we turn to solve the following boundary problem of a homogeneous Helmholtz equation

∆v(x) + κ2v(x) = 0 x ∈ Ω,

v(x) = g(x)− up(x) x ∈ ∂Ω,

which we use vϵ for the exact solution. Hence,

u(x) = up(x) + vϵ(x),

will be the exact solution of the original boundary problem.

However, as in many cases, the exact solutions of PDEs or boundary problems are rarely

available in general. Therefore some numerical methods or approximation methods are

needed to get approximate solutions.

Here we first like to get approximate particular solutions of (3.15). For this purpose, we

use the approximation schemes described in section 2.3, namely: Choose a RBF ϕ such that∫
Rs

ϕ(x) dx = 1,
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and the approximate f by

Bn,γf(x) =
1

ns(1−γ)

∑
j∈In(Ωδ)

f

(
j

n

)
ϕ(nγx− jnγ−1),

as in (2.10).

The exact solution of

∆u(x) + κ2u(x) = Bn,γf(x),

is derived in [Li], given by

un(x) = −iπ
2

1

ns

∑
j∈In(Ωδ)

f

(
j

n

)
n−γ+γs/2

× [
H

(1)
s/2−1(κ||x− j/n||)
||x− j/n||s/2−1

∫ nγ ||x−j/n||

0

ts/2ϕ(t) Js/2−1(κn
−γt) dt (3.18)

+
Js/2−1(κ||x− j/n||)
||x− j/n||s/2−1

∫ ∞

nγ ||x−j/n||
ts/2ϕ(t) H

(1)
s/2−1(κn

−γt) dt].

For s = 2,

un(x) =− iπ

2
H

(1)
0 (κn−γr)

∫ r

0

tϕ(t) J0(κn
−γt) dt

− iπ

2
J0(κn

−γr)

∫ ∞

r

tϕ(t) H
(1)
0 (κn−γt) dt,

and for s = 3,

un(x) =− eiκn
−γr

κn−γr

∫ r

0

tϕ(t) sin(κn−γt) dt

− sin(κn−γr)

κn−γr

∫ ∞

r

tϕ(t) eiκn
−γt dt.

The convergence of un to the exact solution of (3.18) is also derived in [18].

The method of fundamental solution can be used to solve the following boundary problem

∆v(x) + κ2v(x) = 0 x ∈ Ω,

v(x) = g(x)− un(x) x ∈ ∂Ω.
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where we denote by vMFS the numerical solution. Hence

uA(x) = up(x) + vMFS(x),

is considered as a numerical solution of the original problem (3.15)-(3.16).

3.4 Numerical Examples

Example 3.6. Consider the Dirichlet boundary problem on a L-shaped domain with an

evolute-of-ellipse fictitious domain for the Helmholtz equation

∆u(x, y) + u(x, y) = (sin x+ 2x2 + 2) ey, (x, y) ∈ Ω,

u(x, y) = (x2 + 2) ey, (x, y) ∈ ∂Ω,

where Ω = {(x, y) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 0 or − 1 ≤ x ≤ 0, 0 ≤ y ≤ 1} is the L-shaped

domain. The exact solution of the above problem is uexact = (sinx + x2) ey. Choose three

different radial basis functions in Example 2.4:

(a) ϕ(r2) = c
π
e−c r2 , where r = ||x|| and c = 1, 3, respectively,

(b) ϕ(r2) =

{
(c+ 1)(1− r2)c/π, 0 ≤ r ≤ 1,
0, r > 1,

for c = 3, 5, respectively,

(c) ϕ(r2) = c−1
π(r2+1)c

, for c = 3, 5, respectively,

and use xk,m = ( k
n
, m

n
), −1.1n ≤ k ≤ 1.1n and − 1.1n ≤ m ≤ 0.1n, or − 1.1n ≤ k ≤

0.1n and − 0.1n ≤ m ≤ 1.1n, in Ωδ with δ = 0.1 to get un in (3.18). Next, we use the MFS

to obtain uN , as discussed in section by using N points equally spaced on ∂Ω and choosing

an evolute-of-ellipse fictitious domain Ω̃ = {(x, y) : x = a cos3(t), y = b sin3(t), 0 ≤ t <

2π}, a = 5, 6, b = 4, 5, respectively. Let x̃k = (cos3(2πk
N

), sin3(2πk
N

)), 0 ≤ k ≤ N − 1 on ∂Ω̃.
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To estimate the maximum error, we use M2 points zk,m = ( k
M
, m

M
), −M ≤ k ≤ M and −

M ≤ m ≤ 0 or −M ≤ k ≤ 0 and 0 ≤ m ≤ M with M = 100 in Ω = Ω ∪ ∂Ω to get

the numerical infinity norm in example 2.5. Then our numerical approximation errors are

presented in the following table with various a, b, c, n, and N:

Figure 3.14: M = 20, 300 points (•) in Ω, 60 points (•) on ∂Ω and 35 points (+) on ∂Ωδ,

respectively, and N = 20 points (*) on ∂Ω̃ with a = 5 and b = 4
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Table 3.12: Maximum Error ||uexact − uA||C(Ω) with (a) the Gaussian RBFs ϕ(r2) = c
π
e−c r2

for c = 1, 3.

M = 20 M = 30 M = 40 M = 50
N = 200 N = 200 N = 200 N = 200

a = 5, b = 4, c = 1 8.4799e-11 1.9734e-11 2.3871e-10 3.8704e-10

a = 5, b = 4, c = 3 8.4799e-11 1.9734e-11 2.3871e-10 3.8704e-10

a = 6, b = 5, c = 1 6.2305e-10 4.9483e-10 4.4148e-10 1.8323e-10

a = 6, b = 5, c = 3 6.2305e-10 4.9483e-10 4.4148e-10 1.8323e-10

Figure 3.15: Maximum errors on an evolute-of-ellipse fictitious domain, ∂Ω̃ = {(x, y) : x =
a cos3(t), y = b sin3(t), 0 ≤ t ≤ 2π}, where a = 5, b = 4, c = 1, (�), a = 5, b = 4, c =
3, (◦), a = 6, b = 5, c = 1, (△), and a = 6, b = 5, c = 3, (⋄), respectively
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Table 3.13: Maximum Error ||uexact − uA||C(Ω) with (b) the compactly supported RBFs
ϕ(r2) = (c+ 1)(1− r2)c/π, 0 ≤ r ≤ 1 or 0, r > 1 for c = 3, 5.

M = 20 M = 30 M = 40 M = 50
N = 200 N = 200 N = 200 N = 200

a = 5, b = 4, c = 3 1.1100e-08 1.3158e-08 1.1110e-10 1.0941e-10

a = 5, b = 4, c = 5 1.0195e-05 1.1432e-05 1.5757e-08 1.9091e-08

a = 6, b = 5, c = 3 1.1105e-08 1.3165e-08 1.6674e-10 1.7428e-10

a = 6, b = 5, c = 5 1.0196e-05 1.1433e-05 1.5768e-08 1.9107e-08

Figure 3.16: Maximum errors on an evolute-of-ellipse fictitious domain, ∂Ω̃ = {(x, y) : x =
a cos3(t), y = b sin3(t), 0 ≤ t ≤ 2π}, where a = 5, b = 4, c = 3, (�), a = 5, b = 4, c =
5, (◦), a = 6, b = 5, c = 3, (△), and a = 6, b = 5, c = 5, (⋄), respectively
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Table 3.14: Maximum Error ||uexact − uA||C(Ω) with (c) the inverse multiquadratics RBFs
ϕ(r2) = c−1

π(r2+1)c
, for c = 3, 5.

M = 20 M = 30 M = 40 M = 50
N = 200 N = 200 N = 200 N = 200

a = 5, b = 4, c = 3 1.1100e-08 1.3158e-08 1.5757e-08 1.9091e-08

a = 5, b = 4, c = 5 6.4904e-07 1.3158e-08 1.5757e-08 6.6510e-07

a = 6, b = 5, c = 3 1.1105e-08 1.3165e-08 1.5768e-08 1.9107e-08

a = 6, b = 5, c = 5 6.4904e-07 1.3165e-08 1.5768e-08 6.6510e-07

Figure 3.17: Maximum errors on an evolute-of-ellipse fictitious domain, ∂Ω̃ = {(x, y) : x =
a cos3(t), y = b sin3(t), 0 ≤ t ≤ 2π}, where a = 5, b = 4, c = 3, (�), a = 5, b = 4, c =
5, (◦), a = 6, b = 5, c = 3, (△), and a = 6, b = 5, c = 5, (⋄), respectively
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Example 3.7. Consider the Dirichlet boundary problem for the Helmholtz equation

∆u(x, y) + u(x, y) =

(
x2 + y2

4

)
e

x2−y2

4 , (x, y) ∈ Ω,

u(x, y) = e
x2−y2

4 , (x, y) ∈ ∂Ω,

where Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 0.5 or 0 ≤ x ≤ 0.5, 0.5 ≤ y ≤ 1} is the

L-shaped domain. The exact solution of the above problem is uexact = e
x2−y2

4 . Choose three

different radial basis functions as in Example 3.6 and use xk,m = ( k
n
, m

n
), −1.1n ≤ k ≤

1.1n and − 1.1n ≤ m ≤ 0.1n, or − 1.1n ≤ k ≤ 0.1n and − 0.1n ≤ m ≤ 1.1n, in Ωδ

with δ = 0.1 to get un in (3.18). Next, we use the MFS to obtain uN , as discussed in

section by using N points equally spaced on ∂Ω and choosing an amoeba-like fictitious

domain Ω̃ = {(x, y) : x = r(t) cos(t), y = r(t) sin(t)}, where r(t) = Resin(t) sin2(2t) +

Recos(t) cos2(2t), 0 ≤ t < 2π, R = 3, 4, 5, respectively. Let x̃k = ((Resin(
2πk
N

) sin2(22πk
N

) +

Recos(
2πk
N

) cos2(22πk
N

)) cos(2πk
N

), (Resin(
2πk
N

) sin2(22πk
N

) +Recos(
2πk
N

) cos2(22πk
N

)) sin(2πk
N

)),

0 ≤ t < 2π, 0 ≤ k ≤ N − 1 on ∂Ω̃. Then in order to resolve the difficulty due to the

unstable result, we apply the TSVD with singular value tolerances, ϵ = {10−2, 10−6, 10−10},

respectively to obtain the approximate solution through (3.5)-(3.6). To estimate the maxi-

mum error, we use points zk,m = ( k
M
, m

M
), −M ≤ k ≤ M and −M ≤ m ≤ 0 or −M ≤

k ≤ 0 and 0 ≤ m ≤ M with M = 100 in Ω = Ω ∪ ∂Ω to get the numerical infinity norm in

Example 3.6. Then our numerical approximation errors are presented in the following table

with various R, c, n, and N:
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Figure 3.18: M = 20, 300 points (•) in Ω, 80 points (•) on ∂Ω and 40 points (+) on ∂Ωδ,

respectively, and N = 20 points (*) on ∂Ω̃ with R = 2.5
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Table 3.15: Maximum Error ||uexact − uA||C(Ω) with (a) the Gaussian RBFs ϕ(r2) = c
π
e−c r2

for c = 1, 3.

M = 20 M = 30 M = 40 M = 50
N = 200 N = 200 N = 200 N = 200

R = 3, c = 1 5.8258e-09 6.5228e-09 7.3519e-09 8.3486e-09
ϵ = 10−2 (k = 2) (k = 2) (k = 2) (k = 2)

R = 3, c = 1 6.2872e-12 2.0413e-12 3.0138e-11 1.2075e-11
ϵ = 10−6 (k = 3) (k = 3) (k = 3) (k = 3)

R = 3, c = 1 1.0053e-08 5.6569e-09 6.2683e-09 4.6383e-09
ϵ = 10−10 (k = 4) (k = 4) (k = 4) (k = 4)

R = 3, c = 3 5.8258e-09 6.5228e-09 7.3519e-09 8.3486e-09
ϵ = 10−2 (k = 2) (k = 2) (k = 3) (k = 2)

R = 3, c = 3 1.0053e-08 5.6569e-09 6.2683e-09 4.6383e-09
ϵ = 10−6 (k = 4) (k = 4) (k = 4) (k = 4)

R = 3, c = 3 2.5055e-06 6.8148e-06 1.3302e-05 3.9563e-07
ϵ = 10−10 (k = 199) (k = 199) (k = 199) (k = 199)

R = 5, c = 1 3.0970e-09 3.4658e-09 3.9043e-09 4.4313e-09
ϵ = 10−2 (k = 2) (k = 2) (k = 2) (k = 2)

R = 5, c = 1 9.2145e-11 3.1448e-11 5.6557e-12 4.3416e-11
ϵ = 10−6 (k = 3) (k = 3) (k = 3) (k = 3)

R = 5, c = 1 1.8226e-08 1.3441e-09 2.2221e-08 6.3689e-08
ϵ = 10−10 (k = 4) (k = 4) (k = 4) (k = 4)

R = 5, c = 3 3.0970e-09 3.4658e-09 3.9043e-09 4.4313e-09
ϵ = 10−2 (k = 2) (k = 2) (k = 2) (k = 2)

R = 5, c = 3 4.0773e-08 5.9070e-08 2.2957e-08 4.5252e-08
ϵ = 10−6 (k = 11) (k = 6) (k = 7) (k = 12)

R = 5, c = 3 1.1058e-07 9.0139e-08 1.8541e-08 2.3637e-08
ϵ = 10−10 (k = 199) (k = 199) (k = 199) (k = 199)
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Figure 3.19: Maximum errors on an amoeba-like fictitious domain, ∂Ω̃ = {(x, y) : x =
r(t) cos(t), y = r(t) sin(t)}, where r(t) = Resin(t) sin2(2t)+Recos(t) cos2(2t), 0 ≤ t < 2π, R =
3, 5, and c = 1, 3 with singular value tolerances, ϵ = 10−2 (�), ϵ = 10−6 (◦), ϵ = 10−10 (△),
respectively
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Table 3.16: Maximum Error ||uexact − uA||C(Ω) with (b) the compactly supported RBFs
ϕ(r2) = (c+ 1)(1− r2)c/π, 0 ≤ r ≤ 1 or 0, r > 1 for c = 3, 5.

M = 20 M = 30 M = 40 M = 50
N = 200 N = 200 N = 200 N = 200

R = 3, c = 3 1.3776e-13 4.0927e-14 2.9498e-12 2.3617e-13
ϵ = 10−2 (k = 3) (k = 3) (k = 4) (k = 4)

R = 3, c = 3 3.2282e-14 2.3093e-13 1.9291e-13 1.5343e-13
ϵ = 10−6 (k = 13) (k = 14) (k = 14) (k = 15)

R = 3, c = 3 4.4126e-14 5.5542e-13 7.7609e-14 3.3442e-12
ϵ = 10−10 (k = 190) (k = 190) (k = 190) (k = 190)

R = 3, c = 5 8.6570e-13 1.7521e-12 5.2458e-12 1.6271e-12
ϵ = 10−2 (k = 4) (k = 4) (k = 4) (k = 4)

R = 3, c = 5 1.4231e-12 9.7948e-13 5.3077e-12 8.5781e-11
ϵ = 10−6 (k = 11) (k = 11) (k = 12) (k = 13)

R = 3, c = 5 9.6468e-13 1.5841e-12 9.4312e-11 1.4930e-12
ϵ = 10−10 (k = 60) (k = 70) (k = 80) (k = 90)

R = 5, c = 3 1.3776e-13 4.0927e-14 2.9498e-12 2.3617e-13
ϵ = 10−2 (k = 4) (k = 4) (k = 4) (k = 4)

R = 5, c = 3 3.2282e-14 2.3093e-13 1.9291e-13 1.5343e-13
ϵ = 10−6 (k = 13) (k = 13) (k = 13) (k = 13)

R = 5, c = 3 1.9679e-13 4.4126e-14 5.5542e-13 7.7609e-14
ϵ = 10−10 (k = 84) (k = 89) (k = 94) (k = 104)

R = 5, c = 5 8.6570e-13 1.7521e-12 5.2458e-12 1.6271e-12
ϵ = 10−2 (k = 2) (k = 2) (k = 2) (k = 2)

R = 5, c = 5 1.4231e-12 9.7948e-13 5.3077e-12 8.5781e-11
ϵ = 10−6 (k = 11) (k = 11) (k = 12) (k = 12)

R = 5, c = 5 9.6468e-13 1.5841e-12 9.4312e-11 1.4930e-12
ϵ = 10−10 (k = 90) (k = 110) (k = 120) (k = 120)
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Figure 3.20: Maximum errors on an amoeba-like fictitious domain, ∂Ω̃ = {(x, y) : x =
r(t) cos(t), y = r(t) sin(t)}, where r(t) = Resin(t) sin2(2t)+Recos(t) cos2(2t), 0 ≤ t < 2π, R =
3, 5, and c = 1, 3 with singular value tolerances, ϵ = 10−2 (�), ϵ = 10−6 (◦), ϵ = 10−10 (△),
respectively
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Table 3.17: Maximum Error ||uexact − uA||C(Ω) with (c) the inverse multiquadratics RBFs
ϕ(r2) = c−1

π(r2+1)c
, for c = 3, 5.

M = 20 M = 30 M = 40 M = 50
N = 200 N = 200 N = 200 N = 200

R = 3, c = 3 1.4246e-05 1.4866e-05 1.5515e-05 1.6184e-05
ϵ = 10−2 (k = 3) (k = 3) (k = 4) (k = 4)

R = 3, c = 3 5.8258e-09 6.5228e-09 7.3519e-09 8.3486e-09
ϵ = 10−6 (k = 13) (k = 14) (k = 14) (k = 15)

R = 3, c = 3 1.3312e-11 2.3606e-11 9.6714e-12 7.3461e-12
ϵ = 10−10 (k = 190) (k = 190) (k = 190) (k = 190)

R = 3, c = 5 1.4246e-05 1.4866e-05 1.5515e-05 1.6184e-05
ϵ = 10−2 (k = 4) (k = 4) (k = 4) (k = 4)

R = 3, c = 5 3.5740e-09 1.5421e-08 8.9900e-10 1.4249e-09
ϵ = 10−6 (k = 11) (k = 11) (k = 12) (k = 13)

R = 3, c = 5 2.0002e-05 1.9255e-05 1.7213e-05 1.3308e-05
ϵ = 10−10 (k = 60) (k = 70) (k = 80) (k = 90)

R = 5, c = 3 4.2601e-05 4.5127e-05 4.7975e-05 5.1211e-05
ϵ = 10−2 (k = 4) (k = 4) (k = 4) (k = 4)

R = 5, c = 3 3.0969e-09 3.4658e-09 3.9043e-09 4.4313e-09
ϵ = 10−6 (k = 13) (k = 13) (k = 13) (k = 13)

R = 5, c = 3 2.3497e-12 8.3265e-12 1.1181e-11 6.5103e-12
ϵ = 10−10 (k = 199) (k = 199) (k = 199) (k = 199)

R = 5, c = 5 3.0970e-09 3.4658e-09 3.9043e-09 4.4313e-09
ϵ = 10−2 (k = 2) (k = 2) (k = 2) (k = 2)

R = 5, c = 5 2.8955e-08 2.7007e-08 3.6047e-08 1.0924e-08
ϵ = 10−6 (k = 4) (k = 4) (k = 4) (k = 4)

R = 5, c = 5 3.4517e-08 7.1434e-08 7.2123e-08 7.4562e-08
ϵ = 10−10 (k = 199) (k = 199) (k = 199) (k = 199)
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Figure 3.21: Maximum errors on an amoeba-like fictitious domain, ∂Ω̃ = {(x, y) : x =
r(t) cos(t), y = r(t) sin(t)}, where r(t) = Resin(t) sin2(2t)+Recos(t) cos2(2t), 0 ≤ t < 2π, R =
3, 5, and c = 1, 3 with singular value tolerances, ϵ = 10−2 (�), ϵ = 10−6 (◦), ϵ = 10−10 (△),
respectively
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Example 3.8. Consider the Dirichlet boundary problem for the Helmhotlz equation

∆u(x, y, z) + u(x, y, z) = 2 ex−y cos(z), (x, y, z) ∈ Ω,

u(x, y, z) = ex−y cos(z), (x, y, z) ∈ ∂Ω,

where Ω = {(x, y, z) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1}. The exact solution of

the above problem is uexact = ex−y cos(z). Choose three different radial basis functions in

Example 2.4:

(a) ϕ(r2) = c
π
e−c r2 , where r = ||x|| and c = 1, 3, 5, respectively,

(b) ϕ(r2) =

{
((2c+ 3)!!)(1− r2)c/(4π(2c)!!), 0 ≤ r ≤ 1,
0, r > 1,

for c = 3, 4, 5, respectively,

(c) ϕ(r2) = 1
2π2

(2c−2)!!
(2c−5)!!

1
(r2+1)c

, for c = 3, 4, 5, respectively,

where n!! =
{

1 · 3 · · · · · ·n, if n is an odd number,
2 · 4 · · · · · ·n, if n is an even number,

and use xk,l,m = ( k
n
, l

n
, m

n
), −1.1n ≤ k, l, m ≤ 1.1n, in Ωδ = [−1.1, 1.1]3 to get un in (2.21).

Then the approximate solution uN of the BVP can be obtained and our maximum error is also

estimated as in example 3.6. We use a bumpy spherical fictitious domain Ω̃ = {(x, y, z) :

ρ sin(θ) cos(ϕ), ρ sin(θ) sin(ϕ), ρ cos(θ), 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π}, where ρ(ϕ, θ) =

R+ 1
6
sin(6ϕ) sin(7θ), R = 3, 5. We choose x̃k,m = (ρ sin(θk) cos(ϕk,m), ρ sin(θk) sin(ϕk,m),

ρ cos(θk)), where ρ = R + 1
6
sin(6 θk) sin(7ϕk,m), R = 2, 3, 4, 5, and θk = π(k+0.5)

Mθ
, 0 ≤

k ≤ Mθ − 1, with Mθ =
√
πN
2r

, and ϕk,m = 2πm
Mk

, 0 ≤ m ≤ Mk − 1, with Mk =

√
πN sin θk, on ∂Ω̃. To estimate the maximum error, we useM3 points zk,l,m = ( k

M
, l

M
, m

M
),

−M ≤ k, l, m ≤ M, with M = 40 in Ω = Ω ∪ ∂Ω, to get the numerical infinity norm in

example 3.6. Then our numerical approximation errors are presented in the following table

with various R, c, M, and N:
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Figure 3.22: M = 10, 1000 points (•) in Ω, 240 points (•) on ∂Ω, and N = 800 points (*) on
a bumpy sphere ∂Ω̃ with R = 3
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Table 3.18: Maximum Error ||uexact − uA||C(Ω) with (a) the Gaussian RBFs ϕ(r2) = c
π
e−c r2

for c = 1, 3.

M = 10 M = 12 M = 14 M = 16
N = 200 N = 200 N = 200 N = 200

R = 3, c = 1 2.7985e-11 2.8678e-11 3.5562e-11 3.7931e-11

R = 3, c = 3 2.7985e-11 2.8678e-11 3.5562e-11 3.7931e-11

R = 5, c = 1 4.8631e-11 5.2541e-11 5.8593e-11 5.3589e-11

R = 5, c = 3 4.8631e-11 5.2541e-11 5.8593e-11 5.3589e-11

Figure 3.23: Maximum errors on a bumpy spherical fictitious domain Ω̃ = {(x, y, z) :
ρ sin(θ) cos(ϕ), ρ sin(θ) sin(ϕ), ρ cos(ϕ), 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}, where ρ(θ, ϕ) =
R + 1

6
sin(6θ) sin(7ϕ) with R = 3, c = 1, (�), R = 3, c = 3, (◦), R = 5, c = 1, (△), and R

= 5, c = 3, (⋄), respectively
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Table 3.19: Maximum Error ||uexact − uA||C(Ω) with (b) the compactly supported RBFs
ϕ(r2) = ((2c+ 3)!!)(1− r2)c/(4π(2c)!!), 0 ≤ r ≤ 1, or 0, r > 1 for c = 3, 5.

M = 10 M = 12 M = 14 M = 16
N = 200 N = 200 N = 200 N = 200

R = 3, c = 3 1.4163e-07 1.1111e-07 3.2973e-08 1.0304e-07

R = 3, c = 4 1.9122e-08 1.4438e-08 1.3430e-08 9.7797e-08

R = 5, c = 3 3.6532e-08 9.7335e-09 1.3148e-08 3.3851e-08

R = 5, c = 4 7.2813e-09 6.5098e-09 4.4031e-09 1.7557e-08

Figure 3.24: Maximum errors on a bumpy spherical fictitious domain Ω̃ = {(x, y, z) :
ρ sin(θ) cos(ϕ), ρ sin(θ) sin(ϕ), ρ cos(ϕ), 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}, where ρ(θ, ϕ) =
R + 1

6
sin(6θ) sin(7ϕ) with R = 3, c = 3, (�), R = 3, c = 4, (◦), R = 5, c = 3, (△), and R

= 5, c = 4, (⋄), respectively
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Table 3.20: Maximum Error ||uexact − uA||C(Ω) with (c) the inverse multiquadratics RBFs
ϕ(r2) = 1

2π2

(2c−2)!!
(2c−5)!!

1
(r2+1)c

, for c = 3, 5,

M = 10 M = 12 M = 14 M = 16
N = 200 N = 200 N = 200 N = 200

R = 3, c = 3 4.4195e-08 6.1029e-08 2.5682e-07 4.0217e-08

R = 3, c = 4 2.3709e-04 4.9233e-05 1.4192e-04 3.2298e-04

R = 5, c = 3 3.3052e-07 6.2125e-08 3.0242e-07 4.7039e-08

R = 5, c = 4 5.2491e-05 1.1849e-04 4.4205e-05 2.2612e-04

Figure 3.25: Maximum errors on a bumpy spherical fictitious domain Ω̃ = {(x, y, z) :
ρ sin(θ) cos(ϕ), ρ sin(θ) sin(ϕ), ρ cos(ϕ), 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}, where ρ(θ, ϕ) =
R + 1

6
sin(6θ) sin(7ϕ) with R = 3, c = 3, (�), R = 3, c = 4, (◦), R = 5, c = 3, (△), and R

= 5, c = 4, (⋄), respectively
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CHAPTER 4

BOUNDARY VALUE PROBLEMS OF
BIHARMONIC EQUATIONS

4.1 MFS for Biharmonic equation

Consider the general Robin boundary value problem for a biharmonic equation

∆2u(x) = 0 x ∈ Ω, (4.1)

u(x) = f1(x) and ∆u(x) = f2(x) x ∈ ∂Ω1, (4.2)

∂u

∂n
(x) = g1(x) and ∂∆u

∂n
(x) = g2(x) x ∈ ∂Ω2, (4.3)

where Ω is a domain in R2 or in R3, ∂Ω = ∂Ω1 ∪ ∂Ω2, and ∆2 = ∂4

∂x4
1
+ 2 ∂4

∂x2
1∂x

2
2
+ ∂4

∂x4
2
in R2

or ∆2 = ∂4

∂x4
1
+ ∂4

∂x4
2
+ ∂4

∂x4
3
+ 2 ∂4

∂x2
1∂x

2
2
+ 2 ∂4

∂x2
2∂x

2
3
+ 2 ∂4

∂x2
3∂x

2
1
in R3. To use MFS for the above

problem, we need use the fundamental solutions of both Laplace equation and biharmonic

equation (cf. [17]). The fundamental solution Γ1 of Laplace equation (1.1) is given by

Γ1(x,y) =

{
− 1

2π
log ||x− y||, for all x, y ∈ R2,

1
4π

1
||x−y|| , for all x, y ∈ R3.

(4.4)

And the fundamental solution Γ2 of biharmonic equation (4.1) is expressed as

Γ2(x,y) =

{
− 1

8π
||x− y||2 log ||x− y||, for all x, y ∈ R2,

1
8π
||x− y||, for all x, y ∈ R3.

(4.5)
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To use the MFS, we choose a fictitious domain ∂Ω̃ such that Ω ⊂ Ω̃. Then choose N points

on ∂Ω̃ listed as x̃1, x̃2, ... , x̃N, and form

uN(c, d, {x̃k}; x) =
N∑
k=1

[ ckΓ1(x, x̃k) + dkΓ2(x, x̃k) ], x ∈ Ω. (4.6)

Choose N1 points x1, x2, ... , xN1 , on ∂Ω1, and N2 points xN1+1, xN1+2, ... , xN , with N =

N1 +N2, on ∂Ω2 and set up a system

uN(c, d, {x̃k}; xm) = f1(xm), ∆uN(c, d, {x̃k}; xm) = f2(xm), 1 ≤ m ≤ N1,

∂uN
∂n

(c, d, {x̃k}; xm) = g1(xm),
∂∆uN
∂n

(c, d, {x̃k}; xm) = g2(xm), N1 + 1 ≤ m ≤ N,

which leads to the following system

[
A11 A12

A21 A22

] [
c
d

]
=

[
f
g

]
, (4.7)

where Aij for i, j = 1, 2 are given by

A11 =



Γ1(x1, x̃1) Γ1(x1, x̃2) . . . Γ1(x1, x̃N)
Γ1(x2, x̃1) Γ1(x2, x̃2) . . . Γ1(x2, x̃N)

... ... . . . ...
Γ1(xN1 , x̃1) Γ1(xN1 , x̃2) . . . Γ1(xN1 , x̃N)

∆Γ1(x1, x̃1) ∆Γ1(x1, x̃2) . . . ∆Γ1(x1, x̃N)
∆Γ1(x2, x̃1) ∆Γ1(x2, x̃2) . . . ∆Γ1(x2, x̃N)

... ... . . . ...
∆Γ1(xN1 , x̃1) ∆Γ1(xN1 , x̃2) . . . ∆Γ1(xN1 , x̃N)


,

A12 =



Γ2(x1, x̃1) Γ2(x1, x̃2) . . . Γ2(x1, x̃N)
Γ2(x2, x̃1) Γ2(x2, x̃2) . . . Γ2(x2, x̃N)

... ... . . . ...
Γ2(xN1 , x̃1) Γ2(xN1 , x̃2) . . . Γ2(xN1 , x̃N)

∆Γ2(x1, x̃1) ∆Γ2(x1, x̃2) . . . ∆Γ2(x1, x̃N)
∆Γ2(x2, x̃1) ∆Γ2(x2, x̃2) . . . ∆Γ2(x2, x̃N)

... ... . . . ...
∆Γ2(xN1 , x̃1) ∆Γ2(xN1 , x̃2) . . . ∆Γ2(xN1 , x̃N)


,
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A21 =



∂Γ1

∂n
(xN1+1, x̃1)

∂Γ1

∂n
(xN1+1, x̃2) . . . ∂Γ1

∂n
(xN1+1, x̃N)

∂Γ1

∂n
(xN1+2, x̃1)

∂Γ1

∂n
(xN1+2, x̃2) . . . ∂Γ1

∂n
(xN1+2, x̃N)

... ... . . . ...
∂Γ1

∂n
(xN, x̃1)

∂Γ1

∂n
(xN, x̃2) . . . ∂Γ1

∂n
(xN, x̃N)

∂∆Γ1

∂n
(xN1+1, x̃1)

∂∆Γ1

∂n
(xN1+1, x̃2) . . . ∂∆Γ1

∂n
(xN1+1, x̃N)

∂∆Γ1

∂n
(xN1+2, x̃1)

∂∆Γ1

∂n
(xN1+2, x̃2) . . . ∂∆Γ1

∂n
(xN1+2, x̃N)

... ... . . . ...
∂∆Γ1

∂n
(xN, x̃1)

∂∆Γ1

∂n
(xN, x̃2) . . . ∂∆Γ1

∂n
(xN, x̃N)


,

A22 =



∂Γ2

∂n
(xN1+1, x̃1)

∂Γ2

∂n
(xN1+1, x̃2) . . . ∂Γ2

∂n
(xN1+1, x̃N)

∂Γ2

∂n
(xN1+2, x̃1)

∂Γ2

∂n
(xN1+2, x̃2) . . . ∂Γ2

∂n
(xN1+2, x̃N)

... ... . . . ...
∂Γ2

∂n
(xN, x̃1)

∂Γ2

∂n
(xN, x̃2) . . . ∂Γ2

∂n
(xN, x̃N)

∂∆Γ2

∂n
(xN1+1, x̃1)

∂∆Γ2

∂n
(xN1+1, x̃2) . . . ∂∆Γ2

∂n
(xN1+1, x̃N)

∂∆Γ2

∂n
(xN1+2, x̃1)

∂∆Γ2

∂n
(xN1+2, x̃2) . . . ∂∆Γ2

∂n
(xN1+2, x̃N)

... ... . . . ...
∂∆Γ2

∂n
(xN, x̃1)

∂∆Γ2

∂n
(xN, x̃2) . . . ∂∆Γ2

∂n
(xN, x̃N)


.

The vectors f = [ f11, ... , f1N1 , f21, ... , f2N1 ]
T ∈ R2N1×1 and g = [ g1N1+1, ... , g1N ,

g2N1+1, ... , g2N ]T ∈ R2N2×1 are formed by

f1k = f1(xk), f2k = f2(xk), 1 ≤ k ≤ N1,

g1k = g1(xk), g2k = g2(xk), N1 + 1 ≤ k ≤ N,

and the vector of unknown coefficients in (4.7),

c = [ c1, c2, ... , cN ]T ,

d = [ d1, d2, ... , dN ]T .

Once the matrix in (4.7) is invertible, the unknown coefficients x∗ = [c, d]T can be

determined and uN(x) in (4.6) is considered as an approximate solution of the biharmonic
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problem (4.1)-(4.3). Or we may choose or determine the unknown coefficients x∗ to be the

solution of the following minimization problem

min
x∗∈R2N

||Ax∗ − b||, (4.8)

as discussed before, by using the singular value decomposition of a matrix or regularization

method.

4.2 Numerical Examples by using MFS

Example 4.1. Consider the boundary problem for the biharmonic equation

∆2u(x, y) = 0 (x, y) ∈ Ω,

u(x, y) = x4 − y4 and ∆u(x, y) = 12x2 − 12y2 (x, y) ∈ ∂Ω1,

∂u

∂n
(x, y) = 4x4 − 4y4 and ∂∆u

∂n
(x, y) = 24x2 − 24y2 (x, y) ∈ ∂Ω2,

where Ω = {(x, y) : x2+y2 ≤ 1} is the unit disc and ∂Ω = ∂Ω1∪∂Ω2 such that ∂Ω1 = {(x, y) :

x = cos(t), y = sin(t), 0 ≤ t < π} and ∂Ω2 = {(x, y) : x = cos(t), y = sin(t), π ≤ t < 2π}.

The exact solution of the above problem is uexact = x4 − y4. We use a fictitious domain

Ω̃ = {(x, y) : x = a cos t, y = b sin(t + sin t), 0 ≤ t ≤ 2π}, where a = 3, 3, 4, 4 and

b = 3, 4, 4, 5, respectively. We choose x̃k = (a cos 2πk
N
, b sin(2πk

N
+ sin 2πk

N
)), 0 ≤ k ≤

N − 1 on ∂Ω̃. Then in order to resolve the difficulty due to the unstable result, we apply

the TSVD with singular value tolerances, ϵ = {10−3, 10−5, 10−7}, respectively to obtain the

approximate solution through (4.4)-(4.7). To estimate the maximum error, we use points

zk,m = (rk cos 2πm
Mk

, rk sin 2πm
Mk

), in Ω, where rk = k
M
, Mk = kM, 1 ≤ m ≤ Mk, 1 ≤ k ≤
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M, and zk = (cos πk
N1
, sin πk

N1
), 0 ≤ k ≤ N1 − 1, on ∂Ω1 and zk = (cos(π + πk

N2
), sin(π +

πk
N2

)), 0 ≤ k ≤ N2 − 1, on ∂Ω2 to get the numerical estimate for

max
k,m

|uexact(zk,m)− uN(zk,m)|.

Then our numerical approximation errors are presented in the following table with various

a, b, and N:

Figure 4.1: Choose collocation points in Ω = Ω ∪ ∂Ω where ∂Ω = ∂Ω1 ∪ ∂Ω2, and N = 20
source points on the ∂Ω̃ = {(x, y) : x = 3 cos t, y = 3 sin(t+ sin t), 0 ≤ t < 2π}
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Table 4.1: Maximum Error ||uexact − uN ||C(Ω)

N1 = 100 N1 = 150 N1 = 200 N1 = 250
N2 = 100 N2 = 150 N2 = 200 N2 = 250
N = 200 N = 300 N = 400 N = 500

a = 3, b = 3 2.3886e-04 7.2239e-05 9.7180e-05 4.6016e-05
ϵ = 10−3 (k = 73) (k = 88) (k = 99) (k = 108)

a = 3, b = 3 3.9144e-05 1.8477e-05 1.7482e-05 1.3794e-05
ϵ = 10−5 (k = 79) (k = 95) (k = 107) (k = 120)

a = 3, b = 3 1.4286e-05 1.5980e-05 1.7683e-05 2.4028e-05
ϵ = 10−7 (k = 87) (k = 102) (k = 117) (k = 129)

a = 3, b = 4 5.4638e-04 7.4690e-05 7.4902e-05 4.9360e-05
ϵ = 10−3 (k = 67) (k = 79) (k = 88) (k = 96)

a = 3, b = 4 3.1126e-05 5.0089e-05 9.9726e-06 3.7933e-06
ϵ = 10−5 (k = 74) (k = 86) (k = 96) (k = 106)

a = 3, b = 4 2.5734e-05 4.2955e-06 9.3278e-05 4.4248e-05
ϵ = 10−7 (k = 80) (k = 93) (k = 103) (k = 113)

a = 4, b = 4 1.4012e-04 8.6581e-05 6.3257e-05 1.7787e-05
ϵ = 10−3 (k = 63) (k = 71) (k = 79) (k = 86)

a = 4, b = 4 6.2605e-05 1.0525e-05 4.2323e-06 7.7189e-06
ϵ = 10−5 (k = 67) (k = 78) (k = 87) (k = 93)

a = 4, b = 4 5.2175e-05 1.2660e-06 8.9303e-05 8.0271e-05
ϵ = 10−7 (k = 74) (k = 85) (k = 94) (k = 100)

a = 4, b = 5 9.7287e-06 4.2001e-06 2.8641e-06 3.1107e-06
ϵ = 10−3 (k = 57) (k = 66) (k = 70) (k = 72)

a = 4, b = 5 3.9192e-07 7.2941e-07 3.8620e-07 2.9312e-07
ϵ = 10−5 (k = 63) (k = 71) (k = 78) (k = 81)

a = 4, b = 5 1.2734e-05 2.8318e-05 2.4865e-07 5.2336e-07
ϵ = 10−7 (k = 67) (k = 78) (k = 86) (k = 88)
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Figure 4.2: Maximum errors in a domain Ω with singular value tolerances, ϵ = 10−3 (�), ϵ =
10−5 (◦), ϵ = 10−7 (△), respectively
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Example 4.2. Consider the boundary problem for the biharmonic equation

∆2 u(x, y) = 0 (x, y) ∈ Ω,

u(x, y) = ex cos(y) + ey sin(x) + x3 − 2y3 and

∆u(x, y) = 6x− 12y (x, y) ∈ ∂Ω,

where Ω = {(x, y) : −2 ≤ x ≤ −1, −1 ≤ y ≤ 1, or − 1 ≤ x ≤ 0, −1 ≤ y ≤ 0} is the

L-shaped domain. The exact solution of the above problem is uexact = ex cos(y)+ ey sin(x)+

x3 − 2y3. We use a fictitious domain Ω̃ = {(x, y) : x = a sin t, y = b cos(t + cos t), 0 ≤

t ≤ 2π}, where a = 3, 4 and b = 3, 4, respectively. We choose x̃k = (a sin 2πk
N
, b cos(2πk

N
+

cos 2πk
N

)), 0 ≤ k ≤ N − 1 on ∂Ω̃. Then the varying number of collocation points on ∂Ω

and source points on ∂Ω̃ cause the ill-condition system (4.7) and hence in order to resolve

the unstable results, we use the Tikhonov regularization with regularization parameters,

µ = {10−3, 10−5, 10−7}, respectively to obtain the approximate solution through (4.4)-

(4.7). To estimate the maximum error, we use points zk,m = ( k
M
, m

M
), −2M ≤ k ≤

−M and −M ≤ m ≤M or −M ≤ k ≤ 0 and −M ≤ m ≤ 0 withM = 100 in Ω = Ω∪ ∂Ω

to get the numerical infinity norm in Example 4.1. Then our numerical approximation errors

are presented in the following table with various a, b, and N:
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Figure 4.3: Choose collocation points on the Ω = Ω ∪ ∂Ω and N = 20 source points on the
∂Ω̃ = {(x, y) : x = a sin t, y = b cos(t+ cos t), 0 ≤ t < 2π}
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Table 4.2: Maximum Error ||uexact − uN ||C(Ω)

N = 120 N = 140 N = 160 N = 180

a = 3, b = 3, µ = 10−3 6.9399e-04 5.5198e-04 4.5417e-04 3.8337e-04

a = 3, b = 3, µ = 10−5 3.5497e-04 2.7811e-04 2.2341e-04 1.8332e-04

a = 3, b = 3, µ = 10−7 1.2972e-04 1.1770e-04 1.0616e-04 9.5411e-05

a = 3, b = 4, µ = 10−3 0.0011 9.1833e-04 7.7623e-04 6.7057e-04

a = 3, b = 4, µ = 10−5 4.2704e-04 3.2949e-04 2.6295e-04 2.1550e-04

a = 3, b = 4, µ = 10−7 2.4625e-04 2.0316e-04 1.6886e-04 1.4171e-04

a = 4, b = 4, µ = 10−3 8.3193e-04 6.8431e-04 5.7938e-04 5.0126e-04

a = 4, b = 4, µ = 10−5 3.1836e-04 2.4537e-04 1.9577e-04 1.6047e-04

a = 4, b = 4, µ = 10−7 1.7726e-04 1.4655e-04 1.2221e-04 1.0291e-04

a = 4, b = 5, µ = 10−3 0.0014 0.0012 0.0010 8.8411e-04

a = 4, b = 5, µ = 10−5 3.6978e-04 2.8939e-04 2.3456e-04 1.9530e-04

a = 4, b = 5, µ = 10−7 2.2710e-04 1.7807e-04 1.4279e-04 1.1681e-04
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Figure 4.4: Maximum errors in a domain Ω with regularization parameters, µ =
10−3 (�), µ = 10−5 (◦), µ = 10−7 (△), respectively
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Example 4.3. Consider the boundary problem for the biharmonic equation

∆2 u(x, y, z) = 0 (x, y, z) ∈ Ω,

u(x, y, z) = 5xe2y cos(2z) + x3 − y3 + 3z3

and

∆u(x, y, z) = 6x− 6y + 18z, (x, y, z) ∈ ∂Ω,

where Ω = {(x, y, z) : −1 ≤ x, y, z ≤ 1} is the cube. The exact solution of the above

problem is uexact = 5x e2y cos(2z) + x3 − y3 + 3z3. We use a bumpy spherical fictitious

domain Ω̃ = {(x, y, z) : ρ sin(θ) cos(ϕ), ρ sin(θ) sin(ϕ), ρ cos(θ), 0 ≤ θ ≤ π, 0 ≤

ϕ ≤ 2π}, where ρ(ϕ, θ) = R + 1
6
sin(6ϕ) sin(7θ), R = 2, 3, 4, 5. We choose x̃k,m =

(ρ sin(θk) cos(ϕk,m), ρ sin(θk) sin(ϕk,m), ρ cos(θk)), where ρ = R + 1
6
sin(6 θk) sin(7ϕk,m),

R = 2, 3, 4, 5, and θk = π(k+0.5)
Mθ

, 0 ≤ k ≤ Mθ − 1, with Mθ =
√
πN
2r

, and ϕk,m = 2πm
Mk

, 0 ≤

m ≤ Mk − 1, with Mk =
√
πN sin θk, on ∂Ω̃. (see Figure 4.5). Then in order to resolve

the difficulty due to the unstable result, we apply the TSVD with singular value tolerances,

ϵ = {10−3, 10−5, 10−7}, respectively to obtain the approximate solution through (4.4)-(4.7).

To estimate the maximum error, we use points zk,l,m = ( k
M
, l

M
, m

M
), −M ≤ k, l, m ≤

M, with M = 10 in Ω = Ω ∪ ∂Ω, to get the numerical infinity norm in Example 4.1. Then

our numerical approximation errors are presented in the following table with various R and

N:
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Figure 4.5: Choose collocation points on Ω = Ω ∪ ∂Ω and N = 100 source points on the
bumpy spherical fictitious domain ∂Ω̃
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Table 4.3: Maximum Error ||uexact − uN ||C(Ω)

N = 120 N = 140 N = 160 N = 180

R = 2 4.5400e-04 4.2848e-04 3.8757e-04 1.7225e-06
ϵ = 10−3 (k = 8) (k = 8) (k = 8) (k = 8)
R = 2 6.4147e-06 9.2011e-07 4.6282e-07 2.5193e-07
ϵ = 10−5 (k = 8) (k = 9) (k = 8) (k = 8)
R = 2 8.6616e-06 5.7495e-06 3.2725e-06 2.6196e-07
ϵ = 10−7 (k = 8) (k = 8) (k = 8) (k = 8)
R = 3 1.8411e-05 4.0288e-06 2.0628e-06 1.2656e-06
ϵ = 10−3 (k = 8) (k = 8) (k = 8) (k = 8)
R = 3 5.1655e-04 4.8796e-04 4.3954e-04 4.6735e-06
ϵ = 10−5 (k = 7) (k = 7) (k = 7) (k = 8)
R = 3 1.7755e-06 1.1107e-06 4.6440e-07 2.1745e-07
ϵ = 10−7 (k = 8) (k = 8) (k = 9) (k = 9)
R = 4 0.0020 8.2689e-06 4.5682e-06 2.8110e-06
ϵ = 10−3 (k = 6) (k = 7) (k = 7) (k = 7)
R = 4 5.8654e-04 5.5266e-04 4.9414e-04 1.1976e-05
ϵ = 10−5 (k = 7) (k = 7) (k = 8) (k = 8)
R = 4 1.3015e-06 8.9028e-07 4.2401e-07 2.2783e-07
ϵ = 10−7 (k = 8) (k = 8) (k = 9) (k = 9)
R = 5 0.0018 0.0014 0.0011 9.1498e-04
ϵ = 10−3 (k = 6) (k = 6) (k = 6) (k = 7)
R = 5 0.0018 0.0014 1.1874e-05 9.7606e-05
ϵ = 10−5 (k = 6) (k = 7) (k = 7) (k = 8)
R = 5 1.2177e-06 1.3280e-06 6.8098e-07 3.8472e-07
ϵ = 10−7 (k = 8) (k = 8) (k = 9) (k = 9)
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Figure 4.6: Maximum errors in a domain Ω with singular value tolerances, ϵ = 10−3 (�), ϵ =
10−5 (◦), ϵ = 10−7 (△), respectively
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4.3 Method of Particular Solutions (MPS) and DRM

First we describe the method of particular solutions to find an approximate solution of a

biharmonic equation

∆2u(x) = f(x) in Ω. (4.9)

For this purpose, we use a radial basis functions (RBF)

ϕ(x) = ϕ(||x||),

where ϕ(·) is a univariate function. Then we approximate f(x) by the collocation method. To

be specific, we choose x1,x2, ...,xM in Ω, (see Figure 2.1) and consider a linear combination

of ϕ(||x− xk||), 1 ≤ k ≤M, or
M∑
k=1

ck ϕ(||x− xk||),

where ck, 1 ≤ k ≤M, so chosen that

M∑
k=1

ck ϕ(||xm − xk||) = f(xm), 1 ≤ m ≤M.

The above equation yields ϕ(0) . . . ϕ(||x1 − xM||)
... . . . ...

ϕ(||xM − x1||) . . . ϕ(0)


 c1...
cM

 =

 f(x1)
...

f(xM)

 . (4.10)

It is known in [25] that for Gaussian e−c||x||2 , or multiquadratic
√
||x||2 + c2, where c > 0

is a constant, the above coefficient matrix is always invertible. Hence {ck}Mk=1 can be found.

However, the above matrix may not be invertible for other RBFs, e.g. ϕ(x) = ||x||2 ln ||x||,

thin plate splines.
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Suppose that {ck}Mk=1 is determined (e.g. using e−c||x||2 or
√

||x||2 + c2). Then

M∑
k=1

ck ϕ(||x− xk||)

is considered as an approximation of f(x), and hence we turn to study the following bihar-

monic equation

∆2u(x) =
M∑
k=1

ck ϕ(||x− xk||), x ∈ Ω.

If ψ is a RBF solution of ∆2ψ(||x||) = ϕ(||x||), then

u(x) =
M∑
k=1

ck ψ(||x− xk||)

is an approximate solution of the biharmonic equation (4.9).

Using Lemma 2.1 in section 2.3, the radially particular solutions of biharmonic equations,

∆2ψ(r) = ϕ(r), are also derived in [17], given by

ψ(r) =
1

4
r2 (ln r − 1)

∫ r

0

t ϕ(t) dt− 1

4

∫ r

0

t3(ln t− 1) ϕ(t) dt (4.11)

+
1

4
ln r

∫ r

0

t3 ϕ(t) dt− 1

4
r2
∫ r

0

t ϕ(t) ln t dt

+ Ar2 ln r +Br2 + C ln r +D

in R2, and

ψ(r) = − r

2

∫ r

0

t2 ϕ(t) dt+
1

2

∫ r

0

t3 ϕ(t) dt (4.12)

− 1

6r

∫ r

0

t4 ϕ(t) dt+
r2

6

∫ r

0

t ϕ(t) dt

+ Ar +Br2 +
C

r
+D,

in R3, where we may choose A = B = C = D = 0.
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Correspondingly the approximate particular solutions of (4.9) are given in [17] by

up(x) =
1

n2(1−γ)

∑
j∈In(Ωδ)

f

(
j

n

)
n−4γ (4.13)

×

[
1

4
(nγ||x− j/n||)2 (ln (nγ||x− j/n||)− 1)

∫ nγ ||x−j/n||

0

t ϕ(t) dt

− 1

4

∫ nγ ||x−j/n||

0

t3(ln t− 1) ϕ(t) dt+
1

4
ln (nγ||x− j/n||)

∫ nγ ||x−j/n||

0

t3 ϕ(t) dt

− 1

4
(nγ||x− j/n||)2

∫ nγ ||x−j/n||

0

t ϕ(t) ln t dt

]
in R2, and

up(x) =
1

n3(1−γ)

∑
j∈In(Ωδ)

f

(
j

n

)
n−4γ (4.14)

×

[
−n

γ||x− j/n||
2

∫ nγ ||x−j/n||

0

t2 ϕ(t) dt+
1

2

∫ nγ ||x−j/n||

0

t3 ϕ(t) dt

− 1

6nγ||x− j/n||

∫ nγ ||x−j/n||

0

t4 ϕ(t) dt

+
(nγ||x− j/n||)2

6

∫ nγ ||x−j/n||

0

t ϕ(t) dt

]
in R3.

Now for a Dirichlet problem of biharmonic equations

∆2u(x) = f(x), x ∈ Ω, (4.15)

u(x) = h(x), x ∈ ∂Ω, (4.16)

first we use the MPS to get an approximate solution of biharmonic equations. Namely,

choose a RBF ϕ(r). Then we get an approximate solution up of ∆2u(x) = f(x), as discussed

above in (4.9). Next we consider the Dirichlet boundary problem of the Laplace equation

∆2u(x) = 0, x ∈ Ω, (4.17)

u(x) = h(x)− up(x), x ∈ ∂Ω. (4.18)
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The MFS can be applied to obtain an approximate solution uN of (4.16)-(4.17). Then

uA(x) = uN(x) + up(x).

is considered as an approximate solution of (4.14)-(4.15). Such a combination of MPS and

MFS is called the dual reciprocity method (DRM).

4.4 Numerical Examples by MFS and Collocation Meth-
ods

Example 4.4. Consider the boundary problem for the biharmonic equation

∆2u(x, y) = 25 e2x sin(3y), (x, y) ∈ Ω,

u(x, y) = e2x sin(3y) and ∆u(x, y) = −5 e2x sin(3y), (x, y) ∈ ∂Ω,

where Ω = {(x, y) : −1 ≤ x ≤ 1, or − 1 ≤ y ≤ 1} is the square. The exact solution of

the above problem is uexact = e2x sin(3y). Choose a Gaussian radial basis function (RBF)

ϕ(r) = e−2r2 where r = ||x||. We use a fictitious domain Ω̃ = {(x, y) : x = a cos3(t), y =

b sin3(t), 0 ≤ t ≤ 2π}, where a = 4, 4, 5, 5 and b = 4, 5, 5, 6, respectively. We choose

x̃k = (a cos3(2πk
N

), b sin3(2πk
N

)), 0 ≤ k ≤ N − 1, on ∂Ω̃. Then in order to resolve the

difficulty due to the unstable result, we apply the TSVD with singular value tolerances,

ϵ = {10−3, 10−5, 10−7}, respectively, to obtain the approximate solution through (4.4)-(4.7).

To estimate the maximum error, we use points zk,m = ( k
M
, m

M
), −M ≤ k ≤M and −M ≤

m ≤M, withM = 100 in Ω = Ω ∪ ∂Ω to get the numerical estimate (see Figure 4.7) for

max
Ω

|uexact(zk,m)− uA(zk,m)|.
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Then our numerical approximation errors are presented in the following table with various

a, b, and N:

Figure 4.7: Choose collocation points in Ω = Ω ∪ ∂Ω and N = 20 source points on the
∂Ω̃ = {(x, y) : x = 4 cos3(t), y = 4 sin3(t), 0 ≤ t < 2π}
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Table 4.4: Maximum Error ||uexact − uA||C(Ω) with the Gaussian RBF ϕ(r) = e−2r2

N = 120 N = 140 N = 160 N = 180

a = 4, b = 4 3.7851e-05 3.3175e-05 3.2297e-05 4.0468e-05
ϵ = 10−3 (k = 17) (k = 17) (k = 17) (k = 17)

a = 4, b = 4 3.7851e-05 3.3175e-05 3.0143e-06 2.7825e-06
ϵ = 10−5 (k = 17) (k = 17) (k = 18) (k = 18)

a = 4, b = 4 1.6667e-05 1.8069e-07 9.7123e-05 1.8055e-06
ϵ = 10−7 (k = 19) (k = 19) (k = 19) (k = 19)

a = 4, b = 5 6.5255e-05 5.9290e-05 5.5789e-05 6.6515e-05
ϵ = 10−3 (k = 17) (k = 17) (k = 17) (k = 17)

a = 4, b = 5 3.1297e-07 8.8396e-04 1.2537e-04 3.1376e-05
ϵ = 10−5 (k = 19) (k = 19) (k = 19) (k = 19)

a = 4, b = 5 5.3866e-07 5.1116e-04 2.5542e-04 2.8819e-07
ϵ = 10−7 (k = 20) (k = 20) (k = 20) (k = 20)

a = 5, b = 5 4.6969e-05 3.8649e-05 5.1966e-05 7.7667e-05
ϵ = 10−3 (k = 17) (k = 17) (k = 17) (k = 17)

a = 5, b = 5 2.0206e-04 5.2882e-05 8.0295e-05 9.1467e-07
ϵ = 10−5 (k = 19) (k = 19) (k = 19) (k = 19)

a = 5, b = 5 2.3002e-04 1.0738e-04 2.4418e-04 9.6331e-05
ϵ = 10−7 (k = 20) (k = 20) (k = 20) (k = 20)

a = 5, b = 6 1.1638e-06 7.1239e-07 9.1190e-04 3.3249e-04
ϵ = 10−3 (k = 18) (k = 18) (k = 18) (k = 18)

a = 5, b = 6 2.1900e-06 8.6323e-04 6.1059e-07 1.1316e-06
ϵ = 10−5 (k = 19) (k = 19) (k = 19) (k = 19)

a = 5, b = 6 2.4044e-04 1.2093e-06 5.2768e-05 4.5847e-04
ϵ = 10−7 (k = 21) (k = 21) (k = 21) (k = 21)
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Figure 4.8: Maximum errors in a domain Ω with singular value tolerances, ϵ = 10−3 (�), ϵ =
10−5 (◦), ϵ = 10−7 (△), respectively

133



Example 4.5. Consider the boundary problem for the biharmonic equation

∆2u(x, y) = (8x− 12y) cos(x+ y)− 8 sin(x+ y), (x, y) ∈ Ω,

u(x, y) = (2x− 3y) cos(x+ y),

and

∆u(x, y) = 2 sin(x+ y)− (4x− 6y) cos(x+ y), (x, y) ∈ ∂Ω,

where Ω = {(x, y) : −1 ≤ x ≤ 0, −1 ≤ y ≤ 1, or 0 ≤ x ≤ 1, −1 ≤ y ≤ 0} is the L-shaped

domain. The exact solution of the above problem is uexact = (2x − 3y) cos(x + y). Choose

a Gaussian RBF ϕ(r) = e−3r2 where r = ||x||. We use a fictitious domain Ω̃ = {(x, y) : x =

a cos t, y = b sin(t+cos t), 0 ≤ t ≤ 2π}, where a = 3, 4 and b = 3, 4, respectively. We choose

x̃k = (a cos 2πk
N
, b sin(2πk

N
+ cos 2πk

N
)), 0 ≤ k ≤ N−1, on ∂Ω̃. The large number of collocation

points on ∂Ω and source points on ∂Ω̃ cause the ill-condition system (4.7). In order to resolve

the unstable results, we use the Tikhonov regularization with regularization parameters,

µ = {10−1, 10−3, 10−5}, respectively, to obtain the approximate solution through (4.4)-

(4.7). To estimate the maximum error, we use points zk,m = ( k
M
, m

M
), −2M ≤ k ≤

−M and −M ≤ m ≤M or −M ≤ k ≤ 0 and −M ≤ m ≤ 0 withM = 100 in Ω = Ω∪ ∂Ω

to get the numerical infinity norm in Example 4.1. Then our numerical approximation errors

are presented in the following table with various a, b, and N:
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Figure 4.9: Choose collocation points on the Ω = Ω ∪ ∂Ω and N = 20 source points on the
∂Ω̃ = {(x, y) : x = a sin t, y = b cos(t+ cos t), 0 ≤ t < 2π}
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Table 4.5: Maximum Error ||uexact − uN ||C(Ω) with the Gaussian RBF ϕ(r) = e−3r2

N = 120 N = 140 N = 160 N = 180

a = 3, b = 3, µ = 10−1 1.8636e-05 1.4715e-05 1.2024e-05 1.0085e-05

a = 3, b = 3, µ = 10−3 1.1963e-05 9.0015e-06 7.0304e-06 5.6517e-06

a = 3, b = 3, µ = 10−5 1.1228e-05 8.3920e-06 6.5086e-06 5.1946e-06

a = 3, b = 4, µ = 10−1 1.2719e-05 9.6801e-06 7.6437e-06 6.2096e-06

a = 3, b = 4, µ = 10−3 1.1208e-05 8.3868e-06 6.5124e-06 5.2044e-06

a = 3, b = 4, µ = 10−5 1.1059e-05 8.2653e-06 6.4006e-06 5.1039e-06

a = 4, b = 4, µ = 10−1 1.3396e-05 1.0261e-05 8.1525e-06 6.6624e-06

a = 4, b = 4, µ = 10−3 1.1283e-05 8.4488e-06 6.5661e-06 5.2524e-06

a = 4, b = 4, µ = 10−5 1.1107e-05 8.2831e-06 6.4119e-06 5.1141e-06

a = 4, b = 5, µ = 10−1 1.1339e-05 8.5269e-06 6.6504e-06 5.3387e-06

a = 4, b = 5, µ = 10−3 1.0975e-05 8.1814e-06 6.3170e-06 5.0529e-06

a = 4, b = 5, µ = 10−5 1.0605e-05 1.4025e-05 6.1833e-06 4.9843e-06
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Figure 4.10: Maximum errors in a domain Ω with regularization parameters, µ =
10−1 (�), µ = 10−3 (◦), µ = 10−5 (△), respectively
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Example 4.6. Consider the boundary problem for the biharmonic equation

∆2 u(x, y, z) = 4e2x sin(y + z), (x, y, z) ∈ Ω,

u(x, y, z) = e2x sin(y + z),

and

∆u(x, y, z) = 2e2x sin(y + z), (x, y, z) ∈ ∂Ω,

where Ω = {(x, y, z) : −1 ≤ x, y, z ≤ 1} is the cube. The exact solution of the above

problem is uexact = e2x sin(y + z). Choose a Gaussian RBF ϕ(r) = e−3r2 where r = ||x||. We

use an ellipsoid fictitious domain Ω̃ = {(x, y, z) : x2

a2
+ y2

b2
+ z2

c2
≤ 1}, where a = 4, 5, 6, 7, b = 3,

4, 5, 6, and c = 3, 4, 5, 6. We choose x̃k,m = (a sin θk cosϕk,m, b sin θk sinϕk,m, c cosϕk,m) ,

where a = 4, 5, 6, 7, b = 3, 4, 5, 6, and c = 3, 4, 5, 6 and θk = π(k+0.5)
Mθ

, 0 ≤ k ≤

Mθ−1, withMθ =
√
πN
2r

, and ϕk,m = 2πm
Mk

, 0 ≤ m ≤Mk−1, withMk =
√
πN sin θk, on ∂Ω̃,

(see Figure 4.11). We use the Tikhonov regularization with regularization parameters, µ =

{10−1, 10−3, 10−5}, respectively, to obtain the approximate solution through (4.4)-(4.7).

To estimate the maximum error, we use points zk,l,m = ( k
M
, l

M
, m

M
), −M ≤ k, l, m ≤

M, with M = 10 in Ω = Ω ∪ ∂Ω, to get the numerical infinity norm in Example 4.1. Then

our numerical approximation errors are presented in the following table with various a, b, c,

and N:
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Figure 4.11: Choose collocation points on Ω = Ω ∪ ∂Ω and N = 100 source points on the
ellipsoid fictitious domain ∂Ω̃ with a = 5, b = 3, and c = 3

139



Table 4.6: Maximum Error ||uexact − uN ||C(Ω) with the Gaussian RBF ϕ(r) = e−3r2

N = 120 N = 140 N = 160 N = 180

a = 4, b = 3, c = 3, µ = 10−1 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07

a = 4, b = 3, c = 3, µ = 10−3 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07

a = 4, b = 3, c = 3, µ = 10−5 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07

a = 5, b = 4, c = 4, µ = 10−1 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07

a = 5, b = 4, c = 4, µ = 10−3 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07

a = 5, b = 4, c = 4, µ = 10−5 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07

a = 6, b = 5, c = 5, µ = 10−1 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07

a = 6, b = 5, c = 5, µ = 10−3 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07

a = 6, b = 5, c = 5, µ = 10−5 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07

a = 7, b = 6, c = 6, µ = 10−1 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07

a = 7, b = 6, c = 6, µ = 10−3 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07

a = 7, b = 6, c = 6, µ = 10−5 1.1574e-06 7.2886e-07 4.8828e-07 3.4294e-07
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Figure 4.12: Maximum errors in domain Ω with singular value tolerances, ϵ = 10−1 (�), ϵ =
10−3 (◦), ϵ = 10−5 (△), respectively
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4.5 Numerical Examples by Approximate Particular
Solutions

In this section, we use the approximate particular solutions described in section 4.3 with

MFS to present some numerical examples.

Example 4.7. Consider the boundary problem for the biharmonic equation

∆2u(x, y) = 8 (2x4 + 12x2 + 3) e2y, (x, y) ∈ Ω,

u(x, y) = x4e2y and ∆u(x, y) = 4x2(x2 + 3) e2y, (x, y) ∈ ∂Ω,

where Ω = {(x, y) : −2 ≤ x ≤ −1, −1 ≤ y ≤ 1, or − 1 ≤ x ≤ 0, 0 ≤ y ≤ 1} is the Γ-shaped

domain. The exact solution of the above problem is uexact = x4e2y. Choose three different

radial basis functions in Example 2.4:

(a) ϕ(r2) = c
π
e−c r2 , where r = ||x|| and c = 1, 3, 5, respectively,

(b) ϕ(r2) =

{
(c+ 1)(1− r2)c/π, 0 ≤ r ≤ 1,
0, r > 1,

for c = 3, 4, 5, respectively,

(c) ϕ(r2) = c−1
π(r2+1)c

, for c = 3, 4, 5, respectively,

and we use a fictitious domain Ω̃ = {(x, y) : x = a sin(t), y = b cos(t+cos(t)), 0 ≤ t ≤ 2π},

where a = 3, 3, 4, 4 and b = 3, 4, 4, 5, respectively. We choose x̃k = (a sin(2πk
N

), b cos(2πk
N

+

cos(2πk
N

))), 0 ≤ k ≤ N − 1, on ∂Ω̃. To estimate the maximum error, we use points zk,m =

( k
M
, m

M
), −2M ≤ k ≤ −M and −M ≤ m ≤M or −M ≤ k ≤ 0 and 0 ≤ m ≤M withM =

100 in Ω = Ω ∪ ∂Ω to get the numerical estimate (see Figure 4.13) for

max
k,m

|uexact(zk,m)− uA(zk,m)|.

Then our numerical approximation errors are presented in the following table with various

a, b, and N:
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Figure 4.13: Choose collocation points in Ω = Ω ∪ ∂Ω and N = 20 source points on the
∂Ω̃ = {(x, y) : x = 3 sin(t), y = 3 cos(t+ cos(t)), 0 ≤ t ≤ 2π}
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Table 4.7: Maximum Error ||uexact − uA||C(Ω) with (a) the Gaussian RBFs ϕ(r2) = c
π
e−c r2

N = 20 N = 30 N = 40 N = 50

a = 3, b = 3, c = 1 0.0019 0.0024 0.0050 0.0027

a = 3, b = 3, c = 3 0.0029 0.0028 0.0032 0.0030

a = 3, b = 3, c = 5 0.0029 0.0033 0.0027 0.0030

a = 3, b = 4, c = 1 0.0026 0.0019 0.0026 0.0195

a = 3, b = 4, c = 3 0.0023 0.0030 0.0041 0.0038

a = 3, b = 4, c = 5 0.0037 0.0026 0.0041 0.0433

a = 4, b = 4, c = 1 0.0025 0.0030 0.0029 0.0033

a = 4, b = 4, c = 3 0.0037 0.0733 0.0039 0.0100

a = 4, b = 4, c = 5 0.0240 0.0035 0.0045 0.0079

a = 4, b = 5, c = 1 0.0028 0.0028 0.0038 0.0042

a = 4, b = 5, c = 3 0.0033 0.0039 0.0034 0.0042

a = 4, b = 5, c = 5 0.0039 0.0030 0.0064 0.0035
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Figure 4.14: Maximum errors with c = 1 (�), c = 3 (◦), c = 5 (△), respectively
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Table 4.8: Maximum Error ||uexact−uA||C(Ω) with (b) the compactly supported RBFs ϕ(r2) =
(c+ 1)(1− r2)c/π, 0 ≤ r ≤ 1, for c = 3, 4, 5.

N = 20 N = 30 N = 40 N = 50

a = 3, b = 3, c = 3 6.9003e-08 4.2691e-07 4.7258e-07 4.2758e-07

a = 3, b = 3, c = 4 6.9003e-08 7.6326e-07 4.7258e-07 2.9567e-07

a = 3, b = 3, c = 5 8.7394e-07 3.2889e-07 1.1157e-06 5.1466e-07

a = 3, b = 4, c = 3 3.3888e-08 4.2691e-07 3.1600e-07 4.2758e-07

a = 3, b = 4, c = 4 3.3888e-08 7.6326e-07 8.1711e-08 2.9567e-07

a = 3, b = 4, c = 5 8.7394e-07 3.2889e-07 1.1157e-06 5.1466e-07

a = 4, b = 4, c = 3 3.3054e-08 4.2691e-07 3.1600e-07 4.2758e-07

a = 4, b = 4, c = 4 3.3054e-08 7.6326e-07 8.1711e-08 2.9567e-07

a = 4, b = 4, c = 5 8.7394e-07 3.2889e-07 1.1157e-06 5.1466e-07

a = 4, b = 5, c = 3 2.7810e-07 4.2691e-07 3.7688e-07 4.2758e-07

a = 4, b = 5, c = 4 2.7810e-07 7.6326e-07 3.7688e-07 2.9567e-07

a = 4, b = 5, c = 5 8.7394e-07 3.2889e-07 1.1157e-06 5.1466e-07
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Figure 4.15: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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Table 4.9: Maximum Error ||uexact − uA||C(Ω) with (c) the inverse multiquadratics RBFs
ϕ(r2) = c−1

π(r2+1)c
, for c = 3, 4, 5.

N = 20 N = 30 N = 40 N = 50

a = 3, b = 3, c = 3 6.9003e-08 3.5952e-08 4.7258e-07 7.8516e-08

a = 3, b = 3, c = 4 1.1781e-07 1.5602e-06 6.8331e-06 2.0803e-07

a = 3, b = 3, c = 5 6.9003e-08 3.6095e-08 4.7258e-07 3.6344e-08

a = 3, b = 4, c = 3 4.8865e-08 3.5952e-08 8.1429e-08 7.8516e-08

a = 3, b = 4, c = 4 1.1781e-07 1.5602e-06 6.8331e-06 2.0803e-07

a = 3, b = 4, c = 5 5.6210e-08 3.6095e-08 1.0767e-07 3.6344e-08

a = 4, b = 4, c = 3 4.8865e-08 3.5952e-08 8.1429e-08 7.8516e-08

a = 4, b = 4, c = 4 3.3054e-08 6.1230e-08 2.4256e-07 4.1191e-07

a = 4, b = 4, c = 5 5.6210e-08 3.6095e-08 1.0767e-07 3.6344e-08

a = 4, b = 5, c = 3 2.7810e-07 3.5952e-08 3.7688e-07 7.8516e-08

a = 4, b = 5, c = 4 2.7810e-07 1.3770e-07 7.7597e-07 4.6340e-07

a = 4, b = 5, c = 5 2.7810e-07 3.6095e-08 3.7688e-07 3.6344e-08
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Figure 4.16: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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Example 4.8. Consider the boundary problem for the biharmonic equation

∆2u(x, y) = 25 e2x sin(3y), (x, y) ∈ Ω,

u(x, y) = e2x sin(3y) and ∆u(x, y) = −5 e2x sin(3y), (x, y) ∈ ∂Ω,

where Ω = {(x, y) : −1 ≤ x ≤ 1, or − 1 ≤ y ≤ 1} is the square. The exact solution of the

above problem is uexact = e2x sin(3y). Choose three different radial basis functions in Example

4.7 and use an amoeba-like fictitious domain Ω̃ = {(x, y) : x = r(t) cos(t), y = r(t) sin(t)},

where r(t) = Resin(t) sin2(2t) + Recos(t) cos2(2t), 0 ≤ t < 2π, R = 3, 5, respectively. We

choose x̃k = ((Resin(
2πk
N

) sin2(22πk
N

) + Recos(
2πk
N

) cos2(22πk
N

)) cos(2πk
N

), (Resin(
2πk
N

) sin2(22πk
N

) +

Recos(
2πk
N

) cos2(22πk
N

)) sin(2πk
N

)), 0 ≤ t < 2π, 0 ≤ k ≤ N − 1 on ∂Ω̃. To estimate the

maximum error, we use points zk,m = ( k
M
, m

M
), 0 ≤ k ≤ M and 0 ≤ m ≤ M with M =

100 in Ω = Ω ∪ ∂Ω to get the numerical infinity norm in Example 4.7. Then our numerical

approximation errors are presented in the following table with various R, c, and N:
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Figure 4.17: Choose collocation points on the Ω = Ω ∪ ∂Ω and N = 20 source points on the
amoeba-like fictitious domain ∂Ω̃
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Table 4.10: Maximum Error ||uexact − uA||C(Ω) with (a) the Gaussian RBFs ϕ(r2) = c
π
e−c r2

N = 20 N = 30 N = 40 N = 50

R = 3, c = 1 3.5172e-07 1.6777e-06 8.8683e-06 8.3699e-07

R = 3, c = 3 2.3647e-05 1.6777e-06 8.8683e-06 1.9180e-05

R = 3, c = 5 3.5172e-07 1.1419e-04 8.8683e-06 4.9673e-06

R = 5, c = 1 2.4589e-04 2.6321e-05 1.4816e-05 1.1964e-05

R = 5, c = 3 2.4589e-04 2.6321e-05 1.4816e-05 1.9180e-05

R = 5, c = 5 2.4589e-04 1.1419e-04 1.4816e-05 1.1964e-05

Figure 4.18: Maximum errors with c = 1 (�), c = 3 (◦), c = 5 (△), respectively
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Table 4.11: Maximum Error ||uexact − uA||C(Ω) with (b) the compactly supported RBFs
ϕ(r2) = (c+ 1)(1− r2)c/π, 0 ≤ r ≤ 1, for c = 3, 4, 5.

N = 20 N = 30 N = 40 N = 50

R = 3, c = 3 1.1219e-05 1.1142e-05 1.1797e-05 2.1115e-04

R = 3, c = 4 1.8310e-06 1.6644e-05 1.3619e-05 2.0901e-05

R = 3, c = 5 5.8106e-05 1.3606e-05 5.1823e-05 7.0469e-05

R = 5, c = 3 1.1219e-05 1.1142e-05 1.1797e-05 2.1115e-04

R = 5, c = 4 1.8310e-06 1.6644e-05 1.3619e-05 2.0901e-05

R = 5, c = 5 5.8106e-05 1.3606e-05 5.1823e-05 7.0469e-05

Figure 4.19: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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Table 4.12: Maximum Error ||uexact − uA||C(Ω) with (c) the inverse multiquadratics RBFs
ϕ(r2) = c−1

π(r2+1)c
, for c = 3, 4, 5.

N = 20 N = 30 N = 40 N = 50

R = 3, c = 3 1.6800e-06 1.1556e-06 3.6894e-06 3.6035e-06

R = 3, c = 4 6.7088e-07 2.2396e-06 4.2230e-06 1.8409e-06

R = 3, c = 5 2.4687e-06 7.6650e-07 2.4588e-06 5.7989e-06

R = 5, c = 3 1.6800e-06 1.1556e-06 3.6894e-06 3.6035e-06

R = 5, c = 4 1.3610e-06 2.2396e-06 4.2230e-06 1.8409e-06

R = 5, c = 5 2.4687e-06 7.6650e-07 2.4588e-06 5.7989e-06

Figure 4.20: Maximum errors with c = 3 (�), c = 4 (◦), c = 5 (△), respectively
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Example 4.9. Consider the boundary problem for the biharmonic equation

∆2 u(x, y, z) = (125 x2 − 100) e2y cos(3z), (x, y, z) ∈ Ω,

u(x, y, z) = 5 x2e2y cos(3z),

and

∆u(x, y, z) = (10− 25x2) e2y cos(3z), (x, y, z) ∈ ∂Ω,

where Ω = {(x, y, z) : −1 ≤ x, y, z ≤ 1} is the cube. The exact solution of the above

problem is uexact = 5 x2e2y cos(3z). Choose three different radial basis functions in Example

2.4:

(a) ϕ(r2) = c
π
e−c r2 , where r = ||x|| and c = 1, 3, 5, respectively,

(b) ϕ(r2) =

{
((2c+ 3)!!)(1− r2)c/(4π(2c)!!), 0 ≤ r ≤ 1,
0, r > 1,

for c = 3, 4, 5, respectively,

(c) ϕ(r2) = 1
2π2

(2c−2)!!
(2c−5)!!

1
(r2+1)c

, for c = 3, 4, 5, respectively,

where n!! = 1 · 3 · · · · · ·n, if n is an odd number or 2 · 4 · · · · · ·n, if n is an even number, and

we use a bumpy spherical fictitious domain Ω̃ = {(x, y, z) : ρ sin(θ) cos(ϕ), ρ sin(θ) sin(ϕ),

ρ cos(θ), 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π}, where ρ(ϕ, θ) = R + 1
6
sin(6ϕ) sin(7θ), R = 3, 5.

We choose x̃k,m = (ρ sin(θk) cos(ϕk,m), ρ sin(θk) sin(ϕk,m), ρ cos(θk)), where ρ = R +

1
6
sin(6 θk) sin(7ϕk,m), R = 3, 5, and θk = π(k+0.5)

Mθ
, 0 ≤ k ≤ Mθ − 1, with Mθ =

√
πN
2r

, and ϕk,m = 2πm
Mk

, 0 ≤ m ≤ Mk − 1, with Mk =
√
πN sin θk, on ∂Ω̃. To estimate

the maximum error, we use points zk,l,m = ( k
M
, l

M
, m

M
), −M ≤ k, l, m ≤ M, with M =

40 in Ω = Ω ∪ ∂Ω, to get the numerical infinity norm in example 4.7. Then our numerical

approximation errors are presented in the following table with various R, c, M, and N:
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Figure 4.21: Choose collocation points on Ω = Ω ∪ ∂Ω and N = 100 source points on the
bumpy spherical fictitious domain ∂Ω̃ with R = 3, 5
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Table 4.13: Maximum Error ||uexact − uA||C(Ω) with (a) the Gaussian RBFs ϕ(r2) = c
π
e−c r2

for c=1, 3, 5.

M = 10 M = 12 M = 14 M = 16
N = 100 N = 100 N = 100 N = 100

R = 3, c = 1 4.3048e-08 5.4483e-08 6.5633e-08 7.8721e-08

R = 3, c = 3 4.3048e-08 5.4483e-08 6.5633e-08 7.8721e-08

R = 3, c = 5 4.3048e-08 5.4483e-08 6.5633e-08 7.8721e-08

R = 5, c = 1 8.0743e-11 3.6721e-09 7.5417e-09 1.2528e-08

R = 5, c = 3 8.0743e-11 3.6721e-09 7.5417e-09 1.2528e-08

R = 5, c = 5 8.0743e-11 3.6721e-09 7.5417e-09 1.2528e-08

Figure 4.22: Maximum errors on a bumpy spherical fictitious domain Ω̃ = {(x, y, z) :
ρ sin(θ) cos(ϕ), ρ sin(θ) sin(ϕ), ρ cos(ϕ), 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}, where ρ(θ, ϕ) =
R + 1

6
sin(6θ) sin(7ϕ) with R = 3, 5 and c = 1, (�), c = 3, (◦), c = 5, (△), respectively
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Table 4.14: Maximum Error ||uexact − uA||C(Ω) with (b) the compactly supported RBFs
ϕ(r2) = ((2c+ 3)!!)(1− r2)c/(4π(2c)!!), 0 ≤ r ≤ 1, or 0, r > 1 for c = 3, 4, 5.

M = 10 M = 12 M = 14 M = 16
N = 100 N = 100 N = 100 N = 100

R = 3, c = 3 4.3585e-16 5.7381e-15 2.3102e-16 1.5529e-15

R = 3, c = 4 1.0274e-15 8.4308e-16 1.2149e-15 2.6908e-15

R = 3, c = 5 2.2253e-16 5.0871e-16 1.0637e-15 9.5410e-17

R = 5, c = 3 4.3585e-16 5.7381e-15 2.3102e-16 1.5529e-15

R = 5, c = 4 1.0274e-15 8.4308e-16 1.2149e-15 2.6908e-15

R = 5, c = 5 2.2253e-16 5.0871e-16 1.0637e-15 9.5410e-17

Figure 4.23: Maximum errors on a bumpy spherical fictitious domain Ω̃ = {(x, y, z) :
ρ sin(θ) cos(ϕ), ρ sin(θ) sin(ϕ), ρ cos(ϕ), 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}, where ρ(θ, ϕ) =
R + 1

6
sin(6θ) sin(7ϕ) with R = 3, 5 and c = 3, (�), c = 4, (◦), c = 5, (△), respectively
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Table 4.15: Maximum Error ||uexact − uA||C(Ω) with (c) the inverse multiquadratics RBFs
ϕ(r2) = 1

2π2

(2c−2)!!
(2c−5)!!

1
(r2+1)c

, for c = 3, 4, 5.

M = 10 M = 12 M = 14 M = 16
N = 100 N = 100 N = 100 N = 100

R = 3, c = 3 0.0087 0.0051 0.0056 0.0022

R = 3, c = 4 0.0031 0.0021 0.0048 0.0036

R = 3, c = 5 0.0102 0.0068 0.0048 0.0036

R = 5, c = 3 0.0087 0.0051 0.0056 0.0022

R = 5, c = 4 0.0031 0.0021 0.0048 0.0036

R = 5, c = 5 0.0102 0.0068 0.0048 0.0036

Figure 4.24: Maximum errors on a bumpy spherical fictitious domain Ω̃ = {(x, y, z) :
ρ sin(θ) cos(ϕ), ρ sin(θ) sin(ϕ), ρ cos(ϕ), 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}, where ρ(θ, ϕ) =
R + 1

6
sin(6θ) sin(7ϕ) with R = 3, 5 and c = 3, (�), c = 4, (◦), c = 5, (△), respectively
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