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Abstract

Bi-directional testing

by

Moinak Bhaduri

Dr. Chih-Hsiang Ho, Examination Committee Chair
Professor of Mathematical Sciences (Statistics)

University of Nevada, Las Vegas, USA

Point processes often serve as a natural language to chronicle an event’s temporal evo-

lution, and significant changes in the flow, synonymous with non-stationarity, are usually

triggered by assignable and frequently preventable causes, often heralding devastating ram-

ifications. Examples include amplified restlessness of a volcano, increased frequencies of

airplane crashes, hurricanes, mining mishaps, among others. Guessing these time points of

changes, therefore, merits utmost care. Switching the way time traditionally propagates, we

posit a new genre of bidirectional tests which, despite a frugal construct, prove to be ex-

ceedingly efficient in culling out non-stationarity under a wide spectrum of environments. A

journey surveying a lavish class of intensities, ranging from the tralatitious power laws to the

deucedly germane rough steps, tracks the established unidirectional forward and backward

test’s evolution into a p-value induced dual bidirectional test, the best member of the prof-

fered category. Niched within a hospitable Poissonian framework, this dissertation, through

a prudent harnessing of the bidirectional category’s classification prowess, incites a refreshing

alternative to estimating changes plaguing a soporific flow, by conducting a sequence of tests.

Validation tools, predominantly graphical, rid the structure of forbidding technicalities, ag-

grandizing the swath of applicability. Extensive simulations, conducted especially under
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hostile premises of hard non-stationarity detection, document minimal estimation error and

reveal the algorithm’s obstinate versatility at its most unerring.
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Chapter 1

Rudiments

About a century ago, on 14th October 1913, a methane explosion rocked the Universal

Colliery, a coalfield in Glamorgan, South Wales. 439 men and boys perished, marking

the worst disaster in UK coal mining history. Had the British government paid heed to

sound statistical warnings, the calamity could have been averted. At another extreme, the

National Earthquake Prediction Evaluation Council (NEPEC), a branch of the United States

Geological Survey (USGS), consuming a wealth of government resources and troubling scores

of unsuspecting civilians, issued an unnerving statement in 1985: an earthquake clocking M6

on the Richter scale, originating in the San Andreas Fault would shake Parkfield, California

around or before 1993. The dreaded earthquake never happened. This research cogitates on

the mechanics of blunders such as these, interrogates the traditional wisdom on predicting

these rare events, and instigates a novel way of understanding the temporal properties of

rules that drive such processes.

Point processes and repairable systems, the brand of stochastic processes this dissertation

will analyze, enjoy a rich, checkered, and at times, tortuous history with regards to both their

theoretical underpinnings and varied applicability. Necessitated and originated by pressing

problems in queuing and branching theory, these disciplines, especially over the last decade,
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have carved out for themselves a hospitable niche within the formidable structure of pure

and applied probability. Excellent texts, offering broad overviews, exist, that cater the needs

of readers with varied levels of maturity and inclination. Rigdon and Basu (2000) [122], Bain

and Engelhardt (1991)[11], Ross (1996, 2010) [131], [132], Resnick (2005, 2002) [120] [119],

Knill (2009) [82], Bhat (1984) [16], Feller (2005) [47], Gertsbakh (2005) [51], Kovalenko et

al. (1997) [83], Lindsey (2004) [97], among others, do a remarkable job in laying out the

foundations.

Another group is geared towards specific objectives: Gamiz et al. (2011) [50] for instance,

investigates the non-parametric aspects of repairable systems, Nelson (1995) [110] and Ross

(1990) [130] cover simulating Point Processes in great detail. More from this specialized

class will be surveyed as we go along. Regression models have been studied by Cameron and

Trivedi (1998) [21], Lindsey (1995) [96], Hilbe (2014) [63]. Yet another category, research

monographs along veins similar to Limnios and Nikulin (2000) [95], collects journal articles

about a given unified theme. The first section of this introductory chapter thus, will be

devoted to garnering the thoughts necessary to mathematize the framework to follow.

While Point Processes serve as the objects to operate on, change point identification is

one of this dissertation’s ultimate telos. Section 2 reviews that literature, once again, from

a broad perspective, with details introduced at relevant places, especially in Chapters 3 and

4. The final section samples representative examples.

1.1 Point Processes

To admire, analyze, exploit, and at times, emulate the vagaries of nature, stock markets or

the human body, a Point Process (PtP), frequently referred to as a Counting Process (CP),
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often serves as an apt mathematical instrument. Crudely, it tracks the number of occurrences

of events over a domain of interest. Throughout this dissertation, the evolution will be over

time, although generalizations of the methods proposed can be furnished to embrace space,

more complex topologies (such as the unit circle, the torus etc.) or combinations thereof.

The sampling of time will dictate the index set. Unless explicitly mentioned, the process

will be monitored in real time, though limitations of the measuring instrument(s), among

other issues (such as the cost involved), often withhold that luxury, forcing one to check the

system only at discrete (such as hourly or yearly) intervals. In the final chapter, we will

outline suggestions that could be adopted under that condition. Mostly, thus, a PtP will

be treated here as a continuous time, discrete space stochastic process. Some definitions are

naturally, in order.

Definition 1.1. A PtP {N(t)}t>0 is a collection of random quantities, where N(t) for each

t > 0 counts the number of observations in the time interval [0, t]. Analogously, N(a, b]

represents the number of events in (a, b] and with b > a > 0,

N(a, b] = N(b)−N(a). (1.1)

The flow can be described by specifying the joint density of {N(t1), N(t2), ..., N(tn)} for

a general n and {t1, t2, ..., tn}.

Definition 1.2. The non-decreasing function Λ(.) : R+ → R+

Λ(t) = E(N(t)), t > 0 (1.2)

is the mean function of the process and outputs the average number of observations through

time t.
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Monotonicity of N(t) induces monotonicity of Λ(t), and this average function is always

right continuous (Rigdon and Basu (2000) [122]).

Definition 1.3. The rate of occurrence of failures (ROCOF) µ(.) is defined as the derivative

of the mean function when the latter is differentiable:

µ(t) =
d

dt
Λ(t), t > 0 (1.3)

and it gives the rate of change in the average number of shocks.

A notion inescapably relevant to any discussion on PtPs is the one of an intensity function,

which controls the frequency with which we observe instances, and hence, the inferences on

the PtP that ensue. Several (often equivalent) definitions are prevalent, but the one most

commonly used is

λ(t) = lim∆t→0
P (N(t, t+ ∆t] ≥ 1)

∆t
, t > 0. (1.4)

Thus, it gives the instantaneous probability of observing at least one failure in a small

time interval. An elevated intensity, therefore, would create a highly active process which,

depending on the context, could spell doom (such as volcanic eruptions, earthquakes or

missed credit card payments) or elation (someone winning a lottery).

At times, especially when the history of the process is available, it is necessary to be

pedantic, and introduce the notion of a complete intensity function

λ(t) = lim∆t→0
P (N(t, t+ ∆t] ≥ 1|Ht)

∆t
, t > 0 (1.5)

where Ht represents the set of failure times {ti : i = 1, 2, ..., N(t)}. An equivalent formulation

of a PtP is often through a set of global times

0 < T1 < T2 < ... < Tn (1.6)
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where Ti represents the time of the ith event. This, arguably, is a repairable system approach,

and the inter-event times are defined as

Xi = Ti − Ti−1, i = 1, 2, ... (1.7)

with T0 = 0. The equivalence follows due to

Lemma 1.1. For a given PtP {N(t)}t>0, the following hold:

1) Ti > v ⇔ N(v) < i.

2) Ti ≤ w ⇔ N(w) ≥ i.

3) v < Ti ≤ w ⇔ N(v) < i ≤ N(w)

Thus, the joint density of any of the following sets uniquely determines the joint density

of the rest:

1) N(u1), N(u2), ..., N(un) for arbitrary n and ui’s.

2) T1, T2, ..Tn for arbitrary n.

3) X1, X2, ..Xn for arbitrary n.

The proofs are standard, and we point interested readers to Rigdon and Basu (2000)

[122].

A PtP gets mathematically tractable if one or both of the following hold.

Definition 1.4. A PtP will have stationary increments if for all k > 0 and s > 0

P{N(t, t+ s] = k} (1.8)

is free of t.
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Put differently, the stationary increment property ensures that the probability of observ-

ing a given number of shocks in a given time interval is dependent only on the length of the

interval and not on its location on the time axis.

Definition 1.5. A PtP will enjoy independent increments if for any n and r1 < s1 ≤ r2 <

s2 ≤ .... ≤ rn < sn,

P{N(r1, s1] = k1, N(r2, s2] = k2, ..., N(rn, sn] = kn} =
n∏
i=1

P{N(ri, si] = ki}. (1.9)

This implies that the random variables living on disjoint intervals are independent.

The discussions thus far will suffice as a working introduction to PtPs. Intricacies and

classifications, however, are rife in literature. Jacobsen (2006) [74] among others, treats

{N(t)}t>0 as a simple PtP (SPtP), demarcating them from marked PtPs (MPtP), where in

addition to recording the time of occurrence, one also registers the type of shock involved

(for instance, the time of an earthquake and its magnitude on the Richter scale, or the

time a customer enters a ticket counter and the gender). Snyder (1975) [136] studies the

countability and uncountability of the mark space in considerable details. The formulation we

have described implies a finite number of shocks in any finite time interval. The requirement

may be relaxed by allowing equalities in (1.6), i.e., by requiring only

P (0 < T1 ≤ T2 ≤ ...) = 1 (1.10)

which will make the PtP an explosive one (Jacobsen (2006) [74]). Resnick (2002) [119] studies

Laplace functionals on PtPs. An interesting generalization, where the history of the process

influences the future is studied by authors such as Snyder (1975) [136]. The orderliness

restriction in (1.6) is dropped again to generate these self-exciting PtPs. A rich source
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of inferential tools on PtPs is Karr (1986) [78] where one can examine both distribution

theory and intensity theory-based inference, and how to exploit them to transform a PtP,

or approximate it. Statistical models (frailty, regression etc.) based on PtPs have been

discussed by Andersen et al. (1993) [4].

Unser and Tafti (2014) [144] educate readers on sparsity in the PtP context, touching on

transformation domain and wavelet domain tools to handle it. Empirical process connections

through Poisson bridges have been discussed by Shorack and Wellner (1986) [134]. Matthes

et al. (1978) [104] studies PtPs that are infinitely divisible. Reiss (1993) [118] covers a

host of interesting themes, including strong approximations of, and distances between PtPs,

with spatial generalizations. Researchers with geometric inclinations will relish Stoyan et

al. (1987) [139] who talk about random tessellations and Lowen and Teich (2005) [101] who

study PtPs through self-similar objects known as fractals.

1.2 Change detection

An inferential inquiry often concerns the nature of progression of the process, with emphasis

on whether events are happening more (or less) frequently as time evolves. This is distinct

from say, predicting the time when the next shock will strike and has implications in learning

about the random phenomenon that drives the system. Policymakers might want to know

whether financial institutions such as banks are failing more frequently over the last decade,

or geologists might want to know whether a given volcano is getting more restless in recent

times so that people living in the vicinity may be moved to safety. Affirmative answers

to these questions often imply the existence of a time point that separates two neighboring

sections of the process that are (stochastically) significantly different. Such a point is usually
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termed a change point, and the prospect of estimating them has attracted much attention,

especially since the 1950s. Expressed in such a tone, the problem is arguably, extremely

general, meriting attacks from diverse fields: the quality control community (Lai (1995)

[86]) wants to efficiently identify faults in their manufacturing process, biologists are curious

to locate copy number variation in genomic data (Efron and Zhang (2011)) [38]), computer

scientists want to guard corruption in networks (Tartakovsky, Rozovskii, Blazek, and Kim

(2006) [143]), economists fit change point defined multiple regime models to financial data

(Ross (2012) [124]).

Formally, let {X1, X2, ...} be a bunch of variables shocked at unknown points in time

{τ1, τ2, ...}, i.e. let

Xi ∼


F0 if i ≤ τ1

F1 if τ1 < i ≤ τ2

F2 if τ2 < i ≤ τ3

...

with Fi representing the cumulative distribution function (c.d.f) in the ith interval. The Xis

for us, could be taken as the inter-event times described previously. Traditionally, indepen-

dence between change points is assumed. For our purpose, that would make the repairable

system a renewal one, a special case of the general class we would consider. Gustaffson (2000)

[53], however, describes how the assumption of independence is not forbidding in view of the

fact that one can smother any inherent dependence, by modeling the underlying autocorre-

lation, and then weeding out the change points from either the residuals or one-step-ahead

prediction errors. Both of them, assuming an adequate fit, should generate independently

and identically distributed (iid) samples. For our simulation exercises in Chapters 3 and 4,

the very nature of simulating the PtP guarantees such iid-ness.
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Uncertainty about, and ignorance of Fis, be it the underlying parameters or even the

functional structure, have generated a host of change detection algorithms, each tailored

to a specific environment. In the face of extremely limited information on the cdf, a gen-

eral Change Point Model (CPM) framework has been recently proposed, which houses a

wide array of tools and statistics and implements both parametric (Student-t, Bartlett,

GLR, Fisher’s exact test, Exponential) and non-parametric (Mann-Whitney, Mood, Lepage,

Kolmogorov-Smirnov, and Cramer-von-Mises) methods. Details may be had from Hawkins

et al. (2003) [57]; Hawkins and Zamba (2005a) [58]; Zhou, Zou, Zhang, and Wang (2009)

[148]; Hawkins and Deng (2010) [59]; Ross et al. (2011) [125]; Ross and Adams 2011, 2012

[126] [127]). Originated by Hawkins et al. (2003) [57] to detect changes in the average level

of Normal flow, the CPM framework has been subsequently generalized to embrace a more

intricate brand of changes (Zou and Tsung (2010) [149]).

Viewed broadly, change point identification problems present themselves in two distinct

flavors: batch and sequential, sometimes termed Phase I and Phase II detection, which are

essentially, retrospective and prospective approaches, respectively.

i) Batch approach: Given a fixed length sequence {X1, X2, ...., Xn}, the goal is using

offline methods to check whether a change point exists, using the entire data set, i.e. both

the sets before and after the probable change point. This approach weeds out anomalies

with remarkable precision as long as there are not too many of them, in which case it turns

out to be computationally forbidding. Heuristics are often used in the presence of a large

number of change points (Inclan and Tiao (1994) [73], Hawkins (2001)[60]). Likelihood ratio

testing (Hinkley and Hinkley (1970) [64]) and Bayesian inference (Stephens (1994) [137]) are

popular choices with this approach. We shall work mainly under this paradigm in Chapter
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3.

ii) Sequential approach: Here, the length of the incoming sequence varies with time. A

decision about change is made at every incoming instance, and the method is entirely on-

line. Only the past observations are used, and this proves more effective in the presence of

a large number of change points. Control chart inspired Cumulative Sum (CUSUM) tech-

niques (Page (1954) [111]), Exponential weighted moving averages (Roberts (1959) [123]), or

sequential Bayesian methods (Chib (1998) [26]; Fearnhead and Liu (2007) [46]) are popular

choices. We shall describe how our methods are similar to and different from this sequential

approach in the latter part of Chapter 3.

The statistical software package R nests several change point algorithms for ready im-

plementation. The CPM package (Ross (2015) [127]) exploits the CPM framework described

previously with one-dimensional random quantities. Other packages include bcp (Erdman

and Emerson (2007) [45]), strucchange (Zeileis, Leisch, Hornik, and Kleiber (2002) [147])

and changepoint (Killick and Eckley (2014) [79]).

1.3 Examples

There exists a class of phenomenon, both natural and artificial, for which a PtP inter-

pretation seems most natural and there exist others that demand considerable insight and

mathematical mastery to be interpreted that way. The time now, is ripe, to get introduced

to the major cases that will be analyzed in considerable depth throughout the dissertation.

They will serve as continuous running examples, without elaborate reference each time. A

passing glance will also be cast on a few other possibilities, to be studied in future works,

classified under “Other examples”.
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1.3.1 Mt. Etna

The largest of the three currently active Italian volcanoes, Mt. Etna, towering a stagger-

ing 3,329m, is a stratovolcano nested between the cities of Messina and Catania (Fig (1.1),

taken from http://www.konbini.com/us/inspiration/mount-etna-eruption-creates\

-spectacular-fireworks-display/). Its connection to Greek mythology, size, repute (of-

ten dubious), evidenced by its winning a place in the list of UNESCO world heritage sites,

and proximity to human habitation have attracted scientists’ attention and tourists’ curios-

ity.

Figure 1.1: Mt. Etna at its full fury.

This work treats every eruption as an event from a PtP. Discrete-valued time series out

of its eruption dates will be constructed in Chapter 4, when the need arises. Etna’s eruption

history, dating back to the mid-seventeenth century is preserved in several records. Mulargia

et al. (1985) [108] and Mulargia et al. (1987) [109] store the eruption dates from 1607 to

1978, using which, Ho (1992) [65] created control chart type figures. Smethurst et al. (2009)

[135] however, provides a more recent update, tracking the volcano till 2008. Chen (2010)

[24] records and uses this data set for regime identification, and so shall we.
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1.3.2 Kilauea and Mauna Loa

Our volcanic fascination next took us to Hawaii, where two active shield volcanoes, Kilauea

and Mauna Loa are close neighbors, and take turns to torment villagers living nearby (http:

//www.bbc.com/news/world-us-canada-29805102). Geologists like Lipman (1980) [99]

debate on a possible inverse relationship between the two, implying when one is active, the

other is relatively dormant. Klein (1982) [81], through tests for non-randomness, suspects

that the longest recorded repose time of one is associated with an intensified activity of the

other. Ho and Bhaduri (2017) [70] surveys other studies involving the two protagonists.

Figure 1.2: Kilauea and Mauna Loa in close proximity.

Figure (1.2) has been taken from http://www.photovolcanica.com/\VolcanoInfo/

Kilauea/Kilauea.html. The U.S. Geological Survey (USGS) and the Smithsonian Institu-

tion’s Global Volcanism Programme at http://www.usgs.gov/ and http://www.volcano.

si.edu/ respectively, offer excellent records of eruptions of both, including the dates, the

duration, the amount of lava ejected, the area affected, etc. We have studied the period

from 1750 to 1985, primarily due to the reliability of the geophysical methods generating
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the information. The eruption counts for Kilauea and Mauna Loa in this 236-year duration

were 63 and 40, respectively. The time series storing these counts can be found in Ho and

Bhaduri (2017) [70].

With a volcanic case already being studied, another one might seem unnecessary. We

must point out, however, that in the case of Mt. Etna, our goal would be to study the volcano

to check whether there exists a time point separating the frequency of eruptions regardless

of outside knowledge. A PtP (a Poisson process, to be exact) approach will be used here.

On the other hand, in the latter case, we will be concerned with the interaction (i.e., when

such outside information is available) between the two volcanoes through a graphic tool, to

be proposed later. A time series approach will be used here.

Statistical tools have been used for regime identification in volcanic examples by several

scholars. Wickman (1966) [145] studies a class of volcanoes termed “simple Poissonian

volcanoes”, for which the recurrence eruption rates are independent of time. Mulargia et al.

(1987) [109] for instance, uses large values of the Kolmogorov-Smirnov (KS) statistic on all

possible partition pairs to locate possible changes. In Chapter 3, we will analyze how this

statistic and several others compete against our proposals.

1.3.3 Hurricane counts

The term “tropical cyclone” is generic and embraces all types of closed atmospheric circula-

tion that forms over a tropical or subtropical ocean. If the maximum sustained wind speed

exceeds 74 miles per hour, these storms are called hurricanes in the Atlantic ocean, typhoons

in the Pacific and cyclones elsewhere. National Oceanic and Atmospheric Administration

(NOAA) is a government organization under the United States Department of Commerce
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and their Historical Hurricane Tracks webpage at http://coast.noaa.gov/hurricanes/

?redirect=301ocm# records most of the recent storms that occur globally. Based on geo-

graphical criteria, the water mass of the earth has been partitioned into several basins such

as West Atlantic, North Pacific, Gulf of Mexico, Southern Indian, Eastern Australian, etc.

and data are available on the speeds, dates, and duration of storms originating in each of

these basins. Additionally, based on the strength of the storms judged by the maximum

sustained wind speeds (MSW), we have six major categories

Table 1.1: NOAA hurricane classification based on maximum wind speeds attained

Category MSW

Hurricane 5 > 135 kts
Hurricane 4 114-135 kts
Hurricane 3 96-113 kts
Hurricane 2 83-95 kts
Hurricane 1 64-82 kts

Trop/Subtrop 34-63 kts

and some of the records date back to 1851. But the earlier records are mostly based

on eyewitnesss accounts and other less reliable methods, and hence after consultation with

experts well-versed with the data collection method, we finalized on 1923 – 2013 as our

observation period. We have done our preliminary analyses on storms originating in the West

Atlantic basin, mainly because of its proximity to the US East Coast which has to face the

wrath of these natural calamities almost every year and often with grave consequences, but

also because of the fact that this basin is well studied by oceanographers and climatologists

and hence would render us a chance to compare our findings to their beliefs. Similar analyses

can, of course, be done on other basins as well. The start date of each tropical cyclone has

been treated as a shock time from an evolving PtP.
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Figure 1.3: Tracks of all tropical cyclones in the West Atlantic basin during 1980 - 2005

Fig 1.3 has been taken from

https://www.thoughtco.com/global-hurricane-basins-3443941. Emanuel (2003, 2006,

2007) [40] [41] [42] believes that it is the category 3, 4 and 5 hurricanes that cause the

most damage and so, entirely for the sake of a simplified analysis, one may define these

as the strong group of hurricanes. H2 and H1 constitute the weak class of hurricanes and

the tropical category is reserved for the final class. It may be found that over the period

under consideration, there has been 32 H5 storms, 84 H4 storms, 87 H3 storms, 93 H2

storms, 150 H1 storms, 271 tropical and 24 subtropical storms. Emanuel, in a candid in-

terview with the Discovery channel http://news.discovery.com/earth/global-warming/

does-climate-change-mean-more-or-stronger-hurricanes-120907.htm expressed that

with a continually warming climate, it is increasingly difficult to start a devastating hurri-

cane due to a hike in saturation deficit which works against its creation, but if it gets started

somehow, it has the potential to become more intense. Thus, the total number of storms

should decline globally, but the proportion of hurricanes which are intense should rise. For
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the present purpose, we will focus only on the more interesting “Strong-Weak” interaction.

1.3.4 Dow Jones Industrial Average

Developed in 1896 by Wall Street Journal editor and Dow Jones and Co. co-founder Charles

Dow, the Dow Jones Industrial Average (DJIA), sometimes shortened to DOW, is a stock

market index that is often regarded as an adequate measure of the health of the US economy.

It represents a price-weighted average of the stocks of 30 large industrial companies traded on

the New York Stock Exchange (NYSE) and the NASDAQ. High values of the index represent

a bull market, while low values represent a bear market.

Figure 1.4: Whimsicality of the Dow Jones Industrial Average from a period in 2017

Figure (1.4) above has been taken from

https://amigobulls.com/articles/2017-04-11-dow-jones-amazon-stock-united

-continental-and-netflix-technical-analysis-trading-ideas-for-today. The times

of achieving a closing milestone may be had from several freely available sources (such as

https://en.m.wikipedia.org/wiki/Closing_milestones_of_the_Dow_Jones_Industrial_
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Average) and we have used the closing times between February 1885 and June 2017 in our

regime analyses to follow, accumulating a total of 283 observations.

1.3.5 Other examples

PtPs might emerge from mundane constructs, too. Rigdon and Basu (2000) [122], for ex-

ample, records 18 failure times of a photocopier. Time here was measured in terms of the

number of copies made. Maguire et al. (1952) [102] keeps a historical record of the dates of

mining accidents in Great Britain between December 6, 1875, and May 29, 1951, claiming

the lives of 10 men or more. Jelisnski and Moranda (1972) [76] gives 34 failure times of a

software system. Mooley (1981) [107] records the times of cyclonic storms striking the coast

of Bay of Bengal during 1877 – 1977. Bakun et al. (2005) [12] studies major (more than

6 on the Richter scale) earthquakes in Parkfield, California, since January 9, 1857. Duane

(1964) [36] explores the possibility of fitting a special class of PtPs to failure patterns of

several systems developed by a company called General Electric. 272 eruption times of the

Old Faithful geyser in Yellowstone National Park may be found as “faithful” within the

datasets package in R. Information on earthquakes originating in Ogata, North China Sea,

and Phuket may be found within the PtProcess package in R.
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Chapter 2

Time reversal

Reviewing the workings of a statistic often used to detect non-stationarity, this chapter

will primarily meditate on the exercise that provides the fundamental spark to propel this

research: switching the flow of time from the left to the right to the right to the left. The

first section will recall the established test (henceforth known as the forward test Z) and

touch upon its optimality, while the next section will introduce its time-reversed counterpart,

christened the backward test ZB. Section 3 will spell out our simulation strategy essential

for the comparisons to follow. The last section will summarize their power performances

under diverse intensity environments and will investigate favorable ramifications that ensue.

2.1 Poisson processes

The occurrences of events that can be conveniently modeled by PtPs are plentiful in nature.

For instance, the examples explored in the previous introductory chapter about volcanic

eruptions, hurricane counts, bank failures, strong sandstorms or earthquakes all fall in this

category and under the mild regularity conditions detailed below, a Poisson process can offer

valuable insights into the dynamics of the inherent randomness.

The counting process {N(t)}t>0 will be considered Poisson if:
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1. N(0) = 0

2. For any a < b ≤ c < d, the variables N(a, b] and N(c, d] are independent.

3. There exists a function λ(.), called the intensity of the process, such that:

λ(t) = lim
∆t→0

P (N(t, t+ ∆t] = 1)

∆t
.

4. Two or more failures can never happen together:

lim
∆t→0

P (N(t, t+ ∆t] ≥ 2)

∆t
= 0.

These four properties are enough to show (Rigdon and Basu (2000) [122]) that

N(t) ∼ Pois

(∫ t

0

λ(x)dx

)
for all t > 0 (2.1)

i.e.

P [N(t) = n] = exp

(
−
∫ t

0

λ(x)dx

) {∫ t
0
λ(x)dx}n

n!
for all t > 0, n = 0, 1, 2, ... (2.2)

Using known facts about Poisson means, it thus follows that

Λ(t) = E(N(t)) =

∫ t

0

λ(x)dx for all t > 0. (2.3)

Researchers often find it convenient to specialize further and impose parametric forms

on the intensity of the process. For instance, adopting the following structure:

λ(t) =
β

θ

(
t

θ

)β−1

(2.4)

leads to what is known as a Power law process (previously termed as the Weibull pro-

cess, owing to the functional similarity to the hazard function from a non-repairable system

modeled by the Weibull density) and it lends modelers the ability to nest the necessary
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inferences within a mathematically tractable framework. The intensity function is flexible

enough to model repairable systems which are improving (corresponding to β < 1), dete-

riorating (β > 1) or remaining homogeneous (β = 1) with respect to time. The route to

inference on these parameters, however, differ slightly depending on the actual sampling

scheme employed:

i) Failure truncated case: Under this framework, the process is continually monitored

until a predetermined number, say n, of events occur. This number thus, is deterministic and

the time of the last (in fact all the) occurrence Tn, is uncertain. Conditioned on this random

variable, T1, T2, ..., Tn−1 can be shown (Rigdon and Basu (2000) [122]) to be distributed

as order statistics from a uniform (0, tn) distribution, assuming the underlying process is

homogeneous, and the joint density under a general intensity λ(.) may be expressed as

f(t1, t2, ..., tn) =

(
n∏
i=1

λ(ti)

)
exp

(
−
∫ tn

0

λ(x)dx

)
, 0 < t1 < t2 < ... < tn. (2.5)

Under the Power law choice of λ(.) given in (2.4), this simplifies to

f(t1, t2, ..., tn) =
βn

θnβ

(
n∏
i=1

ti

)β−1

exp

(
−
(
tn
θ

)β)
, 0 < t1 < t2 < ... < tn. (2.6)

and maximum likelihood estimates of the parameters can then be obtained as

θ̂ =
tn

n
1

β̂

, β̂ =
n∑n

i=1 log
(
tn
ti

) . (2.7)

ii) Time truncated case: Under this scheme, a random number of failures, say N , are

observed and recorded till a predetermined time t. Unless N = 0, the m.l.e’s here are given

by:

θ̂ =
t

N
1

β̂

, β̂ =
N∑n

i=1 log
(
tn
ti

) (2.8)
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These two sampling schemes are similar to Type - II and Type - I censoring in survival

analysis.

2.1.1 A critique on the Forward Test

Once the point estimates are available, a natural question would be to inquire about the

possibility of carrying out hypotheses tests or creating confidence intervals, especially for the

β parameter because of the crucial role it plays in estimating the failure trend. Rigdon and

Basu (2000) [122] show that the quantity Z = 2nβ

β̂
is pivotal, having a chi-square distribution

and can be profitably exploited to carry out these other aspects of statistical inference. In

keeping with our eventual goal of working on a time-reversed version of Z, formulated by

Ho (1993) [66], let us agree to term the general category of tests using this form as “forward

tests” and the remainder of this section shall be devoted to a thorough and careful analysis

of the merits of this class.

The rich history of the test under both sampling schemes deserves mention: Assuming the

power law intensity to be valid, Crow (1974, 1982) [31], [33] respectively, develops tests for β

with θ as a nuisance parameter and comes up with small sample and asymptotic confidence

intervals on the mean time between failures through a novel application of the Z statistic.

Finkelstein (1976) [48] chooses to concentrate on the parameter θ instead, argues that ( θ̂
θ
)β

is independent of β and θ and eventually comes up with computer simulated confidence

intervals for θ under the failure truncated scheme. Lee and Lee (1978) [88] demonstrates

how such intervals can be constructed using numerical integration too. Bain and Engelhardt

(1980) treat θ as a nuisance parameter and proves that the forward test will be uniformly

most powerful unbiased (UMPU) for β by using joint complete sufficiency of N and β̂ and a
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theorem from Lehmann (1959, p136) [90] under the time truncated case and also constructs

approximate tests and confidence intervals for θ under a similar framework.

The null and the alternate distribution

Although Rigdon and Basu (2000) [122] focus on testing whether the failure process is

homogeneous (i.e. β = 1) which is what we shall do ultimately, too, for the moment, we will

seek generalization and will concern ourselves with tests such as:

H0 : β = β0 vs Ha : β > β0 (2.9)

H0 : β = β0 vs Ha : β < β0 (2.10)

H0 : β = β0 vs Ha : β 6= β0 (2.11)

under both the failure- and time-truncated cases. Throughout the rest of this section, unless

otherwise explicitly mentioned, these will be our usual greater than, less than and two tailed

alternatives.

Failure truncated case

Rigdon and Basu (2000) [122] exhibit a method for constructing the probability density for

the quantity 2nβ

β̂
and owing to its immense importance in connection to the forward test, we

shall first review the proof:

Theorem 2.1. [The density for 2nβ

β̂
] For the failure truncated case, 2nβ

β̂
∼ χ2

2n−2.

Proof. Under this framework and conditioned on the last event time Tn = tn, the occurrence

times T1 < T2 < ... < Tn−1 are distributed as n− 1 order statistics from a distribution with
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cumulative distribution function:

Gy =


0 y ≤ 0,
Λ(y)/Λ(tn) 0 < y < tn,
1 y ≥ tn

where Λ(t) :=
∫ t

0
λ(x)dx is the cumulative intensity function. For the power-law choice, the

above boils down to

Gy =


0 y ≤ 0,
(y/tn)β 0 < y < tn,
1 y ≥ tn.

Defining Y to be the random variable with cdf G(.), we must have

P (Y ≤ y) = G(y) =

(
y

tn

)β
0 < y < tn. (2.12)

Simultaneously,

P (Y ≤ y) = P (Y/tn ≤ y/tn) = P ((Y/tn)β ≤ (y/tn)β). (2.13)

Comparing (2.12) and (2.13) above:

P ((Y/tn)β ≤ (y/tn)β) =

(
y

tn

)β
0 < y < tn, (2.14)

which shows that (Y/tn)β is uniformly distributed on (0,1). Thus, (Ti/tn)β i = 1, 2, .., n−1

are distributed as n − 1 order statistics from a uniform (0,1) density. Using the fact that

if U has a uniform (0,1) distribution, then X = −θ logU has an exponential density with

mean θ, we can claim that the sum

n∑
i=1

− log(ti/tn)β = −β
n∑
i=1

log(ti/tn)

is distributed as the sum of n − 1 exponential variables, each with mean 1. Using the

reproductive property of gamma, the distribution above has nothing but a gamma(n− 1, 1)
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density. Finally, since twice a gamma(n − 1, 1) density generates a chi-square density with

2n− 2 degrees of freedom, we have

−2β
n∑
i=1

log(ti/tn) =
2nβ

β̂
∼ χ2(2n− 2).

Once it is shown that 2nβ

β̂
∼ χ2(2n− 2), the general form of the test statistic that we are

going to use for any of the tests shown above is:

Z =
2nβ0

β̂
(2.15)

and it is imperative to find distributions of Z under both the null and the alternative hy-

potheses to calculate error probabilities or power. Under the null hypothesis, Z ∼ χ2(2n−2),

but under the alternative, 2nβ

β̂
∼ χ2(2n−2) and the distribution of Z can be obtained through

a traditional change of variable technique as follows:

Z = 2nβ0
β̂

= β0
β

2nβ

β̂
= β0

β
X (say) where X ∼ χ2(2n− 2).

Z = β0
β
X ⇒ X = β

β0
Z = g−1(Z)

⇒ d
dz
g−1(z) = β

β0

Both variables are supported on the positive half of the real line and since

fX(x) =
1

Γ(n− 1)2n−1
xn−2e−x/2, x > 0, (2.16)

fZ(z) = fX(g−1(z))

∣∣∣∣ ddz g−1(z)

∣∣∣∣
=

1

Γ(n− 1)2n−1
(
β

β0

z)n−2e−βz/2β0
β

β0

=

(
β

β0

)n−1
1

Γ(n− 1)2n−1
zn−2e−βz/2β0 , z > 0.

(2.17)
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This technique of one – one transformation can be used to derive the probability distri-

bution of β̂ too, by noting that setting X = 2nβ

β̂
, we have Y = β̂ = 2nβ

X
= g(X) which implies

d
dy
g−1(y) = −2nβ 1

y2
. Thus, using the form of the density of X shown above, we have, upon

simplifications

fβ̂(β̂) =
1

Γ(n− 1)

(nβ)n−1

β̂n
e−nβ/β̂, β̂ > 0. (2.18)

The form of this density will be used in a later section in connection to optimality of the

forward test, but presently we focus on extracting moments from this density

E(β̂) =

∫ ∞
0

1

Γ(n− 1)

(nβ)n−1

tn−1
e−nβ/tdt.

Setting β
t

= x we have dt = − β
x2
dx and thus, the above expectation reduces to

E(β̂) =

∫ 0

∞

1

Γ(n− 1)
nn−1xn−1e−nx

(
− β

x2

)
dx

=
nn−1β

Γ(n− 1)

∫ ∞
0

e−nxxn−3dx

=
nn−1β

Γ(n− 1)

Γ(n− 2)

nn−2

=
nβ

(n− 2)

(2.19)

which provides a proof for the claim that n−2
n
β̂ is unbiased for β (Rigdon and Basu (2000)

[122]).

Time truncated case

Analogous results can be obtained for the time truncated case by noting that the quantity 2nβ

β̂

now follows a χ2(2n) distribution (Rigdon and Basu (2000) [122]). Thus the null distribution

of Z = 2nβ0
β̂

is χ2(2n) and the alternate distribution is

fZ(z) =

(
β

β0

)n
1

Γ(n)2n
zn−1e−βz/2β0 , z > 0. (2.20)

The null and the alternate distributions of the forward statistic are compared in Fig (2.1).
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Figure 2.1: Distributions of the forward statistic corresponding to different parameter values

2.1.2 The critical regions

It is worthwhile to note that β̂ tries to estimate β, and hence, under the “greater than” type

alternative, large values of β̂ will point to the plausibility of the alternative. Put in another

way and owing to its very construction, small values of the statistic 2nβ0
β̂

will lend credence

to the rejection of the null hypothesis. To achieve level α, the rejection region of the one

tailed “greater than” type alternative under the failure truncated case will thus be

{
z : z =

2nβ0

β̂
< χ2

1−α(2n− 2)

}
(2.21)

where χ2
1−α(2n− 2) is the lower α point of a chi-square distribution with 2n− 2 degrees of

freedom. In terms of sets, the above region is, of course, equivalent to

{
β̂ : β̂ >

2nβ0

χ2
1−α(2n− 2)

}
, (2.22)
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and similar ideas carry over to other types of alternatives as well. The next table summarizes

the critical regions under the different cases.

Table 2.1: Critical regions under different alternatives

Ha : β > β0 Ha : β < β0 Ha : β 6= β0

Failure truncated Z < χ2
1−α(2n− 2) Z > χ2

α(2n− 2) Z < χ2
1−α/2(2n− 2) or Z > χ2

α/2(2n− 2)

Time truncated Z < χ2
1−α(2n) Z > χ2

α(2n) Z < χ2
1−α/2(2n) or Z > χ2

α/2(2n)

Confidence intervals for β can also be constructed by inverting the acceptance region of

the two-tailed hypothesis.

2.1.3 The power functions

In connection to testing a statistical hypothesis, the power of a test is traditionally defined

as the probability of making a correct decision in general and in particular, the probability

of rejecting H0 when H0 is false. Power functions are often used to judge the quality of a

test and comment on its optimal properties. Since the alternate distribution of the forward

statistic has already been derived previously, we can proceed to examine the form of the

power function under different alternatives.

For a “greater than” type alternative, we might recall that the critical region (w.r.t. Z)

is left sided (i.e. we reject the null for extremely small values of Z). Thus adopting the

notation scheme: πX,Y (β) for the power function under the Xth type alternative and the

Y th type sampling scheme, the power function in this case will be

πG,F (β) = PHa(Z < χ2
1−α(2n− 2))

=

∫ χ2
1−α(2n−2)

0

(
β

β0

)n−1
1

Γ(n− 1)2n−1
zn−2e−βz/2β0 dz.

(2.23)
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Renaming βz
β0

= t, ⇒ dt = β
β0
dz and on simplifications,

πG,F (β) =

∫ β/β0χ2
1−α(2n−2)

0

1

Γ(n− 1)2n−1
tn−2e−t/2 dt

= Ψ2n−2

(
β

β0

χ2
1−α(2n− 2)

)
,

(2.24)

where Ψm(.) represents the cumulative distribution function of a chi-square distribution with

m degrees of freedom, the closed form of which is difficult to explore analytically. However,

software packages such as R routinely calculate these cumulative probabilities.

A more elegant way of deriving the expression should bypass the actual density and would

exploit the pivotal property of the quantity 2nβ

β̂
as follows:

πG,F (β) = PHa(Z < χ2
1−α(2n− 2))

= PHa

(
2nβ0

β̂
< χ2

1−α(2n− 2)

)
= PHa

(
2nβ

β̂
<

β

β0

χ2
1−α(2n− 2)

)
.

But under the alternative Ha,
2nβ

β̂
∼ χ2(2n− 2), and thus

πG,F (β) = Ψ2n−2

(
β

β0

χ2
1−α(2n− 2)

)
, (2.25)

as derived previously. Arguing along similar lines, the power functions under the less than

type and the two tailed alternatives take on the following forms:

πL,F (β) = 1−Ψ2n−2

(
β

β0

χ2
α(2n− 2)

)
, (2.26)

πT,F (β) = Ψ2n−2

(
β

β0

χ2
1−α/2(2n− 2)

)
+ 1−Ψ2n−2

(
β

β0

χ2
α/2(2n− 2)

)
. (2.27)

Similar expressions can be had for the time truncated case too:

πG,T (β) = Ψ2n

(
β

β0

χ2
1−α(2n)

)
, (2.28)
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πL,T (β) = 1−Ψ2n

(
β

β0

χ2
α(2n)

)
, (2.29)

πT,T (β) = Ψ2n

(
β

β0

χ2
1−α/2(2n)

)
+ 1−Ψ2n

(
β

β0

χ2
α/2(2n)

)
. (2.30)

These power curves are graphed below for different choices of the sample size n.

Figure 2.2: Power curves under different types of alternatives at α = 0.05.

As expected, a large sample helps one pick the correct alternative relatively more easily.

2.1.4 A note on optimality

Upon the formulation of a statistical test, it is always instructive to discover additional

properties enjoyed by it. Just as good point estimators often turn out to be sufficient,

unbiased or have the minimum variance among others, properties such as most powerfulness
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(MP-ness, or better still: uniformly most powerfulness, UMP-ness) or unbiasedness typically

adore a statistical test. These properties date way back into the labyrinths of statistical

folklore, and traditional texts such as Lehmann and Romano (2005) [90], Casella and Berger

(2002) [23] among others give an excellent account of such properties. In this section, we

shall endeavor to prove that the forward test is fairly optimal in more ways than one.

In particular, we will focus on the property of UMP-ness. Simply put, it says that the

test considered consistently gives greater power in choosing the correct alternative compared

to its competitors and at this moment, we can recollect the following notions which will be

crucial to the proof:

i. Monotone-likelihood ratio (MLR): A family of densities {g(t|θ) : θ ∈ Θ} for a univariate

random variable T with a real-valued parameter θ has a monotone likelihood ratio if ∀θ2 > θ1,

the ratio g(t|θ2)
g(t|θ1)

is a monotone function of t on {t : g(t|θ1) > 0 ∪ g(t|θ2) > 0}.

ii.

Theorem 2.2 (Karlin-Rubin). Consider testing H0 : θ ≤ θ0 vs Ha : θ > θ0. Suppose T

is a sufficient statistic for θ and the family of densities {g(t|θ) : θ ∈ Θ} of T has a MLR.

Then for any t0, the test that rejects H0 if and only if T > t0 is a UMP level α test where

α = Pθ0(T > t0).

We are now in a position to claim the optimality for the forward test.

Theorem 2.3 (UMP-ness of the forward test). For testing H0 : β = β0 vs Ha : β > β0 the

forward test using the Z statistic is conditionally UMP.

Proof. We noted that in terms of the critical region generated under this alternative, namely{
z : z = 2nβ0

β̂
< χ2

1−α(2n− 2)
}

, the forward test can be equivalently referred to as one that
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rejects H0 if
{
β̂ : β̂ > 2nβ0

χ2
1−α(2n−2)

}
happens. We also observe that

Z =
2nβ

β̂
= −2β

n−1∑
i=1

log

(
ti
tn

)
= −2

n−1∑
i=1

log

(
ti
tn

)β
⇒ −Z

2
=

n−1∑
i=1

log

(
ti
tn

)β
⇒ e−Z/2 =

n−1∏
i=1

(
ti
tn

)β
.

(2.31)

The proof now proceeds in two steps: First, we note that β̂ is sufficient for β. Towards

achieving that end, we use a result from Rigdon and Basu (2000) [122] which says that if the

failure times of a non-homogeneous Poisson process are T1 < T2 < ... < Tn, then conditioned

on Tn = tn, the random variables T1 < T2 < ... < Tn−1 are jointly distributed as

f(t1, t2, .., tn−1|tn) = (n− 1)!
n−1∏
i=1

λ(ti)

Λ(tn)
, 0 < t1 < t2 < ... < tn. (2.32)

For the specific power-law choice of λ(.) this reduces to:

f(t1, t2, .., tn−1|tn) = (n− 1)!
n−1∏
i=1

βtβ−1
i

tβn
, 0 < t1 < t2 < ... < tn. (2.33)

On simplification and using relation (2.31), we have

f(t1, t2, .., tn−1|tn) = (n− 1)!
n−1∏
i=1

βtβ−1
i

tβn

= (n− 1)!
n−1∏
i=1

β

(
ti
tn

)β
1

ti

= (n− 1)!βn−1

n−1∏
i=1

(
ti
tn

)β n−1∏
i=1

1

ti

= (n− 1)!βn−1e−z/2
n−1∏
i=1

1

ti

= {βn−1e−nβ/β̂}

{
(n− 1)!

n−1∏
i=1

1

ti

}
.
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This final representation is in the classical form of the factorization lemma which enables

one to see that β̂ is sufficient for β. In the second part, we show that β̂ has an MLR which

follows from the density derived in (2.8). We noted previously that this is an inverse gamma

(n− 1, nβ) density given by

fβ̂(β̂) =
1

Γ(n− 1)

(nβ)n−1

β̂n
e−nβ/β̂, β̂ > 0. (2.34)

Choosing β2 > β1, we form the ratio:

f(β̂|β2)

f(β̂|β1)
=

((nβ2)n−1/β̂n)e−nβ2/β̂

((nβ1)n−1/β̂n)e−nβ1/β̂
=

(
β2

β1

)n−1

e
−n
β̂

(β2−β1)
(2.35)

and note that it is a monotone function of β̂. Alternatively, this also follows from the fact

that the density (2.18) belongs to the exponential family. The proof now follows by an appeal

to the Karlin-Rubin theorem.

Similar conclusions can be had for the time-truncated sampling scheme or for the “less

than” type alternative. As noted previously, the UMPU-ness of the forward test has been

established by Bain and Engelhardt (1980) [6] under the time truncated scheme using joint

sufficiency, and a case for the failure truncated situation has been put forward in Bain and

Engelhardt (1991) [11]. The proof above, however, is more detailed and appreciable.

2.2 A primer on the backward test

Since the event times sufficiently characterize the essential features of a repairable system,

a study about the reliability is synonymous to a study on the failure time trends. A careful

investigation of the forward statistic Z and the m.l.e. β̂ for β introduced in the previous
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section reveals the following connection:

Z =
2nβ0

β̂
= −2β0

n−1∑
i=1

log

(
ti
tn

)
. (2.36)

This is crucial since it gives a description of the statistic Z in terms of the trend in the

event times. For instance, if the system is deteriorating (β > 1), most of the ti
tn

values will

tend to cluster around 1, leading to a small value of the forward statistic. Some light on the

reliability pattern can be shed through the reversed trend too, i.e., through the sequence of

values 1 − ti
tn

. Under a similar situation of process deterioration, for instance, there will be

a greater concentration of 1− ti
tn

values around 0 which shall contribute to an inflated value

of the quantity

ZB = −2β0

n−1∑
i=1

log

(
1− ti

tn

)
. (2.37)

This statistic ZB, based on the idea of reversed trend, shall be termed as the backward

statistic and tests relying on it, backward tests. This class was originally introduced by Ho

(1993) [66] in connection to providing tests which are more powerful than the forward or the

much fabled Laplace’s test (introduced later) under the assumption of rough (in particular,

step-like) alternate intensities. Understandably enough, unlike the forward test, history is

relatively silent about ZB. We shall explore this class of rough alternatives later in this

chapter and with a greater degree of generality in Chapter 3, but for the time being, shall

content ourselves in charting a course for the backward (i.e ZB) analysis similar to the

one for the forward case detailed in the last section, under the traditional smooth Power

law intensities. Without making assumptions on the underlying intensity, Ho (1993) [66]

analyzed an artificial data set to demonstrate how time switching could influence inferential

conclusions. On a technical note, it might be worthy of mention that although not extremely
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serious in (2.36), in (2.37), the sum must necessarily run till n−1 to keep itself from exploding.

2.2.1 An exact relationship connecting the two versions

Prior to delving deep into the labyrinths of statistical inference, we pause for a while and

toy with the possibility of discovering a relationship, preferably in the form of an equation

ZB = φ(Z), that should string the two versions together. Owing to the similarity in structure

between (2.36) and (2.37), one should naturally question the existence of a dependence

pattern between the two. A use of the identity log(xy) = log(x) + log(y) provides an answer

in the affirmative.

Theorem 2.4. Irrespective of the actual sampling scheme employed, the forward and back-

ward test statistics Z and ZB are related through:

ZB = −2β0

n−1∑
i=1

log

(
tn
ti
− 1

)
+ Z. (2.38)

Proof. (Method 1) We start with the observation that ti
tn

admits of the following represen-

tation:

ti
tn

=
ti

tn − ti

(
1− ti

tn

)
=

1
tn
ti
− 1

(
1− ti

tn

)

(since pivotal to connecting Z and ZB, would be the creation of a relation connecting their

essential “kernels” as : ti
tn

= x(1− ti
tn

). Solving for x gives x = ti
tn−ti ). As a consequence,

log

(
ti
tn

)
= − log

(
tn
ti
− 1

)
+ log

(
1− ti

tn

)
. (2.39)
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Summing both sides and multiplying throughout by −2β0:

−2β0

n−1∑
i=1

log

(
ti
tn

)
= 2β0

n−1∑
i=1

log

(
tn
ti
− 1

)
− 2β0

n−1∑
i=1

log

(
1− ti

tn

)

⇒ −2β0

n−1∑
i=1

log

(
1− ti

tn

)
= −2β0

n−1∑
i=1

log

(
tn
ti
− 1

)
− 2β0

n−1∑
i=1

log

(
ti
tn

)

⇒ ZB = −2β0

n−1∑
i=1

log

(
tn
ti
− 1

)
+ Z,

as claimed.

(Method 2) An alternate version of the proof might be furnished through the following

observations:

− Z

2β0

=
n−1∑
i=1

log

(
ti
tn

)
= log

n−1∏
i=1

(
ti
tn

)

⇒
n−1∏
i=1

(
ti
tn

)
= e

− Z
2β0 ,

(2.40)

and similarly
n−1∏
i=1

(
1− ti

tn

)
= e

− ZB
2β0 (2.41)

Thus, using the two above:

e
− 1

2β0
(Z−ZB)

=
n−1∏
i=1

ti
tn

1− ti
tn

=
n−1∏
i=1

ti
tn − ti

=
n−1∏
i=1

1
tn
ti
− 1

⇒ − 1

2β0

(Z − ZB) = log

(
n−1∏
i=1

1
tn
ti
− 1

)
=

n−1∑
i=1

log

(
1

tn
ti
− 1

)

= −
n−1∑
i=1

log

(
tn
ti
− 1

)

⇒ ZB = −2β0

n−1∑
i=1

log

(
tn
ti
− 1

)
+ Z,

as required.

(2.40) and (2.41) afford an alternative interpretation of these two versions: imagine a

set of increasingly more likely set of independent events {Ai}’s with P (Ai) = ti
tn

, then
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e
− Z

2β0 represents the probability that all of them should happen (i.e. P (A1A2...An−1)) and

e
− ZB

2β0 represents the probability that none of them should happen (i.e. P (Ā1Ā2... ¯An−1)). A

similar line of reasoning can generate a lower bound for the sum Z + ZB: Consider n − 1

independent but non-identical bernoulli trials with success probability ti
tn

on the i-th trial.

Then the likelihood function is given by:

L(t|x) =
n−1∏
i=1

(
ti
tn

)xi (
1− ti

tn

)1−xi

⇒ logL(t|x) =
n−1∑
i−1

xi log

(
ti
tn

)
+

n−1∑
i−1

(1− xi) log

(
1− ti

tn

)

⇒ −2β0 logL(t|x) = −2β0

n−1∑
i−1

xi log

(
ti
tn

)
+−2β0

n−1∑
i−1

(1− xi) log

(
1− ti

tn

)
⇒ −2β0 logL(t|x) ≤ Z + ZB

(2.42)

where the last inequality follows due to the fact that the xi’s are binary variables.

It is hoped that this (possibly non-unique) exact deterministic connection (2.38) shall

enable one to borrow information and relevant structure from the already existing literature

on forward tests. To force the two forms (2.36) and (2.37) to be equivalent, we might require:

log

(
tn
ti
− 1

)
= 0, i = 1, 2, .., n− 1

⇒ tn
ti
− 1 = 1⇒ ti =

tn
2
, i = 1, 2, .., n− 1.

(2.43)

This condition (2.43), despite leading to exact equivalence, is untenable, especially un-

der our overarching assumption of processes which are orderly or non-explosive (in the

sense of (Jacobsen (2006) [74]), among others, i.e. processes where simultaneous occur-

rences are not possible). Nonetheless, sequences can be generated purely for academic in-

terests, where (2.43) holds approximately, i.e. where ti’s are tightly packed around tn
2
, i =

1, 2, ..., n− 1. For example, if a hypothetical process (under failure-truncation) exhibits the

following time sequence: {4.95, 4.99, 5, 5.01, 5.03, 10}, the forward and backward statistics
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take the values Z = 6.939 and ZB = 6.924 which are extremely close and for this case,

−2
∑n−1

i=1 log
(
tn
ti
− 1
)

= −0.016. Thus, (2.43) alerts one to the existence of situations where

the trend reversal through ZB might be inconsequential. Such a situation might arise from

a real example too: the Old Faithful Geyser case in Table 2.2 provides a case in point.

Applications of the forward and backward statistic (with the choice β0 = 1, i.e. testing

for homogeneity) to some of the “Other examples” considered in the introductory chapter

leads us to the following table:

Table 2.2: Z and ZB calculations on examples with diverse sample sizes (β0 = 1)

Case studies Sample size Z −2
∑n−1

i=1 log( tn
ti
− 1) ZB

Maguire, Pearson, Wynn (1952) 109 305.349 -148.211 157.138
Duane (1964) 14 57.954 -46.987 10.967

Jelsinki and Moranda (1972) 34 133.289 -108.057 25.232
Mooley (1981) 141 247.287 115.959 363.247

Ho (1993) 10 37.126 -28.916 8.211
Rigdon and Basu (2000) 18 33.316 2.830 36.146

Bakun et al. (2005) 7 32.161 -25.745 6.416
Wang and Liu (2014) 36 81.812 -23.993 57.819

Old faithful geyser eruptions 272 538.767 -0.761 538.007
Ogata earthquake 100 226.309 -48.013 178.296

N.China earthquake 65 129.237 4.129 133.366
Phuket earthquake 1248 2749.051 -1017.05 1732.001

Table (2.2 )above covers a wide spectrum of scenarios with sample sizes ranging from as

small as 7 to as large as 1248. As expected, the magnitude of the Z and ZB statistics seems

to be directly correlated with the sample size and it is gratifying to see that (2.38) is being

satisfied in each case. (2.39) provides an alternative representation of β̂ too:

β̂ =
n

−
∑n−1

i=1 log
(
ti
tn

) =
n∑n−1

i=1 log
(
tn
ti
− 1
)
−
∑n−1

i=1 log
(

1− ti
tn

) (2.44)
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and in case a functional form connecting ZB to β̂ is ever sought for, one might use

ZB = −2β0

n−1∑
i=1

log

(
tn
ti
− 1

)
+

2nβ0

β̂
. (2.45)

Returning to our case study on system deterioration, we saw that if failures are occurring

more frequently in recent times, we should expect a small value for Z and a large value for

ZB. The first term −2β0

∑n−1
i=1 log

(
tn
ti
− 1
)

in a way, takes care of the deficit. This term

is amenable to other interpretations too: for instance, it establishes that there can be no

uniform stochastic order dependence between Z and ZB. This is in view of the fact that

unlike log( ti
tn

) and log(1− ti
tn

) which can only take on negative values due to the structural

constraint 0 < ti
tn
< 1, i = 1, 2, .., n − 1, each term log( tn

ti
− 1) can be either positive or

negative, owing to the equivalent constraint 0 < tn
ti
− 1 < ∞, which in turn can make the

first term as a whole, either positive or negative. Confirmation of this fact can be had from

Table (2.2), and this alludes to the possibility that the algebraic sign of the first term might

be taken as an indicator of system improvement or deterioration.

2.2.2 The null and alternate distributions of ZB

Lemma 2.1. If X ∼ Beta(m,n), then E(X−
1
β ) =

B(n,m− 1
β

)

B(m,n)

Proof. The proof might follow by an application of the change of variable technique. Defining

Y = X−
1
β = g(X) (say), we should have X = Y −β = g−1(Y ) ⇒ d

dy
g−1(Y ) = −βY −β−1.

Thus, since:

fX(x) =
1

B(m,n)
xm−1(1− x)n−1, x ∈ (0, 1),

fY (y) = fX(g−1(y))| d
dy
g−1(y)|

=
1

B(m,n)
(y−β)m−1(1− y−β)n−1βy−β−1 , y ∈ (1,∞).
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Consequently:

E(Y ) =
β

B(m,n)

∫ ∞
1

y−βm(1− y−β)n−1dy

Setting u := 1− y−β,

E(Y ) =
1

B(m,n)

∫ 1

0

un−1(1− u)m−1− 1
β du

= B(n,m− 1

β
)/B(m,n)

as claimed.

Theorem 2.5. Under the failure truncated case, the backward statistic ZB is non-pivotal

with expected value at least −2β0

∑n−1
i=1 log

(
B(n−i,i− 1

β
)

B(i,n−i) − 1

)
+ 2(n− 1).

Proof. In the previous chapter while showing the pivotal property of the Z statistic, we have

argued that (Ti
tn

)β, i = 1, 2, .., n − 1 are distributed as n − 1 order statistics from a U(0, 1)

distribution. Consequently, the marginal distribution of (Ti
tn

)β would be Beta(i, n− i). Thus,

applying the previous lemma on (Ti
tn

)β, we must have

E

(
tn
Ti

)
=
B(n− i, i− 1

β
)

B(i, n− i)
. (2.46)

Now since φ(x) = − log(x) is a convex function, applying Jensen’s inequality E(φ(X)) ≥

φ(E(X)) with this choice of φ(.) yields:

E

(
− log

(
tn
Ti
− 1

))
≥ − log

(
E

(
tn
Ti
− 1

))
(2.47)

⇒ −E
(

log

(
tn
Ti
− 1

))
≥ − log

(
E

(
tn
Ti

)
− 1

)
(2.48)

⇒ E

(
log

(
tn
Ti
− 1

))
≤ log

(
E

(
tn
Ti

)
− 1

)
. (2.49)

Invoking (2.46), we have

E

(
log

(
tn
Ti
− 1

))
≤ log

(
B(n− i, i− 1

β
)

B(i, n− i)
− 1

)
. (2.50)
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Next, using the linearity property of expectations:

E

(
n−1∑
i=1

log

(
tn
Ti
− 1

))
≤

n−1∑
i=1

log

(
B(n− i, i− 1

β
)

B(i, n− i)
− 1

)
(2.51)

⇒ E

(
−2β0

n−1∑
i=1

log

(
tn
Ti
− 1

))
≥ −2β0

n−1∑
i=1

log

(
B(n− i, i− 1

β
)

B(i, n− i)
− 1

)
. (2.52)

Finally, using (2.38) and the fact that Z ∼ χ2(2(n− 1)), we have

E(ZB) ≥ −2β0

n−1∑
i=1

log

(
B(n− i, i− 1

β
)

B(i, n− i)
− 1

)
+ 2(n− 1), (2.53)

as claimed.

The first term on the right of (2.53) can be calculated numerically on softwares such as

R. Specifically, we can revisit the examples shown previously and compare the lower bounds

on the expected value of the backward statistic to the observed values:

Table 2.3: Z and ZB calculations on examples described previously (β0 = 1)

Case studies Sample size β̂ ZB Exp lower bound at β̂

Maguire, Pearson, Wynn (1952) 109 0.7139 157.138 122.775
Duane (1964) 14 0.4831 10.967 13.222

Jelsinki and Moranda (1972) 34 0.5102 25.232 18.010
Mooley (1981) 141 1.1403 363.247 332.076

Ho (1993) 10 0.5387 8.211 5.252
Rigdon and Basu (2000) 18 1.0806 36.146 38.417

Bakun et al. (2005) 7 0.4353 6.416 7.314
Wang and Liu (2014) 36 0.8801 57.819 56.829

Old faithful geyser eruptions 272 1.0097 538.007 530.077
Ogata earthquake 100 0.8837 178.296 161.500

N.China earthquake 65 1.0059 133.366 110.583
Phuket earthquake 1248 0.9079 1732.001 2263.224

Figure (2.3) below depicts the expected bound as a surface depending on n and β0 along

with its contours. It can be seen that the bound is almost always non-trivial in the sense of

generating positive numbers.
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Figure 2.3: Surface diagram and contour plot for the expected lower bound of the backward
statistic

To derive the null and alternate distribution of ZB, we shall have to lay the following

groundwork:

Theorem 2.6. If Xβ ∼ U(0, 1), then the density of Y = (1−X)β is given by:
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fY (y) = y
1
β
−1(1− y

1
β )β−1 , y ∈ [0, 1] (2.54)

Proof. The proof might follow from the traditional change of variable technique with Xβ =

(1− Y
1
β )β = g−1(Y ) (say). Thus

fY (y) = fX(g−1(y))| d
dy
g−1(y)|

= y
1
β
−1(1− y

1
β )β−1 , y ∈ (0, 1)

Also, the c.d.f of Y is given by:

FY (y) = P (Y ≤ y) =

∫ y

0

u
1
β
−1(1− u

1
β )β−1du = 1− (1− y

1
β )β−1 , y ∈ (0, 1)

which turns out to be the cumulative distribution function of a Kumaraswamy-Generalized

distribution, studied by Pascoa et al. (2011) [112] under the baseline c.d.f of a uniform vari-

able.

Theorem 2.7. If Xβ ∼ U(0, 1), then the density of Z = −2ln(1−X)β is given by:

fZ(z) =
1

2
e−

z
2β (1− e−

z
2β )β−1 , z ∈ [0,∞) (2.55)

Proof. We have shown that under similar conditions, the the density of Y = (1 − X)β is

given by:

fY (y) = y
1
β
−1(1− y

1
β )β−1 , y ∈ [0, 1] (2.56)

Using Z = −2lnY ⇒ Y = e−Z/2 = g−1(Z) (say), the density of Z is given by:

fZ(z) = fY (g−1(z))| d
dz
g−1(z)|

=
1

2
e−

z
2β (1− e−

z
2β )β−1 , z ∈ [0,∞)
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This class of densities has been investigated extensively by Pascoa et al. (2011) [112].

UsingX = Y
tn

in the lemmas above, we can therefore conclude that−2ln(1− Y
tn

)β has a density

given by (2.55). Thus, arguing along lines similar to the derivation of Z’s distribution, we can

claim that −2ln(1− Ti
tn

)β are order statistics from a distribution generated by −2ln(1− Y
tn

)β.

Thus:

ZB = −2β0

n−1∑
i=1

ln(1− Ti
tn

) = −2
n−1∑
i=1

ln(1− Ti
tn

)β0 =d −2
n−1∑
i=1

ln(1− Yi
tn

)β0 (2.57)

where =d should be taken to mean equal in distribution. So for our purposes, it is enough to

find the distribution of the sum of the i.i.d variables −ln(1 − Yi
tn

)β0 . Analytical expressions

for the density of ZB is difficult to derive as the following lines will reveal, but we can use

(2.57) to prove the following claim held by Ho (1993) [66]:

Theorem 2.8. The backward statistic ZB is non-pivotal.

Proof. Using (2.57):

ZB =d −2
n−1∑
i=1

ln(1− Yi
tn

)β0 =
n−1∑
i=1

Zi (say) (2.58)

where the {Zi}’s are i.i.d and the density of each is given by (2.55). The the m.g.f of Zi

becomes:

MZi(t) = E(etZi) =
1

2

∫ ∞
0

e
z(t− 1

2β0
)
(1− e−

z
2β0 )β0−1dz (2.59)

Calling u := 1− e−
z

2β0 , this boils down to:

MZi(t) = β0

∫ 1

0

uβ0−1(1− u)−2tβ0du = β0B(β0, 1− 2tβ0) (2.60)

which is defined only on {t : t < 1
2β0
}. Consequently, using the i.i.d-ness of the {Zi}’s, the

m.g.f of ZB is:

MZB(t) = [β0B(β0, 1− 2tβ0)]n−1 = β0
n−1[

Γ(β0)Γ(1− 2tβ0)

Γ(1 + (1− 2t)β0)
]n−1 (2.61)
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Thus, since the m.g.f. of ZB involves β0, the distribution of ZB involves β0 too and thus, in

general, the backward statistic is non-pivotal.

The m.g.f given in (2.61) is not in a form that is readily recognizable. Another direct

approach to formulate the distribution of the i.i.d sum would involve convolutions of the

form:

fZB(z) =

∫ z

0

e
− w
β0 (1− e−

w
β0 )β0−1e

− z−w
β0 (1− e−

z−w
β0 )β0−1dw (2.62)

However, even the above expression (with n = 2) is not simple to integrate analytically.

Thus, we will propose two non-traditional ways to estimate the underlying distribution of

ZB: One proceeds through simulating random variables from recently proposed theoret-

ical distributions (such as the Exponentiated Kumarswamy - G distribution or the Beta

Exponential - G distribution) and adding them up, while the other relies on inverting the

characteristic function of ZB, which can, in turn, be constructed, using the mgf (2.61).

The simulation approach

To motivate this idea, let us consider a simple example: imagine we have two random

variables X1 and X2, independently distributed of each other, with the first following a

N(1, 2) distribution and the second following a N(2, 2) distribution. If we had to find the

distribution of the sum X1 + X2 and if we were unaware of the theoretical result of normal

reproductivity, we could generate a large number of observations from N(0, 1), the same

number of observations from N(2, 2), add them up and work with the observed frequency

distribution (a histogram, for instance) of this summed vector. This distribution should be

centered at 3, be fairly symmetrical and in general, should replicate the essential features of,

and provide an acceptable approximation to the underlying true N(3, 4) model.
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In view of (2.58), this idea can be profitably exploited for the task at hand: the equivalence

claims that the backward statistic ZB and the sum of the i.i.d. variables Zi’s are distributed

similarly. Each of the Zi’s in turn, has a density given by (2.55):

fZ(z) =
1

2
e−

z
2β (1− e−

z
2β )β−1 , z ∈ [0,∞) (2.63)

We can thus simulate a large number of observations from this distribution, add them

up and look at the empirical law to get an approximation to the density of our target: ZB.

This empirical approach is unavoidable here since unlike traditional distributions such as the

normal, (2.63) does not exhibit the additive property. Lemonte et al. (2013) [91] introduced

the exponentiated Kumarswamy - G distribution given by:

fZ(z) = abcg(z)Ga−1(z)[1−Ga(z)]b−1{1− [1−Ga(z)]b}c−1 , z ∈ [0,∞) (2.64)

where G(.) is any valid c.d.f, g(.) its corresponding p.d.f and a, b, c are all positive shape

parameters. It can be noted that (2.63) is a special member of this generalized family

corresponding to the choice: a = 1, b = 1
2β
, c = β and G(z) = 1 − e−z, the c.d.f of the

exponential density.

Another recent density introduced by Alzaatreh et al. (2013) [1] is the beta exponential

G distribution given by:

fZ(z) =
λ

B(a, b)
g(z){1−G(z)}λb−1{1− [1−G(z)]λ}a−1 , z ∈ [0,∞) (2.65)

where G(.) is any valid c.d.f, g(.) its corresponding p.d.f and a, b, λ are all positive shape

parameters. Once again, (2.65) boils down to (2.63) when a = β, b = 1, λ = 1
2β

and G(z) =

1− e−z, the c.d.f of the exponential density.
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For each of the two densities introduced above, functions exist in the software R that

will help one to generate random observations. We shall illustrate the findings using (2.64)

only. This is owing to an economic computational time over the beta exponential G density

(2.65). Similar results can be had using (2.65) too.

i) For a given β and for each i, we generate r values of the random variable Zi using the

code: rexpkumg(r, spec=‘‘exp", a = 1, b = 1/(2*beta), c = beta) and store them

in a vector. Typically r was taken to be 100000.

ii) For a given sample size n, we add up these vectors to get
∑n−1

i=1 Zi :=d ZB.

iii) Finally, we create a histogram of the frequency distribution of ZB. The high value of

r assures one of its closeness to the underlying probability density.

Figure (2.4) below depicts the output for different choices of β corresponding to n = 10:

The distribution, in general, show traces of right skewness and gets shifted to the right

for higher choices of β. Thus for future exercises, if we are interested in testing H0 : β = 1

vs Ha : β = 2, for instance, the black density can be taken as the null distribution while the

green can be taken as the alternative.

The inversion approach

A one-one correspondence between the characteristic function and the density of a random

variable and our ready availability of the m.g.f. of ZB in (2.61) emboldens this alternative

approach. Recall that given the characteristic function φX(.) of a random variable X as:

φX(t) = E(eitX) =

∫ ∞
−∞

eitxf(x)dx, (2.66)
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Figure 2.4: Density comparison for Zb under different choices of β with n = 10 (simulations)

it is possible to recover f(.) through an inverse Fourier transformation as:

f(x) =
1

2π

∫ ∞
−∞

e−itxφX(t)dt. (2.67)

Since the m.g.f and the characteristic function are connected through:

MX(it) = φX(t), (2.68)

using (2.61), the characteristic function for ZB would be:

φZB(t) = βn−1[B(β, 1− 2itβ)]n−1, (2.69)
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and hence, the true density of ZB would be given by:

f(z) =
1

2π

∫ ∞
−∞

e−itzβn−1[B(β, 1− 2itβ)]n−1dt. (2.70)

With our sincere efforts of finding closed form expressions for f(.) ending up in smoke, we

took recourse to numerical methods on the software Mathematica. In particular, the function

“NIntegrate(.)” was used to simplify the expression (2.70). Once again, with n = 10 and

with different choices of β, we have generated the following curves:

Figure 2.5: Density comparison for ZB under different choices of β with n = 10 (theoteric)

Despite being generated through largely different methods, the close agreement between

Figures (2.4) and (2.5) lends credence to the merit of both and the latter can be conveniently

imagined to be the smoothed version of the former.
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The special case of β = 1

Owing to the fact that a stable or homogeneous failure pattern results at β = 1, testing for

homogeneity is often a special concern to practitioners. The m.g.f of the backward statistic

with a sample of size n has been derived previously as:

MZB(t) = βn−1[B(β, 1− 2tβ)]n−1 , t <
1

2β

So with β = 1:

MZB(t) = [B(1, 1− 2t)]n−1 , t <
1

2
(2.71)

= [
Γ(1)Γ(1− 2t)

Γ(2− 2t)
]n−1 , t <

1

2
(2.72)

= [
Γ(1)Γ(1− 2t)

(1− 2t)Γ(1− 2t)
]n−1 , t <

1

2
(2.73)

= [
1

1− 2t
]n−1 , t <

1

2
(2.74)

which is the m.g.f. of a chi-square distribution with 2(n − 1) degrees of freedom. Thus,

using the one-one correspondence between a density and its m.g.f., we can claim that the

distribution of backward statistic under β = 1, which will equivalently serve as the null

distribution in tests related to homogeneity, a special case of a more general structure, is a

chi-square with 2(n− 1) degrees of freedom under the failure truncated case, with a similar

analog holding for the time truncated situation.

This result is particularly appealing since it will afford us the ability to get rid of numerical

approximations and define critical regions exactly using cutoffs from the known chi-square

density. Estimates of power will consequently be more reliable. While testing for other

choices of β however, even to define the critical cutoffs, we shall have to fall back on the sim-

ulation from the Kumarswamy class approach or the inversion of the characteristic function
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approach, both of which, with varying degrees, are inherently numerical approximations.

2.2.3 The critical regions

As a repairable system deteriorates, the majority of the ti values will tend to cluster around

tn and consequently, (1− ti
tn

) will be close to 0. Thus unlike the forward statistic Z, the value

of the backward statistic ZB will be inflated. This asymmetry between the two versions can

also be visualized using equivalence (2.38). Consequently, we can borrow results from the

previous chapter and flip the directions of the rejection regions: to be precise, previously, we

rejected the null in favor of a greater than type alternative for small values of the forward

statistic Z. Now we shall reject such a null for large values of the backward statistic ZB.

Table (2.4) below summarizes

Table 2.4: Critical regions from the backward test under different alternatives

Ha : β > β0 Ha : β < β0 Ha : β 6= β0

Failure truncated ZB > fα(n) ZB < f1−α(n) ZB > fα/2(n) or ZB < f1−α/2(n)
Time truncated ZB > fα(n) ZB < f1−α(n) ZB > fα/2(n) or ZB < f1−α/2(n)

where fα(n), is the upper α point of the null distribution of ZB. Unfortunately if β 6= 1,

it is rather difficult to quantify thresholds characterizing critical regions through closed-form

expressions, but one can always fall back on either of the two methods proposed in the

previous section to estimate that point.

For instance, if one is interested in testing for process deterioration: H0 : β = 1 vs

Ha : β > 1 based on a sample of size 10, he can go back to the empirical red distribution of

ZB (Fig (2.4)) and measure the proportion of times the simulated values were in excess of

z∗ (say). Requiring this proportion be 0.05 (=α), he would estimate z∗ as 30.07 (graphed as
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the vertical line on Fig (2.4)). Thus, in the present instance, based on n = 10, the ZB-based

critical region would be [30.07,∞). Of course, under this special β0 = 1 case, as evidenced

by the previous m.g.f-based reasoning, exact chi-square calculations could have been done,

which would have given the critical region as [29,∞), approximately. But this method would

prove useful for checking specific non-homogeneity values such as β0 = 2, 3,, etc.

If one insists on the inversion method, z∗ can be calculated by solving:

1

2π

∫ ∞
z∗

∫ ∞
−∞

e−itz19[B(1, 1− 2it)]9dt dz = 0.05 (2.75)

Once again, numerical methods need to be employed and we found Mathematica to be a

reliable tool. We might note that in either case, the actual data set (apart from its size) has

not been used to decide the cut-off.

2.2.4 The power functions

Derivation of the power curves once again, shall tread a numerical route. For a given null

hypothesis and sample size, the cut-off determining the critical region should be found either

through the simulation or the inversion method as described in the previous section. For

a greater than type alternative, for instance, use of the simulation method would require

one measure the proportion of observations (generated under the alternate choice of β) that

exceed the threshold. This proportion can be taken as a reasonable approximation of the

power. Using the null H0 : β = 1 and varying the sample size, we found the following power

curves using this method:

Once z∗ is decided, the inversion method approach to get the power would necessitate
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Figure 2.6: Typical power curves for the backward test for varying sample sizes

one evaluate:

πG,B(β) =
1

2π

∫ ∞
z∗

∫ ∞
−∞

e−itzβn−1[B(β, 1− 2itβ)]n−1 dt dz (2.76)

We found the simulation results from R and the inversion results from Mathematica to

be in close agreement. Similar operations can, of course, be carried out on other types of

alternatives too.

2.3 On simulations

The purpose of the present section will be to put both the forward and the backward version

of the Z-test in action when data are simulated from a Power Law process. It is worth-

while to recall that under such a constraint, the monotonic intensity function governing the
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occurrences of the repairable system is given for t > 0 by

λ(t) =

(
β

θ

)(
t

θ

)β−1

, β > 0, θ > 0. (2.77)

Due to its explicit dependence on t, the Poisson process that it will give rise to will be a

non-stationary or a non-homogeneous one and despite its inability to model simultaneous

occurrences from explosive processes (Jacobsen (2006) [74]), owing to its smoothness, or to

model a simultaneous improvement-deterioration scenario owing to its monotonicity, this

form of intensity has found widespread use in reliability literature due to its mathematical

tractability.

We shall agree to denote such a process by PLP (θ, β) and numerous methods exist in

literature that enable one to simulate events from such a process, the most notable ones

among them being:

i) time scale transformation of a homogeneous Poisson process (HPP).

ii) generation of the intervals between the events individually.

iii) using order statistics.

iv) by the method of thinning.

Excellent expositions on each approach can be found in such standard texts as Ross (1990)

[130]. In the present instance however, we shall use the first approach which essentially

exploits the connection between a non-homogeneous Poisson process (NHPP) and a HPP of

rate 1:

Let N1(t) denote the HPP of rate 1. That implies that its inter-event distributions are

exponentials of unit rate. Thus, if I0 represent the inter-event variable, then:

P (I0 ≥ t) = exp(−t)⇒ P (I0 ≥ Λ(t)) = exp(−Λ(t)) (2.78)
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where Λ(t) =
∫ x

0
λ(x)dx represents the cumulative intensity function. Thus:

P (Λ−1(I0) ≥ t) = exp(−Λ(t)) (2.79)

Now if I
′
0 denote the inter-events for the NHPP, then:

P (I
′

0 ≥ t) = exp(−Λ(t)) (2.80)

The last two equations imply that X
′
1, X

′
2, ... are events from a NHPP with cumulative

intensity Λ(.) if and only if X1 = Λ(X
′
1), X2 = Λ(X

′
2), ... are events from a unit rate HPP. In

our case, with the choice of the intensity function given in (2.77):

Λ(t) =

∫ t

0

(
β

θ

)(x
θ

)β−1

dx =

(
t

θ

)β
(2.81)

Simulating events from a rate 1 HPP is rather straightforward. Once we have generated

event times t1, t2, ... from such a process, the transformation method guarantees that the

required NHPP times would be given by:

θt
1/β
1 , θt

1/β
2 , ... (2.82)

Our analyses on estimation and hypothesis testing for the NHPP would thus, naturally be

based on these transformed time points.

But prior to the actual implementation of the inferential machinery, it will be instructive

to look at the simulated events and check whether they are in keeping with our interpretation

of the β parameter. Figure 2.7 below graphs the NHPP event points when transformations

are imposed on a single parent series generated from a unit rate Poisson process. Since

∂

∂t

(
β

θ

)(
t

θ

)β−1

=
β

θ2
(β − 1)

(
t

θ

)β−2

> 0 for β > 1, (2.83)
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the failure process gradually gets more intense as β exceeds that threshold. This is evident

from the lower panels of the figure where points tend to cluster around the recent past, clearly

the indication of a deteriorating system. With β = 1, i.e. corresponding to a homogeneous

Poisson choice, the event points are more or less uniformly spread out with no apparent

clustering tendency and with β = 0.5, failures are getting less prevalent with the advent of

time: a hallmark of an improving system.

Estimates of the β and θ parameters can be obtained using the m.l. equations shown

previously. But to get hypotheses testing related quantities such as the critical regions, p-

values or the power curves, we can use any of the two methods described in the previous

section. To motivate the simulation approach, one can fall back on the traditional example

of testing for a normal mean when the variance is unknown. Under such a familiar premise,

if one is interested in testing:

H0 : θ = θ0 vs Ha : θ > θ0 (2.84)

where θ is the unknown normal mean, the obvious statistic to use would be X̄ and one

would reject H0 in favor of Ha if X̄ > θ0 + σ√
n
τα where τα is the upper α point of a N(0, 1)

distribution, σ is the known standard deviation and n is the sample size. The power function

π(θ), the probability of rejecting H0 when sampling from a N(θ, σ2) density is given by:

π(θ) = Pθ(X̄ > θ0 +
σ√
n
τα) = 1− Φ(

θ0 − θ
σ/
√
n

+ τα) (2.85)

This is the theoretical expression for the power function familiar to all. The above analyses

have been possible because of our knowledge of the fact that under i.i.d. N(θ, σ2) sam-

pling, X̄ ∼ N(θ, σ
2

n
). We would like to investigate whether we can still get some empirical

approximation to the power function if the above fact is unknown.
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Figure 2.7: Simulation from NHPP’s with different choices of β.

To be specific, let us set θ0 = 1, σ = 2 and n = 25 and to adequately define the critical

region, we first simulate 25 vectors each of size 10000 from N(1, 4), take their mean to
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get their approximate distribution and calculate the 95th percentile out of it. This point

should be serving as the (approximate) cutoff defining the right-tailed critical region. To

get an estimate of the power at point θ = θ, we repeat the same exercise with a sample

generated from a N(θ, 4) and find the proportion of means exceeding the cutoff. Figure

(2.8) below compares the theoretical function to this empirical estimate, and we can see that

it is reasonably well approximated. Similar accuracy should be carried over to the more

complicated real cases at hand, involving PtPs, and non-smooth intensities.

Figure 2.8: Comparison between theoretical and estimated power for a greater than type
alternative under Normal sampling
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2.4 Power comparisons under different intensities

Intensity functions, as described previously, influence failure patterns in a significant way,

and statistics performing well in detecting a process’s increased restlessness under a given

intensity might lose efficiency when confronted with another. A previous section has shown

the UMP-ness of the forward Z-test under power law intensities of the form (2.77). Cox

(1955) [29] studies the Laplace’s test statistic

L =
n∑
i=1

Ti
Tn

(2.86)

and shows how its standardized version, distributed asymptotically normally under the null

assumption of homogeneity, turns out to be UMPU for testing process deterioration under

intensities of the form

λ(t) = α exp(βt) (2.87)

This section takes a tour of the types of intensities that will be explored in this dissertation

and discovers the framework under which switching time could prove beneficial. Unless

explicitly mentioned, we shall henceforth be concerned with the failure truncated scheme

only. Excellent texts such as Bain and Engelhardt (1991) [10], Rigdon and Basu (2000) [122]

describe ways to extract similar results under the time truncated framework.

2.4.1 Weibull (Power law) intensity

Bain and Engelhardt (1980) [7], Bassin (1969) [13], Crow (1974, 1982) [32] [34], Finkelstein

(1976) [49] and Lee and Lee (1978) [89] have worked extensively with this form of the intensity

function (graphed in Fig (2.9)), providing, as described previously, the maximum likelihood
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estimates of β and θ for the intensity

λ(t) =
β

θ

(
t

θ

)β−1

, t > 0, (2.88)

their confidence intervals, and goodness of fit tests. Crow (1974) [32] tests β treating θ as a

nuisance parameter. To create each of the tables to follow, we have used α = 0.05 to generate

104 NHPPs with the specified β using the time-scale transformation described in section 2.3,

and checked how many of these are indeed classified as non-stationary by the forward and

backward test. θ was held fixed at unity, and estimate for β for each case has been collected.

For the forward test, the theoretical powers have been stored in the parentheses.

Figure 2.9: Power law (Weibull) intensities for different choices of β
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Table 2.5: Power comparison between the forward and backward test under PLP assumption
with β = 0.6, β̂ = 0.591

Sample size Forward test Backward test

n = 15 0.6402 (0.6386) 0.3769
n = 25 0.8188 (0.8165) 0.4969
n = 35 0.9052 (0.9102) 0.6017

Table 2.6: Power comparison between the forward and backward test under PLP assumption
with β = 0.8, β̂ = 0.768

Sample size Forward test Backward test

n = 15 0.2281 (0.2332) 0.1482
n = 25 0.3203 (0.3162) 0.1917
n = 35 0.3929 (0.3908) 0.2319

Table 2.7: Power comparison between the forward and backward test under PLP assumption
with β = 1, β̂ = 1.007

Sample size Forward test Backward test

n = 15 0.0541 (0.05) 0.0542
n = 25 0.0482 (0.05) 0.0563
n = 35 0.0499 (0.05) 0.0502

Table 2.8: Power comparison between the forward and backward test under PLP assumption
with β = 1.2, β̂ = 1.214

Sample size Forward test Backward test

n = 15 0.1447 (0.1472) 0.1104
n = 25 0.2014 (0.2032) 0.1326
n = 35 0.2563 (0.2563) 0.1567
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Table 2.9: Power comparison between the forward and backward test under PLP assumption
with β = 1.5, β̂ = 1.550

Sample size Forward test Backward test

n = 15 0.3984 (0.3936) 0.2321
n = 25 0.5918 (0.5926) 0.3416
n = 35 0.7434 (0.7389) 0.4356

The numbers in the parentheses are the theoretical powers for the forward test, expres-

sions for which have been derived previously, and their close agreement with the empirical

calculations, in a spirit similar to Fig (2.8), is noted. In addition to numerically demonstrat-

ing the expected UMP-ness of the established forward Z test, these tables document ZB’s

power loss corresponding to different sample sizes.

2.4.2 Compound power law intensity

One may next investigate the power performance of the backward test under other non-

standard intensities, which are still smooth in nature. We found that Engelhardt and Bain

(1987) [9] puts a Gamma(x, γ) “prior” on λ = θ−β as

π(λ) =
1

γxΓ(x)
λx−1 exp(−λ/γ), λ > 0 (2.89)

Using transformation of variables, a logical “prior” for θ would be:

π(θ) =
β

γxΓ(x)
θ−βx−1 exp(−1/γθβ), θ > 0 (2.90)

(2.90) is a special case of the generalized inverse gamma distribution introduced by Mead

(2015) [105].

Thus, a compound PLP may be simulated using Bayesian smoothing with
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� The “likelihood”:

λ(t|θ) = θ−ββtβ−1, t > 0 (2.91)

� The “prior”

π(θ) =
β

γxΓ(x)
θ−βx−1 exp(−1/γθβ), θ > 0 (2.92)

� The “pseudo” unconditional intensity:

λ(t) =

∫ ∞
0

λ(t|θ)π(θ)dθ = xγβtβ−1, t > 0 (2.93)

The mean function will thus be

Λ(t) =

∫ t

0

xγβyβ−1dy = xγtβ, (2.94)

and the non-homogeneous times can be obtained from the homogeneous times using

NH.T imes =

(
H.T imes

xγ

) 1
β

. (2.95)

With 104 as the simulation strength and an α value of 0.05, we then have the following

set of power results.

Table 2.10: Power comparison between the forward and backward test under compound PLP
assumption (GIG prior) with x = 0.5, γ = 1

True β = 0.6 True β = 1.5 True β = 1
Sample size Z power ZB power Z power ZB power Z power ZB power
n = 15 0.5349 0.2745 0.2702 0.1428 0.0516 0.0501
n = 25 0.7352 0.3964 0.4376 0.2186 0.0474 0.0499
n = 35 0.8583 0.4971 0.6115 0.3137 0.0491 0.0496
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Table 2.11: Power comparison between the forward and backward test under compound PLP
assumption (GIG prior) with x = 1, γ = 2

True β = 0.6 True β = 1.5 True β = 1
Sample size Z power ZB power Z power ZB power Z power ZB power
n = 15 0.5348 0.2753 0.2641 0.1391 0.0511 0.0506
n = 25 0.7324 0.3887 0.4579 0.2301 0.0476 0.0458
n = 35 0.8556 0.4941 0.6059 0.3082 0.0527 0.0486

Table 2.12: Power comparison between the forward and backward test under compound PLP
assumption (GIG prior) with x = 2, γ = 2

True β = 0.6 True β = 1.5 True β = 1
Sample size Z power ZB power Z power ZB power Z power ZB power
n = 15 0.5306 0.2779 0.2684 0.1436 0.0500 0.0527
n = 25 0.7326 0.3855 0.4408 0.2162 0.0516 0.0491
n = 35 0.8612 0.5025 0.6091 0.3195 0.0483 0.0518

Table 2.13: Power comparison between the forward and backward under compound PLP
assumption (GIG prior) test with x = 3, γ = 2

True β = 0.6 True β = 1.5 True β = 1
Sample size Z power ZB power Z power ZB power Z power ZB power
n = 15 0.5403 0.2794 0.2561 0.1394 0.0458 0.0463
n = 25 0.7310 0.3962 0.4466 0.2273 0.0502 0.0492
n = 35 0.8571 0.5010 0.6060 0.3161 0.0510 0.0531

Table 2.14: Power comparison between the forward and backward test under compound PLP
assumption (GIG prior) with x = 5, γ = 1

True β = 0.6 True β = 1.5 True β = 1
Sample size Z power ZB power Z power ZB power Z power ZB power
n = 15 0.5355 0.2751 0.2592 0.1406 0.0469 0.0476
n = 25 0.7418 0.3948 0.4537 0.2296 0.0502 0.0472
n = 35 0.8628 0.4971 0.6107 0.3154 0.0508 0.0498
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Table 2.15: Power comparison between the forward and backward test under compound PLP
assumption (GIG prior) with x = 7.5, γ = 1

True β = 0.6 True β = 1.5 True β = 1
Sample size Z power ZB power Z power ZB power Z power ZB power
n = 15 0.5267 0.2674 0.2637 0.1434 0.0524 0.0487
n = 25 0.7331 0.3921 0.4528 0.2352 0.0490 0.0498
n = 35 0.8632 0.5023 0.6101 0.3112 0.0476 0.0461

Another way of generating a compound PLP is by using a recent three parameter

Amorosro prior (2.97) introduced by Crooks (2015) [30] where

� The “likelihood”:

λ(t|θ) = θ−ββtβ−1, t > 0 (2.96)

� The “prior”

π(θ) =
1

Γ(c)
|d
b
|(θ
b

)cd−1 exp(−(
θ

b
)d), θ > 0 (2.97)

� The “pseudo” unconditional intensity:

λ(t) =

∫ ∞
0

λ(t|θ)π(θ)dθ = βtβ−1 1

Γ(c)
(−(−1

b
)d)−c+

β
d b−cdΓ(c− β

d
), t > 0 (2.98)

The mean function thus becomes

Λ(t) =

∫ t

0

λ(y)dy =
1

Γ(c)
(−(−1

b
)d)−c+

β
d b−cdΓ(c− β

d
)tβ, (2.99)

and the non-homogeneous times can be obtained from the homogeneous times using

NH.T imes =

 H.T imes
1

Γ(c)
(−(−1

b
)d)−c+

β
d b−cdΓ(c− β

d
)tβ

 1
β

(2.100)

The power comparisons, with 104 simulations and α = 0.05, follow.
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Table 2.16: Power comparison between the forward and backward test under compound PLP
assumption (Amoroso prior) with b = 1, c = 2, d = 3

True β = 0.6 True β = 1.5 True β = 1
Sample size Z power ZB power Z power ZB power Z power ZB power
n = 15 0.5379 0.2712 0.2656 0.1437 0.0534 0.0506
n = 25 0.7369 0.3923 0.4526 0.2370 0.0493 0.0513
n = 35 0.8581 0.4954 0.6094 0.3083 0.0547 0.0484

Table 2.17: Power comparison between the forward and backward test under compound PLP
assumption (Amoroso prior) with b = 5, c = 4, d = 5

True β = 0.6 True β = 1.5 True β = 1
Sample size Z power ZB power Z power ZB power Z power ZB power
n = 15 0.5357 0.2736 0.2638 0.1433 0.0516 0.0495
n = 25 0.7374 0.3994 0.4435 0.2228 0.0481 0.0482
n = 35 0.8563 0.4939 0.6097 0.3174 0.0490 0.0534

Table 2.18: Power comparison between the forward and backward test under compound PLP
assumption (Amoroso prior) with b = 15, c = 5, d = 7

True β = 0.6 True β = 1.5 True β = 1
Sample size Z power ZB power Z power ZB power Z power ZB power
n = 15 0.5366 0.2684 0.2659 0.1431 0.0509 0.0481
n = 25 0.7387 0.3952 0.4607 0.2334 0.0530 0.0471
n = 35 0.8638 0.5009 0.6024 0.3125 0.0517 0.0509

The hyperparameters in each of compound PLPs were carefully chosen to cover a wide

type of intensity shapes. The superiority of the forward test Z is still persistent, especially

with small sample sizes, when at times, it becomes twice as powerful as ZB.

2.4.3 Unimodal smooth intensity

Power law or compound Power law intensities encountered in sections 2.4.1 and 2.4.2 are able

to describe intensities which are either strictly increasing or decreasing. Dimitrakopoulou et
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(a) Generalized smooth intensities (b) Unimodal intensities

Figure 2.10: Unimodal intensities introduced by Dimitrakopoulou et al. (2007)

al. (2007) [35] introduced unimodal intensities of the form

λ(t) = αβλtβ−1(1 + λtβ)α−1, t > 0 (2.101)

which can handle bathtub or inverse bathtub shaped scenarios, graphed in Fig (2.10).

The following graph (Fig. (2.11)) compares the power functions of the forward, backward

and Laplace tests, and identifies a range of β values over which the backward test outperforms

the forward.

We shall not pursue this class of intensity any further in this dissertation, but will,

however, note the possible existence of intensities (even within the smooth family) under

which, the forward supremacy might be challenged. The merit in adding an extra parameter

may be judged by deviance type tests.

2.4.4 Step intensity

Smooth intensities (unimodal or not) are adequate for representing changes in the failure

pattern which are gradual, over a considerable period of time. If these changes are abrupt,
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Figure 2.11: Power comparisons among forward, backward and Laplace tests under unimodal
intensities

then step intensities of the type graphed in Fig (2.12), a special class of rough intensities of

the form

λ(t) =

p∑
i=1

kiI(τi−1,τi](t), t > 0 (2.102)

where IA(.) represents the usual indicator function on a set A, are often useful.

The two-step case (p = 2) and the power performance of the forward, backward, and

Laplace tests have been analyzed in considerable detail by Ho (1993) [66]. To generalize, we

shall look at an example when k1 = 1, k2 = 2, k3 = 1, n = 15 and the sampling frequency

is 1:1:1. This means within each interval (0, τ1], (τ1, τ2], (τ2,∞), we would expect 5 (=15/3)

shocks. To elaborate

� On (0, τ1], the process is a HPP with rate 1. ⇒ the inter-event time is exponential

with average 1
1

= 1. So the waiting time for 5 events = 5× 1 units. ⇒ τ1 = 5.
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Figure 2.12: Step intensities with three steps

� On (τ1, τ2], the process is a HPP with rate 2. ⇒ the inter-event time is exponential

with average 1
2
. So the waiting time for 5 events = 5× 1

2
units. ⇒ τ2 = 5 + 5

2
= 7.5.

From the generic step intensity shown in (2.102), with p = 2, we have:

Λ(t) =

∫ t

0

λ(x)dx =


k1t 0 ≤ t ≤ τ1

k1τ1 + k2(t− τ1) τ1 < t ≤ τ2

k1τ1 + k2(τ2 − τ1) + k3(t− τ2) t > τ2

Thus, from a simulated HPP of rate 1, say, X = (x1, x2, ..., xn), the NHPP, say Y , can be

generated through the following inverse transformation:

yi =


xi
k1

xi ≤ k1τ1
xi−k1τ1

k2
+ τ1 k1τ1 < xi ≤ k1τ1 + k2(τ2 − τ1)

xi−k1τ1−k2(τ2−τ1)
k3

+ τ2 xi > k1τ1 + k2(τ2 − τ1)

Figures (2.13) and (2.14) below depict the conversion using unimodal and bathtub-shaped

step intensities.
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Figure 2.13: Time transformations under unimodal step intensities

Figure 2.14: Time transformations under bathtub shaped step intensities
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Bain et al. (1985) [8] and Engelhardt et al. (1990) [43] have studied the forward test Z and

the Laplace test L under smooth intensities and increasing rough intensities with up to three

steps, recommending L for instance, to guard against step intensities. Using deterministic

two-step rough intensities, Ho (1993) [66] studied and compared the trend detection abilities

among Z, ZB and L, assuming failure truncation. Using similar parameters (the placement

of knots, the height of the steps, the sampling frequency, the simulation strength, etc) and

group frequencies (1:1, 1:2, and 2:1 for Groups I, II and III, respectively), we retraced the

steps to get Table (2.19), the values in which are in close agreement with Ho (1993) [66],

showing the backward test works best if the jump is placed late into the process.

Table 2.19: Power comparison between Z,ZB and L with k1 = 1, k2 = 3

Group I Group II Group III

n=10 n=20 n=40 n=10 n=20 n=40 n=10 n=20 n=40
Z 0.2682 0.3999 0.6066 0.2990 0.5052 0.7532 0.2172 0.2738 0.4192
ZB 0.3064 0.5343 0.8213 0.2862 0.4880 0.7743 0.2711 0.4602 0.7374
L 0.3341 0.5530 0.8246 0.3628 0.6313 0.8935 0.2767 0.3987 0.6353

The purpose of this section is to generalize the Z − ZB comparisons to three steps, and

to a random mixing of two steps. 104 iterations, the number used by Ho (1993) [66], was

used.

Table 2.20: Power comparison between the forward and backward test with k1 = 1, k2 =
2, k3 = 1, sampling frequency = 1:1:1

Sampling freq = 1:1:1 Average counts Knot placements
Sample size Z power ZB power E(0, τ1] E(τ1, τ2] τ1 τ2

n = 15 0.0623 0.0543 5.003 4.9071 5 7.5
n = 30 0.0635 0.0562 9.9586 9.9976 10 15
n = 45 0.0690 0.0519 14.9817 14.9953 15 22.5
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Table 2.21: Power comparison between the forward and backward test with k1 = 1, k2 =
2, k3 = 1, sampling frequency = 1:2:1

Sampling freq = 1:2:1 Average counts Knot placements
Sample size Z power ZB power E(0, τ1] E(τ1, τ2] τ1 τ2

n = 20 0.0796 0.0634 5.0445 9.7782 5 10
n = 40 0.0989 0.0704 9.9301 19.8930 10 20
n = 60 0.1116 0.0785 14.9382 29.8900 15 30

Table 2.22: Power comparison between the forward and backward test with k1 = 1, k2 =
0.5, k3 = 1, sampling frequency = 1:1:1

Sampling freq = 1:1:1 Average counts Knot placements
Sample size Z power ZB power E(0, τ1] E(τ1, τ2] τ1 τ2

n = 15 0.0940 0.0984 5.0307 4.8726 5 15
n = 30 0.1111 0.0935 10.0045 9.9606 10 30
n = 45 0.1263 0.1059 14.9930 14.9970 15 45

Table 2.23: Power comparison between the forward and backward test with k1 = 1, k2 =
0.5, k3 = 1, sampling frequency = 1:2:1

Sampling freq = 1:2:1 Average counts Knot placements
Sample size Z power ZB power E(0, τ1] E(τ1, τ2] τ1 τ2

n = 20 0.1233 0.1065 5.0200 9.8050 5 25
n = 40 0.1509 0.1356 10.0263 19.8596 10 50
n = 60 0.1800 0.1567 14.9873 29.9782 15 75

Table 2.24: Power comparison between the forward and backward test with k1 = 1, k2 =
2, k3 = 3, sampling frequency = 1:1:1

Sampling freq = 1:1:1 Average counts Knot placements
Sample size Z power ZB power E(0, τ1] E(τ1, τ2] τ1 τ2

n = 15 0.2623 0.2352 5.0088 4.8811 5 7.5
n = 30 0.4378 0.4719 10.0435 9.9387 10 15
n = 45 0.5886 0.6693 15.0238 14.9823 15 22.5
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Table 2.25: Power comparison between the forward and backward test with k1 = 1, k2 =
2, k3 = 3, sampling frequency = 1:2:1

Sampling freq = 1:2:1 Average counts Knot placements
Sample size Z power ZB power E(0, τ1] E(τ1, τ2] τ1 τ2

n = 20 0.3047 0.2422 5.0010 9.7489 5 10
n = 40 0.5067 0.4670 9.9475 19.9217 10 20
n = 60 0.6774 0.6691 15.0038 29.9359 15 30

Table 2.26: Power comparison between the forward and backward test with k1 = 3, k2 =
2, k3 = 1, sampling frequency = 1:1:1

Sampling freq = 1:1:1 Average counts Knot placements
Sample size Z power ZB power E(0, τ1] E(τ1, τ2] τ1 τ2

n = 18 0.2878 0.2845 6.0445 5.8903 2 5
n = 36 0.5398 0.4925 12.0228 11.9709 4 10
n = 54 0.7371 0.6651 18.0583 18.0416 6 15

Table 2.27: Power comparison between the forward and backward test with k1 = 3, k2 =
2, k3 = 1, sampling frequency = 1:2:1

Sampling freq = 1:2:1 Average counts Knot placements
Sample size Z power ZB power E(0, τ1] E(τ1, τ2] τ1 τ2

n = 24 0.2925 0.2963 5.9738 11.7766 2 8
n = 48 0.5434 0.5387 12.0093 23.8463 4 16
n = 72 0.7227 0.7238 18.0263 35.9533 6 24

In groups of two different frequencies 1 : 1 : 1 and 1 : 2 : 1, we have surveyed, in Tables

(2.20) to (2.27), three-step intensities that are unimodal, bathtub shaped, monotonically in-

creasing and decreasing. It is interesting to note that the two-step ZB superiority conclusion

seen in Table (2.19) extends to three steps too, evidenced by Table (2.24) and there exist

other situations, such as the one shown in Table (2.27) where ZB performs almost as good

and at times, better than the forward test. Next, we investigate their performance against
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a three-step alternative of the form:

Ha : λ(t) = 1It(0, τ1] + 3It(τ1, τ2] + 5It(τ2,∞) (2.103)

where the height of the steps are larger compared to the previous examples. Arguably, this

leads to easier non-stationarity detection and the locations of the jump pairs are emphasized

in the following comparison table.

Table 2.28: Power comparison between Z,ZB and L with k1 = 1, k2 = 3, k3 = 5

Group I Group II Group III

n=10 n=20 n=40 n=10 n=20 n=40 n=10 n=20 n=40
(3,7) (6,14) (12,18) (2,5) (5,11) (12,24) (5,8) (12,18) (26,38)

Z 0.6321 0.5264 0.7726 0.3511 0.5472 0.7677 0.2678 0.3211 0.4210
ZB 0.4910 0.4536 0.7206 0.2388 0.4311 0.7360 0.3172 0.5027 0.7373
L 0.6721 0.6393 0.8903 0.3593 0.6315 0.8931 0.3437 0.4640 0.6299

To appreciate the increase in power, we choose the last category (Group III, n = 40) and

change the step heights k2 = 3 and k3 = 5 in the intensity above to different combinations

to get the following surface diagrams (Figs (2.15) and (2.16)). The backward test largely

dominates the other two.
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Figure 2.15: Power comparison among Z,ZB and L with high values of k2, k3 (view 1)

Figure 2.16: Power comparison among Z,ZB and L with high values of k2, k3 (view 2)

Random mixing of steps

Next, with a sample of size 40, we consider a 50-50 mixture of an increasing step intensity

(k1 = 1, k2 = 3) and a decreasing step intensity (k1 = 3, k2 = 1). The rationale behind these

mixtures will be discussed in detail in the next chapter. Crudely, from a simulation viewpoint,

it represents sampling the process from the increasing intensity 50% of the times and from

the decreasing intensity, the remaining 50% of the times. Gleaning information from Table
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(2.19) and (2.24), the jumps were placed late into the process at τinc = 27, τdec = 27/3 to

accentuate the difference in the power performance. The backward test using ZB shows

better classification accuracy (Table(2.29)) under this hybrid framework too.

Table 2.29: Power comparison under failure truncation (50-50 step mixing) among the for-
ward, backward and Laplace test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc =
27, τdec = 27/3, combination: (2 : 1)× (2 : 1)

Test Estimated power

Forward test Z 0.5441
Backward test ZB 0.7218

Laplace test L 0.7069

Thus, in summary, this chapter suggests that under a large class of smooth intensities

(such as the Power laws or compound Power laws), switching time will not be profitable

from the viewpoint of achieving a power higher than Z, but under rough step intensities, it

will.
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Chapter 3

Bi-directional testing

Statistics employed to weed out non-stationary tendencies react differently to changes in the

underlying intensity. We have witnessed how the forward test Z remains optimal under power

laws and a host of smooth intensities, but loses power in the face of rough step intensities.

The backward test ZB renders better classification accuracy in those cases. Noting how non-

stationarity (or non-homogeneity) embraces both process deterioration and improvement,

one of the goals of this dissertation is to reap the benefits from both Z and ZB through the

creation of a single, implementable tool, fusing their optimal properties. What follows in

this chapter is an adumbration of that development.

3.1 Prelude

In our quest to combine the forward and backward test, we explore a series of options,

each paving the way for the next logical proposal. When the unidirectional arms Z and ZB

are used directly in the bidirectional test function, we emphasize it by placing an ordered

superscript {X, Y } to clarify that Z is “looking” in the X direction, while ZB is “looking”

in the Y direction. {X, Y } ∈ {L,R}, with L representing the left, and R, the right. This

superscript will be dropped eventually to create a double bidirectional test φ(ZBD), when the
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individual components will not be Z and ZB anymore, but their maximum and minimum.

Here are our initial proposals.

φ(ZLR
BD) =

{
1 if Z < χ2

1−α
2
,2n−2 or ZB > χ2

α
2
,2n−2,

0 otherwise.
(3.1)

φ(ZLL
BD) =

{
1 if Z < χ2

1−α
2
,2n−2 or ZB < χ2

1−α
2
,2n−2,

0 otherwise.
(3.2)

φ(ZRR
BD) =

{
1 if Z > χ2

α
2
,2n−2 or ZB > χ2

α
2
,2n−2,

0 otherwise.
(3.3)

φ(ZRL
BD) =

{
1 if Z > χ2

α
2
,2n−2 or ZB < χ2

1−α
2
,2n−2,

0 otherwise.
(3.4)

Thus, to detect general non-stationarity, in φ(ZRR
BD) for instance, we are employing the

forward test Z to detect process improvement and the backward test ZB to detect deteriora-

tion. The unidirectional tests are run at level α/2 each to maintain the overall level condition.

Arguably, thus, φ(ZRR
BD) and φ(ZLL

BD) are expected to be efficient in signaling non-stationarity

in both directions, while φ(ZLR
BD) and φ(ZRL

BD) will be more efficient in sensing deterioration

and improvement, respectively. Using a simulation strength of 104, samples of size 40 (i.e.,

40 events within each generation), and α = 0.1, we embark on a large scale power study,

using step intensities with different trends (increasing/decreasing) and different placement of

jumps (early, midway, late). To confirm intuitive expectations, for the bidirectional tests, we

keep a running record of the proportion of cases rejected by Z only, by ZB only, and by both.

These are represented by a, b and c, respectively. The powers, given by a + b − c are also

stored. The established unidirectional tests’ performances are also stored alongside. Each
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table monitors the average number of events observed in both the “pre-change” interval and

the “post-change” interval, to confirm our expected sampling frequencies.

3.1.1 Deterministic steps

The steps are first chosen deterministically, i.e., for an increasing step scenario k1 = 1, k2 = 3

with the knot placed at τ = 20, each one of the 104 non-homogeneous cases had their

parameters controlled that way while being simulated.

Increasing intensity

Table 3.1: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 1, k2 = 3, τ = 20, frequency =1:1

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0351 0.6138 0.0010 0.0011
0.6149 0.8163 b= 0.2376 0.0000 0.8162 0.0000

c= 0.5787 0.0000 0.0001 0.0000
pow= 0.8514 0.6138 0.8173 0.0011

E(N(0, τ ]) = 19.9316, E(N(τ,∞)) = 20.0684.

Table 3.2: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 1, k2 = 3, τ = 14, frequency =1:2

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.1006 0.7495 0.0002 0.0002
0.7497 0.7723 b= 0.1234 0.0000 0.7723 0.0000

c= 0.6489 0.0000 0.0000 0.0000
pow= 0.8729 0.7495 0.7725 0.0002

E(N(0, τ ]) = 13.9456, E(N(τ,∞)) = 26.0544.
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Table 3.3: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 1, k2 = 3, τ = 26, frequency =2:1

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0162 0.4068 0.0043 0.0041
0.4111 0.7273 b= 0.3362 0.0005 0.7268 0.0003

c= 0.3906 0.0000 0.0000 0.0002
pow= 0.7430 0.4073 0.7311 0.0046

E(N(0, τ ]) = 25.9863, E(N(τ,∞)) = 14.0137.

We find that φ(ZLR
BD) consistently outperforms the forward and backward tests and the other

versions of the bidirectional test. This is expected since as mentioned previously, both arms

have been employed to detect deterioration, which is the framework we have worked under.

This is also evidenced quantitatively by φ(ZLR
BD), unlike the rest, deriving most of its strength

from joint rejection, i.e., from the c component. In these cases, the height of the second step

k2 was held fixed at 3. To check whether the bidirectional supremacy will prevail over other

heights, we let k2 vary to get Fig (3.1)
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Figure 3.1: Generalized power comparison among Z,ZB and ZLR
BD with n = 40 and a (2 : 1)

sampling scheme

We note that as detection becomes easier, corresponding to higher values of k2, the

bidirectional test is almost as good as the unidirectional backward test, but for smaller

values, corresponding to harder detection, it significantly outperforms the rest.

Decreasing intensity

Now, we move on to simulating improving systems from decreasing intensities of the form

k1 = 3, k2 = 1. Due to reasons described earlier, φRLBD is now expected to perform the best.

The following tables corroborate.
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Table 3.4: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 3, k2 = 1, τ = 20/3, frequency =1:1

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0001 0.0001 0.8167 0.2348
0.8169 0.6230 b= 0.0007 0.6223 0.0006 0.0403

c= 0.0000 0.0000 0.0007 0.5820
pow= 0.0008 0.6224 0.8174 0.8571

E(N(0, τ ]) = 19.9699, E(N(τ,∞)) = 20.0301.

Table 3.5: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 3, k2 = 1, τ = 16/3, frequency =2:3

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0000 0.0000 0.8089 0.3113
0.8090 0.5235 b= 0.0021 0.5214 0.0020 0.0237

c= 0.0000 0.0000 0.0001 0.4977
pow= 0.0021 0.5214 0.8110 0.8327

E(N(0, τ ]) = 16.0521, E(N(τ,∞)) = 23.9479.

Table 3.6: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 3, k2 = 1, τ = 24/3, frequency =3:2

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0002 0.0002 0.7641 0.1437
0.7643 0.7133 b= 0.0002 0.7131 0.0002 0.0927

c= 0.0000 0.0000 0.0000 0.6204
pow= 0.0004 0.7133 0.7643 0.8568

E(N(0, τ ]) = 24.0868, E(N(τ,∞)) = 15.9132.

Analogous to the increasing intensity scenario, we find that that φ(ZRL
BD) now is perform-

ing the best, since both arms have been employed to detect improvement, which k1 = 3, k2 =

1 represents. This is confirmed by a high c component. In these cases, the height of the first
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step k1 was held fixed at 1. To check whether we have similar results under other choices,

we let k1 vary to get Fig (3.2)

Figure 3.2: Generalized power comparison among Z,ZB and ZRL
BD with n = 40 and a (1 : 2)

sampling scheme

Once again, we find that easy detection invites similar performance from this bidirectional

test and a unidirectional one (Z this time, unlike the previous case), while hard detection

establishes the bidirectional relevance.

3.1.2 Random mixing of steps

Absolute knowledge about the trend of the step intensity (and the location of the knot) is

a luxury one might not always afford. Thus, our next set of simulation exercise exploits a
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50-50 random mix of an increasing k1 = 1, k2 = 3 step and a decreasing k1 = 3, k2 = 1 step

intensity. Each table records the proportion of increasing and decreasing cases generated.

Table 3.7: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
20/3, combination : (1 : 1)× (1 : 1)

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0159 0.3000 0.4119 0.1118
0.7120 0.7258 b= 0.1205 0.3212 0.4045 0.0210

c= 0.2841 0.0000 0.0001 0.3002
pow= 0.4205 0.6212 0.8165 0.4330

ˆpinc = 0.4943, ˆpdec = 0.5057.

Table 3.8: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
13/3, combination : (1 : 1)× (1 : 2)

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0169 0.2986 0.3827 0.1803
0.6815 0.6217 b= 0.1290 0.2110 0.4105 0.0084

c= 0.2817 0.0000 0.0002 0.2026
pow= 0.4276 0.5096 0.7934 0.3913

ˆpinc = 0.5002, ˆpdec = 0.4998.

Table 3.9: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
27/3, combination : (1 : 1)× (2 : 1)

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0164 0.3034 0.3423 0.0493
0.6457 0.7808 b= 0.1276 0.3662 0.4146 0.0732

c= 0.2870 0.0000 0.0000 0.2930
pow= 0.4310 0.6696 0.7569 0.4155

ˆpinc = 0.5051, ˆpdec = 0.4949.
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Table 3.10: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
20/3, combination : (1 : 2)× (1 : 1)

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0563 0.3818 0.4137 0.1126
0.7956 0.7001 b= 0.0532 0.3214 0.3786 0.0202

c= 0.3255 0.0000 0.0001 0.3012
pow= 0.4350 0.7032 0.7924 0.4340

ˆpinc = 0.4956, ˆpdec = 0.5044.

Table 3.11: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
13/3, combination : (1 : 2)× (1 : 2)

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0616 0.3894 0.3734 0.1827
0.7628 0.5819 b= 0.0544 0.1997 0.3822 0.0090

c= 0.3278 0.0000 0.0000 0.1907
pow= 0.4438 0.5891 0.7556 0.3824

ˆpinc = 0.5073, ˆpdec = 0.4927.

Table 3.12: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
27/3, combination : (1 : 2)× (2 : 1)

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0585 0.3752 0.3439 0.0543
0.7191 0.7386 b= 0.0547 0.3672 0.3714 0.0776

c= 0.3167 0.0000 0.0000 0.2896
pow= 0.4299 0.7424 0.7153 0.4215

ˆpinc = 0.4913, ˆpdec = 0.5069.
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Table 3.13: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
20/3, combination : (2 : 1)× (1 : 1)

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0087 0.1953 0.4126 0.1217
0.6081 0.6711 b= 0.1705 0.3140 0.3569 0.0229

c= 0.1866 0.0000 0.0002 0.2911
pow= 0.3658 0.5093 0.7697 0.4357

ˆpinc = 0.5004, ˆpdec = 0.4996.

Table 3.14: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
13/3, combination : (2 : 1)× (1 : 2)

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0088 0.1981 0.3862 0.1827
0.5843 0.5678 b= 0.1679 0.2106 0.3572 0.0017

c= 0.1893 0.0000 0.0000 0.2035
pow= 0.3660 0.4087 0.7434 0.3933

ˆpinc = 0.5014, ˆpdec = 0.4986.

Table 3.15: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
27/3, combination : (2 : 1)× (2 : 1)

Z power ZB power ZBD powers
ZLR
BD ZLL

BD ZRR
BD ZRL

BD

a= 0.0088 0.1876 0.3429 0.0555
0.5307 0.7192 b= 0.1762 0.3642 0.3548 0.0766

c= 0.1788 0.0000 0.0002 0.2876
pow= 0.3638 0.5518 0.6979 0.4197

ˆpinc = 0.5028, ˆpdec = 0.4972.

We find that in the majority of cases, among the bidirectional proposals, φ(ZRR
BD) performs

the best. The next set of surface diagrams (of one of the sampling frameworks, viewed from

85



different orientations) strengthens this conclusion by letting the second step of the increasing

intensity and the first step of the decreasing intensity vary systematically.

Figure 3.3: Generalized power comparison among Z,ZB and ZRR
BD with n = 40 and a (2 :

1)× (1 : 2) sampling scheme
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Figure 3.4: Generalized power comparison among Z,ZB and ZRR
BD with n = 40 and a (2 :

1)× (1 : 2) sampling scheme

Figure 3.5: Generalized power comparison among Z,ZB and ZRR
BD with n = 40 and a (2 :

1)× (1 : 2) sampling scheme
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Figure 3.6: Generalized power comparison among Z,ZB and ZRR
BD with n = 40 and a (2 :

1)× (1 : 2) sampling scheme

Figure 3.7: Generalized power comparison among Z,ZB and ZRR
BD with n = 40 and a (2 :

1)× (1 : 2) sampling scheme
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Figure 3.8: Generalized power comparison among Z,ZB and ZRR
BD with n = 40 and a (2 :

1)× (1 : 2) sampling scheme

Figure 3.9: Generalized power comparison among Z,ZB and ZRR
BD with n = 40 and a (2 :

1)× (1 : 2) sampling scheme

The graphs above demonstrate the power efficiency of φ(ZRR
BD) under a late-early place-
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ment of knots. It is interesting to note, however, that despite being the most regnant, this

superiority is not persistent for every sampling scenario, even within the bidirectional op-

tions. There exist cases such as Table(3.12) where φ(ZLL
BD) outperforms φ(ZRR

BD) and Tables

(3.9) and (3.15) where the unidirectional backward test emerges as the best candidate, even

over the bidirectional options proposed in this section. Competitions between the unidirec-

tional tests prove interesting too, where with the exception of the 1:2 sampling scheme on

the decreasing intensity (i.e., early placement of knots), φ(ZB) is outperforming φ(Z). Thus,

with the intention of reducing the schematic complexity and striving towards a uniform

winner, we modify the contributing arms of the bidirectional tests next, to propose refined

definitions.

3.2 Bi-directional proposals

It is worth recalling that deterioration inflates ZB (and hence, deflates Z) while improvement

inflates Z (and hence deflates ZB). Thus, under general non-stationarity, the maximum

of these two statistics will be large, and the minimum will be small. This observation

motivates two one-tailed tests based on R = max(Z,ZB) and L = min(Z,ZB) as potential

replacements of the two-tailed tests introduced in the last section. In the context of testing

non-homogeneity, with the null H0 asserting stationarity, they are defined as follows.

Definition 3.1. The maximum based R test is defined as

φ(R) =

{
1 if R ≥ cRα
0 otherwise

(3.5)

Definition 3.2. The minimum based L test is defined as

φ(L) =

{
1 if L ≤ cLα
0 otherwise

(3.6)
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where cRα and cLα are the usual upper and lower α points of the null densities of R and

L respectively, summarized for different choices of α, with a maximum sample size of 50,

in the Appendix. The prospect of two-tailed tests may still be entertained, with the arms

modified as in

Definition 3.3. The double bidirectional test is defined as

φ(ZDB) =

{
1 ifL ≤ cLα

2
or R ≥ cRα

2

0 otherwise
(3.7)

Another way of combining contributions from the unidirectional pieces would be by check-

ing the p-values from both the maximum based R test and the minimum based L test and

reject the stationarity assumption for extremely low values of the minimum p-value. This

option, termed the dual bidirectional test is thus, formally defined as

Definition 3.4. With P = min{PH0(L ≤ l), PH0(R ≥ r)}, the dual bidirectional test is

defined as

φ(PDB) =

{
1 ifP ≤ pα
0 otherwise

(3.8)

where pα is the lower α point of the null distribution of P , tabulated in the Appendix.

The null distributions for each of these bidirectional statistics R,L, and P have been

derived using a stronger simulation strength of 105, ensuring numerical stability across dif-

ferent runs. Figure (3.10) below graphs the null distribution of P , as an example, with a

sample of size 40.
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Figure 3.10: Null distribution of dual bidirectional statistic P with n = 40

Each of these newly proposed tests value contributions from both Z and ZB, and offers

a new way of combining them. An interesting fact about the two-tailed double bidirectional

test φ(ZBD) is that it will almost never be able to achieve a predefined size α since

EH0{φ(ZDB)} = PH0{L ≤ cLα
2

or R ≥ cRα
2
} (3.9)

= PH0{L ≤ cLα
2
}+ PH0{R ≥ cRα

2
} − PH0{L ≤ cLα

2
and R ≥ cRα

2
} (3.10)

=
α

2
+
α

2
− positive (a.s.) (3.11)

< α (a.s.) (3.12)

The intersection term is almost always positive unless we have for instance, R = L.

Chapter 2 has described explosive cases (not considered in this dissertation) under which

this may happen. Other tests however, will be able to reach size α since

EH0{φ(PDB)} = PH0{P ≤ pα} (3.13)

= α (by definition) (3.14)

Table (3.16) below, checking the true α value for these two tests, suggests this fact
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numerically. This also helps to explain φ(PDB)’s slightly better power performance compared

to φ(ZDB) in the tables to follow.

Table 3.16: True level checking

Nominal α ZDB True α PDB True α

α = 0.01 0.0083 0.0098
α = 0.05 0.0442 0.0500
α = 0.1 0.0905 0.1018

In the next section, we employ these tests by conducting power studies along veins in-

troduced previously.

3.3 Power comparisons

The control parameters and the simulation schemes remain similar to the ones described in

the previous section, and hence, will not be repeated here to avoid monotony.

3.3.1 50-50 mixing of two step intensities

Table 3.17: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
20/3, combination : (1 : 1)× (1 : 1)

Test Estimated power

Forward test Z 0.7069
Backward test ZB 0.7244

Right bidirectional test R 0.8124
Left bidirectional test L 0.6193

Double bidirectional test ZDB 0.7685
P−dual bidirectional test PDB 0.7858
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Table 3.18: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
13/3, combination : (1 : 1)× (1 : 2)

Test Estimated power

Forward test Z 0.6881
Backward test ZB 0.6166

Right bidirectional test R 0.7981
Left bidirectional test L 0.5069

Double bidirectional test ZDB 0.7279
P−dual bidirectional test PDB 0.7482

Table 3.19: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
27/3, combination : (1 : 1)× (2 : 1)

Test Estimated power

Forward test Z 0.6455
Backward test ZB 0.7643

Right bidirectional test R 0.7461
Left bidirectional test L 0.6641

Double bidirectional test ZDB 0.7507
P−dual bidirectional test PDB 0.7698

Table 3.20: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
20/3, combination : (1 : 2)× (1 : 1)

Test Estimated power

Forward test Z 0.7903
Backward test ZB 0.6963

Right bidirectional test R 0.7845
Left bidirectional test L 0.7027

Double bidirectional test ZDB 0.7825
P−dual bidirectional test PDB 0.7968
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Table 3.21: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
13/3, combination : (1 : 2)× (1 : 2)

Test Estimated power

Forward test Z 0.7596
Backward test ZB 0.5779

Right bidirectional test R 0.7543
Left bidirectional test L 0.5835

Double bidirectional test ZDB 0.7295
P−dual bidirectional test PDB 0.7486

Table 3.22: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
27/3, combination : (1 : 2)× (2 : 1)

Test Estimated power

Forward test Z 0.7176
Backward test ZB 0.7393

Right bidirectional test R 0.7178
Left bidirectional test L 0.7398

Double bidirectional test ZDB 0.7526
P−dual bidirectional test PDB 0.7713

Table 3.23: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
20/3, combination : (2 : 1)× (1 : 1)

Test Estimated power

Forward test Z 0.6060
Backward test ZB 0.6715

Right bidirectional test R 0.7671
Left bidirectional test L 0.5104

Double bidirectional test ZDB 0.7008
P−dual bidirectional test PDB 0.7231

95



Table 3.24: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
13/3, combination : (2 : 1)× (1 : 2)

Test Estimated power

Forward test Z 0.5691
Backward test ZB 0.5652

Right bidirectional test R 0.7363
Left bidirectional test L 0.3981

Double bidirectional test ZDB 0.6541
P−dual bidirectional test PDB 0.6761

Table 3.25: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
27/3, combination : (2 : 1)× (2 : 1)

Test Estimated power

Forward test Z 0.5441
Backward test ZB 0.7218

Right bidirectional test R 0.7083
Left bidirectional test L 0.5582

Double bidirectional test ZDB 0.6858
P−dual bidirectional test PDB 0.7047

3.3.2 Deterministic steps

Steps, either increasing or decreasing, are chosen here with absolute certainty.

Table 3.26: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 1, k2 = 3, τ = 20

Test Estimated power

Forward test Z 0.6039
Backward test ZB 0.8185

Right bidirectional test R 0.8195
Left bidirectional test L 0.6032

Double bidirectional test ZDB 0.7615
P−dual bidirectional test PDB 0.7803
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Table 3.27: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 1, k2 = 3, τ = 14

Test Estimated power

Forward test Z 0.7417
Backward test ZB 0.7729

Right bidirectional test R 0.7732
Left bidirectional test L 0.7417

Double bidirectional test ZDB 0.7840
P−dual bidirectional test PDB 0.8027

Table 3.28: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 1, k2 = 3, τ = 26

Test Estimated power

Forward test Z 0.4242
Backward test ZB 0.7313

Right bidirectional test R 0.7361
Left bidirectional test L 0.4192

Double bidirectional test ZDB 0.6619
P−dual bidirectional test PDB 0.6813

Table 3.29: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 3, k2 = 1, τ = 20/3

Test Estimated power

Forward test Z 0.8154
Backward test ZB 0.6335

Right bidirectional test R 0.8166
Left bidirectional test L 0.6325

Double bidirectional test ZDB 0.7690
P−dual bidirectional test PDB 0.7874
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Table 3.30: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 3, k2 = 1, τ = 14/3

Test Estimated power

Forward test Z 0.7879
Backward test ZB 0.4514

Right bidirectional test R 0.7910
Left bidirectional test L 0.4489

Double bidirectional test ZDB 0.7061
P−dual bidirectional test PDB 0.7279

Table 3.31: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1 = 3, k2 = 1, τ = 26/3

Test Estimated power

Forward test Z 0.7248
Backward test ZB 0.7333

Right bidirectional test R 0.7257
Left bidirectional test L 0.7331

Double bidirectional test ZDB 0.7623
P−dual bidirectional test PDB 0.7801

In a spirit similar to Ho (1993) [66], we collect summarized verdicts in the recommenda-

tion Table (3.32).

Table 3.32: Prescription for step intensities.

Guarding against Location Recommendation

Early P−dual bidirectional test PDB
Increasing intensity Midway Right bidirectional test R

Late Right bidirectional test R
Early Right bidirectional test R

Decreasing intensity Midway Right bidirectional test R
Late P−dual bidirectional test PDB

Thus for instance, if one suspects an increasing nature of the underlying intensity and

an early change, then the best test to confirm it would be the dual bidirectional PDB.
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3.3.3 50-50 mixing of two power laws

Competing with the forward Z test under a (deterministic) power law setting would be

futile since as noted in Chapter 2, it is UMP under the condition. We found that superiority

persists even under a 50-50 mix of an increasing and a decreasing power law.

Table 3.33: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, βL = 0.6, βR = 1.5

Test Estimated power

Forward test Z 0.8678
Backward test ZB 0.5808

Right bidirectional test R 0.7138
Left bidirectional test L 0.7351

Double bidirectional test ZDB 0.8104
P−dual bidirectional test PDB 0.8234

Table 3.34: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, βL = 0.7, βR = 1.3

Test Estimated power

Forward test Z 0.6047
Backward test ZB 0.3479

Right bidirectional test R 0.5039
Left bidirectional test L 0.4493

Double bidirectional test ZDB 0.5295
P−dual bidirectional test PDB 0.5519

Table 3.35: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, βL = 0.8, βR = 1.2

Test Estimated power

Forward test Z 0.3523
Backward test ZB 0.2176

Right bidirectional test R 0.3007
Left bidirectional test L 0.2699

Double bidirectional test ZDB 0.2919
P−dual bidirectional test PDB 0.3134
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Table 3.36: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, βL = 0.9, βR = 1.1

Test Estimated power

Forward test Z 0.1654
Backward test ZB 0.1286

Right bidirectional test R 0.1513
Left bidirectional test L 0.1430

Double bidirectional test ZDB 0.1373
P−dual bidirectional test PDB 0.1523

Note that when detection gets “hard” (as in Table (3.36) with βL = 0.9, βR = 1.1 both

being very close to 1), our dual bidirectional proposal gets extremely close to the forward

test.

3.3.4 25-25-25-25 mixing

A new sampling framework, not considered previously, this represents, for each simulation,

choosing an increasing power law, a decreasing power law, an increasing step intensity or

a decreasing step intensity with probability 1/4 each. Arguably, this represents the most

realistic assumption in the absence of useful knowledge on the governing intensity.

Table 3.37: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
20/3, combination : (1 : 1)× (1 : 1), βL = 0.6, βR = 1.5

Test Estimated power

Forward test Z 0.7887
Backward test ZB 0.6453

Right bidirectional test R 0.7610
Left bidirectional test L 0.6733

Double bidirectional test ZDB 0.7887
P−dual bidirectional test PDB 0.8054
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Table 3.38: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
20/3, combination : (1 : 1)× (1 : 1), βL = 0.8, βR = 1.2

Test Estimated power

Forward test Z 0.5347
Backward test ZB 0.4676

Right bidirectional test R 0.5634
Left bidirectional test L 0.4396

Double bidirectional test ZDB 0.5322
P−dual bidirectional test PDB 0.5509

Table 3.39: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
13/3, combination : (1 : 1)× (1 : 2), βL = 0.6, βR = 1.5

Test Estimated power

Forward test Z 0.7738
Backward test ZB 0.5948

Right bidirectional test R 0.7522
Left bidirectional test L 0.6168

Double bidirectional test ZDB 0.7661
P−dual bidirectional test PDB 0.7825

Table 3.40: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
13/3, combination : (1 : 1)× (1 : 2), βL = 0.8, βR = 1.2

Test Estimated power

Forward test Z 0.5252
Backward test ZB 0.4153

Right bidirectional test R 0.5471
Left bidirectional test L 0.3937

Double bidirectional test ZDB 0.5095
P−dual bidirectional test PDB 0.5294
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Table 3.41: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
27/3, combination : (1 : 1)× (2 : 1), βL = 0.6, βR = 1.5

Test Estimated power

Forward test Z 0.7594
Backward test ZB 0.6666

Right bidirectional test R 0.7288
Left bidirectional test L 0.6971

Double bidirectional test ZDB 0.7853
P−dual bidirectional test PDB 0.8006

Table 3.42: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 20, τdec =
27/3, combination : (1 : 1)× (2 : 1), βL = 0.8, βR = 1.2

Test Estimated power

Forward test Z 0.5055
Backward test ZB 0.4918

Right bidirectional test R 0.5268
Left bidirectional test L 0.4704

Double bidirectional test ZDB 0.5262
P−dual bidirectional test PDB 0.5446

Table 3.43: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
20/3, combination : (1 : 2)× (1 : 1), βL = 0.6, βR = 1.5

Test Estimated power

Forward test Z 0.8243
Backward test ZB 0.6338

Right bidirectional test R 0.7448
Left bidirectional test L 0.7141

Double bidirectional test ZDB 0.7922
P−dual bidirectional test PDB 0.8066
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Table 3.44: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
20/3, combination : (1 : 2)× (1 : 1), βL = 0.8, βR = 1.2

Test Estimated power

Forward test Z 0.5723
Backward test ZB 0.4476

Right bidirectional test R 0.5406
Left bidirectional test L 0.4794

Double bidirectional test ZDB 0.5364
P−dual bidirectional test PDB 0.5560

Table 3.45: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
13/3, combination : (1 : 2)× (1 : 2), βL = 0.6, βR = 1.5

Test Estimated power

Forward test Z 0.8107
Backward test ZB 0.5821

Right bidirectional test R 0.7375
Left bidirectional test L 0.6553

Double bidirectional test ZDB 0.7763
P−dual bidirectional test PDB 0.7914

Table 3.46: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
13/3, combination : (1 : 2)× (1 : 2), βL = 0.8, βR = 1.2

Test Estimated power

Forward test Z 0.5618
Backward test ZB 0.4066

Right bidirectional test R 0.5378
Left bidirectional test L 0.4309

Double bidirectional test ZDB 0.5208
P−dual bidirectional test PDB 0.5392
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Table 3.47: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
27/3, combination : (1 : 2)× (2 : 1), βL = 0.6, βR = 1.5

Test Estimated power

Forward test Z 0.7963
Backward test ZB 0.6576

Right bidirectional test R 0.7189
Left bidirectional test L 0.7358

Double bidirectional test ZDB 0.7869
P−dual bidirectional test PDB 0.8050

Table 3.48: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 13, τdec =
27/3, combination : (1 : 2)× (2 : 1), βL = 0.8, βR = 1.2

Test Estimated power

Forward test Z 0.5369
Backward test ZB 0.4696

Right bidirectional test R 0.5090
Left bidirectional test L 0.4982

Double bidirectional test ZDB 0.5207
P−dual bidirectional test PDB 0.5392

Table 3.49: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
20/3, combination : (2 : 1)× (1 : 1), βL = 0.6, βR = 1.5

Test Estimated power

Forward test Z 0.7347
Backward test ZB 0.6249

Right bidirectional test R 0.7410
Left bidirectional test L 0.6185

Double bidirectional test ZDB 0.7561
P−dual bidirectional test PDB 0.7725
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Table 3.50: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
20/3, combination : (2 : 1)× (1 : 1), βL = 0.8, βR = 1.2

Test Estimated power

Forward test Z 0.4727
Backward test ZB 0.4381

Right bidirectional test R 0.5311
Left bidirectional test L 0.3797

Double bidirectional test ZDB 0.4882
P−dual bidirectional test PDB 0.5083

Table 3.51: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
13/3, combination : (2 : 1)× (1 : 2), βL = 0.6, βR = 1.5

Test Estimated power

Forward test Z 0.7180
Backward test ZB 0.5696

Right bidirectional test R 0.7274
Left bidirectional test L 0.5605

Double bidirectional test ZDB 0.7320
P−dual bidirectional test PDB 0.7482

Table 3.52: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
13/3, combination : (2 : 1)× (1 : 2), βL = 0.8, βR = 1.2

Test Estimated power

Forward test Z 0.4589
Backward test ZB 0.3780

Right bidirectional test R 0.5122
Left bidirectional test L 0.3256

Double bidirectional test ZDB 0.4628
P−dual bidirectional test PDB 0.4833
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Table 3.53: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
27/3, combination : (2 : 1)× (2 : 1), βL = 0.6, βR = 1.5

Test Estimated power

Forward test Z 0.6971
Backward test ZB 0.6399

Right bidirectional test R 0.7025
Left bidirectional test L 0.6347

Double bidirectional test ZDB 0.7422
P−dual bidirectional test PDB 0.7576

Table 3.54: Power comparison under failure truncation among the forward, backward and
bidirectional test with n = 40, k1inc = 1, k2inc = 3, k1dec = 3, k2dec = 1, τinc = 27, τdec =
27/3, combination : (2 : 1)× (2 : 1), βL = 0.8, βR = 1.2

Test Estimated power

Forward test Z 0.4361
Backward test ZB 0.4607

Right bidirectional test R 0.4923
Left bidirectional test L 0.4047

Double bidirectional test ZDB 0.4836
P−dual bidirectional test PDB 0.5035

Table (3.55) below condenses these findings under the uniform mixture framework.

Table 3.55: Prescription for uniform mix

Inc- Dec PLP Use Inc- Dec PLP Use Inc- Dec PLP Use

Early-Early Easy Z Mid-Early Easy PDB Late-Early Easy PDB
Hard Z Hard R Hard PDB

Early-Mid Easy Z Mid-Mid Easy PDB Late-Mid Easy PDB
Hard Z Hard R Hard R

Early-Late Easy PDB Mid-Late Easy PDB Late-Late Easy PDB
Hard PDB Hard PDB Hard PDB

It is interesting to note that most frequently, some member of the bidirectional class

triumphs over the only unidirectional test that feature here with comparable power. This

holds especially if the suspected changes happen midway or late in the process, regardless

106



of how easy or hard it is to detect the smooth power-law contribution. Between the top two

bidirectional candidates, φ(PDB) occupy the table more frequently than φ(R), and even at

times when it gets beaten by φ(R), the difference in power is negligible. Thus, it may be

argued that in the face of complete ignorance about the nature of the underlying intensity,

φ(PDB) offers the best identification performance, and hence may be treated as an “all-

purpose” test. It must be pointed out this recommendation is to reduce the categorization

burden. An investigator extremely pedantic about the choice is always at liberty to ignore

this prescription and refer to Tables (3.32) and (3.55) to choose the test most apt for the

condition he is working under.

3.3.5 Case study: Dow Jones Industrial Average

The eruptive patterns of Mt. Etna, described in Chapter 1, was used by Ho (1992) [65]

to demonstrate the possibility of creating control-chart type diagrams using χ2 thresholds

for the unidirectional tests. Multiple testing was not considered but was recommended

for future work and adjusting the significance level was mentioned to control the overall

Type-I error. Our proposed change detection algorithm described later, exploits this control

through examining the Benjamini and Hochberg (1995) [14] ’s proposed thresholds. We

devote the current section, however, to generalize Ho (1992) [65] ’s pointwise testing approach

to generate control chart type figures, with the newly developed bidirectional tests. The data

set we will analyze is the one on Dow Jones Industrial Averages, detailed in the introductory

chapter.

The left panel Fig (3.11a) represents the entire data set, spanning 132 years worth of

data, starting on Feb 16, 1885. Choosing this day as t0 = 0, we have 283 observations, and
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(a) DJIA data set (entire)
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(b) DJIA data set (last 50)

Figure 3.11: Step diagrams representing Dow Jones Industrial Average closing milestones

the right panel, Fig (3.11b) represents the last 50 of these. A spike represents the global time

a closing milestone was achieved. Process deterioration is apparent both from the original

and the truncated data set with high β estimates: β̂ = 2.156 (overall) and β̂ = 1.859 (last

50).

Figure (3.12) was generated using χ2 cutoffs for Z and ZB
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Figure 3.12: Control chart type behavior of Z and ZB

while Figs (3.13) and (3.14) were created using thresholds from the empirically generated

null densities from the bidirectional statistics stored in the Appendix.
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Figure 3.13: Control chart type behavior of L and R

Since these null densities run till samples of size 50, the truncated data set was set to

include the 50 most recent observations.
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Figure 3.14: Control chart type behavior of PDB

The p-value inspired dual bidirectional test φ(PDB) appears to be the strictest of all,

with the highest proportion of rejections. Next, we collect the p-values from the competing

tests and stack them alongside a running β estimate in Fig (3.15), to understand how dif-

ficult unearthing non-stationarity is around that sample size. A deep dashed line is added

horizontally at level 1, suggesting stationarity, and traditional p-value thresholds at the 0.1

and 0.05 levels are also added as faint dashed lines.
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Figure 3.15: p-value comparison among unidirectional and bidirectional members (DJIA
data set)

We observe several key facts: For large sample sizes, every test agrees on the non-

homogeneity of the process. For smaller sample sizes, however, this unanimity is elusive.

For sample sizes around 9 or 10, the β estimate renders the illusion of homogeneity and tests

such as φ(Z) or φ(L) (with high p-values) are falling prey. Others like φ(ZB), φ(R), and

φ(PDB) insist on non-homogeneity. Such inferiority of Z and L is not an artifact of small

sample size - this reoccurs around sample size 25 - 27. A similar phenomenon occurs around

sample sizes 17 and 18, but here, all of the tests incorrectly claim homogeneity. At sample

size 20, with an estimated β of 1.1175, R and ZB reject the assumption of homogeneity at

the 0.1 level, while PDB, L and Z, fail to reject it at that level. At sample size 21, with an

estimated β of 1.1665, R and ZB reject the assumption of homogeneity both at levels 0.1
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and 0.05, while PDB rejects it only at the 0.1 level. Z and L fail to reject it.

Next, we have scanned the process to locate instances of possible late and midway

changes, to suggest the superiority of φ(PDB) in terms of real data. Our first data set

consists of 16 observations, with one distinct jump occurring late in the process, described

in Table (3.56).

Table 3.56: DJIA subset containing late jump

Dates Global Time (T ) Interevent Time (X)
12-Jul-99 0 0
23-Dec-99 164 164
14-Jan-00 186 22
3-Oct-06 2640 2454
4-Oct-06 2641 1
19-Oct-06 2656 15
14-Nov-06 2682 26
14-Dec-06 2712 30
24-Jan-07 2753 41
18-Apr-07 2837 84
25-Apr-07 2844 7
2-May-07 2851 7
16-May-07 2865 14
30-May-07 2879 14
12-Jul-07 2922 43
19-Jul-07 2929 7
5-Mar-13 4985 2056

The shocks (i.e., reaching the closing milestones) can be seen to occur more frequently

from the latter half of 2006. The dotplot and the step diagram attached in Fig (3.16) confirm

this pattern too.
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Figure 3.16: Representation of late shock (DJIA data set)

The β estimate here is 1.69935 and we summarize the test comparisons in Table (3.57):

Table 3.57: Performance among competing tests under real late change (DJIA data)

Test p-value
Z 0.11304
ZB 4.14x10−6

L 0.15
R 0.0025
PDB 0.0075

Here, the tests using Z and L fail to detect non-homogeneity while the rest are able. Our

second data set consists of an earlier sequence of 15 observations with one significant jump

occurring somewhat midway through the process. This set is contained in Table (3.58).
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Table 3.58: DJIA subset containing midway jump

Dates Global Time (T ) Interevent Time (X)
17-May-61 0 0
4-Aug-61 79 79
11-Sep-63 847 768
29-Oct-63 895 48
22-Jan-64 980 85
28-Feb-64 1017 37
18-Mar-64 1036 19
2-Jul-64 1142 106

11-Sep-64 1213 71
20-Oct-64 1252 39
28-Jan-65 1352 100
30-Apr-65 1444 92
11-Oct-65 1608 164
29-Oct-65 1626 18
5-Jan-66 1694 68

10-Nov-72 4195 2501

The β estimate here is 2.49823 and we summarize the new comparisons in Table (3.59):

Table 3.59: Performance among competing tests under real midway change (DJIA data)

Test p-value
Z 0.0073
ZB 0.07739
L 0.0075
R 0.075
PDB 0.0175

Here, the tests using ZB and R fail to detect non-homogeneity while the rest are able

to (at the 0.05 level). Combining conclusions garnered from the two real subsets above, we

might argue that φ(PDB) is a test apt for almost every condition. There exist times when

each one of the rest fails to unearth the underlying deteriorating evolution.
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3.4 Change point detection

With the efficiency of the bidirectional category and the best member vividly apparent, it

is of natural interest to channel PDB’s (or R’s) classification prowess through productive

avenues. Estimating the points in time around which a sudden cause corrupts an otherwise

stable flow, is where, it is felt, these tests will have the most immediate impact.

3.4.1 Algorithm

Our prescription for continuous monitoring of a PtP is to perform a sequence of hypothesis

tests and trust the earliest one that detects non-stationarity. The type-I error probability

inflation resulting from multiple testing can be controlled in several ways, two of which are

described below.

Controlling the Family Wise Error Rate

Given a series of m hypothesis tests, the traditional Bonferroni procedure (Holm 1979) [72]

recommends conducting individual tests at a fraction of the overall type-I error probability.

Let Ai denote the event that a type-I error has not been committed for the ith test (i =

1, 2, ..,m) and α0 be the common significance level for each of the m tests. The Bonferroni

inequality gives

P (∩mi=1Ai) ≥
m∑
i=1

P (Ai)− (m− 1) = m(1− α0)− (m− 1) (3.15)

Now P (∩mi=1Ai) = 1−P (FWER), using DeMorgan’s law and noting that FWER stands

for making at least one type-I error. Thus to ensure P (FWER) < α, we must have α0 ≤ α
m

.

An improved version is the sequential Bonferroni procedure (Holm (1979) [72]) where one
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arranges the p-values in ascending order p(i) and requires

p(r) ≤
α

m+ 1− r
(3.16)

to declare all H(i) positive for i = 1, 2, .., r. However, large values of m or dependence

among tests may make declaring positives extremely unlikely. An improved version thus, is

controlling the False Discovery Rates.

Controlling the False Discovery Rates

Introduced by Benjamini and Hochberg (1995) [14], this technique prevents the probability

of type-II error inflation and the consequent power reduction, inevitable while controlling

the FWER, by controlling the False Discovery Rate (FDR), taken as the average proportion

of type-I errors among significant hypotheses. With a given α, one needs to find the largest

index k with

p(k) ≤
k

mc(m)
α (3.17)

where the p(i)’s, as before, represent the ordered p-values. The corresponding hypotheses

H(i), 1 = 1, 2, .., k will be deemed significant. Under direct dependence among the tests, we

take c(m) = 1, and under inverse dependence, c(m) =
∑m

i=1
1
i
.

The change detection algorithm

Inspired by Chen (2010) [24], we propose a similar methodology to detect anomalous be-

havior, through a control of False Discovery Rates. In contrast to this work where only

Z and ZB were considered, we offer two versions of a more efficient algorithm, using the

top bidirectional tests, due to their superior power performance, described previously. The

algorithm runs as follows:
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i) Fix α and the desirable sample size m. For the unidirectional tests Z and ZB, m may

be taken as n, the size of the entire process. For the bidirectional tests, however, m must be

50 at most, since the null distributions for these test statistics (contained in the Appendix)

have been tabulated that far. The first global time is taken as the time origin, and the

first test checks whether the flow from this origin to the second event is a stationary (or

homogeneous) PtP.

ii) Next, with a chosen statistic (Z,ZB, R, PDB etc), arrange the hypotheses in order of

ascending p-values

p(1) < p(2) < ... < p(m−1) (3.18)

and find the largest k such that

p(k) ≤
k

m− 1
α (3.19)

and declare the corresponding H(i)s significant, i = 1, 2, .., k. Record the earliest time gen-

erated by the significant tests.

iii a) (Weaker) Let the time of the c th event be the earliest among the significant

hypotheses from an “all-purpose” test like PDB (or R, with minimal difference). Then the

time of the (c − 1)th event is the estimated time of change. This is supported by Table

(3.55) which demonstrates how under a majority of cases, bidirectional tests may be treated

as more powerful than unidirectional ones.

iii b) (Stronger) Let the time of the cth event be the earliest among the significant

hypotheses from PDB and let the time of the dth event be the earliest among the significant

hypotheses from R. Then choosing the time of the (c−1)th event or the one of the (d−1)th

event is governed by Table (3.32), where the estimates of the slope of the underlying intensity
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are given by β̂ defined in Chapter 2. Real data analyses conducted later will clarify both

versions.

iv) The first change point identified (if any) will mark the termination of the first regime.

This time point, in turn, will serve as the new time origin for another run of the algorithm

to detect a (possible) second change point.

v) Repeat the process until no new change points are identified.

The present exercise tries to establish the newly developed tests, notably R and PDB, as

efficient change point detection instruments. We shall follow an algorithm studied for regime

identification for Mt. Etna (Chen (2010) [24]) and modify it as follows:

a) The size of the series: Implementing the algorithm with the forward and backward

versions of the Z test was straightforward, owing to the known null distribution of the

statistics. For the recent statistics such as R and PDB, tabulated null distribution values

(contained in the Appendix) run till n = 50. So, we propose to detect change points using

sequences of length at most 50. If for any i ∈ {1, 51, 101, ...} the algorithm on the set

{ti, ti+1, ..., ti+49} fails to generate a change point, we shall argue that these are part of a

stationary phase. Otherwise, the earliest observation will be detected as the change point,

and a new regime will start using this as the time origin.

b) The discreteness of the null distribution: Once again, unlike Z or ZB, where probability

calculations from the null density can be routinely carried out in softwares such as R, the

null distributions of R and PDB have been summarized in discrete tables. To get p-values

for instance, we shall have to resort to approximations. We do this in several ways: by

averaging the immediate neighbors, by re-simulating the null density with specific choices of

the sample size and observation values or by beta regression (similar to a logistic regression).
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We highlight the first two in the tables to follow. Generally, the neighbor averaging method

proves advantageous when the block of significant tests is well defined. As an example,

we will focus on Appendix C, where R’s performance in detecting the first change point is

stored. The p-value corresponding to the first test, the 41st for instance, in reality, is a

number between 0 and 0.005. The null distribution contained in Appendix N (corresponding

to a sample of size 42) claims

PH0(R > 122.42251) ≈ 0.005 (3.20)

while the statistic observed in this case is in excess of 122.42251. The p-value listed is thus,

a simple average of 0 and 0.005. Note, however, that even if this number was close to 0.005

(< 0.0092), the tests in the “significant block” would simply undergo a permutation. For

instance, tests 41 and 49 might interchange places or every test might move one step up,

with 41 occupying 49’s position. The earliest significant test, the 41st, would still remain

unaltered. A significant test would not turn out to be insignificant or an insignificant test

would not become significant under exact calculations. This is because the p-value of the

6th test (the first in the “insignificant block”) 0.0175, an average of 0.025 and 0.01, would

continue to be insignificant (w.r.t. the corresponding BH threshold 0.01) even if the exact

value was extremely close to 0.01. This is what we mean by a “well defined significant block”.

On the other hand, one might come across cases like Appendix L where, to summarize PDB’s

performance, some fine tuning of the averages could be necessary. Tests 2 and 12, both with

estimated p-values of 0.0375 sit extremely close to the boundary separating the significant

tests from the insignificant ones. Unlike the previous case, the interval (0.025, 0.05) generat-

ing this average covers the corresponding BH thresholds, thereby complicating the estimation
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process. In such situations, we have re-simulated the null densities (for PDB in this case)

with the problematic sample sizes (3 and 13 in this case), and measured the proportion of

extremes to get better estimates of these p-values, which are represented in the parentheses

alongside. Test 2, with a more exact p-value of 0.043 (still contained in (0.025, 0.05)) turns

out to be insignificant while test 12, with a more exact p-value of 0.0293 (still contained in

(0.025, 0.05)) turns out to be significant.

Case study 1: Mount Etna

The first chapter introduced the Italian volcano Mt. Etna as a possible candidate for change

point studies. Its eruptive patterns have been studied by Ho (1992) [65] and Chen (2010) [24],

among others. The latter of these two conducts regime identification using the unidirectional

tests φ(Z) and φ(ZB). Using the same data set, we employ the new bidirectional candidates

and the weaker version of the proposed algorithm, to achieve similar ends. The results have

been summarized in the Appendix (A through H). The significant block has been separated

from the non-significant block using horizontal separators.

These are exactly identical to the ones found by Chen (2010). Examining the β estimates

we can argue that the ZB test results are more reliable and conclude that Jan 30, 1974 (the

date implied by the 41st test) marks the end of the first and the beginning of the second

regime. Results from the newly developed R and PDB tests (using 50 observations) are

attached next.

We observe that both the new tests make the 42nd time instant (from the 41st test) Jan

30, 1974, as the first change point. An advantage of using the bidirectional tests with the

weaker version of the detection algorithm is that one need not worry about the nature of
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the underlying β, unlike a Z and ZB analysis (Chen (2010) [24]) where its value dictates the

reliability and hence, the choice of the more accurate test. This is because previously, it has

been established that R or/and PDB is/are more powerful than both of them regardless of

the nature of steps (increasing or decreasing). Choosing this time point as the new origin,

we start our analyses for the second regime and observe that the R and PDB tests signal

the presence of one more volcanic regime for Mt. Etna. The location of the end of the first

regime is the same as the backward test. In this way, the technique may be used in batches

of size 50, to weed out as many significant change points as there are.

Case study 2: Dow Jones Industrial Averages

We return once again to the DJIA data set, this time with the prospect of estimating

the location(s) of the possible change(s). This is in contrast to the previous analysis in

section 3.3.5, where we were concerned with checking whether the failure pattern is stable

or stationary. Appendices I through L summarize our findings.

Since the potential change points (7, 15, 13th observations) occur early in the process and

since the β estimates are more than 1 in this region (β̂7 = 1.6228, β̂15 = 2.0462, β̂13 = 1.9124),

we use Table (3.32) to go with the PDB test conclusion and claim the 13th observation as the

possible location of the change point. This is October 20, 1925, and is two time instances

ahead of the one identified by R. Note how here we have used the stronger form of the

algorithm. Proceeding as in the first case study on Mt. Etna, the second change point

identified is the 18th observation in the second block of 50 observations, which is July 2,

1929. This way of weeding changes out may be continued in batches of size 50 till one

exhausts the entire data set. Some of the more recent changes detected by PDB however,
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merit special mention. Changes located on October 14, 1996 and July 16, 1998 are close

to the time points October 21, 1996, and July 13, 1998, respectively, identified as change

points by the E-divergence test (James (2014) [75]), one of the competitors studied later.

Additionally, the change estimated at January 14, 2000 (identified as January 3, 2000, by the

E-divergence method) is likely to be caused by the passing of the Gramm-Leach-Bliley Act,

and the one at July 14, 2007 (identified as October 15, 2007, by the E-divergence method)

is a possible consequence of the US financial meltdown, triggered by subprime mortgages.

3.4.2 Competitors

A vast array of change-detection algorithms, both from within mainstream statistics and

beyond (notably, computer science, described in the concluding chapter), clamor for popu-

larity, and this section, to lay foundations for the performance comparisons to follow, surveys

a few relevant candidates. Chapter 1 has defined the identification problem at hand and has

touched upon the differences between two distinct approaches: the batch and the sequential

methods. What follows, is a necessary elaboration in a spirit similar to Ross (2015) [129].

Batch detection scenario

Change identification here amounts to choosing one of:

H0 : Xi ∼ F0(x; θ0), i = 1, 2, .., n (3.21)

H1 : Xi ∼
{
F0(x; θ0), i = 1, 2, ..., k
F1(x; θ1), i = k + 1, k + 2, ..n

(3.22)

where the change (assumed at most one) in the properties of the study variables (such as the

inter-event times) is assumed to occur immediately after the kth instance in a fixed sample

of size n. Under a parametric setting, this is affected by a parameter update from θ0 to θ1.
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Conditional on the change point, the variables are independently and identically distributed

according to some Fi (i = 0 before the change, and i = 1 after it).

If the θs represent location or scale parameters, then two sample t or F tests are often

used, under the assumption of normality. In the absence of such knowledge, Mann-Whitney

or Mood tests can be employed to detect possible location or scale updates, and other non-

parametric options such as Lepage, Kolmogorov-Smirnov or Cramer Von-Misses to unearth

more intricate structural changes. In principle, a two sample statistic Dk,n is agreed upon,

extreme values of which signals dissimilarity between the pre-change sample (those before

the kth observation) and the post-change sample (those after the kth observation), and

consequently, a change in the distribution generating the values. Significant largeness or

smallness is quantified through some tolerance level hk,n. In practice, a working statistic Dn

is created by choosing the largest of the Dk,n’s:

Dn = max
k=2,3,..,n−1

Dk,n = max
k=2,3,..,n−1

∣∣∣∣∣D̂k,n − µD̂k,n
σD̂k,n

∣∣∣∣∣ (3.23)

since the true value of k is unknown, an in fact, almost our target. A natural estimate for

the true change point τ will thus, be

τ = argmax
k=2,3,..,n−1

Dk,n (3.24)

Here µD̂k,n and σD̂k,n represent the average and the standard deviations of D̂k,n’s. A

general formal test runs thus:

φ(Dn) =

{
1 if Dn > hn
0 otherwise

(3.25)

where hn is chosen to satisfy the level α condition, typically as the upper α point of the

null density of Dn. Applying the technique, however, often presents problems: the most
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notable one being a dearth of closed-form expressions for the null densities of several specific

statistics. Asymptotic results for the t and Mann-Whitney choice of the Dk,n statistics can

be had from Hawkins (1977) [55] and Pettitt (1979) [114]. In addition, Worsley (1982)

[146] offers asymptotic bounds for a category of other choices for Dn. The CPM framework

mentioned in Chapter 1, and detailed later, exploits numerical simulations to estimate the

null densities for small sample sizes.

Sequential detection scenario

In stark contrast to the previous setup, under the sequential setting, observations trickle in

continuously in time, rendering the notion of an overall fixed sample size, inoperable. Batch

methods, using the two sample statistics described previously, may however be extended if

one agrees, as the tth observation xt arrives, to treat {x1, x2, .., xt} as a t-length set, and

compare Dt to ht with Dt > ht signaling significant change. Hawkins et al. (2003) [57] and

Ross et al. (2011) [125] describe how, for most common choices for Dt, the update to Dt+1

is computationally efficient. Since a sequence of tests is being performed, caution must be

exercised to find the thresholds ht’s. Traditionally, they are chosen to make the probability

of Type-I error time-homogeneous, i.e.

P (D1 > h1) = α (3.26)

P (Dt > ht|Dt−1 ≤ ht−1, .., D1 ≤ h1) = α, t > 1 (3.27)

for a fixed α. Under stationarity, the average run length (ARL0) defined as the average

number of instances scanned before sounding a false alarm is 1/α. The CPM package in

R implements lookup tables condensing the above conditional distributions (created using

Monte Carlo simulations) to get the threshold sequence {ht}.
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Change-Point Model (CPM) framework

While the previous section lays out the two main ways to conduct a change point analysis,

the present section describes another source of variation, dictated by the amount of process

knowledge. Hawkins et al. (2003) [57], while introducing this CPM framework with a normal

choice for F , i.e., with

Xi ∼
{
N(µ1;σ2

1), i = 1, 2, ..., τ
N(µ2;σ2

2), i = τ + 1, τ + 2, ..n
(3.28)

identifies the following scenarios:

i) Complete knowledge about process parameters

Here, the experimenter is supposed to be aware of µ1 and µ2 and σ = σ1 = σ2 com-

pletely and is only expected to estimate the change-point location τ . The Cumulative Sum

(CUSUM) chart, constructed using:

S0 = 0 (3.29)

Si = max(0, Si−1 +Xi − k) (3.30)

with k = µ1+µ2
2

is an apt tool to signal anomalous behaviour. A shift in mean from µ1 to

µ2 with µ2 > µ1 is indicated if Si > h where h (constructed using known parameters µ and

σ) is created to fix ARL0 at some predefined level. With the first step k1 = 1 of a rough

intensity and k2 = 3, a typical CUSUM chart looks like the following.
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Figure 3.17: CUSUM chart with k1 = 1, k2 = 3

More about this technique and its theoretical attractiveness can be found in Lai (2001)

[87] and Hawkins and Olwell (1998) [56]. The Exponentially Weighted Moving Average

(EWMA) procedure is closely related and similarly depends on complete knowledge of process

parameters.

ii) Partial knowledge about process parameters

Lai (2001) [87] relaxed the complete knowledge constraint partially by allowing the post-

change process mean µ2 be unknown. MLEs for µ2 and τ are extracted, and the resulting

generalized likelihood ratio test checks the assumption of a change point against the one

of a “clean” data set. Pignatiello and Samuel (2001) [115] have worked with an identical

framework and Gombay (2000) [52] generalized it even further by allowing the nuisance
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parameter σ be unknown.

iii) Complete ignorance about process parameters

Undoubtedly the most realistic of all the assumptions, it is under this framework that

Hawkins et al. (2003) [57] put forward their CPM formulation. Essentially, this concerns

conducting another generalized likelihood ratio test as follows:

Defining X̄jn =
∑j
i=1Xi
j

as the pre-change mean, X̄jn
∗

=
∑n
i=j+1Xi

n−j as the post-change

mean, and VJN =
∑j

i=1(Xi − X̄jn)2 +
∑n

i=j+1(Xi − X̄jn
∗
)2 as the error sum of squares, a

traditional two-sample t-statistic for comparing the two means would be

Tjn =

√
j(n− j)

n

X̄jn − X̄jn
∗

σ̂jn
(3.31)

with σ̂2
jn =

Vjn
n−2

. Under the null assumption of stationarity, Tjn ∼ tn−2. The MLE of the

true change-point is thus

τ̂ = argmax
1≤j≤n−1

|Tjn| (3.32)

and a change is signaled if

max
1≤j≤n−1

|Tjn| > hn (3.33)

Bonferroni bounds are then employed to estimate the thresholds {hn}’s. It is worth

mentioning that this is merely a historical record of Hawkins et al. (2003)’s [57] original

work. In creating the competitors to follow, the normality assumption (3.28) will be removed,

and hence the t statistic (which, for this example can be taken as the Dn candidate) will be

replaced by more exotic choices.

Competitors

Quite a handful of tests are available in statistical literature that check whether a Poisson

process is non-stationary, or more specifically, whether a trend has crept in the intensity
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function that drives the mechanism. In recent times, the problem has attracted attention

both from the theoretic (Brodsky (2017) [19]) and pragmatic (Chen and Gupta (2011) [25])

viewpoints. In beautifully crafted review articles, both Antoch and Jaruskova (2007) [3], and

Lindqvist (2006) [98] garner an opulent medley, along with their applicability. Tests (such

as the CPM-based ones) that are not exclusively designed for Poisson processes may also be

applied if the correct incoming variables are chosen (such as the inter-event times instead of

the number of shocks observed in a given interval).

1. Laplace test: Encountered previously in Chapter 2, this test is used to check if the

data follows a Poisson process with constant intensity against one with monotonic trends.

The test statistic is

L =

∑n−1
i=1 Ti − ((n− 1)/2)Tn√

(n− 1)Tn
2/12

, (3.34)

where the symbols have their usual meanings. The asymptotic null distribution of L is

normal, and the appropriate quantiles may be treated as critical points.

2. Generalized Anderson Darling (GAD) test: To test the null assumption of a

renewal process, Kvaly et al. (2001) [85] introduced the following statistic

GAD =
(n− 4)X̄2

σ̂2

n∑
i=1

{
qi

2 log

(
i

i− 1

)
+ (qi + ri)

2 log

(
n− i+ 1

n− i

)
− r2

i

n

}
, (3.35)

where

qi =
Ti − iXi

Tn
, ri =

nXi

Tn
− 1, σ̂2 =

1

2(n− 1)

n−1∑
i=1

(Xi+1 −Xi)
2. (3.36)

Kvaloy et al. (2001) [85] recommend using σ̂2 as an estimator of σ2 instead of s2 since the

former is a better choice in the face of trend.

3. Mann test: Another way to check the renewal process assumption against the
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existence of monotonic trend is through the Mann statistic

M =
n−1∑
i=1

n∑
j=i+1

I(Xi < Xj) (3.37)

where I(.) is the usual indicator function.If n < 10 then one can use lookup tables to get the

cutoffs, but for n ≥ 10, M is rescaled to be standard normally distributed with expectation

µ = n(n− 1)/4 and variance σ2 = (2n3 + 3n2 − 5n)/72.

4. Parametric Poisson test: With {Ni} representing a sequence of independent Pois-

son variables with rates {λi}s, i = 1, 2, .., c, the change point detection under this framework

boils down to choosing one of:

H0 : λ1 = λ2 = ... = λc = λ (3.38)

H1 : λ1 = λ2 = ... = λk = λ 6= λk+1 = λk+2 = ... = λc = λ
′

(3.39)

The null likelihood

L0(λ) =
c∏
i=1

e−λλni

ni!
(3.40)

and the alternate likelihood

L1(λ, λ
′
) =

k∏
i=1

e−λλni

ni!

c∏
i=k+1

e−λ
′
λ
′ni

ni!
(3.41)

enable one to construct a likelihood ratio statistic

Lk = −2 log
L0(λ̂)

L1(λ̂, λ̂′)
(3.42)

where the hats represent the usual m.l.es. The optimum change-point position is given by

the value of k that maximizes Lk, say k̂, and the null assumption is rejected if Lk̂ < C

where C is appropriately chosen to satisfy the level condition. Information on the null
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distribution of maxk Lk can be had from Chen and Gupta (2011) [25]. Generalized versions

of these likelihood ratio based tests may be implemented using the changepoint package

in R, created by Killick and Eckley (2014) [80], where one may control the type of change

desired (mean, variance, both, etc), the number of change points, the penalty function, etc.

5. Pettitt’s test: Similar to a test introduced later, this location test introduced by

Pettitt (1979) [114] was widely used to monitor climatic and hydrological data. With

Ut,T =
t∑
i=1

T∑
j=t+1

sgn(Xi −Xj) (3.43)

where

sgn(Xi −Xj) =


1 if Xi > Xj

0 if Xi = Xj

−1 if Xi < Xj

(3.44)

and

KT = max
1≤t≤T

|Ut,T | (3.45)

the argument t generating KT was chosen as the likely estimate of the change point provided

KT was significantly high.

6. Buishand’s test: This is a test for a location shift, assuming one change point, using

the statistic

U =
1

n(n+ 1)

n−1∑
k=1

(
Sk
Dx

)2

(3.46)

with Dx as the standard deviation of the X variables, and Sk =
∑k

i=1(Xi− X̄) representing

the cumulative deviations (note that X̄ is calculated on the entire data set). The p-values

are estimated using Monte Carlo simulations. Buishand (1982) [20] describes this test in

detail, along with some of its real applications.

7. CPM-Exp test: Using Exponential(λ0) and Exponential(λ1) choices for F0 and F1

in (3.22), Ross (2014) [128] has constructed expressions for the generalized likelihood ratio
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statistic

Mk,n = −2 log(
L0

L1

) (3.47)

where L0 and L1 denote the maximized likelihoods under the null and the alternate hypoth-

esis, respectively. Mk,n can then be taken as Dk,n under the general CPM framework.

8. CPM-Adjusted Exp test: As n explodes, it can be shown (Ross (2014) [128]) that

the average of Mk,n defined previously, approaches −2k{ψ(k) − log(k)}, which need not be

1, the expectation of a chi-square variable with one degree of freedom. Here ψ(k) = Γ(k)

Γ′ (k)
is

the usual digamma function. To rectify this, Ross (2014) [128] scaled Mk,n down as

M c
k,n =

Mk,n

E(Mk,n)
(3.48)

which makes the mean hover around 1. Dk,n in the original CPM framework may thus, now

be played by M c
k,n.

9. CPM-Mann-Whitney test: This relies on Pettitt’s (1979) [114] proposal of a U

statistic based on the Mann-Whitney two-sample test:

Uk,n =
k∑
i=1

n∑
j=k+1

Pij 1 ≤ k ≤ n− 1 (3.49)

where

Pij = sgn(Xi −Xj) =


1 if Xi > Xj

0 if Xi = Xj

−1 if Xi < Xj

(3.50)

Conover (1999) [27] relates Uk,n to the rank of Xi, i.e. Ri as

Uk,n = 2
k∑
i=1

Ri − k(n+ 1) (3.51)

implying

E(Uk,n) = 0, V ar(Uk,n) =
k(n− k)(n+ 1)

3
(3.52)
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Thus, Dk,n in the CPM framework may be taken as

Dk,n =
Uk,n√

k(n− k)(n+ 1)/3
(3.53)

More on this technique can be found in Hawkins and Deng (2010) [59].

10. CPM-Mood test: The Mood test developed by Mood (1954) [106] is efficient in

detecting scale parameter shifts, with reasonable power performance, observed by Duran

(1976) [37]. Defining the rank of the ith observation as

r(Xi) =
n∑
i 6=j

I(Xi ≥ Xj) (3.54)

the statistic quantifies the amount of discrepancy between the rank of a point and its average

M
′
=
∑
Xi

(
r(Xi)−

n+ 1

2

)2

. (3.55)

A standardized version ofM
′
, namelyM , can then be taken asDn in the CPM framework.

Details about the standardization can be had from Ross et al. (2011) [125].

11. CPM-Lepage test: With the Mann-Whitney test designed to detect location

changes and the Mood test to detect scale shifts, a need is often felt to combine the two

and create a test efficient for both aspects. Lepage-type tests (Lepage (1971) [92]) offers an

alternative by using

L = U2 +M2 (3.56)

with U and M defined previously. L can then be incorporated into the CPM framework.

More on this test can be found in Ross et al. (2011) [125].

12. CPM-Kolmogorov-Smirnov test: This exploits the comparison between the

empirical distribution functions of the pre-change and the post-change sample defined as:

F̂S1(x) =
1

k

k∑
i=1

I(Xi ≤ x) (3.57)
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F̂S2(x) =
1

n− k

n∑
i=k+1

I(Xi ≤ x) (3.58)

and Dk,n in the CPM framework is taken as:

Dk,n = sup
x
|F̂S1(x)− F̂S2(x)| (3.59)

Techniques for standardization can be had from Ross and Adams (2012) [127].

13. CPM-Cramer-Von-Mises test: This uses the square of the average distance to

quantify discrepancy between the two empirical functions. Dk,n in the CPM framework is

now:

Dk,n =

∫ ∞
−∞
|F̂S1 − F̂S2|dFt(x) (3.60)

with Ft(.) standing for the empirical c.d.f. for the pooled sample. For implementation

purposes, one may use:

Dk,n =
n∑
i=1

|F̂S1(Xi)− F̂S2(Xi)|2 (3.61)

Ross and Adams (2012) [127] may be consulted for the necessary standardization.

14. E-divergence test: A technique originally developed by Matteson and James

(2013) [103] to detect any number of change points in multivariate time series observations, it

is distribution free and is capable of detecting changes of several kinds. A priori knowledge on

the number of change points is not required, however, the observations must be independent,

and have finite αth absolute moments with α ∈ (0, 2]. It uses Szekely and Rizzo (2005, 2010)

[140] [141]’s divergence measure to check whether two vectors X, Y ∈ Rd with characteristic

functions φX(t) and φY (t) are identically distributed. This is often viewed as an energy

statistic, hence the name “E-divergence”. Using Matteson and James (2013)’s [103] proposal
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of a specific weight function, the measure takes the form

D(X, Y ;α) =

∫
Rd
|φX(t)− φY (t)|2

(
2πd/2Γ(1− α/2)

α2αΓ((d+ α)/2)
|t|d+α

)−1

dt (3.62)

The null assumption of similarity is rejected for exceedingly high values of this divergence.

James and Matteson (2013, 2014) [103] [75] introduce a binary tree based bisection algorithm

called “E-divisive” for hierarchical divisive change point estimation. The significance of

an estimated change point and its corresponding p-value is found through permuting the

observation collected thus far.

To choose the best competitors and motivate the error analyses to follow, we have done

preliminary calculations such as the one in Table (3.60) to check the time of detection as a

function of increasing step heights.

Table 3.60: Average time to detection comparisons among Laplace, Mann, GAD and the
unidirectional and bidirectional tests with different step sizes, n = 40, τ = 4

Test k2 = 2 k2 = 3 k2 = 4

LAP 17.73 17.32 16.60
GAD 10.09 9.76 9.59

MANN 17.95 17.62 17.27
Z 25.08 23.42 23.44
ZB 13.96 11.7 11.62
L 25.21 25.2 25.32
R 10.62 9.76 7.67
ZDB 4.04 4.1 3.09

As the step heights become larger, detection becomes easier (i.e., quicker), and under

every situation, we find that the bi-directional proposals are outperforming the established

tests in terms of quicker detection times. From now on, we thus ignore the first three

competitors Laplace, Mann, and GAD tests and focus on the remaining (more recently

proposed) change detection competitors described before. One instance was generated in
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each of the cases described in Tables (3.61), (3.62), and (3.63) to check the effectiveness of

the CPM class.

Table 3.61: Change detection comparison among the CPM class, the unidirectional and
bidirectional tests with n = 50, τ = 12, α = 0.05, k1 = 1, k2 = 3

Test Obs. closest to estimated change point Time of change

CPM-Exp None None
CPM-Adjusted Exp None None

CPM-Mann-Whitney None None
CPM-Mood None None
CPM-Lepage None None

CPM-Kolmogorov-Smirnov None None
CPM-CramerVon-Mises None None

Z None None
ZB 31 18.329
R 31 18.329
PDB 31 18.329

Table 3.62: Change detection comparison among the CPM class, the unidirectional and
bidirectional tests with n = 50, τ = 25, α = 0.05, k1 = 1, k2 = 3

Test Obs. closest to estimated change point Time of change

CPM-Exp 28 29.837
CPM-Adjusted Exp 28 29.837

CPM-Mann-Whitney 22 26.092
CPM-Mood 46 35.359
CPM-Lepage 46 35.359

CPM-Kolmogorov-Smirnov 28 29.837
CPM-CramerVon-Mises 28 29.837

Z None None
ZB 31 31.743
R 31 31.743
PDB 37 33.093
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Table 3.63: Change detection comparison among the CPM class, the unidirectional and
bidirectional tests with n = 50, τ = 36, α = 0.05, k1 = 1, k2 = 3

Test Obs. closest to estimated change point Time of change

CPM-Exp 36 36.731
CPM-Adjusted Exp 36 36.731

CPM-Mann-Whitney 36 36.731
CPM-Mood None None
CPM-Lepage 36 36.731

CPM-Kolmogorov-Smirnov 36 36.731
CPM-CramerVon-Mises 36 36.731

Z None None
ZB 44 38.089
R 43 37.933
PDB 44 38.089

These isolated instances suggest that the CPM class may produce better or worse re-

sults compared to our proposals depending on the location of the knot. The next section

strengthens these facts through simulations and varying the step heights.

3.4.3 Estimation performance

The performance of change point techniques may be compared using a host of different

metrics, depending on the nature of decisions generated. For those that exploit a hypothesis

testing framework (similar to binary classifiers) detecting only the presence or absence of a

change, one may use measures such as Accuracy, Sensitivity, Precision, etc. defined as

Accuracy =
TP + TN

TP + FP + FN + TN
(3.63)

Sensitivity =
TP

TP + FN
(3.64)
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Precision =
TP

TP + FP
(3.65)

where TP, FP, TN, FN represent the true positives, false positives, true negatives, false

negatives, respectively. The power analyses conducted previously in this chapter perform a

similar role. Aminikhanghahi (2017) [2] and Cook (2015) [28] survey a class of other mea-

sures. But for those that transcend mere classification to estimating the possible change, the

performance measures are slightly different. The most prevalent options (Aminikhanghahi

(2017) [2]) to quantify the performance of offline or retrospective change point estimation

algorithms are:

1) Mean Absolute Error/Difference (MAE/D) defined as:

MAE =

∑
i |Actual change pointi − Estimated change pointi|

number of change points
(3.66)

2) Root Mean Square Error (RMSE) defined as

RMSE =

√∑
i(Actual change pointi − Estimated change pointi)

2

number of change points
(3.67)

3) Mean Signed Difference (MSD) defined as

MSD =

∑
i(Estimated change pointi)− Actual change pointi

number of change points
(3.68)

Each serves a different purpose (e.g., MSD with an algebraic sign informs whether the

algorithm signals non-stationarity before or after the actual change) and the competitors will

now be evaluated in the light of these metrics. The estimated change point time distributions

under different simulated environments (i.e., early, midway, and late placement of knots) have

been graphed through violin plots with connectors joining the deciles for ready reference. A
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violin plot is often treated as a hybrid of a traditional boxplot and a kernel density plot, and

depict hidden concentrations around specific locations. The fact that some of the algorithms

might generate multimodal change time densities led us to choose these plots over the usual

boxplot type representations. The horizontal dashed line in each case represents the true

time of change. We have carried out the analyses initially with a fixed height for the second

step: k2 = 3, under an increasing intensity framework, k2 = 1 under a decreasing intensity

framework, and have recorded the performance of the competitors using 200 simulations,

samples of size 50, and an α value of 0.05. Such results have been summarized in Tables

(3.64) - (3.66) (correspondingly Figs (3.18) - (3.20)) and Tables (3.67) - (3.69) (Figs (3.30)

- (3.32)).

Next, we have systematically varied the height of the second step to check how the

algorithms react to change detection scenarios more difficult than k2 = 3. These results have

been condensed in Figs 3.21 - 3.29. Several comments on them are in order:

i) Under an increasing step intensity framework, higher values of the second step corre-

spond to easier change detection. Hence, one would expect the error amount to diminish

with an increase in k2. This explains the downward gradient in Figs 3.21 - 3.29. Moreover,

a change early in the process is easier to detect which is why the slopes get less steep as we

move from early to midway to late placement of knots.

ii) A high error value at k2 = 1 (which represents the null environment of stationar-

ity), and a rapid descent are signatures of an efficient algorithm. All our proposals behave

accordingly.

iii) As evidenced by the MSD graphs, our proposals, like most of their competitors,

have error curves lying above the horizontal line at the null error which represents detecting
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non-stationarity after the true change has occurred. This is intuitive and desirable since the

new environment must take some time to be detected.

iv) Our best proposal PDB is most efficient when detection of non-stationarity is hard,

especially in the region k2 ∈ (1, 1.5), when it outperforms its most worthy competitors, no-

tably the parametric one and CPM-Exp or CPM-AdjustedExp, in terms of smaller average

errors. Over other domains, it remains competitive. That the parametric ones (Parametric,

CPM-Exp, CPM-AdjustedExp) will perform well is no accident since our simulation pre-

scription fits them perfectly: the inter-event times from the two homogeneous pieces are

exponentially distributed by construction. Our proposals, however, are free of such confines

and perform just as well.

A note on the implementation aspects of these algorithms: All the CPM-based candidates

have been run using the cpm package in R introduced by Ross (2015) [129]. The parametric

Poisson based test, using the changepoint package in R introduced by Killick and Eckley

(2014) [80], the Pettitt and Buish tests using the trend package in R introduced by Pohlert

(2018) [116], and the E-divergence test using the ecp package in R introduced by James and

Matteson (2014) [75]. In addition to the unidirectional forward Z and backward ZB tests, we

have included the top bidirectional candidates, the maximum based R test and the p-value

inspired dual PDB test. The null distributions for the last two, used to run our proposed

algorithm, can be found as tables in the Appendix.
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Increasing step intensity

Table 3.64: Change point detection comparison, n = 50, τ = 12, α = 0.05, k1 = 1, k2 = 3

Test Q1 Q2 Q3 MAE MSE MSD

Parametric 10.55 11.56 13.37 2.594 16.16 0.299
Pettitt 12.29 13.24 15.46 2.567 15.11 2.259
Buish 12.01 12.46 13.56 1.413 5.17 1.015

CPM-Exp 11.88 12.89 21.60 4.594 53.85 3.935
CPM-Adjusted Exp 11.88 12.74 18.14 4.302 49.88 3.666

CPM-Mann-Whitney 12.26 15.59 24.27 6.501 79.43 6.018
CPM-Mood 20.38 23.80 25.64 10.579 135.58 10.116
CPM-Lepage 12.14 14.16 24.30 6.539 81.34 5.838

CPM-Kolmogorov-Smirnov 12.53 21.65 25.15 8.125 103.67 7.779
CPM-CramerVon-Mises 0 21.68 24.57 12.160 150.85 1.840

E-Divergence 12.54 22.05 25.15 8.384 105.33 7.690
Z 15.18 20.41 24.32 8.536 96.79 7.609
ZB 14.00 16.81 23.97 7.027 78.39 6.612
R 13.44 15.28 21.13 5.756 55.01 4.727
PDB 12.32 14.08 19.13 5.597 51.77 2.948
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Figure 3.18: Estimated time of change distributions with τ = 12 (early), n = 50, α =
0.05, k1 = 1, k2 = 3
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Table 3.65: Change point detection comparison, n = 50, τ = 25, α = 0.05, k1 = 1, k2 = 3

Test Q1 Q2 Q3 MAE MSE MSD

Parametric 22.87 24.35 25.85 2.673 17.86 -0.974
Pettitt 24.84 25.29 26.32 1.735 7.39 0.108
Buish 23.00 24.89 25.53 1.971 9.96 -0.949

CPM-Exp 24.72 25.49 28.26 3.066 23.63 1.562
CPM-Adjusted Exp 24.69 25.46 27.79 2.721 17.99 1.442

CPM-Mann-Whitney 25.06 26.40 31.75 4.179 32.74 2.649
CPM-Mood 31.19 32.68 34.31 8.243 75.73 6.606
CPM-Lepage 24.88 26.65 32.39 4.864 41.37 2.652

CPM-Kolmogorov-Smirnov 25.46 30.52 33.23 5.429 45.37 4.367
CPM-CramerVon-Mises 0 31.94 33.94 13.699 251.34 -2.300

E-Divergence 30.21 32.50 34.16 7.729 72.56 5.804
Z 30.70 32.37 34.19 7.932 73.06 6.624
ZB 26.89 30.39 32.70 6.539 63.02 3.545
R 25.94 28.57 31.23 6.502 70.64 1.444
PDB 18.60 27.81 30.86 7.468 91.82 -0.589
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Figure 3.19: Estimated time of change distributions with τ = 25 (midway), n = 50, α =
0.05, k1 = 1, k2 = 3
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Table 3.66: Change point detection comparison, n = 50, τ = 40, α = 0.05, k1 = 1, k2 = 3

Test Q1 Q2 Q3 MAE MSE MSD

Parametric 37.29 39.59 40.84 3.899 68.33 -2.239
Pettitt 24.17 35.61 39.94 9.201 193.36 -8.760
Buish 21.36 33.51 39.20 10.545 221.48 -10.351

CPM-Exp 39.94 40.93 42.60 3.214 38.21 0.136
CPM-Adjusted Exp 39.91 40.84 42.55 3.150 37.85 0.058

CPM-Mann-Whitney 39.91 41.20 43.36 3.517 41.66 0.369
CPM-Mood 41.28 43.13 44.85 4.139 31.84 2.498
CPM-Lepage 40.16 41.73 44.02 3.664 38.55 1.059

CPM-Kolmogorov-Smirnov 40.34 41.97 44.09 3.667 32.71 1.348
CPM-CramerVon-Mises 0 0 43.06 26.619 1009.15 -23.431

E-Divergence 40.87 42.57 44.64 4.639 46.29 1.284
Z 41.26 43.09 44.77 4.141 37.34 2.361
ZB 40.99 42.31 44.09 4.179 50.86 1.313
R 40.79 42.04 43.60 4.966 83.16 -0.224
PDB 40.27 41.89 43.44 6.058 113.85 -1.588
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Figure 3.20: Estimated time of change distributions with τ = 40 (late), n = 50, α =
0.05, k1 = 1, k2 = 3
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Figure 3.21: MSD comparisons with τ = 12 (early), n = 50, α = 0.05, k1 = 1, k2 = 1(0.5)3
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Figure 3.22: MSD comparisons with τ = 25 (midway), n = 50, α = 0.05, k1 = 1, k2 = 1(0.5)3
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Figure 3.23: MSD comparisons with τ = 40 (late), n = 50, α = 0.05, k1 = 1, k2 = 1(0.5)3
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Figure 3.24: MAE comparisons with τ = 12 (early), n = 50, α = 0.05, k1 = 1, k2 = 1(0.5)3
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Figure 3.25: MAE comparisons with τ = 25 (midway), n = 50, α = 0.05, k1 = 1, k2 = 1(0.5)3
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Figure 3.26: MAE comparisons with τ = 40 (late), n = 50, α = 0.05, k1 = 1, k2 = 1(0.5)3
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Figure 3.27: RMSE comparisons with τ = 12 (early), n = 50, α = 0.05, k1 = 1, k2 = 1(0.5)3
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Figure 3.28: RMSE comparisons with τ = 25 (midway), n = 50, α = 0.05, k1 = 1, k2 =
1(0.5)3
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Figure 3.29: RMSE comparisons with τ = 40 (late), n = 50, α = 0.05, k1 = 1, k2 = 1(0.5)3
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Decreasing step intensity

Table 3.67: Change point detection comparison, n = 50, τ = 12/3, α = 0.05, k1 = 3, k2 = 1

Test Q1 Q2 Q3 MAE MSE MSD

Parametric 2.923 3.868 6.128 8.724 326.09 7.459
Pettitt 3.613 4.507 9.825 4.893 87.12 4.273
Buish 4.128 6.722 12.050 5.804 88.69 5.528

CPM-Exp 3.147 4.402 38.020 14.944 572.45 14.073
CPM-Adjusted Exp 3.417 4.340 37.650 14.049 537.46 13.194

CPM-Mann-Whitney 3.674 15.040 41.660 19.481 752.16 18.824
CPM-Mood 36.080 41.450 46.730 37.605 1483.36 37.569
CPM-Lepage 4.753 37.210 44.450 26.703 1043.84 26.132

CPM-Kolmogorov-Smirnov 3.881 32.660 42.080 21.496 809.13 20.872
CPM-CramerVon-Mises 0 31.87 41.87 22.353 817.59 18.672

E-Divergence 32.05 38.88 45.61 31.769 1221.89 31.753
Z 10.30 31.25 42.53 23.634 842.84 23.512
ZB 7.971 14.170 28.290 19.013 641.53 18.777
R 8.601 18.670 38.690 20.318 683.99 19.912
PDB 4.682 8.602 23.010 12.428 376.45 11.591
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Figure 3.30: Estimated time of change distributions with τ = 12/3 (early), n = 50, α =
0.05, k1 = 3, k2 = 1
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Table 3.68: Change point detection comparison, n = 50, τ = 25/3, α = 0.05, k1 = 3, k2 = 1

Test Q1 Q2 Q3 MAE MSE MSD

Parametric 6.818 7.898 8.825 2.705 37.60 0.402
Pettitt 7.311 7.974 8.536 1.675 11.43 0.189
Buish 7.907 8.366 9.834 1.554 6.73 0.792

CPM-Exp 7.579 8.222 9.898 5.278 118.70 3.856
CPM-Adjusted Exp 7.556 8.211 9.781 5.004 110.24 3.521

CPM-Mann-Whitney 7.609 8.546 24.210 8.585 205.64 7.479
CPM-Mood 25.860 32.370 37.570 22.647 604.18 22.526
CPM-Lepage 8.145 12.100 32.240 12.126 307.04 11.388

CPM-Kolmogorov-Smirnov 7.842 9.732 29.980 9.949 240.57 8.946
CPM-CramerVon-Mises 0 28.44 35.89 19.643 474.69 14.393

E-Divergence 12.040 25.060 34.680 16.352 415.75 16.308
Z 18.560 24.870 33.160 17.762 399.89 17.280
ZB 11.990 15.980 23.090 11.407 219.58 10.278
R 15.750 21.790 31.200 15.446 320.37 14.239
PDB 7.120 12.560 17.330 7.825 112.29 5.177
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Figure 3.31: Estimated time of change distributions with τ = 25/3 (midway), n = 50, α =
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Table 3.69: Change point detection comparison, n = 50, τ = 40/3, α = 0.05, k1 = 3, k2 = 1

Test Q1 Q2 Q3 MAE MSE MSD

Parametric 8.881 12.420 12.970 2.989 22.31 -2.428
Pettitt 6.861 10.500 12.510 3.828 25.99 -3.760
Buish 8.923 12.190 13.100 2.683 15.84 -2.458

CPM-Exp 12.390 13.260 14.870 3.191 28.05 0.812
CPM-Adjusted Exp 12.350 13.200 14.610 3.146 27.56 0.641

CPM-Mann-Whitney 12.280 13.750 20.460 4.986 55.56 2.995
CPM-Mood 14.200 20.900 26.780 8.691 128.51 7.933
CPM-Lepage 12.830 14.220 21.060 4.936 56.88 3.662

CPM-Kolmogorov-Smirnov 12.630 14.050 20.720 4.759 50.29 3.190
CPM-CramerVon-Mises 0 0 23.79 13.438 199.44 -2.295

E-Divergence 14.270 16.790 22.210 6.060 75.07 5.589
Z 16.560 21.690 26.300 9.099 122.84 8.431
ZB 15.370 18.860 21.880 6.367 60.19 5.179
R 15.840 21.400 25.430 8.917 320.37 7.365
PDB 12.690 17.030 20.030 6.107 54.21 2.386
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Figure 3.32: Estimated time of change distributions with τ = 40/3 (late), n = 50, α =
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Chapter 4

Validation

The goal of this chapter is to substantiate change point estimation results obtained using

the bidirectional tests with readily implementable graphic tools. Bridges such as

N(t)−N(t− 1) := Xt (4.1)

that connect a continuous time stochastic process (a Poisson process {N(t)}t≥0 for instance)

to a discrete time process (a time series {Xt}t=1,2,... for instance) will be crucial in our analyses

to follow. In particular, we will rid ourselves of the trouble of continuous monitoring, and

instead will count the number of events observed over an interval defined discretely. The

central theme that should bind the chapter is this close connection between a time series

and a point process, coupled with our firm conviction that each area will be able to learn

significantly from the other. A relation such as this has been sparsely conjectured in the

literature: Brillinger (1994) [18] tries to find unifying characteristics embracing time series,

point processes, marked point processes and hybrids through the introduction of “stationary

increment process” and examination of 2nd and 3rd order autocovariances. This paper talks

about a method of converting a linear point process to a 0-1 time series but refrains from

forecasting and inferences. Rigas (1996) [121] creates a type of bivariate process, where one

component is a time series, the other is a point process and then moves on to inferences.
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Henschel et al. (2008) [61] make a casual remark about converting a point process to a time

series but does not explicitly show how. Much of our work on this domain, especially those

surveyed in the first four sections, have been published. The mood for this chapter will,

therefore, be expository. We invite readers interested in details and intricate technicalities

to consult Tan, Bhaduri, and Ho (2014) [142], Ho and Bhaduri (2015) [68], Ho et al. (2016)

[69], and Ho and Bhaduri (2017) [70].

4.1 Empirical Recurrence Rates (ERRs)

Originally devised by Ho (2008) [67] the Empirical Recurrence Rate (ERR) statistic tracks

the maximum likelihood estimate of the rate parameter of a homogeneous or stationary

Poisson process. Corresponding to n event times t1, t2, .., tn ∈ [0, T ] of a PtP, the ERR time

series {Zl} may be generated at equidistant time points h, 2h, 3h, .., Nh(= T ) according to

Zl =
N(lh)

lh
=

∑l
i=1Xi

lh
, l = 1, 2, .., N (4.2)

where the ith observation in the {Xi} time series stores the number of observations in the

interval ((i − 1)h, ih], connected to the process {N(t)}t≥0 according to (4.1). Chen (2010)

[24] notes how ERR can act as a tool to confirm the patterns in the underlying intensity:

a deteriorating process will make its ERR curve increase, while a stable process, governed

by a constant intensity, should induce a horizontal ERR curve. Exploiting ERR’s ability

to generate “pseudo-observations” over barren data periods, Tan, Bhaduri, and Ho (2014)

[142] and Ho and Bhaduri (2015) [68] have used this statistic to model sporadic events: the

former deals with sandstorms, where seasonality is obvious, and the latter, with earthquakes,

where it is not. Time series models (Box-Jenkins (1976) [17]) were fitted and forecasts were
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extracted to predict future events.

4.2 Empirical Recurrence Rates Ratios (ERRRs)

The smoothing properties of ERRs may be extended to compare two time series {Xt} and

{Yt}, often to be treated as two distinct “arms” of the same non-stationary PtP, one repre-

senting the pre-change sequence, and the other, the post-change sequence. Ho et al. (2016)

[69] and Ho and Bhaduri (2017) [70] introduced and examined the Empirical Recurrence

Rates Ratio (ERRR), defined as

RX,Y ;l =
NX(l)

NX(l) +NY (l)
=

∑t
k=1 Xk∑t

k=1 Xk +
∑t

k=1 Yk
, l = 1, 2, .., N (4.3)

where symbols have meanings similar to the ones in the previous section on ERR. The

statistic, essentially storing ratios of cumulative counts, is a ratio of two ERRs, and is

bounded by 0 and 1. A high value at a given instance implies that the first series {Xt} is

more active till then, while a value close to 0.5 indicates {Xt} and {Yt} are equally active.

Ho and Bhaduri (2017) [70] touch upon the statistic’s inferential aspects and introduce two

artificial time series to accentuate ERRR’s workings

Case 1: (An equal size ratio series) Assume that the discrete valued time series {Xt} and

{Yt} are given by

Xt = 1, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, ... (4.4)

and

Yt = 2, 4, 2, 1, 0, 0, 0, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 2, 4, .... (4.5)

It is apparent that when one is active, the other is relatively dormant, which induces a

wave-like property into the ERRR curve, graphed in Fig (4.1)
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Figure 4.1: ERRR plot and Ic index for inversely related equal size ratio series

and the fact that they are more or less equally intense places the curve around the 0.5

line.

Case 2: (An unequal size ratio series) Assume next that the discrete valued time series

{Xt} and {Yt} are given by

Xt = 1, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, ... (4.6)

and

Yt = 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0....

(4.7)

The active-dormant inverse dependence still persists, keeping the curve graphed in Fig

(4.2) wavy, but here, the first series is almost twice as intense as the second, positioning the
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ERRR curve away from the 0.5 line.

Figure 4.2: ERRR-plot of artificial data for unequal-size competing processes. The Iw is
based on a threshold (= 0.6668) calculated by excluding the first 20 ERRRs (the burn-in
period)

The indices contained in the figures will be explained in the next subsection. With the

Hawaiian volcanoes described in the first chapter, treating the Kilauea eruption counts as

the first series {Xt} and the one for Mauna Loa as the second series {Yt}, the ERRR curve

takes a sinusoidal form depicted in Fig (4.3)
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Figure 4.3: ERRR-plot of Kilauea vs Mauna Loa. The Iw is based on a threshold (= 0.5468)
calculated by using the entire data set

The
(

3
2

)
= 3 pairwise comparisons from the West Atlantic hurricane basin, described in

Chapter 1 generates the ERRR curve shown in Fig (4.4) below.

161



Figure 4.4: ERRR curves for hurricane counts

The noted weather scientist K. Emanuel, as pointed out in Chapter 1, feels that with

a continually warming climate, it is increasingly difficult to start a devastating hurricane

due to a hike in saturation deficit which works against its creation, but if it gets started

somehow, it has the potential to become more intense. Thus, the total number of storms

should decline globally, but the proportion of hurricanes which are intense should rise. This

once again hints at a possible inverse dependence between the strong and weak categories

and that suspicion is confirmed by the sinusoidal pattern of the ERRR curve generated in Fig

(4.4). ERRR analyses and time series fits to it have also been used to explain bank failures

during the recent US economic meltdown. Ho et al. (2016) [69]documents that exercise.
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4.2.1 Indices

While the appearance and the location of the ERRR curve provide preliminary notions about

the nature of the interaction between the contributing series, measures quantifying such

attributes are necessary for meaningful comparisons. Ho and Bhaduri (2017) [70] observes

that in the spirit of the first hypothetical pair, if two series are equally competitive (and

hence can be conveniently treated as parts of the same stationary PtP), the resulting ERRR

curve should hover around the 0.5 line with faithful regularity. Thus

Definition 4.1. For an ERRR series R of length n, the index of competitiveness Ic is defined

as

Ic =
1

n

n∑
i=1

I{ri > 0.5}, (4.8)

which represents the time proportion of the curve’s occupation of the space above the 0.5

reference line.

For the equally intense first hypothetical pair, Ic = 0.5309 while for the second pair

with the first almost twice as intense as the second, this index shoots up to 0.9735. For

the volcanic interaction series, the index clocks 0.6059. It is worth noting, however, that

Ic merely renders an adequate measure of the curve’s location, while remaining oblivious to

any oscillating pattern that may be present. To quantify this property, we have proposed

Definition 4.2. Definition: For an ERRR series R of length n, the index of waviness Iw is

defined as

Iw =
1

n

n∑
i=1

I{ri > r̄}, (4.9)

which represents the proportion of times the curve stays above the average level.
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Ho and Bhaduri (2017) [70] spell out an algorithm of systematically deleting the first

set of k ERRR observations to come up with a reliable, and sequentially modified r̄ value,

because of problems with burn-ins. The value around which Iw stabilizes may be taken as

a reliable estimate of waviness. For the volcanic ERRR curve, the table below tracks this

index, which converges to 0.4.

Table 4.1: Sequential history of the Iw index based on eruption counts

k Modified mean Iw k Modified mean Iw

0 0.54679 0.3517 11 0.54908 0.3689
1 0.54699 0.3532 12 0.54929 0.3705
2 0.54719 0.3547 13 0.54952 0.3722
3 0.54739 0.3562 14 0.54974 0.3789
4 0.54759 0.3578 15 0.54997 0.3756
5 0.54781 0.3593 16 0.55019 0.3773
6 0.54801 0.3609 17 0.55042 0.3789
7 0.54822 0.3624 18 0.55065 0.3807
8 0.54843 0.364 19 0.55089 0.3825
9 0.54865 0.3656 20 0.55113 0.3843
10 0.54866 0.3673

The first of these two measures will be used later to create a test and others serving more

specialized ends may be formulated too. It can be observed that three successive points are

sufficient to indicate whether or not a change in trend, indicating the presence of a small

wave, has occurred in the ERRR series. So a good measure of “waviness” should take into

account all possible triads of the form (rt−1, rt, rt+1) and hence, the contribution from all

the small waves. Bearing that in mind, we propose the following measures to quantify the

nature and extent of a wave-like property:
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Simple Static Wave Index (SSW Index)

For each t = 2, 3, ..., (n− 1), define an indicator-like function as follows:

ISSt =


1 rt−rt−1

rt+1−rt < 0,

ε rt+1 − rt = 0,
0 rt−rt−1

rt+1−rt > 0.
(4.10)

Thus the value of ISSt indicates whether a wave exists at t: if it’s 1, then a wave exists, if it

is 0, then the ongoing local trend is preserved, indicating the absence of a wave. The choice

of ε is subjective and should be preferably close to 0. It is designed to make the measure

survive even in the face of pathological and artificially constructed situations, such as when

the two original series are both exactly identical to each other. The Simple Static Wave

Index (SSW Index) can now be defined as

SSW =
1

n− 2

n−1∑
t=2

ISSt (4.11)

The numerator counts the total number of wavelets and to compare big and small data sets

on the same scale, the normalization with the n − 2 factor is essential. The SSW index

is a sort of a simple average and hence, rather easy to interpret. Additionally, it enjoys

the desirable property of being bounded: at most, it can be 1 (when the points alternate

consistently) and at least it should be 0 (when the series is perfectly monotonic w.r.t trend

and bereft of any variation). Otherwise, a large SSW index should in general, indicate a

considerable degree of waviness. We do not feel obliged to prescribe a precise demarcation

between waviness and non-waviness in terms of an SSW threshold. This is the signature of

several other useful statistical measures as well: on the (0,1) range of the simple correlation

coefficient, there doesnt exist any well-defined boundary between being weakly positively

correlated and being strongly positively correlated.
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Simple Dynamic Wave Index (SDW Index)

The SSW index, though extremely intuitive, doesnt pay attention to the height of the

individual wavelets. Since it only worries about the number of times a locally ongoing trend-

equilibrium is disturbed, it will not be able to differentiate between two series which are only

scalar multiples of each other. Thus, to formulate a more dynamic measure, lets introduce,

for each t = 2, 3, , (n− 1), another indicator-like operator as follows:

ISDt =


1 + |rt − rt−1|+ |rt+1 − rt| rt−rt−1

rt+1−rt < 0,

ε rt+1 − rt = 0,
0 rt−rt−1

rt+1−rt > 0,
(4.12)

and based on it, define the Simple Dynamic Wave Index (SDW) as

SDW =
1

n− 2

n−1∑
t=2

ISDt . (4.13)

This measure is unbounded, but whenever it detects the presence of a wavelet, it records the

amount of change in trend as well. Using the definitions, it is not difficult to show that for

any given series, the following inequality holds

SSW ≤ SDW. (4.14)

Weighted Dynamic Wave (WDW) Index

We observe that both the SSW and SDW indices are constructed using simple arithmetic

means which lacks robustness in the presence of outliers. Additionally, in almost all applica-

tions of ERRR, we are able to identify an initial burn-in period – a period during which the

series typically, behaves wildly, which might not necessarily be indicative of the pattern to

follow. Furthermore, as a consequence of the strong laws of large numbers, the ERRR series

is always expected to stabilize asymptotically around the process mean. These imply that
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all the points should not exert equal influence in creating the measures and that ideally, a

weighted mean seems to be more apt. If the choice of a reasonable weight function can be

agreed upon, then a weighted version, WDW, can be constructed as follows:

WDW =

∑n−1
t=2 wtI

SD
t∑n−1

t=2 wt
. (4.15)

Realizing the burn-in issues and the fact that a big wave towards the latter half of the series

(when it is expected to stabilize) is highly significant, one should choose wt ∝ t.

Wave Contribution Index (WC Index)

The numerator of SSW introduced above counts the total number of wavelets and does not

differentiate between a peak and a valley. There might be times when such information is

crucial, and the measure to be introduced now is an attempt to address this issue and also

to understand how much does each of the original series contribute to the wave index. We

introduce a pair of indicator variables IPt and IVt as follows:

IPt =

{
1 rt−1 < rt and rt > rt+1,
0 otherwise.

(4.16)

IVt =

{
1 rt−1 > rt and rt < rt+1,
0 otherwise.

(4.17)

Thus IPt and IVt record the occurrence of a peak and a valley at t. Summing up these

indicators, we should have the total number of peaks and valleys and remembering that a

valley is induced only by an increased activity of the first series and a peak is introduced by

an increased activity of the second, we define the Wave Contribution Index of the first series

as:

WCX =

∑n−1
t=2 I

V
t∑n−1

t=2 I
SS
t

=

∑n−1
t=2 I

V
t /(n− 2)

SSW
, (4.18)
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and of the second series as

WCY =

∑n−1
t=2 I

P
t∑n−1

t=2 I
SS
t

=

∑n−1
t=2 I

P
t /(n− 2)

SSW
. (4.19)

These are bounded by 0 and 1 too and can be interpreted as the separate contribution of the

two series to the total amount of waviness present. Their relative importance can be judged

by:

WCX,Y =
WCX
WCY

, (4.20)

with a value in excess of 1 indicating the presence of more valleys than peaks.

4.2.2 Bootstrapping the ERRR

The feeling regarding the “waviness” of a generated ERRR curve, furnished by the Iw index,

may be strengthened by demonstrating there exists no other permuted version of the curve

which would have given a radically different index. To generate these rearranged ERRR

curves, Ho and Bhaduri (2017) [70] resorted to block bootstrapping, and the exercise will be

briefly touched upon in this section. The method of ordinary bootstrapping due to Efron

(1979) [39] is ineffective here since isolated resampling will smother the inherent dependence,

arguably one of the most crucial aspects of any time series. Hall (1985) [54] and Carlstein

(1986) [22] ’s generalization to block resampling was therefore, adopted.

In theory, the method requires a user-defined block size b and sampling chunks of the

original time series {XI+1, XI+2, ..., XI+b} where I ∈ {0, 1, 2, .., n − b} is randomly picked.

Joining these blocks end to end will create a time series with properties similar to the

parent. Higher values of b will imply the retention of a greater degree of dependence. We

direct readers interested in more formal notational constructs and technicalities (such as the
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choice of the block size) to Ho and Bhaduri (2017) [70]. Figure (4.5) depicts two resamples

of block size 25 each generated from the ERRR series of volcanic interactions.

Figure 4.5: Generation of block resamples from the parent volcanic ERRR time series

To inquire whether the competitiveness or wave-like pattern in the parent series will be

retained in other possible arrangements of the curve, we have gathered 1000 bootstrapped (or

resampled) versions with block size 5, calculated Ic and Iw from each, and have summarized

their distributions in Figures (4.6) and (4.7) and Table(4.2).
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Figure 4.6: Descriptive summarization and comparison of the distribution of Ic indices cal-
culated from several bootstrapped ERRR series
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Figure 4.7: Descriptive summarization and comparison of the distribution of Iw indices
calculated from several bootstrapped ERRR series

Table 4.2: Comparison between the point estimates and the bootstrap 95 % intervals of the
Ic and Iw indices across different data sets

Equal size Unequal size Volcanic count
Ic (from the original parent series) 0.5309 0.9735 0.6
Ic (the bootstrap 95 % interval) [0.47, 0.79] [0.93, 0.99] [0.42, 0.71]

Iw (from the original parent series) 0.71 0.5376 0.4
Iw (the bootstrap 95 % interval) [0.40, 0.72] [0.41, 0.75] [0.24, 0.49]

Those from the hypothetical equal and unequal size ratio series encountered previously,

have been added alongside as ready references. It is interesting to note that the distribu-

tion of these indices from the bootstrapped samples tends to be centered around the indices

calculated from the original parent. In particular, the 95% bootstrapped interval perfectly

contain the point indices calculated previously, which enable one have stronger faith in them,

the ERRR curve, and the general conclusion about the inverse nature of dependence between
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these two volcanoes. Following Hesterberg (2015) [62] ’s recommendation for reporting sum-

mary statistics, Ho and Bhaduri (2017) [70] records the standard error of the bootstrap

interval and the aggregated bias. In that work, we have also described a way to circumnavi-

gate (through differencing and modifying the definition of these indices) a technical problem

regarding weak stationarity. Finally, a SARIMA(2, 0, 1)× (2, 1, 1)32 model was fitted to the

ERRR series (we shall encounter the fit in the final section) and 500 years’ worth of fore-

casts were extracted. Figure (4.8) summarizes the indices’ distributions from the resampled

versions of the pooled parent (i.e. including both the observed and the forecast values).

Figure 4.8: Ic and Iw indices from the bootstrapped version of the pooled ERRR volcanic
time series

This was done partly to enlarge the size of the parent series and partly to make it weakly

stationary without transformations or differencings. These distributions are, however, similar
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to those from the observed series.

4.3 ERRR as a validation tool

The problem of comparing two independent Poisson rates has been well studied in literature,

especially the ones involving clinical trials. In parallel arm trials, for instance, one often

compares the incidence rates λ1 and λ2 between two study groups, one receiving a drug of

interest, and another receiving a dummy pill (i.e., a placebo effect). Although not essential,

in this section, we assume both groups are tracked over the same predetermined number

of observations with ti being the stopping time for the i-th group i (i = 1, 2). This is to

make the comparisons among the established tests detailed below, and our ERRR-based

non-parametric proposals more natural. The framework we shall be working under will thus,

be a failure truncated one.

4.3.1 A review of established tests

In order to check the over-prevalence of one group in comparison to the other through

choosing one of

H0 : λ1 ≥ λ2 vs Ha : λ1 < λ2 (4.21)

Shan (2015) [133] records a collection of procedures along with various small sample alter-

native proposals. In keeping with our usual premise, Ni(ti) ∼ Pois(λiti) (i = 1, 2).

Wald test

Using the m.l.e. θ̂ = N2(t)/t−N1(t)/t of the rate difference θ = λ2 − λ1, the Wald statistic

is defined as:

TWald =
N2(t2)/t2 −N1(t1)/t1√
N2(t2)/t22 −N1(t1)/t21

(4.22)
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Ng and Tang (2005) show it is asymptotically normally distributed.

Score test

Modification of the estimated variance of θ̂ leads to the score test statistic

TScore =
N2(t2)/t2 −N1(t1)/t1√
(N1(t1) +N2(t2))/(t1t2)

(4.23)

TScore is asymptotically normal as well.

Signed root likelihood ratio test

The signed likelihood ratio statistic, expressed as:

TLR = sign

(
N2(t2)

t2
−
N1(t1)

t1

){
N1(t1) log

N1(t1)

t1
+N2(t2) log

N2(t2)

t2
− (N1(t1) +N2(t2)) log

N1(t1) +N2(t2)

t1 + t2

}1/2

(4.24)

provides an alternative to the Wald-type tests described above.

Conditional test (C-Test)

This exploits the fact that conditional onN1(t1)+N2(t2) = n, the variableN2(t2) ∼ Bin(n, κ)

with κ = t2
t1+t2

. Krishnamoorthy and Thomson (2004) [84] have proposed an alternative E-

test based on estimated p-values.

4.3.2 Our ERRR-based non-parametric proposals

The location of the ERRR curve introduced previously contains information about the

intensities of the competing branches. Recall that by construction, the curve will remain

under the 0.5 line if the second series {Yt} in (4.3) is more active or intense than the first. This

corresponds to λ2 > λ1 where λ1 and λ2 represent the Poisson rates for the {Xt} and {Yt}

series, respectively. As an example, we may return to the eruptions of Mt. Etna considered

in Chapters 1 and 3. Choosing 1974 as the year containing the change point (identified by
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all the unidirectional and bidirectional tests) separating the first regime from the second,

we can create two time series {Xt} and {Yt} using (4.1), from the first and second regime,

respectively. Table (4.3) below, elaborates (of course, a few values from either the {Xt} or

the {Yt} series may have to be removed to make their lengths match, which is essential for

ERRR creation)
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Table 4.3: Time series from regime 1 and 2 for Mt. Etna

Regime 1 Counts Regime 2 Counts

1941 0 1975 3
1942 1 1976 0
1943 0 1977 0
1944 0 1978 3
1945 0 1979 1
1946 0 1980 0
1947 1 1981 1
1948 0 1982 0
1949 1 1983 1
1950 1 1984 0
1951 0 1985 3
1952 0 1986 1
1953 0 1987 0
1954 0 1988 0
1955 0 1989 2
1956 1 1990 0
1957 0 1991 1
1958 0 1992 0
1959 0 1993 0
1960 0 1994 0
1961 0 1995 0
1962 0 1996 0
1963 0 1997 0
1964 1 1998 0
1965 0 1999 0
1966 0 2000 0
1967 0 2001 1
1968 2 2002 2
1969 0 2003 0
1970 0 2004 1
1971 1 2005 0
1972 0 2006 1
1973 0 2007 0
1974 1 2008 1

and the resulting curve is graphed in Fig (4.9).
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Figure 4.9: ERRR plot suggesting an intense second regime for Mt. Etna

The curve lies entirely below the 0.5 threshold which suggests that the second regime is

more intense than the first. All our ERRR-based proposals to compare Poisson rates rely

on this positioning of the ERRR curve.

ERRR-Ic test

The index of competitiveness Ic introduced by Ho and Bhaduri (2017) [70] and described

previously, informs us of ERRR’s rough location and is used here to understand the nature

of dependence. Low values of Ic (compared to the null threshold) will lead to the rejection

of H0. For instance, in the Mt. Etna example just considered, Ic = 0.
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ERRR-Wilcoxon

Wilcoxon’s signed rank test is a non-parametric test for location and using it on the ERRR

values will lead to checking

H0 : θ ≥ 0.5 vs Ha : θ < 0.5 (4.25)

where θ is the true location parameter for the ERRR distribution.

ERRR-Signed median

This is a different non-parametric test for location) and we will use it on the ERRR values,

again with θ = 0.5.

The last two tests are well known in nonparametric literature, and thus, we refrain from

unnecessary elaboration. Readers interested in their construction may consult Hollander and

Wolfe (1999) [71]. With a given data set and a hypothesized value of the location parameter,

p-values are routinely calculated on softwares such as R.

4.3.3 Comparisons

Prior to embarking on a large scale simulation study, we work the steps out on one snapshot

in detail, to accentuate the differences among the competing options, through an illustrative

example. Employing failure truncation, we have sampled twenty observations from each

of the two “arms” or “regimes” or “study groups”, whichever interpretation seems to be

relevant to the context at hand. The first is an HPP with rate 1, while the second is another

HPP with rate 2. The observations are

{N1} = 2.276816, 3.026426, 3.659351, 3.905895, 4.247297, 4.276704, 8.165672, .., 21.768739, 22.278512 (4.26)

and

{N2} = 1.345796, 1.477389, 1.826783, 2.193003, 2.492421, 2.682602, 3.163741, ..., 7.781710, 8.064482 (4.27)
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Thus, TWald = 20/8.064482−20/22.278512√
20/8.0644822+20/22.2785122

= 2.6829 with a one-sided p-value of 0.0036,

TScore = 20/8.064482−20/22.278512√
(20+20)/(8.064482x22.278512)

= 3.3534 with a one-sided p-value of 0.0004,

TLR = sign( 20
8.064482

− 20
22.278512

){20 log 20
22.278512

+20 log 20
8.064482

−(20+20) log 20+20
22.278512+8.064482

}1/2

= 2.22596, with a one-sided p-value of 0.0130, while the p-value from the conditional test is

given by:∑40
i=20

40!
i!(40−i)!κ

i(1− κ)40−i with κ = 8.064482
22.278512+8.064482

. This simplifies to 0.0013.

To implement our ERRR-based alternatives, we note that the smaller terminal time is

8.064482. Thus, we discretize the time axis into {1, 2, ..., 9} and count the number of obser-

vations from each series falling into the intervals (0, 1], (1, 2], ...(8, 9]. With X representing

the first sequence and Y , the second:

{X} = 0, 0, 1, 3, 2, 0, 0, 0, 2 (4.28)

and

{Y } = 0, 3, 3, 4, 0, 5, 2, 2, 1 (4.29)

The resulting ERRR values are

ERRR(X,Y ) = 0.00, 0.00, 0.1428571, 0.2857143, 0.3750000, 0.2857143, 0.2608696, 0.2400000, 0.2857143
(4.30)

where, in keeping with FDR convention, we have regarded 0/0 as 0. Since these ERRR

values are all less than 0.5, the resulting competitiveness index is 0, and hence the Ic-based

p-value is 0. Applying the non-parametric options on (4.30), we have 0.00701453 as the

Wilcoxon p-value and 0.00390625 as the signed-median p-value. Table (4.4) below checks

whether the different proposals are able to pronounce stable flow in case both arms are part

of the same stationary process. With simulations of strength 104, the median p-values are

stored for different sample sizes.
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Table 4.4: Median p-value comparisons with λ1 = 1, λ2 = 1, and different sample sizes.

Test n = 20 n = 30 n = 40

Wald 0.5471 0.4819 0.5107
Score 0.5471 0.4819 0.5107
LR 0.5333 0.4872 0.5076

Conditional C 0.6091 0.5332 0.5551
ERRR-Ic 0.5659 0.4372 0.5054

ERRR-Wilcoxon 0.7614 0.3599 0.5999
ERRR-signed-median 0.7529 0.3668 0.6508

All the tests, with high p-values, are able to detect the similarity in rates under the null

assumption. Next, as the second regime gets more intense, we document similar results in

Tables (4.5) and (4.6) below.

Table 4.5: Median p-value comparisons with λ1 = 1, λ2 = 1.5, and different sample sizes.

Test n = 20 n = 30 n = 40

Wald 0.0754 0.0744 0.0408
Score 0.0647 0.0673 0.0351
LR 0.1451 0.1471 0.1024

Conditional C 0.0891 0.0869 0.0459
ERRR-Ic 0.1571 0.1863 0.1634

ERRR-Wilcoxon 0.0029 0.0005 3.19x10−5

ERRR-signed-median 0.0009 8.68x10−5 9.54x10−7

Table 4.6: Median p-value comparisons with λ1 = 1, λ2 = 2, and different sample sizes.

Test n = 20 n = 30 n = 40

Wald 0.0169 0.0075 0.0017
Score 0.0079 0.0033 0.0005
LR 0.0498 0.0311 0.0117

Conditional C 0.0145 0.0059 0.0009
ERRR-Ic 0.0000 0.0000 0.0000

ERRR-Wilcoxon 0.0071 0.0008 7.1x10−5

ERRR-signed-median 0.0039 0.0002 7.6x10−6

The last two tables demonstrate that when detection is hard, with λ2 close to λ1, our
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ERRR-based proposals with small p-values, are still successful in detecting the changed rate

when the traditional methods fail at the usual 5% or 1% level. Figure (4.10) provides another

depiction.

The erratic movements of the p-value curve from the Ic based technique can be controlled

by a proper trimming of the ERRR values, especially by getting rid of the initial burn-in

period, the definition of which, we believe, is better left at the hands of experts. For small

values of λ2 however, this measure performs almost as well as the established ones.

A technical caveat

Purists might correctly want to check the assumptions going through, prior to applying non-

parametric tests (such as the Wilcoxon’s or signed-rank) on ERRRs. One of these wants

independence among the “data” values. In a majority of cases, ERRRs however, turn out

to be dependent, as is evidenced by the first panel of Fig (4.11). The ACF function exhibits

a slow decay, indicative of a long-memory process. Decreasing the sampling frequency offers

a solution to this dependence problem. As panel (b) demonstrates, sampling every 10-th

ERRR value reduces the dependence amount, with the lagged ACF resembling a white noise.

The conclusions detailed in the previous sections remain valid under this lagged framework.

Table (4.7) below demonstrates. The choice of the lag value should be left to experts in the

concerned field.
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Figure 4.10: Median p-value comparisons with changing k2 and sample size.
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Figure 4.11: Effect on ACF due to a change in ERRR’s sampling frequency

Table 4.7: Median p-value comparisons with λ1 = 1, λ2 = 2, on lagged ERRR values.

Test median-pvalue

Wald 0.00065
Score 0.00016
LR 0.00673

Conditional C 0.00033
ERRR-Ic 0.0743

ERRR-Wilcoxon 2.813x10−10

ERRR-signed-median 2.309x10−14

4.4 ERRRs as Hidden Markov chains

Through graphic illustrations and numerical calculations, this section will work on the in-

terpretability of the ERRR curve as a Markov chain (M.C.) governing one of the two PtPs

involved. A discrete time, discrete space M.C., the type which the ERRRs will eventually be,

is well studied in literature. Ross (2010) [132] among many others, is an excellent resource

describing this widely used one-step dependence tool. Hidden Markov Models (HMMs),

building on M.C.s, are however relatively less known. We shall thus, briefly describe HMMs
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in section (4.4.1). The Kilauea-Mauna Loa interaction series and the “Strong-Weak” hurri-

cane interaction series (both described in Chapter 1) will be the two examples surveyed.

We discretized the volcanic ERRR series into what eventually would turn out to be a

Markov chain according to the scheme:

c(t) =


1 if rt ∈ [0, 0.4)

2 if rt ∈ [0.4, 0.6)

3 if rt ∈ [0.6, 0.8)

4 if rt ∈ [0.8, 1]

The reason for choosing four partitions and the above thresholds will be explained in due

course. Formal tests for checking the Markov property exist in literature (e.g. Zucchini

and MacDonald (2009) [150]) and since our ultimate goal would be to interpret {Ct : t =

0, 1, 2, ...} as a hidden Markov chain, one of those rigorous tests was first performed. For

testing:

H0 : C1, C2, ..., CT |c0 are independent (4.31)

Ha : C1, C2, ..., CT |c0 is a Markov Chain with unknown t.p.m Γ = ((γij)) (4.32)

The test statistic U = 2
m∑
i=1

m∑
j=1

nij
γ̂ij
γ̂j

follows a chi-square distribution with (m − 1)2 d.f.

under the null hypothesis where m is the number of states nij is the number of transitions

from state i to j, γ̂ij =
nij
ni+

. In volcanic context, m = 4 and U = 206.822 and since

χ2
9,0.1 = 14.68, χ2

9,0.05 = 16.92, χ2
9,0.01 = 21.67, we reject the assumption of independence with

a reasonable degree of confidence and conclude that the sequence {Ct : t = 0, 1, 2, ...} can be

treated as a Markov chain.

Once the Markovian property has been objectively established, we can proceed to get an

estimate of the underlying transition probability matrix Γ = ((γij)) which contains useful

information about the rate of flow from state to state. The usual non-parametric estimates
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of the transition probabilities are given for i, j = 1, 2, ...,m by:

γ̂ij =
nij
ni+

. (4.33)

This estimation leads to the following estimate for the volcanic eruption case:

Γ̂ =


0.9 0.1 0 0

0.032 0.952 0.016 0
0 0.0169 0.949 0.034
0 0 0.182 0.818


The chain generated from the “Strong-Weak” hurricane interaction will be discretized

(once again, due to reasons elaborated later) according to:

c(t) =

{
1 if rt ∈ [0, 0.45)

2 if rt ∈ [0.45, 1]

and the estimated transition probability matrix will be

Γ̂ =

(
0.911 0.089
0.147 0.853

)
4.4.1 Models of interest

In this section, we will describe and explore the applicability of an established model termed

as the Poisson Hidden Markov Model (Poisson-HMM) in the context of the available data

and will propose a new alternative, termed ERRR Hidden Markov Model (ERRR-HMM).

Through a series of steps covering different facets of statistical inference, we shall strive to

establish how the proposed model works as good as, and sometimes even better than the

one prevalent in literature with the added advantage of deterministically finding the chain

that generates the observations - something that the Poisson-HMM lacks.

The Poisson-HMM

The use of Hidden Markov Models in statistical inference in general and in speech recognition

or time series in particular is rather profuse (Ephraim and Merhav (2002) [44], Leroux and
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Puterman (1992) [93]). Specifically, a Hidden Markov Model (HMM) {Xt : t ∈ N} is a

specific kind of dependent mixture. If
−→
X (t) and

−→
C (t) represent the histories of the observations

and the undelying chain from time 1 to t, we can summarize the simplest model of this kind

by:

P (Ct|
−→
C t−1) = P (Ct|Ct−1), t = 2, 3, ... (4.34)

P (Xt|
−→
X t−1,

−→
C t) = P (Xt|Ct), t ∈ N (4.35)

The model consists of an unobserved parameter process {Ct : t = 1, 2, ...} satisfying the

Markov property and a state dependent observable process {Xt : t = 1, 2, ...} such that

conditional on the knowledge of the current state Ct, the distribution of Xt is independent

of the past states or observations. When the state-dependent distributions are chosen to be

Poisson i.e. when ∀x = 0, 1, 2, ..., i = 1, 2, ..,m, the number of states of the hidden chain,

pi(x) = P (Xt = x|Ct = i) = e−λi
λxi
x!

(4.36)

we have the m-state Poisson-HMM studied by Zucchini and MacDonald (2009) [150], among

others. With the help of a time series storing earthquake counts, they have nicely demon-

strated how the Poisson-HMM can capture serial dependence and can solve the problem of

overdispersion. Intuitively, they suppose that each count in the time series is generated by

one of m Poisson distributions (which is active at that specific time instant), with means

λ1, λ2, ..., λm, where the choice of the mean is made by a second random mechanism, the

parameter process. The mean λi is selected with probability δi where
−→
δ is the stationary

distribution of the transition probability matrix (t.p.m) of the underlying chain. If the initial

distribution of the chain is
−→
δ and the t.p.m is Γ, the likelihood of observing the sequence
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x1, x2, ..., xt is given by:

LT =
−→
δ P (x1)ΓP (x2)...ΓP (xT )1

′
(4.37)

where P is a m×m diagonal matrix storing the state-dependent probabilities given in (4.36)

above, formally defined by: 
p1(x) 0 ... 0

0 p2(x) ... 0
... ... ... ...
0 0 ... pm(x)


If
−→
δ , the distribution of C1, is the stationary distribution of the chain, then (4.37) simplifies

to:

LT =
−→
δ ΓP (x1)ΓP (x2)...ΓP (xT )1

′
(4.38)

Since
−→
δ can be solved out using:

−→
δ (Im − Γ + U) = 1

′
(4.39)

where 1
′

is a vector of ones and U is an m×m matrix of ones, we observe that the real pa-

rameters that need to be estimated are the elements of the t.p.m Γ and
−→
λ = (λ1, λ2, ..., λm).

Zucchini and MacDonald (2009) [150] has elaborated on maximum likelihood estimation in

this context, through direct maximization of the likelihood and through the E.M. algorithm.

We shall agree to denote the parameters obtained this way by
−→
λ̂ and Γ̂P−HMM .

The ERRR-HMM

We observe that in the Poisson-HMM model detailed above, the total number of parameters

that need to be estimated is m+(m− 1)×m = m2 (assuming that the number of states m is

fixed beforehand) and the process will only give us an estimate of the most likely states of the

underlying hidden chain. In the presence of a companion series (like Mauna Loa eruption
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counts) that is likely to influence the observation series of interest (the Kilauea eruption

counts), we feel that the (properly discretized version) of the observed ERRR series can be

treated as the underlying Markov chain generating the observations. The t.p.m in (4.37) or

in (4.38) need not be estimated anymore, and we can use the non-parametric version of the

ERRR-t.p.m. derived in the previous section in those equations. Critics might argue that the

estimation issue of the matrix has not yet been fully circumnavigated, but we must realize

that such estimation procedure is not directly involved in this specific context and hence

the t.p.m can be safely assumed to be known or given. This would lead to a parsimonious

model, requiring the estimation of only m of the λi’s and would additionally provide a real

(not likely as the Poisson-HMM does) realization of the Markov chain which, in the previous

context, would forever, remain unobserved.

Our prescription currently is this: plug in the non-parametric estimate of the t.p.m

Γ̂ERRR−HMM in (4.37) or (4.38) and get m.l.e’s of the λi’s. Unfortunately, at present, we are

having issues with the numerical maximization of the likelihood under this plug-in framework,

and so, temporarily, we will go through the Poisson-HMM framework and at the very end,

will replace Γ̂P−HMM by Γ̂ERRR−HMM . The estimate
−→
λ̂ will remain unchanged. So the model

momentarily will be “pseudo-parsimonious” and while we endeavor to resolve this issue, with

the help of the two running examples we shall demonstrate how this even less-than-perfect

model performs almost as good as the Poisson-HMM in some aspects and better than it in

some others.

Prior to embarking on any detailed inferential analyses, we must pause to realize that

the data sets we have explored fit nicely into the framework of a Poisson-HMM: we are

fundamentally trying to model counts for which a convenient choice of the state dependent
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densities could be Poisson. Marginal overdispersion is observed in the Kilauea eruption

series, for instance (with a mean of 0.267 and a variance of 0.401) and for handling such

situation, this type of model is rather apt (Zucchini and MacDonald (2009) [150]). Our

observation of interest would be the Kilauea eruption count series, and the first hurdle that

we stumble upon is an objective choice of the number of hidden states m.

4.4.2 Choice of the number of hidden states

We are aware of the fact that the number of states m can be treated as another parameter

inherent in the model and can probably be estimated using a Bayesian framework by putting

a non-informative prior on it and by comparing the posterior odds. We shall, however, not

tread that path and will instead hope to choose m by exploiting the lowest AIC or BIC

criteria while fitting models of different orders. Towards that, we have the following results

for the volcanic interactions in Hawaii.

Table 4.8: Optimum no of states (Volcanic interaction)

m -logLik. AIC BIC

2 133.38 274.76 288.62
3 133.24 284.47 315.65
4 126.08 284.17 339.59

Although strict adherence to the AIC criteria would lead us to choose the simple 2-state

model, we are particularly encouraged by the significant drop in the negative of the log-

likelihood value and hence opt for the slightly complex four-state model. Since we would

like to compare the ERRR-HMM model to this Poisson-HMM, we choose to partition the

observed continuous ERRR series (which should serve as the underlying chain) into four

states as well. For the hurricane case, however, we have the following results:
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Table 4.9: Optimum no of states (Hurricane interaction)

m -logLik. AIC BIC

2 184.85 377.72 387.76
3 184.30 386.60 409.20
4 183.81 399.61 439.79

In the latter case, the decrease in the negative log-likelihood value is not appreciable,

and so we decided to stick to the 2-state model. We observe in passing that as long as the

underlying ERRR series is non-trivial (i.e., not consistently taking a constant value), we can

always discretize it into two or more states.

4.4.3 The estimates: Maximum likelihood for Poisson-HMM and
plug-in for ERRR-HMM

For numerical maximization of the Poisson-HMM likelihood shown above, we follow Zucchini

and MacDonald’s (2009) [150] advice of reparametrization and a choice of the observed

quantiles as the seed values of the λi’s. Off-diagonal seeds of 0.05 in Γ seemed to work rather

well and the following are the maximum likelihood estimates of the parameters under the

Poisson-HMM:

λ̂1 = 3.49× 10−69, λ̂2 = 1.03× 10−32, λ̂3 = 0.8, λ̂4 = 0.923 (4.40)

Γ̂P−HMM =


0.87 0.11 7.79× 10−57 0.01

6.39× 10−7 0.19 0.81 1.92× 10−25

0.83 1.2× 10−81 0.166 4.24× 10−13

1.02× 10−111 0.003 1.94× 10−113 0.96


Following the prescription in (4.33), the estimates for the ERRR-HMM is given by (4.40)

and:

Γ̂ERRR−HMM =


0.9 0.1 0 0

0.032 0.952 0.016 0
0 0.0169 0.949 0.034
0 0 0.182 0.818
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The negative of the log-likelihood value for the Poisson-HMM was seen in the last section

to be 126.08. The corresponding value for the ERRR-HMM turns out to be 150.057 - a

difference that is tolerable, especially in the light of the benefits that the latter affords and

the estimated matrices seem to agree on most of the 16 spots.

For the hurricane case, the corresponding estimates are:

λ̂1 = 2.571, λ̂2 = 4.874 (4.41)

Γ̂P−HMM =

(
0.929 0.071
0.184 0.816

)
and the non-parametric estimate of the t.p.m from the discretized ERRR series turn out to

be:

Γ̂ERRR−HMM =

(
0.911 0.089
0.147 0.853

)

4.4.4 Global decoding

Given the observed history, estimation of the most likely sequence of hidden states is often

of interest, i.e. one wants c1, c2, .., cT such that the conditional probability:

P (
−−→
C(T ) =

−→
c(T )|
−−→
X(T ) =

−−→
x(T )) (4.42)

is maximized. The Viterbi algorithm provides a useful aid to the computations and proceeds

by writing:

ε1i = P (C1 = i,X1 = x1) = δipi(x) (4.43)

and for t = 2, 3, ..., T

εti = max
c1,..ct−1

P (
−−−→
C(t−1) =

−−−→
c(t−1), Ct = i,

−−→
X(T ) =

−−→
x(T )) (4.44)
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Zucchini and MacDonald (2009) [150] shows that for t = 2, 3, .., T and i = 1, 2, ..,m, the

latter simplifies to:

εtj = (max
i

(εt−1,iγij))pj(xt) (4.45)

where γij as usual, is the (i, j)th element of the t.p.m. The required maximizing sequence of

states ii, i2, .., iT can be found using the recursion:

iT = argmax
i=1,..,m

εT i (4.46)

and for t = T − 1, T − 2, .., 1 from:

it = argmax
i=1,..,m

(εtiγi,it+1) (4.47)

An application of this algorithm using elements of the estimated t.p.m from the two

models leads to Figs (4.12) and (4.13). The second panel describes how the underlying state

space is likely to have evolved in the absence of information on the companion series; the

third panel describes the corresponding situation in the presence of such knowledge while the

top panel is observable, devoid of any estimation process and free of related uncertainties.

The close agreement (mostly in terms of the ongoing trend) between the discretized states

of ERRR and the estimated states from both models provides empirical evidence for and

strengthens our belief in that ERRR can indeed be treated as the chain that generated

the Kilauea eruption counts. It may be observed that the ERRR-HMM provides a better

approximation to the discretized states of ERRR which is intuitively acceptable since it learns

from the estimated t.p.m of this process. But remarkably, the pattern of the estimated states

from the two competing models (i.e., the lower two panels) are pretty similar as well.
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Figure 4.12: Global decoding for volcanic interaction
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Figure 4.13: Global decoding for hurricane counts
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4.4.5 State prediction

If need be, one can predict future states of the hidden chain using the observed history of

the process through:

P (CT+h = i|
−−→
X(T ) =

−−→
x(T )) = −→α TΓh(, i)/LT (4.48)

where h is the prediction horizon and −→α t = δP (x1)
t∏

s=2

ΓP (xs). This holds for all i = 1, 2, ..m

and thus, for each h, we should have a probability distribution on the state space. At

horizon frames of 1, 100 and 500 for instance, i.e. at times t = 236 + 1 = 237, 236 + 100 =

336, 236 + 500 = 736, we have the following distributions from the two competing models for

the Kilauea-Mauna Loa interaction.

Table 4.10: Probability distribution on state space (P-HMM), volcanic case

m h = 1 h = 100 h = 500

1 0.137 0.574 0.577
2 0.057 0.091 0.091
3 0.100 0.088 0.088
4 0.705 0.247 0.243

Table 4.11: Probability distribution on state space (ERRR-HMM), volcanic case

m h = 1 h = 100 h = 500

1 0.005 0.120 0.128
2 0.102 0.383 0.401
3 0.760 0.413 0.378
4 0.132 0.078 0.070

So at h = 1, the Poisson-HMM predicts the most likely state to be 4, while the ERRR-

HMM predicts it to be 3 and similarly for the other values of h. We observe that as the

prediction horizon increases, both the distributions are attracted to the “low” states, and

195



the variation in state forecasts from the ERRR-HMM is not extremely wild. We repeated

this exercise for a sequence of h from 1 through 600, picked the most likely states from each

of the two models and created the lower two panel of the adjoining graph (Fig (4.14)).

It is of natural curiosity to inquire how the ERRR sequence, viewed as a time series

would flow in the near (or distant) future and whether it follows the pattern predicted by

the two lower panels. Towards that, we have performed a traditional time series analysis

on the ERRR series, found a SARIMA model of order 32 to work best and have extracted

the 600 years’ forecasts out of it. The exact fitting mechanism is similar to the ones shown

in Tan (2014) [142], Ho and Bhaduri (2015) [68] and Ho et al. (2016) [69], and is not

elaborated here, since it will be distracting to the main theme. The results are in close

agreement with better performance exhibited by ERRR-HMM, which mostly predicts state

2. Poisson-HMM, which mostly predicts the nearby state of 1, is also rather close.
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Figure 4.14: State prediction (volcanic case)
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4.4.6 Forecast distributions and cross-validation

We can now turn our attention to the values that are actually observable with emphasis

on their forecasts and put the two competing models to test in this regard. Zucchini and

MacDonald (2009) [150] shows that the forecast distributions can be conveniently expressed

as:

P (XT+h = x|
−−→
X(T ) =

−−→
x(T )) =

m∑
i=1

εi(h)pi(x) (4.49)

where εi(h) is the ith entry of the vector −→α T/(
−→α T1

′
). Just as in the previous section, for

each value of h, we can expect a probability distribution, not on the state space now, but

on the observation space, and with a view to check which model does better in the face of

evidence observed already, we adopt a cross-validation type approach: we partition the 236

years’ worth of data into a training set of 216 observations and a prediction set of the last

20 observations. We re-estimate the parameters (both the average and the t.p.m’s) for each

model with the training set and with different values of the forecast horizon, observe the

following probability distributions:

Table 4.12: Probability distribution on observation space (P-HMM), volcanic case

x h = 1 h = 3 h = 5

0 0.507 0.523 0.566
1 0.308 0.298 0.271
2 0.134 0.130 0.118
3 0.039 0.038 0.035
4 0.008 0.008 0.008
5 0.001 0.001 0.001

Although the number of counts, in theory is unbounded, in practice we have not calculated

the probabilities beyond x = 5 because of their negligibility. Even a cursory glance at the
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Table 4.13: Probability distribution on observation space (ERRR-HMM), volcanic case

x h = 1 h = 3 h = 5

0 0.408 0.422 0.437
1 0.361 0.352 0.344
2 0.165 0.159 0.155
3 0.050 0.049 0.047
4 0.012 0.011 0.011
5 0.002 0.002 0.002

prediction set (last 20 observations) is enough to convince one of the increased activity of

Kilauea in the recent years. The probabilities listed above clearly indicate that the ERRR-

HMM is a better than Poisson-HMM in picking up this fact which undoubtedly provides

further support towards its superiority. One the hurricane side, similar analyses give

Table 4.14: Probability distribution on observation space (P-HMM), hurricane case

x h = 1 h = 3 h = 5

0 0.059 0.058 0.058
1 0.156 0.154 0.153
2 0.211 0.210 0.209
3 0.199 0.198 0.198
4 0.150 0.150 0.151
5 0.098 0.099 0.100
6 0.059 0.060 0.061
7 0.034 0.035 0.035
8 0.018 0.019 0.019
9 0.009 0.009 0.010
10 0.004 0.004 0.005
11 0.001 0.002 0.002
12 0.000 0.001 0.001

4.4.7 One-out conditional distributions

We now intend to investigate how the distribution of Xt conditioned on all the other ob-

servations of the HMM would react under the two different models and also, how do they
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Table 4.15: Probability distribution on observation space (ERRR-HMM), hurricane case

x h = 1 h = 3 h = 5

0 0.050 0.047 0.046
1 0.134 0.129 0.126
2 0.190 0.184 0.181
3 0.190 0.187 0.186
4 0.155 0.156 0.157
5 0.112 0.115 0.117
6 0.074 0.078 0.080
7 0.046 0.048 0.049
8 0.026 0.028 0.029
9 0.013 0.014 0.015
10 0.006 0.007 0.007
11 0.003 0.003 0.003
12 0.001 0.001 0.001

compare with the actual observed counts. Using
−→
X (−t) := (X1, .., Xt−1, Xt+1, .., XT ), the

required conditional density is given by (Zucchini and MacDonald (2009) [150])

P (Xt = x|
−→
X (−t) = −→x (−t)) =

m∑
i=1

wi(t)pi(x) (4.50)

where the scales wi(t) are appropriate functions of the observations −→x (−t) and the model

parameters. For reasonable values of x once again, such distributions are calculated and

compared in Figs (4.15) and (4.16) both between them and also with the actual observed

counts. Remembering what this conditional distribution does, we can see that the ERRR-

HMM can borrow strength more efficiently from the remaining observations as compared to

the Poisson-HMM and is able to do far better in detecting large values of x. To clarify, the

figure corresponding to t = 212 in the volcanic case (Fig(4.15)) demonstrates how using the

remaining observations, the true number of Kilauea eruptions (i.e., 4) seems more plausible

under the ERRR-HMM framework. Incidentally, in the context of rare and catastrophic

events such as volcanic eruptions, such high values are more worrying and hence should be
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estimated with better efficiency.
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Figure 4.15: One-out conditionals, volcanic case
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Figure 4.16: One-out conditionals, hurricane case
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4.4.8 Analysis of pseudo-residuals

Zucchini and MacDonald (2009) [150] shows that if the underlying model is correct, then

zt = Φ−1(P (Xt ≤ xt|
−−→
X−t =

−→
x−t)) (4.51)

is a realization of a standard normal variable for the continuous case. For the discrete version,

the normal pseudo-residual segment is [z−t , z
+
t ] where

z−t = Φ−1(P (Xt < xt|
−−→
X−t =

−→
x−t)) (4.52)

z+
t = Φ−1(P (Xt ≤ xt|

−−→
X−t =

−→
x−t)) (4.53)

Figures (4.17) and (4.18) below compare the competing models with respect to this

diagnostic tool, and find them to be more or less equally effective.
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Figure 4.17: Pseudo-residuals (volcanic case). Left panel: P −HMM , right panel: ERRR−
HMM
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Figure 4.18: Pseudo-residuals (hurricane case). Left panel: P−HMM , right panel: ERRR−
HMM
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In summary, through the final section, we have tried to establish that the statistic ERRR

can be conveniently discretized and converted to a Markov chain which can be thought to

generate one of the PtPs. Traditional HMM analysis assumes the chain to be unobservable

and utilizes computation heavy algorithms only to get the most likely chain. Bereft of tedious

calculations, ERRR-HMM readily provides an observable version of it, and the inferences are

better or at least in close agreement. In each of the inferential aspects explored, we have let

the initial (stationary) distribution of the discretized ERRR chain to be dictated by its t.p.m.

Had we forced this initial distribution to coincide with the one generated by the Poisson-

HMM, we would possibly have had better conclusions. Zucchini and MacDonald (2009) [150]

claims that if the Markov chain underlying a stationary HMM is time reversible, the HMM

is so, too. For two state chains such as the hurricane case, the chain should certainly be time

reversible. We know that an irreducible (homogeneous, discrete time, finite space) Markov

chain has a unique, strictly positive stationary distribution. As long as our ERRR series

is not monotonic, we can always find a partition that ensures the discretized chain will be

irreducible. Stationary distributions can thus be found and the method detailed above can

be carried out. Even after an objective choice of the number of hidden states, subjectivity

still remains regarding the placement of the partitions. Towards that, we can say that a

detailed sensitivity analysis with regards to this aspect on the two examples explored did

not generate drastically different conclusions.
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Chapter 5

Conclusions

Change point detection is arguably one of the pivotal problems confronting modern inference,

embracing notions from control theory, estimation, and hypothesis testing. Using predom-

inantly frequentist techniques, this dissertation, anchored to the Poissonian framework of

event generation, addressed this problem with the intention of forging a nexus between a

powerful test and a change detection algorithm. This is in keeping with current practice

in this domain (for instance, with the CPM framework studied) where a testing-estimation

routine seems unavoidable. Ingenuity was demonstrated, however, in conceiving the two

protagonists.

The prospect of flipping time was noted to be proficuous by Ho (1993) [66] in creating a

backward version of an already existing statistic. As its first exercise, this study unearthed

new instances of intensities, both smooth (Dimitrakopoulou et al. (2007) [35]) and rough

(intensities with two steps and more, and their mixtures) where the test using this backward

statistic, retains its superiority, with regards to detecting non-stationarity. Piquant schemes

of borrowing strength from both versions (through taking their maximum, choosing their

minimum p-value, etc.) were then proposed to create a unified category of tools called

“bidirectional tests”. The equable thread that binds every member of this family is an effort
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to preserve the anomaly identification properties, optimum under the working intensity,

regardless of the version (the established forward Z or the backward ZB) that provides it,

and yet achieve higher power. Two palmary members of this family were then identified to

carry out the estimation task, to be undertaken next.

The proposed algorithm exploits ideas from testing multiple hypotheses and False Dis-

covery Rate (FDR) control. When run with the best bidirectional member, it proves to

be successful in promptly detecting and estimating even minor deviations from stationarity.

We have offered two versions of the prescription, and sensitivity expectations or available

computational resources should dictate the choice. In addition to enjoying the classification

accuracy of a test more powerful than the prevalent unidirectional ones, the weaker version

relaxes the need to conduct two or more tests simultaneously while the algorithm is being

run. The latter approach was advised by Chen (2010) [24]. Stifling assumptions on such

parameters as the number of change points possible, have not been imposed, and extensive

simulations and real examples demonstrate the applicability in diverse fields. Attention has

been paid to ease the computational burden, and graphic tools, often rendering useful corol-

laries (such as efficient prediction, interpretability as Hidden Markov chains, etc.), have been

offered as validation instruments.

The research that this dissertation initiates is, however, far from over. Change point de-

tection problems in time series are currently being handled by computer scientists through

relative density ratio estimation (Liu et al. (2013) [100]) and random forest techniques

(Auret and Aldrich (2010) [5]). Bhaduri, Zhan, and Chiu (2017) [15] proposed a class of

stochastic weak learning estimators in the context of dynamically evolving systems. Under

relatable frameworks, it will be interesting to examine how the bidirectional class competes
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against these alternatives. FDR control and ordered hypothesis testing are gaining promi-

nence through accumulation tests introduced recently by Li and Barber (2017) [94] and our

algorithm can be embellished upon by considering their insights, or by controlling positive-

FDR (Storey (2003) [138]), for instance. Under a rough intensity scenario, tests may be

constructed to guess the most likely number of steps and the location of knots. Similarity

between PtPs has been studied by several authors, most notably, Kalzanov (1970) [77], who

introduced a distance-type metric between the two distribution functions of the inter-event

times, and Rand (1971) [117], who examined similarity through segment membership of dif-

ferent pairs of observations. Finding ways of incorporating these ideas into the detection

algorithm, merits effort. An R package may be developed for ready implementation of our

proposed methodology.

With complications and intricacies originating from myriad sources, the research climate

for change expiscation is growing procellous with each passing day. Beguiled by the fecund

foundation laid, we vow to stalk, with renewed verve and anticipation, the bidirectional class’s

blossoming, and remain confident of its efficient response to the exigencies of a tumultuous

non-stationary future.
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Appendix A: Ranked p-values from the Z-test on the

whole process (Mt. Etna)

Test id Ranked p-value BH
61 0.000004943087942 0.0008196721311
60 0.000007102322927 0.001639344262
56 0.0000093608746 0.002459016393
59 0.00001018716082 0.003278688525
55 0.00001280563653 0.004098360656
58 0.00001459336562 0.004918032787
57 0.0000229692616 0.005737704918
54 0.0000251782327 0.006557377049
53 0.00003105257094 0.00737704918
52 0.00005289834801 0.008196721311
51 0.0001007964124 0.009016393443
50 0.0001696307746 0.009836065574
49 0.0002426596414 0.0106557377
48 0.0003440195984 0.01147540984
47 0.0005130903299 0.01229508197
46 0.0008496615905 0.0131147541
45 0.001464533111 0.01393442623
44 0.002459381927 0.01475409836
43 0.003314336522 0.01557377049
42 0.005215017362 0.01639344262
41 0.007962090384 0.01721311475
40 0.01286469193 0.01803278689
39 0.0165993583 0.01885245902

38 0.02141540717 0.01967213115
37 0.03257389687 0.02049180328
35 0.03580081964 0.02131147541
36 0.0388791885 0.02213114754
34 0.03934395714 0.02295081967
33 0.05709060267 0.0237704918
30 0.05812311929 0.02459016393
29 0.06468381119 0.02540983607
32 0.07362151428 0.0262295082

210



28 0.07614297032 0.02704918033
27 0.07649347305 0.02786885246
31 0.08524508684 0.02868852459
24 0.0954898563 0.02950819672
23 0.1042650064 0.03032786885
26 0.1084977748 0.03114754098
22 0.1361354441 0.03196721311
25 0.1482536128 0.03278688525
21 0.1711449883 0.03360655738
14 0.1809190262 0.03442622951
13 0.1920789062 0.03524590164
20 0.2056377189 0.03606557377
15 0.2360564393 0.0368852459
19 0.2456975735 0.03770491803
17 0.2575871762 0.03852459016
16 0.261195852 0.0393442623
12 0.2769413146 0.04016393443
18 0.2978102764 0.04098360656
10 0.3171459564 0.04180327869
11 0.3272108335 0.04262295082
3 0.4024184082 0.04344262295
9 0.4131393761 0.04426229508
7 0.4308539278 0.04508196721
8 0.4917445048 0.04590163934
4 0.6443505328 0.04672131148
1 0.6529830323 0.04754098361
6 0.6544987963 0.04836065574
2 0.8130724892 0.04918032787
5 0.9888456031 0.05
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Appendix B: Ranked p-values from the ZB-test on the

whole process (Mt. Etna)

Test id Ranked p-value BH
55 0.00000001942997829 0.0008196721311
52 0.00000005039281525 0.001639344262
53 0.0000001596420469 0.002459016393
56 0.0000004625586953 0.003278688525
54 0.000001689198267 0.004098360656
51 0.00000430953076 0.004918032787
47 0.000005386461944 0.005737704918
48 0.000009717672124 0.006557377049
46 0.00001049194415 0.00737704918
61 0.00001455600076 0.008196721311
49 0.00001568116004 0.009016393443
50 0.00001710726971 0.009836065574
60 0.00002086860746 0.0106557377
59 0.00003085407754 0.01147540984
58 0.0000465430868 0.01229508197
45 0.0000966166795 0.0131147541
57 0.000143757168 0.01393442623
43 0.00043487751 0.01475409836
44 0.0007938378494 0.01557377049
42 0.001426623997 0.01639344262
41 0.002329017367 0.01721311475

6 0.02120557212 0.01803278689
40 0.02523164687 0.01885245902
38 0.03022646284 0.01967213115
39 0.03265153509 0.02049180328
7 0.03565259439 0.02131147541
34 0.065719317 0.02213114754
35 0.1107571925 0.02295081967
27 0.1144994673 0.0237704918
5 0.1226855514 0.02459016393
3 0.1321114403 0.02540983607
37 0.1415490663 0.0262295082
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23 0.1569500487 0.02704918033
30 0.1858172486 0.02786885246
29 0.1858826209 0.02868852459
13 0.1921243749 0.02950819672
36 0.1941121472 0.03032786885
33 0.2002182532 0.03114754098
24 0.2047482687 0.03196721311
28 0.2273046814 0.03278688525
22 0.2473751119 0.03360655738
26 0.2789840633 0.03442622951
10 0.2988885683 0.03524590164
14 0.3017283711 0.03606557377
32 0.3487205709 0.0368852459
21 0.3573262561 0.03770491803
12 0.4151648096 0.03852459016
9 0.4209662152 0.0393442623
20 0.4583324904 0.04016393443
8 0.4602265212 0.04098360656
31 0.4776843603 0.04180327869
11 0.4964767453 0.04262295082
19 0.5998942672 0.04344262295
25 0.6104584302 0.04426229508
15 0.6158370696 0.04508196721
1 0.6529830323 0.04590163934
17 0.7068332469 0.04672131148
16 0.7277255267 0.04754098361
4 0.8396791684 0.04836065574
2 0.8559219995 0.04918032787
18 0.8822767596 0.05
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Appendix C: Ranked p-values from the R-test on the

first 50 observations (Mt. Etna)

Test id Ranked p-value BH
41 0.0025 0.001020408163
42 0.0025 0.002040816327
43 0.0025 0.00306122449
44 0.0025 0.004081632653
45 0.0025 0.005102040816
46 0.0025 0.00612244898
47 0.0025 0.007142857143
48 0.0025 0.008163265306
49 0.0025 0.009183673469

6 0.0175 0.01020408163
40 0.0175 0.0112244898
7 0.0375 0.01224489796
38 0.0375 0.01326530612
39 0.0375 0.01428571429
34 0.075 0.01530612245
5 0.15 0.01632653061
13 0.15 0.01734693878
23 0.15 0.01836734694
27 0.15 0.0193877551
29 0.15 0.02040816327
30 0.15 0.02142857143
33 0.15 0.02244897959
35 0.15 0.02346938776
36 0.15 0.02448979592
37 0.15 0.02551020408
10 0.25 0.02653061224
22 0.25 0.02755102041
24 0.25 0.02857142857
26 0.25 0.02959183673
28 0.25 0.0306122449
3 0.4 0.03163265306
8 0.4 0.03265306122
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9 0.4 0.03367346939
11 0.4 0.03469387755
12 0.4 0.03571428571
14 0.4 0.03673469388
20 0.4 0.03775510204
21 0.4 0.0387755102
31 0.4 0.03979591837
32 0.4 0.04081632653
1 0.75 0.04183673469
2 0.75 0.04285714286
4 0.75 0.04387755102
15 0.75 0.04489795918
16 0.75 0.04591836735
17 0.75 0.04693877551
18 0.75 0.04795918367
19 0.75 0.04897959184
25 0.75 0.05
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Appendix D: Ranked p-values from the PDB-test on the

first 50 observations (Mt. Etna)

Test id Ranked p-value BH
47 0 0.001020408163
41 0.0025 0.002040816327
42 0.0025 0.00306122449
43 0.0025 0.004081632653
44 0.0025 0.005102040816
45 0.0025 0.00612244898
46 0.0025 0.007142857143
48 0.0025 0.008163265306
49 0.0075 0.009183673469

6 0.0375 0.01020408163
38 0.0375 0.0112244898
39 0.0375 0.01224489796
40 0.0375 0.01326530612
7 0.075 0.01428571429
34 0.075 0.01530612245
35 0.075 0.01632653061
36 0.075 0.01734693878
37 0.075 0.01836734694
24 0.15 0.0193877551
27 0.15 0.02040816327
28 0.15 0.02142857143
29 0.15 0.02244897959
30 0.15 0.02346938776
31 0.15 0.02448979592
32 0.15 0.02551020408
33 0.15 0.02653061224
3 0.25 0.02755102041
5 0.25 0.02857142857
13 0.25 0.02959183673
14 0.25 0.0306122449
21 0.25 0.03163265306
22 0.25 0.03265306122
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23 0.25 0.03367346939
25 0.25 0.03469387755
26 0.25 0.03571428571
10 0.35 0.03673469388
12 0.35 0.03775510204
15 0.35 0.0387755102
16 0.35 0.03979591837
17 0.35 0.04081632653
18 0.35 0.04183673469
19 0.35 0.04285714286
20 0.35 0.04387755102
8 0.55 0.04489795918
9 0.55 0.04591836735
11 0.55 0.04693877551
1 0.75 0.04795918367
2 0.85 0.04897959184
4 0.925 0.05
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Appendix E: Ranked p-values from the Z-test for the

second regime (Mt. Etna)

Test id Ranked p-value BH
16 0.03053105253 0.0025
17 0.03803814244 0.005
18 0.04001599977 0.0075
19 0.04218615555 0.01
20 0.04457540001 0.0125
3 0.1352083669 0.015
1 0.2051282051 0.0175
9 0.2185917881 0.02
10 0.2722428017 0.0225
13 0.2726137302 0.025
4 0.2733656995 0.0275
8 0.2793013439 0.03
15 0.303185794 0.0325
2 0.3044004016 0.035
14 0.4041262415 0.0375
7 0.4042843554 0.04
11 0.4236103038 0.0425
5 0.46520855 0.045
12 0.4698107875 0.0475
6 0.54100298 0.05
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Appendix F: Ranked p-values from the ZB-test for the

second regime (Mt. Etna)

Test id Ranked p-value BH
16 0.002717885183 0.0025
17 0.02977388948 0.005
18 0.05371973481 0.0075
19 0.08372560997 0.01
20 0.1158422112 0.0125
3 0.1191436052 0.015
9 0.180707555 0.0175
1 0.2051282051 0.02
8 0.2346468783 0.0225
13 0.2389519006 0.025
11 0.268618233 0.0275
15 0.3281177433 0.03
10 0.430398062 0.0325
14 0.4747686349 0.035
7 0.4763004965 0.0375
2 0.4832001146 0.04
5 0.5904182423 0.0425
4 0.9091774219 0.045
6 0.9134659 0.0475
12 0.9899680316 0.05
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Appendix G: Ranked p-values from the R-test for the

second regime (Mt. Etna)

Test id Ranked p-value BH
19 0 0.0025
20 0 0.005

16 0.075 0.0075
17 0.075 0.01
18 0.075 0.0125
3 0.4 0.015
8 0.4 0.0175
9 0.4 0.02
10 0.4 0.0225
11 0.4 0.025
13 0.4 0.0275
15 0.4 0.03
1 0.75 0.0325
2 0.75 0.035
4 0.75 0.0375
5 0.75 0.04
6 0.75 0.0425
7 0.75 0.045
12 0.75 0.0475
14 0.75 0.05
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Appendix H: Ranked p-values from the PDB-test for

the second regime (Mt. Etna)

Test id Ranked p-value BH
20 0 0.0025
1 0.0025 0.005
17 0.0025 0.0075

2 0.0375 0.01
18 0.0375 0.0125
4 0.075 0.015
19 0.075 0.0175
10 0.15 0.02
3 0.25 0.0225
9 0.25 0.025
14 0.25 0.0275
8 0.35 0.03
11 0.35 0.0325
16 0.35 0.035
12 0.55 0.0375
5 0.925 0.04
6 0.925 0.0425
7 0.925 0.045
13 0.9625 0.0475
15 0.9625 0.05
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Appendix I: Ranked p-values from the Z-test for the

first regime (DJIA)

Test id Ranked p-value BH
49 2.18E-15 0.001020408163
48 8.71E-15 0.002040816327
46 1.59E-14 0.00306122449
47 3.08E-14 0.004081632653
45 6.16E-14 0.005102040816
44 2.23E-13 0.00612244898
43 8.59E-13 0.007142857143
42 3.27E-12 0.008163265306
41 1.18E-11 0.009183673469
40 4.30E-11 0.01020408163
35 6.40E-11 0.0112244898
39 1.51E-10 0.01224489796
34 2.43E-10 0.01326530612
38 5.09E-10 0.01428571429
33 8.98E-10 0.01530612245
37 1.73E-09 0.01632653061
32 3.10E-09 0.01734693878
36 5.72E-09 0.01836734694
31 9.74E-09 0.0193877551
30 3.41E-08 0.02040816327
29 6.22E-08 0.02142857143
28 2.03E-07 0.02244897959
27 6.19E-07 0.02346938776
26 1.74E-06 0.02448979592
25 5.44E-06 0.02551020408
24 1.63E-05 0.02653061224
23 4.64E-05 0.02755102041
22 0.0001235767114 0.02857142857
21 0.0003007180559 0.02959183673
20 0.0007718935122 0.0306122449
19 0.00158901732 0.03163265306
18 0.003581549277 0.03265306122
17 0.007218956194 0.03367346939
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16 0.01398218526 0.03469387755
15 0.02880627938 0.03571428571
6 0.03561792393 0.03673469388

14 0.05480955458 0.03775510204
13 0.07289474711 0.0387755102
5 0.1069806187 0.03979591837
12 0.1285694159 0.04081632653
11 0.222618907 0.04183673469
8 0.2594836933 0.04285714286
4 0.2874266603 0.04387755102
1 0.2989100817 0.04489795918
10 0.3634506048 0.04591836735
7 0.4552340209 0.04693877551
9 0.5454772057 0.04795918367
3 0.6448744181 0.04897959184
2 0.8659836365 0.05
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Appendix J: Ranked p-values from the ZB-test for the

first regime (DJIA)

Test id Ranked p-value BH
35 0 0.001020408163
43 0 0.002040816327
44 0 0.00306122449
45 0 0.004081632653
46 0 0.005102040816
34 6.66E-16 0.00612244898
49 2.00E-15 0.007142857143
42 8.22E-15 0.008163265306
33 2.20E-14 0.009183673469
41 4.75E-14 0.01020408163
29 6.46E-14 0.0112244898
48 1.37E-13 0.01224489796
26 1.99E-13 0.01326530612
32 2.84E-13 0.01428571429
31 4.97E-13 0.01530612245
28 8.63E-13 0.01632653061
47 2.29E-12 0.01734693878
40 3.17E-12 0.01836734694
27 3.80E-12 0.0193877551
25 1.95E-11 0.02040816327
30 3.54E-11 0.02142857143
39 1.08E-10 0.02244897959
38 8.56E-10 0.02346938776
24 1.10E-09 0.02448979592
23 3.05E-08 0.02551020408
37 4.98E-08 0.02653061224
22 3.57E-07 0.02755102041
21 6.47E-07 0.02857142857
36 2.47E-06 0.02959183673
6 2.11E-05 0.0306122449
20 2.51E-05 0.03163265306
19 2.88E-05 0.03265306122
5 4.16E-05 0.03367346939
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18 0.0002081008264 0.03469387755
17 0.0005063089311 0.03571428571
16 0.0006936279382 0.03673469388
4 0.00180598794 0.03775510204
15 0.006652678286 0.0387755102
13 0.008909579235 0.03979591837
2 0.01315918152 0.04081632653
12 0.02169336306 0.04183673469
14 0.03904152939 0.04285714286

3 0.05567207285 0.04387755102
11 0.1047896358 0.04489795918
8 0.1975646226 0.04591836735
1 0.2989100817 0.04693877551
10 0.4809663822 0.04795918367
9 0.7040870037 0.04897959184
7 0.9214588344 0.05
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Appendix K: Ranked p-values from the R-test for the

first regime (DJIA)

Test id Ranked p-value BH
4 0.0025 0.001020408163
5 0.0025 0.002040816327
6 0.0025 0.00306122449
16 0.0025 0.004081632653
17 0.0025 0.005102040816
18 0.0025 0.00612244898
19 0.0025 0.007142857143
20 0.0025 0.008163265306
21 0.0025 0.009183673469
22 0.0025 0.01020408163
23 0.0025 0.0112244898
24 0.0025 0.01224489796
25 0.0025 0.01326530612
26 0.0025 0.01428571429
27 0.0025 0.01530612245
28 0.0025 0.01632653061
29 0.0025 0.01734693878
30 0.0025 0.01836734694
31 0.0025 0.0193877551
32 0.0025 0.02040816327
33 0.0025 0.02142857143
34 0.0025 0.02244897959
35 0.0025 0.02346938776
36 0.0025 0.02448979592
37 0.0025 0.02551020408
38 0.0025 0.02653061224
39 0.0025 0.02755102041
40 0.0025 0.02857142857
41 0.0025 0.02959183673
42 0.0025 0.0306122449
43 0.0025 0.03163265306
44 0.0025 0.03265306122
45 0.0025 0.03367346939
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46 0.0025 0.03469387755
47 0.0025 0.03571428571
48 0.0025 0.03673469388
49 0.0025 0.03775510204
13 0.0075 0.0387755102
15 0.0075 0.03979591837
2 0.0175 0.04081632653
12 0.0175 0.04183673469
14 0.0375 (0.03894) 0.04285714286

3 0.075 0.04387755102
8 0.15 0.04489795918
11 0.15 0.04591836735
1 0.25 0.04693877551
10 0.4 0.04795918367
7 0.75 0.04897959184
9 0.75 0.05
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Appendix L: Ranked p-values from the PDB-test for the

first regime (DJIA)

Test id Ranked p-value BH
27 0 0.001020408163
47 0 0.002040816327

5 0.0025 (0.0037) 0.00306122449
6 0.0025 (0.0042) 0.004081632653

17 0.0025 0.005102040816
18 0.0025 0.00612244898
19 0.0025 0.007142857143
20 0.0025 0.008163265306
21 0.0025 0.009183673469
22 0.0025 0.01020408163
23 0.0025 0.0112244898
24 0.0025 0.01224489796
26 0.0025 0.01326530612
28 0.0025 0.01428571429
29 0.0025 0.01530612245
30 0.0025 0.01632653061
32 0.0025 0.01734693878
33 0.0025 0.01836734694
34 0.0025 0.0193877551
35 0.0025 0.02040816327
36 0.0025 0.02142857143
37 0.0025 0.02244897959
38 0.0025 0.02346938776
39 0.0025 0.02448979592
40 0.0025 0.02551020408
41 0.0025 0.02653061224
42 0.0025 0.02755102041
43 0.0025 0.02857142857
44 0.0025 0.02959183673
45 0.0025 0.0306122449
46 0.0025 0.03163265306
48 0.0025 0.03265306122
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4 0.0075 0.03367346939
16 0.0075 0.03469387755
25 0.0075 0.03571428571
31 0.0075 0.03673469388
49 0.0075 0.03775510204
13 0.0175 0.0387755102
15 0.0175 0.03979591837

2 0.0375 (0.043) 0.04081632653

12 0.0375 (0.0293) 0.04183673469

14 0.075 (0.066) 0.04285714286
3 0.15 0.04387755102
1 0.25 0.04489795918
8 0.25 0.04591836735
11 0.25 0.04693877551
7 0.55 0.04795918367
10 0.55 0.04897959184
9 0.925 0.05
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Appendix M: Empirical null distribution of L (lower α

points)

α = 0.005 α = 0.01 α = 0.025 α = 0.05 α = 0.1 α = 0.2 α = 0.3 α = 0.5

n = 2 0.005342245 0.0100358 0.02500824 0.04987752 0.1027124 0.2115563 0.3267497 0.5746217
n = 3 0.141976053 0.2043901 0.32870548 0.48700641 0.7124095 1.0631895 1.3687415 1.9227077
n = 4 0.523628684 0.6593564 0.95825341 1.23343330 1.6374296 2.2064713 2.6661593 3.4631339
n = 5 1.089314500 1.3636549 1.75278920 2.18488940 2.7345944 3.4839738 4.0772423 5.0844331
n = 6 1.833420466 2.1610725 2.68873919 3.21334757 3.9481603 4.8636473 5.5578203 6.7255033
n = 7 2.685081315 3.0845979 3.72252674 4.40535801 5.2161091 6.3045719 7.1193572 8.4261628
n = 8 3.597272957 4.1073490 4.85766811 5.64304801 6.5749604 7.7929018 8.6952330 10.1707963
n = 9 4.562319611 5.1753124 6.03681592 6.94001869 7.9843505 9.3104161 10.3089203 11.9140336
n = 10 5.569752580 6.2352027 7.29071030 8.24023853 9.4129051 10.8680716 11.9528652 13.6964902
n = 11 6.758062790 7.4011449 8.57794098 9.60997610 10.8639633 12.4497371 13.6447642 15.4632712
n = 12 7.863731364 8.6572326 9.82588267 11.02532093 12.3185485 14.0180799 15.2651146 17.2590039
n = 13 9.084100158 9.9462277 11.23756206 12.39891836 13.8058329 15.6458095 16.9791641 19.0476480
n = 14 10.297832843 11.1201283 12.56335636 13.83385703 15.3873649 17.2946663 18.6637605 20.8725935
n = 15 11.474710051 12.3957852 13.91514005 15.34561529 16.8760636 18.9363083 20.3408053 22.6836592
n = 16 12.756572238 13.7717425 15.39553392 16.76678463 18.4950954 20.6067213 22.0988016 24.5158470
n = 17 14.055966586 15.1360480 16.78949470 18.30423942 20.0426151 22.2563400 23.8511865 26.3310460
n = 18 15.474528100 16.4287413 18.25880569 19.75092270 21.6493279 23.9451092 25.5884176 28.1751235
n = 19 16.767443658 17.7781953 19.68708759 21.35217412 23.2612252 25.6592464 27.3669993 30.0104381
n = 20 17.958095609 19.3079792 21.19729880 22.91769329 24.9505653 27.3343553 29.0955890 31.8859533
n = 21 19.483600017 20.6629021 22.64242750 24.38606345 26.5151265 29.0672264 30.8741481 33.6749618
n = 22 20.850332860 22.0349841 24.16042419 25.99914869 28.1056636 30.7172403 32.5778501 35.5446394
n = 23 22.133302263 23.5977894 25.69931418 27.56765639 29.7466516 32.4673600 34.3972715 37.3906334
n = 24 23.799195241 25.0380515 27.12134034 29.18794761 31.4021429 34.1687555 36.1953612 39.2296275
n = 25 25.072788709 26.5553100 28.74744747 30.75630652 33.1050623 35.9098239 37.9579031 41.1587186
n = 26 26.462182056 28.0280348 30.27839304 32.31292615 34.7378258 37.6564874 39.7640703 43.0016917
n = 27 27.849363133 29.5520078 31.82855645 34.05971027 36.4527245 39.4222599 41.5292967 44.9063343
n = 28 29.331437496 31.0008064 33.47346273 35.54630750 38.1141159 41.1981746 43.3280709 46.7345636
n = 29 30.730734495 32.5269221 34.96803181 37.19390252 39.8755715 42.9091039 45.1382074 48.6215126
n = 30 32.234975312 34.0700712 36.65181957 38.80503022 41.4772691 44.7519491 46.9857719 50.4922630
n = 31 33.708172251 35.5534691 38.09313729 40.40079118 43.1734072 46.4234445 48.7085168 52.3523932
n = 32 35.244672209 37.1658219 39.75441330 42.10678584 44.8997852 48.2893707 50.5517619 54.2174933
n = 33 36.777018563 38.6888885 41.27131732 43.69313106 46.5638311 50.0343661 52.3536855 56.0865580
n = 34 38.348183185 39.9491583 43.04393930 45.43268063 48.2928330 51.7815589 54.2071997 58.0209004
n = 35 39.816324554 41.6144949 44.52772657 47.17357197 50.0067832 53.5222504 56.0135859 59.8968109
n = 36 41.276049279 43.1624638 46.23088375 48.73887878 51.6739904 55.3969858 57.8751186 61.7508283
n = 37 42.901115607 44.8033417 47.73729772 50.47316040 53.4451702 57.1285176 59.7095016 63.7104367
n = 38 44.281003491 46.3191629 49.29791711 52.16321175 55.1457748 58.8786033 61.5165750 65.5753271
n = 39 46.053415349 48.0244277 51.17484245 53.80053554 57.0112770 60.7412850 63.3011303 67.4990098
n = 40 47.436455752 49.3832757 52.66801079 55.54662587 58.6571617 62.4825106 65.1849778 69.3442466
n = 41 48.746692106 51.0554295 54.46792142 57.22123744 60.4575842 64.2642134 67.0079775 71.1846340
n = 42 50.815360681 52.8000542 56.25597833 58.83610602 62.0870262 66.0697314 68.8301803 73.2086183
n = 43 52.312225668 54.3818203 57.79002117 60.48881068 63.9377521 67.8471136 70.6566811 75.0359549
n = 44 54.007011034 55.9265049 59.38657809 62.18832222 65.5763192 69.6779034 72.5537893 76.9233017
n = 45 55.273209340 57.7055638 60.89177975 63.93025185 67.3733428 71.4653683 74.3533448 78.8536660
n = 46 56.981149969 59.2709983 62.56791970 65.55567786 69.0319233 73.2840537 76.2085185 80.6849747
n = 47 58.518336365 60.6717924 64.48207364 67.28052322 70.8953967 75.1069846 78.0167268 82.6427556
n = 48 59.899163307 62.3672742 65.99213571 68.99497944 72.5457160 76.8882785 79.8979782 84.4790092
n = 49 61.543289290 63.9134021 67.57583430 70.75218472 74.4049951 78.7221092 81.7086905 86.4243621
n = 50 63.209286066 65.6515265 69.41948116 72.57376112 76.2788323 80.5359501 83.5870453 88.3294849
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Appendix N: Empirical null distribution of R (upper α

points)

α = 0.5 α = 0.3 α = 0.2 α = 0.1 α = 0.05 α = 0.025 α = 0.01 α = 0.005

n = 2 2.778707 3.795736 4.607012 5.985454 7.361888 8.721125 10.58674 12.05585
n = 3 5.326644 6.717709 7.775147 9.452466 11.159827 12.729777 14.83075 16.43215
n = 4 7.754247 9.425155 10.647987 12.595892 14.439616 16.231088 18.52799 20.22054
n = 5 10.121040 12.011445 13.345203 15.486466 17.558034 19.500944 21.97255 23.45275
n = 6 12.452044 14.505021 16.001035 18.331968 20.500876 22.414891 25.22073 26.98483
n = 7 14.740375 16.958165 18.528387 21.021563 23.302349 25.389576 28.31222 30.14186
n = 8 17.012620 19.326650 21.044965 23.706163 26.051486 28.421446 31.28769 33.45931
n = 9 19.270595 21.738646 23.510008 26.342530 28.804060 31.152186 34.42222 36.47165
n = 10 21.484098 24.122356 25.896832 28.834812 31.592201 33.994215 37.21263 39.38467
n = 11 23.708728 26.494918 28.382059 31.397587 34.132858 36.769686 40.20616 42.19131
n = 12 25.887247 28.750796 30.790455 33.896401 36.795509 39.465996 42.89707 45.15359
n = 13 28.083132 31.082163 33.114634 36.444391 39.348538 42.124783 45.60122 48.17036
n = 14 30.280477 33.362499 35.518762 38.828410 41.875601 44.597173 48.30348 50.67796
n = 15 32.446608 35.701476 37.839896 41.418493 44.389070 47.400607 50.98134 53.82622
n = 16 34.637844 37.931809 40.268665 43.753318 47.063167 50.041080 53.58107 56.23565
n = 17 36.801737 40.217390 42.536455 46.235617 49.436647 52.490561 56.24384 59.11452
n = 18 38.976774 42.479856 44.808442 48.576310 51.892524 54.948014 58.92686 62.06399
n = 19 41.102505 44.711508 47.132952 51.059574 54.372164 57.739784 61.51741 64.50460
n = 20 43.263955 46.979450 49.542937 53.379899 56.927102 60.080653 64.23637 67.04411
n = 21 45.419612 49.150641 51.718119 55.740282 59.280871 62.759605 66.90614 69.33512
n = 22 47.594243 51.467368 54.124702 58.154416 61.779243 65.057663 68.84567 72.35462
n = 23 49.751032 53.612520 56.402079 60.458619 64.194240 67.630423 71.78741 75.00798
n = 24 51.857216 55.873525 58.634805 62.707431 66.557426 70.074571 74.50173 77.53545
n = 25 54.031759 58.068203 60.869541 65.115807 69.012325 72.516204 77.12052 80.30358
n = 26 56.094905 60.253118 63.108013 67.386863 71.445163 75.060820 79.29284 83.07089
n = 27 58.262371 62.500493 65.412009 69.762066 73.889342 77.484116 82.01144 85.26922
n = 28 60.423879 64.717988 67.689205 72.139176 76.225500 79.863829 84.49671 87.57447
n = 29 62.503099 66.818176 69.916316 74.427050 78.533650 82.458443 86.92732 90.18114
n = 30 64.550165 69.052519 72.150626 76.855642 80.911925 84.773578 89.38088 93.00390
n = 31 66.749111 71.290654 74.318337 79.265213 83.359979 87.225856 92.05437 95.27042
n = 32 68.918406 73.451908 76.587054 81.423640 85.585271 89.627545 94.24308 97.62325
n = 33 70.948355 75.660914 78.844894 83.649291 88.054484 92.025624 96.88809 100.25143
n = 34 73.070413 77.846357 81.062688 85.911091 90.352141 94.409356 98.92714 102.51973
n = 35 75.271250 80.068881 83.331552 88.367438 92.598172 96.856468 101.68246 105.12280
n = 36 77.350051 82.139683 85.544096 90.534519 95.051308 99.288474 103.95091 107.47745
n = 37 79.477195 84.354283 87.703481 92.721227 97.394176 101.685745 106.40725 110.86389
n = 38 81.566715 86.518806 89.932478 95.026760 99.687849 103.778782 109.19197 112.13101
n = 39 83.635003 88.770515 92.301753 97.330339 101.931128 106.211497 111.21844 115.04304
n = 40 85.783429 90.899807 94.361173 99.598144 104.256093 108.601252 113.94892 117.49656
n = 41 87.857371 93.080034 96.489382 101.901928 106.654949 110.804001 116.51365 120.46131
n = 42 89.984960 95.210355 98.761611 104.134740 108.873303 113.410375 118.81017 122.42251
n = 43 92.088890 97.301804 100.959648 106.251957 111.243619 115.700721 120.81188 124.97037
n = 44 94.266732 99.544029 103.123737 108.666148 113.546470 117.999050 123.76389 127.33136
n = 45 96.291074 101.661930 105.323961 110.926857 115.920390 120.596727 125.71277 129.86508
n = 46 98.399294 103.845852 107.554974 113.013258 118.234741 122.675341 128.61859 132.32189
n = 47 100.496617 106.047411 109.788978 115.304991 120.414385 125.206301 130.93504 134.59212
n = 48 102.570952 108.078494 111.928884 117.638503 122.668839 127.511232 133.17462 137.11794
n = 49 104.658983 110.315043 114.018283 119.829051 124.987648 129.678749 135.45010 139.74275
n = 50 106.774750 112.414306 116.371446 122.186279 127.529187 131.922635 137.87874 141.666
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Appendix O: Empirical null distribution of P (lower α

points)

α = 0.005 α = 0.01 α = 0.025 α = 0.05 α = 0.1 α = 0.2 α = 0.3 α = 0.4

n = 2 0.004799 0.009797 0.028100 0.051895 0.096900 0.190960 0.298640 0.394660
n = 3 0.004500 0.007299 0.018800 0.034200 0.065680 0.139600 0.212570 0.291000
n = 4 0.003600 0.006999 0.016198 0.034200 0.067990 0.137180 0.212110 0.282600
n = 5 0.003400 0.006300 0.015598 0.030300 0.062400 0.131300 0.206900 0.280660
n = 6 0.002700 0.006099 0.015400 0.030100 0.063300 0.135600 0.206800 0.282500
n = 7 0.002900 0.005698 0.014900 0.028800 0.058690 0.125900 0.195000 0.270100
n = 8 0.001900 0.005600 0.014200 0.028900 0.058400 0.128380 0.196900 0.263700
n = 9 0.004100 0.007000 0.014600 0.030095 0.060900 0.127480 0.190700 0.261000
n = 10 0.002800 0.005200 0.014700 0.028600 0.059000 0.124680 0.194800 0.265660
n = 11 0.002800 0.005399 0.013700 0.028390 0.059290 0.127800 0.195870 0.271260
n = 12 0.003300 0.006400 0.015800 0.030395 0.062990 0.127560 0.197700 0.273300
n = 13 0.002100 0.005499 0.013300 0.028700 0.060500 0.127200 0.191970 0.261660
n = 14 0.002000 0.004500 0.014700 0.029200 0.062400 0.127780 0.197600 0.266100
n = 15 0.002500 0.005499 0.016598 0.030800 0.064090 0.126800 0.192980 0.262100
n = 16 0.001900 0.005200 0.014598 0.030700 0.059700 0.125080 0.195340 0.266260
n = 17 0.002700 0.005998 0.014995 0.030395 0.059380 0.121980 0.190000 0.267620
n = 18 0.002400 0.005199 0.013998 0.027195 0.058900 0.126180 0.195900 0.265820
n = 19 0.003100 0.006300 0.015095 0.029400 0.064490 0.126180 0.194770 0.259500
n = 20 0.003100 0.006400 0.015198 0.027700 0.060890 0.129960 0.197900 0.265400
n = 21 0.002300 0.005199 0.014400 0.027195 0.057890 0.123800 0.195670 0.269560
n = 22 0.003400 0.006099 0.014895 0.031400 0.065290 0.128480 0.193700 0.264600
n = 23 0.003300 0.005597 0.015598 0.030300 0.059200 0.124900 0.186850 0.261400
n = 24 0.003000 0.005499 0.013700 0.030190 0.058700 0.121400 0.186270 0.256320
n = 25 0.002800 0.005100 0.012300 0.027990 0.058700 0.126000 0.200640 0.269400
n = 26 0.003400 0.005699 0.014498 0.026895 0.057800 0.121800 0.189400 0.262600
n = 27 0.003200 0.005199 0.013495 0.027900 0.057900 0.124480 0.189540 0.261560
n = 28 0.003100 0.006699 0.013798 0.029595 0.060400 0.123780 0.189800 0.262560
n = 29 0.002300 0.005200 0.015000 0.027300 0.056290 0.120780 0.186000 0.252860
n = 30 0.002900 0.005699 0.013100 0.028695 0.054990 0.125880 0.191670 0.260200
n = 31 0.002700 0.005398 0.012700 0.028795 0.059190 0.129480 0.193370 0.265800
n = 32 0.003200 0.006199 0.014095 0.026300 0.053300 0.122000 0.190470 0.262660
n = 33 0.003000 0.005900 0.012200 0.027000 0.055800 0.120900 0.187070 0.257400
n = 34 0.002499 0.005098 0.013400 0.026900 0.054580 0.120600 0.190500 0.265120
n = 35 0.002500 0.005197 0.016998 0.032995 0.060500 0.124380 0.195400 0.270060
n = 36 0.001700 0.003499 0.010798 0.024900 0.053500 0.119000 0.189240 0.258900
n = 37 0.002700 0.005199 0.013098 0.025895 0.053480 0.117380 0.182670 0.252160
n = 38 0.002200 0.004600 0.013898 0.031195 0.057690 0.123360 0.190140 0.256200
n = 39 0.003300 0.005399 0.012900 0.027900 0.061190 0.123080 0.189800 0.261800
n = 40 0.002500 0.004499 0.012698 0.028295 0.059180 0.119940 0.189200 0.261760
n = 41 0.001700 0.004400 0.011100 0.025700 0.055600 0.118980 0.188400 0.264500
n = 42 0.003000 0.006894 0.015700 0.030800 0.060290 0.122500 0.190100 0.260200
n = 43 0.003500 0.005700 0.014098 0.028100 0.057990 0.123000 0.195000 0.262060
n = 44 0.002100 0.004699 0.013200 0.028600 0.060290 0.122400 0.190100 0.262500
n = 45 0.003300 0.006300 0.015295 0.027495 0.057100 0.122160 0.189000 0.258700
n = 46 0.002000 0.004499 0.012898 0.028195 0.055700 0.115880 0.185000 0.262460
n = 47 0.002500 0.005099 0.013498 0.029400 0.060400 0.125800 0.196700 0.266100
n = 48 0.002900 0.006300 0.013900 0.027600 0.060190 0.127500 0.197140 0.263100
n = 49 0.002400 0.004900 0.014298 0.027500 0.057600 0.121500 0.190940 0.259400
n = 50 0.001900 0.004598 0.014300 0.029095 0.061190 0.130380 0.194640 0.257100
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α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 0.95 α = 0.975 α = 0.99 α = 0.995

n = 2 0.511000 0.605280 0.709120 0.804120 0.902700 0.955505 0.977200 0.992602 0.995701
n = 3 0.384250 0.464720 0.550460 0.649900 0.753300 0.809400 0.842300 0.868101 0.882004
n = 4 0.357250 0.437400 0.529130 0.620100 0.722320 0.785400 0.821500 0.849601 0.859301
n = 5 0.349250 0.429840 0.510800 0.604900 0.697820 0.758600 0.798702 0.832702 0.848100
n = 6 0.350050 0.431640 0.515300 0.603520 0.700510 0.758505 0.797800 0.832100 0.846902
n = 7 0.332600 0.410200 0.499230 0.593240 0.693110 0.755200 0.793400 0.821801 0.839801
n = 8 0.355100 0.433400 0.519600 0.607740 0.705520 0.762800 0.803402 0.832303 0.845700
n = 9 0.342750 0.425380 0.509400 0.598220 0.698210 0.761300 0.795800 0.826002 0.842201
n = 10 0.333500 0.413600 0.500450 0.586200 0.693310 0.758515 0.795010 0.824901 0.840701
n = 11 0.338400 0.415400 0.494760 0.588300 0.689100 0.751105 0.789202 0.821102 0.832602
n = 12 0.349400 0.430080 0.510600 0.591120 0.687320 0.747305 0.786700 0.819005 0.833700
n = 13 0.336750 0.420380 0.501130 0.588320 0.686100 0.749120 0.788400 0.824101 0.841000
n = 14 0.343850 0.425700 0.506600 0.589420 0.688300 0.746400 0.786300 0.814800 0.830802
n = 15 0.342200 0.423700 0.498630 0.584900 0.688030 0.752705 0.789402 0.819200 0.831601
n = 16 0.342950 0.421500 0.503900 0.599500 0.693300 0.753405 0.797000 0.824600 0.836501
n = 17 0.338000 0.411100 0.492100 0.579300 0.682310 0.742100 0.783000 0.818502 0.838400
n = 18 0.339500 0.418840 0.499230 0.588060 0.686110 0.746910 0.785500 0.808304 0.824302
n = 19 0.340350 0.419280 0.502400 0.587800 0.693100 0.753500 0.790108 0.823410 0.836302
n = 20 0.328900 0.404400 0.488500 0.579420 0.677400 0.740920 0.779100 0.810701 0.826201
n = 21 0.338500 0.414440 0.495220 0.586400 0.688710 0.753305 0.791812 0.821203 0.833907
n = 22 0.348350 0.426340 0.506530 0.590900 0.694810 0.753805 0.792903 0.822701 0.838801
n = 23 0.332550 0.407920 0.493630 0.580500 0.680120 0.740910 0.780307 0.814301 0.827200
n = 24 0.340600 0.414920 0.497500 0.584100 0.679410 0.743000 0.780502 0.813703 0.831800
n = 25 0.333450 0.409700 0.493900 0.588220 0.691710 0.749405 0.789000 0.821307 0.837802
n = 26 0.337350 0.417940 0.501100 0.581200 0.680520 0.744020 0.778502 0.812000 0.832601
n = 27 0.336900 0.411280 0.495500 0.581600 0.680600 0.742205 0.778305 0.809106 0.827602
n = 28 0.338100 0.416140 0.494300 0.588500 0.683600 0.741400 0.778000 0.810900 0.825504
n = 29 0.331250 0.405700 0.495830 0.584700 0.684900 0.752705 0.789407 0.823305 0.836000
n = 30 0.344450 0.418880 0.504060 0.591840 0.692900 0.751400 0.784012 0.816501 0.828904
n = 31 0.330450 0.407580 0.489560 0.580200 0.681510 0.744510 0.784705 0.814303 0.829400
n = 32 0.333700 0.410900 0.490300 0.583740 0.679310 0.747215 0.786205 0.820000 0.835300
n = 33 0.331600 0.411900 0.498550 0.583460 0.684100 0.744620 0.787302 0.817500 0.834500
n = 34 0.337550 0.411640 0.494530 0.579100 0.680310 0.745600 0.787100 0.817802 0.832302
n = 35 0.342750 0.420540 0.501600 0.586820 0.686610 0.746450 0.786902 0.820802 0.837100
n = 36 0.331050 0.408900 0.494990 0.582800 0.685900 0.745905 0.783808 0.812310 0.827000
n = 37 0.328600 0.408100 0.491500 0.576220 0.678230 0.740705 0.779915 0.816900 0.832601
n = 38 0.339700 0.420040 0.496490 0.585400 0.684800 0.743600 0.780617 0.812211 0.826003
n = 39 0.334650 0.410500 0.490190 0.581800 0.682610 0.746100 0.786805 0.814807 0.832403
n = 40 0.335000 0.411040 0.491800 0.581240 0.682400 0.745205 0.784302 0.812400 0.827105
n = 41 0.338300 0.412200 0.489730 0.582520 0.679800 0.744800 0.782302 0.811507 0.823800
n = 42 0.333000 0.410240 0.491400 0.582300 0.678400 0.740005 0.780810 0.811103 0.828801
n = 43 0.333000 0.411700 0.487530 0.576500 0.678430 0.744500 0.784105 0.816500 0.829702
n = 44 0.338600 0.415400 0.504600 0.596720 0.689710 0.747200 0.785405 0.817700 0.830700
n = 45 0.333000 0.414400 0.497860 0.581700 0.683200 0.750700 0.784615 0.816203 0.829800
n = 46 0.332800 0.409500 0.490860 0.582100 0.678210 0.740220 0.782502 0.815705 0.832702
n = 47 0.336800 0.411040 0.490000 0.586800 0.685630 0.741325 0.778902 0.810403 0.829303
n = 48 0.333800 0.414200 0.493630 0.578100 0.681720 0.746410 0.784100 0.816201 0.830400
n = 49 0.341300 0.418040 0.495900 0.580800 0.680300 0.748300 0.785412 0.818206 0.832400
n = 50 0.331550 0.408040 0.488960 0.579040 0.684910 0.744110 0.786402 0.818003 0.832303
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